US2988659A - Electron beam focusing magnet system for traveling wave tubes - Google Patents

Electron beam focusing magnet system for traveling wave tubes Download PDF

Info

Publication number
US2988659A
US2988659A US818170A US81817059A US2988659A US 2988659 A US2988659 A US 2988659A US 818170 A US818170 A US 818170A US 81817059 A US81817059 A US 81817059A US 2988659 A US2988659 A US 2988659A
Authority
US
United States
Prior art keywords
pole pieces
magnet system
soft
iron
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US818170A
Other languages
English (en)
Inventor
Deimel Ernst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
North American Philips Co Inc
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Application granted granted Critical
Publication of US2988659A publication Critical patent/US2988659A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/08Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
    • H01J23/087Magnetic focusing arrangements
    • H01J23/0876Magnetic focusing arrangements with arrangements improving the linearity and homogeniety of the axial field, e.g. field straightener

Definitions

  • This invention relates to a magnet system for travelingwave tubes, which system comprises a number of radially arranged, substantially horseshoe-shaped magnets which link up with two bored polygonal soft-iron pole pieces, a stack of thin soft-iron plates of high permeability having about the same outer dimensions as the pole pieces and alternating with spacing rings of non-magnetic material being arranged between the pole pieces through the greatest part of the distance by which the pole pieces are spaced from one another.
  • each component magnet comprises two radially arranged rods which are magnetized in opposite directions and are connected by a soft iron axial connecting piece.
  • This method has two disadvantages, namely: due to the connection between the pole pieces magnet flux for the field proper is lost and also the soft-iron plates which are disposed between the pole pieces for rendering the transverse fields rotation-symmetrical, can no longer be used unless pole pieces and magnets are employed which have abnormally large dimensions and abnormally high weights and prices.
  • a magnet system for a traveling-wave tube comprising a number of radially arranged substantially horseshoeshaped magnets which register with two bored polygonal soft-iron pole pieces, with the interposition, between the pole pieces through the greater part of their spacing, of a stack of thin soft-iron plates of high permeability and having about the same outer dimensions as the pole pieces, which plates alternate with spacing rings made of nonmagnetic material, according to the invention there are arranged between the pole pieces a number of soft-iron rings, the diameters of which exceed the diameter of a stack and the cross-sectional areas of which decrease with increase of the distance from the nearest pole piece. This provides an approximation to the soft-iron connecting tube.
  • each of the rings in its axis produces a field of opposite direction to the main field.
  • This field of opposite direction is stronger as A the cross-sectional area of the ring is larger, so that the rings nearest the pole pieces provide the strongest field of opposite direction, and this is exactly what is required to provide homogenization of the longitudinal field.
  • the simplest embodiment of the invention is that in which two soft-iron rings are provided close to each of the pole pieces, the ring nearest the pole piece having an internal diameter which is substantially equal to the longest diagonal of the pole piece and an axial dimension substantially equal to that of the pole piece and a radial width equal to one half of the axial dimension, while the second ring has the same external diameter as the first ring, one half of the radial width thereof and from one third to one half of the axial dimension thereof, the rings being spaced by a distance which is equal to one half of the axial dimension of the second ring.
  • the provision of the rings in accordance with the invention ensures that a sufiicient amount of space is left for the soft-iron plates for rendering the transverse field rotation-symmetrical, which field can extend nearly up to the pole pieces, the homogenization of the axial field being highly satisfactory so that this field midway between the pole pieces is even stronger than in the absence of the rings.
  • the soft-iron rings in accordance with the invention nearest the pole pieces are provided with two diametrically arranged cut-away portions extending through about one half of the axial dimension so that they are shaped in the form of claws for the passage of the waveguides forming the input and the output of the traveling-wave tube.
  • the ring nearest the pole piece may have a slightly smaller outer diameter through about one half of its length at the side adjacent the pole piece so that the radial width of the ring is reduced by about 25% at this point.
