US2390197A - Method of removing coke - Google Patents

Method of removing coke Download PDF

Info

Publication number
US2390197A
US2390197A US42483041A US2390197A US 2390197 A US2390197 A US 2390197A US 42483041 A US42483041 A US 42483041A US 2390197 A US2390197 A US 2390197A
Authority
US
United States
Prior art keywords
coke
drum
cutting
bar
coking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Voorhees Vanderveer
George W Watts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Priority to US42483041 priority Critical patent/US2390197A/en
Application granted granted Critical
Publication of US2390197A publication Critical patent/US2390197A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B33/00Discharging devices; Coke guides
    • C10B33/006Decoking tools, e.g. hydraulic coke removing tools with boring or cutting nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/28Miscellaneous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/16Severing or cut-off
    • Y10T82/16016Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0405With preparatory or simultaneous ancillary treatment of work

Description

Dec. 4, 1945.
2&1 ff
v. vooRHEEs ErAL 2,390,197
METHOD OF REMOVING COKE Filed Dec. 29, 1941 Patented Dec. 4, 1945 2,390,197 'METHOD 0F REMOVING COKE .Vanderveer Voorhees, Homewood, and George W. Watts, Flossmoor, Ill., assignors to Standard Oil Company, Indiana Chicago, Ill., a corporation of Application December 29,1941. serial No. 424,830
(c1. 2oz-36) 4 Claims.
'I'his invention relates to the coking of carbonaceous materials such as coal, heavy hydrocarbon oils, etc. More particularly, it relates to a method for removing coke from coking drums where the coke has been deposited from petroleum residuums or other carbonaceous material at a high temperature. An object of the invention is to provide a method for decoking which will yield a higher proportion of lump coke than methods previously used. Another object of the invention is to provide a method for,producing coke of higher physical strength and removing it from coking drums without the difliculties heretofore encountered with hard coke. Still another and more specic object of the invention is to .remove coke from a drum without cooling delay and in a minimum period of time, thereby permitting use of the drinn in process or on stream for a large proportion of the time. Still other objects of the invention will be apparent from -the following description thereof.
The invention applies particularly to the coking of petroleum residuums by the delayed coking process as described, for example, in United States Patent 2,090,245 of Robert E. Wilson. According to this process hot residuum from the distillation of crude petroleum oil, generally a to 40% residue, is rapidly heated in a ilowing stream in a pipe heater and discharged into a stationary drum provided with heat insulation wherein the vapor-ized portions of the oil are evolved and the unvaporizable portions remain for a sufficient period of time to undergo a coking reaction. The temperature of this reaction is usually in the range of 800 to 1000 F. and a temperature of 900 to 925 F. ls generally satis factory. The higher the temperature employed and the longer the time permitted for the formation of coke, the harder and stronger will be the coke produced. The volatile products from the coking drum are ordinarily fractionated to separate coke still gasoline, gas oil and other products. The gas oil fraction may be employed as a charging stock for cracking processes or it may be recycled in part to the coking furnace.
When the drum becomes lled with coke, the general practice is to divert the stream of hof. hydrocarbons to an adjoining empty drum. preferably preheated, while the coke is removed from the rst drum. The time required for decoking a drum and putting it in readiness for further coking has usually been from 8 to 24 hours, and it has therefore be'en necessary to provide from 3 to 6 coking drums in a single coking unit in order to make the process a continuous one. Drums employed for this work usually have a height of `25 to 50 feet and a diameter o! 12 to 20 feet.
Heretofore, coke has usually been removed by one of several methods such as mechanically boring it out from the bottom after removing the bottom header plate or breaking it out by the cable method wherein a steel cable embedded in the cokein a given arrangement is drawn out through the bottom manhole bringing the coke with it in lumps. Still another method ls to cut the coke into sections by the cutting action of a high velocity water jet allowing it to fall from the drum in pieces.
Such methods have the disadvantage of producing a, considerable amount of fine material which is of low market value and unsuitable for many fuel purposes. The automatic boring device produces substantially 100% offines whereas the cable and hydraulic methods produce about 25 to 60% of fines. Another disadvantage of these methods, which applies particularly to the hydraulic and the cable methods, is that the coke must be o1' relatively soft structure to facilitate removal from the drum. Coke produced at high temperature or by the coking of certain selected stocks, has a higher physical strength, e. g., crushing strength, and as a result it is particularly valuable for certain purposes, for example, as a fuel in the metallurgy of iron, etc. However, because of the diiliculty oi removing hard coke from the drum, it
has not generally been feasible to produce metallurgical coke by the delayed coking process.
In accordance with our invention, the coke is removed from the drum substantially in a single the header plate to the bottom of the drum; and
Figure 4 is a section taken on line5-5 through the cutting mechanism of Figure 1.
