US2660401A - Turbine bucket - Google Patents

Turbine bucket Download PDF

Info

Publication number
US2660401A
US2660401A US240707A US24070751A US2660401A US 2660401 A US2660401 A US 2660401A US 240707 A US240707 A US 240707A US 24070751 A US24070751 A US 24070751A US 2660401 A US2660401 A US 2660401A
Authority
US
United States
Prior art keywords
blade
section
root
cross
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US240707A
Inventor
Jr Thomas N Hull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US240707A priority Critical patent/US2660401A/en
Application granted granted Critical
Publication of US2660401A publication Critical patent/US2660401A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/50Vibration damping features

Definitions

  • This invention relates to turbomachine blades or buckets, particularly to a turbine bucket for service in high temperature gas turbine powerplants.
  • the object of this invention is to provide an improved turbine bucket having a novel configuration especially designed to eliminate fatigue failures in the blade root or dovetail due to the long, slender, shroudless bucket having a natural frequency so low as to become resonant under the influence of discontinuities in the motive fluid flow.
  • Fig. l is a front perspective view of a turbine blade incorporating invention
  • Fig. 2 is a side view of the same blade
  • Fig. 3 is an end view looking at the tip of the blade
  • Fig. 4 is a sectional view illustrating the shape of an intermediate portion of the blade at the plane identified C in Fig. 2
  • Fig. 5 is a graphical representation of certain design characteristics of the blade.
  • the invention is practiced by dividing the effective length of the blade into three portions, a root portion having a cross-section of substantial thickness and being shaped generally as an impulse type of blade, a tip portion havin a very thin cross-section of airfoil shapeand constituting a reaction type of blade, and an intermediate portion which sharply transitions from the impulse blade shape at the motto the reaction type of blade shape at the tip.
  • the blade comprises a conventional base portion 1 provided with dovetail grooves la, or any of the many well-known equivalent means for fastening the base to the rim of the bucket-wheel.
  • dovetail grooves la any of the many well-known equivalent means for fastening the base to the rim of the bucket-wheel.
  • the novel blade shape which constitutes the present invention is applicable to shroudless buckets or blades wherever the length of the blade is such that vibration problems, with resulting risk of fatigue failures, are encountered.
  • the blade 2 is di- 3 vided radially into three portions of distinctive shape. These three portions are defined between the planes identified A, B, C, D in Fig. 2.
  • the root portion immediately adjacent the bucket base I extends from the plane A to the plane B.
  • This portion is identified 2a, and is characterized by the cross section shape shown at 2.11 in Fig. 3.
  • this blade shape is essentially that of the well-known impulse type of turbine, having a section of very substantial thickness, the maximum thickness occurring. approximately at the midpoint of the axial width of the blade.
  • This type of blade is roughly crescent-shaped; and, because of the cross-section shape and the substantial thickness, it has excellent resistance to vibration. in a tangential direction.
  • the precise shape of this portion of the blade is of course determined in accordance.
  • the entrance angle may be on the order of 29 and the exit. angle may be on the order of 28.
  • both the cross section shape-of the blade and the cross section area are exactly, or very nearly exactly, constant from the section A adjacent the base i throughout approximately the root third of the blade, that is, extending outward to. the plane B in Fig. 2.
  • the outline identified 2a in Fig. 3 represents the shape. oi the blade at both planes A and- B in Fig. 2.
  • the outer third of the blade is identified 2c in Fig. 2, and has. a airfoil-shaped crosssection indicated at 3: in. Fig. 3.. It will immediately be apparent that this tip section is of, very much smaller cross-section area than the root section 2a, also that the maximum thickness, in accordance with the. Well-known aerodynamic design of airfoil sections, occurs substantially for- Ward of the middle of the chord; and the entrance angle has increased very substantially and the discharge angle has decreased so that the outer third of the blade has the characteristic warped shape of blades designed in accordance with the above-mentioned vortex theories. Specifically, the entrance angle at the tip may be on the order of 80, and the exit angle may be about The middle third of the blade, identified 2b in. Fig. 2.
  • Fig. 4 represents the cross-section shape of the blade at the plane identified C in Fig. 2. It will be apparent that this section is still of comparatively great thickness, but that the shape has changed to that of an airfoil with the point of maximum thickness at about one-third the chord of the airfoil from the leading edge.
  • the entrance angle is about 45 degrees and the exit angle about 25 degrees.
  • the area is exactly, or very nearly exactly, constant throughout the root portion 2a (from plane A to plane B).
  • the cross-section area is also substantially constant, but at a very much lower value, throughout the tip portion 20 (from plane C to plane D). And it. changes with great rapidity in the intermediate blade portion 2b (from plane B to plane C). More specifically, it may be noted that the crosssecti'on area in the tip portion is on the order of only: about 20 to 30 per cent of the root area between plane A and plane B. Generally, it may be stated that the. cross-section area of the tip portion is not more than about one-third that of thefroot portion.
