US2847704A - Method and apparatus for cooling melt spun threads - Google Patents
Method and apparatus for cooling melt spun threads Download PDFInfo
- Publication number
- US2847704A US2847704A US381706A US38170653A US2847704A US 2847704 A US2847704 A US 2847704A US 381706 A US381706 A US 381706A US 38170653 A US38170653 A US 38170653A US 2847704 A US2847704 A US 2847704A
- Authority
- US
- United States
- Prior art keywords
- chamber
- air
- thread
- spinning
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title description 7
- 238000000034 method Methods 0.000 title description 6
- 238000009987 spinning Methods 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 13
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 241000180579 Arca Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/088—Cooling filaments, threads or the like, leaving the spinnerettes
- D01D5/092—Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
Definitions
- the method of the present invention is characterized by an automatic thermosyphon ventilation of the spinning cell which is brought about by perforating a portion of the cell Wall and using the heat of the freshly spun thread as the primary power supply to circulate the cooling air.
- the melt is extruded through a spinneret 4 from a conventional melt supply container 3.
- the spinneret 4 is arranged to extrude vertically downwardly such molten organic compounds as caprolactam polyamides or various other thermoplastic compounds such as polyvinyl deriva tives, polyacrylic acid derivatives, polyesters, polyethers and polyamides.
- the method and apparatus of the present invention is quite suitable for use with compounds such as polyvinyl esters, polyvinyl chloride, polystyrene, polyacetals, and polyethyleneterephthalates.
- the molten plastic thread 8 is allowed to solidify by cooling within a cylindrical chamber 1, which co-axially surrounds the spinneret 4 and depends vertically from the melt supply container 3 which, with the spinneret, closesthe top of the chamber.
- a heat insulating collar 2 surrounds the upper end of the chamber 1 adjacent to the spinneret. From the bottom ofjhis collar for a vertical distance. .h thetubular chamber ⁇ is unperforated. Then for a vertical distance k it is perforated -and, belowtheperforatedarea, it is ;again unper forated.
- the bottom of the tubular chamber 1 is open to atmosphere and the bundle offilarnents which constitutes the thread 8 passes axially through the entire length of the chamber 1 andissues from its open mouth at the bottom.
- the tubular chamber 1 is .coaxially surrounded by a large tube 9 which overlaps the perforated arca e, and extends axially at least into the unperforated area or zon elS, although the samemay also, extend axially below thearea 6 in the manner shown in the. drawing".
- the large tube 9 is openat both ends, and its v lower end .11 is surrounded bya protective sleeve 12, which is, a its lower end, sealed to the chamber 1 by an annular disl. i3. It is .now evident that air surrounding the thread 8 will beheated by. direct contact with the thread. The heating of theairin the chamber 1 will cause it to flow upwardly in the direction of the arrows.
- the heated air When it reaches the perforated zone 6 of the tube 1, the heated air will pass throughthe perforations and induce a flow in the annular space 14 between the tubel and the tube 9. Cooling air will enter the space 14 from the bottom through the open top 15 of the sleeve 12 as indicated by the arrows.
- the length of the chamber 1 may be only from eighty to. one .hundred centimeters.
- the chamber 1 must *be much longer in order to coolthe larger quantity of ,faster movingthread,
- the chamber may be as long as fromtwo to four meters.
- the unperforated area 5 of the chamber 1 is at least ten centimeters is length for low denier threads, and, for threads of higher denier, it may be as great asthirty centimeters.
- the perforations may extend forthe full length below the zone 5, but, for a long chamber, the perforated zone should be at least one hundred centimeters in length.
- the perforations must be symmetrically distributed around the circumference of the chamber 1, throughout the entire axial length of the perforate zone. Holes of from one to five millimeters in diameter have given satisfaction. Too large holes may bring about discrepancies in the air flow and too small ones may offer excessive resistance to flow and may be closed by condensation of by-products of the thread.
- the perforations of the spinning chamber wall decreasing from top to bottom. This may be attained by decreasing the diameter of the holes from top to bottom with constant number of holes per unit surface, or by decreasing the number of holes per unit surface with constant diameter of holes.
- the perforation may have any shape, e. g. a slit shape, provided the passage and the resistance of the individual holes are not too great, and the holes give no rise to clogging.
- the absolute measure of perforations e. g. expressed as the ratio total hole surface to perforated surface of the spinning chamber. It should be determined for every case. This ratio depends, among other things, upon the denier of the thread to be spun, upon the speed at which the thread is to be spun and uponthe amount of heat brought into the spinning chamber by the spinning mass from the spinneret per unit time.
- perforation ratio sum of hole surfaces to perforated surface of the spinning chamber is within the range one to twenty-five percent.
