US2867747A - Electron tube - Google Patents

Electron tube Download PDF

Info

Publication number
US2867747A
US2867747A US330474A US33047453A US2867747A US 2867747 A US2867747 A US 2867747A US 330474 A US330474 A US 330474A US 33047453 A US33047453 A US 33047453A US 2867747 A US2867747 A US 2867747A
Authority
US
United States
Prior art keywords
tube
envelope
resonators
drift tube
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US330474A
Inventor
Clayton E Murdock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Eitel Mccullough Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eitel Mccullough Inc filed Critical Eitel Mccullough Inc
Priority to US330474A priority Critical patent/US2867747A/en
Application granted granted Critical
Publication of US2867747A publication Critical patent/US2867747A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/10Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
    • H01J25/12Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator with pencil-like electron stream in the axis of the resonators

Definitions

  • My ⁇ invention relates to electron tubes having cavity resonators and more particularly to tubes of the velocity modulated type, such as klystrons.
  • the present invention constitutes improvements in an externally tunable type of ⁇ klystron such as disclosed in the patent to Norton, etal., No. 2,619,611, issued November 25, 1952, wherein portions of the cavity resonators are sealed of with insulators and comprise part of the evacuated envelope.
  • Another object is to provide improvements in the construction of the cavity resonators.
  • a further object is to provide improvements in the collector electrode.
  • Figurel is a side elevational view of a tube embodying the improvements of my invention.
  • Figure 2 is an axial sectional view of the same.
  • Figure 3 is an enlarged fragmentary view showing the construction of the cavity resonator.
  • the drawings show a three-resonator type of klystron, it being understood thatal greater or -fewer number of resonators may be employed in a tube of this kind.
  • the tube illustrated is particularly designed as an amplifier in the U. H. F. region and having a power rating of several kilowatts C. W.
  • Figures land 2 show the evacuated tube per se apart from the external structure.
  • suitable external resonators are applied as described in the above mentioned patent, one of such external resonators being indicated by the dotted lines 1 in Figure l.
  • My tube comprises an elongated generally cylindrical envelope having an electron gun 2 at one end and a collector electrode 3 at the other end. 'The electron beam from the gun'to'the collector passes through a drift tube made up of metal sections 4, 6, 7 and 8 extending axially of the envelope and having gaps 9, 11'y and 12 therebetween. Such gaps are bridged by cavity resonator structures forming portions of the tube envelope and generally designated at 13, 14 Vand 16.
  • Electron gun 2 includes a disk-shaped cathode 17 and a surrounding focusing electrode 18, the cathode being heated by a filament 19, all of which is supported by a glass stern 21 forming an end of the evacuated envelope.
  • Cathode 17 is preferably of a material such as tantalum heated by electron bombardment from the filament, all in accordance with conventional practice.
  • the electron gun is housed in a cup-shaped metal sec- 'ice i. prises a hollow metal member 24 supported from a diskshaped metal section 26 of the envelope.
  • a glass en-l velope section 27 sealed between flanges 28 provides a supporting connection between the collector member 24 and the envelope section 26.
  • An aperture 29 in metal piece 26 is aligned with the collector electrode and is coaxial with the drift tube.
  • the metal disk 26 is of iron and also functions as a pole piece for the external focusing magnet.
  • an electron beam from gun 2 is accelerated by a positive potential on anode 22 and passes through the drift tube, past the interaction spaces provided by gaps 9, 11 and 12, and finally terminates on collector electrode 3, the beam being directed down the drift tube by an external magnet associated with iron pole pieces 22 and 26.
  • the three-cavity resonators 13, 14 and 16 coacting with the interaction spaces at gaps 9, 11 and 12 serve as the frequency determining elements of the device.l
  • the input signal for modulating the electron stream is fed into the first resonator 13, and the radio-frequency output is taken from the third resonator 16, in accordance with the usual manner for threecavity type klystrons.
  • the particular kind of -tube shown is adapted for external tuning by the use of suitable external resonators, one of which is indicated by the dotted lines 1 in Figure 1.
  • suitable external resonators one of which is indicated by the dotted lines 1 in Figure 1.
  • the use of such external resonators for tuning over a wide band of frequencies is possible, of course, because of the sealed-off nature of the resonators 13, 14 and 16 which comprise part ofthe evacuated envelope.
  • drift tube end section 4 is brazed to anode piece 22, and the other end section 8 is brazed to piece 26.
  • the inter'- mediate sections 6 and 7 of the d rift tube are axially aligned with the end sections 4 and 8, these several sections forming parts of the side Walls of the evacuated envelope.
  • Circularl resonators 13, 14 and 16 which are disposed transversely of the envelope axis, are mounted on the drift tube sections and form additional side wall portions of the evacuated envelope. In other words, the resonator vstructures provide vacuum-tight walls bridging the gaps between the drift tube sections.
