US2551579A - Production of valuable organic compounds from plant material - Google Patents

Production of valuable organic compounds from plant material Download PDF

Info

Publication number
US2551579A
US2551579A US542916A US54291644A US2551579A US 2551579 A US2551579 A US 2551579A US 542916 A US542916 A US 542916A US 54291644 A US54291644 A US 54291644A US 2551579 A US2551579 A US 2551579A
Authority
US
United States
Prior art keywords
lignin
plant material
liquid
hydrogenation
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US542916A
Inventor
Berl Walter George
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US542916A priority Critical patent/US2551579A/en
Application granted granted Critical
Publication of US2551579A publication Critical patent/US2551579A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/18Treating trash or garbage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Working-Up Tar And Pitch (AREA)

Description

y 8, 1951 E. BERL PRODUCTION OF VALUABLE ORGANIC COMPOUNDS FROM PLANT MATERIAL 2 Sheets-Sheet 1 Filed June 30, 1944 Ernsi Berl May 8, 1951 E. BERL 2,551,579
PRODUCTION OF VALUABLE ORGANIC COMPOUNDS FROM PLANT MATERIAL Filed June 30, 1944- ZSheetS-Sheet 2 Patented May 8, 195T PRODUCTION OF VALUABLE ORGANIC COMPOUNDS FROM PLANT MATERIAL Ernst Berl, Pittsburgh, Pa.; Walter George Berl executor of said Ernst Berl, deceased Application June 30, 1944, Serial No. 542,916
7 Claims.
This invention relates to the production of hydrocarbons from plant material. This is in part a continuation of my application Serial No. 376,906, filed January 31, 1941, now abandoned.
The production of liquid hydrocarbons is now carried out on a large scale with lignites and younger bituminous coal as the starting materials. In one known process, hydrogenation of the older lignites or the younger bituminous coal proceeds directly, with or without the addition of appropriate catalytic material, whereby through a combination of cracking and hydrogenation liquid hydrocarbons result, which contain aliphatic, hydroaromatic and aromatic hydrocarbons and which, therefore, have a rather high anti-knock value. Another known process converts fuels directly or indirectly from a mixture or carbon monoxide and hydrogen. This water-gas mixture can be converted by means of appropriate catalysts into aliphatic hydrocarbons, mostly of the straight chain character. This process can be carried out like the aforementioned process under pressure or without pressure. The liquid hydrocarbons obtained exhibit a rather low anti-knock value and have to be modified by the formation of branched aliphatic hydrocarbons possessed of a higher antiknock value. The same process makes possible the production of solid paraffins of very high molecular weight.
Both processes use raw materials prepared by nature at former geological periods. In view of the fact that, for the production of one part by weight of liquid or solid hydrocarbons, about four or five parts in weight of coal are necessary, the consumption of these valuable raw materials is rather high.
In a previous publication (Annalen der Chemie, vol. 504, p. 38-71) I disclosed the conversion of pure cellulose-in the form of cotton linters first into a protoproduct and then by hydrogena tion or by cracking into a liquid oil. Prior to the invention to be disclosed herebelow it was impossible to convert plant lignin by simple means into liquid or semi-liquid materials. Conversion was possible only by very expensive processes requiring the use of costly apparatus. The process of the publication aforesaid was relatively simple insofar as process steps are concerned, but was expensive insofar as raw material is concerned. Prior to the present invention, I believed, in common with the rest of the scientific world, that the only suitable raw material for such a process was pure or substantially pure cellulose. All scientific experience with the treatment of plant 2 lignin indicated that it could not be converted into useful products in such a process, because such work as had been done on plant lignin had been done after isolation of the lignin by the sacchar-- ification or other conversion of the carbohydrates, and when so treated it had been found, as above stated, that the processing gave no practical results.
It is an object of this invention to provide an economical process whereby liquid or semi-liquid fuel and other valuable hydrocarbon products can be produced from inexpensive plant material. Another object of the invention is a process whereby hydrocarbon fuel display high antiknock properties can be produced from plantmaterial.
