US2758754A - Injector - Google Patents

Injector Download PDF

Info

Publication number
US2758754A
US2758754A US23638851A US2758754A US 2758754 A US2758754 A US 2758754A US 23638851 A US23638851 A US 23638851A US 2758754 A US2758754 A US 2758754A
Authority
US
United States
Prior art keywords
reservoir
chamber
valve
conduit
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
William R Postlewaite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Research LLC
Original Assignee
California Research LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Research LLC filed Critical California Research LLC
Priority to US23638851 priority Critical patent/US2758754A/en
Priority to US534467A priority patent/US2843163A/en
Application granted granted Critical
Publication of US2758754A publication Critical patent/US2758754A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H5/00Applications of radiation from radioactive sources or arrangements therefor, not otherwise provided for 
    • G21H5/02Applications of radiation from radioactive sources or arrangements therefor, not otherwise provided for  as tracers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/2937Gas pressure discharge of liquids feed traps [e.g., to boiler]

Definitions

  • This invention relates to a device for injecting a tracer material into a fluid conduit. It pertains particularly to a device for injecting a measured amount of a fluid radioactive tracer into a pipe line carrying petroleum products under pressure conditions.
  • the principal objects of this invention are to provide an injection apparatus which will permit radioactive substances to be employed as the injected material without endangering operating personnel; which will be provided with safeguards against unconfined spillage or loss of any of the radioactive substances; which will be positive in its operation; which will allow predetermined measured amounts of the radioactive material to be injected into a fluid line substantially as a slug and against the pressures existing in the line; and which will be provided with means to purge the portions of the apparatus in direct communication with the pipe line with a non-radioactive fluid to make the injection clean cut and prevent any subsequent undesired leakage of a residue of the radioactive material into the pipe line.
  • Other objects will be obvious, or will become apparent as the description proceeds.
  • the invention comprises novel apparatus which is properly enclosed and shielded to prevent contact with, or undue exposure to, the radioactive substance contained therein.
  • the various manipulative functions necessary to control the apparatus are arranged to be accomplished from positions comparatively remote from any accumulations of the radioactive substances contained therein.
  • the conduits and chambers which contain, or through which the radioactive material passes, are arranged to confine the material or any vapors therefrom within the apparatus and to prevent any malfunctions or accidents affecting the proper flow of the radioactive substance through the device from permitting its escape therefrom to the surrounding area.
  • Fig. 1 represents in elevation a sectional view of portions of the apparatus.
  • Fig. 2 represents a sectional plan view of portions of the apparatus along the line 2- -2 of Fig. l, and illustrates particulars of the form and relationship of some of the parts.
  • Fig. 3 is an enlarged sectional view of a part of the apparatus and presents a detail of valve structure.
  • Fig. 4 is a sectional view of the valve structure along the line 4-4 of Fig. 3.
  • Fig. 5 is an elevational view of portions of the apparatus, partly in section, showing a means for replenishing the supply of radio-isotope in the injector, and indicating also a means of enclosing the apparatus Within a housing to prevent undue or unauthorized contact with, or close approach to, sources of radioactivity.
  • the apparatus comprises a reser voir adapted to receive and store 21 quantity of a liquid radioactive material, indicated by the numeral 11, which subsequently will be injected in measured amounts into a petroleum products pipe line in a manner to be described.
  • a liquid radioactive material indicated by the numeral 11
  • the reservoir is surrounded by a shield 12, which may be lead or other suitable material of suflicient thickness to reduce the radio emanations to a level which will be safe for the operator to work in.
  • the shield is placed around all portions of the apparatus where appreciable amounts of the radioactive material will be held, or in which it will be concentrated during the operation of the injector.
  • the shield 12 has an inner cavity 13, in which the reservoir 10 is positioned, of such inner dimensions as to provide an air space substantially entirely surrounding the reservoir.
  • the bottom portion of the cavity is provided with a channel 14.
  • Conduit 15 is connected to the channel and terminates at its lower portion adjacent a drain 16, which is connected to a conduit 17, leading to an underground waste tank, not shown.
  • the channel 14 and conduit 15 will serve to entrap and remove any Waste radioactive materials which may find their way into the cavity 13 by overflow, spillage, venting or other means, and in cooperation with the drain 16 and the conduit 17 will conduct such waste materials to a properly shielded waste tank where they can be accumulated until they are disposed of.
  • the lower portion of the conduit 15 is open to the atmosphere, and thus the cavity 13 is maintained at atmospheric pressure.
  • the top portion of the reservoir is partially closed by a cover member 18, through the central portion of which is formed an opening 19.
  • the opening is of such dimensions as to permit the reservoir to be filled through it, yet exclude dust or other extraneous materials from entering the reservoir during the filling operation and subsequently interfering with the proper operation of the device.
  • This opening provides a communication between the interior of the reservoir and the cavity 13, and permits the space in the reservoir above the level of the radioactive material contained therein to be maintained at atmospheric pressure.
  • valve 21 Connected to the lowermost portion of the reservoir is a conduit 20 leading downwardly to a valve 21, which may be opened to permit communication with the conduit 15
  • the valve serves as a means to connect the conduit 20 with the conduit 15 so that the contents of the reservoir may be drained off to waste should it become necessary to empty the reservoir or to clean any residue therefrom. Normally, the valve 21 will be closed.
  • conduit 22 Connected to the conduit 20, in a position between the reservoir and the valve 21, is another conduit 22 which leads to a level gauge 23.
  • the lower portion of the gauge and its connections are enclosed within an extension of the lead shield 12, while the top portion is exposed outwardly of the shield to permit it to be visible.
  • the visible portion of the gauge may be formed of a transparent heavywalled tube of a small diameter bore which will hold a minimum quantity of the radioactive material to thereby reduce the radiation hazard incident to its relatively exposed condition.
  • the tube has a cover 24 and is vented to the atmosphere by means of an opening 25 in its upper portion.
  • the cover has a depending skirt portion 26 extending circumferentially around and in spaced relationship to the top portion of the tube, in a position to form a baffle over the vent opening 25, to prevent dust or other extraneous material from entering the tube.
  • the bore of the tube is in constant communication with the interior of the reservoir 16 through the conduits 20 and 22, and since both are at atmospheric pressure, the liquid level in the gauge will be the same as the level of the liquid tracer material in the reservoir.
  • the gauge may be calibrated to indicate the quantity of material in the reservoir.
  • a conduit 27 Extending downwardly from the conduit 22, from a position between the reservoir and the level gauge, is a conduit 27 which has a valve 25 in its lower portion.
  • This valve is arranged to be closed to prevent flow from the conduit 27, or to be opened to permit flow into a passage 29 extendingthrough the valve body and thence into a measuring gauge 30.
  • This gauge may comprise a vertically disposed transparent tube 31, connected at its lower end to the passage 29, and vented at its upper end into the cavity 13 by means of a conduit 32. The interior of the tube will thus be at atmospheric pressure.
