US2688013A - Light metal thiocyanate derivatives of phosphor-sulfurized aliphatic hydrocarbons - Google Patents

Light metal thiocyanate derivatives of phosphor-sulfurized aliphatic hydrocarbons Download PDF

Info

Publication number
US2688013A
US2688013A US194196A US19419650A US2688013A US 2688013 A US2688013 A US 2688013A US 194196 A US194196 A US 194196A US 19419650 A US19419650 A US 19419650A US 2688013 A US2688013 A US 2688013A
Authority
US
United States
Prior art keywords
thiocyanate
light metal
product
aliphatic hydrocarbon
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US194196A
Inventor
Joseph M Hersh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
Continental Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Oil Co filed Critical Continental Oil Co
Priority to US194196A priority Critical patent/US2688013A/en
Application granted granted Critical
Publication of US2688013A publication Critical patent/US2688013A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/04Reaction products of phosphorus sulfur compounds with hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • C10M2225/041Hydrocarbon polymers

Definitions

  • This invention relates to lubricant improvingv agents and improved lubricating compositions, and more particularly pertains to such compositions which are especially adapted to inhibit corrosion of lubricated parts and possess or impart stability towards oxidation of the oil, etc.
  • An object of this invention is to provide an addition agent which is especially adapted to inhibit corrosion of lubricated parts.
  • Another object is to provide improved lubrieating compositions.
  • Still another obj ect is to provide a novel method of preparing a corrosion inhibitor for lubricating oils.
  • the present invention is concerned with a lubricant improving agent comprising an aliphatica hydrocarbon-phosphorus sulfide product reacted with a thiocyanate of a light metal. More particularly, this invention involves lubricating compositions comprising minor amounts of a material prepared by reacting an aliphatic hydrocarbon with a phosphorus sulfide and then reacting same with a light metal thiocyanate in combination with a lubricating oil.
  • the intermediate derivative of my invention is prepared by reacting an aliphatic hydrocarbon with a phosphorus sulfide.
  • the aliphatic hydrocarbon is preferably unsaturated, although the saturated types can be used in preparing the intermediate derivative.
  • about 2 to 50 parts by weight of a phosphorus sulfide are reacted with about 100 parts of aliphatic hydrocarbon, preferably about 12 to 24 parts of a phosphorus sulfide with about 100 parts of aliphatic hydrocarbon, at a temperature of about 200 to 360 F., preferably 300 to 360 F., and for a period of about 0.25 to 1 0 hours, preferably about to 2 hours.
  • the aliphatic hydrocarbon is either saturated or unsaturated and includes for example, the following classes and specific compounds. Saturated straight or branched chain hydrocarbons, e. g., hexane, octane, iso-octane, decane, hexadecane, etc.; olefinic hydrocarbons e. g., 'octadecene, do-
  • decene polymerized iso-butene, amylene, ethylene,
  • the phophorus sulfide employed as the reagent in preparing the intermediate derivative should contain at least phosphorus and sulfur and have the property of imparting such elements into the intermediate derivative.
  • Specific examples of such reagents are phosphorus disulfide, Pass (or PS2) phosphorus trisulfide, P4S6 (or P283) phosphorus sesquisulfide, P483; phosphorus pentasulfide, PzSs; phosphorus heptasulfide, P4S'1; etc.
  • the intermediate derivative described above is then reacted with a thiocyanate of a light metal in order to incorporate metal into the end product, and neutralize the acidic property thereof, either partially or wholly, or to excess alkalinity.
  • the thiocyanate employed contains a light metal, such as the kind described in Hackhs dictionary, viz, those metals having a. density less than four. Included with the light metal thiocyanates are the alkali and alkaline earth metal thiocyanates.