Still another object of the invention is the con version of inexpensive plant material into artificial bituminous asphalt as an intermediary product in the production of valuable end products.
Other objects of the invention will become readily apparent from the following description- In accordance with the present invention, liquid hydrocarbons and asphalts, also phenols,
can be formed easily from carbohydrates and car-. bohydrate and lignin containing materials such as plants, algae, seaweed, grasses, leaves, wood,.
peat, corn stalks, straw, bagasse, molasses or the like. The conversion of such material, produced continuously by nature on a large scale, can be effected discontinuously or continuously by heating the aforementioned raw materials with aqueous solutions or suspensions of alkaline reacting substances, such as lime, magnesia, sodium-, potassium, calcium-, magnesium carbonate, sodium hydroxide, ammonium hydroxide, so-
dium-, potassium-, ammonium sulphide, zeolites,-
line reacting materials on the plant material at.
the elevated temperatures of between C. and 370 C. (377 C. is the approximate critical temperature of water) in presence of water a bitu-i men-like material is produced, which is composed of aliphatic, hydroaromatic and aromatic compounds together with large amounts of phenol compounds and phenol carbonic acids which lat-. ter can be separated easily from the neutral subv stances by formation of phenolates, which when,
acidified form free phenols and phenol carbonic acids. The bitumen-like material acts easily with oxygen. It can be converted by hydrogenation or cracking into liquid hydrocarbons, containing aliphatic, hydroaromatic and aromatic hydrocarbons. They possess a rather high antiknock value. The carbon content of the original carbohydrate material is about 40 to 44%, that of the lignin is 62 to 65%. Carbohydrates and lignin are converted by the process of my invention into bitumen-like material with about 75 to 80% of carbon and 19 to 14% of oxygen. When the said bitumen-like material is subjected to complete hydrogenation or cracking, it loses its oxygen and yields a crude oil, containing between 86 and 91% of carbon. Incomplete hydrogenation or cracking results in an asphalt-like intermediate material with about 82 to 86% of carbon and about to 12% of oxygen. The liquid hydrocarbons referred to are found to possess boiling points of between 40 and above 250 C. at normal pressure and are practically free from oxygen.
From my previous publication, dealing with the conversion of pure cellulose or carbohydrate, it
appears that 55.2% of their original carbon conyield figure of 55.2% of my previous publication,
there. should be obtained in the protoproduct 71.8 .552=39.6% of sugar cane carbon. The following table, based upon more than 50 experiments covering a period of years, shows the average yields in carbon from sugar cane, the carbon content of the sugar cane being 100:
Per cent of original carbon In the protoproduct 64.5 In hydrogenated bitumen containing gasoline, kerosene, asphalt and residue 61 In gasoline, kerosene, lubrication oil and residue 59.9 In gasoline, kerosene and lubrication oil 44.?
It is obvious from the foregoing that the lignin constituent has furnished a material amount of the liquid and semi-liquid material. Otherwise, the increased yield above the figure of 35.9%
postulated on my previous publication would not be possible.
It is also important to note that a very large part of the carbon recovered in the protoproduct appears ultimately in the commercially desirable fractions, gasoline, kerosene and lubrication oil. This further serves to show the importance of the invention and the valuable part which the lignin constituent contributes to the final result.
Further proof of the fact that the lignin constituent contributes to the valuable end products is found in the fact that a substantial percentage of CHsO (methoxyl) is present in the conversion products of lignin-containing plant material but is not found in the conversion products of carbohydrates alone.