  • Input resonator 13 comprises parallel disk-shaped metal end Walls 31 and 32 brazed to the drift tube sections process and then brazing the metalized ends to the metal parts with silver solder or the like.
  • An important feature of my invention resides in the resonator construction at the flanges 34. Since the ceramic materials have a lower coeliicient of thermal expansion than metals of good electrical conductivity, such as copper, it is desirable to make the flanges 34 of U-shape to provide folded back inner lips 36 connected to the ceramic. This provides a good mechanical ari rangement and also suicient flexibility in the structure i l3.8 projecting from ⁇ the end walls to abut the ends of the ceramic. These rings prevent the ilexible flanges. from collapsing when the tube is evacuated, see Figure 3.
  • the intermediate resonator 14 ⁇ is of similar construction, having end walls 39 and 41 with a ceramic cylinder 42; output resonator 16 is of like construction, having end walls 43 and v44 with a ceramic cylinder 46.
  • the circular end walls have outer edges providing terminalswith' which suitable contact 'fingers on .the external structures rnay be engaged.
  • Cooling means are also provided for the pole pieces 22 and 26 and the adjacent drift tube sections and resonator walls.
  • a sleeve 51 is disposed about drift tube section 4 and is brazed between the pole piece 22 and the resonator wall 31, thus providing a water jacket for those parts.
  • Water connections are made by the ducts 52 at the outer end of the pole piece communicating with the water jacket via passages 53.
  • a like arrangement is incorporated at the opposite end of the envelope by means of the jacket sleeve 54, ducts S6 and passages 57 in pole piece 26.
  • Such structures provide adequate cooling for the pole pieces and associated drift tube sections, as well as the adjacent end walls of the resonators. 54 also serve as reinforcing struts at these points.
  • the collector 3 comprises a hollow cup-shaped member 24 disposed axially ofthe tube.
  • This A is a drawn-piece,rpreferably of copper.
  • I provide an insert 58, also of copper, having a tapered bore 59 extending axially of the drift tube.
  • This structure spreads the impinging electrons along the length of the electrode and also provides uniform conduction of heat to the outer surface of cup 24.
  • the cooler for the collector member 24 comprises a water jacket 61, with inlet and outlet ducts 62 and-63, and having 4an inner tubular deilector 64 for directing the inlet Water along the sides of the electrode in parallelism with the bore 59.
  • the exhaust tubulation for the envelope is also incorporated in the collector electrode structure. As shown, the bore 59 continues through the insert 58 and communicates with a metal tubulation 60 brazed to the end of cup 24. After evacuation :of-.the envelope this tubulation is pinched otfat tip 65.
  • a cavity resonator ,type 'electron tube comprising an elongated evacuated envelope,-:an electron gun at one end of the envelope and a collector electrode at the other end, a drift .tube extendingA axially of the envelope, said collector comprising a cup-shaped metal member forming a portion of said l,evacuated envelope, and a metal insert in the member having a Wall thickness substantially :greater than that of the member and having a tapered bore axially aligned with the drift tube, the external surface of said insert and the inner surface of said member being in contact over a 'substantial area, whereby heat is rapidly and uniformly transmitted from said insert to said member.
  • a cavity resonatory type electron tube comprising an elongated evacuated-envelope, an electron gun at one end of the envelope and a collector electrode at the other end, a drift'tube extending axially of the-envelope and forming side Walls of the evacuated envelope, said drift tube comprising spaced 'sections with a gapk therebetween, a cavity resonator disposed'transversely ofthe envelope axis adjacent the gap, said resonator comprising metal-end'walls mounted on adjacent drifttube Asections and extendingoutwardly from said sections, acylinder of insulating material'yhaving Va diameter larger than that of the drift tube interposed between the end walls, vacuum-tight joints at the ends of the cylinder comprising thin metal sealing anges connectedfbetween the end walls and the insulating cylinder., and'abutments von the end walls engaging the ends of the vinsulating cylinder to take the axial thrust between the Aend walls and said cylinder.
  • a cavity resonator type electron tube comprising an elongated evacuated envelope, an electron gun at one end of the envelope and a collect-or electrode at the other end, a drift Vtubeextending axially of the envelope and forming side walls of the evacuated envelope, said ⁇ drift tube comprising spaced sections with gaps therebetween, a plurality of cavity resonators disposed transversely of the envelope axis at the gaps, said resonators comprising metal end walls mounted on adjacent drift tube Isections and extending outwardly from said sections, cylinders of insulating material having diameters larger ,than that of the drift tube sealed between said walls and Vproviding vacuum-tight walls across the gaps, and a metal sleeve of *larger diameter than the drift tube extending between and connected to the end walls of adjacent resonators providing a reinforcingmember to maintain alignment of the drift tube sections axially ofthe envelope.

