US2645739A - Electron discharge apparatus - Google Patents
Electron discharge apparatus Download PDFInfo
- Publication number
- US2645739A US2645739A US445502A US44550242A US2645739A US 2645739 A US2645739 A US 2645739A US 445502 A US445502 A US 445502A US 44550242 A US44550242 A US 44550242A US 2645739 A US2645739 A US 2645739A
- Authority
- US
- United States
- Prior art keywords
- electrons
- resonator
- electron
- electrode
- electron discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 241000287181 Sturnus vulgaris Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/02—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
- H01J25/10—Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
- H01J25/12—Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator with pencil-like electron stream in the axis of the resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/02—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
- H01J25/22—Reflex klystrons, i.e. tubes having one or more resonators, with a single reflection of the electron stream, and in which the stream is modulated mainly by velocity in the modulator zone
- H01J25/24—Reflex klystrons, i.e. tubes having one or more resonators, with a single reflection of the electron stream, and in which the stream is modulated mainly by velocity in the modulator zone in which the electron stream is in the axis of the resonator or resonators and is pencil-like before reflection
Definitions
- This invention relates to electron discharge apparatus for operation at ultra-high frequencies and of the kind in which pulses of electrons or bunched electrons set up for example by velocity modulation of an electron beam are utilised to excite a high frequency resonator.
- the pulses of electrons or the bunched electrons are utilised as primary electrons to produce at a secondary emissive surface a discontinuous or non-uniform stream of secondary electronsfor the excitation of the high frequency resonator.
- the apparatus may comprise means for directing a beam of electrons through a high frequency field having a component parallel to the beam and for bunching the resulting velocity modulated electrons, a secondary emissive electrode arranged to be bombarded by the bunched electrons and means for withdrawing the resulting secondary electrons and for passing them through a high frequency field to yield up energy by retardation.
- the high frequency fields may be set up in the known way by separate resonators or double resonators of the cavity type or they may be set up by a single cavity resonator providing suitable fields at spaced regions along the electron path.
- the electron beam In velocity modulated apparatus it is usual for the electron beam to be controlled at one part of the apparatus and for work to be done by it at another part, for example in some form of resonator.
- attempts have been made to get very large current densities in the electron beam. This involves difficulties in maintaining the concentration of the beam through the whole system as well as in obtaining high power cathodes. It is therefore proposed that the beam be allowed to fall on a secondary emitting electrode just before crossing the working gap but after bunching. A high potential may be maintained between this electrode and the other side of the resonator, the previous parts of the tube being at fairly low potentials.
- the secondary emitting electrode may take the form of a grid of metal suitably treated to be highly emissive under electron bombardment. It may alternatively be possible to employ thin films as already proposed which emit electrons from one side when bombarded on the other. The emission of secondaries being instantaneous the bunching is not adversely affected. Apart from the increased power obtainable, other advantages exist, for example there is only a relatively small voltage on most of the apparatus and none of the electrons lost by divergence of the beam waste high tension energy.
- the device consists of a pair of toroidal metal resonators RI and R2 arranged with their axes in line and separated by an axial drift tube T.
- an axial beam of-' electrons generated by a cathode C is projected from the left hand side, through two central grids G5 and G2 forming part of the resonator Rt and centrally placed as, shown.
- the beam becomes velocity modulated in its passage through the resonator RI and then travels through the drift tube T in which the electrons become bunched.
- the electrons strike the central grid'A which forms part of the resonator R2.
- the grid A is treated so as to become an efficient secondary emitter and the secondary electrons produced thereby travel forwards with the original beam.
- the electrons then strike the electrode B atthe rear of the central portion of R2, but insulated therefrom, where they are finally collected.
- the electrode B will be maintained at a direct potential higher. than that of R2, but should be coupled thereto through a suitable condenser such as K.
- the primary electron beam is modulated in velocity in passing through the resonator RI, and is bunched in the drift tube T so that it strikes the secondary emissive grid A in a series of high frequency pulses. Pulses of secondary electrons of similar frequency but of greater intensity are then emitted for the excitation of the resonator R2.
