US2873510A - Method of manufacturing seals for electric discharge tubes - Google Patents
Method of manufacturing seals for electric discharge tubes Download PDFInfo
- Publication number
- US2873510A US2873510A US532520A US53252055A US2873510A US 2873510 A US2873510 A US 2873510A US 532520 A US532520 A US 532520A US 53252055 A US53252055 A US 53252055A US 2873510 A US2873510 A US 2873510A
- Authority
- US
- United States
- Prior art keywords
- layer
- glass
- copper
- copper oxide
- gold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 27
- 239000005751 Copper oxide Substances 0.000 claims description 27
- 229910000431 copper oxide Inorganic materials 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011521 glass Substances 0.000 description 37
- 229960004643 cupric oxide Drugs 0.000 description 26
- 229910052737 gold Inorganic materials 0.000 description 15
- 239000010931 gold Substances 0.000 description 15
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 14
- 229910015371 AuCu Inorganic materials 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 239000011162 core material Substances 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- QRJOYPHTNNOAOJ-UHFFFAOYSA-N copper gold Chemical compound [Cu].[Au] QRJOYPHTNNOAOJ-UHFFFAOYSA-N 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000005293 duran Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 150000002344 gold compounds Chemical class 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C27/00—Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
- C03C27/04—Joining glass to metal by means of an interlayer
- C03C27/042—Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts
- C03C27/046—Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts of metals, metal oxides or metal salts only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J5/00—Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
- H01J5/32—Seals for leading-in conductors
Definitions
- This invention relates to a method of manufacturing a seal for an electric discharge tube, and in particular to a seal comprising a contact member sealed in glass, with at least the surface of the contact member projecting from the tube consisting of gold or a gold alloy.
- Such gold-coated contact members can be sealed in glass satisfactorily if the coeficients of thermal expansion of the core material of the member and the glass correspond with one another, such contact members, particularly pinshaped members, suffer from the disadvantage that the glass is liable to crack when the member is subjected .to lateral forces. It was found that this was caused by insufficient adherence of the glass to the gold. It was known that the adherenceof the glass could be strongly improved if oxides are present on a metal surface. Hence, it has been proposed to coat the surface of copper-plated or silver-plated conductors with a thin layer of chromium, which during the scalingin process is entirely or partially converted into chromium oxide.
- chromium instead of chromium, onemay also use iron, aluminium, manganese or cobalt.
- these metals have the disadvantage that they and their oxides can only be removed from the parts of the contact members projecting beyond the seal with difiiculty, particularly if they are coated over a layer of gold.
- the gold is employed to obtain a corrosion-resistant surface which makes a reliable contact with, for example, suitable contact springs. Consequently, this gold surface must be exposed and cleaned by removal of any oxides thereon.
- the oxide layer have a controlled thickness which is accurately determined, since an oxide layer which is too thick may give rise to leakage due to the fact that the oxide layer does not sufiiciently adhere to the base layer and is not entirely dissolved in the glass.
- thegold is provided with a layer of copper oxide, which, after the tube envelope has been sealed off, is preferably removed from the portion of the contact member which projects beyond the tube.
- the copper oxide can be provided by coating the gold layer on the contact member with a copper layer, of, for example, from 5 to microns thick, which copper layer during the heating in the sealing-in process is en- I tirely oxidized to form copper oxide.
- This thin film of oxide also protects the base metal from attack by combustion gases and the like.
- the copper oxide film can subsequently be removed from the gold-plated parts of the contact member which project beyond the seal, together with any remaining copper, by pickling in a suit able bath of, for example, concentrated HCl, diluted with alcohol to about twice or three times its volume.
- gold and copper may be coated att O 2,873,510 Patented Feb. 17, 1959 simultaneously on the core material of the contact member by electro-deposition.
- a sufiicient amount of copper oxide is produced at the surface to ensure good adherence of the glass.
- the desired result is obtainable even if the layer contains only 1% of copper. In this event also, the oxides can subsequently be removed from the surface outside of the seal.
