US2867559A - Method for producing grain oriented silicon steel - Google Patents
Method for producing grain oriented silicon steel Download PDFInfo
- Publication number
- US2867559A US2867559A US631889A US63188956A US2867559A US 2867559 A US2867559 A US 2867559A US 631889 A US631889 A US 631889A US 63188956 A US63188956 A US 63188956A US 2867559 A US2867559 A US 2867559A
- Authority
- US
- United States
- Prior art keywords
- percent
- sheet
- cold
- silicon
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910000976 Electrical steel Inorganic materials 0.000 title description 3
- 239000000463 material Substances 0.000 claims description 25
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 claims description 9
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000013078 crystal Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1266—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
Definitions
- This invention relates to polycrystalline, magnetically soft, rolled sheet metal composed principally of an alloy of iron and silicon and, more particularly, to a process for manufacturing such materials wherein a high percentage of the grains comprising the material are each caused to have their crystal space lattices arranged in a substantially identical relationship to the plane of the sheet and to a single direction in the plane of the sheet.
- the sheet materials to which my invention is related are usually referred to in the art as electrical silicon steel or, more properly, silicon-iron, composed primarily of iron alloyed with about 2.5 to 4.0 percent silicon and containing relatively minor amounts of impurities such as sulfur, manganese, phosphorus and, preferably, a very low carbon content.
- Such alloys crystallize in the bodycentered cubic crystallographic system at room temperature. As is well known, this refers to the symmetrical distribution or arrangement which the atoms forming the individual crystals or grains assume in such materials. In these materials the smallest prism possessing the full symmetry of the crystal is termed the unit cell and is cubic in form.
- This unit cube is composed of nine atoms, eight arranged at the corners of the unit cube with the remaining atom positioned at the geometric center of the cube.
- Each unit cell in a given grain or crystal in these materials is substantially identical in shape and orientation with every other unit cell comprising the grain.
- the unit cells or body-centered unit cubes comprising these materials each have a high degree of magnetic anisotropy with respect and directions of the unit cube, and hence, each grain or crystal comprising a plurality of such unit cells exhibits a similar anisotropy.
- crystals of the silicon-iron alloys to which this invention is directed are known to have their direction of easiest magnetization parallel to the unit cube edges, their next easiest direction of magnetization perpendicular to a plane passed through diagonally oppositeparallel unit cube edges and their least easiest direction of magnetization perpendicular to a plane passed through a pair of diagonally opposite atoms in a first unit cube face, the central atom and a single atom in the unit cube face which is parallel to the first face.
- these silicon-iron alloys may be fabricated by unidirectional rolling and heat treatment to form sheet or strip material composed of a plurality of. crystals or grains,'a majority of which have their atoms arranged so that their crystallographic planes have a similar or substantially identical orientation to the plane of the sheet or strip and to a single direction in said plane.
- This material is usually referred to as oriented or grain-oriented silicon iron sheet or strip and is characterized by having 50 percent or more of its component grains oriented so that 4 of the cube edges of the unit cells of such'grainsare substantially parallel to the ,it is desirable to have as high 'a degree of grain orientation as is attainable, preferably more than in order that the magnetic properties in the plane of the sheet and in the rolling direction may approach the maximum attained in single crystals in the direc tion.
- a principal object of my invention is the provision of a method of fabrication of such silicon-iron alloys to insure that the highest attainable degree of grain orientation may be consistently produced in the final sheet or strip material.
- FIG. 1 is a graphical representation of the variation in degree of orientation of silicon-iron with respect to intermediate grain size resulting from one method of fabrication
- Figure 2 is a graph similar to Figure 1 for a different method of fabrication.
- Figure 3 is a graph similar to Figure 1 for a still different method of fabrication.
- microstructure of this hot rolled band was of an incompletely recrystallized nature, however, it has been found that this material may be annealed to the completely recrystallized state if desired.
- this hot rolled band as received was unidirectionally cold rolled to an intermediate thickness of 0.029 inch and portions of the so-rolled strip were annealed in commercial dry hydrogen (dew point about 1 60 F.), each portion for a particular time at a particular temperature.
- individual portions of the rolled strip were placed on an iron block in the furnace at the temperatures indicated and permitted to remain on the block for the times indicated in Table I. It was found that the rolled strip required about a minute or less to attain a temperature within 5 C. of the block.