Referring to Figure l, the coking drum I0 is supported in an elevated position and supplied with hot oil vapors by hot residuum charge line I l. The residuum may be conventionally heated in a suitable furnace or pipe still at a velocity suiiiciently high to prevent deposition of coke in the still tubes. A suitable manifold not shown may be provided to divert the stream of hot oil at suitable intervals to an adjoining coking drum like the one shown, thus providing continuous operatlon of the furnace, etc. during the decoking operation. Means may be provided for preheating the drum before charging hot oil thereto. As the coking proceeds the vaporized products are withdrawn at the top of the drum by line I2 and conducted to a suitable fractionating and condensing system. When coke has accumulated in the drum in a bed. C, to the desired amount. for example, two-thirds to three-fourths of the height of the drum. the stream `of oil introduced at II isdiscontinued and the drum is ready for decoking.4 either immediately or after standing for a period of hours to permit the coking reaction to go to completion.
Removal of coke is now carried out in the following manner: the top dome cover i3 is removed and hoisting apparatus I4 is lowered into the drum to engage the anchor rod I5. Rod I5 which is embedded in the coke passes axially through the center of the drum to the bottom cover plate I0'. At its lower end the anchor rod is connected to anchor plate Il by any suitable means, for example, by nut Ila. Plate I'I may be a disc of somewhat smaller diameter than the bottom opening of the coking drum. Plate IS is then removed. Platform IB is provided on which workmen may stand for carrying out this operation. A suitable crane, not shown, may be provided for swinging the cover I t away from the opening of t he coking drum.
'I'he next operation is cutting the coke free from the wall of the drum which may be accomplished by introducing a rigid cutting tool from below along the wall of the drum through the space betwen the wall and the anchor plate I1. Various types of cutting tools may be used for this purpose. A number of vertical, successive cuts may be made or a bar carrying one or more serrated cutting wheels at the top may be caused to travel around the periphery of the drum somewhat in the manner oi' a boring tool. An accompanying water jet may be provided for washing cuttings from the path of the tool and for simultaneously cooling the cutting head.
The mechanism shown in Figure 1 for cutting the coke free from the wall of the drum resembles the foregoing in that it is a mechanical device operating from below the drum. It operates in the following manner. Circular tracks I9 and 20 are equipped with gear racks and maintain fixed positions outside of the line of the coking drum walls. Running on the tracks I! and 20 is the carriage 2| provided with integrated gears 22 and 23 driven by a motor 24, connected to shaft 25. By this means the carriage 2| may be caused to travel in an upright position and at a controlled speed about the circular tracks I 9 and 2li.
The carriage 2| is provided with an elevator 20 which is independently movable from the top to the bottom of the carriage by jack screws 21 actuated by motor 28. Other means for raising and lowering the elevator 28 may be provided such as a rack and pinion.
Elevator 2| is equipped with steam or air cylinder 29 connected to cutting bar 30 through piston rod 3| imparting to the bar l0 a vertically reciprocating motion when desired. 'I'he bar 30 is equipped with cutting teeth along the upper :,soonsv length thereof for a distance at least equal to the thickness of the bed of coke, C. in drum I0. The bar is held in a vertical position against side thrust, by means of guides 83 and Il which are ailixed to carriage 2I. The guides may be of roller construction and the upper guide Il is arranged to allow the teeth in the cutting bar 30 to pass freely. Other means oi' reciprocating bar I0 may be employed, such asa motor driven crank. The cutting bar II is preferably iiattened, with suilicient width in the direction tangential to the drum to provide the desired rigidity and resistance to cutting thrust.
Figure 2 shows a cross section of bar III. The leading edge is provided with teeth 32 alternately swaged to produce the desired width of cut through the coke to permit i'ree passage of the bar. A channel 38 is provided for the passage of liquid under pressure to assist in cutting the coke and washing away the cuttings. It is preferred to use water for this purpose, supplying the water under high pressure through a flexible connection I'I (Figure l). The pressure may suitably be about 1500 to 4500 pounds per square inch where it is desired that the water exert a substantial cutting action. Lower pressures of the order of 50 to 100 pounds per square inch may be employed where water is required only to wash away the cuttings produced by the cutting bar 30.
The following is a description of a typical decoking operation: After the drum I0 has been unplated at I3 and I6 and sufficient lifting effort applied to anchor rod Il by hoist Il to support the weight of the coke, the cutting bar 30 is raised until the point of the bar engages the coke in the space between anchor plate I1 and the wall of the drum I Ii. A vertically directed jet of water from a nozzle positioned at the upper end of the bar I0 is started by directing water through three way valve 4I into channel 38, and the bar is forced into the coke, cutting a vertical channel along the wall by the cornbined mechanical and hydraulic action or either of them. During this penetrating operation the bar may be given 9. reciprocating motion through the action of cylinder 29 if desired. Water for the tip nozzle just mentioned is supplied through a separate channel within the bar indicated in Figure 2 by IB, Alternatively, the initial penetration of the coke along the wall of the drum may be effected by a drill which may be provided for that purpose, if desired.
In order to reduce the height of the construction as much as possible, it is preferred to mount track 20 at the ground level and the space between tracks I9 and 20 is provided to exceed the height of the coke, C, to be removed from drum I0. In a typical installation, this height may be about 15 to 20 feet, more or less. The cutting bar 30 having a length of more than double the thickness of the coke bed of drum III may be dropped into well 39 when not in use.
