US2493217A - Mineral oil composition - Google Patents

Mineral oil composition Download PDF

Info

Publication number
US2493217A
US2493217A US673152A US67315246A US2493217A US 2493217 A US2493217 A US 2493217A US 673152 A US673152 A US 673152A US 67315246 A US67315246 A US 67315246A US 2493217 A US2493217 A US 2493217A
Authority
US
United States
Prior art keywords
oil
per cent
reaction
product
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US673152A
Inventor
Henry G Berger
Everett W Fuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Socony Vacuum Oil Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL71486D priority Critical patent/NL71486C/xx
Priority claimed from US539597A external-priority patent/US2416281A/en
Application filed by Socony Vacuum Oil Co Inc filed Critical Socony Vacuum Oil Co Inc
Priority to US673152A priority patent/US2493217A/en
Priority to US673150A priority patent/US2493216A/en
Priority to GB18726/47A priority patent/GB644043A/en
Application granted granted Critical
Publication of US2493217A publication Critical patent/US2493217A/en
Priority to DES19741A priority patent/DE907332C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/128Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/141Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/142Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/24Epoxidised acids; Ester derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/284Esters of aromatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/285Esters of aromatic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/02Macromolecular compounds obtained by reactions of monomers involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • C10M2223/121Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/10Groups 5 or 15
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • This invention has to do with a new and novel mineral oil composition and,, more particularly, has to do with a mineral oil composition containing minor proportions of an oil-soluble detergent and of an oil-soluble, phosphorusand sulfur-containing reaction product.
  • mineral oils are generally characterized by one or more undesirable characteristics which limit their use.
  • One such characteristic is their instability under operating conditions normally encountered in present day engines, such that after a relatively short time, metal engine parts become contaminated with sludge,'lacquer and resinous materials. In many instances, the said materials form in and about piston rings causing them to stick, the phenomenon being referred to as ring-sticking. As a consequence of the instability of the oil, engine operating emciency is seriously reduced.
  • Another undesirable characteristic of mineral oils is their tendency to oxidize, whereupon acidic materials are formed. These acidic materials corrode metal engine arts, particularly alloy bearings such as those of the cadmium-silver, copper-lead, etc., type.
  • oils similarly characterized are ob-,
  • oil-soluble metal sulfonates are contemplated herein, typical of which are those obtained from aromatic hydrocarbons or substi-.
  • tuted aromatic hydrocarbons and a sulfonating agent such as strong sulfuric acid, oleum, chlorsulfonic acid and the like.
  • a sulfonating agent such as strong sulfuric acid, oleum, chlorsulfonic acid and the like.
  • Other typical sulfonates are those obtained by treatment of paraflins, naphthenes and various petroleum fractions-paraffinic, naphthenic or aromaticwith the same reagents.
  • All metals are contemplated herein as constituents of the said metal sulfonates. Especially suitable, however, are calcium, barium and zinc. It is to be understood that when the metal substituent is polyvalent, basic as well as neutral metal sulfonates are obtained and serve the purposes of this invention. Typical and preferred sulfonates are the sodium, basic calcium, basic barium, neutral barium, zinc and dibasic aluminum salts of diwax-benzene sulfonate. Several such materials are described in further detail hereinafter in the examples.
  • oils containing other detergents-oil-soluble salts of organic acids possessing cleansing or detergent action in oil are also substantially improved in character when a small amount of the aforesaid oil-soluble phosphorusand sulfur-containing reaction product of a phosphorus sulfide and adicyclic terpene is incorporated therein.
  • Typical oil detergents contemplated herein are: metal salts of carboxylic acids, as a calcium salt of an alkylated carboxylic acid; metal salts of hydroxyaromatic carboxylic acids, as a barium phenate-carboxylate of an alkyl-substituted phenol-carboxylic acid; sulfides of metal salts of hydroxyaromatic carboxylic acids, as a barium phenate-carboxylate of an 3 aikyl-substituted Phenol carboxylic acid disulfide; metal salts of acid esters. as vanadyl oleyl phthalate; etc.
  • Oil-soluble salts of organic acids such as the foregoing typical salts are well known in the art and may be prepared by any suitable method.
  • the oil-soluble, phosphorusand sulfur-containing reaction products contemplated herein are those obtained by reacting a dicyclic terpene and a phosphorus sulfide at a temperature above about 100 0.
  • any one of the several phosphorus sulfides such as as (or PS2), P480 (01' Pass), P483, P285 (or P4810).
  • P481, etc. may be used in the preparation of the said reaction products, particularly preferred are those reaction products obtained from Pass.
  • Dicyclic terpenes are defined herein as those terpenes which are characterized by the presence of one double bond in the molecule and which are comprised of two ring systems. Typical of such terpenes are pinene, camphene and fenchene. contemplated as coming within this particular designation are those materials which are predominantly comprised of one or more dicyclic terpenes; representative of such materials are the essential or volatile oils which are predominantly comprised of such a terpene, or terpenes, and are typified by turpentine oil, the predominant constituent of which is pinene.
  • Preferred of the dicyclic terpene reactants are pinene and turpentine oil. Accordingly, the preferred reaction products are those obtained from Pass and pinene, and P28; and turpentine oil.
  • reaction product obtained in this reaction contains phosphorus and sulfur in substantially the same amounts as was added in the phosphorus sulfide used. It would appear, then, that the reaction is one of addition; that is, addition of the phosphorus sulfide to the one unsaturated bond present in pinene.
  • reaction temperature for the reaction described above should be one of at least about 100 C.
  • preferred temperatures fall within the range of about 100 C. to about 160 C.
  • the proportions of reactants used herein may be varied in order to prepare reaction products having difierent degrees of oil solubility and different degrees of oil improving power. It is preferred, however, to use about 1 mol of a phosphorus sulfide with 4 mols of a dicyclic terpene for the preparation of a reaction product readily soluble in petroleum oils. For example, when more than 1 mol of P285 is used with 4 mols of pinene, a viscous gel-like reaction product is obtained and this product is difilcultly soluble in petroleum oils.
  • a blend of a dicyclic terpene, such as pinene, and a comparatively inert solvent such as a petroleum oil may be treated as described above to provide an oil blend of the reaction product.
  • the preferred procedure of this type involves the use of a 1:1 blend of dicyclic terpene and petroleum oil with a phosphorus sulfide, the molar ratio of said terpene to said sulfide being 4:1.
  • the oil compositions contemplated herein may also contain, in addition to an oil detergent and a dicyclic terpene-phosphorus sulfide reaction product, a small amount of one or more other oilsoluble, phosphorusand sulfur-containing reaction products.
  • One such reaction product is that which is obtained by reaction of approximately 1 mol of phosphorus pentasulfide with 4 mols of oleyl alcohol, or ocenol, at a temperature between about 125 C.and about 150 C. for a relatively short time.
  • EXAMPLE 1 Basic barium diwax' benzene suljonate A parafiin wax having an average of 24 carbon atoms to the molecule and a melting point of 126 F. was chlorinated at about C. with chlorine gas until the weight of the wax had increased about 10%. The chlorowax (10% Cl) thus obtained was then blown with nitrogen to remove any occluded chlorine and hydrogen chloride.
  • This upper layer was treated with 3170 parts by weight of barium hydroxide octahydrate (Ba(OH)z.8H:) which represents an excess of barium hydroxide over that required to neutralize the diwax benzene sulfonic acid and any free sulfuric acid occluded therein.
  • the reaction mixture thus formed was heated to about 140 C'. for about 6 hours with nitrogen gas bubbling through it to remove water and it was then filtered through a layer of clay.
  • EXAMPLE 2 Zinc diwax benzene sulfonate A diwax benzene sulfonic acid was prepared as described in Example 1 aboveand this was then treated with zinc acetate. After distilling oil the acetic acid, the product was filtered through clay leaving a material--product B-tha.t contained 3.36% zinc and 1.6% sulfur.
  • EXAMPLE 3 Basic barium diwax naphthalene sulfonate Five hundred (500) parts of chlorowax, containing 12% chlorine, were added to 500 parts of Stoddard solvent and 108 parts of naphthalene. The mixture was warmed to 50-60 C. and 30 grams of AlCla were added gradually. When' the recation stopped the mixture was heated to 90 C. and blown with N2 gas to remove 1101. It was then allowed to stand overnight at room temperature. The lower sludge layer was removed and the oil layer was filtered through clay. This consisted essentially of diwax naphthalene.
  • the diwax naphthalene was treated with 250 parts of oleum (15% $03) by adding the latter slowly so as to keep the temperature at 40-50 C.
  • One thousand (1000) parts of water were then added with stirring and this was followed by 500 parts of an S. A. E. 30 grade motor oil.
  • the mixture was allowed to stand at 60-70 C. overnight and the oil layerwas then withdrawn.
  • This acid was treated with an excess of barium hydroxide and the mixture was heated to a maximum temperature of 150 C. in the presence of a stream of nitrogen to remove the water.
  • the Stoddard solvent was removed by heating to 170 C. at a vacuum of mm. This left an approximately 50% solution of the basicbarium diwax naphthalene sulfonate in the petroleum motor oil, which is identified herein as product C. It contained Ba and 2.0% S.
  • EXAMPLE 4 Barium salt of petroleum oil suljonate A Mid-Continent distillate of 95 seconds Saybolt viscosity at 100 F. was treated with oleum, the sludge was settled and removed, and the oil layer was neutralized with caustic soda solution. The sodium sulfonates thus formed were recovered by adding ethyl alcohol, separating the alcohol layer, and then evaporating off the alcohol. This left a mixture of oil and sodium sulfonates. This was contacted with a water solution of barium chloride and, after separation of the oil layer and drying, the latter-product D- was found to contain 6.9% Ba and 2.5% S.
