US2983827A - Magnetic timing device - Google Patents

Magnetic timing device Download PDF

Info

Publication number
US2983827A
US2983827A US736263A US73626358A US2983827A US 2983827 A US2983827 A US 2983827A US 736263 A US736263 A US 736263A US 73626358 A US73626358 A US 73626358A US 2983827 A US2983827 A US 2983827A
Authority
US
United States
Prior art keywords
winding
core
output
magnetic
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US736263A
Other languages
English (en)
Inventor
Franklin S Malick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allis Chalmers Corp
Original Assignee
Allis Chalmers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allis Chalmers Corp filed Critical Allis Chalmers Corp
Priority to US736263A priority Critical patent/US2983827A/en
Priority to DEA32061A priority patent/DE1173170B/de
Priority to CH7332159A priority patent/CH376967A/fr
Application granted granted Critical
Publication of US2983827A publication Critical patent/US2983827A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/18Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for introducing delay in the operation of the relay
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F9/00Magnetic amplifiers
    • H03F9/04Magnetic amplifiers voltage-controlled, i.e. the load current flowing in only one direction through a main coil, e.g. Logan circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/45Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of non-linear magnetic or dielectric devices

Definitions

  • MAGNETIC TIMING DEVICE Filed May 19, 1958 2 Sheets-Sheet 2 IIIIIHIHIIIII
  • Magnetic amplifiers have long been used in applica tion where a high degree of reliability is desired.
  • the reliability of a magnetic amplilier stems largely from the fact that it has no moving parts. Where such an ampliiieris embodied in a control circuit the overall reliability ofthe control circuit is greatly decreased by the inclusion of movingy parts such as relays, switches, or simil-ar devices.
  • movingy parts such as relays, switches, or simil-ar devices.
  • This invention overcomes the disadvantage of the timing relay by providing a completely sta-tic timing device vwhich has lan output suitable for direct utilization by :a magnetic amplier. This timer thereby avoids the necessity for contacts or other moving parts to convert the output of the timing device into an output compatible to the magnetic amplliiier type device.
  • Another object of this invention is to provide a static timing device for use with a magnetic amplifier which eliminates the need for relay type devices.
  • Fig. 1 is a schematic presentation of the basicelements of my invention
  • Fig. 2 is ⁇ a dnawing of the hysteresis curve for the core of Fig. 1;
  • Fig. 3 is a graphical presentation of the output Vot the core shown in Fig. 1;
  • FIG. 4 is a schematic drawing of a control system embodying my invention.
  • Fig. 5 is a schematic drawing of another control system embodyn'ng my invention.
  • the basic theory of the magnetic timer isbest explained with reference to the circuit of Fig. 1.
  • the core 6, shown schematically, has the hysteresis loop shown in Fig. 2.
  • Any suitable direct Vcurrent source applies a'currentk ip to Winding Np. Therefore, winding Np has ampereturns equal to Npib.
  • a second suitable direct current source applies a signal ip which causes the winding Np to ⁇ have ampere turns equal to Npip.
  • the hysteresis loop requires that the total ampere turns on the core must equal Nlp. Since there are only vthree sources of ampere turns ip, ip and is, -and since ip and ip have been determined as constants by defining them to be current sources, is must ⁇ adjust itself so that the followking equation is satisfied during the time ⁇ that the ux in the magnetic core is changing.
  • (2) NItSNsl-s'iNpib-i-Npp The magnitude and direction which Nsz's must have is shown in Fig. 2. If we assume vertical sides to the hysteresis loop then is will remain constant ⁇ throughout the entire flux change from negative saturation to positive saturation.
  • sqbs RSB The currentis may be plotted against time as shown in Fig. 3. The graph represents that the current ip was applied at the time 1:0. When the tlux reaches the positive saturation point it can no longer change so the voltage Es 'and therefore also the current is decrease to zero. If the current ip is removed, it is obvious that exactly the samerelations hold but is is in a reverse direction as the ilux returns to the starting point A shown in Fig. 2. It will be recognized, of course, that winding Np might be divided into two separate windings of turns. The current source ip would then feed one Winding and the current'source ip would feed another winding.
  • winding Np is shown as one winding for the sake of simplicity only.
  • the ratio of Ni,J 'to Nip is 1:2 where it is desirable that the return of the In thisembodiment l'an alternating 'zcurrent zsource :1 tis *connectedfby means'o'fnaswitch 2 through conductors 3 p 3 and 4 to a magnetic amplifier 5.
  • the magnetic amplifier has reactance windings and 111 and positive feedback windings 12 and 13 connecting alternating current source 1 to a load 14 through self-saturating rectifiers 15 and 16.
  • the reactance windings 10 and 11 coact to conduct current on alternate cycles of the supply voltage. For example, during one half cycle the current will flow i of this current in control windings 41 and 42 is deterthrough reactance winding 10 and feedback winding 12 g cycle, current will reverse its fiow through'the load and 'ow through the rectifier 15, the feedback winding 13 and reactance winding 11 back to the alternating current source 1 through conductor 3.