After the initial channel has been made in the coke at a point above well 29, the cutting bar is caused to travel in a circular path following tracks I 9 and 20 completely around the periphery of the drum I Il and back to the starting position over well 39 into which the bar is then withdrawn. During the cutting operation bar 30 is reciprocated to effect a sawing action and simultaneously water is supplied through channel 36 to wash away the cuttings and prevent their retarding the action of the cutting bar. Channel 36 is connected to jets or nozzles made preferably by drilling holes between the teeth of the bar and into channel 36 as indicated by the opening 40 in Figure 2. The control of the water supplied to the cutting bar 30 alternatively through channel 36 or 38 may be effected by the three way valve 4I (Figure 1).
It is desirable to remove a minimum amount of coke by the cutting action of bar 30 and accordingly the bar is designed with a minimum thickness commensurate with mechanical strength. The inside surface of the drum I is likewise made free from obstruction, rivet heads and the like, giving a smooth surface against which the cutting bar 30 is designed to operate. The reciprocating action of the bar coupled with the action of the water supplied thereto prevents jamming by any portions of the coke which may be incompletely carbonized.
After the coke has been cut free from the drum and the bar 30 has been returned to its original position, carriage 42 traveling on track 43 is placed in position beneath the drum I0 and the entire mass of coke is lowered by hoist I4 until it rests on the carriage 42, the anchor plate Il resting securely on the bed plate 44 arranged to receive it. Locking nut IIa on the end of anchor rod I is then removed and the rod I5 is withdrawn from the mass of coke by lifting hoist I4. A parting compound coated on the rod previously will assist in this operation. If desired, however, the anchor rod may be allowed to remain in the bed of coke. The mass of coke is then hauled away to a suitable location for cooling and breaking or sawing into the desired size and shape.
In preparing f or the next filling of drum I0 the anchor rod I5 is lowered to the ground level and another anchor plate I1 attached to it. It is then drawn again into the drum, the bottom plate I6 is replaced, the hoist I4 is released from the anchor and the top plate I3 is replaced. During the iilling oi the drum with coke the anchor rod I5 may be securely held in a central position by wires or other locking means temporarily fixed to the top oi' the rod. The bottom plate I6 may be coated with lime or other parting composition to prevent coke adhering and assist removal of the plate, or sheets of paper may be placed between the plates I6 and I'I for the same purpose.
Although we have described our invention by means of certain specic examples and embodiments thereof, we intend that it be limited only by the scope of the claims. Various modifications of our coke cutting device may be employed without departing from the spirit of the invention. Thus we may cut the coke free from the drum wall by the use oi' a single water jet of high velocity injected from a nozzle into the fcoke along the wall oi' drum l0, said iet being movable in a circle below the wall of the drum and being effective of itself for removing a. channel of coke from along the wall of the drum without assistance of mechanical sawing action.
devices may be employed for lowering the coke from the coking drum. Thus, we may employ an elevator operated from the outside of the drum. For example, we may employ a hydraulic elevator located below each drum in a battery, or the coke may be lowered from the drum by means of a platform, raised and lowered by suitable cables outside of the drum. When employing an elevator of this type, supporting the coke from below, it will be necessary to use a bottom cover plate construction similar to that shown in Figure 3.
The hoisting method described in Figure 1 employing hoist I4 for lowering the coke from the drum, is perhaps the simplest method for accomplishing this purpose. Various modications of the anchoring arrangement shown may be employed. Thus anchor plate Il' may be attached to rod I5 after removal of head I6 and before cutting the coke free from the drum. Inasmuch as our invention reduces the time required for coke removal to such an extent that only two drums may be necessary to operate a continuous coking battery, the number of units of coke cutting and coke removing equipment required are few. A considerable reduction in the cost of construction is therefore obtainable.
We claim:
1. The method of removing coke from an elevated vertical drum which comprises supporting said coke as a body within said drum by an elevating device independent of said drum, exposing said coke at the bottom of said drum and adjacent; the wall thereof piercing said coke body from bottom to top adjacent the wall of said drum, introducing a cutting tool through the resulting opening, vertically cutting the coke and removing it in a narrow, vertical channel adjacent substantially the entire vertical wall of said drum, simultaneously ilushing the cuttings from the said channel in the vicinity of said cutting tool, lowering the body o! coke substantially in a single piece to a point outside of said drum and closing said drum. for further coking operations.
2. 'I'he method of claim 1 wherein the coke is removed from said channel adjacent the wall of said drum by the action of a mechanical saw vertically operating through said annular area. from below said drum.
3. The method of claim 1 wherein the removal of coke from said channel adjacent the wall of said drum is facilitated by the action of a high velocity water iet directed through said annular area upward along the wall of said drum.
4. 'I'he method of claim 1 wherein coke cuttings are removed from said channel in the vicinity of said cutting tool by applying a stream of water to the vertical face of said channel subjected to the action of said cutting tool.
vANnEavEEa vooRnEEs. GEORGE w. wA'rrs.
Instead of the hoisting device I4 various other
US42483041 1941-12-29 1941-12-29 Method of removing coke Expired - Lifetime US2390197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US42483041 US2390197A (en) 1941-12-29 1941-12-29 Method of removing coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US42483041 US2390197A (en) 1941-12-29 1941-12-29 Method of removing coke

