US2989616A - Servo-mechanism for controlling the movements of an electrode in an electro-erosion machine - Google Patents
Servo-mechanism for controlling the movements of an electrode in an electro-erosion machine Download PDFInfo
- Publication number
- US2989616A US2989616A US754294A US75429458A US2989616A US 2989616 A US2989616 A US 2989616A US 754294 A US754294 A US 754294A US 75429458 A US75429458 A US 75429458A US 2989616 A US2989616 A US 2989616A
- Authority
- US
- United States
- Prior art keywords
- passage
- servo
- electrode
- pressure
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 description 20
- 239000012530 fluid Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 241001028048 Nicola Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
- B23H7/28—Moving electrode in a plane normal to the feed direction, e.g. orbiting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
- B23H7/30—Moving electrode in the feed direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q5/00—Driving or feeding mechanisms; Control arrangements therefor
- B23Q5/22—Feeding members carrying tools or work
- B23Q5/26—Fluid-pressure drives
- B23Q5/266—Fluid-pressure drives with means to control the feed rate by controlling the fluid flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/08—Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/04—Special measures taken in connection with the properties of the fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40515—Flow control characterised by the type of flow control means or valve with variable throttles or orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40576—Assemblies of multiple valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41572—Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41581—Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/421—Flow control characterised by the type of actuation mechanically
- F15B2211/423—Flow control characterised by the type of actuation mechanically manually, e.g. by using a lever or pedal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/426—Flow control characterised by the type of actuation electrically or electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50509—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
- F15B2211/50536—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/515—Pressure control characterised by the connections of the pressure control means in the circuit
- F15B2211/5157—Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S60/00—Power plants
- Y10S60/907—Working member positioned against counterforce by constantly applied motive fluid
Definitions
- Servo-mechanisms are known for controlling the movements of an electrode in an electro-erosion machine, comprising a diiferential piston sliding in a cylinder for the control of the movements of the electrode, the movements of said piston producing variations of unequal volume and of inverse direction in two Working chambers;
- a hydraulic circuit comprises a pump delivering a liquid under constant pressure, a first passage conducting said liquid into the working chamber which is subjected to the smallest possible variations of volume in proportion to the movements of the differential piston, and a second passage for causing the first passage to communicate with the other Working chamber, said second passage having a connection of adjustable cross-section to the escape of the liquid under pressure; said connection is controlled by a device sensitive to the electrical conditions of the machine in operation.
- the servo-mechanisms of this type are advantageous, as they react very rapidly.
- said servomechanisms are not in operation and the piston moves under the action of its proper weight or an external action, a depression is produced in one of the working chambers, which promotes an entry of air into said chamber.
- Such an entry of air constitutes a major inconvenience by reason of the compressibility of the air which causes a lack of precision of the servo-mechanisms.
- the manual movement of the differential piston is difficult, as the cross-section of the constricted passage is very small, as is also that of the passage of adjustable cross-section, so that a considerable force has to be applied to the differential piston so as to provoke the circulation of liquid in the said passages.
- the present invention has for its object to remedy these inconveniences, by reason of the fact that the servo-mechanism comprises means permitting the connection to exhaust of at least one of the two working chambers in such a manner as to facilitate the manual movement of the differential piston when the servo-mechanism is out of use and to avoid entries of air.
- FIG. 1 is a diagram of an electro-erosion machine.
- FIG. 2 shows in section the servo-mechanism of said mechanism.
- FIG. 1 The basic diagram of an electro-erosion machine, shown in FIG. 1, shows that the machine comprises an electric generator A of which the terminals a and b are connected, on the one hand, to an electrode E and, on the other hand, to a part P to be machined which are to be plunged into a dielectric liquid. Said generator supplies the energy necessary for producing a series of discharges by sparks between the part P and the electrode E, each spark removing a little metal to the part to be machined.
- a servo-mechanism S is provided for causing the electrode E to advance in the direction of the part P in proportion to the machining of said latter.