- the resonator RI may be excited from an external source so that the apparatus functions as an amplifier, or the two resonators may be regeneratively coupled for operation as an oscillator in known fashion.
- a primary beam set up by a voltage of the order of 400 or 600 volts may be employed; the resonators will normally have the same potential; the collecting electrode may have a voltage applied to it of the order of 5000 or 10,000 volts.
- An electron discharge device comprising means for generating a beam of electrons, means for directing said beam along a predetermined path, means for velocity modulating said beam and causing the bunching of the electrons comprising a cavity resonator and a drift tube, a secondary emissive electrode and a cavity resonator in succession placed; in the path of said beam, said secondary emissive electrode placed effectively between said drift tube and said cavity resonator last named and responsive to said bunched electrons for electrically exciting said cavity resonator last named.
- said cavity resonator has an entrant opening
- said secondary emissive electrode comprises a thin film of electron emissive material having sides transverse to the bunched electron beam, said material when bombarded withbunched electrons on one side emits secondary electrons from the other side, said electrode being integral with said cavity resonator at saidentrant opening.
- An electron discharge device comprising means for producing a beamv of electrons, means for directing said beam. along a predetermined path, means for velocity modulating the electrons of said beam and causing the bunching of the electrons, a secondary emissive electrode and a cavity resonator in succession placed in the path of said beam of electrons, said secondary emissive electrode placed effectively between said velocity modulating-bunching means and Said last named. cavity resonator, means for electrically excitingv said cavityresonator comprising said. secondary emissive electrode responsive in part to said bunched electrons.
- An electron discharge device comprising ametal grid treated to be highly means for producing an electron beam, means positioned adjacent the path of the beam for varying the velocities of the electrons thereof, a drift space enclosure comprising a body of electrical conducting material having an opening extending therethrough and in alignment with the course of the electrons to permit the beam to pass through the opening within the drift space enclosure and to become density varied, a'secondary electron emitting surface positioned in. the path of the beam and upon which the density-varied beam impinges tocause emission of a beam of secondary electrons and output means. within the device electrically coupled to the beam of secondar electrons to extract output energy therefrom.
Landscapes
- Particle Accelerators (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB269632X | 1940-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2645739A true US2645739A (en) | 1953-07-14 |
Family
ID=10251936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US445502A Expired - Lifetime US2645739A (en) | 1940-05-24 | 1942-06-02 | Electron discharge apparatus |
Country Status (5)
Country | Link |
---|---|
US (1) | US2645739A (en)) |
BE (1) | BE472521A (en)) |
CH (1) | CH269632A (en)) |
FR (1) | FR939412A (en)) |
GB (1) | GB577278A (en)) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2900559A (en) * | 1957-01-18 | 1959-08-18 | John A Ruetz | Double stream growing-wave amplifier |
US2974253A (en) * | 1953-10-05 | 1961-03-07 | Varian Associates | Electron discharge apparatus |
US3233140A (en) * | 1961-07-25 | 1966-02-01 | Univ Illinois | Crossed-field dynamic electron multiplier |
US3350566A (en) * | 1964-10-06 | 1967-10-31 | Gen Dynamics Corp | Laser mixer and if amplifier |
US3683235A (en) * | 1969-07-18 | 1972-08-08 | Emi Ltd | Electron discharge devices |