  • the root portion 2a is. en F stantially an impulse type: blade, while the tip portion 20 is essentially a reaction type blade. while the transition portion 212 changes. very rapidly from an impulse type section to substantially a reaction blade.
  • the blade section will be. of substantially pure impulse typev at the section A; but the crosssection shape may change slightly with radiusso that. at section B, the shapev is suitable. for perhaps 10 per cent reaction.
  • the root portion 2a is for all practical purposes an -impulse type blade section.
  • the invention provides a blade which has, been found to have unusual resistance to vibration in a tangential direction relative to the bucketrwheel to which it is secured.
  • blades of the same general ,size and capacity designed according to previous gas turbine practice had a fatigue life of only on the order of a few hundred thou,- sand cycles, corresponding to a few hundred hours of normal operation, tests of sample blades made in accordance with the invention have indicated the life will be many years.
  • This improvement in fatigue resistance is achieved by the invention without increase the axial thickness of the bucket-Wheels and, therefore, with substantially no change in the total weight of the rotor. There may be some slight increase in the rotor weight, due. to the fact that the root section of the blades is some.- what thicker than the prior art designs.
  • the invention is also advantageous in that it, permits greater bucket length, for a given weight. of rotor and length of service life, so that the motive fluid flow path area can be increased to decrease the velocity of the fluid leaving the turbine and, therefore, reduce the leaving loss represented by the velocity energy remaining in the motive fluid.
  • an improvement in aerodynamic efiiciency can be obtained without increasing the weight of the rotor, and with much better life expectancy than with prior art blade shapes.
  • the advantage of the design is apparent from the fact that it has permitted a 40 per cent reduction in bucket width (corresponding generally to a 40 per cent reduction in bucket-wheel weight) over that which would. be required for the same fatigue resistance in a bucket not using the invention.
  • This design also improves the buckets resistance to vibration in the axial direction.
  • the invention provides a novel turbine blade shape which efiects important improvements in resistance to fatigue failure, at substantially no cost in increased rotor weight, and with an improvement in aerodynamic emciency.
  • An integral turbom-achine blade having the efiective length thereof subdivided into root, intermediate, and tip portions, the root portion comprising substantially one-third of the blade length and having a substantially constant crescent-shaped section substantially that of an impulse t pe blade, the tip portion comprising substantially the outer third of the blade length and having a substantially constant airfoilshaped section substantially that of a reaction type blade, the intermediate blade portion rapidly transitioning smoothly and continuously from g the impulse-shaped root to the reaction-shaped tip, the cross-section area of the root portion being on the order of three times the cross-section area of the tip portion whereby the high moment of inertia of the root section resists vibration of the blade.
  • An integral turbo-machine blade havingthe effective length thereof divided into root, intermediate, and tip portions, the root portion comprising substantially one-third of the blade length and having a shape substantially that of an impulse type blade, the cross-section shape and area of said root portion being substantially constant throughout the radial length thereof,
  • the tip portion comprising substantially the outer third of the blade length and having a substantially constant cross-section shape substantially that of a reaction type blade, the intermediate blade portion rapidly transitioning smoothly and continuously from the impulse-shaped root portion to the reaction-shaped tip portion, the cross-section area of the tip portion being substantially constant along the radial length thereof and being not more than about one-third the cross-section area of the root portion, while the cross-section area of the intermediate portion decreases rapidly from the root portion to the tip portion, whereby the tangential moment of inertia of the cross-section area is high and substantially constant throughout the root portion, while the tip portion is of substantially smaller section and tangential moment of inertia.
  • the root portion comprising substantially one-third of the blade length and having a crescent shape substantially that of an impulse type blade, the crosssection shape and area of said root portion being substantially constant throughout the radial length thereof with an entrance angle on the order of 30 and an exit angle on the order of 30, the tip portion comprising substantially the outer third of the blade length and having substantially constant airfoil-shaped cross-section substantially that of a reaction type blade with an entrance angle on the order of and an exit angle in the neighborhood of 20, the intermediate blade portion rapidly transitioning smoothly and continuously from the impulseshaped root portion to the reaction-shaped tip portion, the cross-section area of the tip portion being on the order of one-third as large as that of the root portion while the cross-section area of the intermediate blade portion decreases rapidly from the root portion to the tip portion, whereby the tangential moment of inertia of the cross-section area is high and substantially constant throughout the root portion while the tip portion is of substantially smaller section and moment of inert