  • light metal thiocyanates are aluminum thiocyanate, barium thiocyanate, calcium thiocyanate, lithium thiocyanate, magnesium thiocyanate, potassium thiocyanate, sodium thiocyanate, strontium thiocyanate, etc.
  • the reaction between the light metal thiocyanate and the intermediate derivative is conducted at a temperature of about 150 to 400 F., preferably about 200 to 300 F. At this temperature, about 0.1 to 10 moles of the light metal thiocyanate, preferably 1 to 4 moles of same, are reacted with about 1 mole of the intermediate derivative.
  • the total reaction time is in the order of about to about hours, preferably about to 2 hours.
  • an inert gas atmosphere above the reaction mass and for this purpose for example, nitrogen, CH4, etc. can be used. Usually, this inert gas atmosphere is maintained by the application of a small pressure in the order of up to about 25 to 30 p. s. i. g., and more usually about 10 to p. s. i. g.
  • the temperature is maintained at 350 F., plus or minus 10 F., and by means of stirring, all of the Pass has become completely solubilized.
  • the reaction between the reactants is quite rapid, however, it is preferred to continue heating for another 30 minutes in order to insure complete reaction.
  • Another preferred aspect of this reaction is to keep an atmosphere of inert gas such as for example N2, CH4, etc. above the reaction mixture. This can be accomplished in the same manner as described hereinabove for the reaction with the thiocyanate.
  • EXAMPLE II One molal quantity of the product produced in Example I is diluted with an equal weight of diluent oil which contains about one part per thousand of silicone oil (an anti-foaming agent), and heated to 200 F. under a 10 p. s. i. g. atmosphere of nitrogen.
  • diluent oil which contains about one part per thousand of silicone oil (an anti-foaming agent)
  • silicone oil an anti-foaming agent
  • One molal part of sodium thiocyanate dissolved in 15 cc. of boiling water is added at a temperature of about 200 to 250 F. The temperature is then raised to 300 F. and the water is substantially removed.
  • the product is clarified by centrifuging and/or filtering.
  • the oil solution of this additive is bright and clear.
  • the additive to be tested was added to an SAE 20 Mid- Continent refined oil plus 0.4% methyl dichlorstearate. Furthermore, in each of the tests, the additive to be tested was added in quantities totaling 1.25% based on the total composition, and the composition contained about 0.075% sulfur.
  • the lubricating oils which can be used as a base for the finished compositions include those of animal, vegetable, marine, mineral or synthetic origin. Generally, it will be found that the base oil will be of mineral origin due to the abundance and wide use of such oils.
  • the lubricating oil can have a viscosity of 30 to 2000 SUS 100 F., although ordinarily the lubricating oil will have a viscosity of about the SAE 10 to 90 oils.
  • a new composition of matter comprising a product which is prepared by reacting about 2 to parts by weight of a phosphorus sulfide with about parts by weight of an aliphatic hydrocarbon at a temperature of about 200 to 360 F. for from about A to 10 hours, wherein said aliphatic hydrocarbon is a mixture of wax olefins having an average of 18 to 24 carbon atoms per molecule and an average of about 1 unsaturated linkage per molecule and then reacting same with a light metal thiocyanate at a temperature of about to 400 F.
  • a new composition of matter comprising a product which is prepared by reacting about 12 to 24 parts by weight of a phosphorus sulfide with about 100 parts by Weight of an aliphatic hydrocarbon at a temperature of about 300 to 360 F. for from about /2 to 2 hours, wherein said aliphatic hydrocarbon is a mixture of wax olefins having an average of 18 to 24 carbon atoms per molecule and an average of about 1 unsaturated linkage per molecule and then reacting about 1 mole of same'with about 0.1 to 10 moles of a light metal thiocyanate at a temperature of about 150 to 400 F.

