US2878121A - Photographic elements and processes - Google Patents

Photographic elements and processes Download PDF

Info

Publication number
US2878121A
US2878121A US469041A US46904154A US2878121A US 2878121 A US2878121 A US 2878121A US 469041 A US469041 A US 469041A US 46904154 A US46904154 A US 46904154A US 2878121 A US2878121 A US 2878121A
Authority
US
United States
Prior art keywords
particles
coated
layer
image
silanic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US469041A
Other languages
English (en)
Inventor
Gray Russell Houston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE542421D priority Critical patent/BE542421A/xx
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US469041A priority patent/US2878121A/en
Priority to GB22266/55A priority patent/GB785847A/en
Priority to DEP14658A priority patent/DE1015682B/de
Priority to FR1138409D priority patent/FR1138409A/fr
Application granted granted Critical
Publication of US2878121A publication Critical patent/US2878121A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/24Photosensitive materials characterised by the image-receiving section
    • G03C8/26Image-receiving layers
    • G03C8/28Image-receiving layers containing development nuclei or compounds forming such nuclei

Definitions

  • This invention relates to photography-and moreparticularly to photographic image-yielding elements and to processes of forming positive photographic images in such elements. Still more particularly, it relates to photographic films, plates and papers which have a waterpermeable colloid layer having dispersed therethrough finely divided inert particles coated witha silicon compound containing at least one silicon-hydrogen bond.
  • An object of this invention is'to provide new photographic image-yielding elements. 'Another object is to provide photographic image-yielding films and papers which are useful in inverse-transfer processes. Yet another object is to provide such sheet elements which are relatively inexpensive and can be manufactured from economical materials. A further object is to provide new inverse-transfer processes of producing photographic images. A still further object is to provide processes of forming images in the aforesaid elements. A still further object is to provide a process of forming positive images from developed or developing silver halide negative images. Still other objects will be apparent from the following description of the invention.
  • a photographic image-yielding sheet element can be prepared by providing a sheet support, e. g., a film, foil, plate or paper with a light-insensitive, water-permeable colloid layer containing finely divided discrete solid particles of. inert material having an average diameter not less than l mu and not greater .than 10,000 mu and having on their surface a silanic compound containing at least one silicon-hydrogen bond, said silanic compound constituting from 0.1% to 100% by weight of the total weight of the uncoated particles.
  • a sheet support e. g., a film, foil, plate or paper with a light-insensitive, water-permeable colloid layer containing finely divided discrete solid particles of. inert material having an average diameter not less than l mu and not greater .than 10,000 mu and having on their surface a silanic compound containing at least one silicon-hydrogen bond, said silanic compound constituting from 0.1% to 100% by weight of the total weight of the uncoated particles.
  • waterrpermeable organic colloids can be used as the binding agents for the silanic compound coated particles including the naturally occuring types, e g., gelatin, albumin, zein, agar-agar, alginic acid and 1 casein; and synthetic types, e. g., polyvinyl alcohol, partially hydrolyzed polyvinyl esters, hydrolyzed ethyl- "ene/vinyl acetatecopolymers; polyvinyl acetals, including sodium o-sulfobenzaldehyde polyvinyl acetal and benzaldehyde polyvinyl acetal; polyglycuronic acid and carboxymethyl cellulose.
  • naturally occuring types e g., gelatin, albumin, zein, agar-agar, alginic acid and 1 casein
  • synthetic types e. g., polyvinyl alcohol, partially hydrolyzed polyvinyl esters, hydrolyzed ethyl-
  • the inert particles can be coated by adding an inert solvent solution-or dispersion of the silanic compound to the finely divided particles.
  • the amount of silanic com- ;pound used should in general constitute from 0.1% to 100% of the total weightof the uncoated particles.
  • liquid silanic compounds no solventis needed and they inert. particles and liquidwsilanic. compound can .be-mixed in suitable proportions so that the latter are paper or plate.
  • the silanic compound coated particles can be prepared for coating by simply admixing them with an aqueous solution or'dispersion or with an organic solvent solution or dispersion of the water-permeable colloid.
  • a wetting -or --dispersing agentv in an amount of 0.1 to 100% by weight based on the total weight of the silanic compound-coated inert particles.
  • Suitable such agents include saponin and those described in Blake U. S. Patent 2,400,532, namely, the oxyalkylene ethers of hexitol ring dehydration products, e.