Landscapes

  • Microwave Tubes (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Ceramic Products (AREA)

Description

Jan. 6, 1959 c. E, MURDOCK ELECTRON TUBE Filed Jan. 9, 1953 IN VEN TOR. C/ayon E. Mura ck y ATToQN/EY United States Patent ELECTRON TUBE Clayton E. Murdock, Millbrae, Calif., assgnor to Eitel- McCullough, Inc., San Bruno, Calif., a corporation of California Y Application January 9, 1953, Serial No. 330,474
3 Claims. (Cl. B15-5.38)
My `invention relates to electron tubes having cavity resonators and more particularly to tubes of the velocity modulated type, such as klystrons.
The present invention constitutes improvements in an externally tunable type of `klystron such as disclosed in the patent to Norton, etal., No. 2,619,611, issued November 25, 1952, wherein portions of the cavity resonators are sealed of with insulators and comprise part of the evacuated envelope.
It is among the objects of my invention to provide improved cooling means in a tube of the character described, and more particularly to provide means for cooling the drift tube and associated cavity resonators.
Another object is to provide improvements in the construction of the cavity resonators.
A further object is to provide improvements in the collector electrode.
The invention possesses other objects `and features of advantage, some of which, with the foregoing, will be set lforth in the following description of my invention. It is to be understood that -I do not limit myself to this disclosure of speciesl of my invention, as I may adopt variant embodiments thereof within the scope of the claims.
Referring to the drawings:
Figurel is a side elevational view of a tube embodying the improvements of my invention; and
Figure 2 is an axial sectional view of the same.
Figure 3 is an enlarged fragmentary view showing the construction of the cavity resonator.
In greater detail, the drawings show a three-resonator type of klystron, it being understood thatal greater or -fewer number of resonators may be employed in a tube of this kind. The tube illustrated is particularly designed as an amplifier in the U. H. F. region and having a power rating of several kilowatts C. W. Figures land 2 show the evacuated tube per se apart from the external structure. In the final use of such a tube suitable external resonators are applied as described in the above mentioned patent, one of such external resonators being indicated by the dotted lines 1 in Figure l.
My tube comprises an elongated generally cylindrical envelope having an electron gun 2 at one end and a collector electrode 3 at the other end. 'The electron beam from the gun'to'the collector passes through a drift tube made up of metal sections 4, 6, 7 and 8 extending axially of the envelope and having gaps 9, 11'y and 12 therebetween. Such gaps are bridged by cavity resonator structures forming portions of the tube envelope and generally designated at 13, 14 Vand 16.
Electron gun 2 includes a disk-shaped cathode 17 and a surrounding focusing electrode 18, the cathode being heated by a filament 19, all of which is supported by a glass stern 21 forming an end of the evacuated envelope. Cathode 17 is preferably of a material such as tantalum heated by electron bombardment from the filament, all in accordance with conventional practice.
The electron gun is housed in a cup-shaped metal sec- 'ice i. prises a hollow metal member 24 supported from a diskshaped metal section 26 of the envelope. A glass en-l velope section 27 sealed between flanges 28 provides a supporting connection between the collector member 24 and the envelope section 26. An aperture 29 in metal piece 26 is aligned with the collector electrode and is coaxial with the drift tube. The metal disk 26 is of iron and also functions as a pole piece for the external focusing magnet.
With the above described structure an electron beam from gun 2 is accelerated by a positive potential on anode 22 and passes through the drift tube, past the interaction spaces provided by gaps 9, 11 and 12, and finally terminates on collector electrode 3, the beam being directed down the drift tube by an external magnet associated with iron pole pieces 22 and 26. The three-cavity resonators 13, 14 and 16 coacting with the interaction spaces at gaps 9, 11 and 12 serve as the frequency determining elements of the device.l In the tube illustrated, which functions as an amplifier, the input signal for modulating the electron stream is fed into the first resonator 13, and the radio-frequency output is taken from the third resonator 16, in accordance with the usual manner for threecavity type klystrons.