Description

Patented Aug. 31, 1954 LIGHT METAL THIOCYANATE DERIVATIVES OF PHOSPHOR-SULFURIZED ALIPHATIC HYDROCARBONS Joseph M. Hersh, Pennsauken, N. J., assignor to Continental Oil Company, Ponco City, Okla., a
corporation of Delaware No Drawing. Application November 4, 1950, Serial No. 194,196
2 Claims. (Cl. 260-139) 1 This application is a continuation in part of my copending application, Serial No. 609,809, filed August 9, 1945, now abandoned.
This invention relates to lubricant improvingv agents and improved lubricating compositions, and more particularly pertains to such compositions which are especially adapted to inhibit corrosion of lubricated parts and possess or impart stability towards oxidation of the oil, etc.
It is recognized that hydrocarbon materials reacted with a phosphorus sulfide result into products possessing acid characteristics, and that such materials when employed in plain lubricating oils serve to enhance the anti-sludging, anti-oxidant, corrosion inhibiting, etc. properties thereof. By reason of the acid characteristics of the phosphorus sulfide-hydrocarbon reaction product, it was heretofore found that a metallic reagent such as sodium sulfide could be reacted therewith to produce end products which are substantially enhanced in beneficial characteristics, such as imparting greater stability, etc. to lubricating oils. While these metal containing reaction products have been an improvement over the metal-free products, nevertheless, in view of modern day usage of copper and silver alloy bearings, there is still a great need for improvement in corrosion inhibiting characteristics of lubricants. Now, therefore, by means of the present invention a substantial improvement in corrosion inhibiting properties of lubricants is effected.
An object of this invention is to provide an addition agent which is especially adapted to inhibit corrosion of lubricated parts.
Another object is to provide improved lubrieating compositions.
Still another obj ect is to provide a novel method of preparing a corrosion inhibitor for lubricating oils. Other objects and advantages of this invention will become apparent from the following description thereof.
Essentially the present invention is concerned with a lubricant improving agent comprising an aliphatica hydrocarbon-phosphorus sulfide product reacted with a thiocyanate of a light metal. More particularly, this invention involves lubricating compositions comprising minor amounts of a material prepared by reacting an aliphatic hydrocarbon with a phosphorus sulfide and then reacting same with a light metal thiocyanate in combination with a lubricating oil.
The intermediate derivative of my invention is prepared by reacting an aliphatic hydrocarbon with a phosphorus sulfide. The aliphatic hydrocarbon is preferably unsaturated, although the saturated types can be used in preparing the intermediate derivative. In general, about 2 to 50 parts by weight of a phosphorus sulfide are reacted with about 100 parts of aliphatic hydrocarbon, preferably about 12 to 24 parts of a phosphorus sulfide with about 100 parts of aliphatic hydrocarbon, at a temperature of about 200 to 360 F., preferably 300 to 360 F., and for a period of about 0.25 to 1 0 hours, preferably about to 2 hours.
The aliphatic hydrocarbon is either saturated or unsaturated and includes for example, the following classes and specific compounds. Saturated straight or branched chain hydrocarbons, e. g., hexane, octane, iso-octane, decane, hexadecane, etc.; olefinic hydrocarbons e. g., 'octadecene, do-
decene, polymerized iso-butene, amylene, ethylene,
butadiene, melene, cetene, wax olefins, propylene polymers, amylene polymers, etc. While the olefinic hydrocarbon can be mono-, di-, tri-, etc., unsaturated, it is preferred to employ the monoenic olefin. The monoenic olefin can be represented by the formula CnHzn, or more specifically by the structure RCH=CH-R, wherein both Rs are alkyl groups, and the entire molecule comprises about 10 to carbon atoms. These monoenic olefins can be obtained from any source, however, those derived from halogenating and dehydrohalogenating petroleum fractions in accordance with the method described in my copending application, Serial No. 609,809, filed August 9, 1945 are preferred. In this respect it is to be noted that excellent results are obtained with a monoenic wax olefin having predominantly 18 to 24 carbon atoms, and which is obtained by halogenating and dehydrohalogenating a predominantly C1z';C24 petroleum wax fraction. Monoenic olefins having 10 to 60 carbon atoms are more desirable than heavier olefins because the intermediate derivatives formed therefrom tend to be readily oil soluble and easy to handle, whereas the heavier hydrocarbons yield products which are very viscous and relatively difficult to handle. Likewise, from the standpoint of solubility characteristics those hydrocarbons containing less than about 10 carbon atoms produce intermediate derivatives which are less desirable than those derived from the preferred hydrocarbon. Notwithstanding such differences 1. e. between the products derived from lighter and heavier hydrocarbons and those derived from the preferred C10-C60 monoenic olefin, it will be found that such lighter and heavier hydrocarbons are useful for the purposes of this invention.
