US3661730A - Process for the formation of a super-bright solder coating - Google Patents

Process for the formation of a super-bright solder coating Download PDF

Info

Publication number
US3661730A
US3661730A US868616A US3661730DA US3661730A US 3661730 A US3661730 A US 3661730A US 868616 A US868616 A US 868616A US 3661730D A US3661730D A US 3661730DA US 3661730 A US3661730 A US 3661730A
Authority
US
United States
Prior art keywords
solder
percent
bath
coating
basis material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US868616A
Inventor
Kazuo Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3661730A publication Critical patent/US3661730A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin

Definitions

  • This invention relates to a process for electro-depositing solder (alloy of tin and lead) on a basis material from a bath containing a compound of divalent tin and a compound of divalent lead together with a brightening agent, and a nonionic surface-active agent.
  • a solder coating formed by electrodepositing the solder on a basis material from such a bath has a super-bright surface which is not less smooth than that of a coating formed by a conventional solder melt-plating process, such tin and lead contents and such thickness as intended before the electrodeposition, and a satisfactory size distribution of the particles in the coating, the size distribution influencing the anticorrosive effect of the coating on the basis material surface on which is is formed,
  • the coated basis material withdrawn from the bath can be easily subjected to subsequent treatments such as washing with water,
  • the electrodeposit forming the coating is not oriented at all in its crystallization state whereby the surface of the coating is rough, a portion of the plating solution and other liquids such as washing water used after the plating readily enters into the interstices between the particles of the coating and the removal of the liquids from the interstices is not easy and stains and spots are apt to create in or attach to the coating easily during the plating operation and subsequent treatments.
  • the conventional solder electroplating process thus, has been used only for specific purposes in spite of many uses being expected if said disadvantages should be eliminated.
  • a conventional solder melt-plating (plat ing by dipping a basis material in a bath of molten solder) process can give a solder coating the surface of which is smooth and bright, and therefore it has been usually use in place of the conventional solder electroplating process.
  • solder melt-plating process however, has disadvantages that it cannot be applied to the plating of a basis material vulnerable to heat with solder because it requires a high temperature of about 230 280 C., it cannot give easily a solder coating the thickness of which is as predetermined, it can form nothing but a solder coating the thickness of which is only between about 3 and about 10y.
  • a' bath-used depending partly upon the temperature of a' bath-used, it generally forms on a basis material a coating the thickness at every part of which is not uniform, for example, very large at one part while very small at another part of the coating whereby a large number of small particles to be plated cannot be satisfactorily plated at the same time, and it forms on a basis material a solder coating which is apt to change in composition with the lapse of time because of the oxidation of the solder coating due to being heated during plating operation. And the aforesaid disadvantages have set severe limits to the uses of the solder meltplating process.
  • An object of this invention is to provide a novel solder electroplating process from which such disadvantages of the conventional solder electroplating and solder melt-plating processes have been eliminated.
  • the novel process of this invention is characterized in that a plating bath used in this process is prepared by adding to a solution ofa stannous compound and plumbous compound, any brightening additive selected from a 50 percent solution of o-toluidine in n-butyl alcohol, a 40 percent solution of a 2 -alkyl anil in isopropyl alcohol and a 40 percent solution of this anil compound in n-.
  • any dispersing additive selected from a polyethylene glycol-derived alkylphenol-type non-ionic surface-active agent, a polyethylene glycol-derived ether-type one and a mixture of the polyethylene glycol-derived alkylphenol-type non-ionic surface-active agent and a polyethylene glycol-derived alkylamide-type one, to obtain a super-bright coating by the electrodeposition of solder from the bath.
  • Another object of this invention is to provide a plating'bath which may be used in the process of this invention.
  • stannous and plumbous compounds examples include stannous and plumbous borofluorides (or fluoroborates), respectively.
  • alkyl of the 2-alky] anil compounds which may be used in the practice of this invention, is methyl, ethyl or propyl.
  • said three surface-active agents are represented, in their order of description, by the following forwherein R is an alkyl group having carbon atoms of eight to nine and n is an integer of 8 to 15.
  • the reaction used in this invention is:
  • I Reno IIzN- RCH N H2O aliphatic o-toluidine 2-alkyl anil aldohy wherein R is methyl, ethyl or propyl.
  • composition of a bath which may be used in the practice of this invention, is as follows:
  • divalent tin is present in a bath in an amount of less than 40 g./l., a solder to be obtained will have no brightness; while the presence of divalent tin in the bath in an amount of more g./l. will give noincreased brightness thereby making thisuneconomical.
  • lf formalin (formaldehyde 35 percent) is used in an amount of less than 10 ml./l. a solder coating being produced will have a dull brightness, while the use of more than 30 ml./l. of such formalin will no longer serve to increase the brightness of the coating.
  • a surface-active agent will accelerate the decomposition of the brightening agent thereby decreasing the bright surface portion of a coating to be obtained, while that of more than 5 g./l. thereof will hinder the efiect of the brightening agent.
  • solder coatings obtained according to this invention usually have at least 80 mirror plane brightness area as measured by Hull cell test.
  • EXAMPLE 1 Electrodeposition of solder comprising 90% Sn and percent Pb) Composition of the bath used:.
  • Cathode (substrate to be plated) Cathode current density 2 A/drn Temperature 2015 C. Anode Tin 90% Lead 10% Alloy Agitation The agitation was effected by rocking gently the cathode, which was basis material to be plated, during plating.
  • the coatings obtained by the electrodeposition from said bath and under said conditions were super-bright alloy of 90 percent Sn and 10 percent Pb as intended.
  • EXAMPLE 3 Electrodeposition of solder comprising percent Sn and 20 percent Pb
  • the composition of the bath used in this Example was as follows:
  • Example 2 45% aqueous solution of stannous The electrodeposition was effected under the same conditions as in Example 1 except for the proportions of the stannous and plumbous compounds and the composition of the anode used in the bath.
  • EXAMPLE 4 Electrodeposition of solder comprising 80'percent S n and 20 percent Pb
  • 2-ethyl anil instead of the Z-methyl anil.
  • the solder coating obtained was the same as that obtained in Example 3.
  • EXAMPLE 5 (Electrodeposition ofsolder comprising 70 percent Sn and 30 percent Pb) 1 Composition of the bath used:
  • EXAMPLE 6 Electrodeposition of solder comprising 70 percent Sn and 30 percent Pb
  • Example 5 The same procedure of Example 5 was followed, but substituting the solution of o-toluidine by a 40 percent solution of 2-propyl anil in isopropyl alcohol in the same amount.
  • the baths employed in said six Examples varied from one another particularly in amount of the stannous and plumbous sources and in kind of a brightening agent. They gave the desired solder coatings, respectively.
  • EXAMPLE 7 (Electrodeposition of 90 percent'Sn percent Pb solder) Composition of the bath used:
  • the electrodeposition was effected from the above bath under the above operational conditions, thereby obtaining the desired super-bright solder coating comprising 90 percent Sn and 10 percent Pb.
  • EXAMPLE 8 Electrodeposition of 90 percent Sn l0 Pb solder) The procedure of Example 7 was repeated, but substituting the o-toluidine solution by a 40 solution of 2-methyl anil in isopropyl alcohol in the same amount by volume.
  • EXAMPLE l0 Electrodeposition of 80 percent Sn 20 percent Pb solder
  • Example 7 The same procedure of Example 7 was followed, but using 90 g./l. of free HBF, and ml./l. of formalin and using a cathode current density of 2 A./dm 30 ml./l. of the same brightening agent and 3 ml./l. of the same surfactant.
