US2964419A - Method and apparatus for producing anti-skid tread plate - Google Patents

Method and apparatus for producing anti-skid tread plate Download PDF

Info

Publication number
US2964419A
US2964419A US724362A US72436258A US2964419A US 2964419 A US2964419 A US 2964419A US 724362 A US724362 A US 724362A US 72436258 A US72436258 A US 72436258A US 2964419 A US2964419 A US 2964419A
Authority
US
United States
Prior art keywords
coating
metal
particles
bath
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US724362A
Inventor
Harold S Link
William H Schultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Priority to US724362A priority Critical patent/US2964419A/en
Application granted granted Critical
Publication of US2964419A publication Critical patent/US2964419A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/02Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a matt or rough surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/265After-treatment by applying solid particles to the molten coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/65Adding a layer before coating metal layer

Definitions

  • the invention relates, as indicated, to a tread plate having an anti-skid tread surface and, more particularly, to a method and apparatus for its fabrication.
  • Anti-skid tread surfaces having high coefficients of friction are desirable from the standpoint of safety and convenience in many instances such as stair treads, walkways and floor plates, and are particularly desirable where the tread surface is subject to wet or oily conditions.
  • conventional tread surfaces providing anti-skid properties are commonly as follows: abrasive impregnated cloth or paper cemented or otherwise secured in place; metal tread plates having patterned openings or metal protuberances therein; coatings of paints, plastics, or cements having abrasives incorporated therein; metals having abrasives cast or rolled therein; and treads having grooves or depressions filled with anti-skid materials.
  • the anti-skid plate produced by the process and apparatus of this invention in addition to eliminating the above mentioned disadvantages of conventional practices, has desirable features which are not provided by conventional tread plates. It has excellent anti-skid properties and wearability, can be bent severely without flaking or peeling at the surface, will resist damage from severe impact, can be produced on thin metal strips or sheets and on plates, has an attractive appearance and can be painted, will resist many corrosive media and separation by the action of solvents, Will withstand relatively high temperatures, and can be produced on base sheets or plates of a number of different metals such as the ferrous metals and aluminum.
  • More particularly it has a laminated construction that is comprised of a base layer in the form of a metal plate or sheet, an intermediate layer or hot-dipped coating of non-ferrous protective metal bonded to the base layer, and an anti skid tread surface layer composed of abrasive particles that are at least partially embedded and anchored in the coating metal.
  • the abrasive particles are anchored in the coating metal by projecting them against its surface while it is in a molten condition.
  • this is accomplished by an apparatus that directs a stream of compressed air or other gas against the metal coating as it moves to a position above the surface of a molten coating bath, and by entraining the abrasive particles in the blast for projection thereby against the coating metal.
  • the gas has a cooling action that reduces drainatent plate.
  • the apparatus for applying the coating is a conventional metal coating apparatus that is modified for the purposes of this invention by removal of the usual exit rolls to enable a thicker coating of covering metal and to provide for projection of the abrasive particles against such coating while it is still in a soft or molten condition.
  • Figure l is a diagrammatic sectional view of a preferred form of apparatus that embodies the essential principles of this invention.
  • Figure 2 is a fragmentary perspective view of the abrasive particle spraying or projecting apparatus shown diagrammatically in Figure 1;
  • Figure 3 is an enlarged fragmentary view with a portion lying in a vertical plane extending along a diameter of one of the spray nozzles shown in section;
  • FIG. 4 is a fragmentary plan and somewhat diagrammatic illustration of an anti-skid tread plate that is produced by the apparatus and process of this invention
  • Figure 5 is a sectional view showing diagrammatically the laminated construction of the tread plate shown in Figure 4 and;
  • Figure 6 is a view similar to Figure 5 showing the tread plate of Figures 4 and 5 with a sprayed covering of 1 ferrous metal on the surface layer of abrasive particles.
  • a tread plate if this character has a tread surface 1 that is formed by a layer of abrasive particles 2. It has in effect a laminated construction comprised of a base layer 3 of ferrous metal sheet, a galvanized coating or layer 4 of zinc bonded with the base layer 3, and the tread surface layer of abrasive particles 2, the particles 2 being embedded in the intermediate zinc layer 4 and being secured thereby to the base layer 3.
  • the particles 2 are projected or sprayed against the coating layer 4 while it is in a molten or semi-molten condition. By reason of its soft condition at the time of impact, most of the particles are completely embedded in the zinc and the remaining particles are at least partially embedded therein.
  • the zinc has flowed over the edges of such particles and is effective to securely anchor them against movement away from the base plate.
  • the tread surface 1 may be comprised in part of the coating metal 4.
  • the tread surface 1 may be provided with a protective covering or coating 5.
  • a protective covering or coating 5 may be, for example, a coating of plastic or resin, paint, or a ferrous or other metal applied by conventional metal spraying equipment.
  • the metal or material selected for the coating 5 will of course be determined by the conditions to be encountered in use.
  • FIG. 1 of the drawings A preferred form of apparatus for producing the tread plate described above is shown. diagrammatically in Figure 1 of the drawings. It comprises a conventional galv'ani'zin'g apparatus 6 that has been modified in a manner to be described for the purpose of this invention, and an abrasive particle spray unit 7.
