US2175582A - Cathode ray oscillograph - Google Patents
Cathode ray oscillograph Download PDFInfo
- Publication number
- US2175582A US2175582A US108742A US10874236A US2175582A US 2175582 A US2175582 A US 2175582A US 108742 A US108742 A US 108742A US 10874236 A US10874236 A US 10874236A US 2175582 A US2175582 A US 2175582A
- Authority
- US
- United States
- Prior art keywords
- cathode
- screen
- disc
- bulb
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006073 displacement reaction Methods 0.000 description 8
- 230000006698 induction Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/481—Electron guns using field-emission, photo-emission, or secondary-emission electron source
Definitions
- the present invention relates to improvements in the cathodes of cathode ray oscillographs of the cold cathode type.
- the object of the present invention is to obviate the aforesaid drawbacks by reducing the emissive portion of the cathode to a small fraction of its total surface and displacing this emissive portion over practically the entire extent of the surface of the cathode.
- the invention also comprises means of bringing about, on the surface of the cathode, the displacement of its emissive portion, these means being automatic and not necessitating any mechanical connection between the cathode and the exterior of the oscillograph.
- this continuous or intermittent displacement which may be uniform or irregular, is produced by rotation, translatory movement, by oscillations or finally by helicoidal movement of the cathode or of one or more screens interposed between the cathode and the anode.
- the cathode is constituted of a disc I disposed inside the cathode tube 2 and adapted to turn about a pin 3, for example under the action of the field of an induction member 4 disposed exteriorly of the tube 2.
- the anode 5 is eccentric with respect to the cathode l, and between these tWo electrodes there is disposed a screen 6 having an aperture '1. It is obvious that in the device according to this figure all the successive points of an annular zone 8 of radius R, traced on the surface of the cathode I, are successively utilised as emissive surfaces and that the aperture '5 of the screen 6 acts as a secondary cathode with respect to the anode.
- the cathode is constituted of a cylinder I I disposed inside the cathode tube l2 and adapted to be displaced by a helicoidal movement about a fixed pin l3 under the action of the field of an induction member I4 disposed exteriorly of the tube l2.
- the axis of the tube I2 is perpendicular to the pin l3.
- This tube encloses, on the one hand, the anode l5, and the other hand the screen I6 having the aperture ll therein.
- the cylinder forming the cathode II is connected with a member l8 having the screw required for bringing about its helicoidal displacement about the pin I 3, and adapted to be driven by the couple of the induction member Hi.
- the cathode is constituted of a movable disc 2
- a second screen 26, which is fixed, has a slot 21 and is placed inside the tube 22, between the screen 29 and the anode 25.
- and the screen 29 may be connected to two small cylinders (not shown).
- the emissive portion of the surface of the cathode 21 is displaced along successive spirals traced thereon.
- the successive spirals may be juxtaposed, and practically the entire surface of the cathode 2
- the slot 21 of the screen 25 acts as a secondary cathode with respect to the anode and a condenser coil, not shown, permits of obviating the drawbacks attending the displacement of the emissive surface along the entire length of this slot 21.
- a similar result may be obtained by keeping the cathode 2
- the above figures do not show the method of action of the induction members 4, l4 and 24 on the members which they are intended to drive.
- This driving may be effected by any other known means without departing from the scope of the present invention.
- the inductor is excited by polyphase windings and produces a rotary field, the body to be driven then consisting in a simple solid member, in the form of a cylinder w my or disc, or the inductor is excited with singlephase alternating current and the body to be driven provided with teeth along its periphery.
- the whole functions as a synchronous motor with variable reluctance.
- the addition of any of the known means for starting the movable members is provided.
- the movable members are driven with a continuous or uniform movement, but the improvements forming the subject of the present invention are not limited to this case.
- the invention covers the possibility of providing, instead of a rotation, a setting in operation with an oscillatory movement of sufiicient amplitude.