- each strip was then cold rolled to 0.014 inch thickness and portions of each strip were decarburized by annealing in Wet hydrogen (dew point about 90 F.) at 800 C. for 5 minutes. This treatment reduced the carbon content to about 0.002%. These portions of the strips were then annealed at 1000 C. in dry hydrogen (dew point about 60 F.), the heat treatment beginning at 800 C. and reaching 1000 C. in about 20 minutes Where it was held for 3 hours.
- the next easiest direction of magnetization is in the I110] direction.
- this specimen is rotated in the unidirectional field in the test, it tends to align itself with a direction of easy magnetization parallel to the direction of the field and to resist movement from such a preferred alignment.
- the amount of material in any given specimen which is oriented in the desired texture may be determined and expressed in terms of percentage.
- the measured intermediate grain size of each of the specimen strips for each intermediate heat treatment and the degree of orientation expressed as percent. (110) [0011 texture is listed in Table I. I
- the relat1onsh1p between the lntermediate measured gram size expressed as average gram diameter in m1ll1- of the intermediate anneal are controlling factors which determine the intermediate grain size and that the intermediate grain size has a direct and controlling relationship to the degree of grain orientation attainable. in the final anneal strip or sheet material.
- each of these strip specimens were then unidirectionally cold rolled to a final thickness of 0.014 inch thick and treated in the following manner.
- the specimens were decarburized by heating at 800 C. for 5 minutes in a conventional combusted gas atmosphere prepared by burning a mixture comprising about 6.5 to 1 air-to-gas ratio in a conventional atmosphere-gas converter.
- This atmosphere contained approximately 5 percent CO percent CO, 14 percent H 1.5 percent CH and 69.5 percent N and had a dew point of about 90 F. It should be noted that other well known dec-ar-. burizing atmospheres may be substituted for this particular atmosphere within the skill of the art.
- the decarburized specimens were then enclosed in a welded metal box, a dry hydrogen (dew point about 60 F.) atmosphere was provided the interior of the box and the box was charged into a furnace at 200 C.
- the furnace temperature was raised to 1175 C. as measured at the furnace roof in 4 hours, held at that temperature for 8 hours and furnace cooled to 200 C. in 32 hours.
- the specimens were removed from the annealing box and after they had cooled to room temperature their degree of orientation was determined by torque magnetometer measurements and are shown in Table III and plotted in Figure 3 in a manner similar to that of Figures 1 and 2.
- these desirable intermediate grain sizes may be attained by unidirectionally cold rolling an incompletely or completely recrystallized body of this material such as for example, hot rolled band, to effect at least a 40 percent cold reduction, annealing at a temperature of between 700 to less than 1000 C. for a length of time sufiicient to produce an average measured grain size of from about 0.01 mm. to about 0.03 mm., cold reducing the annealed material at least 40 percent by unidirectional rolling, decarburizing and annealing the cold worked material at a temperature of from about 1000 to 1200 C. for a time sufficient to develop the desired high degree of [001] texture.
- the method of fabricating polycrystalline sheet-like bodies of metal consisting of electrical grade silicon-iron alloy having from about 2.5% to 4.0% silicon comprising the steps of cold reducing an at least partially recrystallized body of such material at least 40 percent by unidirectional rolling to form a body of intermediate thickness, heat treating said cold reduced body of intermediate thickness at a temperature of from 700 C. to 1000 C. to produce a measured average grain size of from about 0.010 mm. to about 0.030 mm, cold reducing said annealed body at least 40 percent by unidirectional rolling to produce a sheet-like body of final thickness and raising the temperature of said cold worked sheet-like body to from about 950 C. to about 1200 C. for a time sufficient to develop the desired high degree of (110) [001] texture.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE563544D BE563544A (en)) | 1956-12-31 | ||