  • the apparatus 6 may be either a sheet or strip galvanizer that operates to apply acoatin'g 4 of zinc to a metal base 3 in the form of a ferrous metal sheet S.
  • the unit '7 operates in a manner to be described to project the abrasive particles 2 against the coating 4.
  • the galvanizer 6 comprises a spelter pot 8 which is filled with molten coating metal to a level indicated by the broken line 9.
  • a pair of feed rolls 10 in the bottom of the pot receives the sheet S from guides 11 which direct its downward immersingmovement into the molten spelter. From the rolls 10 the sheet is delivered upwardly through guides 12 to a set of withdrawal rolls 13 located well above the surface level 9.
  • the relative arrangement of the guides 12 and rolls 13 is such that the sheet is withdrawn from the spelter along a vertical path that is normal to its surface level 7
  • the spray unit 7 is mounted at one side of the tank 8 opposite the withdrawal rolls 13 and above the spelter in a position for spraying abrasive particles 2 against the coating 4 as it is removed with the sheet S from the bath of molten spelter in the pot 8. It comprises a hopper 14 for a supply of abrasive particles and a plurality of feed tubes 15 at spaced intervals along its bottom which respectively extend downwardly and are connected with projecting tubes 16.
  • Each of the feed tubes 15 has a valve 17 for regulating the rate of flow of abrasive particles 3 therethrough to the projecting tube 16 with which it is connected and thereby the density of abrasive coverage on the surface 1.
  • the tubes 15 and 16 are connected by T-couplings 18 that further provide for connection of the projecting tubes 16 to a compressed air or other gas supply manifold 19.
  • the latter connection is provided by gas supply tubes 20 of a relatively smaller diameter which respectively have one end connected with the manifold 19 and an opposite end-21 connected with a coupling 18.
  • the ends 21 of the supply tubes 20 extend axially through the base leg 22 of the couplings 18 and to a position slightly beyond the vertical leg 23 that is connected with the abrasive supply tubes 15.
  • gas flowing from the tubes 21 into the projecting tubes 16 aspirates abrasive particles from the lower end of the feed tubes 15 into the projecting tubes 16.
  • the particles 2 are entrained in the gas flowing through each tube 16 and are projected in a spray from its outer end.
  • Valves 24 regulate the flow of gas through the tubes 20 to the projecting pipes 16.
  • the projecting tubes 16 are preferably mounted relative to the sheet S and surface 9 as shown in Figure 1. As there shown, the axis of each tube 16 is aimed at a point 25 which is at the intersection of the surface 9 and sheet S. At this point, the coating metal 4 applied to the base 3 by its movement through the bath is just rising above the surface and is in a molten or at least a semi-molten condition such that the impact of the particles 2 projected against the coating metal is effective to embed and anchor them therein. Test results have proved this arrangement of the tubes 16 relative to the surface 9 and sheet 8 is best from the standpoint of obtaining the most effective anchorage of particles 2 in the coating metal 4.
  • a spray unit 7 that was found to provide good abrasive covering and anchorage in the coating metal had the tubes 1-6 spaced laterally at intervals of six inches and their outer or nozzle ends 26 spaced a distance of 10 inches from the points 25.
  • the projecting tubes 16 and gas supply tubes 20 had inner diameters of A and /8" respectively and gas in the form of compressed air was supplied from a manifold supply pipe 19 that had a diameter of one inch.
  • compressed air at a pressure of 20 p.s.i. in the tubes 20 produced the best results. When the air pressure was substantially more than 20 p.s.i.
  • the coatings were rippled; and when the pressure was substantially less than 20 p.s.i., the abrasive particles were not as firmly anchored in the zinc.
  • the valves 24 regulate the pressure and the rate of air-flow through the pipes 16, and regulations of this character in turn control the blast velocity and thereby the force with which the particles 2 are projected against the coating 4. This force controls the penetration of the particles 2 in the spelter coating and is regulated in such manner that it is efiective to embed and anchor the particles 2 in the coating metal 4 as explained above.
  • the density of the covering of abrasive particles applied to the coating 4 is regulated by adjusting the valves 17.
  • exit rolls thus render conventional apparatus unsuitable for this invention since the thickness of the heaviest coating customarily produced thereby is slightly more than 0.002 inch, which is inadequate for the purpose of anchoring, for example, 60 mesh abrasive particles that have an average particle size of 0.010 inch.
  • spraying strip as it emerged from the exit rolls did not produce good results since the coating metal at this point had solidified by cooling to an extent such that very little-abrasive adhered thereto.
  • the omission of the exit rolls and the use of an air blast from the tubes 16 result in thicker coverings of coating metal 4 compared to those produced by conventional galvanizing apparatus using exit rolls for the usual purposes as explained above.
  • the removal of the exit rolls of course enables free withdrawal of the coating metal 4 with the strip S and thus results in a heavier coating.v
  • the blast of air from the tubes 16 acts mechanically to push the molten coating metal onto the surface of the sheet S and exerts a cooling action that reduces drainage of the metal 4 in a downward direction and its return to the put 8.
  • the weight of zinc in the coating 4 should be in excess of 2.0 ounces per square foot of tread surface area, and, more particularly, should be in the range of from 2.0 to about 6.0 ounces per square foot of tread surface area, these weights again being those of the metal applied to one side or surface only of a steel sheet S.
  • the weights 2.0 and 6.0 ounces of zinc per square foot indicate respectively coating thicknesses of 0.0033 inch and 0.01 inch.
  • any of a number of abrasives which are available on the market and have the hardness required to produce wearability, may be used as the particles 2.