  • the tube is mounted in appropriate supports at each end to prevent any leakage of radioactive material from it.
  • the measuring gauge is disposed at a level below that of the reservoir so that if the valve 28 is opened, the contents of the reservoir will flow by gravity through the conduits 22 and 27 and passage 29 into the tube 31.
  • a calibrated scale 33 Fig. 2, is placed adjacent to the tube to permit a reading of the quantity of tracer material therein. By properly manipulating the valve 2%, a measured amount of tracer material can be permitted to flow into the measuring gauge.
  • the measuring tube is substantially enclosed in an extension of the shield 12 formed as a bafie around the tubing, as indicated in Fig. 2.
  • the shield is made with a longitudinal opening 34 in one vertical wall thereof, generally parallel to the tube but positioned in a manner to prevent a direct line of sight with the tube.
  • a mirror 35 is placed within the shield and positioned adjacent to the opening at an angle which will enable the reflection of the tube and scale to be observed by the operator.
  • a light source 36 is placed outside of the shield in a position to direct light through the opening 34 to the space within the shield and be reflected from the inner surface thereof to illuminate the tube 31 and its associated scale 33.
  • the other end of the passage 29 is connected through a conduit 37 with a three-way valve 38 which is exemplified in Figs. 3 and 4.
  • the valve body has a plug 39, rotatably mounted in it and movable to the positions of measure, drain, and injection, the significance of which will be explained hereinafter.
  • a passage 40 is formed in the valve body, extending from the face of the plug to, and in communication with, the conduit 37.
  • the plug has formed in it a passage 41, terminating at a point on its face in a position to register with the passage 40 tending from the face of the plug to, and in communica- I tion with, a conduit 44, which is connected to a source of fluid under pressure. Air is a desirable, but not exclusive, medium for this purpose.
  • the plug terminus of the passage 43 is circumferentially displaced from that of passage 40 but located to be brought into alignment with the passage 41 when the plug is rotated to the injection position.
  • the conduit 44 has a shutofi valve 45 placed in it, and a pressure gauge 46 is connected to the conduit upstream of the valve to indicate the line pressure of the fluid.
  • the plug closes the adjacent ends of the passages 40 and 43 and prevents any flow through the three-way valve. If, now, the valve 28 is opened, the tracer material will drain from the reservoir through the associated passages into conduit 37 and passage 40 and, as this conduit fills up, through the passage 29 and thence into the measuring gauge.
  • the gauge may be calibrated with the zero gauge position at the bottom of passage 40, that is, at the face of the plug. Alternatively, the zero position may be at some visible point in the gauge class. When the desired quantity of tracer material has been allowed to flow into the gauge, the valve 28 is closed.
  • the plug may remain in the drain position until all of the tracer material has been drained from the measuring gauge. Otherwise, the plug will be held at the drain position only so long as is required to drain the predetermined desired amount of material from the gauge.
  • the chamber is vented to the atmosphere through the conduit 47, communicating with its upper portion and controlled by a valve 48.
  • the conduit 47 is looped upwardly to a point above the level of the tracer material in the reservoir 10 and thence downwardly to connect with the conduit 17 leading to the waste tank.
  • Chamber 42 is connected through a conduit system 49 to a pipe line 50, which carries fluid products under pressure.
  • a check valve 51 is placed in the conduit system and arranged to open in the direction of flow from the chamber to the pipe line to prevent the pipe line fluids from flowing into the chamber.
  • a shut-off valve 52 and flexible loop 53 may be provided in the system.
  • the conduit system terminates within the pipe 50 in a nozzle 54, which may be designed to give a desired spray pattern.
  • the plug 39 is rotated to the injection position, thereby permitting the pressurized fluid from conduit 44 to enter the chamber 42.
  • the valve 45 remains open so that the pressurized fluid is available at valve 38 for this purpose.
  • the pressure gauge 46 will indicate if the fluid pressure is sufficient to overcome the known pressure in the products line before the fluid is let into the chamber 42.
  • valve 45 may be kept closed until the plug 39 is rotated to the injection position, after which it may be opened to introduce pressurized fluid into the chamber 42. It is desirable that the tracer be injected into the pipe line in a compact body, substantially as a slug of material.
  • the pressurized fluid in conduit 40 is maintained at a substantially higher pressure than the products in pipe line 50.
  • sufficient pressurized fluid is permitted to flow through the pertinent parts of the apparatus to purge these elements. As a result the injection will be rapid and clean cut, with no substantial attenuation of the tracer along the pipe line.
  • the fluid under pressure enters chamber. 42 above the level of the liquid tracer material therein, and forces the tracer material through the conduit system 49, past the check valve 51 and the normally open valve 52, and out of the nozzle 54 into the pipe line.
  • vent valve 48 in the top of chamber 42 is adjusted so that there will be only a minor flow of pressurized fluid through the vent conduit 47, not detracting materially from the pressure available to inject the tracer into the pipe line.
  • the three-way valve is turned to admit pressurized fluid into the charmber 42 when it is flooded, or if pressurized fluid should leak through the valve and into the chamber, the excess material that may be in conduit 47 will be 'blown from it into the waste conduit 17 without being sprayed about the apparatus, .or causing any dangerous contamination of the apparatus or its surroundings.
  • the chamber 42 By venting the chamber 42 into the waste line, any radioactive gases or vapors forming in the chamber during the normal operation of the device will be exhausted to Waste.
  • Valve 28 has connected to it shaft 55, which has afiixed to its end a handle 56., by which the valve can be opened or closed.
  • the plug 39 of valve 38 is rotated by a shaft 57, to which is affixed a crank 53. Indicia may be placed opposite the crank to indicate the appropriate positions of it to set the valve for the conditions of measure, drain, and injection.
  • the valve shafts are constructed to be detachably connected to the valves so that they can, if desired, be removed when the injector is not in use, to prevent accidental operation of, or unauthorized tampering with, the apparatus.
  • the injector assembly is supported on a frame 59.
  • the whole structure is surrounded on its sides and top by an enclosure 60 of sheets of metal or other suitable material.
  • the dimensions of the enclosure are proportioned to provide sutlicient inner space to reduce the radiations from the radioactive material in the apparatus to a safe level of intensity for the operator of the device.
  • the enclosure is formed with a hinged wall 61, which is locked closed when the apparatus is not in use, but which may be opened to expose an inner wall 62.
  • the inner wall has built into it a transparent portion 63, through which the gauges of the apparatus may be observed. Properly located openings are formed in the inner wall to permit the shafts 55 and -57 to be inserted through the wall and connected to their respective valves.
  • valve handles 56 and 58 will be enclosed in the space between the inner and the outer walls if the outer wall 61 is closed when the respective shafts are attached to their valves.
  • the wall 61 of the closure is opened, all the valves and gauges necessary for the normal operation of the apparatus are made available for observation and manipulation. Any adjustment of valves or repair work to be performed within the principal enclosure is undertaken only when the proper precautions are taken to protect personnel against radiation hazards.
  • the top portion of the enclosure has a removable section 64, Fig. l, to permit access to the reservoir 10.
  • the portion of the shield directly above the reservoir 10 is constructed to be removable, in the form of a cover 65.