US631889A US2867559A (en) | 1956-12-31 | 1956-12-31 | Method for producing grain oriented silicon steel |
GB39886/57A GB833115A (en) | 1956-12-31 | 1957-12-23 | Improvements in grain oriented sheet silicon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US631889A US2867559A (en) | 1956-12-31 | 1956-12-31 | Method for producing grain oriented silicon steel |
Publications (1)
Publication Number | Publication Date |
---|---|
US2867559A true US2867559A (en) | 1959-01-06 |
Family
ID=24533190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US631889A Expired - Lifetime US2867559A (en) | 1956-12-31 | 1956-12-31 | Method for producing grain oriented silicon steel |
Country Status (3)
Country | Link |
---|---|
US (1) | US2867559A (en)) |
BE (1) | BE563544A (en)) |
GB (1) | GB833115A (en)) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2986485A (en) * | 1958-07-28 | 1961-05-30 | Gen Electric | Annealing process for magnetic steel strip |
US2992952A (en) * | 1955-12-01 | 1961-07-18 | Vacuumschmelze Ag | Method of manufacturing magnetic sheets |
US2992951A (en) * | 1960-04-21 | 1961-07-18 | Westinghouse Electric Corp | Iron-silicon magnetic sheets |
US3034212A (en) * | 1959-07-17 | 1962-05-15 | Diamond National Corp | Method of producing forming screen |
US3089795A (en) * | 1959-11-18 | 1963-05-14 | Westinghouse Electric Corp | Method for producing fiber texture and cube-texture sheets of iron-base alloys |
US3096222A (en) * | 1958-08-05 | 1963-07-02 | Gen Electric | Grain oriented sheet metal |
US3124491A (en) * | 1960-05-23 | 1964-03-10 | Heavy gauge double oriented magnetic sheet material | |
US3165428A (en) * | 1962-12-27 | 1965-01-12 | Westinghouse Electric Corp | Production of thin goss oriented magnetic materials |
US3184346A (en) * | 1960-01-04 | 1965-05-18 | Gen Electric | Grain oriented sheet metal having a vanadium nitride dispersion |
US3215566A (en) * | 1963-01-10 | 1965-11-02 | Bethlehem Steel Corp | Treatment of sheet steel |
US3239332A (en) * | 1962-03-09 | 1966-03-08 | Fuji Iron & Steel Co Ltd | Electric alloy steel containing vanadium and copper |
US3271203A (en) * | 1962-10-16 | 1966-09-06 | Gen Electric | Method for producing oriented silicon-iron |
US3278348A (en) * | 1965-01-28 | 1966-10-11 | Westinghouse Electric Corp | Process for producing doubly oriented cube-on-face magnetic sheet material |
US3337373A (en) * | 1966-08-19 | 1967-08-22 | Westinghouse Electric Corp | Doubly oriented cube-on-face magnetic sheet containing chromium |
US3415696A (en) * | 1965-08-16 | 1968-12-10 | Jones & Laughlin Steel Corp | Process of producing silicon steel laminations having a very large grain size after final anneal |
US4478653A (en) * | 1983-03-10 | 1984-10-23 | Armco Inc. | Process for producing grain-oriented silicon steel |
EP0390142A3 (en) * | 1989-03-30 | 1992-09-30 | Nippon Steel Corporation | Process for producing grain-oriented electrical steel sheet having high magnetic flux density |
EP0378131A3 (en) * | 1989-01-07 | 1992-09-30 | Nippon Steel Corporation | A method of manufacturing a grain-oriented electrical steel strip |
EP0400549A3 (en) * | 1989-05-29 | 1992-10-07 | Nippon Steel Corporation | Process for producing grainoriented electrical steel sheet having superior magnetic and surface film characteristics |
US5186762A (en) * | 1989-03-30 | 1993-02-16 | Nippon Steel Corporation | Process for producing grain-oriented electrical steel sheet having high magnetic flux density |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2158065A (en) * | 1935-01-09 | 1939-05-16 | American Rolling Mill Co | Art of producing magnetic materials |
US2599340A (en) * | 1948-10-21 | 1952-06-03 | Armco Steel Corp | Process of increasing the permeability of oriented silicon steels |
-
0
- BE BE563544D patent/BE563544A/xx unknown
-
1956
- 1956-12-31 US US631889A patent/US2867559A/en not_active Expired - Lifetime
-
1957
- 1957-12-23 GB GB39886/57A patent/GB833115A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2158065A (en) * | 1935-01-09 | 1939-05-16 | American Rolling Mill Co | Art of producing magnetic materials |
US2599340A (en) * | 1948-10-21 | 1952-06-03 | Armco Steel Corp | Process of increasing the permeability of oriented silicon steels |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2992952A (en) * | 1955-12-01 | 1961-07-18 | Vacuumschmelze Ag | Method of manufacturing magnetic sheets |
US2986485A (en) * | 1958-07-28 | 1961-05-30 | Gen Electric | Annealing process for magnetic steel strip |