- the control of the servo-mechanism is ensured electrically by a device B which measures the voltage between the electrode E and the part P and supplies to the servo-mechanism a control current depending on. the said voltage.
- the hydraulic circuit comprises a reservoir 6 feeding a pump 7 adapted to deliver the control liquid under a constant pressure. Said liquid is passed through a first passage 8 into the working chamber 5. A second passage 9 causes the first passage 8 to communicate with the other working chamber 4. Said second passage has a restricted passage 10 and, at the upfiow of said latter, a passage 11 of adjustable crosssection permitting the liquid to be connected to outflow.
- the liquid passing out through the passage 11 passes into a reservoir 6a, then passes out through an overflow 6b into the reservoir 6.
- the cross-section of said passage 11 is adjusted by a ball 12 which is more or less withdrawn from its seat provided in a part 13, by means of a finger 14 of a device 15 responsive to the electrical conditions of operation of the machine. Said device 15 is not described in detail, as it does not form part of the invention.
- the pipe 9 also has a passage of which the section is adjustable by means of a screw 16 which may be reached from the exterior by a bore 17.
- This pipe may be placed into communication with the reservoir 6a, by means of a passage capable of being closed by an automatic valve 18 which is subjected to the action of a spring 19 tending to open it.
- the passage 8 may also communicate with the reservoir 6a in the bottom of which is provided a second automatic valve 20 subjected to the action of a spring 21 tending to open it.
- the passage 8 has a discharge valve comprising a valve 22 subjected to the action of a spring 23 which tends to apply it against a seat 24.
- a screwed plug 25 is provided for the mounting and removal of the discharge valve.
- Each end of the cylinder 3 is closed by a part 26, 27, respectively, each having a bore 28, 29, respectively, provided with fluidtight linings and in each of which slides a portion of the rod 2.
- Each of the parts 26 and 27 also has an internal space 30 and 31 communicating with the reservoir 6a for the return of liquid by a passage 32. It will be seen that two spaces 30 and 31 are placed in communication with each other by a passage 33 provided in the wall of the cylinder 3.
- the reservoir 6a is at a higher level than the spaces 30 and 31, so that these latter are always filled with liquid under a pressure determined by the height of the level in the reservoir 6a.
- the rod 2 fits with clearance in bores 34, 35, respectively, provided in each of the said parts and located between each of the said spaces 30 and 31 and the adjacent working chamber 4, 5 respectively.
- the pump 7 places the liquid under pressure and this pressure is transmitted into the chamber 5.
- the liquid supplied by the pump passes through the restricted passage 10, which produces a loss of pressure, so that the pressure in the passage 9 and in the chamber 4 is lower than that in the passage 8 and the chamber 5.
- the liquid supplied by the pump then passes through the passage 11 3 of adjustable cross-section, in which passage a new drop in pressure is produced.
- the valves 18 and 20 are closed against the action of their springs 19 and 21, respectively. It is clear that the pressure in the chamber 4 is deter-- mined by the free cross-section of the adjustable passage 11.
- the distance separating said part P from the electrode E increases, thus producing a consecutive increase of the disruptive voltage and of the average between these parts.
- the device B reacts by transmitting to the device 15 a current producing a downward movement of the finger 14. This results in the diminution of the passage 11 and an increase of the pressure in the chamber 4, thus producing a movement of the rod 2 and therefore of the electrode E in the direction of the part P.
- This reduction of the distance between the electrode and the part produces a diminution of the average voltage between the electrode E and the part P, so that the finger 14 resumes its initial position and the pressure in the chamber 4 resumes the value for which the diflerential piston 1 is not subjected to movement.
- the pump 7 When the machining is terminated or simply interrupted, the pump 7 is stopped, and the pressure of the liquid in the passages 8 and 9 and the chambers 4 and 5, dissipated through the bores 34 and 35 to the reservoir 6a.
- the automatic valves 18 and 20 then open under the action of their springs 19 and 21 and enable the chambers 4 and 5 to communicate directly with the reservoir (in. It is thus easy to move the rod 2 by hand, as the communication of the chambers 4 and 5 with the reservoir 6a is effected by passages having very Weak losses of pressure.