  • Typical of such abrasives are the materials flint shot, Alundum or aluminum oxide, Carborundum, emery, corundum, tungsten carbide, silicon carbide, and the like. Most of these materials have rough surfaces which are effective to provide a secure anchoring connection in the coating metal 4- when embedded therein before it has solidified by cooling.
  • the mesh size of the particles 2 may be varied in accordance with the type of anti-skid surface desired, the smaller mesh sizes forming smoother surfaces and the larger sizes providing rougher surfaces.
  • the particles may be of mixed sizes and a satisfactory tread surface will be provided by a mixture of particles varying from 20 to 80 mesh.
  • abrasive with a particle size of from 36 to 60 mesh is preferred from the standpoint of a surface of satisfactory roughness and in which the particles have a good anchored connection in the coating metal.
  • the upper limit of particle size is determined by the thickness of the coating metal layer 4 since there must be sufiicient coating metal for the particles to be embedded therein to a depth pro viding an adequate anchoring connection therefor.
  • a surface coating 5 of resin or sprayed metal as explained above is highly effective in eliminating loss of abrasive particles 2 by gouging and will be found to materially increase the life of the tread plates.
  • valves 17 are adjusted to regulate the quantity of particles 2 projected by the tubes 16 and thereby the density of the particles on the surface of the sheet 7. While the anti-skid properties increase with the density of the particles 2 in the coating 4, the quantity of abrasive is limited by the number of particles that can be anchored in the coating metal.
  • a galvanizer 6 for applying coatings 4 of spelter has obvious advantages that render its use preferable. While the foregoing description is specific to an apparatus of this character, it will of course be understood that the principles of the invention are applicable to other metals and that it is not limited to ferrous metal base sheets and to zinc coating metal or to galvanized products in general. In this respect, other metals may be used with equal effectiveness, the only requirement being that the coating metal and base metal be metals that will alloy with each other. Examples of other coating metals which will bond with ferrous metal bases 3 in this manner are aluminum, tin, and terne metal.
  • the weights of coating metal 4 given above in ounces per square foot of tread surface area will change in accordance with the density of the coating metal being used. In this respect it will be apparent that a lesser weight of aluminum would be required to provide the same volume of coating metal and thickness of the resulting coating 4. Since the coating metal must have suflicient thickness to provide an effective anchor for the particles 2, it will be further apparent that the coating 4. in the case of aluminum or other metals should be applied with a thickness in the range of from 0.0033 inch to 0.01 inch as explained above in connection with hot-dipped zinc coatings.
  • a hot-dipping or galvanizing apparatus of the type shown in Figure 1 will apply the coating metal to both sides of the base metal
  • the coating metal for the purposes of this invention need be applied to only one side of the base. Accordingly, and if desired, the other side of the base may be coated or painted with a material which will prevent adherence of the coating metal thereto.
  • the apparatus shown in Figure l is particularly adapted to coating sheet metal, it will be understood that the principles of the invention are adaptable to the application of coating metals and abrasive particles to structural sections, and that in such case galvanizing or coating apparatus suitable to the structure of the base will be employed.
  • An apparatus for applying an anti-skid tread surface to a strip of sheet metal comprising the combination with a metal coating apparatus including a pot containing molten coating metal and means for guiding the movement of said strip through said pot and for withdrawing it from the molten metal therein along a substantially vertical path to apply a bonded covering of said coating metal thereto, of an abrasive supply hopper extending transversely of the path of strip movement, a plurality of laterally spaced and parallel abrasive pro jecting tubes respectively arranged with their axes dinected at points on the surface of said bath which coin cide with the line along which the strip is removed therefrom, means including a'conduit connected with each of said projecting tubes for forcing a stream of gas therethrough, and means including a supply tube connecting each of said projecting tubes with said hopper for entraining abrasive particles in the gas stream flowing therethrough.
  • An apparatus as defined in claim 1 characterized by the provision of means for regulatingthe rate of flow of abrasive particles through each of said supply tubes.
  • An apparatus as defined in claim 1 characterized by the provision of valve means for regulating the velocity of said gas stream and thereby the force of impact of said particles against said coating.
  • a process for producing an anti-skid tread plate which comprises immersing a base structure in a bath of molten coating metal, withdrawing said structure from said bath in a substantially vertical direction to provide a coating of said coating metal thereon, directing a blast of cooling gas against said coating as it emerges from said bath to thereby reduce drainage and increase its thickness, said cooling gas blast being applied at an acute angle with respect to the surface of said bath and at the point on said surface where said base structure is removed therefrom, and entraining abrasive particles in said blast for projection thereby against said coating with a force sufiicient to at least partially embed and anchor said particles in said coating.
  • a process for producing an anti-skid tread plate which comprises immersing a base structure in a bath of molten coating metal, withdrawing said structure from said bath in a substantially vertical direction to provide a coating of said coating metal thereon, directing a blast of cooling gas against said coating in a direction forming an acute angle with the surface of said bath and at the point where said base structure is withdrawn therefrom, and entraining abrasive particles in said blast for projection thereby against said coating with a force sufiicient to at least partially embed and anchor said particles in said coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