US5150067A (en) * | 1990-04-16 | 1992-09-22 | Mcmillan Michael R | Electromagnetic pulse generator using an electron beam produced with an electron multiplier |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4602190A (en) * | 1984-05-21 | 1986-07-22 | The United States Of America As Represented By The Secretary Of The Army | Semiconductor multipactor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2287845A (en) * | 1939-03-08 | 1942-06-30 | Univ Leland Stanford Junior | Thermionic vacuum tube and circuits |
US2295396A (en) * | 1939-10-07 | 1942-09-08 | Rca Corp | Electronic device |
US2295680A (en) * | 1940-10-25 | 1942-09-15 | Westinghouse Electric & Mfg Co | Ultra high frequency device with conical collector |
US2408423A (en) * | 1941-02-05 | 1946-10-01 | Bell Telephone Labor Inc | High frequency amplifying apparatus |
US2416302A (en) * | 1941-01-07 | 1947-02-25 | Bell Telephone Labor Inc | Electronic apparatus |
-
0
- BE BE472521D patent/BE472521A/xx unknown
-
1940
- 1940-05-24 GB GB9189/40A patent/GB577278A/en not_active Expired
-
1942
- 1942-06-02 US US445502A patent/US2645739A/en not_active Expired - Lifetime
-
1946
- 1946-11-08 FR FR939412D patent/FR939412A/fr not_active Expired
-
1947
- 1947-02-27 CH CH269632D patent/CH269632A/fr unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2287845A (en) * | 1939-03-08 | 1942-06-30 | Univ Leland Stanford Junior | Thermionic vacuum tube and circuits |
US2295396A (en) * | 1939-10-07 | 1942-09-08 | Rca Corp | Electronic device |
US2295680A (en) * | 1940-10-25 | 1942-09-15 | Westinghouse Electric & Mfg Co | Ultra high frequency device with conical collector |
US2416302A (en) * | 1941-01-07 | 1947-02-25 | Bell Telephone Labor Inc | Electronic apparatus |
US2408423A (en) * | 1941-02-05 | 1946-10-01 | Bell Telephone Labor Inc | High frequency amplifying apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2974253A (en) * | 1953-10-05 | 1961-03-07 | Varian Associates | Electron discharge apparatus |
US2900559A (en) * | 1957-01-18 | 1959-08-18 | John A Ruetz | Double stream growing-wave amplifier |
US3233140A (en) * | 1961-07-25 | 1966-02-01 | Univ Illinois | Crossed-field dynamic electron multiplier |
US3350566A (en) * | 1964-10-06 | 1967-10-31 | Gen Dynamics Corp | Laser mixer and if amplifier |
US3683235A (en) * | 1969-07-18 | 1972-08-08 | Emi Ltd | Electron discharge devices |
US5150067A (en) * | 1990-04-16 | 1992-09-22 | Mcmillan Michael R | Electromagnetic pulse generator using an electron beam produced with an electron multiplier |
Also Published As
Publication number | Publication date |
---|---|
FR939412A (fr) | 1948-11-15 |
GB577278A (en) | 1946-05-13 |
BE472521A (en)) | |
CH269632A (fr) | 1950-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2338237A (en) | High-frequency electron discharge apparatus | |
US2305883A (en) | Frequency multiplier | |
US2242275A (en) | Electrical translating system and method | |
US2314794A (en) | Microwave device | |
US2445811A (en) | High-frequency tube structure | |
US2645739A (en) | Electron discharge apparatus | |
US2401945A (en) | Frequency multiplier | |
US2266428A (en) | Lateral deflection ultra high frequency tube | |
US2254796A (en) | Electron device using hollow resonator | |
US2196392A (en) | Ultra high frequency oscillator system | |
US2190731A (en) | Frequency changer | |
US2293180A (en) | Detector system of the velocity modulation type | |
US2140832A (en) | Means and method of controlling electron multipliers | |
US2487800A (en) | Frequency multiplier and stabilization cavity resonator apparatus | |
US2530859A (en) | Ion generators | |
US2480133A (en) | High-frequency tube structure | |
US2138920A (en) | Secondary emission tube and circuit | |
US2889488A (en) | Delay lines for crossed field tubes | |
US2159521A (en) | Absorption oscillator | |
US2150573A (en) | Electric discharge device | |
US2222898A (en) | High-frequency apparatus | |
US2139813A (en) | Secondary emission electrode | |
US2318106A (en) | High-frequency apparatus | |
GB578588A (en) | Improvements in or relating to electron discharge devices | |
US2394055A (en) | Wave impulse generator |