  • a resilient gasket 66 is interposed between the cover and the body of the shield to provide a vapor-tight connection between the two.
  • the top portion of the cover is formed with a down-turn skirt 6'7, circumferentially surrounding the upper edge of the body of the reservoir shield, to form a dust baffle and to prevent free dispersion into the atmosphere or" any tracer material that may accidentally be ejected from the reservoir compartment and pass the gasket.
  • a loop 68 is afiixed to the cover to aid in lifting it Ofi the apparatus.
  • the tracer fluid is stored prior to being placed in the reservoir in a container 69 of steel or other appropriate material.
  • the container ordinarily will rest in a position inverted from that shown in Fig. 5, so that the opening 70 will be uppermost.
  • the opening is formed with screw threads 71 to receive a removable solid plug, not shown, which provides a positive closure.
  • the container is stored in a lead shield of appropriate thickness to reduce the emanations from the radioactive tracer material to a safe level.
  • a member 72 which will screw securely into the opening and which has two long handles 73 and 74 detachably connected to it in a manner to extend therefrom transversely to the longitudinal axis of the container.
  • the handles may be knurled or otherwise treated at their ends to provide a firm gripping surface, and hand guards 75 and 76, respectively, are mounted on them to prevent the hand from slipping along the handle toward the container.
  • the member 72 has a passage 77 through it, communicating at one end with the opening 70 of the container and connected at the other end to a valve 78.
  • the valve is operated by a long shaft 79, to which an appropriate hand wheel is attached, which extends outwardly from the valve body at an angle to insure clearance with the shield 12 when the container is mounted over the reservoir 10.
  • the shaft is constructed to be readily detachably connected to the valve.
  • a conduit element 30 is affixed to the valve body and in communication with the passage 81 through the valve.
  • a hollow cylindrical member 82 closed at one end by a transverse wall 83, is secured to the element so that the element extends through the wall and terminates within the interior space of the cylinder.
  • the inner diameter of the cylindrical member is suilicient to permit it to be mounted over, and to circumferentially surround, the upper portion of the reservoir 10, with the end wall 83 resting on the cover 18 of the reservoir. In this position the conduit element 89 will extend through the opening 19 in the reservoir cover in communicating with the interior of the reservoir.
  • the conduit element 80 carrying the cylindrical member 82, the valve 78, and the member 72 are assembled together, and the handles 73 and 74 are attached to the assembly.
  • the valve 78 is closed.
  • the storage shield for the container is uncovered, and a long-handled tool is used to remove the closure plug.
  • the assembly is screwed on to the container.
  • the top portion 64 of enclosure 60 is removed from the apparatus, and the cover 65 of shield 12 is lifted off, exposing the reservoir 10.
  • the container and its attached assembly is lifted from the shield, inverted, and placed over the reservoir 10 in the position described heretofore.
  • Handle 79 is then attached to the valve, and the valve opened to permit the contents of the container to drain into the reservoir.
  • valve 78 When the refilling is completed, valve 78 is closed, the replenishing apparatus is removed, and the covers replaced on the shield 12 and the enclosure 60.
  • the replenishing apparatus is disassembled and contaminated parts cleaned or stored within shielded enclosures.
  • the apparatus just described is claimed in divisional application Serial No. 534,467, filed September 15, 1955.
  • Apparatus for injecting a liquid tracer material into a pipe line carrying fluid products under pressure comprising a reservoir for said tracer material, means to withdraw said tracer material from said reservoir, means for measuring the amount withdrawn, valve means to deposit said measured amounts in a chamber, said same valve means being selectively movable to place said chamber under a discharge pressure, a conduit system communicating with said chamber to conduct said measured amounts of discharged tracer material from said chamber, said same valve means being efiective to purge said chamber and said conduit system of residual tracer material.
  • An injector for a radioactive substance comprising a reservoir to contain said substance, a shield surrounding said reservoir and spaced apart therefrom to provide a chamber between said reservoir and said shield, means to maintain said chamber and said reservoir at atmospheric pressure, a measuring gauge for said substance connected to said reservoir, means communicating with said measuring gauge and said chamber to maintain said measuring gauge at atmospheric pressure, a second chamber, said second chamber being connected to said measuring gauge to receive measured amounts of said substance therefrom, means to vent said second chamber to the atmosphere, and means to place said second chamher under pressure independent of the pressure in said measuring gauge to eject said measured amounts of said substance therefrom.
  • An injector for a liquid substance comprising a reservoir for said substance, a shield surrounding said reservoir and formed with an air space around said reservoir, an opening in the top portion of said reservoir and communicating with said air space, a conduit communicating with said air space and the atmosphere, a level gauge connected to said reservoir, means to maintain said level gauge at atmospheric pressure, a measuring gauge connected to said reservoir, a conduit connecting the top portion of said measuring gauge with said air space, a chamber, conduit means between said measuring gauge and said chamber, a valve in said conduit means, said valve being operable to alternately place said chamber in communication with said measuring gauge to receive a measured amount of said substance therefrom and to close oif said chamber from said measuring gauge and place said chamber in communication with a source of pressure fluid to eject said measured amount of said substance from said chamber.
  • Apparatus for injecting a liquid radioactive tracer material into a petroleum products pipe line comprising a shielded reservoir for said radioactive material, a level gauge to indicate the liquid level of the said material in said reservoir, a shielded measuring gauge connected to said reservoir to receive and measure portions of said material therefrom, said measuring gauge being constructed and arranged to prevent a direct line of sight view of said material received in said gauge when said portions are being measured but to permit an indirect view of said material, a valve interposed between said ill reservoir and said measuring gauge to selectively permit and prevent a flow of said material from said reservoir to said measuring gauge, a three-way valve connected to said measuring gauge, a shielded chamber connected to said three-way valve, said three-way valve being selectively adjustable to provide a communication between said measuring gauge and said chamber, to provide a communication between a source of pressurized air and said chamber, and to prevent simultaneously communication between said chamber and said measuring gauge and said chamber and said source of pressurized air, said chamber being adapted to receive measured amounts of said material from said
  • An injector for a radioactive substance comprising a reservoir to contain said substance, a housing surrounding said reservoir and spaced apart therefrom to provide a chamber between said reservoir and said housing, means to maintain said chamber and said reservoir at atmospheric pressure, a measuring gauge for said substance connected to said reservoir, means communicating with said measuring gauge and said chamber to trap vapors from said measuring gauge and conduct them to said chamber, a second chamber being connected to said measuring gauge to receive measured amounts of said substance therefrom, means to vent said second chamber to the atmosphere through a controllable orifice, and means to place said second chamber under a discharge pressure different from the pressure in said measuring gauge to eject said measured amounts of said substance therefrom.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