  • the polyoxyethylene sorbitan monolaurate, monostearate and monooleates which contain 2 to 20 oxyethylene groups divided in 3 chains; a salt of an alkylsubstituted aryloxy alkylene ether sulfonate, e. g., sodium p-tertiary-octyl phenoxy ethoxy ethyl sulfonate as disclosed in Baldsiefen U. S. Patent 2,600,831; sodium-dodecyl, tetradecyl and octadecyl sulfate and the dioctyl ester of sodium sulfo-succinic acid.
  • an alkylsubstituted aryloxy alkylene ether sulfonate e. g., sodium p-tertiary-octyl phenoxy ethoxy ethyl sulfonate as disclosed in Baldsiefen U. S
  • the photographic image-yielding elements described above have an excellent light-insensitive image-receptive layer for the inverse transfer of soluble silver complexes from the unexposed and undeveloped portions of a contiguous light-sensitive silver halide water-permeable colloid layer, as more fully described below.
  • the silanic compound coated particles not only act as nucleifor silver deposition in the light-insensitive water.-p,erm eable colloid layer containing them but accelerate the deposition. Since the coated particles do not migrate from orinthe layer, an excellent image is deposited in-and on the surface of the image-receptive layer containing such particles. A more dense image is formed than when uncoatedparticles (e.
  • silica g., silica
  • layer or strata preferably is outer- -most so that it can be brought into surface contactwith a separate outer silver halide emulsion layer of ajfilm
  • other useful elements of the invention have a light-sensitive silver halide water-permeable colloid layer on the light-insensitive water-permeable colloid layer containing thesilanic compound coated inert particles.
  • the latter composite elements are described in mycopending application Ser. No. 237,687,
  • the silver halide emulsion layer in these composite elements preferably have a colloid-binding agent which is relatively soluble in water as compared with the bottom layer so that the former can be washed off after image transfer has been accomplished.
  • the lower layer may initially be relatively insoluble or it can be hardened chemically.
  • the bottom layer can be hardened with a gelatin hardening agent, e. g., chrome alum, formalin and dimethylolurea.
  • a latent image of silver halide in a water-permeable colloid layer is formed by the conventionalmethod of exposure to an object field, e. g., an original scene, reproduction or to a photographic image.
  • an aqueous solution of a silver halide solvent e. g., sodium thiosulfate
  • the light-sensitive layer is maintained in intimate surface contact with the image-receptive layer for a period of time suflicient to dissolve a small or large part of the underdeveloped silver halide, e. g., from 5 to 600 seconds.
  • the silver complexes thus formed difiuse into the receptive layer containing the coated particles where the silanic "compound and the photographic developer reduce the silver complexes and deposit metallic silver on the particles forming an image which is the reverse from the original latent image.
  • the original silver halide layer is then removed. For instance, if the silver halide layer was in a separate film or paper, the two elements are simply separated.
  • the entire original layer is washed away. Any residual stain in the image-receptive layer, which contains a deposited silver image, can be removed, if desired, by treatment with an aqueous solution or a fixing agent.
  • Example I To a liter of aqueous gelatin containing 5% by weight of the latter, there was added 4.0 grams of silica particles having an average diameter of 0.015 micron which were Y coated with trichlorosilane that hydrolyzed to form a coating of (HSiO where n is 1 or more and the coatmicron coated with (SiHO where n is a positive integer of 1 or more in an amount of to by weight of the coated particles. (Manufactured by Linde Air Products Company as Coated Silica 30.)
  • ing constituted 15 to 20% of the total weight of the coated particles; said coated particles being added in the form of a dispersion in ethanol which was obtained by mixing in a high-speed blending mixer.
  • the resulting gelatin dispersion was coated on a paper sheet to form a thin layer which was dried.
  • a separate paper sheet was coated 'with a similar gelatin solution but free from coated particles to form a control sample. The coatings were dried.
  • Example 11 One gram each of silanic compound coated silica particles, types (a), (b) and (c), in the form of an ethanol dispersion (prepared as described in Example I) was added to separate250 ml. samples of aqueous gelatin (5% by weight) containing 1.6 ml. of saponin and 1.5 ml. of
  • Image-Receptive Layer Resultant Positive Image Gelatin (no particles) Faint image.
  • Gelatm+coatetl particles (a) Strong blue-black image.
  • Example III One gram of silica coated particles in ethanol solution as described in Example I was added to a 250 ml. sample of medium viscosity polyvinyl alcohol (essentially completely hydrolyzed polyvinyl acetate), ethanol and water in the proportions 5:5:90% by weight, said solution containing 6.25 ml. of a 25% by weight aqueous solution of cetyl betaine.