  • the solder coating thus obtained was super-bright and had the expected composition of 80 percent Sn and'20 percent Pb.
  • EXAMPLE l3 Electrodeposition of 70 percent Sn 30 percent Pb alloy
  • the procedure of Example 7 was repeated but using g./l. of free l-IBF and 10 ml./l. of formalin and using a cathode current density of 3 A./dm 20 ml. of the same brightener solution and 2 ml./l.
  • Example 14 Electrodeposition of 60 percent Sn 40 percent Pb solder
  • Example 15 Electrodeposition of 60 percent Sn 40 percent Pb solder
  • the procedure of Example 14 was repeated, but replacing the solution of o-toluidine by a 40 percent solution of 2-ethyl anil in isopropyl alcohol in the same amount.
  • the electrodeposition in these Examples was effected to see if a solder coating having the desired composition of tin and lead was obtained by varying a cathode current density used and varying the kinds and amounts of the additives used (brightening agent, surfaceactive agent, free l-lBF and formalin) while keeping identical the remaining operational conditions and the compositions of the principal constituents (tin and lead) of the baths between these Examples; and the solder coatings thus obtained were the desired ones as expected.
  • the additives used blackening agent, surfaceactive agent, free l-lBF and formalin
  • the ratio (percent) of Sn to Pb content in a solder coating to be obtained varies with a temperature used. For instance, in some cases, the use of higher than 20 C. will increase the content of Sn, while that of lower than 20 C. will decrease it. It was thus preferable that the temperature should be kept at 20 C. 2 C. during the electrodeposition of Examples 4 to 9.
  • solder coating comprising 60 percent of tin and 40 percent of lead in Examples 14 and 15, using a mixture of polyoxyethylene alkyl aryl ether and polyoxyethylene alkyl amide in a ratio by volume of 1:1. If a solder coating is desired to contain more than 60 percent of tin (consequently less than 40 percent of lead) when formed by using the same procedure of any one of these Examples except for a mixing ratio between these two surfactants, the ratio will be more than 1:], and vice versa.
  • the surface of solder coatings obtained by the process of this invention is much brighter than that of those obtained by the conventional processes, and the solder particles present in the former surface are more minute than those present in the latter.
  • any coating the composition of which is as desired can be formed by varying the bath in contents of a stannous and a plumbous compound and/or by varying the current in density; and my experiences have shown that the contents of tin and lead in a solder coating formed according to this invention are accurate to within about 1 3 percent of those predetermined.
  • the brightness of the coating is not'necessarily enhanced in proportion to the increase of the amount of a brightening agent used in the bath, and, more particularly, the brightness will be enhanced till the concentration of the agent reaches a certain high level while it will no longer be enhanced after the concentration has exceeded the level. The use of the agent in unduly large amounts will thus cause greater consumption of the agent thereby constituting poor economy.
  • a bath according to this invention contains an organic I brightening agent and non-ionic surface-active agent as well as a stannous and a plumbous compound, the two metallic compounds being contained in the bath in such amounts that a solder coating composed of tin and lead in the desired ratio may be formed on a basis material by the electrodeposition thereon of the tin and lead from the bath.
  • the combined use of the brightening agent and surface-active agent allows the formation of stable micells thereof in the bath which is a strongly acidic solution and the micells function anionically -whereby the concentrations of the two agents are the highest becomes too unstable to be kept in said form and then liberated in the bath when'contacted with a solution of a high value of pH produced by electrolysis on the surface of the cathode; and, because the brightening agentwhich is an organic additive is hydrophobic, this agent is pushed towards the cathode from every part of the bath solution, attached to the surface of alloy of tin and lead deposited from the bath and then adsorbed in the alloy.
  • the adsorption of the brightening agent effected according to said mechanism mainly serves to restrict the electrodeposition' from the bath thereby to obtain a solder coating composed of electrodeposits of satisfactorily oriented microc'rystallinity.
  • the thus-obtained coating has super-brightness at the surface which has never been'achieved by the few conventional processes for the formation of a bright or a semibright coating by plating.
  • the brightening agent can be prevented from wasteful consumption such as by decomposition because the brightening and the surface-active agent in the bath according to this invention from micells therein, and the latter agent plays more effectively the same role, as that of the glue used in the conventional solder plating; and therefore there can be obtained, by electrodeposition from the bath, any coating the thickness and composition of which are respectively as predetermined.
  • the process of this invention can be used for forming on a basis material a superbright solder coating composed of tin and lead in any desired 1 ratio, whether the basis material is to be stationarily (as in the fore, the plate can subsequently be readily and completely dried thereby to prevent it from internally creating stains and from being externally adhered toby dirts during the handling of it.
  • a solder plate according to this invention is remarkably improved in antirust property and brightness as compared with that composed of coarse particles according to a conventional solder plating process, and tin and lead from a bath according to this invention can also be deposited in greater thicknesses" without such dendritic electrodeposits as seen in the conventional solder plate even if they are electrodeposited to a the same time in the same bath do not adhere to one another during plating operation, a solder coating can be formed in any thickness as desired, a plating operation can be performed with a remarkably improved efficiency because barrel plating can also be carried out using a bath according to this invention, the composition of the plating bath can be controlled in any way as desired and the surface of the solder coating is less degraded than that of the conventional one.
  • a process of this invention is a novel and superior one which can be used for forming not only anticorrosive coating but also preliminary solder coating on various basis materials for use in many fields of industry, especially the field of electronic industry, for preparing containers for foodstuffs and for manufacturing machines and appliances, and the processwill make many contributions to the various fields of industry.
  • a process for electroplating onto a basis material a bright solder of a 70 percent tin and 30 percent lead alloy which comprises electrodepositing the solder on the basis material from an aqueous acidic bath comprising stannous borofluoride and plumbous borofluoride, (2)90 g. /l. of free HBF (3) 10 ml/l of formalin, (4) 20 ml/l of a SO percent solution of O-toluidine in n-butyl alcohol, as a brightener, and (5) 2 ml/l of a mixture of wherein R is an alkyl group having 8 or 9'carbon atoms and n is an integer.
  • a process for electroplating onto a basis material with a bright solder of a 60 percent tin and 40 percent lead alloy which comprises electrodepositing the solder on the basis material from an aqueous acidic bath comprising l) stannous borofluoride and plumbous borofluoride, (2) 70 g./l.- of free HBF,, (3) l0 ml./l. of formalin, (4) 20 rnl/l of a 50 percent solution of O-toluidine in n-butyl alcohol as a brightener, and
  • a solder plate obtained by the process of this invention is constituted of electrodeposited metallic particles which are very microcrystalline and well oriented, and, thereand n is an integer of 8 to 15 and CII2- CHu-O) H (CH? ClIi-O) wherein R is an alkyl group having 12 to 18 carbon atoms and n and n are an integer of to 20 in the ratio of 1:1, with a current density of2 A./dm
  • R is an alkyl group having eight or nine carbon atoms and n is an integer of 8 to 15 and wherein R is an alkyl group having 12 to l8,carbon atoms and n and n are an integer ofO to 20 in the ratio of 1:1. with a current density of 2 A/dm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