  • the direct current output voltage of bridge rectifier 22 also Yenergizes an input winding 30 on the magnetic timer core 31 through inductor 23 and resistor 32. This winding induces a flux in the magnetic core in a direction tending to drive the core to positive saturation.
  • a reset winding 33 on the magnetic core 31 is connected to be energized by a signal derived from the output of the magnetic amplifier. This signal is picked off across the load 14 and converted to direct current by rectifier 34. Resistor 35 limits the current to a predetermined level.
  • the polarity of the flux induced in the core by winding 33 is opposite that of winding 30 and tends therefore to drive the fiuX in the magnetic core to negative saturation.
  • a current flows in winding 33 only when magnetic amplifier 5 is producing an output current through 4load 14. Since amplifier 5 is a snap acting amplifier due to the positive feedback windings 12 and 13, the resulting current in winding 33 will be largely a function of the size of resistor 35.
  • the magnetic memory core 31 has an output winding 40 which is connected to control windings 41 and 42 on the magnetic amplifier.
  • Control windings 41 and 42 are polarized so as to decrease the loutput of magnetic amplifier 5, as indicated by the arrows adjacent these windings.
  • the magnitude of the current owing in control Windings 41 and 42 is sufficient to overcome the ampere turnsV of the bias winding and maintain the desaturation of theV magnetic amplifier.
  • the magnitude of the current in windings 40, 41 and 42 is determined by the rate of change of fiux in core 31. This cuts off Inductor 23 magnetic amplifier 5 and prevents an output current:
  • Magnetic core 31 is necessarily at negative saturation prior to the beginning of a cycle for reasons tobe explained later.
  • switch 2 When switch 2 is closed, power will be applied to rectifier bridge 22 from alternating current source 1.
  • the direct current output of bridge. 22 will flow through inductor 23, the resistor 32 and winding 30 on the magnetic core 31.
  • the current fiowing through winding 30 immediately starts to drive the magnetic core toward positive saturation.
  • the resultant changing flux in the magnetic core 31 induces a current in winding 40 control windings 41 and 42 induce a ux in the core oft]- magnetic amplifier'S which drives the magnetic'amplifier Y to cut of so that no output is produced. ⁇
  • Bias windings 20 and 21 are connected through resistor 24 to -be energized by the direct current output of the bridge rectifierV 22. Windings 20 and 21 tend to drive the magnetic amplifier to full output by saturating the core of magnetic amplifier 5. The ampere turns of the bias windings 20 and 21, however, are not sufficient to overcome the ampere turns of the control windings 41 and 42 and therefore the magnetic ampliier remains cut off. When the winding 30 has Vdriven the core 31 to positive saturation the fiux ceases to change and the voltage induced across winding 40 drops to zero.
  • the load 14 of the magnetic amplifier 5 can be the control winding on another magnetic amplifier, a relay winding, motor or other similar load.
  • the drawing illustrates the use of a winding of a relay 44 as the load 14.
  • FIG 5 shows a control circuit that is generally similar to the circuit of Fig. 4 except that the circuit of the reset winding 33 is isolated from the circuit of the magnetic amplifier 5 and the load 14 that is controlled by the magnetic amplifier.
  • the reset winding 33y is connected Vto thedirect current terminals of the bridge rectifier 22 ythrough a resistor 35 yand the contacts 45 of the relay ywinding 33.
  • a static timing device comprising a saturable magnetic core, input winding means on said core, amplifier means having an input and lan output; an output winding on said core lfor developing a voltage responsive to a changing iiux in said core, a source of direct current, means Vfor supplying said input winding means with a direct current from said source to drive said core to magnetic saturation, said output winding being coupled to said amplifier input to form a circuit for carrying current in said output winding in response to the current in said input winding-and according to the time elepai, Whilsd input Winding is SQPPled with direct current, and means responsive to the output of said amplifier to energize said input winding means and reverse the saturation of said core.
  • a static timing device comprising a saturable magnetic core, an input winding on said core, an output winding on said core for developing a voltage responsive to a changing iiux in said core, a source of direct current, means for supplying said input winding with a direct current from said first source to drive said core to magnetic saturation, amplifier means responsive to the voltage induced across said output winding by the changing flux in said core, la reset winding on said core, means responsive to the output of said amplifier to energize said reset winding to reverse the saturation of said core.
  • a static timing device comprising a saturable magnetic core, an input Winding on said core, an amplifier having an input and an output, an output winding on said core for developing a voltage responsive to a changing flux in said core, a source of direct current, means for supplying said input winding with a direct current from said source to drive said core to magnetic saturation, said output winding being coupled to said amplifier input to form a circuit for carrying current in said output winding in response to the current in said input winding and according to the time elapsed while said input winding is supplied with direct current, and means responsive to the output of said amplifier to reverse the magnetomotive force of said input winding thereby driving said core to reverse saturation.