- the induction member is constituted by a simple electromagnet excited with alternating current, while the member to be driven is connected with a small permanent magnet.
- the scope of the invention will be considered as covering any cathode the emissive portion of which is displaced on its own surface automatically and without mechanical connections with the exterior of the oscillograph, irrespective of the means employed for obtaining this displacement and irrespective of the nature of this displacement.
- Theinvention in particular provides for the possibility of the electrode which forms the cathode, or one or more screens interposed between the cathode and the anode, being driven by electrostatic means, such as an electric fly, or simply oscillating, for example under the action of the force of gravity, its oscillatory movement being maintained or not by electrodynamic or electrostatic means.
- the invention finally covers the possibility of the supplementary screen or screens provided above for forming the secondary cathode, being utilised at the same time to form a simple or compound electron lens, which may or may not comprise the primary emissive cathode.
- a cathode ray tube comprising a bulb, an anode and a disc-shaped cathode within said bulb, a pin arranged within the bulb parallel to the longitudinal axis of the tube and perpendicularly traversing the centre of said disc to rotatably support the cathode, a screen between cathode and anode disposed parallel to said disc and having an aperture therein formed and arranged to expose only a fraction of the cathode surface for the emission of the cathode beam, and means provided externally of said bulb for continuously turning said cathode disc about said pin, so as to regularly and continuously displace the emitting spot along an annular line on the surface of said disc.
- a cathode ray tube comprising a bulb, an anode and a disc-shaped cathode within said bulb, a first disc-shaped screen rotatably arranged in said bulb between anode and cathode parallel to and coaxial within the latter and having a spiral slot therein, a second disc-shaped screen in said bulb between the anode and said first screen parallel to and coaxial with the same,
- a cathode ray tube as claimed in claim 2, in which said disc-shaped cathode is rotatably arranged in said bulb, and further means are provided externally of said bulb to continuously rotate said cathode disc simultaneously with the rotation of said first screen and at a different speed.
- a cathode ray tube as claimed in claim 2, in which said second screen is rotatably arranged in said bulb, and further means are provided externally of said bulb to continuously rotate said second screen simultaneously with the first one and at a different speed, the displacement of the emission spot on the cathode surface being defined by the relative displacement of the slots in the two screens relative to each other and to the cathode.
- a cathode ray tube comprising a bulb, an anode and a disc-shaped cathode within said bulb, a pin arranged within the bulb perpendicularly to said disc and coaxially with the same, a screen between cathode and anode disposed parallel to said disc and rotatably supported by the pin, an aperture in said screen to expose only a fraction of the cathode surface for the emission of electrons, and means provided externally of said bulb for continuously turning said screen about said pin, so as to regularly and continuously displace the emitting spot along an annular line of the surface of said disc.
- a cathode ray tube comprising a bulb, an anode and a disc-shaped cathode within said bulb, a pin arranged within the bulb parallel to the longitudinal axis of the tube and perpendicularly traversing the center of said disc to rotatably support the cathode, a screen between cathode and anode disposed parallel to said disc and having an aperture therein formed and arranged to expose only a fraction of the cathode surface for the emission of the cathode beam, and a stator including electric windings externally of said bulb for turning said rotor cathode disc about said pin, so as to displace the emitting spot along an annular line on the surface of said disc.
- a cathode ray tube comprising a bulb, an anode and a disc-shaped cathode within said bulb, a pin arranged within the bulb perpendicularly to said disc and coaxially with the same, a screen between cathode and anode disposed parallel to said disc and rotatably supported by the pin, an aperture in said screen to expose only a fraction of the cathode surface for the emission of electrons, and a stator provided with electric windings externally of said bulb for turning said screen about said pin so as to displace the emitting spot along an annular line on the surface of said disc.