Publications (1)

Publication Number Publication Date
US2390197A true US2390197A (en) 1945-12-04

Family

ID=23684037

Family Applications (1)

Application Number Title Priority Date Filing Date
US42483041 Expired - Lifetime US2390197A (en) 1941-12-29 1941-12-29 Method of removing coke

Country Status (1)

Country Link
US (1) US2390197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892250A (en) * 1972-08-11 1975-07-01 Ind High Pressure Systems Inc Hydraulic cleaner for doors and the like
US5414887A (en) * 1992-07-31 1995-05-16 Anthony-Ross Company Apparatus for cleaning air ports of a chemical recovery furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892250A (en) * 1972-08-11 1975-07-01 Ind High Pressure Systems Inc Hydraulic cleaner for doors and the like
US5414887A (en) * 1992-07-31 1995-05-16 Anthony-Ross Company Apparatus for cleaning air ports of a chemical recovery furnace

Similar Documents

Publication Publication Date Title
US4611613A (en) Decoking apparatus
JP4418111B2 (en) Containment device for coke drum
US7820014B2 (en) Systems and methods for remotely determining and changing cutting modes during decoking
US6264797B1 (en) Method for improving longevity of equipment for opening large, high temperature containers
US4394217A (en) Apparatus for servicing coke ovens
MXPA04006672A (en) Safe and automatic method for removal of coke from a coke vessel.
EP0293972B1 (en) Process for decoking a delayed coker using a flexible pipe and apparatus thereof
US5855742A (en) Decoking process and device
USH1442H (en) Petroleum coking drum with slump preventers
US2390197A (en) Method of removing coke
US3920537A (en) Process for on-stream decoking of vapor lines
US4673442A (en) Decoking process
JP2936418B2 (en) Hydraulic coke recovery equipment
US2322146A (en) Method and apparatus for removing coke from coking chambers
JP2552526B2 (en) Method and apparatus for removing pressurized coke from petroleum coke
US5200061A (en) Delayed coking
JPH0461036B2 (en)
US2294719A (en) Hydraulic disruption of solids
US2335604A (en) Coke removal
US2595245A (en) Apparatus for removing drum covers
US4328959A (en) Method and device for removing used refractory lining and/or slag deposits from elongated vessels
US2248903A (en) Removing coke from coke stills
US3194753A (en) Continuous coking process and apparatus
US3412012A (en) Process for decoking a delayed coker
US4039393A (en) Apparatus for cleaning coke oven ascension pipe