US2488731A - Electron-emitting electrode for electric discharge tubes - Google Patents
Electron-emitting electrode for electric discharge tubes Download PDFInfo
- Publication number
- US2488731A US2488731A US665636A US66563646A US2488731A US 2488731 A US2488731 A US 2488731A US 665636 A US665636 A US 665636A US 66563646 A US66563646 A US 66563646A US 2488731 A US2488731 A US 2488731A
- Authority
- US
- United States
- Prior art keywords
- electron
- emitting
- cathode
- tungsten
- discharge tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 description 21
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 229910052721 tungsten Inorganic materials 0.000 description 14
- 239000010937 tungsten Substances 0.000 description 14
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 9
- 229910052776 Thorium Inorganic materials 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229940079938 nitrocellulose Drugs 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Inorganic materials [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/067—Main electrodes for low-pressure discharge lamps
- H01J61/0675—Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
- H01J61/0677—Main electrodes for low-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/14—Solid thermionic cathodes characterised by the material
Definitions
- the invention relates to electron-emitting electrodes for electric discharge tubes and more particularly for discharge tubes filled with an ionizable medium such as gas or vapour.
- the invention furthermore relates to a method of manufacturing such electrodes.
- Electron-emitting electrodes for electric discharge tubes are usually constituted by a metallic support, for example of tungsten, nickel or similar material, to which is applied a layer which readily emits electrons and which substantially consists of oxides.
- the support may be heated in this case either directly or indirectly. The emission'from these electrodes takes place owing to' the fact that during the'forming or seasoning a small amount of metal is formed from the oxides present at the surface.
- an electron-emitting electrode for a discharge tube filled with gas'or vapour which electrode is constituted by a support on which are present one or more oxides mixed with a larger quantity by weight of a highly refractory metal, for example tungsten.
- Such electrodes are utilized in discharge tubes filled with gas or vapour. It had also'beenproposed to utilize, not only in the last-mentioned tubes but also in high-vacuum tubes, mixtures of conducting substances and emitting non-conducting oxides, wherein the quantity of oxide was small relatively to the conducting substance'present in the material. These mixtures are also pressed and sintered and then utilized as a cathode either as'such' or only after having been drawn out to a smaller diameter.
- tungstenthorium cathode built up from amixture of tungsten and thoria, in which-event the emission takes place owing to the fact that during the forming an extremelysmall quantity of thorium is 'formed.
- the electrode acquires an excessively low conductivity, due to which the material can no longer be used as an independent cathode but must be provided, either on the inside or on the outside, with an additional conductive body.
- an electron-emitting electrode which electrode contains a mixture of one or more metals of which at least one has a melting point which exceeds 1550 C. such, for example, as tungsten, molybdenum'or tantalum, and one or more readily emitting oxides such as the oxides of the alkaline oralkaline earth metals, wherein the quantity by weight of emitting oxide is small relative to the metallic components and wherein at least one of the metallic components has a work function which is smaller than that of molybdenum and ispresent in the mixture in a proportion of at least one per cent by weight.
- Electron-emitting electrodes according to the invention ofler a large number of possibilities.
- the same mixture may be utilized as a layer on a conductive core either for a directly or an indirectly heated cathode whilst from the same complex of substances can be manufactured by pressing and sintering a body which, as such and without the use of conductors surrounding this body, can act as'a cathode, a sufiicient length of life and a very satisfactory emission being always ensured in this case.
- the conductivity remains satisfactory and also :a satisfactory emission is obtained since one of the metallic components is at the same time a satisfactorily emitting substance and therefore not only facilitates the emission but also keeps the conductivity at a sufiicient value and reduces the possibility of evaporation to a minimum.
- the latter is achieved inter alia owing to the fact that the metal contains a sufficient proportion of metal with a melting point which exceeds 1550 C.; for this purpose use is preferably made of metals such as tungsten, molybdenum or tantalum.
- metals such as tungsten, molybdenum or tantalum.
- For the satisfactorily emitting metallic components use is preferably made of a metal having a high melting point, for example thorium; other metals, for example hafnium, tantalum or iron may also enter into account for this purpose.
- This component is present in the mixture in a proportion of at least one per cent by weight. This percentage is preferably taken higher than the minimum quantity, for example or more than 20%.