As previously mentioned herein, the particular kind of -tube shown is adapted for external tuning by the use of suitable external resonators, one of which is indicated by the dotted lines 1 in Figure 1. The use of such external resonators for tuning over a wide band of frequenciesis possible, of course, because of the sealed-off nature of the resonators 13, 14 and 16 which comprise part ofthe evacuated envelope.
kContinuing with the description of Figures l and 2, drift tube end section 4 is brazed to anode piece 22, and the other end section 8 is brazed to piece 26. The inter'- mediate sections 6 and 7 of the d rift tube are axially aligned with the end sections 4 and 8, these several sections forming parts of the side Walls of the evacuated envelope. Circularl resonators 13, 14 and 16, which are disposed transversely of the envelope axis, are mounted on the drift tube sections and form additional side wall portions of the evacuated envelope. In other words, the resonator vstructures provide vacuum-tight walls bridging the gaps between the drift tube sections.
Input resonator 13 comprises parallel disk-shaped metal end Walls 31 and 32 brazed to the drift tube sections process and then brazing the metalized ends to the metal parts with silver solder or the like.
An important feature of my invention resides in the resonator construction at the flanges 34. Since the ceramic materials have a lower coeliicient of thermal expansion than metals of good electrical conductivity, such as copper, it is desirable to make the flanges 34 of U-shape to provide folded back inner lips 36 connected to the ceramic. This provides a good mechanical ari rangement and also suicient flexibility in the structure i l3.8 projecting from` the end walls to abut the ends of the ceramic. These rings prevent the ilexible flanges. from collapsing when the tube is evacuated, see Figure 3. The intermediate resonator 14 `is of similar construction, having end walls 39 and 41 with a ceramic cylinder 42; output resonator 16 is of like construction, having end walls 43 and v44 with a ceramic cylinder 46. In each of thethree resonators the circular end walls have outer edges providing terminalswith' which suitable contact 'fingers on .the external structures rnay be engaged.
Other important features of my tube structure have to do with cooling the drift tube and associated parts, such cooling being of special importance in a power tube of this kind where one vis dealing with kilowatts of power. As best shown in Figure 2, metal sleeves 47 and 48 are provided about the drift tube sections 6 and 7, sleeve 47 being brazed between resonator walls 32 and 39 and sleeve 48 being brazed between walls 41 and 43. These sleeves are spaced from the drift tube sections to provide water jackets, suitable inlet and outlet connections 49 being provided so that water can be circulated through the jackets. Such structure is very effective because the ends of the resonators as well as the drift tube sections are adequately cooled. Another important feature of this structure is that the sleeves 47 and 4S also serve as reinforcing'members to provide additional strength axially of the tube, which is of considerable importance in a tube of this kind where appreciable length and massivefparts are involved.
Cooling means are also provided for the pole pieces 22 and 26 and the adjacent drift tube sections and resonator walls. As seen at the cathode end of the tube, a sleeve 51 is disposed about drift tube section 4 and is brazed between the pole piece 22 and the resonator wall 31, thus providing a water jacket for those parts. Water connections are made by the ducts 52 at the outer end of the pole piece communicating with the water jacket via passages 53. A like arrangement is incorporated at the opposite end of the envelope by means of the jacket sleeve 54, ducts S6 and passages 57 in pole piece 26. Such structures provide adequate cooling for the pole pieces and associated drift tube sections, as well as the adjacent end walls of the resonators. 54 also serve as reinforcing struts at these points.
Another feature of my structure, having to do with the power handling capabilities of the tube, concerns the collector electrode 3. Referring again to Figure 2, it
