US2531129A - Mineral lubricating oil compositions containing dialkyldithio-phosphoric acid-formaldehyde condensation products - Google Patents
Mineral lubricating oil compositions containing dialkyldithio-phosphoric acid-formaldehyde condensation products Download PDFInfo
- Publication number
- US2531129A US2531129A US17394A US1739448A US2531129A US 2531129 A US2531129 A US 2531129A US 17394 A US17394 A US 17394A US 1739448 A US1739448 A US 1739448A US 2531129 A US2531129 A US 2531129A
- Authority
- US
- United States
- Prior art keywords
- lubricating oil
- formaldehyde
- dialkyldithio
- condensation products
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
- C10M137/10—Thio derivatives
- C10M137/105—Thio derivatives not containing metal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/16—Naphthenic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/088—Neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/02—Macromolecular compounds from phosphorus-containg monomers, obtained by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/135—Steam engines or turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/22—Metal working with essential removal of material, e.g. cutting, grinding or drilling
Definitions
- non-metallic oxidation inhibitors for lubricating oils which may be employed in relatively small quantities to improve the grade of automobile engine lubricants such as solventrefined Mid-Continent stock and oils from Pennsylvania crudes.
- oxidation inhibitors are commonly used either alone in the oil or in admixture with detergents or with combination inhibitors and detergents such as the polyvalent metal salts of dialkyl-, dicycloalkylor diaryldithiophosphoric acids.
- the present invention is of particular importance in the production of oilsoluble antioxidants which contain a high percentage of combined phosphorus and sulfur, and which therefore possess good antioxidant properties, but which cause little or no increase in the corrosiveness of the oil.
- the condensation between the formaldehyde or formaldehyde-yielding substance and the dialkyldithiophosphoric acid takes place readily at ordinary atmospheric temperatures.
- the reaction may be carried out simply by mixing an 0,0-dialkyldithiophosphoric acid with an aqueous formaldehyde solution such as ordinary commercial 37% formalin, or it'may be carried out in the presence of an inert solvent such as benzene, toluene, aromatic hydrocarbons of higher boiling point, or even in the presence of the lubricating oil itself. While temperatures up to about 100 C. may be employed for short periods of time, it is advisable to employ lower reaction temperatures on the order of 25-60 C. in order to avoid excessive polymerization or loss of hydrogen sulfide from the product.
- the invention includes any oilsoluble antioxidant for hydrocarbon or vegetables and the like obtainable by condensing from 0.5 to 1 or more mols of formaldehyde or a formaldehyde-yielding substance with one mol of a dialkyldithiophosphoric acid, regardless of the exact chemical constitution of the reaction product or products obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Description
Patented Nov, 21, 1950 OFFICE MINERAL LUBRICATING OIL COMPOSI- TIONS CONTAINING DIALKYLDITHIO- PHOSPHORIC ACID-FORMALDEHYDE CONDENSATION PRODUCTS Edwin 0. Hook, Old Greenwich, Conn., and Philip H. Moss, Nederland, Tex., assignors to American Cyanamid Company, New York, N. Y., a
corporation of Maine No Drawing. Application March 26, 1948, Serial No. 17,394
2 Claims.
This invention relates to the production of oilsoluble antioxidants for mineral and vegetable oils including lubricating oils, cutting oils, slushing oils, turbine oils and the like, and to their methods of preparation. More particularly, the invention is directed to the production of formaldehyde condensation products of dialkyldithiophosphoric acids which are soluble in hydrocarbon oils and in vegetable glyceride oils and which possess good antioxidant properties.
A wide variety of dialkyl esters of thiophosphoric acids have heretofore been employed in mineral lubricating oils and for other purposes, and are known to possess antioxidant properties. In most cases these compounds have been used in the form of metal salts; usually as salts of polyvalent metals. Ordinarily the dialkyldithiophosphoric acids are prepared by reacting approximately 4 mols of a monohydric aliphatic alcohol such as ethanol, butanol, decanol, or octadecanol with 1 mol of P285. Typical methods of preparation are described in U. S. Patents Nos. 2,364,284, 2,228,658 and Reissue No. 22,829, which patents also describe the formation of heavy metal salts from these acids and the preparation of compounded lubricating oils from the neutral salts.