Dec. 13, 1960 H. s. LINK ETAL METHOD AND APPARATUS FOR PRODUCING ANTISKID TREAD PLATE Filed March 27, 1958 2 Sheets-Sheet l INVENTORS HAROLD 5. Ll/VK and WILL/AM SCHULTZ Afforney Dec. 13, 1960 H. s. LINK ETAL 2,964,419
METHOD AND APPARATUS FOR PRODUCING ANTI-SKID TREAD PLATE Filed March 27, 1958 2 Sheets-Sheet 2 IIII IIIIIIIIII T v-vE/v TORS 3 HAROL 0- s. L INK" and WILL IAM'H apgw/L r2 A Homer METHOD AND APPARATUS FOR PRODUCING ANTI-SKID TREAD PLATE Filed Mar. 27, 1958, Ser. No. 724,362
6 Claims. (Cl. 117-16) This is a continuation-in-part application that is directed to subject matter divided out of our co-pending application, Serial No. 443,594, filed July 15, 1954, now abandoned.
The invention relates, as indicated, to a tread plate having an anti-skid tread surface and, more particularly, to a method and apparatus for its fabrication.
Anti-skid tread surfaces having high coefficients of friction are desirable from the standpoint of safety and convenience in many instances such as stair treads, walkways and floor plates, and are particularly desirable where the tread surface is subject to wet or oily conditions. Generally stated, conventional tread surfaces providing anti-skid properties are commonly as follows: abrasive impregnated cloth or paper cemented or otherwise secured in place; metal tread plates having patterned openings or metal protuberances therein; coatings of paints, plastics, or cements having abrasives incorporated therein; metals having abrasives cast or rolled therein; and treads having grooves or depressions filled with anti-skid materials. However, such conventional proposals individually considered have at least some if not all of certain well known disadvantages from the standpoint of wearability, inadequate anti-skid properties under wet and oily conditions, cost of manufacture, maintenance expense in cleaning and replacement, and inability to Withstand high temperatures, impact, and the corrosive action of chemicals.
The anti-skid plate produced by the process and apparatus of this invention, in addition to eliminating the above mentioned disadvantages of conventional practices, has desirable features which are not provided by conventional tread plates. It has excellent anti-skid properties and wearability, can be bent severely without flaking or peeling at the surface, will resist damage from severe impact, can be produced on thin metal strips or sheets and on plates, has an attractive appearance and can be painted, will resist many corrosive media and separation by the action of solvents, Will withstand relatively high temperatures, and can be produced on base sheets or plates of a number of different metals such as the ferrous metals and aluminum. More particularly it has a laminated construction that is comprised of a base layer in the form of a metal plate or sheet, an intermediate layer or hot-dipped coating of non-ferrous protective metal bonded to the base layer, and an anti skid tread surface layer composed of abrasive particles that are at least partially embedded and anchored in the coating metal. In a manner to be described, the abrasive particles are anchored in the coating metal by projecting them against its surface while it is in a molten condition. According to a preferred practice, this is accomplished by an apparatus that directs a stream of compressed air or other gas against the metal coating as it moves to a position above the surface of a molten coating bath, and by entraining the abrasive particles in the blast for projection thereby against the coating metal. In addition to projecting the particles against the coating metal, the gas has a cooling action that reduces drainatent plate.
age of the coating metal and thereby produces a thicker coating than could otherwise be obtained. The apparatus for applying the coating is a conventional metal coating apparatus that is modified for the purposes of this invention by removal of the usual exit rolls to enable a thicker coating of covering metal and to provide for projection of the abrasive particles against such coating while it is still in a soft or molten condition.
Other objects and advantages of the invention will become apparent from the following description of a preferred practice of the invention and the accompanying drawings.
In the drawings:
Figure l is a diagrammatic sectional view of a preferred form of apparatus that embodies the essential principles of this invention;
Figure 2 is a fragmentary perspective view of the abrasive particle spraying or projecting apparatus shown diagrammatically in Figure 1;
Figure 3 is an enlarged fragmentary view with a portion lying in a vertical plane extending along a diameter of one of the spray nozzles shown in section;
Figure 4 is a fragmentary plan and somewhat diagrammatic illustration of an anti-skid tread plate that is produced by the apparatus and process of this invention;
Figure 5 is a sectional view showing diagrammatically the laminated construction of the tread plate shown in Figure 4 and;
Figure 6 is a view similar to Figure 5 showing the tread plate of Figures 4 and 5 with a sprayed covering of 1 ferrous metal on the surface layer of abrasive particles.
The immediately following description is specific to an apparatus and practice of the invention for producing a tread plate in which the abrasive particles are anchored in a coating of spelter on a ferrous metal base sheet or For this purpose a conventional galvanizing apparatus, modified in a manner to be described, is used for the initial phase of the process and for applying a coating of zinc to a base member of sheet metal. A galvanizing apparatus is preferred from the standpoint of adaptability of the invention to commercial production.
A tread plate if this character; as shown in Figures 4 and 5, has a tread surface 1 that is formed by a layer of abrasive particles 2. It has in effect a laminated construction comprised of a base layer 3 of ferrous metal sheet, a galvanized coating or layer 4 of zinc bonded with the base layer 3, and the tread surface layer of abrasive particles 2, the particles 2 being embedded in the intermediate zinc layer 4 and being secured thereby to the base layer 3. In a manner to be described, the particles 2 are projected or sprayed against the coating layer 4 while it is in a molten or semi-molten condition. By reason of its soft condition at the time of impact, most of the particles are completely embedded in the zinc and the remaining particles are at least partially embedded therein. With reference to the partially embedded particles as shown in Figure 5 it will be noted that the zinc has flowed over the edges of such particles and is effective to securely anchor them against movement away from the base plate. In this respect, and bearing in mind that some of the abrasive particles are partially covered by the coating metal, it will be apparent that the tread surface 1 may be comprised in part of the coating metal 4.
To more securely anchor the particles 2 against disengagement of their anchored connection with the coating metal by gouging, the tread surface 1 may be provided with a protective covering or coating 5. Such coating may be, for example, a coating of plastic or resin, paint, or a ferrous or other metal applied by conventional metal spraying equipment. The metal or material selected for the coating 5 will of course be determined by the conditions to be encountered in use.
A preferred form of apparatus for producing the tread plate described above is shown. diagrammatically in Figure 1 of the drawings. It comprises a conventional galv'ani'zin'g apparatus 6 that has been modified in a manner to be described for the purpose of this invention, and an abrasive particle spray unit 7. The apparatus 6 may be either a sheet or strip galvanizer that operates to apply acoatin'g 4 of zinc to a metal base 3 in the form of a ferrous metal sheet S. The unit '7 operates in a manner to be described to project the abrasive particles 2 against the coating 4. g