Description

1953 'r. N. HULL, JR 2,660,401
TURBINE BUCKET Filed Aug. 7, 1951 CROSS sEcr/a/v APE/7 .Iiilh a 221354; Inventor":
Th cm as N. Hull Jr.
A 8 8 by W His Attr-ney.
Patented Nov. 24, 1953 TURBINE BUCKET Thomas N. Hull, Jr., Schenectady, N. Y., assignor to General Electric Company, a corporation of New York Application August 7, 1951, Serial No. 240,707
3 Claims.
This invention relates to turbomachine blades or buckets, particularly to a turbine bucket for service in high temperature gas turbine powerplants.
In recent years, in connection with the development of practicable gas turbine powerplants, there have been developed numerous modifications of the so-called vortex type of blade, characterized by a blade shape that is warped or twisted from root to tip in order to obtain various desired aerodynamic characteristics. In order to reduce the stresses in the blade due to centrifugal force, it has been customary to taper the blade from root to tip so that it has a continuously decreasing cross-section area. Likewise, the transition in cross-section shape, and the change in entrance and exit angles, has been gradual from root to tip. This uniform transition along the length of the blade has been dictated by the aerodynamic considerations involved in designing blades according to the various vortex design theories.
As the capacity of gas turbine power-plants has progressively increased, it has been necessary to rapidly increase the length of the compressor and turbine blades, with the result that serious troubles have been encountered with fatigue failures of the comparatively long slender blades. These problems have resulted partly from the use of shroudless buckets, as contrasted with earlier steam turbine rotor structures in which a continuous shroud band of some sort is secured to the bucket tips. Such shrouds have an important influence in reducing tangential vibration of the buckets, which type of vibration appears to have a most serious effect in producing fatigue failures. With a shroudless bucket, fixed more or less rigidly at its base and completely free to vibrate at its tip, it is extremely diflicult to so design a gas turbine power-plant that the blades will not, at some speed or other, experience excessive resonant vibration due to discontinuities in the motive fiuid stream. These discontinuities may be caused by the fact that the motive fluid is produced by six or more separate combustors spaced circumferentially around the axis of the power-plant, or by the partitions in the turbine nozzle ring or struts extending across the flow path.
These fatigue failures of turbine buckets have been an important source ofdifficulty in placing in regular commercial operation the first large gas turbine power-plants. It has become increasingly necessary to find a satisfactory and simple solution for this problem in order to make All possible large scale commercial exploitation of thi type of prime mover.
Accordingly, the object of this invention is to provide an improved turbine bucket having a novel configuration especially designed to eliminate fatigue failures in the blade root or dovetail due to the long, slender, shroudless bucket having a natural frequency so low as to become resonant under the influence of discontinuities in the motive fluid flow.
While improvement in the bucket vibration characteristics could be effected merely by substantially increasing the axial width of the bucket, that expedient would proportionately increase the axial thickness and the weight of the turbine rotor. Accordingly, it is a further object to effect this improvement in bucket fatigue strength without increasing the axial thickness of the bucket-wheels.
Other objects and advantages will become apparent from the following description, taken in connection with the accompanying drawings, in which Fig. l is a front perspective view of a turbine blade incorporating invention, Fig. 2 is a side view of the same blade, Fig. 3 is an end view looking at the tip of the blade, Fig. 4 is a sectional view illustrating the shape of an intermediate portion of the blade at the plane identified C in Fig. 2, and Fig. 5 is a graphical representation of certain design characteristics of the blade.
Generally, the invention is practiced by dividing the effective length of the blade into three portions, a root portion having a cross-section of substantial thickness and being shaped generally as an impulse type of blade, a tip portion havin a very thin cross-section of airfoil shapeand constituting a reaction type of blade, and an intermediate portion which sharply transitions from the impulse blade shape at the motto the reaction type of blade shape at the tip.
Referring now more particularly to Fig. 1, the blade comprises a conventional base portion 1 provided with dovetail grooves la, or any of the many well-known equivalent means for fastening the base to the rim of the bucket-wheel. I he precise type of fastening is not material to an understanding of the present invention; and it will be appreciated that the novel blade shape which constitutes the present invention is applicable to shroudless buckets or blades wherever the length of the blade is such that vibration problems, with resulting risk of fatigue failures, are encountered.
As shown in Figs. 1 and 2, the blade 2 is di- 3 vided radially into three portions of distinctive shape. These three portions are defined between the planes identified A, B, C, D in Fig. 2. The root portion immediately adjacent the bucket base I extends from the plane A to the plane B. This portion is identified 2a, and is characterized by the cross section shape shown at 2.11 in Fig. 3. It will be. immediately apparent to those skilled in the turbine art that this blade shape is essentially that of the well-known impulse type of turbine, having a section of very substantial thickness, the maximum thickness occurring. approximately at the midpoint of the axial width of the blade. This type of blade is roughly crescent-shaped; and, because of the cross-section shape and the substantial thickness, it has excellent resistance to vibration. in a tangential direction. The precise shape of this portion of the blade is of course determined in accordance.