- a six-filament, one hundred denier caprolactam thread was spun at a drawoif speed of eight hundred meters a minute.
- the chamber 1 was one hundred thirty centimeters long.
- the perforations were three millimeters in diameters and the perforation ratio was four percent in the area 6.
- four percent of the available surface of the tube 1 in the axial length h was perforated.
- the diameter of the tube 1 may of course vary with the size of the thread being spun.
- the large tube 9 and sleeve 12 protect the air issuing from the perforations against drafts and promote the regular symmetrical air loss from the tube 1.
- a spinning cell comprising means to extrude a molten plastic thread in a path extending downwardly along a vertical axis, a first tubular chamber concentrically surrounding said path, said first chamber having an unperforated area at its upper end and a perforated area adjacent to and immediately below said unperforated area, and a second tubular chamber concentrically surrounding at least a portion of the perforated area in spaced relation to said first chamber and extending axially beyond said perforated area into overlapping relationship with said unperforated area, said second chamber being open at its upper and lower ends.
- a spinning cell comprising means including a spinneret to extrude a molten plastic thread in a path extending downwardly along a vertical axis, a first tubular chamber concentrically surrounding said path, said first chamber having an unperforated area extending at least 10 cm. downwardly from the upper end thereof and a perforated area adjacent to and immediately below said unperforated area, and a second tubular chamber concentrically surrounding at least a portion of the perforated area in spaced relation to said first chamber and extending axially beyond said perforated area into overlapping relationship with said unperforated area, said second chamber being open at its upper and lower ends.
- a spinning cell comprising means to extrude a molten plastic thread in a path extending downwardly along a vertical axis, a first tubular chamber concentrically surrounding said path, said first chamber having an unperforated area at its upper end and a perforated area adjacent to and immediately below said unperforated area, a second tubular chamber concentrically surrounding at least a portion of the perforated area in spaced relation to said first chamber and extending axially beyond said perforated area into overlapping relationship with said unperforated area, said second chamber being open at its upper and lower ends, and a protective sleeve concentrically surrounding the lower end of said second chamber in spaced relation thereto, said sleeve being open at its upper end and closed at its lower end.
- the automatic thermosyphon ventilation process comprising the steps of extruding a molten thermoplastic thread vertically downwardly into contact with a first column of air, causing said first column of air to flow upwardly primarily as a result of the heating thereof upon contact with the freshly extruded thread, and maintaining limited contact between the heated first column of air and a second column of air concentrically disposed thereabout, thereby inducing upward flow only in said second column of air in a zone concentric with but disposed outwardly of said first column of air as a result of the heating thereof upon contact with the heated first column, whereby a uniform flow of ventilating air axially of the extruded thread is accomplished without the use of positive air circulating means.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL316364X | 1952-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2847704A true US2847704A (en) | 1958-08-19 |
Family
ID=19783815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US381706A Expired - Lifetime US2847704A (en) | 1952-11-27 | 1953-09-22 | Method and apparatus for cooling melt spun threads |
Country Status (6)
Country | Link |
---|---|
US (1) | US2847704A (en(2012)) |
BE (1) | BE522399A (en(2012)) |
CH (1) | CH316364A (en(2012)) |
FR (1) | FR1083790A (en(2012)) |
GB (1) | GB738715A (en(2012)) |
NL (1) | NL77336C (en(2012)) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3053611A (en) * | 1958-01-21 | 1962-09-11 | Inventa Ag | Process for spinning of synthetic fibers |
US3070839A (en) * | 1958-12-24 | 1963-01-01 | Du Pont | Controlled quenching apparatus |
US3083405A (en) * | 1958-10-03 | 1963-04-02 | Heinz Erich Sommer | Process and apparatus for the manufacture of fibres from fusible mineral materials, more particularly glass and its derivatives |
US3257487A (en) * | 1963-03-04 | 1966-06-21 | Allied Chem | Melt spinning of epsilon-polycaproamide filament |