- the core material may be coated with a copper-gold compound, for example AuCu or AuCu
- a copper-gold compound for example AuCu or AuCu
- AuCu or AuCu The electric resistance of gold-copper compounds is a minimum at this molecular ratio.
- a surface copper oxide layer is produced during the sealing-in process, which subsequently can be readily removed from the surface projecting beyond the seal by pickling. Since such a layer of high electric conductivity contains a comparatively small amount of gold, it is cheap and consequently may be made comparatively thick without the tube becoming too expensive. This ensures better protection for the core metal.
- the wear resistance of such a layer is higher, not only because the layer is thicker but also because it is harder.
- Reference numeral 1 designates the tube envelope, which is closed off by a base disc 2 made of glass, e. g. lead glass.
- a base disc 2 made of glass, e. g. lead glass.
- sealed-in contact pins 3 which may, for example, consist of ferrochromium and are coated with a layer of gold 4.
- inter-mediate layers which preferably contain cobalt, may be interposed.
- copper oxide 5 is dissolved in the glass so that satisfactory adherence of the glass to the gold layer 4 is obtained.
- the pins 3 are connected to an electrode system 6.
- the pins 3, of chromeiron containing 25% chromium are first coated with a gold layer of about 2 microns thick. Then, the pins are copper plated to a thickness of about 5 microns. The pins 3 are then mounted in apertures in the glass base 2, and the assembly heated at 800 C. for about 1 to, 2 minutes to cause thepins 3 to be fused vacuum-tight into the glass base 2. During this heating, sealing-in process, the copper layer is converted to copper oxide, which at the area of the seal dissolves partly in the glass to improve the adherence. Thereafter, the base 2 is sealed to the envelope 1 and the latter evacuated and sealed off.
- the exposedends of the pins 3 are placed for a short time in a pickling bath, which readily removes the copper oxide layer on the pins 3, leaving a clean, gold surface on the portions of the pins projecting from the completed tube.
- This operation can be done as an alternative also to a ready performed tube.
- a method of providing a metal contact member sealed in a glass wall ofa discharge tube comprising the steps of coating said metal member with a layer consisting of AuCu; placing aportion of said coated metal member in contact with said glass wall; thereafter heating the member to. convert a portion of the copper in said AuCu into a thin external layer of copper oxide and simultaneously to fuse the member into the glass wall, and to dissolve in said glass substantially all of the copper oxide in the. seal region; and'thereafter removing the copper oxide from the portion of the member projecting from the Wall.
- a method of providing a metal contact member sealed in a glass wall of a discharge tube comprising the steps of coating said metal member with a layer consisting of AuCu placing a portion of said coated metal member in contact with said glass wall; thereafter heating the member to convert at least a portion of the copper 'in said, AuCu into a thin'externa'l'layer of copper oxide and simultaneously to fuse the member into the glass wall, and to dissolve in said glass the copper oxide in the seal region; and thereafter removing the copper oxide from the portion of the member projecting from the wall.
- a method of sealing a metal contact member con-- sisting essentially of an iron-nickel alloy in a glass wall of a discharge tube comprising the steps of coating said metal member with a layer of AuCu; placing a portion of said coated metal member in contact with the glass Wall; thereafter heating the coated metal member to convert a portion of the copper in said AuCu into a thin external layer of copper oxide and simultaneously to fuse the memher into the glass wall, and to dissolve in the glass substantially all of the copper oxide. in'the seal region; and thereafter'pickling the portionof the memberprojecting from, the glass Wall to remove the copper oxide therefrom.