  • Barium triwax phenol carboxylate A barium salt of a triwax phenol carboxylate-- 5 product E-was prepared by the method described in U. S. Patent 2,197,835. It was formed in an oil blend and contained 4.0% Ba.
  • vanadyl salt of oleyl phthalate (3.94% vanadium), which is identified herein as product H.
  • EXAMPLE 9 Pinene-PzS5 reaction product Eight hundred (800) parts by weight of pinene and an equal weight of a motor oil (Saybolt Universal viscosity of seconds at 210 F.) were heated to 105 C. with stirring. Three hundred and twenty-six (326) parts of P283 (a ratio of 4 mols of pinene to 1 mol of P285) were added slowly, the temperature rising to 115 C. because of the exothermic reaction. The mixture was then 5 heated to 150 C. for 1 hour, 20 parts of'clay were added and the resultant mixture filtered. The filtrate, consisting of 1842 parts by weight, was then vacuum topped at 5 mm. pressure to a pot temperature of 150 C.- The residue consisting of 1693 parts by weight was a clear, viscous oilproduct Xcontaining 12.5% sulfur and 5.1% phosphorus.
  • EXAMPLE 11 An accelerated oxidation test has been used in order to determine the corrosive nature of luculation in the system is 1500 cc.
  • the apparatus used consists of a circulating system whereby oil at 325 F. under a pressure of 10 pounds per square inch, is sprayed against a standard cadmium-nickel bearing for a period of hours.
  • the amount of oil under constant cir- In passing through the system the oil comes into contact with cast-iron, steel, stainless steel, copper and the aforesaid cadmium-nickel bearing. and is also exposed to aeration.
  • the oil used in this test contains a small amount of an accelerator, namely iron naphthenate (commercially designated as Nuodex, 6% F620;) which greatly increases the rate of oxidation of the oil.
  • the degree of oxidation suffered by the oil is shown by the development of acidity therein as measured by the neutralization number (N. N.) the loss in weight of the cadmium-nickel bearing and the percentage viscosity increase.
  • the oil used was a solvent refined oil having a Saybolt Universal viscosity of 65 seconds at 210 1''. and containing 0.17% of Nuodex. The results of these tests are shown in Table I below.
  • the oil is rated by dividing the time (in hours) required for a 0.200 gram loss for an oil blend, by the time (in hours) required for the same loss for a blank oil that was 5 run in the engine immediately preceding it. A rating of less than 1 indicates an oil inferior to the blank oil, and a rating greater than 1 indicates an oil superior thereto.
  • the oil used in the test is a solvent-refined oil having an S. U. V. of 318 seconds at 100 F. The results are presented in Table 11 below.
  • EXAMPLE 12 The corrosivity of an oil and of an oil containins an oil detergent toward alloy bearings is demonstrated by the following test. Also demonstrated is the non-corrosive nature of the oil compositions contemplated herein, which contain small amounts of a phosphorusand sulfurcontaining reaction product of the aforesaid type, and an oil detergent.
  • This test involves operating a single-cylinder C. l".
  • R. engine containing copper-lead bearings at an oil temperature of 285- F. and a jacket temperature of 212 F.
  • the engine is stopped at various time intervals and the top bearing is weighed to determine the corrosion loss thereof.
  • the corrosion loss is plotted against the test time interval and each run is continued until a loss of onstrate that an oil containing a small amount of an oil detergent is more corrosive than the oil alone.
  • a small amount of a reaction product of the type defined above is added to such an oil, the corrosive nature of the oil is greatly counteracted.
  • EXAMPLE 14 of an oil used in the General Motor type of A single cylinder Caterpillar Diesel engine was run for 96 hours at 19.8 brake horsepower and 1000 R. P. M. The oil temperature and the water temperature were both maintained at 195 1". The piston was then removed and rated for cleanliness. The results of several engine tests are presented in Table IV below.
  • thou oil detergents defined as metal sulfonatesoi wax-substituted aromatic hydrocarbons.
  • This preference is influenced by their outstanding pour depressing properties as illustrated below in Table VI which gives results for products A and C, barium salts or diwax benzene sulfonic acid and diwax naphthalene sulfonic acid respectively, and for product D, a barium salt 0! a sultonic acid derived from petroleum oil.
  • the two former materials are effective in lowering the pour point while the latter is ineiiective.
  • concentrations of from about 0.5% to about 10% of an oil detergent are used in an'oil fraction, but concentrations of the order of about 4% have been found to be satisfactory for most purposes.
  • concentration of an oil soluble, phosphorusand sulfur-containing reaction product of a dicyclic terpene and a phosphorus sulfide may be varied from about 0.1% to about 3.0%; in general, however, about 0.5% will be satisfactory.
  • the mineral oil compositions of this invention may also contain one or more other oil-soluble, phosphorusand sulfur-containing reaction products, such as those obtained from oleyl alcohol and P185, as defined above. Oils of excellent quality are obtained moan? 1'1 with from about 0.25% to about 2.0% of such a reaction product, incorporated with the aforesaid quantities of an oil detergent and of a dicyclic terpene reaction product of the type defined above.
  • Mineral oil concentrates are also contemplated herein, such concentrates containing substantially larger concentrations of an oil detergent and of a dicyclic terpene-phosphorus sulfide 'reaction product, than those enumerated above. That is, relatively large amounts of the said materials may be incorporated in an oil fraction in which they are readily soluble, and the oil concentrate so obtained may thereafter be diluted with a suitable quantity of the said 011 fraction prior to use. It is to be understood that these mineral oil concentrates may also contain one or more of the aforesaid other oil-soluble, phosphorusand sulfur-containing reaction products, such as those obtained from oleyl alcohol in amounts substantially in excess of those described above.
  • an oil detergent and a dicyclic terpene-phosphorus sulfide reaction product may be incorporated in a mineral oil in any one of several ways.
  • the dicyclic terpene reaction product may be added to an oil fraction containing an oil detergent; also, an oil detergent may be added to the reactants (dicyclic terpene and phosphorus sulfide) used in the preparation of the said reaction product and, in such case, will be present during the reaction.
  • the oil detergent may react with the dicyclic terpene and phosphorus sulflde to form a complex reaction product under the reaction conditions enumerated above; the product obtained in this manner may then be added to an oil fraction.
  • the mineral oil compositions and concentrates of this invention are complex in nature, for it is possible that an oil detergent and a dicyclic terpene-phosphorus sulfide reaction product may be present individually in an oil fraction, or may also be present therein as a physical combination or, further, may be present therein in the form of a single chemical composition.
  • an oil detergent and a reaction product of the aforesaid type may enter into chemical reaction when the oil composition is used as a lubricant under certain conditions, such for example, as a lubricant in an engine operating at relatively high temperatures.
  • the term mineral trate is inclusive of all mineral oil fractionscontaining relatively large amounts of the sa'd oil detergent and said reaction product.
  • oil detergents are preferred 0! their class, all compounds coming within the aforesaid definition of an oil detergent may be used.
  • mineral oil fractions disclosed above are but typical of the fractions which may be used.
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oil-soluble, sulfurized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil pr0domin-- antly comprised of a dicyclic terpene, at a temperature greater than about C.
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised of a dicyclic terpene, at a' temperature between about 100 C. and about C.
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized alkaline earth metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised of a-dicyclic terpene, at a temperature between about 100 C. and about 160 C.
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal salt of an alkylated aromatic carboxylic acid; and a minor proportion, from about 0.10 per cnt to about 3.0 per cent, of an oil-soluble, phosphorusand sulfurcontaining reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised of a dicyclic terpene, at a temperature between about 100 C. and about 160 C.
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal salt of a hydroxyaroma- 13 from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised of a dicyclic terpene, at a temperature between about 100 C. and about 160 C.
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about per cent, of an oilsoluble, sulfurized barium triwax-phenol carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential o'il predominantly comprised of a dicyclic terpene, at a temperature between about 100 C.
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of substantially one mol of a phosphorus sulfide and four mols of a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised oi a dicyclic terpene, at a temperature between about 100 C. and about 160 C.
  • An improved mineral oil composition comprising a viscous mineral oil traction having in admixture therewith: a minor proportion, from about 0.5 per cent to above 10 per cent, of an oilsoluble, sulturized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, oi! an oil-soluble, phosphorus- 14 and sulfur-containing reaction product obtained by reaction of substantially one mol of phosphorus pentasulflde and four mols of pinene, at a temperature between about C. and about C.
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent. oi an oil-soluble. phosphorusand sulfur-containing reaction product obtained by reaction 01' substantially one mol of phosphorus pentasulflde and four mols oi terpentine oil, at a temperature between about 100 C. and about 160 C. a
  • An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oil-soluble. suliurized barium triwax-phenol car-- boxylate; and a minor proportion, from about 0.1 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of substantially one mol of phosphorus pentasuli'ide and tour mols of pinene at a temperature between about 100 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