  • the resulting polyvinyl alcohol dispersion was coated onto a baryta coated paper stock and the thin layer dried.
  • An identical polyvinyl alcohol solution containing no coated silica particles was coated onto baryta coated paper in like manner and the coatings dried to form control paper samples.
  • Image-Receptive Layer Resultant Positive Image Gelatin (no particles) Faint gray. Gelatin+coated particles (0). Brown. Gelatin+coated particles (b) Do. Gelatin-l-coated particles (0)... Black. Polyvinyl alcohol (no particles) Faint gray. Polyvinyl alcohoH-coated particles (a) Brown-black.
  • Example IV The procedure set forth in Example II was repeated, except that the control gelatin coating contained uncoated silica particles of the same average diameter with Example V
  • a liquid gelatino-silver bromide motion picture positive emulsion containing no hardener was coated over the image-receptive paper (a) and on the gelatin control (d) of Example II.
  • the light-sensitive. layer was dried and the resultant two-layer element was exposed to a transparent positive image in a film element and the two layer element was then immersed in a developer of Example I for 1.5 minutes at 68 F. After this immersion period the element was removed and placed, emulsion side down on a glass plate for 15 minutes to allow inverse-transfer development to take place.
  • the element was then removed from the glass plate and the unhardened silver bromide layer containing the negative silver image was removed by flushing with hot water.
  • the lower, hardened image-receptive layer was then found to bear a strong positive image record corresponding to the original transparent positive film image.
  • Similar processing of the element prepared using the gelatin coated control (d) revealed only a faint trace of a positive image after hot water washing.
  • the invention is, of course, not limited to the use of the specific silanic compounds mentioned in the foregoing examples nor to the specific amounts given in such examples.
  • a large number of other silanic compounds which possess at least one silicon-hydrogen bond can be substituted in like manner.
  • any particular silanic compound which contains a silicon-hydrogen bond can be determined by testing whether it or its hydrolysis products are capable of exerting a reducing action on or nucleating silver halide.
  • the mechanism or theory as to why the silanic compounds are effective as chemical sensitizers for silver halide emulsions is not completely understood but it is believed that the silicon-hydrogen linkage must be capable of alkaline induced hydrolysis which is illustrated in the following equation for a useful class of silanic compounds:
  • R is hydrogen, halogen, e. g., Fl, Cl and Br; alkyl of 1 to 30 carbon atoms, alkoxy of 1 to 30 carbon atoms, aryl, e. g., phenyl, tolyl, naphthyl, etc-.; aryloxy, e. g., phenoxy, naphthoxy, etc., siloxy or combinations thereof, n being 1 to 3.
  • alkyl silanes e. g., methyl silane, dimethyl silane, trimethyl silane; ethyl silane, diethyl silane, triethyl silane, n-propyl silane, butyl silane; alkyl halogenosilanes, dimethylchlorosilane, ethyl dichlorosilane, diethylchlorosilane, propyl dichlorosilane; aryl silanes, e. g., diphenyl silane, triphenyl silane, and mixed alkyl aryl silanes, e.
  • ethyl diphenyl silane methyl phenyl silane and'dihexyl phenyl silane
  • alkoxy, aroxy, alkoxy halogeno, and aroxy halogeno silanes e. g., diethyoxy silane, methyl dichlorodiethyoxy silane and phenoxy silane
  • cyclic and linear polymeric siloxanes e. g.,-cyclic tetrameric methyl siloxane and its linear analogue HO[CH (H)SiO] H. Hydrolysis products of the above listed silanes which retain a silicon-hydrogen bond may be used also.
  • Mixtures of two or more silanic compounds can be coated on the particles or mixtures of two diflferently coated particles can be dispersed in the aqueous colloid solution used to coat the image-receptive layers.
  • Different types of carrier particles coated with either the same or different silanic compounds may also be used.
  • the quantity of silanic coated particles used in the water-permeable colloid may vary over a wide range of proportions. A practical range is from 0.1 mg. to g. per 100 mg. of colloid. It is possible to prepare layersof active silanic compound coated particles with no water-permeable colloid binder by coating themonto a plastic support from a dispersion in a solvent having a solvent action on the support, e. g., acetone in the case of cellulose acetate. The particles can be dusted on a support which is heated to soften the surface. The particles can be forced into or imbedded in the softened surface by means of a roller.
  • Suitable supports include films and plates composed of cellulose derivatives, e. g., cellulose acetate, propionate, butyrate, acetate-butyrate, and nitrate; superpolymers, e. g., nylon, polyvinyl chloride, poly(vinyl chloride co vinyl acetate), polystyrene, polymethylene terephthalates, e. g., polyethylene terephthalate; thin aluminum sheets; paper and cardboard, etc.
  • various sublayers may be present to anchor the layers to the base as is common in photographic film and plate manufacture.