will be seen that the collector 3 comprises a hollow cup-shaped member 24 disposed axially ofthe tube. This Ais a drawn-piece,rpreferably of copper. In order to avoid spot heating by the beam being focused on the end of the member 24, I provide an insert 58, also of copper, having a tapered bore 59 extending axially of the drift tube. This structure spreads the impinging electrons along the length of the electrode and also provides uniform conduction of heat to the outer surface of cup 24. The cooler for the collector member 24 comprises a water jacket 61, with inlet and outlet ducts 62 and-63, and having 4an inner tubular deilector 64 for directing the inlet Water along the sides of the electrode in parallelism with the bore 59. With this construction, even though high Sleeves 51 and energy electron beams are employed, I have dissipated many kilowatts of'power Without difculty.
The exhaust tubulation for the envelope is also incorporated in the collector electrode structure. As shown, the bore 59 continues through the insert 58 and communicates with a metal tubulation 60 brazed to the end of cup 24. After evacuation :of-.the envelope this tubulation is pinched otfat tip 65.
I claim:
l.v A cavity resonator ,type 'electron tube, comprising an elongated evacuated envelope,-:an electron gun at one end of the envelope and a collector electrode at the other end, a drift .tube extendingA axially of the envelope, said collector comprising a cup-shaped metal member forming a portion of said l,evacuated envelope, and a metal insert in the member having a Wall thickness substantially :greater than that of the member and having a tapered bore axially aligned with the drift tube, the external surface of said insert and the inner surface of said member being in contact over a 'substantial area, whereby heat is rapidly and uniformly transmitted from said insert to said member.
2. A cavity resonatory type electron tube comprising an elongated evacuated-envelope, an electron gun at one end of the envelope and a collector electrode at the other end, a drift'tube extending axially of the-envelope and forming side Walls of the evacuated envelope, said drift tube comprising spaced 'sections with a gapk therebetween, a cavity resonator disposed'transversely ofthe envelope axis adjacent the gap, said resonator comprising metal-end'walls mounted on adjacent drifttube Asections and extendingoutwardly from said sections, acylinder of insulating material'yhaving Va diameter larger than that of the drift tube interposed between the end walls, vacuum-tight joints at the ends of the cylinder comprising thin metal sealing anges connectedfbetween the end walls and the insulating cylinder., and'abutments von the end walls engaging the ends of the vinsulating cylinder to take the axial thrust between the Aend walls and said cylinder.
3. A cavity resonator type electron tube, comprising an elongated evacuated envelope, an electron gun at one end of the envelope and a collect-or electrode at the other end, a drift Vtubeextending axially of the envelope and forming side walls of the evacuated envelope, said `drift tube comprising spaced sections with gaps therebetween, a plurality of cavity resonators disposed transversely of the envelope axis at the gaps, said resonators comprising metal end walls mounted on adjacent drift tube Isections and extending outwardly from said sections, cylinders of insulating material having diameters larger ,than that of the drift tube sealed between said walls and Vproviding vacuum-tight walls across the gaps, and a metal sleeve of *larger diameter than the drift tube extending between and connected to the end walls of adjacent resonators providing a reinforcingmember to maintain alignment of the drift tube sections axially ofthe envelope.
References Cited inthe file of this patent UNITED STATES PATENTS Re. 21,163 v Rose July 25, 1939 1,181,440 E dgecomb Ma'y 2 1916 2,238,619 Berkey Apr. 15, 1941 2,529,668 Wangv 'N oV; 14, ,1950 2,619,611 Norton 'et al. Nov. 25', 1952 2,629,066 Eitel et al Feb. 17,1953 2,632,863 Norton Mar. 24, .1953
US330474A 1953-01-09 1953-01-09 Electron tube Expired - Lifetime US2867747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US330474A US2867747A (en) 1953-01-09 1953-01-09 Electron tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US330474A US2867747A (en) 1953-01-09 1953-01-09 Electron tube
GB23084/54A GB784742A (en) 1954-08-09 1954-08-09 Improvements in electron tubes