w. R. POSTLI-YIWAITE 2,758,754
INJECTOR Aug. 14, 1956 Filed July 12, 1951 s Shets-Shee't 1 lllHl lllHlllHlll INVENTOR WlLLlAM R. POSTLEWAITE TTRNEYS 1956 w. R. POSTLEWAITE 2,758,754
' INJECTOR Filed July 12, 1951 5 Sheets-Sheet 2 INVENTOR WILLIAM R. POSTLEWAlTE was; 6. M
ATTRNYS 1956 w. R. POSTLEWAITE 2,758,754
INJECTOR Filed July 12, 1951 3 Sheets-Sheet 3 INVENTOR WILLIAM R. POSTLEWAITE ATTRNEYS United States Patent INJECTOR William R. Postlewaite, Menlo Park, Califl, assignor, by
mcsne assignments, to California Research Corporation, San Francisco, Calif., a corporation of Delaware Application July 12, 1951, Serial No. 236,388
Claims. (Cl. 222-155) This invention relates to a device for injecting a tracer material into a fluid conduit. It pertains particularly to a device for injecting a measured amount of a fluid radioactive tracer into a pipe line carrying petroleum products under pressure conditions.
The principal objects of this invention are to provide an injection apparatus which will permit radioactive substances to be employed as the injected material without endangering operating personnel; which will be provided with safeguards against unconfined spillage or loss of any of the radioactive substances; which will be positive in its operation; which will allow predetermined measured amounts of the radioactive material to be injected into a fluid line substantially as a slug and against the pressures existing in the line; and which will be provided with means to purge the portions of the apparatus in direct communication with the pipe line with a non-radioactive fluid to make the injection clean cut and prevent any subsequent undesired leakage of a residue of the radioactive material into the pipe line. Other objects will be obvious, or will become apparent as the description proceeds.
To accomplish these objects, the invention comprises novel apparatus which is properly enclosed and shielded to prevent contact with, or undue exposure to, the radioactive substance contained therein. The various manipulative functions necessary to control the apparatus are arranged to be accomplished from positions comparatively remote from any accumulations of the radioactive substances contained therein. The conduits and chambers which contain, or through which the radioactive material passes, are arranged to confine the material or any vapors therefrom within the apparatus and to prevent any malfunctions or accidents affecting the proper flow of the radioactive substance through the device from permitting its escape therefrom to the surrounding area.
To aid the disclosure of the inventive concept, one specific embodiment of it will be illustrated and described.
Referring to the drawings:
Fig. 1 represents in elevation a sectional view of portions of the apparatus.
Fig. 2 represents a sectional plan view of portions of the apparatus along the line 2- -2 of Fig. l, and illustrates particulars of the form and relationship of some of the parts.
Fig. 3 is an enlarged sectional view of a part of the apparatus and presents a detail of valve structure.
Fig. 4 is a sectional view of the valve structure along the line 4-4 of Fig. 3.
Fig. 5 is an elevational view of portions of the apparatus, partly in section, showing a means for replenishing the supply of radio-isotope in the injector, and indicating also a means of enclosing the apparatus Within a housing to prevent undue or unauthorized contact with, or close approach to, sources of radioactivity.
Referring to Fig; l, the apparatus comprises a reser voir adapted to receive and store 21 quantity of a liquid radioactive material, indicated by the numeral 11, which subsequently will be injected in measured amounts into a petroleum products pipe line in a manner to be described. To prevent the emanations from the radioisotope creating a health hazard, the reservoir, as well as other pertinent parts of the apparatus, is surrounded by a shield 12, which may be lead or other suitable material of suflicient thickness to reduce the radio emanations to a level which will be safe for the operator to work in. The shield is placed around all portions of the apparatus where appreciable amounts of the radioactive material will be held, or in which it will be concentrated during the operation of the injector. The shield 12 has an inner cavity 13, in which the reservoir 10 is positioned, of such inner dimensions as to provide an air space substantially entirely surrounding the reservoir. The bottom portion of the cavity is provided with a channel 14. Conduit 15 is connected to the channel and terminates at its lower portion adjacent a drain 16, which is connected to a conduit 17, leading to an underground waste tank, not shown. The channel 14 and conduit 15 will serve to entrap and remove any Waste radioactive materials which may find their way into the cavity 13 by overflow, spillage, venting or other means, and in cooperation with the drain 16 and the conduit 17 will conduct such waste materials to a properly shielded waste tank where they can be accumulated until they are disposed of. The lower portion of the conduit 15 is open to the atmosphere, and thus the cavity 13 is maintained at atmospheric pressure.
The top portion of the reservoir is partially closed by a cover member 18, through the central portion of which is formed an opening 19. The opening is of such dimensions as to permit the reservoir to be filled through it, yet exclude dust or other extraneous materials from entering the reservoir during the filling operation and subsequently interfering with the proper operation of the device. This opening provides a communication between the interior of the reservoir and the cavity 13, and permits the space in the reservoir above the level of the radioactive material contained therein to be maintained at atmospheric pressure.
Connected to the lowermost portion of the reservoir is a conduit 20 leading downwardly to a valve 21, which may be opened to permit communication with the conduit 15 The valve serves as a means to connect the conduit 20 with the conduit 15 so that the contents of the reservoir may be drained off to waste should it become necessary to empty the reservoir or to clean any residue therefrom. Normally, the valve 21 will be closed.
Connected to the conduit 20, in a position between the reservoir and the valve 21, is another conduit 22 which leads to a level gauge 23. The lower portion of the gauge and its connections are enclosed within an extension of the lead shield 12, while the top portion is exposed outwardly of the shield to permit it to be visible. The visible portion of the gauge may be formed of a transparent heavywalled tube of a small diameter bore which will hold a minimum quantity of the radioactive material to thereby reduce the radiation hazard incident to its relatively exposed condition. The tube has a cover 24 and is vented to the atmosphere by means of an opening 25 in its upper portion. The cover has a depending skirt portion 26 extending circumferentially around and in spaced relationship to the top portion of the tube, in a position to form a baffle over the vent opening 25, to prevent dust or other extraneous material from entering the tube. The bore of the tube is in constant communication with the interior of the reservoir 16 through the conduits 20 and 22, and since both are at atmospheric pressure, the liquid level in the gauge will be the same as the level of the liquid tracer material in the reservoir. The gauge may be calibrated to indicate the quantity of material in the reservoir.