A process for electrodepositing solder on a basis material from an aqueous, acidic bath comprising stannous and plumbous compounds, o-toluidine or a 2-alkyl anil as a brightening agent and a non-ionic surface-active agent as a dispersant, to obtain a super-bright solder coating on the basis material.

Description

O United States Patent 51 3,661,730
N ishihara 5] May 9, 1972 541 PROCESS FOR THE FORMATION OF A 2,633,450 3/1953 Andrews ..204/54 SUPER'BRIGHT SOLDER COATING FOREIGN PATENTS OR APPLICATIONS [72] Invent: Japan 1,115,460 5 1969 Great Britain. ..204/43 [22] Filed: Sept. 22, 1969 29,070 12/1964 Japan [211 App! 868616 Primary Examiner-G. L. Kaplan Relaed U.S. Application Dam ArtorneyRa1ph E. Bucknam, Jesse D. Reingold, Robert R.
Strack and Henry A. Marzullo, Jr, [63] Continuation-impart of Ser. No. 600,044, Dec. 8,
I966, abandoned. 57 CT [52] U.S. C1. ..204/43, 204/D1G. 2 A Process for eiectrodepositing Solder a basis material from 51 Int. Cl ..C23b 5/38,C23b 5/46 an aqueous, acidic bath Comprising Swnnous and Plumbous 5 w f Search 204 43 44 53 54 105 compounds, o-toluidine or a 2-alkyl anil as a brightening agent 1 17 130 E and a non-ionic surface-active agent as a dispersant, to obtain a super-bright solder coating on the basis material. [56] References Cited 3 Claims No Drawings UNITED STATES PATENTS 2,460,252 1/ 1949 DuRose et a1. ..204/43 PROCESS FOR THE FORMATION OF A SUPER-BRIGHT SOLDER COATING This application is a continuation in part of application Ser. No. 600,044, filed Dec. 8, 1966 and now abandoned.
This invention relates to a process for electro-depositing solder (alloy of tin and lead) on a basis material from a bath containing a compound of divalent tin and a compound of divalent lead together with a brightening agent, and a nonionic surface-active agent.
By use of the process of this invention, there will be gained the following advantages: 1
l. a solder coating formed by electrodepositing the solder on a basis material from such a bath has a super-bright surface which is not less smooth than that of a coating formed by a conventional solder melt-plating process, such tin and lead contents and such thickness as intended before the electrodeposition, and a satisfactory size distribution of the particles in the coating, the size distribution influencing the anticorrosive effect of the coating on the basis material surface on which is is formed,
2. any stains and spots are not created on the surface of the coating during and after the plating operation,
3. the coated basis material withdrawn from the bath can be easily subjected to subsequent treatments such as washing with water,
4. especially the electrodeposits composing the coating are oriented during the electrodeposition from the bath,
5. a lower operating temperature may be used in the process,
6. a wide variety of basis materials may be used in the process, and
7. the coating will not be degraded with the lapse of time.
And therefore the process will find many uses in the industrial Total tin 60 g./l. Divalent tin 55 g./l. Lead 25 g./l. Free borofluoric acid 40 g./l. Free boric acid 25 g.ll. Glue 5 g./i.
It is very difficult to control an electroplating when a bath of such composition as above is used in the electroplating because the ratio of a tin compound to a lead one and the content of glue will have delicate effects on the electroplating.
ln general, in an electroplating using such a bath as above there usually arises a problem of variations (1) in composition of electrodeposit (coating of solder), (2) in distribution of the deposited particles and (3) in thickness of the deposit (coating). These three variations are correlated to one another in the plating; and therefore a bath having such a conventional composition will have disadvantages, when used in the plating, that a solder coating which has the desired contents of tin and lead, thickness and uniform distribution of solder particles throughout the coating (the distribution governing the anticorrosiveness of the coating) is remarkably difficult to form, that some fairly more troublesome operations are required for the after treatment of the coating fresh from the bath, and
that, what is more important, the electrodeposit forming the coating is not oriented at all in its crystallization state whereby the surface of the coating is rough, a portion of the plating solution and other liquids such as washing water used after the plating readily enters into the interstices between the particles of the coating and the removal of the liquids from the interstices is not easy and stains and spots are apt to create in or attach to the coating easily during the plating operation and subsequent treatments. The conventional solder electroplating process, thus, has been used only for specific purposes in spite of many uses being expected if said disadvantages should be eliminated.
On the other hand, a conventional solder melt-plating (plat ing by dipping a basis material in a bath of molten solder) process can give a solder coating the surface of which is smooth and bright, and therefore it has been usually use in place of the conventional solder electroplating process.
The solder melt-plating process, however, has disadvantages that it cannot be applied to the plating of a basis material vulnerable to heat with solder because it requires a high temperature of about 230 280 C., it cannot give easily a solder coating the thickness of which is as predetermined, it can form nothing but a solder coating the thickness of which is only between about 3 and about 10y. depending partly upon the temperature of a' bath-used, it generally forms on a basis material a coating the thickness at every part of which is not uniform, for example, very large at one part while very small at another part of the coating whereby a large number of small particles to be plated cannot be satisfactorily plated at the same time, and it forms on a basis material a solder coating which is apt to change in composition with the lapse of time because of the oxidation of the solder coating due to being heated during plating operation. And the aforesaid disadvantages have set severe limits to the uses of the solder meltplating process.