There is a growing demand in the lubricating oil industry for non-metallic oxidation inhibitors for lubricating oils, which may be employed in relatively small quantities to improve the grade of automobile engine lubricants such as solventrefined Mid-Continent stock and oils from Pennsylvania crudes. These oxidation inhibitors are commonly used either alone in the oil or in admixture with detergents or with combination inhibitors and detergents such as the polyvalent metal salts of dialkyl-, dicycloalkylor diaryldithiophosphoric acids. The present invention is of particular importance in the production of oilsoluble antioxidants which contain a high percentage of combined phosphorus and sulfur, and which therefore possess good antioxidant properties, but which cause little or no increase in the corrosiveness of the oil.
We have found that a new class of lubricating oil antioxidants possessing the above and other important properties are obtained by condensing an 0,0-dialkyldithiophosphoric acid diester with formaldehyde or with a formaldehyde-yielding 2 substance such as paraformaldehyde, trioxymethylene and the like. These condensation products are soluble in lubricating oils and other hydrocarbon oils, and also in vegetable glyceride oils, and are therefore well-suited for accomplishing the objects of the invention.
The condensation between the formaldehyde or formaldehyde-yielding substance and the dialkyldithiophosphoric acid takes place readily at ordinary atmospheric temperatures. The reaction may be carried out simply by mixing an 0,0-dialkyldithiophosphoric acid with an aqueous formaldehyde solution such as ordinary commercial 37% formalin, or it'may be carried out in the presence of an inert solvent such as benzene, toluene, aromatic hydrocarbons of higher boiling point, or even in the presence of the lubricating oil itself. While temperatures up to about 100 C. may be employed for short periods of time, it is advisable to employ lower reaction temperatures on the order of 25-60 C. in order to avoid excessive polymerization or loss of hydrogen sulfide from the product.
Theoretically, the condensation of equimolecular ratios of formaldehyde and dialkyldithiophosphoric acid should yield a simple methylol derivative; however, considerable quantities of a compound of somewhat higher molecular weight also appear to be formed. When the ratio of formaldehyde to dialkyldithiophosphoric acid is reduced, the amount of high molecular weight material in the product appears to increase; therefore this is probably a bis-compound. The two types of compounds possess about the same antioxidant properties for lubricating oils, and usually the entire condensation product is employed for this purpose. It should be understood, therefore, that the invention includes any oilsoluble antioxidant for hydrocarbon or vegetables and the like obtainable by condensing from 0.5 to 1 or more mols of formaldehyde or a formaldehyde-yielding substance with one mol of a dialkyldithiophosphoric acid, regardless of the exact chemical constitution of the reaction product or products obtained.
Any 0,0-dialkyldithiophosphoric acid may be used in carrying out the process of our invention. Where antioxidants having a very high percentage of combined phosphorus and sulfur are desired it is preferable to employ a diallgyldithiophosphoric acid in which the alkyl groups are of relatively low molecular weight, such as methyl, ethyl, propyl or butyl radicals. Dialkyldithiophosphoric acids of somewhat higher molecular weight may be used, such as diamyl, dihexyl, dicyclohexyl or dioctyldithiophosphoric acids, where products having a higher degree of 011- solubility are desired. In some cases mixed diesters of dithiophosphoric acid are of value such as the methyl octyl ester or the ethyl hexyl ester. Dialkyldithiophosphoric acids of even higher molecular weight may also of course be used if desired, such as the didecyl, didodecyl, ditetradecyl or dioctadecyldithiophosphoric acids. In general, therefore, the aliphatic radicals of the dialkyldithiophosphoric acid may contain from 1 to 18 or more carbon atoms and may be the same or different, and the radicals of from 3 to 18 carbon atoms may be either straight or branchedchain radicals? For some purposes, as where extreme pressure lubricant properties are desired in the oil, these aliphatic radicals maybe substituted by chlorine or other halogen atoms. Dithiophosphoric acid esters of unsaturated aliphatic or cycloaliphatic alcohols may also be employed.
