US20240089504A1 - Transform Skip Residual Coding - Google Patents

Transform Skip Residual Coding Download PDF

Info

Publication number
US20240089504A1
US20240089504A1 US18/504,317 US202318504317A US2024089504A1 US 20240089504 A1 US20240089504 A1 US 20240089504A1 US 202318504317 A US202318504317 A US 202318504317A US 2024089504 A1 US2024089504 A1 US 2024089504A1
Authority
US
United States
Prior art keywords
video
syntax element
picture
flag
scaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/504,317
Other languages
English (en)
Inventor
Ye-Kui Wang
Li Zhang
Kai Zhang
Zhipin Deng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing ByteDance Network Technology Co Ltd
ByteDance Inc
Original Assignee
Beijing ByteDance Network Technology Co Ltd
ByteDance Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing ByteDance Network Technology Co Ltd, ByteDance Inc filed Critical Beijing ByteDance Network Technology Co Ltd
Priority to US18/504,317 priority Critical patent/US20240089504A1/en
Publication of US20240089504A1 publication Critical patent/US20240089504A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/33Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding

Definitions

  • the present disclosure relates to image and video coding and decoding.
  • Digital video accounts for the largest bandwidth use on the internet and other digital communication networks. As the number of connected user devices capable of receiving and displaying video increases, it is expected that the bandwidth demand for digital video usage will continue to grow.
  • the present disclosure discloses techniques that can be used by video encoders and decoders for processing coded representation of video using control information useful for decoding of the coded representation.
  • a video processing method includes performing a conversion between a video picture of a video and a bitstream of the video according to a rule.
  • the rule specifies that at least one of scaling window offsets applicable to the video picture is allowed to be a negative value.
  • a video processing method includes performing a conversion between a block of a video and a bitstream of the video according to a rule.
  • the rule specifies that whether a syntax flag indicating whether transform skip residual coding is enabled at a video unit level is present in the bitstream is based on values of a first syntax element indicating usage of sign data hiding in the video unit and a second syntax element indicating usage of dependent quantization in the video unit.
  • a video processing method includes performing a conversion between a video and a bitstream of the video according to a rule.
  • the rule specifies that a syntax element specifying a maximum number of subblock-based merging motion vector prediction candidates supported in a sequence parameter set subtracted from 5 is in a range of 0 to N inclusive, where N is an integer equal to 5 minus a value of a syntax flag that specifies whether a subblock-based temporal motion vector predictor is enabled for the conversion.
  • a video processing method includes performing a conversion between a video comprising one or more video pictures, wherein the coded representation conforms to a format rule; wherein the format rule specifies that two or more syntax fields in a sequence parameter set controls a reference picture resolution (RPR) change in the video.
  • RPR reference picture resolution
  • another video processing method includes performing a conversion between a video comprising one or more video pictures, wherein the coded representation conforms to a format rule; wherein the format rule specifies that a single syntax field in a sequence parameter set controls a reference picture resolution (RPR) change in the video; and wherein, the format rule specifies that, irrespective of a value of the single syntax field, resampling of an inter-layer reference picture is permitted for the conversion.
  • RPR reference picture resolution
  • another video processing method includes performing a conversion between a video comprising one or more layers comprising one or more video pictures comprising one or more subpictures, wherein the coded representation conforms to a format rule; wherein the format rule specifies a first constraint on a cross-layer alignment or a second constraint on a combination of subpictures and scalability of inter-layer pictures.
  • another video processing method includes performing a conversion between a video comprising one or more layers comprising one or more video pictures comprising one or more subpictures, wherein the conversion conforms to a format rule that specifies that an inter-layer reference picture or a long term reference picture is disallowed from being a collocated picture of a current picture for the conversion.
  • another video processing method includes performing a conversion between a video comprising multiple pictures and a coded representation of the video, wherein the conversion conforms to a rule that specifies that values of each of scaling_win_left_offset, scaling_win_right_offset, scaling_win_top_offset, and scaling_win_bottom_offset are same for any two pictures within a same coded layer video sequence or coded video sequence having the same values of pic_width_in_luma_samples and pic_height_in_luma_samples.