An object of this invention is to provide a novel solder electroplating process from which such disadvantages of the conventional solder electroplating and solder melt-plating processes have been eliminated. The novel process of this invention is characterized in that a plating bath used in this process is prepared by adding to a solution ofa stannous compound and plumbous compound, any brightening additive selected from a 50 percent solution of o-toluidine in n-butyl alcohol, a 40 percent solution of a 2 -alkyl anil in isopropyl alcohol and a 40 percent solution of this anil compound in n-. butyl alcohol, and any dispersing additive selected from a polyethylene glycol-derived alkylphenol-type non-ionic surface-active agent, a polyethylene glycol-derived ether-type one and a mixture of the polyethylene glycol-derived alkylphenol-type non-ionic surface-active agent and a polyethylene glycol-derived alkylamide-type one, to obtain a super-bright coating by the electrodeposition of solder from the bath.
Another object of this invention is to provide a plating'bath which may be used in the process of this invention.
Examples of the stannous and plumbous compounds are stannous and plumbous borofluorides (or fluoroborates), respectively.
The alkyl of the 2-alky] anil compounds which may be used in the practice of this invention, is methyl, ethyl or propyl.
As is known, said three surface-active agents are represented, in their order of description, by the following forwherein R is an alkyl group having carbon atoms of eight to nine and n is an integer of 8 to 15. R (O CH CH ),,O H wherein R is an alkyl group having carbon atoms of 12 to 18 and n is as defined above.
wherein R is an alkyl (CII -ClIrOLJH hours. The reaction is illustrated by the following reaction formulas:
Theory of synthesis:
V plumbous borofluoride Alkali catalyst RCH=O RNII: RCll Nll W Schilf reaction In the above reaction formula R and R are alkyl and aryl,
respectively.
The reaction used in this invention is:
CH3 C11;
I Reno IIzN- RCH=N H2O aliphatic o-toluidine 2-alkyl anil aldohy wherein R is methyl, ethyl or propyl.
This invention will be better understood by the following examples in which copper test pieces (l0 cm. X 10. cm X 0.3 mm.) were used as a cathode. V
The general composition of a bath which may be used in the practice of this invention, is as follows:
l40-l80 ml./l. (40-50 g./l., calculated as divalent tin) 20-40 ml./l. (8-16 g./l., calculated as divalent lead) 45% aqueous solution of stannous borofluoride 45% aqueous solution of Brightening agent 20-50 g./l. Formalin (formaldehyde 35%) 10-30 ml./l. Surface-active agent 2-5 g./l.
Free HBF, 50-120 g./.
If divalent tin is present in a bath in an amount of less than 40 g./l., a solder to be obtained will have no brightness; while the presence of divalent tin in the bath in an amount of more g./l. will give noincreased brightness thereby making thisuneconomical.
lf formalin (formaldehyde 35 percent) is used in an amount of less than 10 ml./l. a solder coating being produced will have a dull brightness, while the use of more than 30 ml./l. of such formalin will no longer serve to increase the brightness of the coating. 1 t
The use of less than 2 g./l. of a surface-active agent will accelerate the decomposition of the brightening agent thereby decreasing the bright surface portion of a coating to be obtained, while that of more than 5 g./l. thereof will hinder the efiect of the brightening agent.
And, the use of less than 50 g./l. of free HBE, will decrease the solubility of an anode used in the bath, and that of more than 90 g./l. will tend to allow the metals to excessively increase in concentration in the bath.
The solder coatings obtained according to this invention usually have at least 80 mirror plane brightness area as measured by Hull cell test.
EXAMPLE 1 Electrodeposition of solder comprising 90% Sn and percent Pb) Composition of the bath used:.
180 ml./l.
20 ml./l.
4 in isopropyl alcohol 20 ml./l. Polyoxyethylene alkyl aryl ether 2 ml./l. Formalin (Formaldehyde conc., 35%) I0 ml./l. Distilled water balance Operational conditions:
Cathode (substrate to be plated) Cathode current density 2 A/drn Temperature 2015 C. Anode Tin 90% Lead 10% Alloy Agitation The agitation was effected by rocking gently the cathode, which was basis material to be plated, during plating.
The coatings obtained by the electrodeposition from said bath and under said conditions were super-bright alloy of 90 percent Sn and 10 percent Pb as intended.
The same results were obtained when said procedure was repeated except that said solution of brightening agent and surface-active agent were substituted by a 50 percent solution of o-toluidine in butyl alcohol and polyoxyethylene oleyl V ether, respectively.
EXAMPLE 2 (Electrodeposition of solder comprising 90 percent Sn and 10 percent Pb) The procedure of Example I was repeated, but substituting as the brightening agent the 2-methyl anil by 2-ethyl anil. The
same results as in Example l were obtained.
EXAMPLE 3 (Electrodeposition of solder comprising percent Sn and 20 percent Pb) The composition of the bath used in this Example was as follows:
45% aqueous solution of stannous The electrodeposition was effected under the same conditions as in Example 1 except for the proportions of the stannous and plumbous compounds and the composition of the anode used in the bath.
EXAMPLE 4 (Electrodeposition of solder comprising 80'percent S n and 20 percent Pb) The same procedure of Example 3 was followed, but using as the brightening agent 2-ethyl anil instead of the Z-methyl anil. The solder coating obtained was the same as that obtained in Example 3.
EXAMPLE 5 (Electrodeposition ofsolder comprising 70 percent Sn and 30 percent Pb) 1 Composition of the bath used:
I40 mlJl.
40 ml./l.
in butyl alcohol 20 ml./l. Polyoxyethylene alkyl aryl ether 2 ml./l. Formalin (formaldehyde 35%) lo ml./l. Distilled water balance The electrodeposition was carried out under the same conditions as in Example 1 except for the proportions of the stannous and plumbous compounds and the composition of the I anode used in the bath.