Extending downwardly from the conduit 22, from a position between the reservoir and the level gauge, is a conduit 27 which has a valve 25 in its lower portion. This valve is arranged to be closed to prevent flow from the conduit 27, or to be opened to permit flow into a passage 29 extendingthrough the valve body and thence into a measuring gauge 30. This gauge may comprise a vertically disposed transparent tube 31, connected at its lower end to the passage 29, and vented at its upper end into the cavity 13 by means of a conduit 32. The interior of the tube will thus be at atmospheric pressure. The tube is mounted in appropriate supports at each end to prevent any leakage of radioactive material from it.
The measuring gauge is disposed at a level below that of the reservoir so that if the valve 28 is opened, the contents of the reservoir will flow by gravity through the conduits 22 and 27 and passage 29 into the tube 31. A calibrated scale 33, Fig. 2, is placed adjacent to the tube to permit a reading of the quantity of tracer material therein. By properly manipulating the valve 2%, a measured amount of tracer material can be permitted to flow into the measuring gauge.
In order to protect an operator from the radiations of the material being measured, the measuring tube is substantially enclosed in an extension of the shield 12 formed as a bafie around the tubing, as indicated in Fig. 2. The shield is made with a longitudinal opening 34 in one vertical wall thereof, generally parallel to the tube but positioned in a manner to prevent a direct line of sight with the tube. A mirror 35 is placed within the shield and positioned adjacent to the opening at an angle which will enable the reflection of the tube and scale to be observed by the operator. A light source 36 is placed outside of the shield in a position to direct light through the opening 34 to the space within the shield and be reflected from the inner surface thereof to illuminate the tube 31 and its associated scale 33.
The other end of the passage 29 is connected through a conduit 37 with a three-way valve 38 which is exemplified in Figs. 3 and 4. The valve body has a plug 39, rotatably mounted in it and movable to the positions of measure, drain, and injection, the significance of which will be explained hereinafter. A passage 40 is formed in the valve body, extending from the face of the plug to, and in communication with, the conduit 37. The plug has formed in it a passage 41, terminating at a point on its face in a position to register with the passage 40 tending from the face of the plug to, and in communica- I tion with, a conduit 44, which is connected to a source of fluid under pressure. Air is a desirable, but not exclusive, medium for this purpose. The plug terminus of the passage 43 is circumferentially displaced from that of passage 40 but located to be brought into alignment with the passage 41 when the plug is rotated to the injection position. The conduit 44 has a shutofi valve 45 placed in it, and a pressure gauge 46 is connected to the conduit upstream of the valve to indicate the line pressure of the fluid.
In the measure position, the plug closes the adjacent ends of the passages 40 and 43 and prevents any flow through the three-way valve. If, now, the valve 28 is opened, the tracer material will drain from the reservoir through the associated passages into conduit 37 and passage 40 and, as this conduit fills up, through the passage 29 and thence into the measuring gauge. If desired, the gauge may be calibrated with the zero gauge position at the bottom of passage 40, that is, at the face of the plug. Alternatively, the zero position may be at some visible point in the gauge class. When the desired quantity of tracer material has been allowed to flow into the gauge, the valve 28 is closed.
The plug 39 is now rotated to the drain position,
bringing the passage 4i into alignment with the passage 40 and permitting the contents of the measuring gauge to drain into the chamber 42. If the zero point of the gauge is established at the bottom of passage 40, the plug may remain in the drain position until all of the tracer material has been drained from the measuring gauge. Otherwise, the plug will be held at the drain position only so long as is required to drain the predetermined desired amount of material from the gauge.
To prevent the residual air in the chamber 42 from interfering with the gravity flow of tracer material from the measuring gauge, the chamber is vented to the atmosphere through the conduit 47, communicating with its upper portion and controlled by a valve 48. The conduit 47 is looped upwardly to a point above the level of the tracer material in the reservoir 10 and thence downwardly to connect with the conduit 17 leading to the waste tank. The purpose for this particular arrangement of the vent conduit will be described hereinafter.
Chamber 42 is connected through a conduit system 49 to a pipe line 50, which carries fluid products under pressure. A check valve 51 is placed in the conduit system and arranged to open in the direction of flow from the chamber to the pipe line to prevent the pipe line fluids from flowing into the chamber. A shut-off valve 52 and flexible loop 53 may be provided in the system. The conduit system terminates within the pipe 50 in a nozzle 54, which may be designed to give a desired spray pattern.
After the measured amount of tracer material has been drained into chamber 42, the plug 39 is rotated to the injection position, thereby permitting the pressurized fluid from conduit 44 to enter the chamber 42. Normally, the valve 45 remains open so that the pressurized fluid is available at valve 38 for this purpose. The pressure gauge 46 will indicate if the fluid pressure is sufficient to overcome the known pressure in the products line before the fluid is let into the chamber 42. Alternatively, valve 45 may be kept closed until the plug 39 is rotated to the injection position, after which it may be opened to introduce pressurized fluid into the chamber 42. It is desirable that the tracer be injected into the pipe line in a compact body, substantially as a slug of material. To accomplish this end, the pressurized fluid in conduit 40 is maintained at a substantially higher pressure than the products in pipe line 50. To insure against small quantities of the tracer material remaining in the chamber 42 or conduit system 49 after the injection has taken place, and thereby eliminate the possibility that particles of the radioactive tracer will be introduced into the pipe line products at undesired times, sufficient pressurized fluid is permitted to flow through the pertinent parts of the apparatus to purge these elements. As a result the injection will be rapid and clean cut, with no substantial attenuation of the tracer along the pipe line.