  • another video processing method includes performing a conversion between a video comprising multiple pictures and a coded representation of the video, wherein the conversion conforms to a rule that specifies that in case that a picture resolution or a scaling window is different for a current picture and other picture in a same access unit, then inter-layer prediction is only allowed when the current picture is an intra random access point picture.
  • a video encoder apparatus comprising a processor configured to implement above-described methods.
  • a video decoder apparatus comprising a processor configured to implement above-described methods.
  • a computer readable medium having code stored thereon is disclose.
  • the code embodies one of the methods described herein in the form of processor-executable code.
  • FIG. 1 shows an example of raster-scan slice partitioning of a picture, where the picture is divided into 12 tiles and 3 raster-scan slices.
  • FIG. 2 shows an example of rectangular slice partitioning of a picture, where the picture is divided into 24 tiles (6 tile columns and 4 tile rows) and 9 rectangular slices.
  • FIG. 3 shows an example of a picture partitioned into tiles and rectangular slices, where the picture is divided into 4 tiles (2 tile columns and 2 tile rows) and 4 rectangular slices.
  • FIG. 4 shows a picture that is partitioned into 15 tiles, 24 slices and 24 subpictures.
  • FIG. 5 is a block diagram of an example video processing system.
  • FIG. 6 is a block diagram of a video processing apparatus.
  • FIG. 7 is a flowchart for an example method of video processing.
  • FIG. 8 is a block diagram that illustrates a video coding system in accordance with some embodiments of the present disclosure.
  • FIG. 9 is a block diagram that illustrates an encoder in accordance with some embodiments of the present disclosure.
  • FIG. 10 is a block diagram that illustrates a decoder in accordance with some embodiments of the present disclosure.
  • FIG. 11 shows an example of a typical subpicture-based viewport-dependent 360° video coding scheme.
  • FIG. 12 shows a viewport-dependent 360° video coding scheme based on subpictures and spatial scalability.
  • FIG. 13 is a flowchart representation of a method for video processing in accordance with the present technology.
  • FIG. 14 is a flowchart representation of another method for video processing in accordance with the present disclosure.
  • FIG. 15 is a flowchart representation of yet another method for video processing in accordance with the present disclosure.
  • Section headings are used in the present disclosure for ease of understanding and do not limit the applicability of techniques and embodiments disclosed in each section only to that section.
  • H.266 terminology is used in some description only for ease of understanding and not for limiting scope of the disclosed techniques. As such, the techniques described herein are applicable to other video codec protocols and designs also.
  • editing changes are shown to text by strikethrough indicating cancelled text and highlight indicating added text (including boldface italic), with respect to the current draft of the VVC specification.
  • the present disclosure is related to video coding technologies. Specifically, it is about 1) the combination of two or more of reference picture resampling (RPR), subpictures, and scalability in video coding, 2) the use of RPR between a current picture and a reference pictures that have the same spatial resolution, and 3) the combination of long-term reference picture and collocated picture.
  • RPR reference picture resampling
  • the embodiments may be applied individually or in various combination, to any video coding standard or non-standard video codec that supports multi-layer video coding, e.g., the being-developed Versatile Video Coding (VVC).
  • VVC Versatile Video Coding
  • Video coding standards have evolved primarily through the development of the well-known International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) and International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) standards.
  • ITU-T International Telecommunication Union-Telecommunication Standardization Sector
  • ISO International Organization for Standardization
  • ISO International Electrotechnical Commission
  • the ITU-T produced H.261 and H.263, ISO/IEC produced Moving Picture Experts Group (MPEG)-1 and MPEG-4 Visual, and the two organizations jointly produced the H.262/MPEG-2 Video and H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/HEVC standards.
  • AVC H.264/MPEG-4 Advanced Video Coding
  • H.265/HEVC High Efficiency Video Coding
  • JVET Joint Video Exploration Team
  • VVC Versatile Video Coding
  • VTM VVC test model
  • HEVC includes four different picture partitioning schemes, namely regular slices, dependent slices, tiles, and Wavefront Parallel Processing (WPP), which may be applied for Maximum Transfer Unit (MTU) size matching, parallel processing, and reduced end-to-end delay.
  • WPP Wavefront Parallel Processing
  • Regular slices are similar as in H.264/AVC. Each regular slice is encapsulated in its own NAL unit, and in-picture prediction (intra sample prediction, motion information prediction, coding mode prediction) and entropy coding dependency across slice boundaries are disabled. Thus a regular slice can be reconstructed independently from other regular slices within the same picture (though there may still have interdependencies due to loop filtering operations).