Publications (1)

Publication Number Publication Date
US2867747A true US2867747A (en) 1959-01-06

Family

ID=10189856

Family Applications (1)

Application Number Title Priority Date Filing Date
US330474A Expired - Lifetime US2867747A (en) 1953-01-09 1953-01-09 Electron tube

Country Status (4)

Country Link
US (1) US2867747A (en)
CH (1) CH333341A (en)
FR (1) FR1119605A (en)
GB (2) GB784742A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2954498A (en) * 1958-05-05 1960-09-27 Bell Telephone Labor Inc Reflex klystron
US2958804A (en) * 1958-05-19 1960-11-01 Eitel Mccullough Inc Electron beam tube and circuit
US3227915A (en) * 1960-10-17 1966-01-04 Eitel Mccullough Inc Fluid cooling of hollow tuner and radio frequency probe in klystron
US3334262A (en) * 1963-12-23 1967-08-01 Varian Associates High frequency velocity modulation electron discharge devices having replaceable beam forming and projecting assemblies
US3344306A (en) * 1962-03-26 1967-09-26 Varian Associates Klystron having temperature modifying means for the electrodes therein and the focusing magnetic circuit
US3388281A (en) * 1964-08-07 1968-06-11 Thomson Houston Comp Francaise Electron beam tube having a collector electrode insulatively supported by a cooling chamber
FR2638891A1 (en) * 1988-11-04 1990-05-11 Thomson Csf SEALED WINDOW FOR HYPERFREQUENCY ELECTRONIC TUBE AND PROGRESSIVE WAVE TUBE HAVING THIS WINDOW

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172424B (en) * 1985-03-14 1989-09-06 English Electric Valve Co Ltd Improvements in or relating to klystron vacuum tubes
GB2396051A (en) 2002-12-02 2004-06-09 E2V Tech Uk Ltd Electron beam tube