The discovery that lignin-containin plant materials may be used has great commercial significance. This is best shown by a cost comparison. From the Statistical Abstract of the United States for the year 1941, p. 755, it appears that the average yield of cotton per acre for the years 1936-1940 was 239 pounds and that the average price per ton was $191.20. Production figures for sugar cane in the same period show an average annual production of 18.55 tons per acre in continental United States and 36.5 tons in Hawaii. The figure for Cuba, Puerto Rico and the Philippines compare closely with the figures for Hawaii. The average price of the sugar cane (wet weight) in the continental United States for these years was $2.97. In the other countries mentioned the price is undoubtedly much lower. In comparison, therefore, it is seen that the production per acre per year in cotton is 0.12 tons and in green sugar cane is 18 to 36 tons, and that the price for sugar cane (dry weight) is $15.85 (or $11.88 based on 80% or water content in green sugar cane) per ton as against $191.20 for cotton. These vast difierences in yield and cost open up, at a price which is well within commercial possibilities, sources of raw material which were not available according to my old publications.
In the foregoing comparison of raw material costs, I have referred to green sugar cane on a dry weight basis, however, bagasse, which is sugar cane from which about 10 to 15% of its weight has been extracted, may be used. Bagasse finds no use at the present time except for burning under boilers and, to a very limited extent, for use in wall-board. Consequently, my invention makes it possible to utilize a material that has been, to all intents and purposes, a waste material, and thereby to conserve a product, mineral oil, which is rapidly becoming exhausted. As pointed out above, other waste materials available in very large quantities, e. g., seaweed, sawdust, corn stalks or straw may also be used.
By the process disclosed herein, 1 start with plant material where in the cellulose and the lignin are both present. I have made the surprising discovery that in these circumstances the lignin behaves differently from plant lignin which has been separated from the carbohydrates, so that it is susceptible to processing at relatively low cost and with a yield of solid, semi-liquid and liquid material from the lignin constituent of the plant material. Prior to the makin of the present invention it was my belief that substantially pure carbohydrates are the only suitable source materials for such a process and that lignin, far from contributing advantageously to the process, would probably interfere with its function.
A fundamental part of my present invention,
therefore is that the plant lignin, if connected with carbohydrates in the original plant material, behaves differently from lignin which has been isolated by the saccharification or other conversion of the carbohydrates. Isolated lignin can 1 hardly be converted into semi-liquid or liquid material, whereas, by the present process, using as starting substances plant material containing both cellulose and lignin, the lignin constituent responds to the treatment and contributes to the final result.
" or carbonates or iron hydroxide or iron carbonate,
or sulph-hydrates, or sulphides. Under these conditions, the carbohydrates and lignin are converted into a bitumen-like material, containing from between 14% to 19% of oxygen. At the same time, gases are produced which contain, besides carbon dioxide, aliphatic hydrocarbons, mostly methane. In the aqueous solution are found a great number of compounds, from which can be isolated phenols and phenol carbonic acids and esters, like formic acid methyl ester, and other substances, like acetone and lower fatty acids. In order to recover these rather valuable substances from the aqueous liquid, well known chemical and physical methods should be resorted to. The resulting watery liquid after addition of new amounts of alkaline reacting material may serve for the next operation.
The bitumeinlike material has a rather low Viscosity and a brownish-black color. In contact with air, polymerisation takes place with the formation of substances which are more viscous and ultimately become more or less solidified. Known methods permit the extraction from this bitumen-like material of any acid-reacting substances, such as phenols and phenol carbonic acids. The bitumen, called protoproduct, contains oxygen bound in different forms, for instance in form of ketones and complex phenols or phenol carbonic acids with aliphatic side chains. The protoproduct has a thermal content of about 140,000 B. t. u. per gallon as compared to 105,000 for gasoline.
This bitumen-like material can be used as a source for phenols by treating it with alkali or with liquid water at high temperatures and pres-.