- a method of sealing a metal contact member consisting essentially of an iron-nickel alloy in a glass Wall of a discharge tube comprising the steps of coating said metal member with a layer :of a gold compound selected from the group consisting of AuCu and AuCu placing a portion of said coated metal member in contact with the glass; thereafter heating the coated metal member to convert a potrion of the copperin said gold-copper compound into a thin external layer of copper oxide and simultaneously to fuse the member into the glass wall, and
- a method of sealing a metal contact member consisting'essentially of an iron-nickel alloy in a glass Wall of a discharge tube comprising the: steps of coating said metal member with a layer of AuCu yplacing a portion of said coated metal member in contact with the glass Wall; thereafter heating the coated metal member to convert a portion of the copper in said AuCu into a thin external layer of copper oxide and simultaneously to fuse the member into the glass wall, and todissolve in the glass substantially all of the copper oxide in the seal region; and thereafter pickling the portion-of the member projecting from theglass Wall to remove the copperoxide therefrom.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Joining Of Glass To Other Materials (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL333345X | 1954-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2873510A true US2873510A (en) | 1959-02-17 |
Family
ID=19784446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US532520A Expired - Lifetime US2873510A (en) | 1954-09-08 | 1955-09-06 | Method of manufacturing seals for electric discharge tubes |
Country Status (4)
Country | Link |
---|---|
US (1) | US2873510A (enrdf_load_stackoverflow) |
BE (1) | BE541097A (enrdf_load_stackoverflow) |
CH (1) | CH333345A (enrdf_load_stackoverflow) |
DE (1) | DE1052580B (enrdf_load_stackoverflow) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3100813A (en) * | 1959-01-12 | 1963-08-13 | Sprague Electric Co | Capacitor sealing means |
US4420869A (en) * | 1983-03-21 | 1983-12-20 | Interceram, Inc. | Method of manufacturing a thyrister housing |
US20020190646A1 (en) * | 2001-05-03 | 2002-12-19 | General Electric Company | Control of leachable mercury in fluorescent lamps |
US6515421B2 (en) | 1999-09-02 | 2003-02-04 | General Electric Company | Control of leachable mercury in fluorescent lamps |
US20070267956A1 (en) * | 2004-08-02 | 2007-11-22 | Hans Heidbuchel | Lamp Comprising a Base That is Mounted Without Cement |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL173107C (nl) * | 1972-09-12 | 1983-12-01 | Philips Nv | Ontladingsbuis. |
DE19915920A1 (de) * | 1999-04-09 | 2000-10-19 | Heraeus Gmbh W C | Metallisches Bauteil und Entladungslampe |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1140134A (en) * | 1914-12-30 | 1915-05-18 | Commercial Res Company | Incandescent lamp. |
US1498908A (en) * | 1915-01-23 | 1924-06-24 | Gen Electric | Evacuated container |
US1575994A (en) * | 1923-11-09 | 1926-03-09 | Electron Relay Company | Lead-in wire and gas-tight seal and method of making the same |
US2229436A (en) * | 1940-09-21 | 1941-01-21 | Gen Electric | Method of making metal-enclosed vacuum tubes |
US2426467A (en) * | 1945-07-18 | 1947-08-26 | Gen Electric | Gold-copper solder |
US2446277A (en) * | 1945-09-24 | 1948-08-03 | Eitel Mccullough Inc | Glass to metal seal in electrical devices |
US2520663A (en) * | 1943-04-06 | 1950-08-29 | Hartford Nat Bank & Trust Co | Glass to metal seal for high-frequency electric discharge tubes |
US2555877A (en) * | 1945-07-20 | 1951-06-05 | Sylvania Electric Prod | Glass-to-metal seal |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE738827C (de) * | 1939-02-28 | 1943-09-10 | Telefunken Gmbh | Glas-Metalleinschmelzung fuer Vakuumroehren |
-
0