- the arrangement also avoids entry of air into the chambers 4 and 5 when the rod 2 is moved manually.
- the automatic valves may be located at ditferent places.
- one of the 2,989,616 g 0 r r valves may be located in the differential piston so as to cause the two working chambers to communicate directly with one another when the pressure is practically zero.
- the latter should be actuated so as to close automatically when the pressure in the chamber 5 becomes higher than that in the chamber 4.
- the second valve may be provided either on the passage 8, or on the passage 9, so as to cause one of said passages to communicate with the reservoir 6a.
- the closing parts of the cylinder 3 may have only one bore in which the rod 2 slides, the spaces and 31 being then omitted.
- the fluidtight linings are subjected to much higher pressures, but the introduction of air during the manual movements of the rod 2 can no longer be produced by reason of the satisfactory communication of the chambers 4 and 5 with the reservoir 6a and of the higher level of this.
- valves 18 and 20 by other elements enabling the chambers 4 and 5 to be placed to exhaust, for example by means of a slide distributor or by valves controlled automatically or manually. According to a simpler form of construction, it is possible to be satisfied with means enabling only one of the working chambers 4 or 5 to be placed to exhaust.
- the passage of' adjustable cross-section is controlled by the device 15 in such a manner that on the stoppage of the servo-mechanism, said passage has a relatively large free cross-section, means enabling the chamber 5 to be connected to exhaust may be suflicient.
- a servo-mechanism for controlling the movements of an electrode in an electro-erosion machine with respect to a workpiece comprising a hydraulic cylinder, a slidable double acting differential piston in said cylinder providing therein two hydraulic chambers, the effective area of the piston subjected to fluid pressure in the first of said chambers being smaller than the effective area of the piston in the second chamber so that greater displacement of the piston is produced by application of a unit volume of fluid pressure to said effective piston area in said first chamber than by application of a unit volume of fluid pressure to said effective piston area in said second chamher, said piston actuating the electrode, a source of fiuid pressure, a supply line connecting said source with said first chamber, a branch line connecting said supply line with the second chamber, a return circuit for the hydraulic fluid to said source, means reducing the hydraulic pressure of the fluid entering through the branch line into the second chamber below the pressure of the fluid entering the first chamber, a passage connecting said branch line to the return circuit, adjustable valve means in said passage, means responsive to the changes of the
- said adjustable valve means in the passage connecting the branch line and the return circuit comprise a floating ball valve and a vertically displaceable finger controlled by said voltage responsive means, said finger controlling the position of said ball.
- the servo-mechanism as claimed in claim 1 including a reservoir in said return circuit, said voltage responsive means being disposed in said reservoir and said connecting passages opening into said reservoir.