  • a static timing device comprising a saturable magnetic core, input winding means on said core, an output winding on said core for developing a voltage responsive to a changing iiux in said core, a first source of direct current, means for supplying said input winding means with a direct current from said iirst source to drive said core to magnetic saturation, amplifier means responsive to the voltage induced across said output winding by the changing flux in said core, a second source of direct current, means responsive to the output of said amplifier to energize said input winding means from said second source to reverse the saturation of said core.
  • a static timing device comprising a saturable magnetic core, an input winding on said core, an output winding on said core for developing a voltage responsive to a changing ux in said core, a reset winding on said core, a source of direct current, means for supplying said input winding with a direct current ⁇ from said source to drive said core to saturation, a magnetic amplifier having a bias winding, a control winding and reactance windings, means for energizing said bias winding from a direct current source to increase the output of said amplifier, means connecting said control winding to be energized by the voltage developed across said output winding to reduce the output of said amplifier, means connected to said reactance windings and said reset winding to reverse the saturation of said core in response to an output current through said reactance windings.
  • a static timing device comprising a saturable magnetic core, an input winding on said core, an output winding on said core for developing a voltage responsive to a changing flux in said core, a reset winding on said core, a source of direct current, means for supplying said input winding with la direct current from said source to drive said core to saturation, a magnetic amplifier having a control winding, a bias winding, a feedback winding, and reactance windings, means for energizing said bias winding from a direct current source to increase the output of said amplifier, means connecting said control winding to be energized by the voltage developed across said output winding to reduce the output of said amplifier, means connecting said feedback winding to be energized by the output of said magnetic amplifier to further increase the output of said amplifier, means isolated from said magnetic amplifier to energize said reset winding and reverse the saturation of said core in response to the output of said amplifier.
  • a static timing device comprising a saturable magnetic core, an input Winding on said core, an output winding on said core for developing a voltage responsive to a changing iiux in said core, a reset winding on said core, a source of direct current, means for supplying said input winding with -a direct current from said source to drive said core to saturation, a magnetic amplifier having a control winding, a bias winding, a feedback winding and reactance windings, means for energizing said bias windings from a direct current source to increase the output of said amplifier, means connecting said control winding to lbe energized by the voltage developed across said output winding to reduce the output of said amplifier, means connecting said feedback winding to be energized by the output of said magnetic amplifier to further increase the output of said amplifier, means responsive to the output of said magnetic amplifier to energize said reset winding to reverse the saturation of said core.
  • a static timing ⁇ device comprising a saturable magnetic core, an input winding on said core, an output winding on said core for developing a voltage responsive to a changing flux in said core, a reset winding on said core, a source of direct current, means lfor supplying said input winding with a direct current 'from said source to drive said core to saturation, a magnetic amplifier having a control winding, a bias winding, a feedback winding and reactance windings, means for energizing said bias windings from a direct current source to increase the output of said amplifier, means connecting said control winding to be energized by the voltage developed across said output winding to reduce the output of said amplifier, means connecting said feedback winding to be energized by the output of said amplifier, a reset winding on said magnetic core, means connecting said reset winding to be energized by the output of said amplifier to reverse the magnetic saturation of said core.
  • a static timing device comprising a saturable magnetic core, an input Winding on said core, a source of direct current, means for supplying said input winding with a direct current from said source to drive said core to magnetic saturation, an output winding on said core for developing -a current in response to a changing flux in said core, a current responsive amplifier connected to said output winding, a reset winding on said core means responsive to the output of said amplifier to energize said reset winding and reverse the saturation of said core.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Voltage And Current In General (AREA)
US736263A 1958-05-19 1958-05-19 Magnetic timing device Expired - Lifetime US2983827A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US736263A US2983827A (en) 1958-05-19 1958-05-19 Magnetic timing device
DEA32061A DE1173170B (de) 1958-05-19 1959-05-16 Einrichtung zur Verzoegerung des Schaltvorgangs eines Magnetverstaerkers
CH7332159A CH376967A (fr) 1958-05-19 1959-05-19 Amplificateur magnétique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US736263A US2983827A (en) 1958-05-19 1958-05-19 Magnetic timing device