The reaction between an aliphatic hydrocarbon and a phosphorus sulfide is well known, and it appears that the products obtained therefrom can contain varying amounts of phosphorus and fide is effected with greater facility and ease than when using a saturated hydrocarbon. Furthermore, for this invention, it is preferred to obtain intermediate products having as much phosphorus in chemical combination as is possible, since phosphorus imparts greater acid characteristics to the product and makes possible the inclusion of more metal in the end product.
The phophorus sulfide employed as the reagent in preparing the intermediate derivative should contain at least phosphorus and sulfur and have the property of imparting such elements into the intermediate derivative. Specific examples of such reagents are phosphorus disulfide, Pass (or PS2) phosphorus trisulfide, P4S6 (or P283) phosphorus sesquisulfide, P483; phosphorus pentasulfide, PzSs; phosphorus heptasulfide, P4S'1; etc.
The intermediate derivative described above is then reacted with a thiocyanate of a light metal in order to incorporate metal into the end product, and neutralize the acidic property thereof, either partially or wholly, or to excess alkalinity. The thiocyanate employed contains a light metal, such as the kind described in Hackhs dictionary, viz, those metals having a. density less than four. Included with the light metal thiocyanates are the alkali and alkaline earth metal thiocyanates. Specific examples of light metal thiocyanates are aluminum thiocyanate, barium thiocyanate, calcium thiocyanate, lithium thiocyanate, magnesium thiocyanate, potassium thiocyanate, sodium thiocyanate, strontium thiocyanate, etc.
It is to be understood, however, that not all the thiocyanates of light metals are equivalent for this invention, but that under certain conditions some are more effective or desirable than others.
The reaction between the light metal thiocyanate and the intermediate derivative is conducted at a temperature of about 150 to 400 F., preferably about 200 to 300 F. At this temperature, about 0.1 to 10 moles of the light metal thiocyanate, preferably 1 to 4 moles of same, are reacted with about 1 mole of the intermediate derivative. The total reaction time is in the order of about to about hours, preferably about to 2 hours. It is preferred to employ an inert gas atmosphere above the reaction mass. and for this purpose for example, nitrogen, CH4, etc. can be used. Usually, this inert gas atmosphere is maintained by the application of a small pressure in the order of up to about 25 to 30 p. s. i. g., and more usually about 10 to p. s. i. g.
The following specific examples will serve to illustrate the methods of preparing the intermediate derivative and the metal containing end products.
EXAMPLE I A wax hydrocarbon containing 18 to 24 carbon atoms was halogenated and dehydrohalogenated, in accordance with the method described in my copending application, Serial No. 609,809, filed August 9, 1945, to obtain a wax olefin having an iodine number of '72. 100 parts of the wax 01efin are heated to about 200 to 250 F. At this temperature a small portion of 21 parts by weight of P285 is added to the heated olefin so as to preclude any olefin polymerization and start the phospho-sulfurization reaction. The heating and stirring of the reaction mixture is continued with the addition of increments of P285 and the raising of the reaction temperature, until a temperature of about 340 to 360 F. is attained. The temperature is maintained at 350 F., plus or minus 10 F., and by means of stirring, all of the Pass has become completely solubilized. The reaction between the reactants is quite rapid, however, it is preferred to continue heating for another 30 minutes in order to insure complete reaction.
Another preferred aspect of this reaction is to keep an atmosphere of inert gas such as for example N2, CH4, etc. above the reaction mixture. This can be accomplished in the same manner as described hereinabove for the reaction with the thiocyanate.