  • FIG. 1 is an axial sectional view of a magnet system in accordance with the invention with built-in travelingwave tube and high-frequency connections,
  • FIG. 2 is a front elevation of the magnet system and FIG. 3 is a sectional view of one of the homogenizing rings taken at right angles to the ring axis.
  • reference numeral 1 designates the glass wall of a traveling-wave tube which at the gun end is sealed, with the interposition of a non-magnetic disc 2, to a glass wall 3 enclosing the gun.
  • the emitting electrode of the gun is designated 4.
  • the remainder of the gun is not shown.
  • a soft-iron screening sleeve 5 surrounds the gun part.
  • the glass wall 1 is sealed, With the interposition of a magnetizable ring Q, to a short glass cylinder 10 which terminates in a collector 8 provided with cooling fins and shown partially only.
  • a transition part 9 and a screen electrode 10 are made of magnetizable material.
  • Square pole pieces 11 each have a round aperture surrounding the ends of the tube.
  • Each pole pieces engages four rods 12 of high-quality magnet steel which are magnetized according to the arrows.
  • the rods 12 are interconnected at their outer ends by soft-iron connecting bars 13.
  • the traveling-wave tube is accommodated in a brass screening sleeve 14 which terminates in red-copper input and output wave guides 15 and 16.
  • the brass screening sleeve is surrounded, through its entire length between the input and the output wave guides, by rings 17 from mu-metal of thickness 0.2. mm. alternating with hardpaper rings 18 of thickness 3 mms.
  • Near the pole piece at the gun end are provided a soft-iron ring 19 and a small ring 20 and likewise at the collector end rings 21 and 22.
  • the rings are fixed relative to the pole pieces and to one another by means of three profiled hard-paper rings 23, 24 and 25 while two brass plates 26 determine the correct spacing relative to the pole pieces at each end.
  • the ring 19 is provided externally with a brass sunk ring 27.
  • the helical delay line of the traveling-wave tube is designated by 28.
  • FIG. 3 shows the provision of two cut away portions 29 in ring 21 so that two claws 30 are left.
  • a magnet system for a traveling wave tube comprising a pair of spaced, apertured, axially-aligned, poly onal-shaped pole pieces having an outside diameter defined by the longest diagonal across the pole pieces, a plurality of externally mounted permanent magnets opposite poles of which are coupled to the polygonal-shaped pole pieces, thereby establishing a magnetic field directed axially between the said pole pieces, and means for improving the uniformity of the said axially directed magnetic field, said improving means comprising a cylinder coaxially surrounding a substantial portion of the space between the polygonal-shaped pole pieces and comprising alternately arranged high-permeability magnetic wafers and non-magnetic spacers, said cylinder having approximately the same outside diameter as that of the said pole pieces, said improving means further comprising plural annular magnetic members coaxially surrounding the space between the pole pieces, said annular magnetic members possessing substantially greater outside. diameters than that of said cylinder, the annular magnetic member adjacent the nearest pole piece having a larger crosssection than further removed annular magnetic members.
  • a magnet system for a traveling Wave tube comprising a pair of spaced, apertured, axially-aligned, polygonal-shaped pole pieces having an outside diameter defined by the longest diagonal across the pole pieces, a plurality of externally mounted permanent magnets opposite poles of which are coupled to the polygonal-shaped pole pieces, thereby establishing a magnetic field directed axially between the said pole pieces, and means for improving the uniformity of the said axially directed magnetic field, said improving means comprising a cylinder 4 alternately arranged high-permeability magnetic Wafers and non-magnetic spacers, said cylinder having approximately the same outside diameter as that of the said pole pieces, said improving means further comprising a pair of annular magnetic members coaxially surrounding the space between the pole pieces and adjacent each pole piece, said annular magnetic members possessing substantially greater inside and outside diameters than that of said cylinder and surrounding the latter, the one annular magnetic member of each pair adjacent the nearest pole piece having a larger cross-section than the other annular magnetic member.
  • a magnet system as set forth in claim 2 wherein the said one magnetic member has an internal diameter substantially equal to the longest diagonal of a pole piece, an axial length substantially equal to that of the pole piece, and a radial width substantially equal to one-half its axial length, and the said other magnetic member has the same outside diameter as the said one member, onehalf of its radial width, and between one-third and onehalf of its axial length, the two members being spaced apart a distance equal to one-half of the axial length of the other member.