The quantity of antioxidant to be used in the lubricating oil may vary from very small proportions on theorder of 0.1% to relativelylarge quantities up to 4-5% or greater, the smaller amounts usually being employed when a compounded lubricant containing other additives. is being prepared and the larger quantities being generally used for special purposes, as for extreme pressure lubricants. Ordinarily in automobile engine lubricating oils, quantities on the order of 0.2% up to about 2% are employed. Our novel antioxidants are compatible with all of the commonly used detergents, stabilizers and other ingredients of compounded oils and may be used in conjunction with smaller or larger quantities of aliphatic or aromatic sulfonates such. as calcium petronate, alkylphenol sulfides such as p-p-dibutyl-, diamyl-, or dioctyl phenol monoor polysulfides and their metal salts, metal salts of oxygen or sulfur-containing acids of phosphorus such as any of those described in the three patent referred to above, and the like. These and other additives are usually employed in the oils in quantities of about 0.1-5%, most commonly in quantities of about 0.5-2%,- in admixture with the antioxidants of the present invention.
The invention will be further illustrated in greater detail by the following specific examples. It should be understood, however, that although these examples may describe in detail some of the specific features of the invention, they are given primarily for purposes of illustration and the invention in its broader aspects is not limited thereto.
Example 1 One hundred seventy-five grams (2.16 mols) of 37% formalin was added to 411 grams (2.01 mols) of undistilled diethyl dithiophosphoric acid with stirring in 1% hours. By the time the addition was half completed a considerable lightening of its color was apparent. The maximum temperature of the reaction was 41 C. when the addition was approximately complete. The mixture was stirred for 16 hours at room temperature. The product was put in a separatory funnel, the water layer removed and the organic layer washed once with water, both night without heating.
aqueous layers being discarded. The organic layer was then washed with an excess of 5% potassium carbonate solution. The aqueous layers from the carbonate wash were acidified with concentrated hydrochloric acid and the oil which separated was recovered. This oil was washed with water, dried over calcium sulfate and stripped of volatile matter on a steam bath under reduced pressure. The weight of this oil was 207 grams. It was a light tan liquid which was found on analysis to contain 30.3% of sulfur and 16% of phosphorus.
The potassium carbonate-insoluble material from the separation procedure was washed with water, dried with calcium sulfate and stripped Example 2 Twenty-one grams of 37% formalin was added slowly and with stirring to 105 grams of a 75% solution of dimethyl dithiophosphoric acid in benzene. This mixture was warmed on a steam bath for two hours. Benzene was added and the organic layer washed three times with water. The product was dried with plaster-of-Paris, filtered and stripped under reduced pressure at C. The product, weighing 24 grams, was a light colored liquid.
Example 3 To grams of a 75% solution in benzene of crude dimethyl dithiophosphoric acid was added 42 grams of 37% formalin with stirring in 10 minutes. The internal temperature increased to a maximum of 60 from heat of reaction. The product was dissolved in ethylene dichloride, washed twice with water and dried over sodium sulfate. Volatile materials were removed at 95 C. and 8 mm. pressure to yield 60 grams of product, which was a light-colored liquid.
Example 4 To 50 cc. of a 36% aqueous formaldehyde solution there was added slowly 25.5 grams (01 mol) of di(2 chloroethyl)dithiophosphoric acid of the formula CLCHzCHzO SH The reaction mixture was agitated and maintained at 25-30 C. while the acid was being introduced and for an additional 16 hours. It was then allowed to stand for the separation of a lower oil layer which was drawn off and stripped of unreacted material by heating under reduced pressure. The product, weighing 27 grams (95% yield) was a light yellow liquid having a specific gravity at 25 C. of 1.5193 and a phosphorus content of 8.68. It was readily soluble in SAE 20 lubricating oil.
Example 5 The di-cyclohexyl ester of dithiophosphoric acid was prepared by reacting cyclohevanol with P286, using a 4:1 molar ratio.