The galvanizer 6 comprises a spelter pot 8 which is filled with molten coating metal to a level indicated by the broken line 9. A pair of feed rolls 10 in the bottom of the pot receives the sheet S from guides 11 which direct its downward immersingmovement into the molten spelter. From the rolls 10 the sheet is delivered upwardly through guides 12 to a set of withdrawal rolls 13 located well above the surface level 9. The relative arrangement of the guides 12 and rolls 13 is such that the sheet is withdrawn from the spelter along a vertical path that is normal to its surface level 7 The spray unit 7 is mounted at one side of the tank 8 opposite the withdrawal rolls 13 and above the spelter in a position for spraying abrasive particles 2 against the coating 4 as it is removed with the sheet S from the bath of molten spelter in the pot 8. It comprises a hopper 14 for a supply of abrasive particles and a plurality of feed tubes 15 at spaced intervals along its bottom which respectively extend downwardly and are connected with projecting tubes 16. Each of the feed tubes 15 has a valve 17 for regulating the rate of flow of abrasive particles 3 therethrough to the projecting tube 16 with which it is connected and thereby the density of abrasive coverage on the surface 1. As best shown in Figures 2 and 3, the tubes 15 and 16 are connected by T-couplings 18 that further provide for connection of the projecting tubes 16 to a compressed air or other gas supply manifold 19. The latter connection is provided by gas supply tubes 20 of a relatively smaller diameter which respectively have one end connected with the manifold 19 and an opposite end-21 connected with a coupling 18. As shown in Figure 3, the ends 21 of the supply tubes 20 extend axially through the base leg 22 of the couplings 18 and to a position slightly beyond the vertical leg 23 that is connected with the abrasive supply tubes 15. With an arrangement of this character, gas flowing from the tubes 21 into the projecting tubes 16 aspirates abrasive particles from the lower end of the feed tubes 15 into the projecting tubes 16. In this manner, the particles 2 are entrained in the gas flowing through each tube 16 and are projected in a spray from its outer end. Valves 24 regulate the flow of gas through the tubes 20 to the projecting pipes 16.
The projecting tubes 16 are preferably mounted relative to the sheet S and surface 9 as shown in Figure 1. As there shown, the axis of each tube 16 is aimed at a point 25 which is at the intersection of the surface 9 and sheet S. At this point, the coating metal 4 applied to the base 3 by its movement through the bath is just rising above the surface and is in a molten or at least a semi-molten condition such that the impact of the particles 2 projected against the coating metal is effective to embed and anchor them therein. Test results have proved this arrangement of the tubes 16 relative to the surface 9 and sheet 8 is best from the standpoint of obtaining the most effective anchorage of particles 2 in the coating metal 4. In this respect, aiming the tubes 16 at points on the sheet'S above the surface of the bath was found to materially decrease the abrasive imbedded in the zinc, While aiming at points on the surface 9 in front of the sheet S produced lumpy and uneven coatings. Although the efiect of the angle of the tubes .16 was not 4 examined, good results were obtained with an angle of about 45 as shown in Figure 1.
By way of example, a spray unit 7 that was found to provide good abrasive covering and anchorage in the coating metal had the tubes 1-6 spaced laterally at intervals of six inches and their outer or nozzle ends 26 spaced a distance of 10 inches from the points 25. The projecting tubes 16 and gas supply tubes 20 had inner diameters of A and /8" respectively and gas in the form of compressed air was supplied from a manifold supply pipe 19 that had a diameter of one inch. In this arrangement, compressed air at a pressure of 20 p.s.i. in the tubes 20 produced the best results. When the air pressure was substantially more than 20 p.s.i. the coatings were rippled; and when the pressure was substantially less than 20 p.s.i., the abrasive particles were not as firmly anchored in the zinc. As indicated above, the valves 24 regulate the pressure and the rate of air-flow through the pipes 16, and regulations of this character in turn control the blast velocity and thereby the force with which the particles 2 are projected against the coating 4. This force controls the penetration of the particles 2 in the spelter coating and is regulated in such manner that it is efiective to embed and anchor the particles 2 in the coating metal 4 as explained above. The density of the covering of abrasive particles applied to the coating 4 is regulated by adjusting the valves 17.
As indicated above, the modification of conventional galvanizers that is required to provide the galvanizer 6 resides in the omission ofthe usual exit rolls. In conventional apparatus for galvanizing sheet and strip, exit rolls partially submerged in the spelter are universally employed to obtain a clean finish and uniform coating; in addition, they are used to control the thickness of the zinc coating and this is done by regulating the pressure of their engagement with the strip. The thickness or weight of coating metal in commercial operations varies from a minimum of 0.5 ounce per square foot to a maximum 2.52.75 ounces per square foot, these weights being that of the coating metal applied to both sides. Such exit rolls thus render conventional apparatus unsuitable for this invention since the thickness of the heaviest coating customarily produced thereby is slightly more than 0.002 inch, which is inadequate for the purpose of anchoring, for example, 60 mesh abrasive particles that have an average particle size of 0.010 inch. In. addition, trials proved that spraying strip as it emerged from the exit rolls did not produce good results since the coating metal at this point had solidified by cooling to an extent such that very little-abrasive adhered thereto.
The omission of the exit rolls and the use of an air blast from the tubes 16 result in thicker coverings of coating metal 4 compared to those produced by conventional galvanizing apparatus using exit rolls for the usual purposes as explained above. The removal of the exit rolls of course enables free withdrawal of the coating metal 4 with the strip S and thus results in a heavier coating.v In addition, the blast of air from the tubes 16 acts mechanically to push the molten coating metal onto the surface of the sheet S and exerts a cooling action that reduces drainage of the metal 4 in a downward direction and its return to the put 8. These features of course mutually contribute to the production of thicker coatings of covering metal 4. With a constant temperature and velocity of air blast from the tubes 16, the weight or thickness of the metal in the coating 4 may be regulated by adjusting the temperature of the bath of molten coating metal and the speed at which the sheet S travels therethrough.
Investigation of several tread plates, which were produced for test purposeson a galvanizing apparatus 6 as explained above and with tread surfaces according to the pninciples of this invention, developed that the weight of zinc in the coating 4 should be in excess of 2.0 ounces per square foot of tread surface area, and, more particularly, should be in the range of from 2.0 to about 6.0 ounces per square foot of tread surface area, these weights again being those of the metal applied to one side or surface only of a steel sheet S. Expressed in terms of thickness, the weights 2.0 and 6.0 ounces of zinc per square foot indicate respectively coating thicknesses of 0.0033 inch and 0.01 inch. In explanation of the latter range of thicknesses, measurements of such tread plates showed zinc coatings varying in weight from 2.45 ounces to 4.35 ounces per square foot, or thicknesses varying from 0.00412 inch to 0.0073 inch respectively. Examination of the lightest coatings showed that the covering was so thin that the anchorage of the abrasive particles was not as good as in the heavier coatings, and that the zinc covering could probably not be decreased below 2.0 ounces and still obtain an effective anchorage for the abrasive particles. Examination of the heavier coatings indicated that the anchorage would not be improved materially by increasing the covering beyond 5.0-6.0 ounces per square foot. While still heavier coatings would increase the life of the tread plates from the standpoint of wear, coatings heavier than 5.0-6.0 ounces will be difiicuit to obtain in practice.
