US2637687A - Electrodeposition of nickel - Google Patents

Electrodeposition of nickel Download PDF

Info

Publication number
US2637687A
US2637687A US229261A US22926151A US2637687A US 2637687 A US2637687 A US 2637687A US 229261 A US229261 A US 229261A US 22926151 A US22926151 A US 22926151A US 2637687 A US2637687 A US 2637687A
Authority
US
United States
Prior art keywords
nickel
gal
sodium
zinc powder
triphenylmethane dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US229261A
Inventor
Lloyd B Portzer
William C Leitenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US229261A priority Critical patent/US2637687A/en
Application granted granted Critical
Publication of US2637687A publication Critical patent/US2637687A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt

Definitions

  • This invention relates to the electrodeposition of metals and in particular relates to a brightenins additive for useirrtlie' electrode-position of bright nickel from a nickel electrolyte.
  • the brighten'er selected be operable. within the entire bath to efiectuate ia'ktluly lustrousnand bright! deposit on the article being plated.
  • object of this invention to provide a: brightening additive which can be made compatiblewith a; levelling additive used] in, a
  • triphenylmethane dyes and in particular triphenylmethane. dyes having an auxochrome. group. therein, are reduced to the leuco state. thereof and then treated with an excessoi: aholding;
  • the resulting compound will give exceptional results when used as abrightening additive in a Watts bath.
  • the foregoing treatment amountsto a reduction to the leuco A state by onecompound and -a holding-of the'productinthat state by another compound, Trip'h'enyl-- methaneidyes-whichcan bex satisfactorily treated. by. this ldualprocess of-reduction and holding are listed in table A below.
  • TABEEA Fuchs-inc Pararosaniline Rosaniline Methyl Violet Aniline Blue Iodine Green Aurine-r Acid Fuchsin
  • Example 1 Pararosaniline grams 450 Zinc powder do 120 Hydrochloric acid cc 200 Sodium hydrosulphite pound 1 Water gal 13
  • Example 2 Rosaniline "grams” 454 Zinc powder do 120 Sulfuric acid cc 100 Sodium hydrosulphite pound 1 Water gal 13
  • Example 3 Methyl Violet grams 450 Zinc powder do 120 Sulphuric acid cc 100 Sodium hydrosulphite pound 1 Water gal 13
  • Example 4 Fuchsin grams- 454 Zinc powder do 120 Sulphuric acid cc 100 Sodium hydrosulphite pound 1 Water gal 13
  • Example 5 Aniline Blue grams 448 Zinc powder do 120 Hydrochloric acid cc 200 Sodium hydrosulphite pound 1 Water "gal..- 13
  • triphenylmethane dye in conjunction with a reducing agent and a holding agent will result in a brightening additive having the desirable property of being compatible with other additives over a relatively wide current density range.
  • Example 8 Nickel sulphate 40 oz./gal. Nickel chloride 8 oz./gal. Boric acid 6 oz./gal. Brightening additive (Per Example #2) .15% by volume. pH 4.0. Temperature l35-145 F. Current density 50 amps/sq. ft.
  • Example 9 Nickel sulphate 45 oz./gal. Nickel chloride 8 oz./gal. Boric acid 6 oz./gal. Brightening additive (Per Example #1) 15% by volume. pI-I 4.5. Temperature -145 F. Current density 50 amps/sq. ft.
  • Example 11 Nickel sulphate 40 oz./gal. Nickel chloride 8 oz./gal. Boric acid 6 oz./gal.
  • Brightening additive (per Example #4) 20% by volume.
  • a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
  • a method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenyhnethane dye with a reducing agent comprising zinc powder and sulfuric acid, and a holdin agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
  • a method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid and a holding agent comprising sodium bisulfite.
  • a method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid, and a holding agent comprising sodium hydrosulfite.
  • a method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
  • a method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and a mineral acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
  • a method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and a mineral acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
  • a bath for electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt comprising, a nickel electrolyte and a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
  • a bath for electrodepositing nickel from an aqueous acid solution of a nickel salt comprising, an aqueous acid solution of a nickel salt and a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