To 147 grams (0.5 mol) of this di-cyclohexyl dithiophosphoric acid there was slowly added 16.6 grams (0.2 mol) of 36% aqueous formaldehyde solution while maintaining the temperature below 40 C. and the mixture was stirred over- The reaction product was diluted with twice its volume of ether and washed three times with aqueous sodium carbonate solution and then once with water. After drying in a desiccator the ether solvent was evaporated and the product stripped of volatiles by heating under reduced pressure. The residue was a dark green viscous material.
Upon repeating the reaction using an equimoiecular quantity (41.5 grams) of formalin, a dark-colored oily product was obtained as a lower layer in the reaction mixture. This layer was washed by agitating it with 5% aqueous sodium carbonate solution, neutralizing with acid, and separating the non-aqueous fraction which was then washedwith water. After heating under reduced presure to remove volatiles the product was obtained as a dark liquid which was readily soluble in lubricating oil.
Example 6 Eighty-one grams of 0,0-didecyldithiophosphoric acid (neutralization equivalent 440) were mixed with grams of 37% aqueous formaldehyde solution and the mixture was stirred for '1 hours at room. temperature and then allowed to stand overnight. The resulting oily layer was separated and washed several times with saturated sodium chloride solution and dried over anhydrous calcium sulfate. The product was a dark brown oily liquid that was easily soluble in lubricating oil.
Example 7 6 0.5% ofthe 0,0-dialkyldithiophosphoric acidformaldehyde condensation product together with 0.04% of iron naphthenate was used in the tests. Another sample of the same oil, containing the iron naphthenate but no antioxidant. was also tested as a control. Silver-cadmium alloy hearings were used in all the tests and were weighed before and after exposure to the oil. The results were as follows:
Product of Weight loss, mg. Control 1097 Example 1 (two products mixed) None Example 5 6 Example 6 8 What we. claim is:
1. A hydrocarbon oil composition comprising a relatively large proportion of a hydrocarbon lubricating oil having dissolved therein a relatively small amount, suflicient to inhibit deterioration of the oil by oxidation, of an 0,0-dialkyldithiophosphoric acid (Hester-formaldehyde condensation product obtained by condensing one mol of formaldehyde with from one to two mols of an 0,0-dialkyldithiophosphoric acid diester at temperatures of about 25-100 C.
2. A hydrocarbon oil composition comprising a relatively large proportion of a hydrocarbon lubricating oil having dissolved therein a relatively small amount, suflicient to inhibit deterioration of the oil by oxidation, of the condensation product of one moi of formaldehyde with from 1 to 2 mols of an 0,0-dialkyldithiophosphoric acid diester. V
' EDWIN 0. HOOK.
PHILIP H. MOSS.
REFERENCES CITED UNITED STATES PATENTS Name Date Salzberg Dec. 8, 1936 Number
Claims (1)
- 2. A HYDROCARBON OIL COMPOSITION COMPRISING A RELATIVELY LARGE PROPORTION OF A HYDROCARBON LUBRICATING OIL HAVING DISSOLVED THEREIN A RELATIVELY SMALL AMOUNT, SUFFICIENT TO INHIBIT DETERIORATION PRODUCT OF ONE MOL OF FORMALDEHYDE WITH FROM 1 TO 2 MOLS OF AN 0,0-DIALKYLDITHIOPHOSPHORIC ACID DIESTER.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17394A US2531129A (en) | 1948-03-26 | 1948-03-26 | Mineral lubricating oil compositions containing dialkyldithio-phosphoric acid-formaldehyde condensation products |
US111082A US2577966A (en) | 1948-03-26 | 1949-08-18 | Dialkyldithiophosphoric acid formaldehyde condensation products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17394A US2531129A (en) | 1948-03-26 | 1948-03-26 | Mineral lubricating oil compositions containing dialkyldithio-phosphoric acid-formaldehyde condensation products |
Publications (1)
Publication Number | Publication Date |