Any of a number of abrasives, which are available on the market and have the hardness required to produce wearability, may be used as the particles 2. Typical of such abrasives are the materials flint shot, Alundum or aluminum oxide, Carborundum, emery, corundum, tungsten carbide, silicon carbide, and the like. Most of these materials have rough surfaces which are effective to provide a secure anchoring connection in the coating metal 4- when embedded therein before it has solidified by cooling. The mesh size of the particles 2 may be varied in accordance with the type of anti-skid surface desired, the smaller mesh sizes forming smoother surfaces and the larger sizes providing rougher surfaces. The particles may be of mixed sizes and a satisfactory tread surface will be provided by a mixture of particles varying from 20 to 80 mesh. In this respect abrasive with a particle size of from 36 to 60 mesh is preferred from the standpoint of a surface of satisfactory roughness and in which the particles have a good anchored connection in the coating metal. Generally stated, the upper limit of particle size is determined by the thickness of the coating metal layer 4 since there must be sufiicient coating metal for the particles to be embedded therein to a depth pro viding an adequate anchoring connection therefor. If excessively large particles are used on thin coatings, the particles will project above the surface of the coating metal to an extent such that they may break away or be gouged out of the relatively soft coating metal in the course of normal use and the particle size must therefore be selected according to the thickness of the coating metal to avoid this condition. In general, larger sizes of par ticles require thicker layers of coating metal. A surface coating 5 of resin or sprayed metal as explained above is highly effective in eliminating loss of abrasive particles 2 by gouging and will be found to materially increase the life of the tread plates.
As indicated above the valves 17 are adjusted to regulate the quantity of particles 2 projected by the tubes 16 and thereby the density of the particles on the surface of the sheet 7. While the anti-skid properties increase with the density of the particles 2 in the coating 4, the quantity of abrasive is limited by the number of particles that can be anchored in the coating metal. Using Alundum in the production of the tread plates, which had zinc coatings varying from 2.45 to 4.35 ounces per square foot as mentioned above, satisfactory tread surfaces were obtained by applying the particles 2 in quantities from 0.5 to 2.0 ounces per square foot, about 1.0 ounce per square foot being adequate for good anti-skid properties and being preferred. Such tread plates, with coatings of zinc and Alundum particles applied in the ranges mentioned above, had tread surface thicknesses that varied from 0.014 inch to 0022-0025 inch.
From the standpoint of adaptability to commercial production and cost of producing tread plates, it will be apparent that a galvanizer 6 for applying coatings 4 of spelter has obvious advantages that render its use preferable. While the foregoing description is specific to an apparatus of this character, it will of course be understood that the principles of the invention are applicable to other metals and that it is not limited to ferrous metal base sheets and to zinc coating metal or to galvanized products in general. In this respect, other metals may be used with equal effectiveness, the only requirement being that the coating metal and base metal be metals that will alloy with each other. Examples of other coating metals which will bond with ferrous metal bases 3 in this manner are aluminum, tin, and terne metal. While still other metals are known to have similar bonding characteristics, they are in general too expensive to be practical and tin may well be included in this classification. From a practical standpoint, zinc and aluminum are preferred because of the availability of commercial coating apparatus that is adapted for use with an abrasive particle spray unit 7. In the same sense, other metals may be substituted for the base 3 although aluminum is the only other metal which from the standpoint of expense would be practical.
When using other metals such as aluminum, the weights of coating metal 4 given above in ounces per square foot of tread surface area will change in accordance with the density of the coating metal being used. In this respect it will be apparent that a lesser weight of aluminum would be required to provide the same volume of coating metal and thickness of the resulting coating 4. Since the coating metal must have suflicient thickness to provide an effective anchor for the particles 2, it will be further apparent that the coating 4. in the case of aluminum or other metals should be applied with a thickness in the range of from 0.0033 inch to 0.01 inch as explained above in connection with hot-dipped zinc coatings.
Although a hot-dipping or galvanizing apparatus of the type shown in Figure 1 will apply the coating metal to both sides of the base metal, the coating metal for the purposes of this invention need be applied to only one side of the base. Accordingly, and if desired, the other side of the base may be coated or painted with a material which will prevent adherence of the coating metal thereto. In addition, and while the apparatus shown in Figure l is particularly adapted to coating sheet metal, it will be understood that the principles of the invention are adaptable to the application of coating metals and abrasive particles to structural sections, and that in such case galvanizing or coating apparatus suitable to the structure of the base will be employed.
The tread plate produced by the apparatus and process described above forms the subject matter of our copending application, Serial *No. 724,476, filed March 27, 1958, to which reference is made.
While the foregoing shows and describes the essential features of this invention, it will be apparent that other adaptations and modifications may be made without departing from the scope of the following claims.
We claim:
1. An apparatus for applying an anti-skid tread surface to a strip of sheet metal comprising the combination with a metal coating apparatus including a pot containing molten coating metal and means for guiding the movement of said strip through said pot and for withdrawing it from the molten metal therein along a substantially vertical path to apply a bonded covering of said coating metal thereto, of an abrasive supply hopper extending transversely of the path of strip movement, a plurality of laterally spaced and parallel abrasive pro jecting tubes respectively arranged with their axes dinected at points on the surface of said bath which coin cide with the line along which the strip is removed therefrom, means including a'conduit connected with each of said projecting tubes for forcing a stream of gas therethrough, and means including a supply tube connecting each of said projecting tubes with said hopper for entraining abrasive particles in the gas stream flowing therethrough.
2. An apparatus as defined in claim 1 characterized by the provision of means for regulatingthe rate of flow of abrasive particles through each of said supply tubes.
3. An apparatus as defined in claim 1 characterized by the provision of valve means for regulating the velocity of said gas stream and thereby the force of impact of said particles against said coating.
4. A process for producing an anti-skid tread plate which comprises immersing a base structure in a bath of molten coating metal, withdrawing said structure from said bath in a substantially vertical direction to provide a coating of said coating metal thereon, directing a blast of cooling gas against said coating as it emerges from said bath to thereby reduce drainage and increase its thickness, said cooling gas blast being applied at an acute angle with respect to the surface of said bath and at the point on said surface where said base structure is removed therefrom, and entraining abrasive particles in said blast for projection thereby against said coating with a force sufiicient to at least partially embed and anchor said particles in said coating.
5. A process for producing an anti-skid tread plate which comprises immersing a base structure in a bath of molten coating metal, withdrawing said structure from said bath in a substantially vertical direction to provide a coating of said coating metal thereon, directing a blast of cooling gas against said coating in a direction forming an acute angle with the surface of said bath and at the point where said base structure is withdrawn therefrom, and entraining abrasive particles in said blast for projection thereby against said coating with a force sufiicient to at least partially embed and anchor said particles in said coating.
6. -A process for producing an anti-skid tread plate which comprises immersing a base structure in a bath of molten coating metal, withdrawing said structure from said bath in a substantially vertical direction to provide a coating of said coating metal thereon, and projecting abrasive particles against said coating in a direction forming an acute angle With respect to the surface of said bath and at the point on said surface where said base structure is removed therefrom, said particles being projected with a force suflicient to at least partially embed and anchor them in said coating.
References Cited in the file of this patent UNITED STATES PATENTS 1,583,918 Dunn May 11, 1926 1,604,941 Hofmann Oct. 26, 1926 1,673,624 Howe June 12, 1928 2,025,768 Nieman Dec. 31, 1935 2,439,157 Chavannes Apr. 6, 1948 2,708,171 Inglefield May 10, 1955 2,709,213 Gibson May 24, 1955