EXAMPLE II One molal quantity of the product produced in Example I is diluted with an equal weight of diluent oil which contains about one part per thousand of silicone oil (an anti-foaming agent), and heated to 200 F. under a 10 p. s. i. g. atmosphere of nitrogen. One molal part of sodium thiocyanate dissolved in 15 cc. of boiling water is added at a temperature of about 200 to 250 F. The temperature is then raised to 300 F. and the water is substantially removed. The product is clarified by centrifuging and/or filtering. The oil solution of this additive is bright and clear.
In order to determine the eifectivenes of the products of the present invention, Underwood tests under conditions of accelerated corrosion, were carried out. In these tests the oil is subjected to the Underwood test plus the following accelerative conditions:
(1) Progressive addition of corrosion accelerator (soluble lead naphthenates) equivalent to 0.025% of lead as PbO every 2 /2 hours; and
(2) The injection of air over the hot oil bath at the rate of cu. ft. per minute.
In each of the tests reported below, the additive to be tested was added to an SAE 20 Mid- Continent refined oil plus 0.4% methyl dichlorstearate. Furthermore, in each of the tests, the additive to be tested was added in quantities totaling 1.25% based on the total composition, and the composition contained about 0.075% sulfur.
Table I Corrosion Loss Induction Time, Hours Cu-Pb, Hours Cd-Ag, Hours Cd-Ag Cu-Pb l0 15 20 l0 15 20 A. Product of Ex. I 14.0 12.0 0 0.2 1. 4 0 1.2 3.15 B. Product of Ex. II 13. 0 12.0 0 0.3 0.92 0 l. 0 2. 35 C. Past-wax olefinNazS* 14. 5 14.0 0 0. 1 1. 2 0 0. 25 2. 70 D. Past-Wax 01efin-NazS""-. 14.0 15.0 0 0. 2 1.2 0 0.15 2. E. Past-wax olefin-NazS.-. 14. 0 15.0 0 0. 1 0.9 O 0 1.83
Two moles of product of Ex. I reacted with 1 mole of Na1S in accordance with method of Ex. II.
"One mole of product of Ex. I reacted with 1 mole of Na1S in accordance with method of Ex. II.
From the above data it can be seen that the product obtained by reacting a thiocyanate with the intermediate derivative is substantially better than when using Nags in place of the thiocyanate in the same reaction. This is borne out by a comparison of tests B and D, wherein the same quantities of metallic reagents were employed, but the corrosion loss for the thiocyanate product was substantially less than the sulfide product. In the case of copper-lead alloy, the thiocyanate product is about as effective as the sulfide product, even though 50% more sulfide reagent is used than the thiocyanate.
It is contemplated for the purposes of this invention, to employ about 0.01 to 20% of the phosphorus sulfide-aliphatic hydrocarbon-light metal thiocyanate product in lubricating oils. For automotive oils, it is preferred employing about 0.5 to 4%, whereas for heavy duty oils about 1 to is preferred.
The lubricating oils which can be used as a base for the finished compositions include those of animal, vegetable, marine, mineral or synthetic origin. Generally, it will be found that the base oil will be of mineral origin due to the abundance and wide use of such oils. The lubricating oil can have a viscosity of 30 to 2000 SUS 100 F., although ordinarily the lubricating oil will have a viscosity of about the SAE 10 to 90 oils.
Having thus described my invention and provided specific examples thereof, it is to be understood that no undue limitations or restrictions are to be imposed by reason thereof, but that the scope of my invention is defined by the appended claims.
3 Other modes of applying the principle of the invention may be employed, change being made as regards the details described, provided the features stated in any of the following claims or the equivalent of such be employed.
I therefore particularly point out and distinctly claim as my invention:
1. A new composition of matter comprising a product which is prepared by reacting about 2 to parts by weight of a phosphorus sulfide with about parts by weight of an aliphatic hydrocarbon at a temperature of about 200 to 360 F. for from about A to 10 hours, wherein said aliphatic hydrocarbon is a mixture of wax olefins having an average of 18 to 24 carbon atoms per molecule and an average of about 1 unsaturated linkage per molecule and then reacting same with a light metal thiocyanate at a temperature of about to 400 F.
2. A new composition of matter comprising a product which is prepared by reacting about 12 to 24 parts by weight of a phosphorus sulfide with about 100 parts by Weight of an aliphatic hydrocarbon at a temperature of about 300 to 360 F. for from about /2 to 2 hours, wherein said aliphatic hydrocarbon is a mixture of wax olefins having an average of 18 to 24 carbon atoms per molecule and an average of about 1 unsaturated linkage per molecule and then reacting about 1 mole of same'with about 0.1 to 10 moles of a light metal thiocyanate at a temperature of about 150 to 400 F.
References Cited in the file of this patent UNITED STATES PATENTS Hersh July 25, 1950