with the well-known design principles governing the impulse. type of blade, as used for many years past in steam turbines. For instance, the entrance angle may be on the order of 29 and the exit. angle may be on the order of 28.
Attention is particularly directed to the fact that both the cross section shape-of the blade and the cross section area are exactly, or very nearly exactly, constant from the section A adjacent the base i throughout approximately the root third of the blade, that is, extending outward to. the plane B in Fig. 2. In other words, the outline identified 2a in Fig. 3 represents the shape. oi the blade at both planes A and- B in Fig. 2.
The outer third of the blade is identified 2c in Fig. 2, and has. a airfoil-shaped crosssection indicated at 3: in. Fig. 3.. It will immediately be apparent that this tip section is of, very much smaller cross-section area than the root section 2a, also that the maximum thickness, in accordance with the. Well-known aerodynamic design of airfoil sections, occurs substantially for- Ward of the middle of the chord; and the entrance angle has increased very substantially and the discharge angle has decreased so that the outer third of the blade has the characteristic warped shape of blades designed in accordance with the above-mentioned vortex theories. Specifically, the entrance angle at the tip may be on the order of 80, and the exit angle may be about The middle third of the blade, identified 2b in. Fig. 2. iraneitions very rapidly, yet'smoothly and continuously, from the impulse type root sec.- tion to the thin airfoil type tip section. To. indicate the rapidity of this change in shape, reference may be had to Fig. 4, which represents the cross-section shape of the blade at the plane identified C in Fig. 2. It will be apparent that this section is still of comparatively great thickness, but that the shape has changed to that of an airfoil with the point of maximum thickness at about one-third the chord of the airfoil from the leading edge. The entrance angle is about 45 degrees and the exit angle about 25 degrees.
The manner in which the blade shape transitions from the impulse shape at the root, as shown at 2a in Fig. 3, to the airfoil section 4 at section C, may be seen from a comparison of the outlines of the blade as shown in Figs. 1 and 2. It will be seen that this transition in shape takes place with great rapidity in the intermediate blade portion 2b. The corresponding change in crosasection area as a function of radius is illustrated graphic-ally in Fig. 5. Here the abscissa represents the radial length of the blade, with the stations A, B, C, D marked as in Fig. 2. The curve identified 5 represents the change in cross-section area from root to tip. It will be seen that the area is exactly, or very nearly exactly, constant throughout the root portion 2a (from plane A to plane B). The cross-section area is also substantially constant, but at a very much lower value, throughout the tip portion 20 (from plane C to plane D). And it. changes with great rapidity in the intermediate blade portion 2b (from plane B to plane C). More specifically, it may be noted that the crosssecti'on area in the tip portion is on the order of only: about 20 to 30 per cent of the root area between plane A and plane B. Generally, it may be stated that the. cross-section area of the tip portion is not more than about one-third that of thefroot portion.
It is also interesting to note the corresponding change in value of the tangential moment of inertia of the. cross-section area, which design characteristic has the most important effect on the resistance of the blade to vibration in a tan genti-al direction. This characteristic is represented by the curve labeled 6- in Fig. 5. It will be apparent that the tangential moment of inertia of the blade section follows generally the shape of the cross section area curve, the moment of inertia at the tip being only on the order of a few per cent of the moment of inertia of the root section 2a. More specifically, it may be stated that the tangential moment of inertia of the blade section throughout the tip portion 20 is not more than about one-tenth the moment of inertia at the root portion 2a.
As described above, the root portion 2a is. en F stantially an impulse type: blade, while the tip portion 20 is essentially a reaction type blade. while the transition portion 212 changes. very rapidly from an impulse type section to substantially a reaction blade. Actually, it is not necessary that the root portion 2a be a impulse section all the way from section A to. section B. The blade section will be. of substantially pure impulse typev at the section A; but the crosssection shape may change slightly with radiusso that. at section B, the shapev is suitable. for perhaps 10 per cent reaction. Thus, the root portion 2a is for all practical purposes an -impulse type blade section.
As contrasted with the prior art blade shapes having a gradual continuous transition in both shape and cross-section area from root to tip, the invention provides a blade which has, been found to have unusual resistance to vibration in a tangential direction relative to the bucketrwheel to which it is secured. Whereas blades of the same general ,size and capacity designed according to previous gas turbine practice had a fatigue life of only on the order of a few hundred thou,- sand cycles, corresponding to a few hundred hours of normal operation, tests of sample blades made in accordance with the invention have indicated the life will be many years.