  • Any of the conventional photographic developing solutions can be used in carrying out the process. Suitable developing agents and solutions are described in Mees The Theory of the Photographic Process published by The Macmillan Company, New York (1946), pages 338- 369 and particularly page 352.
  • novel image-receptive elements of this invention are useful in the reproduction of various images. Thus, they are useful in copying printed matter.
  • an image-receptive paper is used with a separate exposed film bearing a light-sensitive silver halide latent image.
  • the image-receptive papers are especially useful in direct-positive photography.
  • the receptive paper and light-sensitive film or paper being separate elements but 7 the development being completed in contact with simultaneous inverse-transfer.
  • An advantage of the invention is that it provides new and practical light-insensitive image-receptive films, sheets, plates and papers which are economicalto make and simple to use.
  • the image-receptive elements are stable over long periods of time. They give more dense images than when uncoated particles are used.
  • the coated particles can be made long prior to coating operations and do not require storage in the absence of actinic radiations.
  • the preparation of silanic compound coated particles is a simple and inexpensive operation in contrast to the diificult operation of producing colloidal or complex particles heretofore used.
  • a further advantage is that the particle size of the particles can easily be selected before the silanic coating operation, thus allowing a large selection of types of particles of reproducible and controlled sizes from the many such particles which are common items of commerce.
  • the silanic coated particles are dry powders which are easily stored and handled and otter many other advantages such as ease of 'controlling concentration of active ingredient through changes in type and amount of silanic coating.
  • An image-receptive element for photographic reproduction comprising a sheet support bearing a light-insensitive water-permeable organic colloid layer having dispersed therethrough finely divided inert solid silica particles having an average diameter from 0.001 to 10.0 microns coated with a silanic compound having at least one silicon-hydrogen bond, said compound constituting 0.1 to 100% of the weight of the uncoated silica particles;
  • coated particles being present in the amount of 0.1 mg. to 100 grams per 100 mg. of the colloid.
  • An image-receptive element for photographic reproduction comprising a sheet support bearing a light-sensitive water-permeable colloid silver halide layer and a contiguous light-insensitive water-permeable organic colloid layer having dispersed therethrough finely divided inert solid particles having an average diameter from 0.001 to 10.0 microns coated with a silanic compound hav-' ing at least one silicon-hydrogen bond, said compound constituting 0.1 to of the Weight of the uncoated particles; said coated particles being present in the amount of 0.1 mg. to 100.0 grams per 100 mgof the colloid.
  • a photographic reproduction process which comprises impregnating with a developer solution an exposed silver halide layer and a contiguous light-insensitive layer of finely divided inert solid particles having an average diameter from 0.001 to 10.0 microns coated with a silanic compound having at least one silicon-hydrogen bond, said compound constituting 0.1 to 100% of the weight of the uncoated particles, maintaining said layersin surface contact until the images are developed and removing the original silver halide layer.
  • a photographic reproduction process whichcomprises impregnating with a developer solution an exposed silver halide layer and a contiguous light-insensitive waterpermeable organic colloid layer having dispersed therethrough finely divided inert solid particles having an average diameter from 0.001 to 10.0 microns coated with a silanic compound having at least one silicon-hydrogen bond, said compound constituting 0.1 to 100% of the weight of the uncoated particles, said coated particles being present in the amount of 0.01 mg. to 100 grams per 100 mg. of the colloid, maintaining said layers in surface contact until the images are developed and removing the original silver halide layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Paper (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
US469041A 1954-11-15 1954-11-15 Photographic elements and processes Expired - Lifetime US2878121A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BE542421D BE542421A (en)) 1954-11-15
US469041A US2878121A (en) 1954-11-15 1954-11-15 Photographic elements and processes
GB22266/55A GB785847A (en) 1954-11-15 1955-08-03 Photographic elements and processes
DEP14658A DE1015682B (de) 1954-11-15 1955-08-11 Lichtunempfindliche Bildempfangsschicht fuer das Silbersalz-Diffusionsverfahren
FR1138409D FR1138409A (fr) 1954-11-15 1955-10-26 éléments photographiques perfectionnés et leurs applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US469041A US2878121A (en) 1954-11-15 1954-11-15 Photographic elements and processes