US3096222A (en) * | 1958-08-05 | 1963-07-02 | Gen Electric | Grain oriented sheet metal |
US3034212A (en) * | 1959-07-17 | 1962-05-15 | Diamond National Corp | Method of producing forming screen |
US3089795A (en) * | 1959-11-18 | 1963-05-14 | Westinghouse Electric Corp | Method for producing fiber texture and cube-texture sheets of iron-base alloys |
US3184346A (en) * | 1960-01-04 | 1965-05-18 | Gen Electric | Grain oriented sheet metal having a vanadium nitride dispersion |
US2992951A (en) * | 1960-04-21 | 1961-07-18 | Westinghouse Electric Corp | Iron-silicon magnetic sheets |
US3124491A (en) * | 1960-05-23 | 1964-03-10 | Heavy gauge double oriented magnetic sheet material | |
US3239332A (en) * | 1962-03-09 | 1966-03-08 | Fuji Iron & Steel Co Ltd | Electric alloy steel containing vanadium and copper |
US3271203A (en) * | 1962-10-16 | 1966-09-06 | Gen Electric | Method for producing oriented silicon-iron |
US3165428A (en) * | 1962-12-27 | 1965-01-12 | Westinghouse Electric Corp | Production of thin goss oriented magnetic materials |
US3215566A (en) * | 1963-01-10 | 1965-11-02 | Bethlehem Steel Corp | Treatment of sheet steel |
US3278348A (en) * | 1965-01-28 | 1966-10-11 | Westinghouse Electric Corp | Process for producing doubly oriented cube-on-face magnetic sheet material |
US3415696A (en) * | 1965-08-16 | 1968-12-10 | Jones & Laughlin Steel Corp | Process of producing silicon steel laminations having a very large grain size after final anneal |
US3337373A (en) * | 1966-08-19 | 1967-08-22 | Westinghouse Electric Corp | Doubly oriented cube-on-face magnetic sheet containing chromium |
US4478653A (en) * | 1983-03-10 | 1984-10-23 | Armco Inc. | Process for producing grain-oriented silicon steel |
EP0378131A3 (en) * | 1989-01-07 | 1992-09-30 | Nippon Steel Corporation | A method of manufacturing a grain-oriented electrical steel strip |
EP0390142A3 (en) * | 1989-03-30 | 1992-09-30 | Nippon Steel Corporation | Process for producing grain-oriented electrical steel sheet having high magnetic flux density |
US5186762A (en) * | 1989-03-30 | 1993-02-16 | Nippon Steel Corporation | Process for producing grain-oriented electrical steel sheet having high magnetic flux density |
EP0400549A3 (en) * | 1989-05-29 | 1992-10-07 | Nippon Steel Corporation | Process for producing grainoriented electrical steel sheet having superior magnetic and surface film characteristics |
Also Published As
Publication number | Publication date |
---|---|
BE563544A (en)) | |
GB833115A (en) | 1960-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2867559A (en) | Method for producing grain oriented silicon steel | |
US2867558A (en) | Method for producing grain-oriented silicon steel | |
US3466201A (en) | Silicon-iron magnetic sheets having cube-on-face grains | |
US3977919A (en) | Method of producing doubly oriented cobalt iron alloys | |
US3287184A (en) | Method of producing low carbon electrical sheet steel | |
US3892604A (en) | Method of producing normal grain growth (110) {8 001{9 {0 textured iron-cobalt alloys | |
US3843424A (en) | Normal grain growth(110)(001)textured iron-cobalt alloys | |
US3351501A (en) | Process for producing magnetic sheets with cube-on-face grain texture | |
US3069299A (en) | Process for producing magnetic material | |
US3868278A (en) | Doubly oriented cobalt iron alloys | |
US3266955A (en) | Process for producing silicon steel sheet having (100) plane in the rolling plane | |
US2939810A (en) | Method for heat treating cube-on-edge silicon steel | |
US3130092A (en) | Process of making cubic texture silicon-iron | |
US3096222A (en) | Grain oriented sheet metal | |
US3802937A (en) | Production of cube-on-edge oriented siliconiron | |
US3345219A (en) | Method for producing magnetic sheets of silicon-iron alloys | |
US3214303A (en) | Process of retaining a dispersed second phase until after the texture developing anneal | |
US3144363A (en) | Process for producing oriented silicon steel and the product thereof | |
US3105781A (en) | Method for making cube-on-edge texture in high purity silicon-iron | |
US3147157A (en) | Fabrication of magnetic material | |
US3184346A (en) | Grain oriented sheet metal having a vanadium nitride dispersion | |
US3147158A (en) | Process for producing cube-on-edge oriented silicon iron | |
JPS60125325A (ja) | 無方向性電磁鋼帯の製造方法 | |
KR102323332B1 (ko) | 이방향성 전기강판 및 그의 제조방법 | |
US3124491A (en) | Heavy gauge double oriented magnetic sheet material |