US2424971A - Frequency-shift radio telegraph transmitting system - Google Patents
Frequency-shift radio telegraph transmitting system Download PDFInfo
- Publication number
- US2424971A US2424971A US545934A US54593444A US2424971A US 2424971 A US2424971 A US 2424971A US 545934 A US545934 A US 545934A US 54593444 A US54593444 A US 54593444A US 2424971 A US2424971 A US 2424971A
- Authority
- US
- United States
- Prior art keywords
- phase
- frequency
- tube
- tubes
- telegraph
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 description 22
- 230000010355 oscillation Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 241000287227 Fringillidae Species 0.000 description 1
- 241000283986 Lepus Species 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C1/00—Amplitude modulation
- H03C1/52—Modulators in which carrier or one sideband is wholly or partially suppressed
- H03C1/60—Modulators in which carrier or one sideband is wholly or partially suppressed with one sideband wholly or partially suppressed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/10—Frequency-modulated carrier systems, i.e. using frequency-shift keying
- H04L27/12—Modulator circuits; Transmitter circuits
Definitions
- This invention relates to radio transmitting systems and, more particularly, to improved keying means for shiftin the frequency of the output waves produced by a radio transmitter back and forth between two different values in accordance with the signals to be transmitted.
- Another object of the invention is to provide a radio telegraph transmitting system with improved means for selectively transmitting alternatively wave energy of two different frequencies which are symmetrically disposed on opposite sides of a base frequency.
- a further object of this invention is to provide improved keyin means for shifting the frequency of the output waves produced by a radio transmitter back and forth between two different values in accordance with the signals to H be transmitted.
- phase reversing means for reversin the phase of a portion of the modulating wave energy, used to modulate the carrier wave energy, in accordance with the type of signal to be transmitted at a particular instant.
- This portion of the modulating wave energy is applied in phase opposition to control grids of a balanced modulator.
- Another portion of the modulating wave energy, which is not acted upon by the phase reversing means, is passed through a phase shifter and is applied in phase opposition to control grids of a second balanced modulator.
- the phase shifter is so adjusted that the modulating wave energy applied to the second modulator is in phase quadrature with the modulating wave energy supplied to the first modulator; that is, when the instantaneous alternating value of the voltage is zero in the input to the first modulator, it is a maximum in the input'to the second modulator and vice versa.
- Radio frequency carrier wave energy is also supplied in phase quadrature relation to the modulators.
- the balanced modulators suppress the carrier wave and tend to produce two side frequencies. However, since their outputs are connected together, one side frequency is cancelled due to the above-mentioned differences in phase. Therefore, only one side frequency will be delivered to the utilization circuit, the particular side frequency delivered at any given instant being determined by the phase of the audio frequency wave energy delivered at that time to the first balanced modulator.
- telegraph signals of two different types are produced by manually operating the key I between its contacts 2 and 3.
- Positive battery 4 is connected to contact 2 and negative battery 5 is connected to contact 3.
- the key I constitutes a source of telegraph signals since its operation causes direct current polar telegraph signals, consisting of direct current which flows in one direction for marking and in the other direction for spacing, to be transmitted along conductor 6 to the phase reversing network 1.
- any other suitable means may be employed for producing telegraph signals and applying them in the form of positive or negative current to the phase reversal network 1.
- the phase reversal network 7 comprises two pairs of voltage sensitive variable resistance elements, such as copper oxide disc rectifiers 8, 8 and 9, 9, connected in the manner shown in the drawing so that the pair of rectifiers B, 8 present a low resistance to positive current from conductor ES and a high resistance to negative current while the pair of rectifiers 9, 9 present a low resistance to the flow of negative current from conductor 6 and a high resistance to positive current.
- voltage sensitive variable resistance elements such as copper oxide disc rectifiers 8, 8 and 9, 9
- An audio frequency generator It of any suitable design produces wave energy having a frequency of 425 cycles.
- One portion of this wave, energy is supplied by a transformer H to a potentiometer I2 and another portion is delivered by the transformer H to a phase shifter I33
- the phase shifter I3 is a bridge network comprising condensers and resistances designed to shift the phase of the voltage of the wave energy supplied thereto by transformer l I so that the voltage in conductor [4 will be degrees displaced from the voltage in the primary winding of the transformer ll While the voltage in conductor IE will be displaced 2'70 degrees.
- the voltage having a phase shift of 90 degrees is delivered by conductor 14 to a grid of a tube It and the voltage having a phase shift of 270 degrees is applied by conductor IE to a grid of a tube ii.
- the voltages in conductors i l and i5 are approximately equal.