- BE BE541097D patent/BE541097A/xx unknown
-
1955
- 1955-09-05 DE DEN11150A patent/DE1052580B/de active Pending
- 1955-09-06 CH CH333345D patent/CH333345A/de unknown
- 1955-09-06 US US532520A patent/US2873510A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1140134A (en) * | 1914-12-30 | 1915-05-18 | Commercial Res Company | Incandescent lamp. |
US1498908A (en) * | 1915-01-23 | 1924-06-24 | Gen Electric | Evacuated container |
US1575994A (en) * | 1923-11-09 | 1926-03-09 | Electron Relay Company | Lead-in wire and gas-tight seal and method of making the same |
US2229436A (en) * | 1940-09-21 | 1941-01-21 | Gen Electric | Method of making metal-enclosed vacuum tubes |
US2520663A (en) * | 1943-04-06 | 1950-08-29 | Hartford Nat Bank & Trust Co | Glass to metal seal for high-frequency electric discharge tubes |
US2426467A (en) * | 1945-07-18 | 1947-08-26 | Gen Electric | Gold-copper solder |
US2555877A (en) * | 1945-07-20 | 1951-06-05 | Sylvania Electric Prod | Glass-to-metal seal |
US2446277A (en) * | 1945-09-24 | 1948-08-03 | Eitel Mccullough Inc | Glass to metal seal in electrical devices |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3100813A (en) * | 1959-01-12 | 1963-08-13 | Sprague Electric Co | Capacitor sealing means |
US4420869A (en) * | 1983-03-21 | 1983-12-20 | Interceram, Inc. | Method of manufacturing a thyrister housing |
US6515421B2 (en) | 1999-09-02 | 2003-02-04 | General Electric Company | Control of leachable mercury in fluorescent lamps |
US20020190646A1 (en) * | 2001-05-03 | 2002-12-19 | General Electric Company | Control of leachable mercury in fluorescent lamps |
US6853118B2 (en) * | 2001-05-03 | 2005-02-08 | General Electric Company | Control of leachable mercury in mercury vapor discharge lamps |
US20070267956A1 (en) * | 2004-08-02 | 2007-11-22 | Hans Heidbuchel | Lamp Comprising a Base That is Mounted Without Cement |
US8125133B2 (en) | 2004-08-02 | 2012-02-28 | Osram Ag | Lamp comprising a base that is mounted without cement |
Also Published As
Publication number | Publication date |
---|---|
CH333345A (de) | 1958-10-15 |
DE1052580B (de) | 1959-03-12 |
BE541097A (enrdf_load_stackoverflow) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3531853A (en) | Method of making a ceramic-to-metal seal | |
US3200310A (en) | Glass encapsulated semiconductor device | |
US2873510A (en) | Method of manufacturing seals for electric discharge tubes | |
US3753026A (en) | Quartz lamp seal | |
US2229436A (en) | Method of making metal-enclosed vacuum tubes | |
US1575994A (en) | Lead-in wire and gas-tight seal and method of making the same | |
US2398449A (en) | Method of making hermetic seals | |
US3153839A (en) | Method of forming vacuum seals | |
US3555667A (en) | High temperature,electrically conductive hermetic seals | |
US5013615A (en) | Glass to metal seal | |
US8277274B2 (en) | Apparatus and methods for use of refractory abhesives in protection of metallic foils and leads | |
US3535099A (en) | Method of forming a hermetic enclosure for electronic devices | |
US2683835A (en) | Electron tube structure | |
US2955385A (en) | Method of making glass-to-metal seals | |
US3379822A (en) | Electric conductor suitable for being sealed in the wall of an electric discharge tube | |
US2377164A (en) | Electrical assembly | |
US2651144A (en) | Glass-to-metal seal | |
US3329854A (en) | Electron tube with inert oxide coating on the envelope | |
JP2771145B2 (ja) | 耐腐食性リードフレーム | |
US3924792A (en) | Method of manufacturing a vacuum-tight electric leadthrough in an electric discharge tube | |
US2759252A (en) | Method for sealing an iron member to a glass part | |
US3865970A (en) | Vacuum-tight electric leadthrough in an electric discharge tube | |
US1816424A (en) | Glass seal | |
US3404968A (en) | Glass-to-metal seals and method for making same | |
US3666547A (en) | Photo-cathodes for electronic discharge tubes |