- a cathode according to the invention is very suitable for being utilized in the form of a pressed and sintered cathode, it is of particular importance for discharge tubes filled with gas or vapour such, for example, as high-pressure mercury-vapour discharge tubes.
- gas or vapour such as high-pressure mercury-vapour discharge tubes.
- These electronemitting electrodes need only be placed on or in a holder and as such then act as cathodes.
- a cathode thus formed consists of a mixture'of a metal with a very high meltingpoint, for example tungsten or molybdenum, one or more oxides of barium, strontium and calcium, and thorium as the conducting and satisfactorily emitting component, a very useful composition being a mixture of 65% by weight of tungsten, 25% by weight of thorium and 10% by weight of alkaline-earth oxide.
- a very useful composition being a mixture of 65% by weight of tungsten, 25% by weight of thorium and 10% by weight of alkaline-earth oxide.
- Other compositions are also possible; for example, as the emitting substance there may be present thoria whilst the tungsten or the molybdenum may be replaced, either wholly or partly, by tantalum, nickel or similar metals.
- the electrode may be composed as follows: 10% of thoria, 10% of tantalum, 10% of barium and calcium oxide, of hafnium and 5% of zir
- the method of manufacturing an electrode according to the invention is slightly different according as the mixture of substances as such, i. e. in the pressed and sintered and, as the case may be, drawn condition, has to act as an electronemitting electrode or is utilized as a layer on a conductive support.
- the starting materials are intermixed in the form of powder; then this pow der is mixed with a binding agent and the paste thus obtained is either pressed into a determined shape and sintered or applied as such to a conductive core.
- the mixture of substances acts as a cathode
- the cathode is formed by the core body whilst the above-described mixture of substances constitutes the emitting layer.
- Example I The starting-point is formed by a pulverulent mixture of 75 grams of tungsten powder and 25 grams of thorium powder. 90 grams of the pow- 4 der thus obtained are mixed with 10 grams of a mixture of barium, strontium and calcium carbonate. The powder obtained is formed into a paste with the aid of a binder consisting, for ex ample, of a 10% solution of nitro-cellulose and ethylene glycol.
- This paste is pressed through a hole so that small cylinders are produced which have a diameter of 2 mms. and a length of from 3 to l mms. These cylinders are provided on a wire of 500 M which acts at the same time as a current supply wire for the gas discharge lamp to be produced.
- Example II A dry pulverulent mixture of grams of tungsten powder, 20 grams of thorium powder and 18 grams of a carbonate mixture of barium, strontium and calcium is mixed with 45 crns. of butyl acetate having dissolved in it 1.8% of nitrocellulose. The whole of it is ground in a ball mill for 24 hours.
- a cathode core which may consist, for example, of a straight wire of tungsten on which a helical wire of tungsten is wound, is immersed in this paste, the emitting material being thus applied to this cathode core. After drying this treatment is repeated in the same manner two or three times, whereupon the cathode thus obtained is sintered at a high temperature and is sealed into the lamp.
- An electron emitting electrode for an electric discharge device of the type employing an ionizable medium comprising a metallic component of the group consisting of tungsten, molybdenum and tantalum, a second metallic component comprising a metal of the group consisting of thorium and hafnium present in a proportion greater than twenty per cent by weight, and a compound of an alkaline earth metal present in a percentage by weight less than that of the metallic components.
- An electron emitting electrode for an electric discharge device of the type employing an ionizable medium comprising at least one metal from the group consisting of tungsten, molybdenum and tantalum, a second metallic component consisting of thorium in a proportion greater than twenty per cent by weight, and a compound of an alkaline earth metal present in a percentage by weightless than that of the respective metallic components.
- An electron emitting electrode for an electric discharge device of the type employing an ionizable medium said electrode consisting of a sintered mass comprising by weight sixty-iive per cent powdered tungsten, twenty-five per cent powdered thorium, and ten per cent alkaline earth compound.