- the servo-mechanism as claimed in claim 1, comprising members closing the ends of said cylinder, an internal cavity in each of said members communicating with said reservoir, said reservoir being placed at a higher level than said cavities, two registering bores in each of said members, and a piston rod at each side of said piston, said rods having different diameters and passing through said cavities and bores.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Fluid-Pressure Circuits (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2989616X | 1957-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2989616A true US2989616A (en) | 1961-06-20 |
Family
ID=4573241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US754294A Expired - Lifetime US2989616A (en) | 1957-08-26 | 1958-08-11 | Servo-mechanism for controlling the movements of an electrode in an electro-erosion machine |
Country Status (4)
Country | Link |
---|---|
US (1) | US2989616A (enrdf_load_stackoverflow) |
DE (1) | DE1194079B (enrdf_load_stackoverflow) |
FR (1) | FR1208343A (enrdf_load_stackoverflow) |
NL (1) | NL103618C (enrdf_load_stackoverflow) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3135167A (en) * | 1962-09-11 | 1964-06-02 | American Brake Shoe Co | Hydraulic motors |
US3167632A (en) * | 1961-12-18 | 1965-01-26 | Easco Products Inc | Electro-hydraulic electrode feed for spark cutting apparatus |
US3362510A (en) * | 1964-12-10 | 1968-01-09 | Nash Alan Richard Brine | Liquid shear rotary dampers |
US3366770A (en) * | 1963-12-16 | 1968-01-30 | Gen Motors Corp | Electroerosive apparatus |
US3371182A (en) * | 1962-10-02 | 1968-02-27 | Sparcatron Ltd | Electro-erosion apparatus |
US3449226A (en) * | 1966-10-03 | 1969-06-10 | Anocut Eng Co | Electrolytic deburring apparatus and method |
US3521021A (en) * | 1965-08-20 | 1970-07-21 | Agie Ag Ind Elektronik | Electro-erosion machine including separately controllable electrode support mounting means and feeding means |
US3538290A (en) * | 1967-04-18 | 1970-11-03 | Oconnor Thomas John | Apparatus for electro-erosion machining |
US3662142A (en) * | 1969-04-24 | 1972-05-09 | Essar Corp | Edm machine head and hydraulic pressure apparatus |
US4586187A (en) * | 1982-11-20 | 1986-04-29 | Mannesmann Rexroth Gmbh | Control apparatus for controlling movements of an electrode in an electric arc furnace |
US4670635A (en) * | 1984-08-10 | 1987-06-02 | Ex-Cell-O Corporation | Multi-electrode electrical discharge machining apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2613785B1 (fr) * | 1987-04-13 | 1990-11-23 | Gratzmuller Claude | Verin hydraulique differentiel, avec systeme d'amortissement, pour la commande de disjoncteurs electriques |
DE4414779C1 (de) * | 1994-04-25 | 1995-11-02 | Mannesmann Ag | Multifunktionsventil |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US400323A (en) * | 1889-03-26 | Hydraulic sausage-stuffing machine | ||
US2105473A (en) * | 1934-08-10 | 1938-01-18 | Walter C Dean | Hydraulic steering gear |
US2356597A (en) * | 1939-08-25 | 1944-08-22 | Kronenberger Adam | Rudder machine for automatic pilots |
US2479063A (en) * | 1946-02-11 | 1949-08-16 | Reconstruction Finance Corp | Hydraulic steering gear |
US2572385A (en) * | 1948-01-29 | 1951-10-23 | Landis Tool Co | Speed control for hydraulic systems with compensation for viscosity changes |
US2696403A (en) * | 1950-10-25 | 1954-12-07 | Gen Motors Corp | Electrohydraulic control and actuating system for vehicle tops, windows, and seats |
US2751752A (en) * | 1953-04-17 | 1956-06-26 | Northrop Aircraft Inc | Electric-hydraulic flap control system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB721335A (en) * | 1951-10-27 | 1955-01-05 | Langenstein Und Schemann A G | Improvements in hydraulic presses |
AT189894B (de) * | 1954-09-10 | 1957-05-10 | Charmilles Sa Ateliers | Maschine zur elektrischen Bearbeitung leitender Materialien mittels Funkenentladungen |
-
0
- NL NL103618D patent/NL103618C/xx active
-
1958
- 1958-06-05 FR FR1208343D patent/FR1208343A/fr not_active Expired
- 1958-08-11 US US754294A patent/US2989616A/en not_active Expired - Lifetime