Patented Jan. 3, 1950 MINERAL OIL COMPOSITION Henry G. Berger, Glen Rock, and Everett W.
Fuller, Woodbury, N. J., assignors to Socony- Vacuum Oil Company, Incorporated, a corporation of New York No Drawing.
Serial No. 539,597.
' This invention has to do with a new and novel mineral oil composition and,, more particularly, has to do with a mineral oil composition containing minor proportions of an oil-soluble detergent and of an oil-soluble, phosphorusand sulfur-containing reaction product.
It is well known to those familiar with theart that mineral oils are generally characterized by one or more undesirable characteristics which limit their use. One such characteristic is their instability under operating conditions normally encountered in present day engines, such that after a relatively short time, metal engine parts become contaminated with sludge,'lacquer and resinous materials. In many instances, the said materials form in and about piston rings causing them to stick, the phenomenon being referred to as ring-sticking. As a consequence of the instability of the oil, engine operating emciency is seriously reduced. Another undesirable characteristic of mineral oils is their tendency to oxidize, whereupon acidic materials are formed. These acidic materials corrode metal engine arts, particularly alloy bearings such as those of the cadmium-silver, copper-lead, etc., type.
It is also well known in the art that numerous materials have been proposed as improving or fortifying agents for use in mineral oils to counteract or retard the aforesaid undesirable characteristics. Of the improving agents pre viously proposed, oil-soluble metal sulfonates have been found to be satisfactory in imparting detergent properties to mineral oils. Unfortunately, however, such sulfonates fail to improve, and in some cases even impair, other characteristics of mineral oils. In some instances, for example, metal sulfonates have increased the formation of acidic materials in mineral oils during use, thus inducing corrosion of metal parts with which the oils come in contact.
It has now been found that the corrosion and ox dation characteristics of an oil containing a small amount of an oil-soluble metal sulfonate can be greatly improved by incorporating therewith a small amount of an oil-soluble, phosphorusand sulfur-containing reaction product of a dicyclic terpene and a phosphorus sulfide. More specifically, it has been found that an extremely stable oil having outstanding detergent, oxidation and corrosion characteristics is ob- Orlginal application June 9, 194d,
Divided and this application May 29, 1946, Serial No. 673,152
10 Claims. (Cl. 25.2-42.7)
tained by incorporating in an oil containing a metal sulfonate, a small amount of a reaction product of the aforesaid type. It has also been found that oils similarly characterized are ob-,
tained by incorporating a smallamount of the said reaction product into oils containing small amounts of oil-soluble salts of organic acids, which possess detergent properties.
All oil-soluble metal sulfonates are contemplated herein, typical of which are those obtained from aromatic hydrocarbons or substi-.
tuted aromatic hydrocarbons, and a sulfonating agent such as strong sulfuric acid, oleum, chlorsulfonic acid and the like. Other typical sulfonates are those obtained by treatment of paraflins, naphthenes and various petroleum fractions-paraffinic, naphthenic or aromaticwith the same reagents. Preferred, however, are the metal salts of sulfonic acids of wax-substituted benzene and naphthalene, wherein the wax substituent is a long-chain aliphatic hydrocarbon group containing at least about 18 carbon atoms and is obtained from paraflin wax.
All metals are contemplated herein as constituents of the said metal sulfonates. Especially suitable, however, are calcium, barium and zinc. It is to be understood that when the metal substituent is polyvalent, basic as well as neutral metal sulfonates are obtained and serve the purposes of this invention. Typical and preferred sulfonates are the sodium, basic calcium, basic barium, neutral barium, zinc and dibasic aluminum salts of diwax-benzene sulfonate. Several such materials are described in further detail hereinafter in the examples.
As indicated hereinabove, oils containing other detergents-oil-soluble salts of organic acids possessing cleansing or detergent action in oilare also substantially improved in character when a small amount of the aforesaid oil-soluble phosphorusand sulfur-containing reaction product of a phosphorus sulfide and adicyclic terpene is incorporated therein. Typical oil detergents contemplated herein are: metal salts of carboxylic acids, as a calcium salt of an alkylated carboxylic acid; metal salts of hydroxyaromatic carboxylic acids, as a barium phenate-carboxylate of an alkyl-substituted phenol-carboxylic acid; sulfides of metal salts of hydroxyaromatic carboxylic acids, as a barium phenate-carboxylate of an 3 aikyl-substituted Phenol carboxylic acid disulfide; metal salts of acid esters. as vanadyl oleyl phthalate; etc. Oil-soluble salts of organic acids such as the foregoing typical salts are well known in the art and may be prepared by any suitable method.
The oil-soluble, phosphorusand sulfur-containing reaction products contemplated herein are those obtained by reacting a dicyclic terpene and a phosphorus sulfide at a temperature above about 100 0. Although any one of the several phosphorus sulfides such as as (or PS2), P480 (01' Pass), P483, P285 (or P4810). P481, etc., may be used in the preparation of the said reaction products, particularly preferred are those reaction products obtained from Pass.
Dicyclic terpenes" are defined herein as those terpenes which are characterized by the presence of one double bond in the molecule and which are comprised of two ring systems. Typical of such terpenes are pinene, camphene and fenchene. contemplated as coming within this particular designation are those materials which are predominantly comprised of one or more dicyclic terpenes; representative of such materials are the essential or volatile oils which are predominantly comprised of such a terpene, or terpenes, and are typified by turpentine oil, the predominant constituent of which is pinene. Preferred of the dicyclic terpene reactants are pinene and turpentine oil. Accordingly, the preferred reaction products are those obtained from Pass and pinene, and P28; and turpentine oil.
Although a complete understanding of the chemical composition of the reaction products contemplated here is not known at this time, a partial understanding of their composition may be realized by noting the characteristics involved in the reaction. The reaction between phosphorus pentasulfide and pinene, for example, commences at about 100 C. and is exothermic in nature. During the reaction, the reaction mixture increases appreciably in viscosity and little, if any, hydrogen sulfide is evolved therefrom. The reaction product obtained in this reaction contains phosphorus and sulfur in substantially the same amounts as was added in the phosphorus sulfide used. It would appear, then, that the reaction is one of addition; that is, addition of the phosphorus sulfide to the one unsaturated bond present in pinene.
While the reaction temperature for the reaction described above should be one of at least about 100 C., the preferred temperatures fall within the range of about 100 C. to about 160 C.
The proportions of reactants used herein may be varied in order to prepare reaction products having difierent degrees of oil solubility and different degrees of oil improving power. It is preferred, however, to use about 1 mol of a phosphorus sulfide with 4 mols of a dicyclic terpene for the preparation of a reaction product readily soluble in petroleum oils. For example, when more than 1 mol of P285 is used with 4 mols of pinene, a viscous gel-like reaction product is obtained and this product is difilcultly soluble in petroleum oils. Also when less than 1 mol of P285 is used with 4 mols of pinene, a viscous oil somewhat insoluble in mineral oils is obtained after the unreacted pinene has been recovered by distillation. Accordingly, it is to be understood that while effective mineral oil improving agents of the type contemplated herein can be obtained by using different ratios of reactants, particularly preferred improving agents are those obtained by using approximately 1 mol of a phosphorus sulfide for every 4 mols of a. dicyclic terpene.