  • in-picture prediction intra sample prediction, motion information prediction, coding mode prediction
  • entropy coding dependency across slice boundaries are disabled.
  • a regular slice can be reconstructed independently from other regular slices within the same picture (though there may still have interdependencies due to loop filtering operations).
  • the regular slice is the only tool that can be used for parallelization that is also available, in virtually identical form, in H.264/AVC.
  • Regular slices based parallelization does not require much inter-processor or inter-core communication (except for inter-processor or inter-core data sharing for motion compensation when decoding a predictively coded picture, which is typically much heavier than inter-processor or inter-core data sharing due to in-picture prediction).
  • the use of regular slices can incur substantial coding overhead due to the bit cost of the slice header and due to the lack of prediction across the slice boundaries.
  • regular slices in contrast to the other tools mentioned below also serve as the key mechanism for bitstream partitioning to match MTU size requirements, due to the in-picture independence of regular slices and that each regular slice is encapsulated in its own NAL unit.
  • Dependent slices have short slice headers and allow partitioning of the bitstream at treeblock boundaries without breaking any in-picture prediction. Basically, dependent slices provide fragmentation of regular slices into multiple NAL units, to provide reduced end-to-end delay by allowing a part of a regular slice to be sent out before the encoding of the entire regular slice is finished.
  • the picture is partitioned into single rows of coding tree blocks (CTBs). Entropy decoding and prediction are allowed to use data from CTBs in other partitions.
  • Parallel processing is possible through parallel decoding of CTB rows, where the start of the decoding of a CTB row is delayed by two CTBs, so to ensure that data related to a CTB above and to the right of the subject CTB is available before the subject CTB is being decoded.
  • staggered start which appears like a wavefront when represented graphically
  • parallelization is possible with up to as many processors/cores as the picture contains CTB rows.
  • Tiles define horizontal and vertical boundaries that partition a picture into tile columns and rows.
  • Tile column runs from the top of a picture to the bottom of the picture Likewise, tile row runs from the left of the picture to the right of the picture.
  • the number of tiles in a picture can be derived simply as number of tile columns multiply by number of tile rows.
  • the scan order of CTBs is changed to be local within a tile (in the order of a CTB raster scan of a tile), before decoding the top-left CTB of the next tile in the order of tile raster scan of a picture.
  • tiles break in-picture prediction dependencies as well as entropy decoding dependencies. However, they do not need to be included into individual NAL units (same as WPP in this regard); hence tiles cannot be used for MTU size matching.
  • Each tile can be processed by one processor/core, and the inter-processor/inter-core communication required for in-picture prediction between processing units decoding neighboring tiles is limited to conveying the shared slice header in cases a slice is spanning more than one tile, and loop filtering related sharing of reconstructed samples and metadata.
  • the entry point byte offset for each tile or WPP segment other than the first one in the slice is signaled in the slice header.
  • a given coded video sequence cannot include both tiles and wavefronts for most of the profiles specified in HEVC.
  • For each slice and tile either or both of the following conditions must be fulfilled: 1) all coded treeblocks in a slice belong to the same tile; 2) all coded treeblocks in a tile belong to the same slice.
  • a wavefront segment contains exactly one CTB row, and when WPP is in use, if a slice starts within a CTB row, it must end in the same CTB row.
  • HEVC specifies three MCTS-related SEI messages, namely temporal MCTSs SEI message, MCTSs extraction information set SEI message, and MCTSs extraction information nesting SEI message.
  • the temporal MCTSs SEI message indicates existence of MCTSs in the bitstream and signals the MCTSs.
  • motion vectors are restricted to point to full-sample locations inside the MCTS and to fractional-sample locations that require only full-sample locations inside the MCTS for interpolation, and the usage of motion vector candidates for temporal motion vector prediction derived from blocks outside the MCTS is disallowed. This way, each MCTS may be independently decoded without the existence of tiles not included in the MCTS.
  • the MCTSs extraction information sets SEI message provides supplemental information that can be used in the MCTS sub-bitstream extraction (specified as part of the semantics of the SEI message) to generate a conforming bitstream for an MCTS set.