Landscapes
- Discharge Lamp (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL249958X | 1942-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2488731A true US2488731A (en) | 1949-11-22 |
Family
ID=19781041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US665636A Expired - Lifetime US2488731A (en) | 1942-03-21 | 1946-04-27 | Electron-emitting electrode for electric discharge tubes |
Country Status (5)
Country | Link |
---|---|
US (1) | US2488731A (d) |
BE (1) | BE450151A (d) |
CH (1) | CH249958A (d) |
FR (1) | FR892748A (d) |
GB (1) | GB648955A (d) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2743400A (en) * | 1951-05-29 | 1956-04-24 | Fansteel Metallurgical Corp | Electrolytic devices |
US2755199A (en) * | 1951-02-19 | 1956-07-17 | Kellogg M W Co | Hard coated composite and method of forming |
US2826541A (en) * | 1954-06-15 | 1958-03-11 | Vitro Corp Of America | Method of making ceramic-clad metal structures |
US2828254A (en) * | 1954-01-05 | 1958-03-25 | Vitro Corp Of America | Method of forming a high friction element |
US2830017A (en) * | 1954-01-18 | 1958-04-08 | Vitro Corp Of America | Method of forming a sacrificial lubricating layer |
US2861935A (en) * | 1954-05-20 | 1958-11-25 | Vitro Corp Of America | Electrophoretic method of applying a lubricant coating |
US2881512A (en) * | 1954-06-16 | 1959-04-14 | Cie Generale De Telegraphite S | Composition for sintered barium cathodes |
US2941281A (en) * | 1953-12-04 | 1960-06-21 | Int Nickel Co | Hot workable, heat resistant metal bodies |
US3075066A (en) * | 1957-12-03 | 1963-01-22 | Union Carbide Corp | Article of manufacture and method of making same |
US3082516A (en) * | 1957-12-03 | 1963-03-26 | Union Carbide Corp | Fabrication of metal shapes |
US3088195A (en) * | 1958-06-16 | 1963-05-07 | Copperweld Steel Co | Cladding with powdered metal to form bimetallic products |
US3174219A (en) * | 1958-12-12 | 1965-03-23 | Varta Ag | Method of making a sintered electrode |
US3197847A (en) * | 1961-04-27 | 1965-08-03 | Sylvania Electric Prod | Clad materials and process of fabricating the same |
US3323924A (en) * | 1964-03-27 | 1967-06-06 | Varian Associates | Low dielectric loss metallizing paint composition having a reduced sintering temperature |
US3352694A (en) * | 1963-06-17 | 1967-11-14 | Varian Associates | Low temperature metallizing paint and method of making same |
US3489554A (en) * | 1969-03-13 | 1970-01-13 | Sylvania Electric Prod | Art of producing emitter-type electrode structures |
US5041041A (en) * | 1986-12-22 | 1991-08-20 | Gte Products Corporation | Method of fabricating a composite lamp filament |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321503A (en) * | 1978-11-06 | 1982-03-23 | Westinghouse Electric Corp. | HID Lamp electrode comprising barium-calcium niobate or tantalate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1422019A (en) * | 1913-01-17 | 1922-07-04 | Yunck John Adam | Alloy of refractory metals and process of forming same |
AT91341B (de) * | 1914-07-15 | 1923-02-26 | Aeg | Elektrisches Entladungsgefäß für reine Elektronenentladung. |
US1997693A (en) * | 1929-11-16 | 1935-04-16 | Westinghouse Electric & Mfg Co | Electrical discharge device |
US2208920A (en) * | 1939-06-03 | 1940-07-23 | Rca Corp | Cathode for electron discharge devices |
US2219590A (en) * | 1937-01-21 | 1940-10-29 | Henry E Fracker | Multiunit tube |
-
0
- BE BE450151D patent/BE450151A/xx unknown
-
1943
- 1943-03-19 CH CH249958D patent/CH249958A/de unknown
- 1943-03-22 FR FR892748D patent/FR892748A/fr not_active Expired
-
1946
- 1946-04-26 GB GB12657/46A patent/GB648955A/en not_active Expired
- 1946-04-27 US US665636A patent/US2488731A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1422019A (en) * | 1913-01-17 | 1922-07-04 | Yunck John Adam | Alloy of refractory metals and process of forming same |
AT91341B (de) * | 1914-07-15 | 1923-02-26 | Aeg | Elektrisches Entladungsgefäß für reine Elektronenentladung. |