- Tubes l6 and i1 constitute a balanced modulator as will be discussed in more detail hereinafter.
- the phase reversing network l which acts as a reversing switch.
- transformer l9 delivers some of this audio frequency wave energy over a conductor 20 to a grid of a tube 22, the voltage of this portion being 180 degrees out of phase with that in the primary winding of the transformer I I.
- Another portion is supplied over a conductor 2
- are approximately equal.
- the phase reversing network I functions as a reversing switch to reverse the phase of the audio frequency inputs to the balanced modulator constituted by the tubes 22, and 23.
- the modulating voltage applied to tube 22 is always 90 degrees out of phase with the modulating voltage applied to tube I6, and the voltage applied to tube 23 is always SO'degrees out of phase with the voltage applied to tube H.
- a quadrature phase relation is always maintained between the audio frequency inputs to the balanced modulator tubes I6, I1, 20, and 2!,
- a radio frequency oscillator 24 of any appropriate design produces wave energy having a frequency of 2,000,000 cycles. Itis to be understood thatthis specific value and the specificvalue of the audio frequency wave energy have been set forth for purposes of explanation and that the invention is not restricted to these specific values.
- This wave energy is supplied by means of a transformer 25 to a phase shifter 26 which is a bridge network comprising condensers and resistances.
- This phase shifter 26 is'designed to produce a 90 degree hase diiference between the voltages at its output terminals so that the voltage of the wave energy flowing along the conductor 21 is in phase with that in the primary winding of the transformer 25, whilelthe voltage in conductor 28 is 90 degrees out of phase, that in conductor 29 is 180 degrees out of phase, and that in conductor 30 is 270 degrees out of phase.
- the voltages in these four conductors are approximately equal.
- the balanced modulator constituted by tubes 16 and I7 is supplied with two other portions of the radio frequency energy which are also 180 degrees out of phase. There is thus a quadrature phase relation between the four radio frequency inputs to the balanced modulators.
- both the radio frequency 7 input and the audio frequency input to tube I6 are always degrees out of phase with their respective generator outputs while both the radio frequencyand audio frequency inputs to tube I1 are always 279 degrees out of phase. In other words, both inputs to tube I6 are always degrees out of phase with the corresponding inputs to tube I'I.
- the radio frequency input to tube 23 is always in phase with its source but the audio frequency input to tube 23 is either in phase with its source or 180 degrees out of phase depending on whether the key I is engaging its contact 2 or its contact 3.
- the radio frequency input to tube 22 is always 180 degrees out of phase with its source while the audio frequency input to tube 22 is either 180 degrees out of phase with its source or in phase depending on the position of the key I.
- both the radio frequency and audio frequency inputs to tube 23 will be in phase with their respective sources and both inputs to tube 22 will be 180 degrees out of phase with their respective sources and also 180 degrees out of phase with the corresponding inputs to tube 23
- the key I is operated against its contact 3
- the audio frequency input will .be 180 degrees out of phase with its source
- the radio frequency input to tube 22 will. remain 180 degrees out of phase with its source while the audio frequency input will now be in phase with its source.
- the parallel output circuits of the balanced modulators are connected to an intermediate amplifier 33, which has its output. connected to the final power amplifier 34.
- the amplified signals from the power amplifier 34 aredelivered to the transmitting antenna 35 which radiates them through space.
- the potentiometer I2. is so adjusted as to cause the amplitude of the side frequenciesproduced in; the balanc d modulator constituted by the, tubesZZ and 23 to, be approximately equal to theamplitude of. the side frequencies produced in the balanced modulator constituted. by the tubes I6 and I1. q
- the screen grids 36 of the balanced modulator constituted by tubes 22 andizflgare suppliedv with positive-voltage from battery-31 through a potentiometer 3 8-and the screen grids 39 0f the balanced modulator constituted by tubes I6 and I! are similarly supplied with positive voltage from battery 31 through a potentiometer 40.
- both the potentiometers 38 and 40 are adjusted to supply the screen grids 38 and 39, respectively, with voltages of the proper magnitudes so that the carrier wave, or base radio frequency of 2,000,000 cycles, will be suppressed in a manner well known to those skilled in the art.
- the radio frequency and audio frequency wave energies are supplied to each balanced modulator in a push-pull manner so that in each balanced modulator the potential on the grid of one of the modulator tubes is positive while the potential on the grid of the other tube is negative at any particular instant. Since the two modulators can be adjusted for a nearly perfect balance in the manner described above, the output currents in the parallel-connected output circuits of the modulators will therefore neutralize or balance each other in a manner well known to those skilled in the art so that the radio frequency carrier wave of 2,000,000 cycles will be suppressed or eliminated. However, the output of each balanced modulator will contain upper and lower side frequencies of 2,000,425 cycles and 1,999,575 cycles due to the modulation of the radio frequency wave energy by the audio frequency modulating energy.