The fluid under pressure enters chamber. 42 above the level of the liquid tracer material therein, and forces the tracer material through the conduit system 49, past the check valve 51 and the normally open valve 52, and out of the nozzle 54 into the pipe line.
The vent valve 48 in the top of chamber 42 is adjusted so that there will be only a minor flow of pressurized fluid through the vent conduit 47, not detracting materially from the pressure available to inject the tracer into the pipe line.
In the event there is a leakage of tracer material past the valves 28 and 38 and into the chamber 42, or if through some inadvertence these valves are left open and the tracer material permitted to flow through them and flood the chamber, the excess material will overflow into the vent conduit 47. The disposition of the conduit to an elevation above that of the liquid level in the reservoir 10 will cause the excess tracer material to be trapped in the apparatus, from which it can be recovered. If, through some further inadvertence, the three-way valve is turned to admit pressurized fluid into the charmber 42 when it is flooded, or if pressurized fluid should leak through the valve and into the chamber, the excess material that may be in conduit 47 will be 'blown from it into the waste conduit 17 without being sprayed about the apparatus, .or causing any dangerous contamination of the apparatus or its surroundings. By venting the chamber 42 into the waste line, any radioactive gases or vapors forming in the chamber during the normal operation of the device will be exhausted to Waste.
During normal operation of the injector, only valves '28 and .38 need be manipulated to achieve sequential injections of measured amounts of tracer material into the pipe line. Valve 28 has connected to it shaft 55, which has afiixed to its end a handle 56., by which the valve can be opened or closed. The plug 39 of valve 38 is rotated by a shaft 57, to which is affixed a crank 53. Indicia may be placed opposite the crank to indicate the appropriate positions of it to set the valve for the conditions of measure, drain, and injection. The valve shafts are constructed to be detachably connected to the valves so that they can, if desired, be removed when the injector is not in use, to prevent accidental operation of, or unauthorized tampering with, the apparatus.
The injector assembly is supported on a frame 59. The whole structure is surrounded on its sides and top by an enclosure 60 of sheets of metal or other suitable material. The dimensions of the enclosure are proportioned to provide sutlicient inner space to reduce the radiations from the radioactive material in the apparatus to a safe level of intensity for the operator of the device. On one side, the enclosure is formed with a hinged wall 61, which is locked closed when the apparatus is not in use, but which may be opened to expose an inner wall 62. The inner wall has built into it a transparent portion 63, through which the gauges of the apparatus may be observed. Properly located openings are formed in the inner wall to permit the shafts 55 and -57 to be inserted through the wall and connected to their respective valves. The valve handles 56 and 58 will be enclosed in the space between the inner and the outer walls if the outer wall 61 is closed when the respective shafts are attached to their valves. When the wall 61 of the closure is opened, all the valves and gauges necessary for the normal operation of the apparatus are made available for observation and manipulation. Any adjustment of valves or repair work to be performed within the principal enclosure is undertaken only when the proper precautions are taken to protect personnel against radiation hazards. The top portion of the enclosure has a removable section 64, Fig. l, to permit access to the reservoir 10.
Referring now to Figs. 1 and 5, the means and method used for replenishing the supply of tracer material in the reservoir will be described. The portion of the shield directly above the reservoir 10 is constructed to be removable, in the form of a cover 65. A resilient gasket 66 is interposed between the cover and the body of the shield to provide a vapor-tight connection between the two. The top portion of the cover is formed with a down-turn skirt 6'7, circumferentially surrounding the upper edge of the body of the reservoir shield, to form a dust baffle and to prevent free dispersion into the atmosphere or" any tracer material that may accidentally be ejected from the reservoir compartment and pass the gasket. A loop 68 is afiixed to the cover to aid in lifting it Ofi the apparatus.
The tracer fluid is stored prior to being placed in the reservoir in a container 69 of steel or other appropriate material. The container ordinarily will rest in a position inverted from that shown in Fig. 5, so that the opening 70 will be uppermost. The opening is formed with screw threads 71 to receive a removable solid plug, not shown, which provides a positive closure. Ordinarily, the container is stored in a lead shield of appropriate thickness to reduce the emanations from the radioactive tracer material to a safe level.
It is not desirable to approach the container closely when it is withdrawn from its shield for the emptying operation, even though the time required may be of short duration, and so provision is made for handling it and controlling the flow of material from it from a distance. To accomplish this, a member 72 is provided which will screw securely into the opening and which has two long handles 73 and 74 detachably connected to it in a manner to extend therefrom transversely to the longitudinal axis of the container. The handles may be knurled or otherwise treated at their ends to provide a firm gripping surface, and hand guards 75 and 76, respectively, are mounted on them to prevent the hand from slipping along the handle toward the container. The member 72 has a passage 77 through it, communicating at one end with the opening 70 of the container and connected at the other end to a valve 78. The valve is operated by a long shaft 79, to which an appropriate hand wheel is attached, which extends outwardly from the valve body at an angle to insure clearance with the shield 12 when the container is mounted over the reservoir 10. The shaft is constructed to be readily detachably connected to the valve.
A conduit element 30 is affixed to the valve body and in communication with the passage 81 through the valve. A hollow cylindrical member 82, closed at one end by a transverse wall 83, is secured to the element so that the element extends through the wall and terminates within the interior space of the cylinder. The inner diameter of the cylindrical member is suilicient to permit it to be mounted over, and to circumferentially surround, the upper portion of the reservoir 10, with the end wall 83 resting on the cover 18 of the reservoir. In this position the conduit element 89 will extend through the opening 19 in the reservoir cover in communicating with the interior of the reservoir.