There is, however, still another desirable procedure for preparing the reaction products contemplated here. In order to obtain a relatively non-viscous reaction product, a blend of a dicyclic terpene, such as pinene, and a comparatively inert solvent such as a petroleum oil, may be treated as described above to provide an oil blend of the reaction product. The preferred procedure of this type involves the use of a 1:1 blend of dicyclic terpene and petroleum oil with a phosphorus sulfide, the molar ratio of said terpene to said sulfide being 4:1.
Further details regarding the character of the aforesaid dicyclic terpene-phosphorus sulfide reaction products may be obtained by referring to copending application Serial No. 482,482, filed April 9, 1943, of Everett W. Fuller et al.
The oil compositions contemplated herein may also contain, in addition to an oil detergent and a dicyclic terpene-phosphorus sulfide reaction product, a small amount of one or more other oilsoluble, phosphorusand sulfur-containing reaction products. One such reaction product is that which is obtained by reaction of approximately 1 mol of phosphorus pentasulfide with 4 mols of oleyl alcohol, or ocenol, at a temperature between about 125 C.and about 150 C. for a relatively short time. These reaction products are described in further detail in copending application Serial No. 524,490, filed February 29, 1944, of Everett W. Fuller et a1. now U. S. Patent No. 2,411,153, issued November 19, 1946.
In the following examples, typical and preferred metal sulfonates and other oil-soluble metal detergents and dicyclic terpene-phosphorus sulfide reaction products are described in order to further explain the oil addition agents contemplated herein.
EXAMPLE 1 Basic barium diwax' benzene suljonate A parafiin wax having an average of 24 carbon atoms to the molecule and a melting point of 126 F. was chlorinated at about C. with chlorine gas until the weight of the wax had increased about 10%. The chlorowax (10% Cl) thus obtained was then blown with nitrogen to remove any occluded chlorine and hydrogen chloride.
One thousand and twenty (1020) parts of the above chlorowax was then reacted with 458 parts by weight of benzene in the presence of 62 parts of AlCla at about 60 C. for about 2 hours. The excess benzene was then distilled off by warming to C. with a stream of N2 gas bubbling through the mixture. The monowax benzene thus formed was treated with an additional 1020 parts of chlorowax and the mixture heated to 85 C. until reaction stopped. It was allowed to stand overnight at about 60 C. and then decanted from the settled AlCla sludge and filtered. The product consisted essentially of diwax benzene.
Five thousand two hundred (5200) parts of the diwax benzene, prepared as described above, were treated with successive 250 parts of oleum, containing 15% S03, while maintaining the temperature at 35-55 C. After 2600 parts of oleum had been added and the reaction had ceased, 3000 parts of water were added while the mixture was thoroughly stirred. An S. A. E. 30 grade motor oil (5400 parts) was then added and the mixture was allowed to settle over night at about 75 C. The lower layer, consisting mostly of dilute 5 sulfuric acid, was withdrawn leaving diwaxbenzene sulfonic acid in the upper layer. This upper layer was treated with 3170 parts by weight of barium hydroxide octahydrate (Ba(OH)z.8H:) which represents an excess of barium hydroxide over that required to neutralize the diwax benzene sulfonic acid and any free sulfuric acid occluded therein. The reaction mixture thus formed was heated to about 140 C'. for about 6 hours with nitrogen gas bubbling through it to remove water and it was then filtered through a layer of clay. The productproduct A--consisted of an approximately 50% oil blend of basic barium diwax benzene sulfonate (analysis: 5.17% barium and 1.5% sulfur).
EXAMPLE 2 Zinc diwax benzene sulfonate A diwax benzene sulfonic acid was prepared as described in Example 1 aboveand this was then treated with zinc acetate. After distilling oil the acetic acid, the product was filtered through clay leaving a material--product B-tha.t contained 3.36% zinc and 1.6% sulfur.
EXAMPLE 3 Basic barium diwax naphthalene sulfonate Five hundred (500) parts of chlorowax, containing 12% chlorine, were added to 500 parts of Stoddard solvent and 108 parts of naphthalene. The mixture was warmed to 50-60 C. and 30 grams of AlCla were added gradually. When' the recation stopped the mixture was heated to 90 C. and blown with N2 gas to remove 1101. It was then allowed to stand overnight at room temperature. The lower sludge layer was removed and the oil layer was filtered through clay. This consisted essentially of diwax naphthalene.
The diwax naphthalene was treated with 250 parts of oleum (15% $03) by adding the latter slowly so as to keep the temperature at 40-50 C. One thousand (1000) parts of water were then added with stirring and this was followed by 500 parts of an S. A. E. 30 grade motor oil. The mixture was allowed to stand at 60-70 C. overnight and the oil layerwas then withdrawn. This consisted essentially of 50% diwax naphthalene sulfonic acid in motor oil. This acid was treated with an excess of barium hydroxide and the mixture was heated to a maximum temperature of 150 C. in the presence of a stream of nitrogen to remove the water. After filtering, the Stoddard solvent was removed by heating to 170 C. at a vacuum of mm. This left an approximately 50% solution of the basicbarium diwax naphthalene sulfonate in the petroleum motor oil, which is identified herein as product C. It contained Ba and 2.0% S.
EXAMPLE 4 Barium salt of petroleum oil suljonate A Mid-Continent distillate of 95 seconds Saybolt viscosity at 100 F. was treated with oleum, the sludge was settled and removed, and the oil layer was neutralized with caustic soda solution. The sodium sulfonates thus formed were recovered by adding ethyl alcohol, separating the alcohol layer, and then evaporating off the alcohol. This left a mixture of oil and sodium sulfonates. This was contacted with a water solution of barium chloride and, after separation of the oil layer and drying, the latter-product D- was found to contain 6.9% Ba and 2.5% S.
6 EXAMPLES Barium triwax phenol carboxylate A barium salt of a triwax phenol carboxylate-- 5 product E-was prepared by the method described in U. S. Patent 2,197,835. It was formed in an oil blend and contained 4.0% Ba.
EXAMPLE 6 Sulfurized barium triwax phenol carbon/late A suliurized barium triwax phenol carboxylate-product F-was prepared by the method described in U. S. Patent 2,256,441. It was prepared in an oil blend and analyzed to give 4% Ba. and 0.9% S.
vanadyl salt of oleyl phthalate (3.94% vanadium), which is identified herein as product H.
EXAMPLE 9 Pinene-PzS5 reaction product Eight hundred (800) parts by weight of pinene and an equal weight of a motor oil (Saybolt Universal viscosity of seconds at 210 F.) were heated to 105 C. with stirring. Three hundred and twenty-six (326) parts of P283 (a ratio of 4 mols of pinene to 1 mol of P285) were added slowly, the temperature rising to 115 C. because of the exothermic reaction. The mixture was then 5 heated to 150 C. for 1 hour, 20 parts of'clay were added and the resultant mixture filtered. The filtrate, consisting of 1842 parts by weight, was then vacuum topped at 5 mm. pressure to a pot temperature of 150 C.- The residue consisting of 1693 parts by weight was a clear, viscous oilproduct Xcontaining 12.5% sulfur and 5.1% phosphorus.
EXAMPLE 10 Oleyl alcohol-P285 reaction product Approximately 4 mols of ocenol, a commercial material consisting essentially of oleyl alcohol,
and 1 mol of P2S5 were reacted at about 150 C. m for 2hours. The resulting productproduct Y- contained 5.0% phosphorus and 9.8 sulfur.