- the lower side frequency waves produced by both balanced modulators will have a zero phase difference, whereas the upper side frequency wave produced by one balanced modulator will be 180 degrees out of phase with the upper side frequency wave produced by the other balanced modulator. This can be seen from the following table of the side frequency phase differences existing at this time.
- the values in column 3 are the sums of the corresponding values in columns 1 and 2 while the values in column 4 are the differences between the corresponding values in columns 1 Since the output circuit of the second balanced modulator is connected in parallel with theoutput circuit of the first balanced modulator, the upper side frequency will be canceled, or balanced out, and only the lower side frequency will be supplied at this time to the antenna 35 for radiation. 7
- the antenna 35 will transmit wave energy having either a frequency of 2,000,425 cycles or a frequency of 1,999,575 cycles in accordance with the marking and spacing polar telegraph signals selectively produced by the key I.
- a carrier shift telegraph transmitting system comprising in combination a source of carrier waves, a source of low frequency oscillations, a pair of balanced modulators having a common output circuit, a plurality of input circuits for coupling each of said sources with said modulators for impressing thereon said carrier waves and said low frequency oscillations in such phase relationships as to produce a single side frequency in said common output circuit, said system being characterized by having control means for changing the wavelength of said single side frequency in accordance with telegraph signals, said control means including a telegraph key, a source of bias voltages, phase reversing means interposed in one of said input circuits, and circuit means for impressing the biasing voltages on said phase reversing means for reversing the phase of the electric wave energy impressed by said input circuit in accordance with the operation of said telegraph key.
- a carrier shift telegraph transmitting system comprising in combination a source of car-. rier waves, a source of low frequency oscillations, a pair of balanced modulators having a common output circuit, a plurality of input circuits for coupling each of said sources with said modulators for impressing thereon said carrier waves and said low frequency oscillations in such phase relationships as to produce a single side frequency in said common output circuit, said system being characterized by having control means for changing the wavelength or said single side frequency in accordance with telegraph signals, said control means including a telegraph key, a source of bias voltages, phase reversing means comprising a Wheatstone bridge structure of voltage sensitive variable resistance elements interposed in the low frequency input circuit of one of said modulators, and circuit means for impressing the biasing voltages on said variable resistance elements for unbalancing the bridge in one direction when said key is in one position and for unbalancing the bridge in the other direction when said key is in another position.
- a carrier shift telegraph transmitting systern comprising in combination a source of carrier waves, a source of low frequency oscillations, a pair of balanced modulators having a common output circuit, a plurality of input circuits for coupling each of said sources with said modulators for impressing thereon said carrier waves and said low frequency oscillations in such phase relationships asto produce a single side frequency in said common output circuit, a telegraph signal source for producing marking and spacing polar telegraph signals alternatively, said system being characterized by having control means for changing the wavelength of said single side frequency from one Value when marking signals are produced by said telegraph signal source to another value when spacing signals are produced, said control means comprising a phase reversing network interposed in one of said input circuits, and circuit means for impressing said marking and spacing polar telegraph signals on said phase reversing network, said phase reversin network comprising four voltage sensitive variable resistance elements connected in a lattice structure, one pair of said elementsbeing connected for presenting a low resistance to marking signals and