sure. Phenols then are more soluble than in cold water. Furthermore, phenol anhydrides are hydrated under formation of phenols. One can, furthermore, get increased yields of these phenols by carrying out an incomplete hydrogenation which splits off aliphatic side chains without eliminating the phenol group oxygen. In this way phenols are obtained which can be used for those purposes where phenols find normal use, for instance for explosives, plastics, disinfectants, etc.
In order to get oxygen-free hydrocarbons, this bitumen-like material, the protoproduct, has to be hydrogenated under conditions whereby practically all oxygen present is removed. This can be done with hydrogen or hydrogen containing gases, e. g., water gas under pressure (50-500 atmospheres) at elevated temperature (325475 C.) and the use of appropriate hydrogenation catalysts, for instance molybdenum, tungsten or tin compounds. If the hydrogenation is practically complete, then hydrocarbons free of or with small amounts of oxygen with boiling ranges from 30 C. up to 250 C. (at pressures of 3-4 mm. mercury) are obtained. Analysis shows that the resulting hydrocarbons are of aliphatic, hydroaromatic and aromatic nature. The higher boiling fractions which give an excellent lubrication oil contain OCHa-methoxyl groups. This is proof that they derive from the lignin content, because carbohydrates alone give compounds free of methoxyl.
The production of those hydrocarbons can be accomplished in different ways. One can treat the plant material containing carbohydrate and lignin, preferably in the presence of alkali and moisture, first at temperatures up to 370 C. in order to produce the protoproduct. Hydrogenation catalysts have to be added to the plant material. The conversion and hydrogenation proccsses are carried out in a one-step process during and after the bitumen-forming process with hydrogen or hydrogen containing gases, e. g., water gas under pressure. In order to carry out the hydrogenation the temperature has to be kept at between 325 and 450 G. Then oxygen-free hydrocarbons result besides compounds which contain OCH: groups. About 45% of the carbon of the plant material used can be converted into these liquid hydrocarbons.
One can carry out the conversion separately from the hydrogenation. The production of the protoproduct takes place at temperatures up to 370 C. Then to the resulting protoproduct hydrogenation catalysts are added and the hydrogenation is carried out at elevated temperatures (350-4'75 C.) and initial hydrogen pressures (at room temperatures) up to 500 atmospheres. The processes can be carried out continuously or discontinuously.
In those cases where the hydrogenation of the protoproduct is not intended, the elimination of the bound oxygen can be carried out by a cracking process. The oxygen-containing protoproduct has to be heated to temperatures between 250 and 600 C. without catalysts or in presence of substances with highly developed internal surfaces, i. e. activated carbon, silica gel, aluminum silicates, zeolites, permutites, copper compounds and asbestos, or colloidal silicic acid, etc. under pressure. Then an intramolecular combustion takes place. The oxygen present is removed, mostly in form of carbon dioxide and water, alcohols, ketones and fatty acids. Oxygen-free hydrocar bons result, containing besides aliphatic and hydroaromatic hydrocarbons a rather large amount of aromatic hydrocarbons and consequently these hydrocarbons produced from plant material containing carbohydrates and lignin in accordance with the process of my invention exhibit a high anti-knock value. Coke is produced besides lowboiling hydrocarbons and higher-boiling or melting residues. In all cases they contain aliphatics, aromatics and hydroaromatics. If this cracking process is carried out at temperatures above 500 C., the amount of aromatic hydrocarbons is greatly increased. When the hydrogenation or cracking is not carried out completely, then the higherboiling fractions show the presence of asphaltlike material, which can be used for the same purposes as natural asphalt.
In order to carry out the aforementioned con-. version processes, the plant material containing carbohydrate and lignin is preferably disintegrated and then mixed with the alkaline reacte ing substances in solution or in suspension. The resulting mass is conducted through heated tubes with the help of pumps. The heating of the tubes is eifected from the outside to the desired temperature, at which the conversion of the plant material proceeds. After having converted the carbohydrate and lignin of the plant material into a bitumen-like material, the reaction product is removed from the heating zone by passing either through a reduction valve or into reservoirs, which after having been filled alternately, press the converted material through a cooling device so that a separation of the reaction products can be effected into gas, aqueous liquid and bitumen. The gas, liquid and semi. liquid reaction products can then be utilized.-