Landscapes
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR809079T | 1935-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2175582A true US2175582A (en) | 1939-10-10 |
Family
ID=9253346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US108742A Expired - Lifetime US2175582A (en) | 1935-11-15 | 1936-11-02 | Cathode ray oscillograph |
Country Status (4)
Country | Link |
---|---|
US (1) | US2175582A (enrdf_load_html_response) |
BE (1) | BE417525A (enrdf_load_html_response) |
FR (1) | FR809079A (enrdf_load_html_response) |
GB (2) | GB479270A (enrdf_load_html_response) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2644031A (en) * | 1949-04-22 | 1953-06-30 | Time Inc | Scanning device |
US2825838A (en) * | 1953-06-04 | 1958-03-04 | Csf | Electron sources |
US3290540A (en) * | 1964-04-16 | 1966-12-06 | Westinghouse Electric Corp | Electron discharge tube having a movable cathode tape |
US3311774A (en) * | 1964-03-23 | 1967-03-28 | Westinghouse Electric Corp | Electron discharge device having a rotatable cathode therein |
US3364373A (en) * | 1964-03-23 | 1968-01-16 | Westinghouse Electric Corp | Electron discharge device having a cathode element with a renewable electron emissive surface |
-
0
- BE BE417525D patent/BE417525A/xx unknown
-
1935
- 1935-11-15 FR FR809079D patent/FR809079A/fr not_active Expired
-
1936
- 1936-11-02 US US108742A patent/US2175582A/en not_active Expired - Lifetime
- 1936-11-12 GB GB19109/37A patent/GB479270A/en not_active Expired
- 1936-11-12 GB GB30959/36A patent/GB479226A/en not_active Expired
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2644031A (en) * | 1949-04-22 | 1953-06-30 | Time Inc | Scanning device |
US2825838A (en) * | 1953-06-04 | 1958-03-04 | Csf | Electron sources |
US3311774A (en) * | 1964-03-23 | 1967-03-28 | Westinghouse Electric Corp | Electron discharge device having a rotatable cathode therein |
US3364373A (en) * | 1964-03-23 | 1968-01-16 | Westinghouse Electric Corp | Electron discharge device having a cathode element with a renewable electron emissive surface |
US3290540A (en) * | 1964-04-16 | 1966-12-06 | Westinghouse Electric Corp | Electron discharge tube having a movable cathode tape |
Also Published As
Publication number | Publication date |
---|---|
BE417525A (enrdf_load_html_response) | |
GB479270A (en) | 1938-02-02 |
GB479226A (en) | 1938-02-02 |
FR809079A (fr) | 1937-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2276995A (en) | Electrotherapy | |
US2175582A (en) | Cathode ray oscillograph | |
US1645304A (en) | X-ray tube | |
US3427482A (en) | Apparatus for generating an electric current in a superconductive coil | |
US2724056A (en) | Ionic centrifuge | |
US2301424A (en) | Apparatus for generating extremely large short-duration energy impulses | |
US2394072A (en) | Electron accelerator control system | |
US2335014A (en) | Magnetic induction accelerator | |
US1893759A (en) | X-ray tube | |
US2553312A (en) | Apparatus for imparting high energy to charged particles | |
DE968094C (de) | Frequenzmodulierbares Magnetron | |
US2901631A (en) | Filter means for penetrating rays | |
DE2213184A1 (de) | Drehanoden-roentgenroehre | |
DE3016102C2 (enrdf_load_html_response) | ||
GB503305A (en) | Improvements in and relating to electric discharge devices | |
US2063340A (en) | Continuous torque impulse motor | |
US2639401A (en) | Electrooptical translating system | |
US2830222A (en) | Apparatus for imparting high energy to charged particles | |
US2078672A (en) | Inverter tube | |
US2939046A (en) | Electron beam control | |
US1997986A (en) | Electric circuit controlling apparatus | |
US2116393A (en) | Arc-back suppressor for electric discharge devices | |
US1300251A (en) | Vapor-converter. | |
US2485409A (en) | Imparting high energy to charged particles | |
US1975714A (en) | Arrangement for controlling the gas discharge in electric discharge vessels |