Patented May 5, 1953 li'loyd BiPortzer and Vtilliam 1G. Leitenberger, Cleveland, Ohio NoaDrawing. Application May 31, 1951, S'erialNo. 229,261
El 'Glain'is.
This invention "relates to the electrodeposition of metals and in particular relates to a brightenins additive for useirrtlie' electrode-position of bright nickel from a nickel electrolyte.
In the past selectionofa brightener for use in the electrodeposition" of' bright nickelhasbeenpredicatedupon the samemeeting severalrm quirements' relative to operability ina standard Watts bath.
First; it" was' important that the brightener used be soluble in the-entire-solutionso that theformationof an insoluble" precipitate; which would be" detrimental totheoperation the bath, would be avoided;
Secondgit was importantuto.ascertain that the" use of the: brightener would notainterfere withthe action: of. additional additives used to: effec== tuate separate and distinctfiunetions; such"v as levelling;
Lastly, it was. important. that. the brighten'er selected be operable. within the entire bath to efiectuate ia'ktluly lustrousnand bright! deposit on the article being plated.
Becauseofrthe rigidity of the aforementioned: requirements, all known brighteners now commercially available on the market, have been;-
found unsatisfactory forone, reason or another. Either they: were insoluble in the overalltbath, interfered with the action of the other additives,
or because ofythese other additives =presentinthe bath, were inoperable to give a truly. brightand lustrous plate.
Further difiiculty"has been'encountered in all,
ence of: streaks, which? render" the; product: unisatisiactory from as commercial standpoint;
Accordingly; it is? one obi ectw oi; thlS'rlllVGl'ltlOlli to provide a brightening additive which Will-be:-
soluble in nickel electrolyte over-'arelatively wide current density range.
It is a-iurther: object of this invention to providea: brightening additive which can be made compatiblewith a; levelling additive used] in, a
standard Watts. bath.
It is -a' furtherob'ject of this invention to provide a stabilizedrbrightening additive which. will' notfbreakv down under. electrolysis to cause the. formation of an insoluble precipitate;
all)
Other objects o f the-invention will become: ape, parent upon consideration of thefollowing: briefi specification and: the examples used i therein.
Broadly speaking it has been discovered that. ii a1 certain class of i dye compounds: are used in: conjunction with certain other chemical& com? pounds, a highly satisfactory brighteningadditive is: formed; which compound satisie'totorilyimeets: alli the: prerequisites; previously set forth-1 in this regard.
Specifically, it has been found that if triphenylmethane dyes; and in particular triphenylmethane. dyes having an auxochrome. group. therein, are reduced to the leuco state. thereof and then treated with an excessoi: aholding;
agent for, which the oxygen, of, the air has a: greater aiiinity than for said reduced leuco com pound, the resulting compound will give exceptional results when used as abrightening additive in a Watts bath. In essence, the foregoing treatment amountsto a reduction to the leuco A state by onecompound and -a holding-of the'productinthat state by another compound, Trip'h'enyl-- methaneidyes-whichcan bex satisfactorily treated. by. this ldualprocess of-reduction and holding are listed in table A below.
TABEEA Fuchs-inc Pararosaniline Rosaniline Methyl Violet Aniline Blue Iodine Green Aurine-r Acid Fuchsin Thev underlying theory. for this dual i process-or T reduction and holding, stems fronrthe discovery that a relatively rapid reduction :of; the triphenyb methane dye to. the leuco state changes the:.dye from an insoluble compound to a soluble compound capable of userinlanlelectroplating bath. Further treatment in the form of use of a compound wl'iich' will holdthis-'first'-mentioned com pound in" the-leuco state"is necessitated by the fact that unless sO-treated; theleucocompound" will gradually oxidizeand revert -to the originalinsoluble dye-- product, and accordingly be un=-- satisfactory for use in the bath. Experimentation has shown that tl'ie usecf zinc powder and ooqc-agnrecocaw hydrochloric acid is satisfactory toreduce the,
dye to thesleuco state if'the amountsused' are controlled so that the triphenylrnethane dye- Would not be reduced to the point where an..excess of this reducing agent was present in the; form of an insoluble precipitate which would disadvantageously aifect the results obtained from the plating solution. Hence it became manifest that further oxidation that would normally take place must be prevented, or at least compensated for, by the use of compound which would not result in the formation of an insoluble precipitate that would act to destroy the overall solubility of the brightening additive. Best results in this regard could be obtained by using an oxygen containing compound for which the oxygen possessed a greater aflinity than for the reduced leuco compound. In practical application, it was found that use of either sodium hydrosulfite or sodium bisulphite was satisfactory to effectuate the desired holding action, inasmuch as the addition of an excess amount of either one of these compounds did not result in the creation of an insoluble precipitate.