The bitumen separated from the gas and'the aqueous liquid can be converted with small loss of carbon-containing material into liquidhydrocarbons by hydrogenation, whereby appropriate catalysts, like molybdenum, tungsten, 01' tin compounds, not subject to being poisoned by sulphur compounds, can be employed.
Nitrogen-containing substances can be produced by reacting the plant material or the bitumen with a source of reactive nitrogen, such as NHiOH.
Sulphur-containing compounds can be formed by reacting the plant material or bitumen with a source of reactive sulphur, such as sulphides like NazS or FeS or sulph-hydrates by reacting it with substances containing the SH group such as N'al-IS.
Valuable products containing bound sulphur and nitrogen .in the molecule are obtained from plant material containing carbohydrates and lignin by reaction with a source of reactive sulphur and nitrogen, e. g. (NH4) 28 or NHiHS.
In'the accompanying drawings I illustrate two arrangements for carrying out the process described above. They are merely by way of example and are not intended to limit the scope of the present invention in any Way.
Figure 1 diagrammatically shows an arrangement whereby the formation of the protoproduct and its hydrogenation are carried out at the same time in the same apparatus.
Figure 2 shows an arrangement in which the conversion into protoproduct is carried out before its hydrogenation.
In the arrangement shown in Figure 1 a mixture of plant material containing carbohydrates and lignin with water and alkali in container I is fed by pressure pump 2 into the pipe still 3. In pipe still 3 the mixture is subjected to an elevated temperature in accordance with the above disclosure. From there it goes to the reaction tower 4 (preferably insulated). Such gaseous products as are already formed at this stage, as well as unused hydrogen or hydrogen containing gas (see later), are drawn off through valve 5 and sent through a condenser 6. The liquids formed in that condenser are collected in tank I, and may be drawn therefrom through valves 8, 8 Those gases that were not condensed in condenser E are drawn off by reduction valve 9.
The liquid part of the mixture emerging from pipe still 3 is allowed to flow downwardly in reaction tower G which may be filled with packing material It (preferably the packing material described in my U. S. Patent No. 1,796,501). Bafiie plates (not shown) or other conventional means to slow down the descent of the mixture may be utilized in addition to or instead of the packing material 10.
Hydrogen or hydrogen containing gases, e. g. water gas are fed into the system by compressor ll through pipe l2. A valve or other suitable connection at i3, which divides the hydrogen stream, permits part of the hydrogen stream to mix with the disintegrated plant material prior to its entry into the pipe still 3, while the other part of the hydrogen stream proceeds to the bottom of reaction tower 4.
By the time the mixture reaches the bottom of reaction tower 4 it has been converted into practically completely hydrogenated material. It moves through condenser Id. The end product goes through valve or valves 15a and IE2) into tank or tanks liia, lBb, from where it may be drawn off by valves Ha, llb. Valves l8a and l8'b allow the release of pressure in the tanks Mia and l6b.
A suitable catalyst is added to the mixture in container i when carbohydrate and lignin conversion and hydrogenation are carried out in accordance with the above-described process.
The above-described apparatus may be used Without parts H, I 2 and 13 if conversion without hydrogenation is desired. Protoproduct and artificial bituminous asphalt are then obtained as intermediary products which may be used as source material for phenol compounds or may be converted into valuable end products by hydrogenation or cracking separately carried out.
An apparatus for carrying out the hydrogenation separately is shown in Figure 2.
The mixture of the plant material, water and alkaline reacting material is led from container I9 by pressure pump 23 into pipe still 2!. From pipe still 2| the mixture goes to the top of the reaction tower 22 and flows therein downwards. It is kept there at the conversion temperature. The converted material flows through a condenser 23 into a receiver 24, which can be emptied through valve 25.