EXAMPLE 6 (Electrodeposition of solder comprising 70 percent Sn and 30 percent Pb) The same procedure of Example 5 was followed, but substituting the solution of o-toluidine by a 40 percent solution of 2-propyl anil in isopropyl alcohol in the same amount.
The same results as those in Example 5 were obtained.
As is seen from the foregoing, the baths employed in said six Examples varied from one another particularly in amount of the stannous and plumbous sources and in kind of a brightening agent. They gave the desired solder coatings, respectively.
EXAMPLE 7 (Electrodeposition of 90 percent'Sn percent Pb solder) Composition of the bath used:
45% aqueous solution of stannous gently rocked during plating.
The electrodeposition was effected from the above bath under the above operational conditions, thereby obtaining the desired super-bright solder coating comprising 90 percent Sn and 10 percent Pb.
EXAMPLE 8 Electrodeposition of 90 percent Sn l0 Pb solder) The procedure of Example 7 was repeated, but substituting the o-toluidine solution by a 40 solution of 2-methyl anil in isopropyl alcohol in the same amount by volume.
The same results as in Example 7 were obtained.
EXAMPLE 9 Electrodeposition of 90 percent Sn 10 percent Pb solder) The same procedure of Example 7 was followed, but replacing the solution of o-toluidine by a 40 percent solution of 2- ethyl anil in n-butyl alcohol in the same amount.
The same results as in Example 7 were obtained.
EXAMPLE l0 (Electrodeposition of 80 percent Sn 20 percent Pb solder) The same procedure of Example 7 was followed, but using 90 g./l. of free HBF, and ml./l. of formalin and using a cathode current density of 2 A./dm 30 ml./l. of the same brightening agent and 3 ml./l. of the same surfactant.
The solder coating thus obtained was super-bright and had the expected composition of 80 percent Sn and'20 percent Pb.
EXAMPLE 1 l Electrodeposition of percent Sn 20 percent Pb solder) The procedure of Example 10 was repeated, but substituting the solution of the brightening agent in isopropyl alcohol for that in n-butyl alcohol.
EXAMPLE l2 (Electrodeposition of 80 percent Sn 20 percent Pb solder) The same procedure of Example [0 was followed, but substituting the solution of o-toluidine by a 40 percent solution of 2-propyl anil in the same amount.
The same results as in Example 10 were obtained.
EXAMPLE l3 (Electrodeposition of 70 percent Sn 30 percent Pb alloy) The procedure of Example 7 was repeated but using g./l. of free l-IBF and 10 ml./l. of formalin and using a cathode current density of 3 A./dm 20 ml. of the same brightener solution and 2 ml./l. of a mixture of polyoxyethylene alkyl aryl ether and polyoxyethylene alkyl amide in a ratio by volume of EXAMPLE 14 EXAMPLE 15 (Electrodeposition of 60 percent Sn 40 percent Pb solder) The procedure of Example 14 was repeated, but replacing the solution of o-toluidine by a 40 percent solution of 2-ethyl anil in isopropyl alcohol in the same amount.
The results obtained were the same as those obtained in Example 14.
As is apparent from Examples 7 to 15, the electrodeposition in these Examples was effected to see if a solder coating having the desired composition of tin and lead was obtained by varying a cathode current density used and varying the kinds and amounts of the additives used (brightening agent, surfaceactive agent, free l-lBF and formalin) while keeping identical the remaining operational conditions and the compositions of the principal constituents (tin and lead) of the baths between these Examples; and the solder coatings thus obtained were the desired ones as expected.
The ratio (percent) of Sn to Pb content in a solder coating to be obtained varies with a temperature used. For instance, in some cases, the use of higher than 20 C. will increase the content of Sn, while that of lower than 20 C. will decrease it. It was thus preferable that the temperature should be kept at 20 C. 2 C. during the electrodeposition of Examples 4 to 9.
In connection with the surface-active agent, there was obtained a solder coating comprising 60 percent of tin and 40 percent of lead in Examples 14 and 15, using a mixture of polyoxyethylene alkyl aryl ether and polyoxyethylene alkyl amide in a ratio by volume of 1:1. If a solder coating is desired to contain more than 60 percent of tin (consequently less than 40 percent of lead) when formed by using the same procedure of any one of these Examples except for a mixing ratio between these two surfactants, the ratio will be more than 1:], and vice versa. v
The surface of solder coatings obtained by the process of this invention is much brighter than that of those obtained by the conventional processes, and the solder particles present in the former surface are more minute than those present in the latter.
In addition, using a bath according to this invention, any coating the composition of which is as desired can be formed by varying the bath in contents of a stannous and a plumbous compound and/or by varying the current in density; and my experiences have shown that the contents of tin and lead in a solder coating formed according to this invention are accurate to within about 1 3 percent of those predetermined. The brightness of the coating is not'necessarily enhanced in proportion to the increase of the amount of a brightening agent used in the bath, and, more particularly, the brightness will be enhanced till the concentration of the agent reaches a certain high level while it will no longer be enhanced after the concentration has exceeded the level. The use of the agent in unduly large amounts will thus cause greater consumption of the agent thereby constituting poor economy. n