Claims (2)

1. AN APPARATUS FOR APPLYING AN ANTI-SKID TREAD SURFACE TO STRIP OF SHEET METAL COMPRISING THE COMBINATION WITH A METAL COATING APPARATUS INCLUDING A POT CONTAINING MOLTEN COATING METAL AND MEANS FOR GUIDING THE MOVEMENT OF SAID STRIP THROUGH SAID POT AND FOR WITHDRAWING IT FROM THE MOLTEN METAL THEREIN ALONG A SUBSTANTIALLY VERTICAL PATH TO APPLY A BONDED COVERING OF SAID COATING METAL THERETO, OF AN ABRASIVE SUPPLY HOPPER EXTENDING TRANSVERSELY OF THE PATH OF STRIP MOVEMENT, A PLURALITY OF LATERALLY SPACED AND PARALLEL ABRASIVE PROJECTING TUBES RESPECTIVELY ARRANGED WITH THEIR AXES DIRECTED AT POINTS ON THE SURFACE OF SAID BATH WHICH COINCIDE WITH THE LINE ALONG WHICH THE STRIP IS REMOVED THEREFROM, MEANS INCLUDING A CONDUIT CONNECTED WITH EACH OF SAID PROJECTING TUBES FOR FORCING A STREAM OF GAS THERETHROUGH, AND MEANS INCLUDING A SUPPLY TUBE CONNECTING EACH OF SAID PROJECTING TUBES WITH SAID HOPPER FOR ENTRAINING ABRASIVE PARTICLES IN THE GAS STREAM FLOWING THERETHROUGH.
4. A PROCESS FOR PRODUCING AN ANTI-SKID TREAD PLATE WHICH COMPRISES IMMERSING A BASE STRUCTURE IN A BATH OF MOLTEN COATING METAL, WITHDRAWING SAID STRUCTURE FROM SAID BATH IN A SUBSTANTIALLY VERTICAL DIRECTION TO PROVIDE A COATING OF SAID COATING METAL THEREON, DIRECTING A BLAST OF COOLING GAS AGAINST SAID COATING AS IT EMERGES FROM SAID BATH TO THEREBY REDUCE DRAINAGE AND INCREASE ITS THICKNESS, SAID COOLING GAS BLAST BEING APPLIED AT AN ACUTE ANGLE WITH RESPECT TO THE SURFACE OF SAID BATH AND AT THE POINT ON SAID SURFACE WHERE SAID BASE STRUCTURE IS REMOVED THEREFROM, AND ENTRAINING ABRASIVE PARTICLES IN SAID BLAST FOR PROJECTION THEREBY AGAINST SAID COATING WITH A FORCE SUFFICIENT TO AT LEAST PARTIALLY EMBED AND ANCHOR SAID PARTICLES IN SAID COATING.
US724362A 1958-03-27 1958-03-27 Method and apparatus for producing anti-skid tread plate Expired - Lifetime US2964419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US724362A US2964419A (en) 1958-03-27 1958-03-27 Method and apparatus for producing anti-skid tread plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US724362A US2964419A (en) 1958-03-27 1958-03-27 Method and apparatus for producing anti-skid tread plate