While all of the compounds listed in Table A can be satisfactorily treated as just described, it has been found that certain of the compounds are soluble in the nickel electrolyte without the presence of the reducing and holding agents and accordingly the use of these soluble compounds per se is intended to be within the scope of this invention.
In practice, satisfactory brightening additives for use in the newly discovered process have been prepared by employing the mixture of each of the below listed examples:
Example 1 Pararosaniline grams 450 Zinc powder do 120 Hydrochloric acid cc 200 Sodium hydrosulphite pound 1 Water gal 13 Example 2 Rosaniline "grams" 454 Zinc powder do 120 Sulfuric acid cc 100 Sodium hydrosulphite pound 1 Water gal 13 Example 3 Methyl Violet grams 450 Zinc powder do 120 Sulphuric acid cc 100 Sodium hydrosulphite pound 1 Water gal 13 Example 4 Fuchsin grams- 454 Zinc powder do 120 Sulphuric acid cc 100 Sodium hydrosulphite pound 1 Water gal 13 Example 5 Aniline Blue grams 448 Zinc powder do 120 Hydrochloric acid cc 200 Sodium hydrosulphite pound 1 Water "gal..- 13
Example 6 Iodine Green mgrams" 450 Zine powder do 120 Sulphuric acid cc 100 Sodium bisulphite pound 1 Water gal. 13
4 Example 7 Aurine grams 450 Zinc powder do Hydrochloric acid gal. Sodium bisulphite pound 1 Water gal 13 Nora-The designation of weights employed in the above examples relate only to amounts used in preparing the brightening additive per se, and in no way relate to volumes used in plating baths. In practice, each of the above additives, shown by a specific example, constitutes approximately O.1O.2% of the volume of the plating tank.
Thus it will be seen that use of triphenylmethane dye in conjunction with a reducing agent and a holding agent will result in a brightening additive having the desirable property of being compatible with other additives over a relatively wide current density range.
For the purpose of illustrating how the brightening additives set forth in the above described examples may be satisfactorily utilized to commercially electrodeposit bright nickel, certain electrolytic solutions which have been found to be satisfactory, are described in the below-listed examples.
Example 8 Nickel sulphate 40 oz./gal. Nickel chloride 8 oz./gal. Boric acid 6 oz./gal. Brightening additive (Per Example #2) .15% by volume. pH 4.0. Temperature l35-145 F. Current density 50 amps/sq. ft. Example 9 Nickel sulphate 45 oz./gal. Nickel chloride 8 oz./gal. Boric acid 6 oz./gal. Brightening additive (Per Example #1) 15% by volume. pI-I 4.5. Temperature -145 F. Current density 50 amps/sq. ft.
Example 10 Nickel sulphate 50 oz./ga1. Nickel chloride 10 oz./gal. Boric acid 5 oz./gal. Brightening additive (per Example #3) 20% by volume. pH 4.5. Temperature l35-145 F. Current density 35 amps/sq. ft.
Example 11 Nickel sulphate 40 oz./gal. Nickel chloride 8 oz./gal. Boric acid 6 oz./gal.
Brightening additive (per Example #4) 20% by volume.
pH Temperature l35-l45 F. Current density 35 amps/sq. ft.
a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
2. A method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt, comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenyhnethane dye with a reducing agent comprising zinc powder and sulfuric acid, and a holdin agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
3. A method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt, comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid and a holding agent comprising sodium bisulfite.
4. A method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt, comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid, and a holding agent comprising sodium hydrosulfite.
5. A method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt, comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
6. A method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt, comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and a mineral acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
7. A method of electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt, comprising the step of electrolyzing said nickel electrolyte in the presence of a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and a mineral acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
8. A bath for electrodepositing nickel from a nickel electrolyte comprising an aqueous acid solution of a nickel salt comprising, a nickel electrolyte and a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
9. A bath for electrodepositing nickel from an aqueous acid solution of a nickel salt comprising, an aqueous acid solution of a nickel salt and a reduced triphenylmethane dye obtained by the reaction of the corresponding triphenylmethane dye with a reducing agent comprising zinc powder and hydrochloric acid, and a holding agent selected from the group consisting of sodium bisulfite and sodium hydrosulfite.
LLOYD B. PORTZER. WILLIAM C. IEITENBERGER.
References Cited in the file of this patent UNITED STATES PATENTS Name Date Lind et a1 Apr, 23, 1940 OTHER REFERENCES Number