A bath according to this invention contains an organic I brightening agent and non-ionic surface-active agent as well as a stannous and a plumbous compound, the two metallic compounds being contained in the bath in such amounts that a solder coating composed of tin and lead in the desired ratio may be formed on a basis material by the electrodeposition thereon of the tin and lead from the bath. The combined use of the brightening agent and surface-active agent allows the formation of stable micells thereof in the bath which is a strongly acidic solution and the micells function anionically -whereby the concentrations of the two agents are the highest becomes too unstable to be kept in said form and then liberated in the bath when'contacted with a solution of a high value of pH produced by electrolysis on the surface of the cathode; and, because the brightening agentwhich is an organic additive is hydrophobic, this agent is pushed towards the cathode from every part of the bath solution, attached to the surface of alloy of tin and lead deposited from the bath and then adsorbed in the alloy.
The adsorption of the brightening agent effected according to said mechanism mainly serves to restrict the electrodeposition' from the bath thereby to obtain a solder coating composed of electrodeposits of satisfactorily oriented microc'rystallinity. The thus-obtained coating has super-brightness at the surface which has never been'achieved by the few conventional processes for the formation of a bright or a semibright coating by plating. In addition, the brightening agent can be prevented from wasteful consumption such as by decomposition because the brightening and the surface-active agent in the bath according to this invention from micells therein, and the latter agent plays more effectively the same role, as that of the glue used in the conventional solder plating; and therefore there can be obtained, by electrodeposition from the bath, any coating the thickness and composition of which are respectively as predetermined.
' In the practice of this invention, what suitable amounts of the brightening and the surface-active agent should be present in a bath can be readily determined by using Hull cell method and therefore these agents can be easily kept under control during plating operation. A process of this invention, thus, is superior to the conventional ones in easiness of controlling the concentrations of the agents in the bath, and in operational manners and economy which will be mentioned later. Because I of its advantages as mentioned above, the process of this invention can be used for forming on a basis material a superbright solder coating composed of tin and lead in any desired 1 ratio, whether the basis material is to be stationarily (as in the fore, the plate can subsequently be readily and completely dried thereby to prevent it from internally creating stains and from being externally adhered toby dirts during the handling of it. t
- A solder plate according to this invention is remarkably improved in antirust property and brightness as compared with that composed of coarse particles according to a conventional solder plating process, and tin and lead from a bath according to this invention can also be deposited in greater thicknesses" without such dendritic electrodeposits as seen in the conventional solder plate even if they are electrodeposited to a the same time in the same bath do not adhere to one another during plating operation, a solder coating can be formed in any thickness as desired, a plating operation can be performed with a remarkably improved efficiency because barrel plating can also be carried out using a bath according to this invention, the composition of the plating bath can be controlled in any way as desired and the surface of the solder coating is less degraded than that of the conventional one.
As seen from the foregoing advantages, a process of this invention is a novel and superior one which can be used for forming not only anticorrosive coating but also preliminary solder coating on various basis materials for use in many fields of industry, especially the field of electronic industry, for preparing containers for foodstuffs and for manufacturing machines and appliances, and the processwill make many contributions to the various fields of industry.
What is claimed is:
l. A process for electroplating onto a basis material a bright solder of a 70 percent tin and 30 percent lead alloy which comprises electrodepositing the solder on the basis material from an aqueous acidic bath comprising stannous borofluoride and plumbous borofluoride, (2)90 g. /l. of free HBF (3) 10 ml/l of formalin, (4) 20 ml/l of a SO percent solution of O-toluidine in n-butyl alcohol, as a brightener, and (5) 2 ml/l of a mixture of wherein R is an alkyl group having 8 or 9'carbon atoms and n is an integer. of 8 to 15 and (CIIzCII2-O)nI I RC-N Q (OII2'CI{2'O)|1H wherein R is an alkyl group having 12 to 18 carbon atoms and n and n are an interger of 0 to 20in the ratio of 3:1, with a 2. A process for electroplating onto a basis material with a bright solder of a 60 percent tin and 40 percent lead alloy which comprises electrodepositing the solder on the basis material from an aqueous acidic bath comprising l) stannous borofluoride and plumbous borofluoride, (2) 70 g./l.- of free HBF,, (3) l0 ml./l. of formalin, (4) 20 rnl/l of a 50 percent solution of O-toluidine in n-butyl alcohol as a brightener, and
(5)2 mL/l. ofa mixture of case of usual stationaryplating) or movingly (as in the case of barrel plating) plated in a bath. 3 p n In addition, a solder plate obtained by the process of this invention is constituted of electrodeposited metallic particles which are very microcrystalline and well oriented, and, thereand n is an integer of 8 to 15 and CII2- CHu-O) H (CH? ClIi-O) wherein R is an alkyl group having 12 to 18 carbon atoms and n and n are an integer of to 20 in the ratio of 1:1, with a current density of2 A./dm
3. A process for electroplating onto a basis material with a bright solder of a 60 percent tin and 40 percent lead alloy solution of 2-ethylanil in isopropyl alcohol, and (5) 2 mL/l. of
a mixture of wherein R is an alkyl group having eight or nine carbon atoms and n is an integer of 8 to 15 and wherein R is an alkyl group having 12 to l8,carbon atoms and n and n are an integer ofO to 20 in the ratio of 1:1. with a current density of 2 A/dm