  • the information consists of a number of extraction information sets, each defining a number of MCTS sets and containing RBSP bytes of the replacement VPSs, SPSs, and PPSs to be used during the MCTS sub-bitstream extraction process.
  • parameter sets (VPSs, SPSs, and PPSs) need to be rewritten or replaced, slice headers need to be slightly updated because one or all of the slice address related syntax elements (including first_slice_segment_in_pic_flag and slice_segment_address) typically would need to have different values.
  • a picture is divided into one or more tile rows and one or more tile columns.
  • a tile is a sequence of CTUs that covers a rectangular region of a picture. The CTUs in a tile are scanned in raster scan order within that tile.
  • a slice consists of an integer number of complete tiles or an integer number of consecutive complete CTU rows within a tile of a picture.
  • a slice contains a sequence of complete tiles in a tile raster scan of a picture.
  • a slice contains either a number of complete tiles that collectively form a rectangular region of the picture or a number of consecutive complete CTU rows of one tile that collectively form a rectangular region of the picture. Tiles within a rectangular slice are scanned in tile raster scan order within the rectangular region corresponding to that slice.
  • a subpicture contains one or more slices that collectively cover a rectangular region of a picture.
  • FIG. 1 shows an example of raster-scan slice partitioning of a picture, where the picture is divided into 12 tiles and 3 raster-scan slices.
  • FIG. 2 shows an example of rectangular slice partitioning of a picture, where the picture is divided into 24 tiles (6 tile columns and 4 tile rows) and 9 rectangular slices.
  • FIG. 3 shows an example of a picture partitioned into tiles and rectangular slices, where the picture is divided into 4 tiles (2 tile columns and 2 tile rows) and 4 rectangular slices.
  • FIG. 4 shows an example of subpicture partitioning of a picture, where a picture is partitioned into 18 tiles, 12 on the left-hand side each covering one slice of 4 by 4 CTUs and 6 tiles on the right-hand side each covering 2 vertically-stacked slices of 2 by 2 CTUs, altogether resulting in 24 slices and 24 subpictures of varying dimensions (each slice is a subpicture).
  • VVC In AVC and HEVC, the spatial resolution of pictures cannot change unless a new sequence using a new SPS starts, with an IRAP picture.
  • VVC enables picture resolution change within a sequence at a position without encoding an IRAP picture, which is always intra-coded. This feature is sometimes referred to as reference picture resampling (RPR), as the feature needs resampling of a reference picture used for inter prediction when that reference picture has a different resolution than the current picture being decoded.
  • RPR reference picture resampling
  • the scaling ratio is restricted to be larger than or equal to 1/2 (2 times downsampling from the reference picture to the current picture), and less than or equal to 8 (8 times upsampling).
  • Three sets of resampling filters with different frequency cutoffs are specified to handle various scaling ratios between a reference picture and the current picture.
  • the three sets of resampling filters are applied respectively for the scaling ratio ranging from 1/2 to 1/1.75, from 1/1.75 to 1/1.25, and from 1/1.25 to 8.
  • Each set of resampling filters has 16 phases for luma and 32 phases for chroma which is same to the case of motion compensation interpolation filters.
  • the normal MC interpolation process is a special case of the resampling process with scaling ratio ranging from 1/1.25 to 8.
  • the horizontal and vertical scaling ratios are derived based on picture width and height, and the left, right, top and bottom scaling offsets specified for the reference picture and the current picture.
  • Scalable video coding refers to video coding in which a base layer (BL), sometimes referred to as a reference layer (RL), and one or more scalable enhancement layers (ELs) are used.
  • the base layer can carry video data with a base level of quality.
  • the one or more enhancement layers can carry additional video data to support, for example, higher spatial, temporal, and/or signal-to-noise (SNR) levels.
  • Enhancement layers may be defined relative to a previously encoded layer. For example, a bottom layer may serve as a BL, while a top layer may serve as an EL. Middle layers may serve as either ELs or RLs, or both.
  • a middle layer (e.g., a layer that is neither the lowest layer nor the highest layer) may be an EL for the layers below the middle layer, such as the base layer or any intervening enhancement layers, and at the same time serve as a RL for one or more enhancement layers above the middle layer.