The following test results are provided to demonstrate the properties of mineral oils containing small amounts of oil detergents and the out standingly superior properties of mineral oils containing small amounts of the said detergents and of the aforesaid dicyclic terpene-phosphorus sulfide reaction products, which may also have in combination small amounts of other oil-soluble,
7o phosphorusand sulfur-containing reaction products such as the oleyl alcohol-P285 product.
EXAMPLE 11 An accelerated oxidation test has been used in order to determine the corrosive nature of luculation in the system is 1500 cc.
bricating oils under simulated operating conditions. The apparatus used consists of a circulating system whereby oil at 325 F. under a pressure of 10 pounds per square inch, is sprayed against a standard cadmium-nickel bearing for a period of hours. The amount of oil under constant cir- In passing through the system, the oil comes into contact with cast-iron, steel, stainless steel, copper and the aforesaid cadmium-nickel bearing. and is also exposed to aeration. The oil used in this test contains a small amount of an accelerator, namely iron naphthenate (commercially designated as Nuodex, 6% F620;) which greatly increases the rate of oxidation of the oil. The degree of oxidation suffered by the oil is shown by the development of acidity therein as measured by the neutralization number (N. N.) the loss in weight of the cadmium-nickel bearing and the percentage viscosity increase.
The oil used was a solvent refined oil having a Saybolt Universal viscosity of 65 seconds at 210 1''. and containing 0.17% of Nuodex. The results of these tests are shown in Table I below.
0.200 gram is obtained. The oil is rated by dividing the time (in hours) required for a 0.200 gram loss for an oil blend, by the time (in hours) required for the same loss for a blank oil that was 5 run in the engine immediately preceding it. A rating of less than 1 indicates an oil inferior to the blank oil, and a rating greater than 1 indicates an oil superior thereto. The oil used in the test is a solvent-refined oil having an S. U. V. of 318 seconds at 100 F. The results are presented in Table 11 below.
Table I Percent Brg. Percent Percent terge St bilirer N N. Vis. Loss m 8 Increase Gram's N11 1. 39 as 1. 200 do 10.57 183 .770 Product X.--. 2.05 16 .165 .do 1200 8 062 i 6 lo .23 .75 6 .000
u Pmdug a 2.51 22 .040 Produ Product 50 1.03 7 .002 Nil 5. 97 46 l. 195 Product X. 50 2.40 17 .158 Ni 5. 31 50 719 Product X. 25 0. 72 7 .013
It will be apparent from inspection of the results presented in Table I that the blank oil is unsatisfactory in view of its corrosivity as shown by the neutralization number value and the bearing weight loss. The viscosity increase is also high. When a detergent alone is added to the oil there is little or no improvement in any of these factors. However, when a small amount of the pinene- PzSs reaction product, product X. is added to the oil containing any one of the detergents, both the neutralization number formation and the bearing weight loss are greatly decreased. There also is less increase in viscosity. A corresponding improvement is obtained when small amounts of a pinene-PzSs reaction product and of an oleyl alcohOI-PzSs reaction product are added to an oil containing one of the detergents.
EXAMPLE 12 The corrosivity of an oil and of an oil containins an oil detergent toward alloy bearings is demonstrated by the following test. Also demonstrated is the non-corrosive nature of the oil compositions contemplated herein, which contain small amounts of a phosphorusand sulfurcontaining reaction product of the aforesaid type, and an oil detergent.
This test involves operating a single-cylinder C. l". R. engine containing copper-lead bearings, at an oil temperature of 285- F. and a jacket temperature of 212 F. The engine is stopped at various time intervals and the top bearing is weighed to determine the corrosion loss thereof. The corrosion loss is plotted against the test time interval and each run is continued until a loss of onstrate that an oil containing a small amount of an oil detergent is more corrosive than the oil alone. When a small amount of a reaction product of the type defined above is added to such an oil, the corrosive nature of the oil is greatly counteracted.
EXAIMPLEH Tests of an oil, of oil blends containing only an oil detergent, and of oil blends containing an oil detergent and an oil-soluble, phosphorusand sulfur-containing reaction product as defined above, were carried out to determine further the comparative behavior of the unblended oil, the oil containing only the detergent and the oil containing a detergent and said reaction product, under actual operating conditions.
In this test a single-cylinder Lauson engine was operated for 36 hours at an oil temperature 00 of 290 F. and a jacket temperature of 212 1'. The oil used was a solvent-refined oil having a Saybolt Universal viscosity of 45 seconds at 210' I". (kinematic viscosity 5.75 at 210 F.). After 36 hours, the acidity as measured by the neu- 6 tralization number (N. N.) and the kinematic viscosity of the oil were determined. The neutralization number (N. N.) rating is obtained by comparing the neutralization number of the oil blend with the neutralization number of the blank oil, which is run in the engine preceding the run with the oil blend. Ratings of greater than 1 indicate that the oil blend is less acidic than the blank oil and, therefore, superior thereto, and ratings of less than 1 indicate that the "oil biendismoreacidicthentheblankoil and.
9 therefore, inferior thereto. The results of these tests are set forth in Table III below.
The above reeuiteehow thatour oil compositiomarehishiyeiiectiveinimprovingthequaiity Table III Percent Percent Rating Detergent wt. Stabiiiur wt x. v N. m
N.N' no Average. Results- 10.0 10. 2 u as. 11.10 0.11 2 :3} 1.0 an 1.0 4 .g 3.3 1.20 1.1 4 7 1w 1.: as: 1.0 z .50 as 1.12 as 2 .50 1.4 an 11.: 1 .10 1.2 0.12 as 2 .10 1.2 ms at 4 .50 1.3 0.20 1.4
.03 Nil 20.0 $2.41 0.02 .05 Product x B0 3.0 7. 1i 3. 7
EXAMPLE 14 of an oil used in the General Motor type of A single cylinder Caterpillar Diesel engine was run for 96 hours at 19.8 brake horsepower and 1000 R. P. M. The oil temperature and the water temperature were both maintained at 195 1". The piston was then removed and rated for cleanliness. The results of several engine tests are presented in Table IV below.
Table IV A solvent refined S. A. E. 30 grade Mid- Continent oil was used in the following tests.
Oil alonetest stopped due to ring sticking at 48 hours.
Oil+4% product A+0.5% product X-piston in excellent condition.
Oil+2% product A+0.25% product X+0.5%
product Y-piston in good condition.
Oil+2% product C+0.5% product X-piston in excellent condition.
An acid refined S. A. E. 30 grade 011 from a Coastal crude was used in the following tests.
Oil aloneheavy lacquer and deposits on piston. Oil+4.5% products F+0.6% product Xpisto in good condition.
in good condition.
The test results in Table IV demonstrate that oils containing small amounts of a detergent and of a pinene-Pzss reaction product are particularly suitable for use in Diesel engines of the Caterpillar type.
EXAMPLE 15 Table V Hours to port closure Oil alone 122 Oil-{4% product A+0.5% product X 285 Oil+2% product A+0.25% product X+0.5%
product Y 196 Oil+l.5% product E+0.'75% product X 240 Oil+2% product F+0.25% product X 272 A Oil-{4.5% product E+0.6% product Xpiston Diesel engine.
As indicated hereinabove, preference is given herein to thou oil detergents defined as metal sulfonatesoi wax-substituted aromatic hydrocarbons. This preference is influenced by their outstanding pour depressing properties as illustrated below in Table VI which gives results for products A and C, barium salts or diwax benzene sulfonic acid and diwax naphthalene sulfonic acid respectively, and for product D, a barium salt 0! a sultonic acid derived from petroleum oil. The two former materials are effective in lowering the pour point while the latter is ineiiective. These tests were made on a solvent refined S. A. E. 30 grade of 45 seconds Saybolt Universal viscosity at 210 F.