Claims (2)

  1. 2. A process for electroplating onto a basis material with a bright solder of a 60 percent tin and 40 percent lead alloy which comprises electrodepositing the solder on the basis material from an aqueous acidic bath comprising (1) stannous borofluoride and plumbous borofluoride, (2) 70 g./l. of free HBF4, (3) 10 ml./l. of formalin, (4) 20 ml/l of a 50 percent solution of O-toluidine in n-butyl alcohol as a brightener, and (5) 2 ml./l. of a mixture of wherein R is an alkyl group having eight or nine carbon atoms and n is an integer of 8 to 15 and wherein R is an alkyl group having 12 to 18 carbon atoms and n and n1 are an integer of 0 to 20 in the ratio of 1:1, with a current density of 2 A./dm2.
  2. 3. A process for electroplating onto a basis material with a bright solder of a 60 percent tin and 40 percent lead alloy which comprises electrodepositing the solder on the basis material from an aqueous acidic bath comprising (1) stannous borofluoride and plumbous borofluoride, (2) 70 g./l. of free HBF4, (3) 10 ml./l. of formalin, (4) 20 ml./l. of a 40 percent solution of 2-ethylanil in isopropyl alcohol, and (5) 2 ml./l. of a mixture of wherein R is an alkyl group having eight or nine carbon atoms and n is an integer of 8 to 15 and wherein R is an alkyl group having 12 to 18 carbon atoms and n and n1 are an integer of 0 to 20 in the ratio of 1:1, with a current density of 2 A/dm2.
US868616A 1969-09-22 1969-09-22 Process for the formation of a super-bright solder coating Expired - Lifetime US3661730A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86861669A 1969-09-22 1969-09-22

Publications (1)

Publication Number Publication Date
US3661730A true US3661730A (en) 1972-05-09

Family

ID=25352018

Family Applications (1)

Application Number Title Priority Date Filing Date
US868616A Expired - Lifetime US3661730A (en) 1969-09-22 1969-09-22 Process for the formation of a super-bright solder coating

Country Status (1)