- 1958-08-22 DE DEA30140A patent/DE1194079B/de active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US400323A (en) * | 1889-03-26 | Hydraulic sausage-stuffing machine | ||
US2105473A (en) * | 1934-08-10 | 1938-01-18 | Walter C Dean | Hydraulic steering gear |
US2356597A (en) * | 1939-08-25 | 1944-08-22 | Kronenberger Adam | Rudder machine for automatic pilots |
US2479063A (en) * | 1946-02-11 | 1949-08-16 | Reconstruction Finance Corp | Hydraulic steering gear |
US2572385A (en) * | 1948-01-29 | 1951-10-23 | Landis Tool Co | Speed control for hydraulic systems with compensation for viscosity changes |
US2696403A (en) * | 1950-10-25 | 1954-12-07 | Gen Motors Corp | Electrohydraulic control and actuating system for vehicle tops, windows, and seats |
US2751752A (en) * | 1953-04-17 | 1956-06-26 | Northrop Aircraft Inc | Electric-hydraulic flap control system |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3167632A (en) * | 1961-12-18 | 1965-01-26 | Easco Products Inc | Electro-hydraulic electrode feed for spark cutting apparatus |
US3135167A (en) * | 1962-09-11 | 1964-06-02 | American Brake Shoe Co | Hydraulic motors |
US3371182A (en) * | 1962-10-02 | 1968-02-27 | Sparcatron Ltd | Electro-erosion apparatus |
US3366770A (en) * | 1963-12-16 | 1968-01-30 | Gen Motors Corp | Electroerosive apparatus |
US3362510A (en) * | 1964-12-10 | 1968-01-09 | Nash Alan Richard Brine | Liquid shear rotary dampers |
US3521021A (en) * | 1965-08-20 | 1970-07-21 | Agie Ag Ind Elektronik | Electro-erosion machine including separately controllable electrode support mounting means and feeding means |
US3619544A (en) * | 1965-08-20 | 1971-11-09 | Agie Ag Ind Elektronik | Electroerosion machine with separately controlled electrode feed means and fluid bearing film for electrode support means |
US3449226A (en) * | 1966-10-03 | 1969-06-10 | Anocut Eng Co | Electrolytic deburring apparatus and method |
US3538290A (en) * | 1967-04-18 | 1970-11-03 | Oconnor Thomas John | Apparatus for electro-erosion machining |
US3662142A (en) * | 1969-04-24 | 1972-05-09 | Essar Corp | Edm machine head and hydraulic pressure apparatus |
US4586187A (en) * | 1982-11-20 | 1986-04-29 | Mannesmann Rexroth Gmbh | Control apparatus for controlling movements of an electrode in an electric arc furnace |
US4670635A (en) * | 1984-08-10 | 1987-06-02 | Ex-Cell-O Corporation | Multi-electrode electrical discharge machining apparatus |
Also Published As
Publication number | Publication date |
---|---|
NL103618C (enrdf_load_stackoverflow) | |
FR1208343A (fr) | 1960-02-23 |
DE1194079B (de) | 1965-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2989616A (en) | Servo-mechanism for controlling the movements of an electrode in an electro-erosion machine | |
US4590968A (en) | Pilot valve operated pressure reducing valve | |
US3604884A (en) | Electrode feed control for edm machine | |
GB1474421A (en) | Variable pressure hydraulic system | |
US2716395A (en) | Fluid operated power apparatus and control mechanisms therefor | |
GB1380226A (en) | Fluid supply apparatus | |
LU76721A1 (enrdf_load_stackoverflow) | ||
US3216446A (en) | Spool valve assembly with dual check valve assembly | |
US3739813A (en) | Power and speed control for double-acting cylinder-and-piston motor | |
US3841096A (en) | Control and regulator device for a load-independent regulated hydraulic system | |
US2420890A (en) | Fluid pressure control system | |
US2323021A (en) | Relief valve | |
US3563272A (en) | Servocontrol valve and system | |
US3714868A (en) | Valve system for proportional flow control for fluid-operated motor | |
GB1262103A (en) | Control arrangement | |
US2991758A (en) | Hydraulic servo-mechanism with electric control | |
US2714854A (en) | System for maintaining accumulator pressures within close limits | |
US3362335A (en) | Control system for fluid pressure source | |
US4630523A (en) | Electrohydraulic regulating drive | |
US2601207A (en) | Fluid regulator | |
US2888953A (en) | Valve system timing device | |
US3318332A (en) | Valve operating mechanism | |
US2953121A (en) | Hydraulically controlled driving arrangement for movable members | |
US2843141A (en) | Metering devices for hydraulic circuits | |
US2524114A (en) | Fluid valve |