---|---|
US2531129A true US2531129A (en) | 1950-11-21 |
Family
ID=21782345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17394A Expired - Lifetime US2531129A (en) | 1948-03-26 | 1948-03-26 | Mineral lubricating oil compositions containing dialkyldithio-phosphoric acid-formaldehyde condensation products |
Country Status (1)
Country | Link |
---|---|
US (1) | US2531129A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2725332A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | 2, 3-dialkoxy-5, 6-p-dioxanethiol s, s-(o, odialkyl phosphorodithioate) |
US2725327A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | Pesticidal composition containing 2-p-dioxanethiol s-(o,o-dialkylphosphorodithioate) |
US2725330A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | Pesticidal composition containing 2, 3-pdioxanedithiol s, s-bis (phosphorodithioates) of halogenated alcohols |
US2725333A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | Organic dithiophosphate compounds |
US2725329A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | Pesticidal composition containing 2, 5-pdioxanedithiol s, s-bis (o, o-dialkyl phosphorodithioate) |
US2725328A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | 2, 3-p-dioxanedithiol-s, s-bis (o, o-dialkylphosphorodithioate) |
US2736706A (en) * | 1950-08-22 | 1956-02-28 | Texas Co | Lubricant containing a phosphorus acid ester-aldehyde condensation product |
US2760937A (en) * | 1951-10-31 | 1956-08-28 | Exxon Research Engineering Co | Phosphorus-containing lubricant additives |
US2783203A (en) * | 1955-05-18 | 1957-02-26 | Exxon Research Engineering Co | Corrosion preventing agent |
US2783202A (en) * | 1955-05-20 | 1957-02-26 | Exxon Research Engineering Co | Corrosion preventing agent |
US2914478A (en) * | 1953-09-28 | 1959-11-24 | Union Oil Co | Antirust composition |
US2948682A (en) * | 1956-12-24 | 1960-08-09 | Pure Oil Co | Formyl triesters of dithiophosphoric acid and lubricating oil compositions containing same |
US2959546A (en) * | 1956-08-28 | 1960-11-08 | Exxon Research Engineering Co | Silver corrosion inhibited lubricating composition |
US2996533A (en) * | 1958-05-28 | 1961-08-15 | Pure Oil Co | Preparation of phosphoro thioate diesters |
US3014058A (en) * | 1958-09-05 | 1961-12-19 | Fmc Corp | Method of making methylene bisphosphorus esters |
US3065125A (en) * | 1960-01-28 | 1962-11-20 | Monsanto Chemicals | Alkynyl phosphonothioates |
US3073857A (en) * | 1959-12-28 | 1963-01-15 | Pure Oil Co | Method of preparing phosphorotetrathioate esters |
US3259579A (en) * | 1954-11-29 | 1966-07-05 | Exxon Research Engineering Co | Esters of dithiophosphoric acids and lubricating oil compositions containing same |
US3919095A (en) * | 1973-07-30 | 1975-11-11 | Mobil Oil Corp | Organic compositions containing antioxidant and antiwear additives |
US5824626A (en) * | 1991-01-11 | 1998-10-20 | The Lubrizol Corporation | Process for preparing trithianes and phosphorus acid and/or thiophosphorus acid derivatives |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2063629A (en) * | 1935-02-19 | 1936-12-08 | Du Pont | Esters of the thio acids of phosphorus |
-
1948
- 1948-03-26 US US17394A patent/US2531129A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2063629A (en) * | 1935-02-19 | 1936-12-08 | Du Pont | Esters of the thio acids of phosphorus |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2736706A (en) * | 1950-08-22 | 1956-02-28 | Texas Co | Lubricant containing a phosphorus acid ester-aldehyde condensation product |
US2736737A (en) * | 1950-08-22 | 1956-02-28 | Texas Co | Phosphate partial ester-aldehyde condensation product and lubricant containing the same |
US2760937A (en) * | 1951-10-31 | 1956-08-28 | Exxon Research Engineering Co | Phosphorus-containing lubricant additives |
US2914478A (en) * | 1953-09-28 | 1959-11-24 | Union Oil Co | Antirust composition |