Landscapes

  • Microwave Tubes (AREA)
US818170A 1958-06-27 1959-06-04 Electron beam focusing magnet system for traveling wave tubes Expired - Lifetime US2988659A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL229121 1958-06-27

Publications (1)

Publication Number Publication Date
US2988659A true US2988659A (en) 1961-06-13

Family

ID=19751264

Family Applications (1)

Application Number Title Priority Date Filing Date
US818170A Expired - Lifetime US2988659A (en) 1958-06-27 1959-06-04 Electron beam focusing magnet system for traveling wave tubes

Country Status (6)

Country Link
US (1) US2988659A (de)
CH (1) CH379649A (de)
DE (1) DE1106428B (de)
FR (1) FR1227990A (de)
GB (1) GB918016A (de)
NL (2) NL229121A (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250946A (en) * 1961-02-07 1966-05-10 Philips Corp Travelling wave tube, in which an electron beam interacts with a helical delay line, having spurious oscillation suppressing means
US3286113A (en) * 1961-11-20 1966-11-15 Rca Corp Cathode ray tube

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2591350A (en) * 1947-04-26 1952-04-01 Raytheon Mfg Co Traveling-wave electron reaction device
FR1080230A (fr) * 1952-07-01 1954-12-07 Philips Nv Dispositif de concentration magnétique pour faisceaux électroniques
US2741718A (en) * 1953-03-10 1956-04-10 Sperry Rand Corp High frequency apparatus
US2791718A (en) * 1956-04-23 1957-05-07 Bell Telephone Labor Inc Magnetic structure for traveling wave tubes
US2797360A (en) * 1953-03-26 1957-06-25 Int Standard Electric Corp Travelling wave amplifiers
US2812470A (en) * 1954-10-22 1957-11-05 Bell Telephone Labor Inc Periodic focusing in traveling wave tubes
GB792002A (en) * 1955-04-12 1958-03-19 Marrison & Catherall Ltd Improvements in centralising means for electronic devices making use of a focussed electron beam
US2867745A (en) * 1953-10-07 1959-01-06 Bell Telephone Labor Inc Periodic magnetic focusing system
US2871395A (en) * 1955-10-27 1959-01-27 Bell Telephone Labor Inc Magnetic structures for traveling wave tubes
US2876373A (en) * 1956-03-01 1959-03-03 Siemens Ag Magnet system for the focusing of electron beams

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2591350A (en) * 1947-04-26 1952-04-01 Raytheon Mfg Co Traveling-wave electron reaction device
FR1080230A (fr) * 1952-07-01 1954-12-07 Philips Nv Dispositif de concentration magnétique pour faisceaux électroniques
US2741718A (en) * 1953-03-10 1956-04-10 Sperry Rand Corp High frequency apparatus
US2797360A (en) * 1953-03-26 1957-06-25 Int Standard Electric Corp Travelling wave amplifiers
US2867745A (en) * 1953-10-07 1959-01-06 Bell Telephone Labor Inc Periodic magnetic focusing system
US2812470A (en) * 1954-10-22 1957-11-05 Bell Telephone Labor Inc Periodic focusing in traveling wave tubes
GB792002A (en) * 1955-04-12 1958-03-19 Marrison & Catherall Ltd Improvements in centralising means for electronic devices making use of a focussed electron beam
US2871395A (en) * 1955-10-27 1959-01-27 Bell Telephone Labor Inc Magnetic structures for traveling wave tubes
US2876373A (en) * 1956-03-01 1959-03-03 Siemens Ag Magnet system for the focusing of electron beams
US2791718A (en) * 1956-04-23 1957-05-07 Bell Telephone Labor Inc Magnetic structure for traveling wave tubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250946A (en) * 1961-02-07 1966-05-10 Philips Corp Travelling wave tube, in which an electron beam interacts with a helical delay line, having spurious oscillation suppressing means
US3286113A (en) * 1961-11-20 1966-11-15 Rca Corp Cathode ray tube

Also Published As

Publication number Publication date
GB918016A (en) 1963-02-13
FR1227990A (fr) 1960-08-26
NL98136C (de)
NL229121A (de)
CH379649A (de) 1964-07-15
DE1106428B (de) 1961-05-10

Similar Documents

Publication Publication Date Title
US3237059A (en) Permanent magnet system for producing a magnetic field for the focused passage of a beam of electrons
US4731598A (en) Periodic permanent magnet structure with increased useful field
US4701737A (en) Leakage-free, linearly varying axial permanent magnet field source
US2847607A (en) Magnetic focusing system
US2983840A (en) Magnetic beam-forming device
US2867745A (en) Periodic magnetic focusing system
GB742070A (en) Improvements in or relating to magnet assemblies which are long compared to their cross-sectional dimensions
US2844754A (en) Electron beam focusing system
US2797360A (en) Travelling wave amplifiers
US2843775A (en) Electron tube magnetic focusing device
GB757369A (en) Improvements in or relating to electron beam focusing systems
US2988659A (en) Electron beam focusing magnet system for traveling wave tubes
GB726823A (en) Improvements in or relating to magnetic circuits for travelling wave apparatus
US2936408A (en) Permanent magnets
US5099217A (en) Constant gap cladded twister
US5084690A (en) Stepped magnetic field source
US2964670A (en) Traveling wave tube
NL8020101A (nl) Omkeerbaar periodiek magnetisch focusseersysteem.
US3283200A (en) High frequency electron discharge device having improved permanent magnetic focusing
US3178602A (en) Adjustable permanent magnet focusing array
US3896329A (en) Permanent magnet beam focus structure for linear beam tubes
GB865725A (en) Improvements in or relating to magnetic focusing systems for travelling-wave tubes
EP0551027B1 (de) Magnetische Fokussierungsvorrichtung
US4041349A (en) Travelling wave tubes
US3404306A (en) Traveling-wave tube focusing field straightener