Publications (1)

Publication Number Publication Date
US2983827A true US2983827A (en) 1961-05-09

Family

ID=24959193

Family Applications (1)

Application Number Title Priority Date Filing Date
US736263A Expired - Lifetime US2983827A (en) 1958-05-19 1958-05-19 Magnetic timing device

Country Status (3)

Country Link
US (1) US2983827A (de)
CH (1) CH376967A (de)
DE (1) DE1173170B (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2027312A (en) * 1934-07-23 1936-01-07 Gerald Alan S Fitz Magnetic amplifying and control system
US2615066A (en) * 1949-07-12 1952-10-21 Electric Construction Co Direct current electrical supply system
US2786147A (en) * 1954-04-19 1957-03-19 Sperry Rand Corp Magnetic bistable device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE914646C (de) * 1944-12-22 1954-07-05 Siemens Ag Elektrischer Zeitkreis
DE1035732B (de) * 1954-08-30 1958-08-07 Licentia Gmbh Magnetverstaerkeranordnung fuer Steuer- und Regelzwecke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2027312A (en) * 1934-07-23 1936-01-07 Gerald Alan S Fitz Magnetic amplifying and control system
US2615066A (en) * 1949-07-12 1952-10-21 Electric Construction Co Direct current electrical supply system
US2786147A (en) * 1954-04-19 1957-03-19 Sperry Rand Corp Magnetic bistable device

Also Published As

Publication number Publication date
CH376967A (fr) 1964-04-30
DE1173170B (de) 1964-07-02

Similar Documents

Publication Publication Date Title
US2770737A (en) Magnetic delay line
US2757297A (en) Time delay devices
US2760085A (en) Flip-flop element for control systems
US2983827A (en) Magnetic timing device
US3223922A (en) Voltage regulator circuit
US2988688A (en) Control circuits
US3373290A (en) Polyphase current control system
US2914702A (en) Adjustable instantaneous overload trip device
US2820943A (en) Minimum time delay magnetic amplifier
US2988689A (en) Magnetic amplifier
US2894180A (en) Transistor-saturable reactor relay with over-frequency cutout
US3108258A (en) Electronic circuit
US3272991A (en) Static switch
US2888630A (en) Magnetic controller
US2820190A (en) Electromagnetic rectifier
US2953740A (en) Load-controlled magnetic amplifier circuit
US2764726A (en) Reversible-polarity direct-current qutput magnetic amplifier requiring only one alternating-current source
US2795752A (en) Amplifiers
US2874373A (en) Logic circuits
US2883600A (en) Constant current flux reversal circuit for mechanical rectifiers
US2802169A (en) Magnetic amplifier control apparatus
US2836782A (en) Adjustable speed motor control circuit
US2925547A (en) Transformer bypass circuit
US3118089A (en) Phase-sensitive device
US2965835A (en) Magnetic amplifier