Preparatory to replenishing the supply of tracer fluid in the reservoir, and while the container 69 is still enclosed within its shield in an inverted position, the conduit element 80 carrying the cylindrical member 82, the valve 78, and the member 72 are assembled together, and the handles 73 and 74 are attached to the assembly. The valve 78 is closed. The storage shield for the container is uncovered, and a long-handled tool is used to remove the closure plug. Using the handles 73 and 74 to maintain a safe distance, the assembly is screwed on to the container.
The top portion 64 of enclosure 60 is removed from the apparatus, and the cover 65 of shield 12 is lifted off, exposing the reservoir 10. Using the handles 73 and 74, the container and its attached assembly is lifted from the shield, inverted, and placed over the reservoir 10 in the position described heretofore. Handle 79 is then attached to the valve, and the valve opened to permit the contents of the container to drain into the reservoir.
When the refilling is completed, valve 78 is closed, the replenishing apparatus is removed, and the covers replaced on the shield 12 and the enclosure 60. The replenishing apparatus is disassembled and contaminated parts cleaned or stored within shielded enclosures. The apparatus just described is claimed in divisional application Serial No. 534,467, filed September 15, 1955.
It will be obvious that modifications may be made of the specific embodiment of the invention illustrated and described herein without departing from the inventive concept disclosed, and it is intended that the invention embrace all equivalents and modifications within the limits of the appended claims.
I claim:
1. Apparatus for injecting a liquid tracer material into a pipe line carrying fluid products under pressure, comprising a reservoir for said tracer material, means to withdraw said tracer material from said reservoir, means for measuring the amount withdrawn, valve means to deposit said measured amounts in a chamber, said same valve means being selectively movable to place said chamber under a discharge pressure, a conduit system communicating with said chamber to conduct said measured amounts of discharged tracer material from said chamber, said same valve means being efiective to purge said chamber and said conduit system of residual tracer material.
2. An injector for a radioactive substance, comprising a reservoir to contain said substance, a shield surrounding said reservoir and spaced apart therefrom to provide a chamber between said reservoir and said shield, means to maintain said chamber and said reservoir at atmospheric pressure, a measuring gauge for said substance connected to said reservoir, means communicating with said measuring gauge and said chamber to maintain said measuring gauge at atmospheric pressure, a second chamber, said second chamber being connected to said measuring gauge to receive measured amounts of said substance therefrom, means to vent said second chamber to the atmosphere, and means to place said second chamher under pressure independent of the pressure in said measuring gauge to eject said measured amounts of said substance therefrom.
3. An injector for a liquid substance, comprising a reservoir for said substance, a shield surrounding said reservoir and formed with an air space around said reservoir, an opening in the top portion of said reservoir and communicating with said air space, a conduit communicating with said air space and the atmosphere, a level gauge connected to said reservoir, means to maintain said level gauge at atmospheric pressure, a measuring gauge connected to said reservoir, a conduit connecting the top portion of said measuring gauge with said air space, a chamber, conduit means between said measuring gauge and said chamber, a valve in said conduit means, said valve being operable to alternately place said chamber in communication with said measuring gauge to receive a measured amount of said substance therefrom and to close oif said chamber from said measuring gauge and place said chamber in communication with a source of pressure fluid to eject said measured amount of said substance from said chamber.
4. Apparatus for injecting a liquid radioactive tracer material into a petroleum products pipe line, comprising a shielded reservoir for said radioactive material, a level gauge to indicate the liquid level of the said material in said reservoir, a shielded measuring gauge connected to said reservoir to receive and measure portions of said material therefrom, said measuring gauge being constructed and arranged to prevent a direct line of sight view of said material received in said gauge when said portions are being measured but to permit an indirect view of said material, a valve interposed between said ill reservoir and said measuring gauge to selectively permit and prevent a flow of said material from said reservoir to said measuring gauge, a three-way valve connected to said measuring gauge, a shielded chamber connected to said three-way valve, said three-way valve being selectively adjustable to provide a communication between said measuring gauge and said chamber, to provide a communication between a source of pressurized air and said chamber, and to prevent simultaneously communication between said chamber and said measuring gauge and said chamber and said source of pressurized air, said chamber being adapted to receive measured amounts of said material from said measuring gauge through said three-way valve, said chamber being adapted to receive pressurized air through said three-way valve to pressurize said chamber and cause said measured amounts of said material to be forced therefrom, and conduit means to convey said measured amounts of material from said chamber.
5. An injector for a radioactive substance comprising a reservoir to contain said substance, a housing surrounding said reservoir and spaced apart therefrom to provide a chamber between said reservoir and said housing, means to maintain said chamber and said reservoir at atmospheric pressure, a measuring gauge for said substance connected to said reservoir, means communicating with said measuring gauge and said chamber to trap vapors from said measuring gauge and conduct them to said chamber, a second chamber being connected to said measuring gauge to receive measured amounts of said substance therefrom, means to vent said second chamber to the atmosphere through a controllable orifice, and means to place said second chamber under a discharge pressure different from the pressure in said measuring gauge to eject said measured amounts of said substance therefrom.
References Cited in the file of this patent UNITED STATES PATENTS 759,827 McCallum May 10, 1904 1,306,319 Tittle June 10, 1919 1,517,074 Kirkpatrick Nov. 25, 1924 1,587,912 Lipps et al. June 8, 1926 1,611,502 Allen Dec. 21, 1926 2,155,943 Kittredge et al. Apr. 25, 1939 2,287,829 Bryan June 30, 1942 2,520,398 Hanks Aug. 29, 1950 2,631,242 Metcalf Mar. 10, 1953 FOREIGN PATENTS 566,541 Great Britain of 1945