The gasified part of the mixture composed mostly of CO2, H20 and CH4 is drawn off through condensers 26 and 21 and into tank 28. From this tank 28 condensed material may be drawn off to the outside through valve 29. The gases CO2 and CH4 proceed to the absorption and conversion tower Si through valve 30. CO2 is absorbed and CH4 converted into hydrogen. This hydrogen together with unconverted hydrogen from a hydrogenation tower 34 and hydrogen freshly added at 32 are transported by compressor 33 into the bottom of the tower 34 which may be provided with packing material or baflle plates (not shown). The unused hydrogen together with CH; produced during hydrogenation leaves 3d at 39 and enters the CH4 conversion apparatus 3!.
The protoproduct collected in 24 leaves at 35. At 35 the hydrogenation catalyst may be added. The mixture with the help of the pump 31 is pumped through the pipe still 38 and enters at the top of the hydrogenation tower 34. There it is hydrogenated. It leaves the tower 34 at 39, goes through a condenser and enters through valves Ma and llb into the storage vessels 42a and 42b. Those can be emptied through valves 43a and 431) by closing Ma or Nb and opening 54a or 441).
By subjecting to these discontinuous or continuous processes in accordance with my invention all kinds of plant material containing carbohydrate and lignin, phenols, bitumen, asphalts and finally oxygen-free hydrocarbons of high anti-knock value are obtained. The great advantage of my processes can be seen in the fact that valueless material, like algae, seaweed, peat, grass, leaves, corn stalks, bagasse, wood, molasses, etc. which are produced continuously by nature and which otherwise would be converted by slow combustion into valueless CO2 and H20, can be utilized to good advantage. It follows that it is no longer necessary to resort to lignite and bituminous coal for artificial production of hydrocarbons.
Modification of the process and apparatus described above, all within the scope of the present invention, will readily occur to the expert.
The scope of the invention therefore is deemed to be limited by the appended claims only.
I claim:
1. A process for making a semi-liquid bitumenlike partly aliphatic and partly cyclic compound comprising a major portion of carbon and minor portions of nitrogen, hydrogen and oxygen, said process comprising heating-plant material 0911- taining both carbohydrates and lignin in a closed i 2. A process for making a semi-liquid bitumen like partly aliphatic and partly cyclic compound comprising a major portion of carbon and minor portions of sulphur, nitrogen, oxygen and hydrogen, said process comprising heating plant material containing both carbohydrates and lignin in a closed system to a temperature be tween 150 C. and about 370 C. in the presence of water and of a member of the group consisting of ammonium sulphide and ammonium hydrosulphide. f
3. A process for making a' semi-liquid bitumenlike partly aliphatic and partly cyclic compound comprising a major portion of carbon and minor portions of sulphur, nitrogen, oxygen and hydrogen, said process comprising heatingplant material containing both carbohydrates, and lignin in a closed system to a temperature between 150 C. and about 370 C. in the presence of water and ammonium sulfide.
4. A process for making a semi-liquid bitumenlike partly aliphatic and partly cyclic compound comprising a major portion of carbon and minor portions of sulphur, nitrogen, oxygen and hydrogen, said process comprising heating; plant material containing both carbohydrates and lignin in a closed system to a temperature between 150 C. and about 370 C. in the presence of water and ammonium hydrosulphide.
5. The roduct made by the process of claim 1.
6. The product made by the process of claim 3.
7. The product made by the process of claim 4.
ERNST BERL.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 1,764,249 Erlenbach June 17, 1930 1,936,819 Bayer Nov. 28, 1933 2,177,557 Bergstrom et a1 Oct.'24, 1939 2,220,624 Sherrard et a1 Nov. 5, 1940 2,328,749 Sherrard et al Sept. 7, 1943 FOREIGN PATENTS Number Country Date 412,115 Germany Apr. 11, 1925 OTHER REFERENCES Fischer: Conversion of Coal Into Oil, pub. by Ernest Benn Ltd., London (1925), pages 179-187.
Berl et a1.: Annalen, vol. 504, 38-61 (1933) Berl et a1.: Annalen, vol. 496, 283-292 (1932) Lindblad: Chem. Abs, vol. 26, 4462 (1932).
Lindblad: Ingeniors Velenskap Akad., vol. 107, 7-59 (1931) pages 22 to 38 and 56 to 59 especially pertinent.
Dunstan; The Science of Petroleum, pub. by Oxford University Press, N. Y. (1938), pages