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1181440A (en) * 1912-03-02 1916-05-02 Westinghouse Electric & Mfg Co Insulated terminal member.
USRE21163E (en) * 1939-07-25 Stem for electron discharge devices
US2238619A (en) * 1938-12-07 1941-04-15 Westinghouse Electric & Mfg Co Spark gap device
US2529668A (en) * 1944-09-12 1950-11-14 Westinghouse Electric Corp Electron discharge device of cavity resonator type with reverse flow of electrons
US2619611A (en) * 1951-05-29 1952-11-25 Eitel Mccullough Inc Electron tube apparatus
US2629066A (en) * 1951-12-10 1953-02-17 Eitel Maccullough Inc Electron tube
US2632863A (en) * 1950-02-25 1953-03-24 Eitel Mccullough Inc Reflex oscillator tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE21163E (en) * 1939-07-25 Stem for electron discharge devices
US1181440A (en) * 1912-03-02 1916-05-02 Westinghouse Electric & Mfg Co Insulated terminal member.
US2238619A (en) * 1938-12-07 1941-04-15 Westinghouse Electric & Mfg Co Spark gap device
US2529668A (en) * 1944-09-12 1950-11-14 Westinghouse Electric Corp Electron discharge device of cavity resonator type with reverse flow of electrons
US2632863A (en) * 1950-02-25 1953-03-24 Eitel Mccullough Inc Reflex oscillator tube
US2619611A (en) * 1951-05-29 1952-11-25 Eitel Mccullough Inc Electron tube apparatus
US2629066A (en) * 1951-12-10 1953-02-17 Eitel Maccullough Inc Electron tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2954498A (en) * 1958-05-05 1960-09-27 Bell Telephone Labor Inc Reflex klystron
US2958804A (en) * 1958-05-19 1960-11-01 Eitel Mccullough Inc Electron beam tube and circuit
US3227915A (en) * 1960-10-17 1966-01-04 Eitel Mccullough Inc Fluid cooling of hollow tuner and radio frequency probe in klystron
US3344306A (en) * 1962-03-26 1967-09-26 Varian Associates Klystron having temperature modifying means for the electrodes therein and the focusing magnetic circuit
US3334262A (en) * 1963-12-23 1967-08-01 Varian Associates High frequency velocity modulation electron discharge devices having replaceable beam forming and projecting assemblies
US3388281A (en) * 1964-08-07 1968-06-11 Thomson Houston Comp Francaise Electron beam tube having a collector electrode insulatively supported by a cooling chamber
FR2638891A1 (en) * 1988-11-04 1990-05-11 Thomson Csf SEALED WINDOW FOR HYPERFREQUENCY ELECTRONIC TUBE AND PROGRESSIVE WAVE TUBE HAVING THIS WINDOW
EP0368729A1 (en) * 1988-11-04 1990-05-16 Thomson-Csf Vacuum-tight window for a microwave tube, and microwave tube with a window
US5004952A (en) * 1988-11-04 1991-04-02 Thomson-Csf Vacuum-tight window for microwave electron tube and travelling wave tube including this window

Also Published As

Publication number Publication date
GB784742A (en) 1957-10-16
FR1119605A (en) 1956-06-21
GB784743A (en) 1957-10-16
CH333341A (en) 1958-10-15

Similar Documents

Publication Publication Date Title
US2619611A (en) Electron tube apparatus
US2957102A (en) Self-aligning traveling wave tube and method
US2410054A (en) Electron discharge apparatus
US2850666A (en) Helix structure for traveling-wave tubes
US2867747A (en) Electron tube
US3876901A (en) Microwave beam tube having an improved fluid cooled main body
US3717787A (en) Compact depressed electron beam collector
US3626230A (en) Thermally conductive electrical insulator for electron beam collectors
US3378723A (en) Fast wave transmission line coupled to a plasma
US3662212A (en) Depressed electron beam collector
US2871397A (en) Electron tube of the klystron type
US3070725A (en) Travelling wave amplifier
US2910613A (en) Electron tube
US3666980A (en) Depressable beam collector structure for electron tubes
US3466493A (en) Circuit sever for ppm focused traveling wave tubes
US3706002A (en) Electron gun
US3297906A (en) High frequency electron discharge device of the traveling wave type having an interconnected cell slow wave circuit with improved slot coupling
US2824289A (en) Drift tube for klystron
US3715616A (en) High-impedance slow-wave propagation circuit having band width extension means
US3436588A (en) Electrostatically focused klystron having cavities with common wall structures and reentrant focusing lens housings
US3271614A (en) Electron discharge device envelope structure providing a radial force upon support rods
US3707647A (en) High frequency vacuum tube energy coupler
US2667593A (en) Electron tube
US3809939A (en) Gridded electron tube employing cooled ceramic insulator for mounting control grid
US3483420A (en) Klystron amplifier employing helical distributed field buncher resonators and a coupled cavity extended interaction output resonator