US1997693A (en) * | 1929-11-16 | 1935-04-16 | Westinghouse Electric & Mfg Co | Electrical discharge device |
US2219590A (en) * | 1937-01-21 | 1940-10-29 | Henry E Fracker | Multiunit tube |
US2208920A (en) * | 1939-06-03 | 1940-07-23 | Rca Corp | Cathode for electron discharge devices |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2755199A (en) * | 1951-02-19 | 1956-07-17 | Kellogg M W Co | Hard coated composite and method of forming |
US2743400A (en) * | 1951-05-29 | 1956-04-24 | Fansteel Metallurgical Corp | Electrolytic devices |
US2941281A (en) * | 1953-12-04 | 1960-06-21 | Int Nickel Co | Hot workable, heat resistant metal bodies |
US2828254A (en) * | 1954-01-05 | 1958-03-25 | Vitro Corp Of America | Method of forming a high friction element |
US2830017A (en) * | 1954-01-18 | 1958-04-08 | Vitro Corp Of America | Method of forming a sacrificial lubricating layer |
US2861935A (en) * | 1954-05-20 | 1958-11-25 | Vitro Corp Of America | Electrophoretic method of applying a lubricant coating |
US2826541A (en) * | 1954-06-15 | 1958-03-11 | Vitro Corp Of America | Method of making ceramic-clad metal structures |
US2881512A (en) * | 1954-06-16 | 1959-04-14 | Cie Generale De Telegraphite S | Composition for sintered barium cathodes |
US3075066A (en) * | 1957-12-03 | 1963-01-22 | Union Carbide Corp | Article of manufacture and method of making same |
US3082516A (en) * | 1957-12-03 | 1963-03-26 | Union Carbide Corp | Fabrication of metal shapes |
US3088195A (en) * | 1958-06-16 | 1963-05-07 | Copperweld Steel Co | Cladding with powdered metal to form bimetallic products |
US3174219A (en) * | 1958-12-12 | 1965-03-23 | Varta Ag | Method of making a sintered electrode |
US3197847A (en) * | 1961-04-27 | 1965-08-03 | Sylvania Electric Prod | Clad materials and process of fabricating the same |
US3352694A (en) * | 1963-06-17 | 1967-11-14 | Varian Associates | Low temperature metallizing paint and method of making same |
US3323924A (en) * | 1964-03-27 | 1967-06-06 | Varian Associates | Low dielectric loss metallizing paint composition having a reduced sintering temperature |
US3489554A (en) * | 1969-03-13 | 1970-01-13 | Sylvania Electric Prod | Art of producing emitter-type electrode structures |
US5041041A (en) * | 1986-12-22 | 1991-08-20 | Gte Products Corporation | Method of fabricating a composite lamp filament |
Also Published As
Publication number | Publication date |
---|---|
FR892748A (fr) | 1944-05-17 |
GB648955A (en) | 1951-01-17 |
CH249958A (de) | 1947-07-31 |
BE450151A (d) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2488731A (en) | Electron-emitting electrode for electric discharge tubes | |
US2543728A (en) | Incandescible cathode | |
Cronin | Modern dispenser cathodes | |
US4007393A (en) | Barium-aluminum-scandate dispenser cathode | |
US4165473A (en) | Electron tube with dispenser cathode | |
US3766423A (en) | Integral emissive electrode | |
US3798492A (en) | Emissive electrode | |
JPS58177484A (ja) | デイスペンサ陰極の製造方法 | |
US2147447A (en) | Glow cathode | |
US3911309A (en) | Electrode comprising a porous sintered body | |
US3969279A (en) | Method of treating electron emissive cathodes | |
US2741717A (en) | Dispenser type cathode having gettercoated parts | |
US2389060A (en) | Refractory body of high electronic emission | |
JPH0146989B2 (d) | ||
US3902090A (en) | Short-arc gas discharge lamp | |
US3563797A (en) | Method of making air stable cathode for discharge device | |
US2614942A (en) | Thermionic cathode | |
US2144249A (en) | Cathode for electron discharge devices | |
US2117735A (en) | Getter | |
US2848644A (en) | Thermionic cathode | |
Beck | High-current-density thermionic emitters: A survey | |
US2929133A (en) | Dispenser cathode | |
JPH02186525A (ja) | 貯蔵形ディスペンサー陰極及びその製造方法 | |
US2488716A (en) | Electric high-pressure discharge tube | |
US2185410A (en) | Metal compositions |