Claims (1)

1. A PROCESS FOR MAKING A SEMI-LIQUID BITUMENLIKE PARTLY ALIPHATIC AND PARTLY CYCLIC COMPOUND COMPRISING A MAJOR PORTION OF CARBON AND MINOR PORTIONS OF NITROGEN, HYDROGEN AND OXYGEN, SAID PROCESS COMPRISING HEATING PLANT MATERIAL CONTAINING BOTH CARBOHYDRATES AND LIGNIN IN A CLOSED SYSTEM TO A TEMPERATURE BETWEEN 150* C. AND
US542916A 1944-06-30 1944-06-30 Production of valuable organic compounds from plant material Expired - Lifetime US2551579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US542916A US2551579A (en) 1944-06-30 1944-06-30 Production of valuable organic compounds from plant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US542916A US2551579A (en) 1944-06-30 1944-06-30 Production of valuable organic compounds from plant material

Publications (1)

Publication Number Publication Date
US2551579A true US2551579A (en) 1951-05-08

Family

ID=24165816

Family Applications (1)

Application Number Title Priority Date Filing Date
US542916A Expired - Lifetime US2551579A (en) 1944-06-30 1944-06-30 Production of valuable organic compounds from plant material

Country Status (1)

Country Link
US (1) US2551579A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654733A (en) * 1949-08-01 1953-10-06 Shell Dev Organic ammonium hydrosulfide-hydrogen sulfide reaction products and method for producing the same
US3344486A (en) * 1965-06-15 1967-10-03 Irving M Golden Buckle having a pressure member connected to slotted pivotally related frame members
FR2480298A1 (en) * 1980-04-15 1981-10-16 Swanson Rollan PROCESS FOR CONVERTING CHARCOAL, PEAT OR WOOD TO HYDROCARBONS
US4313011A (en) * 1980-04-09 1982-01-26 Standard Oil Company (Indiana) Plant hydrocarbon recovery process
US4536584A (en) * 1983-10-03 1985-08-20 The Standard Oil Company (Ohio) Process for the thermochemical conversion of biomass
US4891459A (en) * 1986-01-17 1990-01-02 Georgia Tech Research Corporation Oil production by entrained pyrolysis of biomass and processing of oil and char
US4933283A (en) * 1985-05-15 1990-06-12 Mobil Oil Corporation Process for converting cellulosic materials to hydrocarbon products
US4935567A (en) * 1984-11-09 1990-06-19 Agency Of Industrial Science And Technology Process for liquefying cellulose-containing biomass
US4982027A (en) * 1986-01-24 1991-01-01 Rheinische Braunkohlenwerke Ag Process for the reprocessing of carbon containing wastes
US20110289826A1 (en) * 2010-05-27 2011-12-01 Jumluck Srinakruang Process for producing fuel from vegetable oil by using ore catalyst
US9199889B2 (en) 2013-03-15 2015-12-01 Altex Technologies Corporation Method and apparatus for conversion of carbonaceous materials to liquid fuel
US10392565B2 (en) * 2017-12-14 2019-08-27 Savannah River Nuclear Solutions, Llc Conversion of biomass by efficient base-catalyzed decarboxylation reaction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE412115C (en) * 1922-04-20 1925-04-11 Emil Heuser Dr Ing Process for the preparation of catechol
US1764249A (en) * 1925-08-18 1930-06-17 Certificate of correction
US1936819A (en) * 1928-10-03 1933-11-28 Uhde Gmbh Friedrich Production of liquid products from solid or liquid carbonaceous materials
US2177557A (en) * 1937-02-24 1939-10-24 Method of treating wood or lignine
US2220624A (en) * 1939-07-15 1940-11-05 Henry A Wallace Process for the hydrogenation of lignin and waste pulp liquors and the products thereof
US2328749A (en) * 1939-07-15 1943-09-07 Henry A Wallace Process for simultaneously manufacturing pulp and hydrogenated products from lignocellulose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE412115C (en) * 1922-04-20 1925-04-11 Emil Heuser Dr Ing Process for the preparation of catechol
US1764249A (en) * 1925-08-18 1930-06-17 Certificate of correction
US1936819A (en) * 1928-10-03 1933-11-28 Uhde Gmbh Friedrich Production of liquid products from solid or liquid carbonaceous materials
US2177557A (en) * 1937-02-24 1939-10-24 Method of treating wood or lignine
US2220624A (en) * 1939-07-15 1940-11-05 Henry A Wallace Process for the hydrogenation of lignin and waste pulp liquors and the products thereof
US2328749A (en) * 1939-07-15 1943-09-07 Henry A Wallace Process for simultaneously manufacturing pulp and hydrogenated products from lignocellulose