This improvement in fatigue resistance is achieved by the invention without increase the axial thickness of the bucket-Wheels and, therefore, with substantially no change in the total weight of the rotor. There may be some slight increase in the rotor weight, due. to the fact that the root section of the blades is some.- what thicker than the prior art designs. The invention is also advantageous in that it, permits greater bucket length, for a given weight. of rotor and length of service life, so that the motive fluid flow path area can be increased to decrease the velocity of the fluid leaving the turbine and, therefore, reduce the leaving loss represented by the velocity energy remaining in the motive fluid. Thus, an improvement in aerodynamic efiiciency can be obtained without increasing the weight of the rotor, and with much better life expectancy than with prior art blade shapes.
Stated another way, the advantage of the design is apparent from the fact that it has permitted a 40 per cent reduction in bucket width (corresponding generally to a 40 per cent reduction in bucket-wheel weight) over that which would. be required for the same fatigue resistance in a bucket not using the invention. This design also improves the buckets resistance to vibration in the axial direction.
Thus, it will be seen that the invention provides a novel turbine blade shape which efiects important improvements in resistance to fatigue failure, at substantially no cost in increased rotor weight, and with an improvement in aerodynamic emciency.
While only one blade shape of this novel type has been described specifically, it will be apparent to those skilled in the art that many small changes may be made without departing from the invention, and it is intended to cover by the appended claims all such modifications as fall within the true spirit and scope of the invention.
What I claim as new and desire to secure by Letters Patent of the United States is:
1. An integral turbom-achine blade having the efiective length thereof subdivided into root, intermediate, and tip portions, the root portion comprising substantially one-third of the blade length and having a substantially constant crescent-shaped section substantially that of an impulse t pe blade, the tip portion comprising substantially the outer third of the blade length and having a substantially constant airfoilshaped section substantially that of a reaction type blade, the intermediate blade portion rapidly transitioning smoothly and continuously from g the impulse-shaped root to the reaction-shaped tip, the cross-section area of the root portion being on the order of three times the cross-section area of the tip portion whereby the high moment of inertia of the root section resists vibration of the blade.
2. An integral turbo-machine blade havingthe effective length thereof divided into root, intermediate, and tip portions, the root portion comprising substantially one-third of the blade length and having a shape substantially that of an impulse type blade, the cross-section shape and area of said root portion being substantially constant throughout the radial length thereof,
the tip portion comprising substantially the outer third of the blade length and having a substantially constant cross-section shape substantially that of a reaction type blade, the intermediate blade portion rapidly transitioning smoothly and continuously from the impulse-shaped root portion to the reaction-shaped tip portion, the cross-section area of the tip portion being substantially constant along the radial length thereof and being not more than about one-third the cross-section area of the root portion, while the cross-section area of the intermediate portion decreases rapidly from the root portion to the tip portion, whereby the tangential moment of inertia of the cross-section area is high and substantially constant throughout the root portion, while the tip portion is of substantially smaller section and tangential moment of inertia.
3. In an integral turbomachine blade having the effective length thereof divided into root, intermediate, and tip portions, the root portion comprising substantially one-third of the blade length and having a crescent shape substantially that of an impulse type blade, the crosssection shape and area of said root portion being substantially constant throughout the radial length thereof with an entrance angle on the order of 30 and an exit angle on the order of 30, the tip portion comprising substantially the outer third of the blade length and having substantially constant airfoil-shaped cross-section substantially that of a reaction type blade with an entrance angle on the order of and an exit angle in the neighborhood of 20, the intermediate blade portion rapidly transitioning smoothly and continuously from the impulseshaped root portion to the reaction-shaped tip portion, the cross-section area of the tip portion being on the order of one-third as large as that of the root portion while the cross-section area of the intermediate blade portion decreases rapidly from the root portion to the tip portion, whereby the tangential moment of inertia of the cross-section area is high and substantially constant throughout the root portion while the tip portion is of substantially smaller section and moment of inertia.
THOMAS N. HULL, JR.
References Cited in the file of this patent UNITED STATES PATENTS
US240707A 1951-08-07 1951-08-07 Turbine bucket Expired - Lifetime US2660401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US240707A US2660401A (en) 1951-08-07 1951-08-07 Turbine bucket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US240707A US2660401A (en) 1951-08-07 1951-08-07 Turbine bucket