The results set forth in Tables I through V above demonstrate the outstanding qualities of the mineral oil compositions contemplated herein. As shown in the said tables, they possess a high degree of resistance to oxidation and particularly desirable detergent properties. The results presented in Table VI above further demonstrate the superior quality of the preferred oil detergents, metal salts of wax-substituted aromatic hydrocarbon sulfonic acids, as evidenced by their pour depressant properties.
As contemplated by the present invention, concentrations of from about 0.5% to about 10% of an oil detergent are used in an'oil fraction, but concentrations of the order of about 4% have been found to be satisfactory for most purposes. The concentration of an oil soluble, phosphorusand sulfur-containing reaction product of a dicyclic terpene and a phosphorus sulfide may be varied from about 0.1% to about 3.0%; in general, however, about 0.5% will be satisfactory.
As indicated hereinabove, the mineral oil compositions of this invention may also contain one or more other oil-soluble, phosphorusand sulfur-containing reaction products, such as those obtained from oleyl alcohol and P185, as defined above. Oils of excellent quality are obtained moan? 1'1 with from about 0.25% to about 2.0% of such a reaction product, incorporated with the aforesaid quantities of an oil detergent and of a dicyclic terpene reaction product of the type defined above.
Mineral oil concentrates are also contemplated herein, such concentrates containing substantially larger concentrations of an oil detergent and of a dicyclic terpene-phosphorus sulfide 'reaction product, than those enumerated above. That is, relatively large amounts of the said materials may be incorporated in an oil fraction in which they are readily soluble, and the oil concentrate so obtained may thereafter be diluted with a suitable quantity of the said 011 fraction prior to use. It is to be understood that these mineral oil concentrates may also contain one or more of the aforesaid other oil-soluble, phosphorusand sulfur-containing reaction products, such as those obtained from oleyl alcohol in amounts substantially in excess of those described above.
In preparing the mineral oil compositions and concentrates contemplated herein, an oil detergent and a dicyclic terpene-phosphorus sulfide reaction product, as defined hereinabove, may be incorporated in a mineral oil in any one of several ways. For example, the dicyclic terpene reaction product may be added to an oil fraction containing an oil detergent; also, an oil detergent may be added to the reactants (dicyclic terpene and phosphorus sulfide) used in the preparation of the said reaction product and, in such case, will be present during the reaction. It is possible that the oil detergent may react with the dicyclic terpene and phosphorus sulflde to form a complex reaction product under the reaction conditions enumerated above; the product obtained in this manner may then be added to an oil fraction. Accordingly, it will be apparent that the mineral oil compositions and concentrates of this invention are complex in nature, for it is possible that an oil detergent and a dicyclic terpene-phosphorus sulfide reaction product may be present individually in an oil fraction, or may also be present therein as a physical combination or, further, may be present therein in the form of a single chemical composition. In the same connection, it will also be apparent that an oil detergent and a reaction product of the aforesaid type may enter into chemical reaction when the oil composition is used as a lubricant under certain conditions, such for example, as a lubricant in an engine operating at relatively high temperatures.
In view of the foregoing, the term mineral trate is inclusive of all mineral oil fractionscontaining relatively large amounts of the sa'd oil detergent and said reaction product.
It is to be understood that the examples, procedures and oil compositions described hereinabove are illustrative only and are not to be construed as limiting the scope of this invention thereto. For example, all dicyclic terpenes 'as broadly recited above may be used in place of tic carboxylic acid; and a m nor proporti n.
12 pinene shown in the examples; however, pin is preferred. Similarly, any phosphorus sulfide may be used in place of phosphorus pentasulflde shown in the examples, but the latter sulilde is preferred. Also, while the sulfonates and other,
illustrative oil detergents are preferred 0! their class, all compounds coming within the aforesaid definition of an oil detergent may be used. Furthermore, the mineral oil fractions disclosed above are but typical of the fractions which may be used.
This application is a division of our copending application Serial No. 539,597, flied June 9, 1944, now U. 8. Patent No. 2,416,281, issued February 25. 1947.
We claim:
1. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oil-soluble, sulfurized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil pr0domin-- antly comprised of a dicyclic terpene, at a temperature greater than about C.
2. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised of a dicyclic terpene, at a' temperature between about 100 C. and about C.
3. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized alkaline earth metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised of a-dicyclic terpene, at a temperature between about 100 C. and about 160 C.
4. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal salt of an alkylated aromatic carboxylic acid; and a minor proportion, from about 0.10 per cnt to about 3.0 per cent, of an oil-soluble, phosphorusand sulfurcontaining reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised of a dicyclic terpene, at a temperature between about 100 C. and about 160 C.
5. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal salt of a hydroxyaroma- 13 from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised of a dicyclic terpene, at a temperature between about 100 C. and about 160 C.
. 6. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about per cent, of an oilsoluble, sulfurized barium triwax-phenol carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of a phosphorus sulfide and a material selected from the group consisting of a dicyclic terpene and an essential o'il predominantly comprised of a dicyclic terpene, at a temperature between about 100 C.
and about 160 C.
7. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of substantially one mol of a phosphorus sulfide and four mols of a material selected from the group consisting of a dicyclic terpene and an essential oil predominantly comprised oi a dicyclic terpene, at a temperature between about 100 C. and about 160 C.
8. An improved mineral oil composition comprising a viscous mineral oil traction having in admixture therewith: a minor proportion, from about 0.5 per cent to above 10 per cent, of an oilsoluble, sulturized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent, oi! an oil-soluble, phosphorus- 14 and sulfur-containing reaction product obtained by reaction of substantially one mol of phosphorus pentasulflde and four mols of pinene, at a temperature between about C. and about C.
9. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oilsoluble, sulfurized metal carboxylate; and a minor proportion, from about 0.10 per cent to about 3.0 per cent. oi an oil-soluble. phosphorusand sulfur-containing reaction product obtained by reaction 01' substantially one mol of phosphorus pentasulflde and four mols oi terpentine oil, at a temperature between about 100 C. and about 160 C. a
10. An improved mineral oil composition comprising a viscous mineral oil fraction having in admixture therewith: a minor proportion, from about 0.5 per cent to about 10 per cent, of an oil-soluble. suliurized barium triwax-phenol car-- boxylate; and a minor proportion, from about 0.1 per cent to about 3.0 per cent, of an oil-soluble, phosphorusand sulfur-containing reaction product obtained by reaction of substantially one mol of phosphorus pentasuli'ide and tour mols of pinene at a temperature between about 100 C.
and about O.
. HENRY G. BERGER.
anmarmcns cr'mn' The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,256,441 na Sept. 18. 1941 2,908,508 Parrington et a1. Jan. 19, 1943 2,375,222 Griilin et al. May 8. 1945 2,418,281 Berger lab. 25, 194'!