  • a middle layer e.g., a layer that is neither the lowest layer nor the highest layer
  • the middle layer may be an EL for the layers below the middle layer, such as the base layer or any intervening enhancement layers, and at the same time serve as a RL for one or more enhancement layers above the middle layer.
  • 3D three dimensional
  • the parameters used by the encoder or the decoder are grouped into parameter sets based on the coding level (e.g., video-level, sequence-level, picture-level, slice level, etc.) in which they may be utilized.
  • the coding level e.g., video-level, sequence-level, picture-level, slice level, etc.
  • parameters that may be utilized by one or more coded video sequences of different layers in the bitstream may be included in a video parameter set (VPS), and parameters that are utilized by one or more pictures in a coded video sequence may be included in a sequence parameter set (SPS).
  • SPS sequence parameter set
  • parameters that are utilized by one or more slices in a picture may be included in a picture parameter set (PPS), and other parameters that are specific to a single slice may be included in a slice header.
  • the indication of which parameter set(s) a particular layer is using at a given time may be provided at various coding levels.
  • the decoding capability for multi-layer bitstreams are specified in a manner as if there were only a single layer in the bitstream.
  • the decoding capability such as DPB size
  • DPB size is specified in a manner that is independent of the number of layers in the bitstream to be decoded.
  • a decoder designed for single-layer bitstreams does not need much change to be able to decode multi-layer bitstreams.
  • the high level syntax (HLS) aspects have been significantly simplified at the sacrifice of some flexibilities. For example, an IRAP AU is required to contain a picture for each of the layers present in the CVS.
  • a.k.a., omnidirectional video In streaming of three hundred and sixty degree (360°) video, a.k.a., omnidirectional video, at any particular moment only a subset (e.g., the current viewport) of the entire omnidirectional video sphere would be rendered to the user, while the user can turn his/her head anytime to change the viewing orientation and consequently the current viewport. While it is desirable to have at least some lower-quality representation of the area not covered by the current viewport available at the client and ready to be rendered to the user just in case the user suddenly changes his/her viewing orientation to anywhere on the sphere, a high-quality representation of the omnidirectional video is only needed for the current viewport that is being rendered to the use right now. Splitting the high-quality representation of the entire omnidirectional video into subpictures at an appropriate granularity enables such an optimization. Using VVC, the two representations can be encoded as two layers that are independent from each other.
  • FIG. 11 A typical subpicture-based viewport-dependent 360° video delivery scheme is shown in FIG. 11 wherein a higher-resolution representation of the full video consists of subpictures, while a lower-resolution representation of the full video does not use subpictures and can be coded with less frequent random access points than the higher-resolution representation.
  • the client receives the full video in the lower-resolution and for the higher-resolution video it only receives and decode the subpictures that cover the current viewport.
  • AVC, HEVC, and VVC specify parameter sets.
  • the types of parameter sets include SPS, PPS, APS, and VPS.
  • SPS and PPS are supported in all of AVC, HEVC, and VVC.
  • VPS was introduced since HEVC and is included in both HEVC and VVC.
  • APS was not included in AVC or HEVC but is included in the latest VVC draft text.
  • SPS was designed to carry sequence-level header information
  • PPS was designed to carry infrequently changing picture-level header information.
  • SPS and PPS infrequently changing information need not to be repeated for each sequence or picture, hence redundant signaling of this information can be avoided.
  • SPS and PPS enables out-of-band transmission of the important header information, thus not only avoiding the need for redundant transmissions but also improving error resilience.
  • VPS was introduced for carrying sequence-level header information that is common for all layers in multi-layer bitstreams.
  • APS was introduced for carrying such picture-level or slice-level information that needs quite some bits to code, can be shared by multiple pictures, and in a sequence there can be quite many different variations.
  • sps_seq_parameter_set_id provides an identifier for the SPS for reference by other syntax elements.
  • SPS NAL units regardless of the nuh_layer_id values, share the same value space of sps_seq_parameter_set_id.
  • spsLayerId be the value of the nuh_layer_id of a particular SPS NAL unit
  • vclLayerId be the value of the nuh_layer_id of a particular VCL NAL unit.
  • the particular VCL NAL unit shall not refer to the particular SPS NAL unit unless spsLayerId is less than or equal to vclLayerId and the OLS being decoded contains both the layer with nuh_layer_id equal to spsLayerId and the layer with nuh_layer_id equal to vclLayerId.