US3361859A (en) * | 1960-04-29 | 1968-01-02 | Du Pont | Melt-spinning process |
US3969462A (en) * | 1971-07-06 | 1976-07-13 | Fiber Industries, Inc. | Polyester yarn production |
US5141700A (en) * | 1986-04-30 | 1992-08-25 | E. I. Du Pont De Nemours And Company | Melt spinning process for polyamide industrial filaments |
US20030188556A1 (en) * | 2002-04-08 | 2003-10-09 | Alcatel | Optical fiber cooling tube |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1861912A (en) * | 1928-03-22 | 1932-06-07 | Aceta Gmbh | Apparatus for heating air in dry spinning of artificial threads |
US1959414A (en) * | 1929-11-14 | 1934-05-22 | Celanese Corp | Apparatus for making yarns |
US2252684A (en) * | 1938-08-09 | 1941-08-19 | Du Pont | Apparatus for the production of artificial structures |
GB565282A (en) * | 1943-03-10 | 1944-11-03 | British Nylon Spinners Ltd | Improvements in or relating to the manufacture of artificial threads |
-
0
- NL NL77336D patent/NL77336C/xx active
- BE BE522399D patent/BE522399A/xx unknown
-
1953
- 1953-09-09 GB GB24997/53A patent/GB738715A/en not_active Expired
- 1953-09-17 FR FR1083790D patent/FR1083790A/fr not_active Expired
- 1953-09-17 CH CH316364D patent/CH316364A/de unknown
- 1953-09-22 US US381706A patent/US2847704A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1861912A (en) * | 1928-03-22 | 1932-06-07 | Aceta Gmbh | Apparatus for heating air in dry spinning of artificial threads |
US1959414A (en) * | 1929-11-14 | 1934-05-22 | Celanese Corp | Apparatus for making yarns |
US2252684A (en) * | 1938-08-09 | 1941-08-19 | Du Pont | Apparatus for the production of artificial structures |
GB565282A (en) * | 1943-03-10 | 1944-11-03 | British Nylon Spinners Ltd | Improvements in or relating to the manufacture of artificial threads |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3053611A (en) * | 1958-01-21 | 1962-09-11 | Inventa Ag | Process for spinning of synthetic fibers |
US3083405A (en) * | 1958-10-03 | 1963-04-02 | Heinz Erich Sommer | Process and apparatus for the manufacture of fibres from fusible mineral materials, more particularly glass and its derivatives |
US3070839A (en) * | 1958-12-24 | 1963-01-01 | Du Pont | Controlled quenching apparatus |
US3361859A (en) * | 1960-04-29 | 1968-01-02 | Du Pont | Melt-spinning process |
US3257487A (en) * | 1963-03-04 | 1966-06-21 | Allied Chem | Melt spinning of epsilon-polycaproamide filament |
US3969462A (en) * | 1971-07-06 | 1976-07-13 | Fiber Industries, Inc. | Polyester yarn production |
US5141700A (en) * | 1986-04-30 | 1992-08-25 | E. I. Du Pont De Nemours And Company | Melt spinning process for polyamide industrial filaments |
US20030188556A1 (en) * | 2002-04-08 | 2003-10-09 | Alcatel | Optical fiber cooling tube |
US7153115B2 (en) * | 2002-04-08 | 2006-12-26 | Alcatel | Optical fiber cooling tube |
Also Published As
Publication number | Publication date |
---|---|
NL77336C (en(2012)) | |
CH316364A (de) | 1956-10-15 |
GB738715A (en) | 1955-10-19 |
BE522399A (en(2012)) | |
FR1083790A (fr) | 1955-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2252684A (en) | Apparatus for the production of artificial structures | |
US4712988A (en) | Apparatus for quenching melt sprun filaments | |
US2273105A (en) | Method and apparatus for the production of artificial structures | |
US2847704A (en) | Method and apparatus for cooling melt spun threads | |
US2336159A (en) | Method of preparing filaments | |
US2791802A (en) | Extruder | |
US5328493A (en) | Apparatus for manufacturing a glass and organic composite strand, including a blowing device | |
US1918816A (en) | Process for manufacturing artificial threads | |
ES348774A1 (es) | Procedimiento y dispositivo para la fabricacion de hilos demacropolimeros sinteticos lineales, rizados durante la hila-tura. | |
US4197103A (en) | Method for draw forming glass fibers | |
US4193961A (en) | Method of extruding polypropylene yarn | |
US3447202A (en) | Spinning apparatus with a spinneret and an elongated chamber with means to perform retarded cooling | |
EP0527134B1 (de) | Vorrichtung zum abkühlen von schmelzgesponnenen filamenten | |
US3512214A (en) | Apparatus for melt spinning of synthetic filaments | |
JPS62268863A (ja) | 糸フリースの製造装置 | |
US3492691A (en) | Spinning of fibres | |
US1952877A (en) | Apparatus for making artificial silk | |
US4303606A (en) | Method of extruding polypropylene yarn | |
US3448185A (en) | Melt-spinning of filaments | |
EP1285107B1 (de) | Verfahren zum extrudieren eines endlosformkörpers | |
US2700794A (en) | Wet-spinning cells | |
EP1287189B1 (de) | Verfahren zum extrudieren eines endlosformkörpers | |
US3100675A (en) | Process for melt spinning polyethylene terephthalate | |
US2732950A (en) | Albert w | |
US2763891A (en) | Spinning apparatus |