Publications (1)

Publication Number Publication Date
US2660401A true US2660401A (en) 1953-11-24

Family

ID=22907613

Family Applications (1)

Application Number Title Priority Date Filing Date
US240707A Expired - Lifetime US2660401A (en) 1951-08-07 1951-08-07 Turbine bucket

Country Status (1)

Country Link
US (1) US2660401A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787049A (en) * 1952-05-23 1957-04-02 Stalkcr Dev Company Process of fabricating blades for turbines, compressors and the like
US2894318A (en) * 1952-10-08 1959-07-14 Gen Electric Turbomachine bucket-wheel fabricated by casting
US2928653A (en) * 1955-12-22 1960-03-15 Gen Electric Variable angle blade for fluid flow machines
US3044746A (en) * 1960-05-18 1962-07-17 Gen Electric Fluid-flow machinery blading
US3242665A (en) * 1963-07-12 1966-03-29 Flater Anders Harold Compound turbine engine
US3291381A (en) * 1966-04-15 1966-12-13 Joy Mfg Co High energy axial flow apparatus
US3652182A (en) * 1970-04-01 1972-03-28 Mikhail Efimovich Deich Turboseparator for polyphase fluids and turbine incorporating said turboseparator
US3854845A (en) * 1971-07-02 1974-12-17 De Water F Van Propeller having angularly disposed tip
DE2650433A1 (en) * 1975-11-03 1977-05-12 Polska Akademia Nauk Instytut ROTATING BLADE FOR STEAM AND GAS TURBINES AND AXIAL COMPRESSORS
US4585395A (en) * 1983-12-12 1986-04-29 General Electric Company Gas turbine engine blade
US4682935A (en) * 1983-12-12 1987-07-28 General Electric Company Bowed turbine blade
US5480285A (en) * 1993-08-23 1996-01-02 Westinghouse Electric Corporation Steam turbine blade
US6299412B1 (en) * 1999-12-06 2001-10-09 General Electric Company Bowed compressor airfoil
US6370695B2 (en) 1998-01-16 2002-04-16 Depuy Orthopaedics, Inc. Head gear apparatus
USRE38040E1 (en) * 1995-11-17 2003-03-18 United Technologies Corporation Swept turbomachinery blade
US20040068208A1 (en) * 1998-09-25 2004-04-08 Cimino William Wayne Surgical system console
US20050013693A1 (en) * 2001-01-12 2005-01-20 Mitsubishi Heavy Industries Ltd. Blade structure in a gas turbine
EP1519007A1 (en) * 2001-01-25 2005-03-30 Mitsubishi Heavy Industries, Ltd. Gas turbine
EP1612372A1 (en) * 2004-07-01 2006-01-04 Alstom Technology Ltd Turbine blade with a cut-back at the tip or the root of the blade
US6990691B2 (en) 2003-07-18 2006-01-31 Depuy Products, Inc. Head gear apparatus
EP1760321A3 (en) * 2005-09-05 2011-07-27 Rolls-Royce Deutschland Ltd & Co KG Blade for turbomachine
US20110217178A1 (en) * 2010-03-03 2011-09-08 Stefan Mazzola Turbine airfoil having outboard and inboard sections
US20130230404A1 (en) * 2010-11-10 2013-09-05 Herakles Method of optimizing the profile of a composite material blade for rotor wheel of a turbine engine, and a blade having a compensated tang
US20150337664A1 (en) * 2012-12-13 2015-11-26 Nuovo Pignone Srl Turbomachine blade, corresponding turbomachine and method of manufacturing a turbine blade