  • pps_pic_parameter_set_id identifies the PPS for reference by other syntax elements.
  • the value of pps_pic_parameter_set_id shall be in the range of 0 to 63, inclusive. PPS NAL units, regardless of the nuh_layer_id values, share the same value space of pps_pic_parameter_set_id.
  • ppsLayerId be the value of the nuh_layer_id of a particular PPS NAL unit
  • vclLayerId be the value of the nuh_layer_id of a particular VCL NAL unit.
  • the particular VCL NAL unit shall not refer to the particular PPS NAL unit unless ppsLayerId is less than or equal to vclLayerId and the OLS being decoded contains both the layer with nuh_layer_id equal to ppsLayerId and the layer with nuh_layer_id equal to vclLayerId.
  • adaptation_parameter_set_id provides an identifier for the APS for reference by other syntax elements.
  • adaptation_parameter_set_id When aps_params_type is equal to ALF_APS or SCALING_APS, the value of adaptation_parameter_set_id shall be in the range of 0 to 7, inclusive. When aps_params_type is equal to LMCS_APS, the value of adaptation_parameter_set_id shall be in the range of 0 to 3, inclusive. Let apsLayerId be the value of the nuh_layer_id of a particular APS NAL unit, and vclLayerId be the value of the nuh_layer_id of a particular VCL NAL unit.
  • the particular VCL NAL unit shall not refer to the particular APS NAL unit unless apsLayerId is less than or equal to vclLayerId and the OLS being decoded contains both the layer with nuh_layer_id equal to apsLayerId and the layer with nuh_layer_id equal to vclLayerId.
  • Inputs to this process are a bitstream inBitstream, a target OLS index targetOlsIdx, and a target highest TemporalId value tIdTarget.
  • Output of this process is a sub-bitstream outBitstream.
  • refxSb L (((xSb ⁇ (SubWidthC*max(0,scaling_win_left_offset))) ⁇ 4)+refMvLX[0])*scalingRatio[0]
  • refySb L (((ySb ⁇ (SubWidthC*max(0,scaling_win_top_offset))) ⁇ 4)+refMvLX[1])*scalingRatio[1]
  • refxSb C (((xSb ⁇ (SubWidthC* max(0,scaling_win_left_offset)))/SubWidthC ⁇ 5)+refMvLX[0])*scalingRatio[0]+addX
  • refySb C (((ySb ⁇ (SubWidthC*max(0,scaling_win_top_offset)))/SubHeightC ⁇ 5)+refMvLX[1])*scalingRatio[1]+addY
  • PicOutputWidthL pic_width_in_luma_samples ⁇ SubWidthC*(scaling_win_right_offset+scaling_win_le ft_offset)
  • PicOutputHeightL pic_height_in_luma_samples ⁇ SubWidthC*(scaling_win_bottom_offset+scaling_win _top_offset).
  • This embodiment is for items 1, 1.a, 1.b, 1.c, 1.d, 3, 4.a.i, 5, 6, 7, 8, 9, 9.a, 10, 11, and 12b.
  • scaling_window_explicit_signalling_flag 1 specifies that the scaling window offset parameters are present in the PPS.
  • scaling_window_explicit_signalling_flag 0 specifies that the scaling window offset parameters are not present in the PPS.
  • [[res_change_in_clvs_allowed_flag]] is equal to 0
  • the value of scaling_window_explicit_signalling_flag shall be equal to 0.
  • scaling_win_left_offset, scaling_win_right_offset, scaling_win_top_offset, and scaling_win_bottom_offset specify the offsets that are applied to the picture size for scaling ratio calculation.
  • scaling_win_left_offset, scaling_win_right_offset, scaling_win_top_offset, and scaling_win_bottom_offset are inferred to be equal to pps_conf_win_left_offset, pps_conf_win_right_offset, pps_conf_win_top_offset, and pps_conf_win_bottom_offset, respectively.
  • SubWidthC*(scaling_win_left_offset+scaling_win_right_offset) shall be less than pic_width_in_luma_samples
  • SubHeightC*(scaling_win_top_offset+scaling_win_bottom_offset) shall be less than pic_height_in_luma_samples.