Country Link
US (1) US3661730A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769182A (en) * 1970-10-22 1973-10-30 Conversion Chem Corp Bath and method for electrodepositing tin and/or lead
US3850765A (en) * 1973-05-21 1974-11-26 Oxy Metal Finishing Corp Bright solder plating
US3905878A (en) * 1970-11-16 1975-09-16 Hyogo Prefectural Government Electrolyte for and method of bright electroplating of tin-lead alloy
US4000047A (en) * 1972-11-17 1976-12-28 Lea-Ronal, Inc. Electrodeposition of tin, lead and tin-lead alloys
US4118289A (en) * 1973-06-28 1978-10-03 Minnesota Mining And Manufacturing Company Tin/lead plating bath and method
US4263106A (en) * 1979-12-31 1981-04-21 Bell Telephone Laboratories, Incorporated Solder plating process
US4376018A (en) * 1979-12-31 1983-03-08 Bell Telephone Laboratories, Incorporated Electrodeposition of nickel
US4377449A (en) * 1979-12-31 1983-03-22 Bell Telephone Laboratories, Incorporated Electrolytic silver plating
US4377448A (en) * 1979-12-31 1983-03-22 Bell Telephone Laboratories, Incorporated Electrolytic gold plating
US4379738A (en) * 1979-12-31 1983-04-12 Bell Telephone Laboratories, Incorporated Electroplating zinc
US4880507A (en) * 1987-12-10 1989-11-14 Learonal, Inc. Tin, lead or tin/lead alloy electrolytes for high speed electroplating
US5066367A (en) * 1981-09-11 1991-11-19 Learonal Inc. Limiting tin sludge formation in tin or tin/lead electroplating solutions
US5174887A (en) * 1987-12-10 1992-12-29 Learonal, Inc. High speed electroplating of tinplate
US5443714A (en) * 1989-10-19 1995-08-22 Blasberg Oberflachentechnik, Gmbh Process and electrolyte for depositing lead and lead-containing layers
US5545306A (en) * 1992-07-17 1996-08-13 Permelec Electrode Co. Ltd. Method of producing an electrolytic electrode
US20090134514A1 (en) * 2007-11-23 2009-05-28 Stmicroelectronics (Grenoble) Sas Method for fabricating electrical bonding pads on a wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2460252A (en) * 1946-02-09 1949-01-25 Harshaw Chem Corp Lead-tin alloy plating
US2633450A (en) * 1949-04-27 1953-03-31 United States Steel Corp Tin and tin alloy plating bath
GB1115460A (en) * 1964-12-18 1968-05-29 Gen Aniline & Film Corp Photocopying apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2460252A (en) * 1946-02-09 1949-01-25 Harshaw Chem Corp Lead-tin alloy plating
US2633450A (en) * 1949-04-27 1953-03-31 United States Steel Corp Tin and tin alloy plating bath
GB1115460A (en) * 1964-12-18 1968-05-29 Gen Aniline & Film Corp Photocopying apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769182A (en) * 1970-10-22 1973-10-30 Conversion Chem Corp Bath and method for electrodepositing tin and/or lead
US3905878A (en) * 1970-11-16 1975-09-16 Hyogo Prefectural Government Electrolyte for and method of bright electroplating of tin-lead alloy
US4000047A (en) * 1972-11-17 1976-12-28 Lea-Ronal, Inc. Electrodeposition of tin, lead and tin-lead alloys
US3850765A (en) * 1973-05-21 1974-11-26 Oxy Metal Finishing Corp Bright solder plating
US4118289A (en) * 1973-06-28 1978-10-03 Minnesota Mining And Manufacturing Company Tin/lead plating bath and method
US4377448A (en) * 1979-12-31 1983-03-22 Bell Telephone Laboratories, Incorporated Electrolytic gold plating
US4376018A (en) * 1979-12-31 1983-03-08 Bell Telephone Laboratories, Incorporated Electrodeposition of nickel
US4377449A (en) * 1979-12-31 1983-03-22 Bell Telephone Laboratories, Incorporated Electrolytic silver plating
US4263106A (en) * 1979-12-31 1981-04-21 Bell Telephone Laboratories, Incorporated Solder plating process
US4379738A (en) * 1979-12-31 1983-04-12 Bell Telephone Laboratories, Incorporated Electroplating zinc
US5066367A (en) * 1981-09-11 1991-11-19 Learonal Inc. Limiting tin sludge formation in tin or tin/lead electroplating solutions
US4880507A (en) * 1987-12-10 1989-11-14 Learonal, Inc. Tin, lead or tin/lead alloy electrolytes for high speed electroplating
US5174887A (en) * 1987-12-10 1992-12-29 Learonal, Inc. High speed electroplating of tinplate
US5443714A (en) * 1989-10-19 1995-08-22 Blasberg Oberflachentechnik, Gmbh Process and electrolyte for depositing lead and lead-containing layers
US5545306A (en) * 1992-07-17 1996-08-13 Permelec Electrode Co. Ltd. Method of producing an electrolytic electrode
US20090134514A1 (en) * 2007-11-23 2009-05-28 Stmicroelectronics (Grenoble) Sas Method for fabricating electrical bonding pads on a wafer
US8227332B2 (en) * 2007-11-23 2012-07-24 Stmicroelectronics (Grenoble) Sas Method for fabricating electrical bonding pads on a wafer

Similar Documents

Publication Publication Date Title
US3661730A (en) Process for the formation of a super-bright solder coating
US3769182A (en) Bath and method for electrodepositing tin and/or lead
US2882209A (en) Electrodeposition of copper from an acid bath
US3634212A (en) Electrodeposition of bright acid tin and electrolytes therefor
US2707166A (en) Electrodeposition of copper from an acid bath
US3354059A (en) Electrodeposition of nickel-iron magnetic alloy films
US4118289A (en) Tin/lead plating bath and method
US4167460A (en) Trivalent chromium plating bath composition and process
US3730853A (en) Electroplating bath for depositing tin-lead alloy plates
US2451426A (en) Bright zinc plating
US2176668A (en) Silver plating process
US2623847A (en) Black chromium plating
KR20000057911A (en) Electroplating solution for electroplating lead and lead/tin alloys
US2511395A (en) Process for the electrodeposition of tin alloys
US3257294A (en) Acid metal electroplating process and baths
US3174918A (en) Bright gold electroplating
US2110792A (en) Process for electrodeposition of silver and products obtained therefrom
US2080479A (en) Plating of zinc
US2773022A (en) Electrodeposition from copper electrolytes containing dithiocarbamate addition agents
US2751341A (en) Electrodeposition of lead and lead alloys
US3577328A (en) Method and bath for electroplating tin
US3617452A (en) Gold plating
US3429790A (en) Acidic tin depositing bath
US3575826A (en) Method and composition for electroplating tin
US2853443A (en) Addition agent for acid copper electrolytes