Publications (1)

Publication Number Publication Date
US2964419A true US2964419A (en) 1960-12-13

Family

ID=24910118

Family Applications (1)

Application Number Title Priority Date Filing Date
US724362A Expired - Lifetime US2964419A (en) 1958-03-27 1958-03-27 Method and apparatus for producing anti-skid tread plate

Country Status (1)

Country Link
US (1) US2964419A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3112212A (en) * 1959-12-03 1963-11-26 Inland Steel Co Non-skid metal sheets
US3218941A (en) * 1960-12-30 1965-11-23 Daum Josef Joint-filling bodies
US3414425A (en) * 1964-09-14 1968-12-03 Rheem Mfg Co Method for applying a particulate material to a body
US3589333A (en) * 1967-05-02 1971-06-29 Nat Distillers Chem Corp Apparatus for coating elongated filament with plastic
US3708322A (en) * 1969-10-09 1973-01-02 British Steel Corp Method of producing a coated ferrous substrate
US3795082A (en) * 1972-05-04 1974-03-05 Beloit Corp Paper roll coding device
EP0007721A1 (en) * 1978-07-07 1980-02-06 Certels Limited Method of treating metal plate
US4268564A (en) * 1977-12-22 1981-05-19 Allied Chemical Corporation Strips of metallic glasses containing embedded particulate matter
US4473428A (en) * 1980-09-30 1984-09-25 Fiberlok, Inc. Process and apparatus for contacting a powder with a fibrous web
US4561380A (en) * 1984-06-21 1985-12-31 Nordson Corporation Method and apparatus for powder coating a moving web
US5164536A (en) * 1989-11-24 1992-11-17 Societe Europeenne De Propulsion Composite armored seat, and method of manufacture
US5235895A (en) * 1991-04-08 1993-08-17 Electronics & Space Corp. Ballistic armor and method of producing same
WO2001036711A1 (en) * 1999-11-12 2001-05-25 Kerr Corporation Adherent hard coatings for dental burs and other applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1583918A (en) * 1923-04-16 1926-05-11 William E Dunn Process of coating building blocks
US1604941A (en) * 1921-02-02 1926-10-26 William T Hofmann Apparatus and process for producing prepared roofing
US1673624A (en) * 1925-01-02 1928-06-12 Gen Electric Treatment of metals
US2025768A (en) * 1931-08-15 1935-12-31 Bethlehem Steel Corp Apparatus for and method of applying tin to metallic sheets
US2439157A (en) * 1941-10-04 1948-04-06 American Ecla Corp Method of making thin rubber films
US2708171A (en) * 1952-07-08 1955-05-10 United States Steel Corp Method of controlling coating thickness in continuous galvanizing
US2709213A (en) * 1952-04-01 1955-05-24 Air Reduction Method of hard surfacing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1604941A (en) * 1921-02-02 1926-10-26 William T Hofmann Apparatus and process for producing prepared roofing
US1583918A (en) * 1923-04-16 1926-05-11 William E Dunn Process of coating building blocks
US1673624A (en) * 1925-01-02 1928-06-12 Gen Electric Treatment of metals
US2025768A (en) * 1931-08-15 1935-12-31 Bethlehem Steel Corp Apparatus for and method of applying tin to metallic sheets
US2439157A (en) * 1941-10-04 1948-04-06 American Ecla Corp Method of making thin rubber films
US2709213A (en) * 1952-04-01 1955-05-24 Air Reduction Method of hard surfacing
US2708171A (en) * 1952-07-08 1955-05-10 United States Steel Corp Method of controlling coating thickness in continuous galvanizing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3112212A (en) * 1959-12-03 1963-11-26 Inland Steel Co Non-skid metal sheets
US3218941A (en) * 1960-12-30 1965-11-23 Daum Josef Joint-filling bodies
US3414425A (en) * 1964-09-14 1968-12-03 Rheem Mfg Co Method for applying a particulate material to a body
US3589333A (en) * 1967-05-02 1971-06-29 Nat Distillers Chem Corp Apparatus for coating elongated filament with plastic
US3708322A (en) * 1969-10-09 1973-01-02 British Steel Corp Method of producing a coated ferrous substrate
US3795082A (en) * 1972-05-04 1974-03-05 Beloit Corp Paper roll coding device
US4268564A (en) * 1977-12-22 1981-05-19 Allied Chemical Corporation Strips of metallic glasses containing embedded particulate matter
EP0007721A1 (en) * 1978-07-07 1980-02-06 Certels Limited Method of treating metal plate
US4473428A (en) * 1980-09-30 1984-09-25 Fiberlok, Inc. Process and apparatus for contacting a powder with a fibrous web
US4561380A (en) * 1984-06-21 1985-12-31 Nordson Corporation Method and apparatus for powder coating a moving web
US5164536A (en) * 1989-11-24 1992-11-17 Societe Europeenne De Propulsion Composite armored seat, and method of manufacture
US5235895A (en) * 1991-04-08 1993-08-17 Electronics & Space Corp. Ballistic armor and method of producing same
WO2001036711A1 (en) * 1999-11-12 2001-05-25 Kerr Corporation Adherent hard coatings for dental burs and other applications

Similar Documents

Publication Publication Date Title
US2964419A (en) Method and apparatus for producing anti-skid tread plate
US3017689A (en) Anti-skid tread plate
Tokarev Structure of aluminum powder coatings prepared by cold gasdynamic spraying
US5626674A (en) High pressure water jet apparatus for preparing low density metallic surface for application of a coating material
US5368947A (en) Method of producing a slip-resistant substrate by depositing raised, bead-like configurations of a compatible material at select locations thereon, and a substrate including same
SE510384C2 (en) Press plate for the manufacture of decorative laminates and the process for making them
EP0293389A4 (en) Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4120993A (en) Method of making self-locking fasteners
US3150937A (en) Anti-skid tread plate
US4029852A (en) Metal non-skid coating
US4961973A (en) Articles with slip resistant surfaces and method of making same
CA1103595A (en) Separation and recovery apparatus for solid or liquid particles entrained in a flowing gas mixture
US4293584A (en) Method of plating with a portable mechanical plater
CA1302805C (en) Liquid film coating of iron-based metals
CA1089218A (en) Apparatus for externally coating endless metal tubing
US3155530A (en) Process for producing protected metal surfaces
US4939015A (en) Combination thermally sprayed antifouling metal coating and seal coat on a marine surface and method of preparing same
US4195450A (en) Process for treating surfaces by means of a jet of liquid
US6863932B2 (en) Method of making an anti-slip coating and an article having an anti-slip coating
EP0038975A1 (en) Gas wiping apparatus and method of using
JP2674008B2 (en) Method for producing high corrosion resistant fused zinc plated steel sheet
JPS61266560A (en) Hot dipping method to low coating weight
US9597857B2 (en) Enhanced friction coating construction and method for forming same
US20030062248A1 (en) Non-marking web conveyance roller and method of making same
JPS5922588B2 (en) Corrosion protection film formation method