  • PicOutputWidthL pic_width_in_luma_samples ⁇ SubWidthC*(scaling_win_right_offset+scaling_win_left_offset) (78)
  • PicOutputHeightL pic_height_in_luma_samples ⁇ SubWidthC*(scaling_win_bottom_offset+scaling_win_top_offset) (79)
  • refPicOutputWidthL and refPicOutputHeightL be the PicOutputWidthL and PicOutputHeightL, respectively, of a reference picture of a current picture referring to this PPS. It is a requirement of bitstream conformance that all of the following conditions are satisfied:
  • PicOutputWidthL*2 shall be greater than or equal to refPicWidthInLumaSamples.
  • PicOutputHeightL*2 shall be greater than or equal to refPicHeightInLumaSamples.
  • PicOutputWidthL shall be less than or equal to refPicWidthInLumaSamples*8.
  • PicOutputHeightL shall be less than or equal to refPicHeightInLumaSamples*8.
  • PicOutputWidthL*pic_width_max_in_luma_samples shall be greater than or equal to refPicOutputWidthL*(pic_width_in_luma_samples ⁇ Max(8,MinCbSizeY)).
  • PicOutputHeightL*pic_height_max_in_luma_samples shall be greater than or equal to refPicOutputHeightL*(pic_height_in_luma_samples ⁇ Max(8,MinCbSizeY)).
  • no_res_change_in_clvs_constraint_flag 1 specifies that res_change_in_clvs_allowed_flag shall be equal to 0.
  • no_res_change_in_clvs_constraint_flag 0 does not impose such a constraint. . . .
  • slice_collocated_from_l0_flag 1 specifies that the collocated picture used for temporal motion vector prediction is derived from reference picture list 0.
  • slice_collocated_from_l0_flag 0 specifies that the collocated picture used for temporal motion vector prediction is derived from reference picture list 1.
  • xInt i Clip3(SubpicLeftBoundaryPos,SubpicRightBoundaryPos,xInt L ,+i) (640)
  • xInt i Clip3(0,picW ⁇ 1,refWraparoundEnabledFlag?ClipH((PpsRefWraparoundOffset)*MinCbSizeY,picW,(xInt L ,+i)):xInt L ,+i) (642)
  • xInt i Clip3(SubpicLeftBoundaryPos,SubpicRightBoundaryPos,xInt i ) (959)
  • xInt i Clip3(0,picW ⁇ 1,refWraparoundEnabledFlag?ClipH((PpsRefWraparoundOffset)*MinCbSizeY,picW,xInt i ):xInt i ) (961)
  • xInt i Clip3(SubpicLeftBoundaryPos/SubWidthC,SubpicRightBoundaryPos/SubWidthC,xInt i ) (977)
  • yInt i Clip3(SubpicTopBoundaryPos/SubHeightC,SubpicBotBoundaryPos/SubHeightC,yInt i ) (978)
  • xInt i Clip3(0,picW C ⁇ 1,refWraparoundEnabledFlag?ClipH(xOffset,picW C ,xInt i ): xInt C +i ⁇ 1) (979)
  • the highlighted part “and sps_num_subpics_minus1 for the reference picture refPicLX is greater than 0” may be replaced by “and if the reference picture refPicLX is an ILRP having a same spatial resolution with the current picture”.
  • the highlighted part “or sps_num_subpics_minus1 for the reference picture refPicLX is equal to 0” may be replaced by “or if the reference picture refPicLX is an ILRP having a different spatial resolution than the current picture”.
  • the requirement for collocated picture e.g., “It is a requirement of bitstream conformance that the picture referred to by slice_collocated_ref_idx shall be the same for all slices of a coded picture ” may be replaced by “It is a requirement of bitstream conformance that the picture referred to by slice_collocated_ref_idx shall be the same for all slices of a coded picture
  • the requirement for collocated picture e.g., “It is a requirement of bitstream conformance that the picture referred to by slice_collocated_ref_idx shall be the same for all slices of a coded picture ” may be replaced by “It is a requirement of bitstream conformance that the picture referred to by slice_collocated_ref_idx shall be the same for all slices of a coded picture
  • This example proposes the following aspects regarding restrictions of the maximum numbers of ALF and CC-ALF filters:
  • Each APS RBSP shall be available to the decoding process prior to it being referenced, included in at least one AU with TemporalId less than or equal to the TemporalId of the coded slice NAL unit that refers it or provided through external means. All APS NAL units with a particular value of adaptation_parameter_set_id and a particular value of aps_params_type within a PU, regardless of whether they are prefix or suffix APS NAL units, shall have the same content.