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL14791C (en) *
US1263473A (en) * 1917-09-25 1918-04-23 Gen Electric Elastic-fluid turbine.
US1353710A (en) * 1916-05-03 1920-09-21 British Westinghouse Electric Blade or vane for steam-turbines
DE437969C (en) * 1923-04-12 1926-12-04 Aeg Large length steam turbine blade
GB290960A (en) * 1927-05-21 1928-10-01 Schneider & Cie Moving blades for steam or gas turbines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL14791C (en) *
US1353710A (en) * 1916-05-03 1920-09-21 British Westinghouse Electric Blade or vane for steam-turbines
US1263473A (en) * 1917-09-25 1918-04-23 Gen Electric Elastic-fluid turbine.
DE437969C (en) * 1923-04-12 1926-12-04 Aeg Large length steam turbine blade
GB290960A (en) * 1927-05-21 1928-10-01 Schneider & Cie Moving blades for steam or gas turbines

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787049A (en) * 1952-05-23 1957-04-02 Stalkcr Dev Company Process of fabricating blades for turbines, compressors and the like
US2894318A (en) * 1952-10-08 1959-07-14 Gen Electric Turbomachine bucket-wheel fabricated by casting
US2928653A (en) * 1955-12-22 1960-03-15 Gen Electric Variable angle blade for fluid flow machines
US3044746A (en) * 1960-05-18 1962-07-17 Gen Electric Fluid-flow machinery blading
US3242665A (en) * 1963-07-12 1966-03-29 Flater Anders Harold Compound turbine engine
US3291381A (en) * 1966-04-15 1966-12-13 Joy Mfg Co High energy axial flow apparatus
US3652182A (en) * 1970-04-01 1972-03-28 Mikhail Efimovich Deich Turboseparator for polyphase fluids and turbine incorporating said turboseparator
US3854845A (en) * 1971-07-02 1974-12-17 De Water F Van Propeller having angularly disposed tip
DE2650433A1 (en) * 1975-11-03 1977-05-12 Polska Akademia Nauk Instytut ROTATING BLADE FOR STEAM AND GAS TURBINES AND AXIAL COMPRESSORS
US4284388A (en) * 1975-11-03 1981-08-18 Polska Akademia Nauk, Instytut Maszyn Przeplywowych Moving blade for thermic axial turbomachines
US4585395A (en) * 1983-12-12 1986-04-29 General Electric Company Gas turbine engine blade
US4682935A (en) * 1983-12-12 1987-07-28 General Electric Company Bowed turbine blade
US5480285A (en) * 1993-08-23 1996-01-02 Westinghouse Electric Corporation Steam turbine blade
USRE45689E1 (en) * 1995-11-17 2015-09-29 United Technologies Corporation Swept turbomachinery blade
USRE43710E1 (en) 1995-11-17 2012-10-02 United Technologies Corp. Swept turbomachinery blade
USRE38040E1 (en) * 1995-11-17 2003-03-18 United Technologies Corporation Swept turbomachinery blade
US6711748B2 (en) 1998-01-16 2004-03-30 Depuy Orthopaedics, Inc. Head gear apparatus having movably mounted fan
US6393617B1 (en) 1998-01-16 2002-05-28 Depuy Orthopaedics, Inc. Head gear apparatus
US6370695B2 (en) 1998-01-16 2002-04-16 Depuy Orthopaedics, Inc. Head gear apparatus
US6513168B2 (en) 1998-01-16 2003-02-04 Depuy Orthopaedics, Inc. Head gear apparatus
US20040068208A1 (en) * 1998-09-25 2004-04-08 Cimino William Wayne Surgical system console