Claims (1)

1. AN IMPROVED MINERAL OIL COMPOSITION COMPRISING A VISCOUS MINERAL OIL FRACTION HAVING IN ADMIXTURE THEREWITH; A MINOR PROPORTION, FROM ABOUT 0.5 PER CENT TO ABOUT 10 PER CENT, OF AN OIL-SOLUBLE, SULFURIZED METAL CARBOXYLATE; AND A MINOR PROPORTION, FROM ABOUT 0.10 PER CENT TO ABOUT 3.0 PER CENT OF AN OIL-SOLUBLE, PHOSPHORUSAND SULFUR-CONTAINING REACTION PRODUCT OBTAINED BY REACTION OF A PHOSPHORUS SULFIDE AND A MATERIAL SELECTED FROM THE GROUP CONSISTING OF A DICYCLIC TERPENE AND AN ESSENTIAL OIL PREDOMINANTLY COMPRISED OF A DICYCLIC TERPENE, AT A TEMPERATURE GREATER THAN ABOUT 100*C.
US673152A 1944-06-09 1946-05-29 Mineral oil composition Expired - Lifetime US2493217A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NL71486D NL71486C (en) 1944-06-09
US673152A US2493217A (en) 1944-06-09 1946-05-29 Mineral oil composition
US673150A US2493216A (en) 1944-06-09 1946-05-29 Mineral oil composition
GB18726/47A GB644043A (en) 1944-06-09 1947-07-14 Mineral oil composition
DES19741A DE907332C (en) 1944-06-09 1950-09-28 Lubricant and process for its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US539597A US2416281A (en) 1944-06-09 1944-06-09 Mineral oil composition
US673152A US2493217A (en) 1944-06-09 1946-05-29 Mineral oil composition
US673150A US2493216A (en) 1944-06-09 1946-05-29 Mineral oil composition