Claims (1)

1. A NEW COMPOSITION OF MATTER COMPRISING A PRODUCT WHICH IS PREPARED BY REACTING ABOUT 3 TO 50 PARTS BY WEIGHT OF A PHOSPHORUS SULFIDE WITH ABOUT 100 PARTS BY WEIGHT OF AN ALIPHATIC HYDROCARBON AT A TEMPERATURE OF ABOUT 200 TO 360* F. FOR FROM ABOUT 1/4 TO 10 HOURS, WHEREIN SAID ALIPHATIC HYDROCARBON IS A MIXTURE OF WAX OLEFINS HAVING AN AVERAGE OF 18 TO 24 CARBONS ATOMS PER MOLECULE AND AN AVERAGE OF ABOUT 1 UNSATURATED LINKAGE PER MOLECULE AND THEN REACTING SAME WITH A LIGHT METAL THIOCYANATE AT A TEMPERATURE OF ABOUT 150 TO 400* F.
US194196A 1950-11-04 1950-11-04 Light metal thiocyanate derivatives of phosphor-sulfurized aliphatic hydrocarbons Expired - Lifetime US2688013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US194196A US2688013A (en) 1950-11-04 1950-11-04 Light metal thiocyanate derivatives of phosphor-sulfurized aliphatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US194196A US2688013A (en) 1950-11-04 1950-11-04 Light metal thiocyanate derivatives of phosphor-sulfurized aliphatic hydrocarbons

Publications (1)

Publication Number Publication Date
US2688013A true US2688013A (en) 1954-08-31

Family

ID=22716666

Family Applications (1)

Application Number Title Priority Date Filing Date
US194196A Expired - Lifetime US2688013A (en) 1950-11-04 1950-11-04 Light metal thiocyanate derivatives of phosphor-sulfurized aliphatic hydrocarbons

Country Status (1)

Country Link
US (1) US2688013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2929828A (en) * 1955-09-28 1960-03-22 Exxon Research Engineering Co Lubricant additives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2377955A (en) * 1942-09-30 1945-06-12 Standard Oil Co Lubricant
US2516119A (en) * 1945-08-09 1950-07-25 Continental Oil Co Metal, phosphorus, and sulfur-containing organic compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2377955A (en) * 1942-09-30 1945-06-12 Standard Oil Co Lubricant
US2516119A (en) * 1945-08-09 1950-07-25 Continental Oil Co Metal, phosphorus, and sulfur-containing organic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2929828A (en) * 1955-09-28 1960-03-22 Exxon Research Engineering Co Lubricant additives

Similar Documents

Publication Publication Date Title
US2760933A (en) Lubricants
US2316087A (en) Lubricant
US2316082A (en) Lubricant
US3471404A (en) Lubricating compositions containing polysulfurized olefin
US2443264A (en) Compounded lubricating oil
US2749311A (en) Corrosion inhibitors and compositions containing the same
US2471115A (en) Lubricating oil
US2516119A (en) Metal, phosphorus, and sulfur-containing organic compounds
GB594960A (en) Compounded lubricating oil
US2703784A (en) Corrosion inhibitors and compositions containing the same
US3455896A (en) Reaction products of sulfurized polybutenes and triglycerides
US2415833A (en) Lubricant
US2764547A (en) Corrosion resistant lubricant composition
US2493217A (en) Mineral oil composition
US2413648A (en) Terpene reaction product and method of producing
US2379453A (en) Mineral oil composition
US2382700A (en) Compounded lubricating oil
US2768999A (en) Phosphosulfurized hydrocarbons and production thereof
US2636858A (en) Mineral oil additive
US2785128A (en) Metal salts of organic acids of phosphorus
US2439610A (en) Stabilized organic composition
US2799651A (en) Corrosion inhibitors and compositions containing the same
US2743235A (en) Mineral oil composition
US2595170A (en) Stabilized mineral oil
US2688013A (en) Light metal thiocyanate derivatives of phosphor-sulfurized aliphatic hydrocarbons