Publications (1)

Publication Number Publication Date
US2878121A true US2878121A (en) 1959-03-17

Family

ID=23862192

Family Applications (1)

Application Number Title Priority Date Filing Date
US469041A Expired - Lifetime US2878121A (en) 1954-11-15 1954-11-15 Photographic elements and processes

Country Status (5)

Country Link
US (1) US2878121A (en))
BE (1) BE542421A (en))
DE (1) DE1015682B (en))
FR (1) FR1138409A (en))
GB (1) GB785847A (en))

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060022A (en) * 1959-07-13 1962-10-23 Gen Aniline & Film Corp Image transfer process
US3211551A (en) * 1957-12-10 1965-10-12 Lumoprint Zindler Kg Diffusion transfer process
US3214274A (en) * 1960-10-19 1965-10-26 Mitsubishi Paper Mills Ltd Manufacture of photographic materials
US3234022A (en) * 1960-08-08 1966-02-08 Polaroid Corp Diffusion-transfer reversal processes and elements useful in such processes
US3256091A (en) * 1962-09-26 1966-06-14 Polaroid Corp Photographic processes
US3257206A (en) * 1961-10-04 1966-06-21 Gevaert Photo Prod Nv Photographic material
US3260600A (en) * 1960-10-20 1966-07-12 Gevaert Photo Prod Nv Photographic image-receiving material
US3326683A (en) * 1962-09-27 1967-06-20 Polaroid Corp Diffusion transfer photographic process using 4, 6-diamino-ortho cresol
US3511656A (en) * 1955-03-31 1970-05-12 Dick Co Ab Single sheet lithographic dtr master and method of use
US3547641A (en) * 1966-06-20 1970-12-15 Du Pont Planographic offset printing masters
US3607270A (en) * 1967-06-08 1971-09-21 Agfa Gevaert Nv Unitary, permanently composite, photographic light-sensitive sheet material for use in the silver complex diffusion transfer process for producing images
EP0065329A1 (en) * 1981-05-18 1982-11-24 Agfa-Gevaert N.V. Surface-treated vinyl chloride polymer material including an adhering hydrophilic layer
US4762759A (en) * 1985-11-15 1988-08-09 Agfa-Gevaert N.V. Image-receiving material with siloxane, colloidal silica and gelatin for silver complex diffusion transfer
US5194347A (en) * 1990-11-30 1993-03-16 Agfa-Gevaert N.V. Image-receiving material comprising subbed polycarbonate or polypropylene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB993782A (en) * 1960-03-22 1965-06-02 Kodak Ltd Aqueous coating composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2474704A (en) * 1948-06-29 1949-06-28 Dow Corning Method of rendering materials water-repellent
US2567316A (en) * 1947-03-10 1951-09-11 Process of producing a siliceous
US2589705A (en) * 1944-07-29 1952-03-18 Samuel S Kistler Treatment of aerogels to render them waterproof
US2610167A (en) * 1946-12-07 1952-09-09 Grotenhuis Theodore A Te Pigmented silicone elastomers
US2662013A (en) * 1951-07-18 1953-12-08 Gen Aniline & Film Corp Diazotype photoprinting material
US2698334A (en) * 1945-03-27 1954-12-28 Montclair Res Corp Arylhalosilanes
US2698238A (en) * 1947-02-08 1954-12-28 Polaroid Corp Photographic product and process
US2698236A (en) * 1954-05-27 1954-12-28 Polaroid Corp Photographic silver halide transfer product and process
US2717219A (en) * 1952-03-29 1955-09-06 Westinghouse Electric Corp Asbestos fiber electrical insulating member impregnated with methyl hydrogen polysiloxane
US2774690A (en) * 1951-04-16 1956-12-18 Bradford Dyers Ass Ltd Water repellent treatment utilizing a methylhydrogenpolysiloxane and a titanium compound