Publications (1)

Publication Number Publication Date
US2493217A true US2493217A (en) 1950-01-03

Family

ID=27415293

Family Applications (2)

Application Number Title Priority Date Filing Date
US673152A Expired - Lifetime US2493217A (en) 1944-06-09 1946-05-29 Mineral oil composition
US673150A Expired - Lifetime US2493216A (en) 1944-06-09 1946-05-29 Mineral oil composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US673150A Expired - Lifetime US2493216A (en) 1944-06-09 1946-05-29 Mineral oil composition

Country Status (4)

Country Link
US (2) US2493217A (en)
DE (1) DE907332C (en)
GB (1) GB644043A (en)
NL (1) NL71486C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658872A (en) * 1949-03-05 1953-11-10 Standard Oil Dev Co Modified copolymers and preparation and uses thereof
US2665252A (en) * 1948-09-25 1954-01-05 Lubrizol Corp Lubricants
US2684334A (en) * 1951-05-25 1954-07-20 Shell Dev Lubricating oil containing a reaction product of p2s5-terpene and 2.4.6-trialkylphenol
DE942582C (en) * 1952-05-15 1956-05-03 Basf Ag Additives for lubricants
DE948075C (en) * 1952-05-15 1956-08-30 Basf Ag Additives for lubricants
DE1031916B (en) * 1952-07-14 1958-06-12 Exxon Research Engineering Co Process for the production of additives for mineral oils, e.g. B. lubricating oils
DE1137160B (en) * 1959-11-16 1962-09-27 Shell Int Research High pressure grease and process for its manufacture

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916451A (en) * 1952-12-18 1959-12-08 Monsanto Chemicals Oil-soluble carbonated metallo alkylated aryl sulfonates and compositions containing the same
US2762773A (en) * 1953-05-22 1956-09-11 Monsanto Chemicals Mineral oil compositions
US2711395A (en) * 1953-11-25 1955-06-21 Sinclair Refining Co Cutting oil composition
US2928789A (en) * 1954-05-07 1960-03-15 Monsanto Chemicals Mineral oil compositions
US2798045A (en) * 1954-09-27 1957-07-02 Shell Dev Lubricating compositions
US3132101A (en) * 1956-05-21 1964-05-05 Sinclair Research Inc Detergent and anti-oxidant lubricant
NL228145A (en) * 1957-05-28
US2969324A (en) * 1958-02-20 1961-01-24 Exxon Research Engineering Co Phosphosulfurized detergent-inhibitor additive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2256441A (en) * 1940-03-08 1941-09-16 Socony Vacuum Oil Co Inc Mineral oil composition and improving agent therefor
US2308503A (en) * 1940-08-02 1943-01-19 Standard Oil Co Compounded hydrocarbon oil
US2375222A (en) * 1943-09-15 1945-05-08 Shell Dev Aviation lubricating oil
US2416281A (en) * 1944-06-09 1947-02-25 Socony Vacuum Oil Co Inc Mineral oil composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2411153A (en) * 1944-02-29 1946-11-19 Socony Vacuum Oil Co Inc Mineral oil composition and improving agent
US2379453A (en) * 1944-06-01 1945-07-03 Socony Vacuum Oil Co Inc Mineral oil composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2256441A (en) * 1940-03-08 1941-09-16 Socony Vacuum Oil Co Inc Mineral oil composition and improving agent therefor
US2308503A (en) * 1940-08-02 1943-01-19 Standard Oil Co Compounded hydrocarbon oil
US2375222A (en) * 1943-09-15 1945-05-08 Shell Dev Aviation lubricating oil
US2416281A (en) * 1944-06-09 1947-02-25 Socony Vacuum Oil Co Inc Mineral oil composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2665252A (en) * 1948-09-25 1954-01-05 Lubrizol Corp Lubricants
US2658872A (en) * 1949-03-05 1953-11-10 Standard Oil Dev Co Modified copolymers and preparation and uses thereof
US2684334A (en) * 1951-05-25 1954-07-20 Shell Dev Lubricating oil containing a reaction product of p2s5-terpene and 2.4.6-trialkylphenol
DE942582C (en) * 1952-05-15 1956-05-03 Basf Ag Additives for lubricants
DE948075C (en) * 1952-05-15 1956-08-30 Basf Ag Additives for lubricants
DE1031916B (en) * 1952-07-14 1958-06-12 Exxon Research Engineering Co Process for the production of additives for mineral oils, e.g. B. lubricating oils
DE1137160B (en) * 1959-11-16 1962-09-27 Shell Int Research High pressure grease and process for its manufacture

Also Published As

Publication number Publication date
DE907332C (en) 1954-03-25
US2493216A (en) 1950-01-03
NL71486C (en)
GB644043A (en) 1950-10-04

Similar Documents

Publication Publication Date Title
US2416281A (en) Mineral oil composition
US2493217A (en) Mineral oil composition
US2316087A (en) Lubricant
US2767164A (en) Complexes containing phosporus and sulphur and methods of making same
US2471115A (en) Lubricating oil
US2526497A (en) Mineral lubricating oil containing polysulfides of thiophosphorous and thiophosphoric acid esters
US2360302A (en) Compounded hydrocarbon oil
US2516119A (en) Metal, phosphorus, and sulfur-containing organic compounds
US2361804A (en) Lubricating composition
US2378820A (en) Lubricating oil
US2379453A (en) Mineral oil composition
US2421004A (en) Mineral oil composition
US2506310A (en) Lubricating oil composition
US2799651A (en) Corrosion inhibitors and compositions containing the same
US2442915A (en) Mineral oil composition
US2419584A (en) Mineral oil composition
US2921901A (en) Lubricating oil composition
US2993856A (en) Lubricant containing a sulfurized terpene and sulfurized sperm oil
US2916451A (en) Oil-soluble carbonated metallo alkylated aryl sulfonates and compositions containing the same
US2763615A (en) Carboxylic acid derivatives and lubricants containing them
US2422585A (en) Lubricant
US2476813A (en) Lubricating composition
US2799652A (en) Corrosion resistant composition
US2388199A (en) Mineral oil composition
US2627523A (en) S-(sulfurized terpene hydrocarbon) dithiophosphoric acid triesters and methods of producing the same