- a single sideband modulating system having in combination a source of carrier waves, a source of single frequency audio waves, a first balanced modulator comprising two electronic tubes, 2, second balanced modulator comprising two other electronic tubes, said modulators having a common output circuit, first circuit means for applying said carrier waves to said four electronic A 8 tubes in phase quadrature, second circuit means for applying said audio waves to the two tubes of one modulator in phase opposition, third circuit means for applying said audio waves to the two tubes of the other modulator in phase opposition, phase shifting means for establishing a phase quadrature relation between said audio inputs to said four tubes whereby the carrier and one sideband are suppressed and only one sideband appears in said output circuit, said system being characterized by having control means for interchanging the suppressed sideband and the sideband appearing in said output circuit, said control means comprising a source of bias voltage, a phase reversing network interposed in said second circuit means for reversing the phase of the audio waves applied by said second' circuit means, said phase reversing network comprising a Wheatstone
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transmitters (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE480495D BE480495A (enrdf_load_html_response) | 1944-07-21 | ||
NL67418D NL67418C (enrdf_load_html_response) | 1944-07-21 | ||
FR957756D FR957756A (enrdf_load_html_response) | 1944-07-21 | ||
US545934A US2424971A (en) | 1944-07-21 | 1944-07-21 | Frequency-shift radio telegraph transmitting system |
CH265359D CH265359A (de) | 1944-07-21 | 1947-12-30 | Frequenzgetasteter Telegraphiesender. |
GB5100/48A GB645436A (en) | 1944-07-21 | 1948-02-20 | Improvements in radio telegraph transmitting systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US545934A US2424971A (en) | 1944-07-21 | 1944-07-21 | Frequency-shift radio telegraph transmitting system |
Publications (1)
Publication Number | Publication Date |
---|---|
US2424971A true US2424971A (en) | 1947-08-05 |
Family
ID=24178130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US545934A Expired - Lifetime US2424971A (en) | 1944-07-21 | 1944-07-21 | Frequency-shift radio telegraph transmitting system |
Country Status (6)
Country | Link |
---|---|
US (1) | US2424971A (enrdf_load_html_response) |
BE (1) | BE480495A (enrdf_load_html_response) |
CH (1) | CH265359A (enrdf_load_html_response) |
FR (1) | FR957756A (enrdf_load_html_response) |
GB (1) | GB645436A (enrdf_load_html_response) |
NL (1) | NL67418C (enrdf_load_html_response) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2483271A (en) * | 1946-11-30 | 1949-09-27 | Frederick W Frink | Frequency modulation transmitter |
US2571957A (en) * | 1946-11-02 | 1951-10-16 | Westinghouse Electric Corp | Single side-band demodulator system |
US2576429A (en) * | 1950-01-31 | 1951-11-27 | Jr Oswald G Villard | Single side-band signal generator |
US2596612A (en) * | 1943-06-12 | 1952-05-13 | Hartford Nat Bank & Trust Co | Signal receiver for carrier-wave telephony systems |
US2635226A (en) * | 1950-01-20 | 1953-04-14 | Collins Radio Co | Phase modulation system and apparatus |
US2659051A (en) * | 1952-04-29 | 1953-11-10 | John F Honey | Carrier insertion |
US2678385A (en) * | 1951-04-16 | 1954-05-11 | Rca Corp | Diversity receiver |
US2726368A (en) * | 1952-08-16 | 1955-12-06 | Bell Telephone Labor Inc | Broad-band phase-shifting circuit |
US2797313A (en) * | 1951-03-27 | 1957-06-25 | Hoffman Electronics Corp | Radio communication by neutral frequency deviation |
US2927159A (en) * | 1955-05-03 | 1960-03-01 | Lab For Electronics Inc | Frequency-shift keying |
US2935692A (en) * | 1954-03-08 | 1960-05-03 | Nathaniel L Cohen | Phase control system |
US3141066A (en) * | 1956-11-08 | 1964-07-14 | Itt | Double side band, suppressed-carrier, phase shift type telegraph system |
US3274591A (en) * | 1947-05-08 | 1966-09-20 | Torrence H Chambers | Phase rotation system for use in velocity cancellation moving target radar systems |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE961718C (de) * | 1954-04-02 | 1957-04-11 | Siemens Ag | Verfahren zur Frequenzumtastung fuer die UEbertragung zweier Nachrichten, insbesondere fuer die Zweifach-F 1-Modulation von Funksendern |
DE1221667B (de) * | 1963-01-03 | 1966-07-28 | Telefunken Patent | Verfahren zur Erzeugung eines Farbtraegers |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1666206A (en) * | 1925-01-15 | 1928-04-17 | Western Electric Co | Modulation system |
US1773116A (en) * | 1928-01-24 | 1930-08-19 | American Telephone & Telegraph | Single-side-band system |
US1831516A (en) * | 1928-01-10 | 1931-11-10 | Ralph B Stewart | Modulating system and method |
US1892383A (en) * | 1930-05-06 | 1932-12-27 | Soc Fr Radioelectrique | High frequency signaling |