US6299412B1 (en) * 1999-12-06 2001-10-09 General Electric Company Bowed compressor airfoil
US7229248B2 (en) * 2001-01-12 2007-06-12 Mitsubishi Heavy Industries, Ltd. Blade structure in a gas turbine
US20050013693A1 (en) * 2001-01-12 2005-01-20 Mitsubishi Heavy Industries Ltd. Blade structure in a gas turbine
US20050089403A1 (en) * 2001-01-12 2005-04-28 Mitsubishi Heavy Industries Ltd. Blade structure in a gas turbine
EP1519007A1 (en) * 2001-01-25 2005-03-30 Mitsubishi Heavy Industries, Ltd. Gas turbine
US7200873B2 (en) 2003-07-18 2007-04-10 Depuy Products, Inc. Head gear apparatus having improved air flow arrangement
US7937779B2 (en) 2003-07-18 2011-05-10 Depuy Products Head gear apparatus having improved air flow arrangement
US6990691B2 (en) 2003-07-18 2006-01-31 Depuy Products, Inc. Head gear apparatus
EP1612372A1 (en) * 2004-07-01 2006-01-04 Alstom Technology Ltd Turbine blade with a cut-back at the tip or the root of the blade
EP1760321A3 (en) * 2005-09-05 2011-07-27 Rolls-Royce Deutschland Ltd & Co KG Blade for turbomachine
US20110217178A1 (en) * 2010-03-03 2011-09-08 Stefan Mazzola Turbine airfoil having outboard and inboard sections
US8979498B2 (en) * 2010-03-03 2015-03-17 Siemens Energy, Inc. Turbine airfoil having outboard and inboard sections
US20130230404A1 (en) * 2010-11-10 2013-09-05 Herakles Method of optimizing the profile of a composite material blade for rotor wheel of a turbine engine, and a blade having a compensated tang
US10539028B2 (en) * 2010-11-10 2020-01-21 Snecma Method of optimizing the profile of a composite material blade for rotor wheel of a turbine engine, and a blade having a compensated tang
US20150337664A1 (en) * 2012-12-13 2015-11-26 Nuovo Pignone Srl Turbomachine blade, corresponding turbomachine and method of manufacturing a turbine blade

Similar Documents

Publication Publication Date Title
US2660401A (en) Turbine bucket
US2484554A (en) Centrifugal impeller
US2920864A (en) Secondary flow reducer
US3837761A (en) Guide vanes for supersonic turbine blades
US6264428B1 (en) Cooled aerofoil for a gas turbine engine
US5503529A (en) Turbine blade having angled ejection slot
US4809498A (en) Gas turbine engine
US4826400A (en) Curvilinear turbine airfoil
JP4307706B2 (en) Curved barrel airfoil
US2801790A (en) Compressor blading
JP5911677B2 (en) Turbine assembly having end wall profiled airfoils and selective clocking
CN109538352B (en) Outer drum rotor assembly and gas turbine engine
US2915279A (en) Cooling of turbine blades
US3377050A (en) Shrouded rotor blades
US2910268A (en) Axial flow fluid machines
US3536414A (en) Vanes for turning fluid flow in an annular duct
US2962260A (en) Sweep back in blading
US20180187697A1 (en) Turbofan nacelle assembly with flow disruptor
JP2011528081A (en) Axial flow turbomachine with low gap loss
JP2017082784A (en) Compressor incorporating splitters
US2258793A (en) Elastic-fluid turbine
US3002675A (en) Blade elements for turbo machines
US2749027A (en) Compressor
US2394124A (en) Bladed body
US3034762A (en) Blade damping means