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2589705A (en) * 1944-07-29 1952-03-18 Samuel S Kistler Treatment of aerogels to render them waterproof
US2698334A (en) * 1945-03-27 1954-12-28 Montclair Res Corp Arylhalosilanes
US2610167A (en) * 1946-12-07 1952-09-09 Grotenhuis Theodore A Te Pigmented silicone elastomers
US2698238A (en) * 1947-02-08 1954-12-28 Polaroid Corp Photographic product and process
US2567316A (en) * 1947-03-10 1951-09-11 Process of producing a siliceous
US2474704A (en) * 1948-06-29 1949-06-28 Dow Corning Method of rendering materials water-repellent
US2774690A (en) * 1951-04-16 1956-12-18 Bradford Dyers Ass Ltd Water repellent treatment utilizing a methylhydrogenpolysiloxane and a titanium compound
US2662013A (en) * 1951-07-18 1953-12-08 Gen Aniline & Film Corp Diazotype photoprinting material
US2717219A (en) * 1952-03-29 1955-09-06 Westinghouse Electric Corp Asbestos fiber electrical insulating member impregnated with methyl hydrogen polysiloxane
US2698236A (en) * 1954-05-27 1954-12-28 Polaroid Corp Photographic silver halide transfer product and process

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511656A (en) * 1955-03-31 1970-05-12 Dick Co Ab Single sheet lithographic dtr master and method of use
US3211551A (en) * 1957-12-10 1965-10-12 Lumoprint Zindler Kg Diffusion transfer process
US3060022A (en) * 1959-07-13 1962-10-23 Gen Aniline & Film Corp Image transfer process
US3234022A (en) * 1960-08-08 1966-02-08 Polaroid Corp Diffusion-transfer reversal processes and elements useful in such processes
US3214274A (en) * 1960-10-19 1965-10-26 Mitsubishi Paper Mills Ltd Manufacture of photographic materials
US3260600A (en) * 1960-10-20 1966-07-12 Gevaert Photo Prod Nv Photographic image-receiving material
US3257206A (en) * 1961-10-04 1966-06-21 Gevaert Photo Prod Nv Photographic material
US3256091A (en) * 1962-09-26 1966-06-14 Polaroid Corp Photographic processes
US3326683A (en) * 1962-09-27 1967-06-20 Polaroid Corp Diffusion transfer photographic process using 4, 6-diamino-ortho cresol
US3547641A (en) * 1966-06-20 1970-12-15 Du Pont Planographic offset printing masters
US3607270A (en) * 1967-06-08 1971-09-21 Agfa Gevaert Nv Unitary, permanently composite, photographic light-sensitive sheet material for use in the silver complex diffusion transfer process for producing images
EP0065329A1 (en) * 1981-05-18 1982-11-24 Agfa-Gevaert N.V. Surface-treated vinyl chloride polymer material including an adhering hydrophilic layer
US4762759A (en) * 1985-11-15 1988-08-09 Agfa-Gevaert N.V. Image-receiving material with siloxane, colloidal silica and gelatin for silver complex diffusion transfer
US5194347A (en) * 1990-11-30 1993-03-16 Agfa-Gevaert N.V. Image-receiving material comprising subbed polycarbonate or polypropylene

Also Published As

Publication number Publication date
FR1138409A (fr) 1957-06-13
GB785847A (en) 1957-11-06
BE542421A (en))
DE1015682B (de) 1957-09-12

Similar Documents

Publication Publication Date Title
US2878121A (en) Photographic elements and processes
US3647440A (en) Photographic diffusion transfer product and process
US3607270A (en) Unitary, permanently composite, photographic light-sensitive sheet material for use in the silver complex diffusion transfer process for producing images
US2774667A (en) Photographic silver halide transfer process
US3396018A (en) Diffusion transfer system
US3345166A (en) Photographic process whereby a fully developed and fixed negative is formed concurrently with a positive silver transfer image
US3705804A (en) Diffusion transfer production of reflection positive with macroscopic pigment in receptive stratum
US3345168A (en) Diffusion transfer receiving sheet containing china clay and an aliphatic amine
US3383211A (en) Lithographic printing plates
US3740220A (en) Photographic material
US3490905A (en) Process for making printing plates
US3232759A (en) Diffusion transfer process employing tone modifiers
US3062648A (en) Photographically sensitive lithographic printing plate
US3769014A (en) Beta-disulfone silver halide solubilizing agents
US2765240A (en) Process for forming print-receiving elements
US3490906A (en) Process for preparing printing plates and developer compositions therefor
US3592647A (en) Process for improving planographic offset printing plates
US3733199A (en) Photographic composition of sodium and potassium ions for treating direct positive emulsions
US3385701A (en) Lithographic offset master and method
US3067033A (en) Production of transfer images by the silver salt diffusion process
US3174859A (en) Process for obtaining multiple photographic positive images by diffusiontransfer
US3547641A (en) Planographic offset printing masters
US3563740A (en) Use of dicyanamides in and with photosensitive systems
US2702244A (en) Photographic processes for producing prints by transfer
US3335005A (en) Silver complex diffusion transfer process