US2725327A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | Pesticidal composition containing 2-p-dioxanethiol s-(o,o-dialkylphosphorodithioate) |
US2725330A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | Pesticidal composition containing 2, 3-pdioxanedithiol s, s-bis (phosphorodithioates) of halogenated alcohols |
US2725333A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | Organic dithiophosphate compounds |
US2725329A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | Pesticidal composition containing 2, 5-pdioxanedithiol s, s-bis (o, o-dialkyl phosphorodithioate) |
US2725328A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | 2, 3-p-dioxanedithiol-s, s-bis (o, o-dialkylphosphorodithioate) |
US2725332A (en) * | 1954-08-30 | 1955-11-29 | Hercules Powder Co Ltd | 2, 3-dialkoxy-5, 6-p-dioxanethiol s, s-(o, odialkyl phosphorodithioate) |
US3259579A (en) * | 1954-11-29 | 1966-07-05 | Exxon Research Engineering Co | Esters of dithiophosphoric acids and lubricating oil compositions containing same |
US2783203A (en) * | 1955-05-18 | 1957-02-26 | Exxon Research Engineering Co | Corrosion preventing agent |
US2783202A (en) * | 1955-05-20 | 1957-02-26 | Exxon Research Engineering Co | Corrosion preventing agent |
US2959546A (en) * | 1956-08-28 | 1960-11-08 | Exxon Research Engineering Co | Silver corrosion inhibited lubricating composition |
US2948682A (en) * | 1956-12-24 | 1960-08-09 | Pure Oil Co | Formyl triesters of dithiophosphoric acid and lubricating oil compositions containing same |
US2996533A (en) * | 1958-05-28 | 1961-08-15 | Pure Oil Co | Preparation of phosphoro thioate diesters |
US3014058A (en) * | 1958-09-05 | 1961-12-19 | Fmc Corp | Method of making methylene bisphosphorus esters |
US3073857A (en) * | 1959-12-28 | 1963-01-15 | Pure Oil Co | Method of preparing phosphorotetrathioate esters |
US3065125A (en) * | 1960-01-28 | 1962-11-20 | Monsanto Chemicals | Alkynyl phosphonothioates |
US3919095A (en) * | 1973-07-30 | 1975-11-11 | Mobil Oil Corp | Organic compositions containing antioxidant and antiwear additives |
US5824626A (en) * | 1991-01-11 | 1998-10-20 | The Lubrizol Corporation | Process for preparing trithianes and phosphorus acid and/or thiophosphorus acid derivatives |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2531129A (en) | Mineral lubricating oil compositions containing dialkyldithio-phosphoric acid-formaldehyde condensation products | |
US2565920A (en) | Triesters of dithiophosphoric acid | |
US2586655A (en) | S-alkoxymethyl-o, o'-dialkyldithiophosphates | |
US2736737A (en) | Phosphate partial ester-aldehyde condensation product and lubricant containing the same | |
US2501731A (en) | Modified lubricating oil | |
US2416281A (en) | Mineral oil composition | |
US2360302A (en) | Compounded hydrocarbon oil | |
US2647873A (en) | Lubricating compositions | |
US2493217A (en) | Mineral oil composition | |
US2652367A (en) | Lubricating composition | |
US2589675A (en) | Production of s-hydroxybenzyl o, odithiophosphoric acid triesters | |
US3174931A (en) | Grease compositions | |
US2628941A (en) | Extreme pressure lubricant | |
US2566129A (en) | S-amidomethylidene dithiophosphoric acid triesters | |
US2614988A (en) | Hydrocarbon oils containing salkoxymethyl - o,o' - dialkyldithiophosphates | |
US2368000A (en) | Lubricating compositions | |
GB640148A (en) | Aliphatic sulphur compounds and compositions containing same | |
US2577966A (en) | Dialkyldithiophosphoric acid formaldehyde condensation products | |
US3377282A (en) | Production of oil additives | |
US2418422A (en) | Lubricant | |
US2409877A (en) | Lubricating oil | |
US2442915A (en) | Mineral oil composition | |
US2538696A (en) | Lubricant composition | |
US2627523A (en) | S-(sulfurized terpene hydrocarbon) dithiophosphoric acid triesters and methods of producing the same | |
US2631132A (en) | Lubricating oil additive |