Claims (1)

1. A METHOD OF ELECTRODEPOSITING NICKEL FROM A NICKEL ELECTROLYTE COMPRISING AN AQUEOUS ACID SOLUTION OF A NICKEL SALT, COMPRISING THE STEP OF ELECTROLYZING SAID NICKEL ELECTROLYTE IN THE PRESENCE OF A REDUCED TRIPHENYLMETHANE DYE OBTAINED BY THE REACTION OF THE CORRESPONDING TRIPHENYLMETHANE DYE WITH A REDUCING AGENT COMPRISING ZINC POWDER AND HYDROCHLORIC ACID, AND A HOLDING AGENT SELECTED FROM THE GROUP CONSISTING OF SODIUM BISULFITE AND SODIUM HYDROSULFITE.
US229261A 1951-05-31 1951-05-31 Electrodeposition of nickel Expired - Lifetime US2637687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US229261A US2637687A (en) 1951-05-31 1951-05-31 Electrodeposition of nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US229261A US2637687A (en) 1951-05-31 1951-05-31 Electrodeposition of nickel

Publications (1)

Publication Number Publication Date
US2637687A true US2637687A (en) 1953-05-05

Family

ID=22860461

Family Applications (1)

Application Number Title Priority Date Filing Date
US229261A Expired - Lifetime US2637687A (en) 1951-05-31 1951-05-31 Electrodeposition of nickel

Country Status (1)

Country Link
US (1) US2637687A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1042336B (en) * 1953-07-17 1958-10-30 Harshaw Chem Corp Acid nickel bath for the galvanic deposition of high-gloss coatings
DE1133610B (en) * 1959-06-06 1962-07-19 Dehydag Gmbh Acid galvanic copper baths
US4282070A (en) * 1978-05-30 1981-08-04 Dan Egosi Energy conversion method with water recovery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2198268A (en) * 1939-12-14 1940-04-23 Harshaw Chem Corp Electrodeposition of metals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2198268A (en) * 1939-12-14 1940-04-23 Harshaw Chem Corp Electrodeposition of metals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1042336B (en) * 1953-07-17 1958-10-30 Harshaw Chem Corp Acid nickel bath for the galvanic deposition of high-gloss coatings
DE1133610B (en) * 1959-06-06 1962-07-19 Dehydag Gmbh Acid galvanic copper baths
US4282070A (en) * 1978-05-30 1981-08-04 Dan Egosi Energy conversion method with water recovery

Similar Documents

Publication Publication Date Title
US2882209A (en) Electrodeposition of copper from an acid bath
US3905878A (en) Electrolyte for and method of bright electroplating of tin-lead alloy
US3677909A (en) Palladium-nickel alloy plating bath
US2707167A (en) Electrodeposition of copper from an acid bath
US2451426A (en) Bright zinc plating
US3661730A (en) Process for the formation of a super-bright solder coating
US2637687A (en) Electrodeposition of nickel
US3257294A (en) Acid metal electroplating process and baths
US2469727A (en) Electrodeposition of nickel
US3876513A (en) Electrodeposition of bright cobalt plate
US2773022A (en) Electrodeposition from copper electrolytes containing dithiocarbamate addition agents
GB880706A (en) Improvements in and relating to the electrodeposition of copper
US2986498A (en) Process for the production of metal electrodeposits
US3580821A (en) Bright silver electroplating
US3008883A (en) Electrodeposition of bright nickel
US2854389A (en) Bright copper plating process
US2406072A (en) Electrodeposition of metals and bath composition therefor
US2972571A (en) Nickel plating solutions
US2758076A (en) Bright acid copper plating
GB1084378A (en) Improvements relating to acid tin electroplating solutions
US2429970A (en) Silver plating
US2912370A (en) Addition agent for cadmium plating solution
US3661731A (en) Electrodeposition of bright nickel
US2361720A (en) Nickel electroplating bath
US2696467A (en) Copper plating bath and process