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654733A (en) * 1949-08-01 1953-10-06 Shell Dev Organic ammonium hydrosulfide-hydrogen sulfide reaction products and method for producing the same
US3344486A (en) * 1965-06-15 1967-10-03 Irving M Golden Buckle having a pressure member connected to slotted pivotally related frame members
US4313011A (en) * 1980-04-09 1982-01-26 Standard Oil Company (Indiana) Plant hydrocarbon recovery process
FR2480298A1 (en) * 1980-04-15 1981-10-16 Swanson Rollan PROCESS FOR CONVERTING CHARCOAL, PEAT OR WOOD TO HYDROCARBONS
US4536584A (en) * 1983-10-03 1985-08-20 The Standard Oil Company (Ohio) Process for the thermochemical conversion of biomass
US4935567A (en) * 1984-11-09 1990-06-19 Agency Of Industrial Science And Technology Process for liquefying cellulose-containing biomass
US4933283A (en) * 1985-05-15 1990-06-12 Mobil Oil Corporation Process for converting cellulosic materials to hydrocarbon products
US4891459A (en) * 1986-01-17 1990-01-02 Georgia Tech Research Corporation Oil production by entrained pyrolysis of biomass and processing of oil and char
US4982027A (en) * 1986-01-24 1991-01-01 Rheinische Braunkohlenwerke Ag Process for the reprocessing of carbon containing wastes
US20110289826A1 (en) * 2010-05-27 2011-12-01 Jumluck Srinakruang Process for producing fuel from vegetable oil by using ore catalyst
US8404911B2 (en) * 2010-05-27 2013-03-26 Jumluck Srinakruang Process for producing fuel from vegetable oil by using ore catalyst
US9199889B2 (en) 2013-03-15 2015-12-01 Altex Technologies Corporation Method and apparatus for conversion of carbonaceous materials to liquid fuel
US10392565B2 (en) * 2017-12-14 2019-08-27 Savannah River Nuclear Solutions, Llc Conversion of biomass by efficient base-catalyzed decarboxylation reaction

Similar Documents

Publication Publication Date Title
Soltes et al. Pyrolysis
US2551579A (en) Production of valuable organic compounds from plant material
Appell Conversion of cellulosic wastes to oil
RU2603965C2 (en) Processing of organic material
CA2914833A1 (en) Biorefining method
Beckman et al. Comparisons of the yields and properties of the oil products from direct thermochemical biomass liquefaction processes
US3765851A (en) Gas production
GB1418014A (en) Coal-conversion process
Gesner A practical treatise on coal, petroleum, and other distilled oils
US2659453A (en) Separation of acetylene from gaseous mixtures by glycolonitrile
US1904586A (en) Conversion of carbonaceous solids into valuable liquid products
US3347647A (en) Conversion of solid fossil fuels to high-b. t. u. pipeline gas
El‐Saied Liquefaction of lignohemicellulosic waste by processing with carbon monoxide and water
GB1264986A (en)
Boomer et al. HYDROGENATIONS IN A TETRALIN MEDIUM: III. DESTRUCTIVE HYDROGENATION OF CELLULOSE AND WOOD
Gentry Low-Temperature Carbonisation. The Technology of Low Temperature Carbonization.
US2931765A (en) Process and apparatus for treating petroleum oils and solid fuels
US2296395A (en) Process for cracking carbonaceous materials
US4008145A (en) Converting solid fuels to gaseous and liquid fuels
US2581130A (en) Process for converting carbohydrates into bituminous substances
Wang et al. Influence of the Zeolite ZSM-5 on Catalytic Pyrolysis of Biomass via TG-FTIR
Design et al. David L. Brink
KR840007891A (en) Decomposition and Hydrogenation of Refractory Petroleum Tailings Products
US2007212A (en) Process for treating oils
US4366045A (en) Process for conversion of coal to gaseous hydrocarbons