US1976393A (en) * | 1929-05-18 | 1934-10-09 | Jr John Hays Hammond | Side band reversal transmission system |
US2118917A (en) * | 1936-09-03 | 1938-05-31 | William G H Finch | Dual tone telegraphy system |
US2198248A (en) * | 1936-09-01 | 1940-04-23 | Rca Corp | Method of and means for communication |
-
0
- NL NL67418D patent/NL67418C/xx active
- BE BE480495D patent/BE480495A/xx unknown
- FR FR957756D patent/FR957756A/fr not_active Expired
-
1944
- 1944-07-21 US US545934A patent/US2424971A/en not_active Expired - Lifetime
-
1947
- 1947-12-30 CH CH265359D patent/CH265359A/de unknown
-
1948
- 1948-02-20 GB GB5100/48A patent/GB645436A/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1666206A (en) * | 1925-01-15 | 1928-04-17 | Western Electric Co | Modulation system |
US1831516A (en) * | 1928-01-10 | 1931-11-10 | Ralph B Stewart | Modulating system and method |
US1773116A (en) * | 1928-01-24 | 1930-08-19 | American Telephone & Telegraph | Single-side-band system |
US1976393A (en) * | 1929-05-18 | 1934-10-09 | Jr John Hays Hammond | Side band reversal transmission system |
US1892383A (en) * | 1930-05-06 | 1932-12-27 | Soc Fr Radioelectrique | High frequency signaling |
US2198248A (en) * | 1936-09-01 | 1940-04-23 | Rca Corp | Method of and means for communication |
US2118917A (en) * | 1936-09-03 | 1938-05-31 | William G H Finch | Dual tone telegraphy system |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2596612A (en) * | 1943-06-12 | 1952-05-13 | Hartford Nat Bank & Trust Co | Signal receiver for carrier-wave telephony systems |
US2571957A (en) * | 1946-11-02 | 1951-10-16 | Westinghouse Electric Corp | Single side-band demodulator system |
US2483271A (en) * | 1946-11-30 | 1949-09-27 | Frederick W Frink | Frequency modulation transmitter |
US3274591A (en) * | 1947-05-08 | 1966-09-20 | Torrence H Chambers | Phase rotation system for use in velocity cancellation moving target radar systems |
US2635226A (en) * | 1950-01-20 | 1953-04-14 | Collins Radio Co | Phase modulation system and apparatus |
US2576429A (en) * | 1950-01-31 | 1951-11-27 | Jr Oswald G Villard | Single side-band signal generator |
US2797313A (en) * | 1951-03-27 | 1957-06-25 | Hoffman Electronics Corp | Radio communication by neutral frequency deviation |
US2678385A (en) * | 1951-04-16 | 1954-05-11 | Rca Corp | Diversity receiver |
US2659051A (en) * | 1952-04-29 | 1953-11-10 | John F Honey | Carrier insertion |
US2726368A (en) * | 1952-08-16 | 1955-12-06 | Bell Telephone Labor Inc | Broad-band phase-shifting circuit |
US2935692A (en) * | 1954-03-08 | 1960-05-03 | Nathaniel L Cohen | Phase control system |
US2927159A (en) * | 1955-05-03 | 1960-03-01 | Lab For Electronics Inc | Frequency-shift keying |
US3141066A (en) * | 1956-11-08 | 1964-07-14 | Itt | Double side band, suppressed-carrier, phase shift type telegraph system |
Also Published As
Publication number | Publication date |
---|---|
CH265359A (de) | 1949-11-30 |
NL67418C (enrdf_load_html_response) | |
FR957756A (enrdf_load_html_response) | 1950-02-25 |
GB645436A (en) | 1950-11-01 |
BE480495A (enrdf_load_html_response) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2424971A (en) | Frequency-shift radio telegraph transmitting system | |
US2461456A (en) | Frequency shift keying | |
US2436834A (en) | Phase and frequency modulation | |
GB859002A (en) | Improvements in or relating to phase modulators for carrier communication systems | |
US2379395A (en) | Fm transceiver | |
US2714634A (en) | Modulated radio frequency signal amplifier | |
US2756282A (en) | Directional amplifier system and apparatus | |
US3384824A (en) | Phase quadrature transmission system with receiver detectors controlled in response to presence of pilot waves appearing as crosstalk | |
US3430143A (en) | Communications system wherein information is represented by the phase difference between adjacent tones | |
US2374000A (en) | Phase modulator | |
US3378773A (en) | Frequency and amplitude modulation transmitter and modulator | |
US2045107A (en) | Phase modulation | |
US3946337A (en) | Phase modulator for phase shift key communications systems | |
US2511204A (en) | Frequency shift keying channeling | |
US2480705A (en) | Frequency shift keyer | |
US2545214A (en) | Locking circuit and control | |
US2645710A (en) | Radio transmission and carrier wave modulation | |
US2239776A (en) | Balanced modulator circuit | |
US2864953A (en) | Microwave pulse circuits | |
US2382015A (en) | Demodulator for frequency and amplitude modulation | |
US2036165A (en) | Phase and frequency modulation | |
US1991474A (en) | Radio beacon system | |
US2186146A (en) | Side band suppression system | |
US3032611A (en) | Combined frequency-phase modulation telegraph system | |
US2468832A (en) | Signaling system |