Claims (1)

  1. 2. AN INJECTOR FOR A RADIOACTIVE SUBSTANCE, COMPRISING A RESERVOIR TO CONTAIN SAID SUBSTANCE, A SHIELD SURROUNDING SAID RESERVOIR AND SPACED APART THEREFROM TO PROVIDE A CHAMBER BETWEEN SAID RESERVOIR AND SAID SHIELD, MEANS TO MAINTAIN SAID CHAMBER AND SAID RESERVOIR AT ATMOSPHERIC PRESSURE, A MEASURING GAUGE FOR SAID SUBSTANCE CONNECTED TO SAID RESERVOIR, MEANS COMMUNICATING WITH SAID
US23638851 1951-07-12 1951-07-12 Injector Expired - Lifetime US2758754A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US23638851 US2758754A (en) 1951-07-12 1951-07-12 Injector
US534467A US2843163A (en) 1951-07-12 1955-09-15 Filling device for radioactive tracer injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23638851 US2758754A (en) 1951-07-12 1951-07-12 Injector

Publications (1)

Publication Number Publication Date
US2758754A true US2758754A (en) 1956-08-14

Family

ID=22889285

Family Applications (1)

Application Number Title Priority Date Filing Date
US23638851 Expired - Lifetime US2758754A (en) 1951-07-12 1951-07-12 Injector

Country Status (1)

Country Link
US (1) US2758754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142656A (en) * 1976-12-17 1979-03-06 Eastman Kodak Company Drop former utilizing gas pressure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US759827A (en) * 1904-01-13 1904-05-10 Henry C Schmidt Apparatus for drawing liquids.
US1306319A (en) * 1919-06-10 Leonid as l
US1517074A (en) * 1924-05-23 1924-11-25 William W Kirkpatrick Folding bucket support
US1587912A (en) * 1925-02-16 1926-06-08 Danville Motor Company Lubricant-dispensing apparatus
US1611502A (en) * 1922-10-02 1926-12-21 Charles M Allen Method of measuring the rate of flow of liquid
US2155943A (en) * 1938-01-04 1939-04-25 Cochrane Corp Intermittent air actuated acid feeder
US2287829A (en) * 1940-05-03 1942-06-30 Standard Oil Co California Liquid metering device
GB566541A (en) * 1943-07-02 1945-01-03 Arthur Guy Enoch Improvements in means for ascertaining the rate of flow of liquids
US2520398A (en) * 1947-03-21 1950-08-29 Harold M Hanks Oil dispensing pump
US2631242A (en) * 1953-03-10 Demarcation of fluids in pipe lines

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1306319A (en) * 1919-06-10 Leonid as l
US2631242A (en) * 1953-03-10 Demarcation of fluids in pipe lines
US759827A (en) * 1904-01-13 1904-05-10 Henry C Schmidt Apparatus for drawing liquids.
US1611502A (en) * 1922-10-02 1926-12-21 Charles M Allen Method of measuring the rate of flow of liquid
US1517074A (en) * 1924-05-23 1924-11-25 William W Kirkpatrick Folding bucket support
US1587912A (en) * 1925-02-16 1926-06-08 Danville Motor Company Lubricant-dispensing apparatus
US2155943A (en) * 1938-01-04 1939-04-25 Cochrane Corp Intermittent air actuated acid feeder
US2287829A (en) * 1940-05-03 1942-06-30 Standard Oil Co California Liquid metering device
GB566541A (en) * 1943-07-02 1945-01-03 Arthur Guy Enoch Improvements in means for ascertaining the rate of flow of liquids
US2520398A (en) * 1947-03-21 1950-08-29 Harold M Hanks Oil dispensing pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142656A (en) * 1976-12-17 1979-03-06 Eastman Kodak Company Drop former utilizing gas pressure

Similar Documents

Publication Publication Date Title
US20200251235A1 (en) Method and apparatus for preparing spent nuclear fuel for dry storage
US2693705A (en) Liquid sampler
US2758754A (en) Injector
US2193059A (en) Ampoule filling machine
US2843163A (en) Filling device for radioactive tracer injector
SE459291B (en) DEVICE AND PROCEDURE FOR CONTROL OF THE CAPACITY OF THE CAPS
US3145876A (en) Unitized titration apparatus
US5031357A (en) Tree injection closed system
CA1263768A (en) Multiple reservoir transportation assembly for radioactive substances and related methods
US4152585A (en) Assembly for the transport of fuel elements
US2746415A (en) Liquid level signalling device
KR100740215B1 (en) Apparatus for automatic distribution of radio- pharmaceuticals
DE2824153C2 (en) Device for the automatic extraction of liquid samples in hazardous locations
US4712618A (en) Multiple reservoir transportation assembly for radioactive substances, and related method
US1785097A (en) Dispensing device
US4343326A (en) Apparatus for dispensing a liquid additive
DE8906938U1 (en) Device for sealing fuel elements in the fuel pool of a nuclear power plant
DE2649295A1 (en) Transportation vessel esp. for radioactive iodine - has containment and lead shot shielding also second containment vessel
US1776807A (en) Hand fire extinguisher
DE3221403A1 (en) Test instrument for determining the water content of brake fluid
DE711754C (en) Gas pump
JPH0854492A (en) Leakage detecting method and device for detecting nuclear fuel rod from which radioactive fission product leaks
US2224963A (en) Method of loading tanks
DE2651593C2 (en) Measuring device for foreign gas contained in the water vapor of the cooling system of an industrial furnace, in particular a blast furnace
US1462352A (en) Safety dispensing device