  • adaptation_parameter_set_id provides an identifier for the APS for reference by other syntax elements.
  • aps_params_type is equal to ALF_APS [[or SCALING_APS]]
  • the value of adaptation_parameter_set_id shall be in the range of 0 to [[7]] , inclusive.
  • apsLayerId be the value of the nuh_layer_id of a particular APS NAL unit
  • vclLayerId the value of the nuh_layer_id of a particular VCL NAL unit.
  • the particular VCL NAL unit shall not refer to the particular APS NAL unit unless apsLayerId is less than or equal to vclLayerId and the layer with nuh_layer_id equal to apsLayerId is included in at least one OLS that includes the layer with nuh_layer_id equal to vclLayerId.
  • aps_params_type specifies the type of APS parameters carried in the APS as specified in Table 6. . . . All APS NAL units with a particular value of aps_params_type, regardless of the nuh_layer_id values, share the same value space for adaptation_parameter_set_id. APS NAL units with different values of aps_params_type use separate values spaces for adaptation_parameter_set_id.
  • ph_num_alf_aps_ids_luma specifies the number of ALF APSs that the slices associated with the PH refers to.
  • ph_alf_aps_id_luma[i] specifies the adaptation_parameter_set_id of the i-th ALF APS that the luma component of the slices associated with the PH refers to.
  • ph_alf_aps_id_chroma specifies the adaptation_parameter_set_id of the ALF APS that the chroma component of the slices associated with the PH refers to.
  • ph_cc_alf_cb_aps_id specifies the adaptation_parameter_set_id of the ALF APS that the Cb colour component of the slices associated with the PH refers to.
  • ph_cc_alf_cr_aps_id specifies the adaptation_parameter_set_id of the ALF APS that the Cr colour component of the slices associated with the PH refers to.
  • slice_num_alf_aps_ids_luma specifies the number of ALF APSs that the slice refers to.
  • slice_alf_enabled_flag is equal to 1 and slice_num_alf_aps_ids_luma is not present, the value of slice_num_alf_aps_ids_luma is inferred to be equal to the value of ph_num_alf_aps_ids_luma.
  • slice_alf_aps_id_luma[i] specifies the adaptation_parameter_set_id of the i-th ALF APS that the luma component of the slice refers to.
  • the TemporalId of the APS NAL unit having aps_params_type equal to ALF_APS and adaptation_parameter_set_id equal to slice_alf_aps_id_luma[i] shall be less than or equal to the TemporalId of the coded slice NAL unit.
  • slice_alf_enabled_flag is equal to 1 and slice_alf_aps_id_luma[i] is not present
  • the value of slice_alf_aps_id_luma[i] is inferred to be equal to the value of ph_alf_aps_id_luma[i].
  • slice_alf_aps_id_chroma specifies the adaptation_parameter_set_id of the ALF APS that the chroma component of the slice refers to.
  • the TemporalId of the APS NAL unit having aps_params_type equal to ALF_APS and adaptation_parameter_set_id equal to slice_alf_aps_id_chroma shall be less than or equal to the TemporalId of the coded slice NAL unit.
  • slice_alf_enabled_flag is equal to 1 and slice_alf_aps_id_chroma is not present
  • the value of slice_alf_aps_id_chroma is inferred to be equal to the value of ph_alf_aps_id_chroma.
  • slice_cc_alf_cb_aps_id specifies the adaptation_parameter_set_id that the Cb colour component of the slice refers to.
  • the TemporalId of the APS NAL unit having aps_params_type equal to ALF_APS and adaptation_parameter_set_id equal to slice_cc_alf_cb_aps_id shall be less than or equal to the TemporalId of the coded slice NAL unit.
  • slice_cc_alf_cb_enabled_flag is equal to 1 and slice_cc_alf_cb_aps_id is not present
  • the value of slice_cc_alf_cb_aps_id is inferred to be equal to the value of ph_cc_alf_cb_aps_id.
  • alf_cc_cb_filter_signal_flag of the APS NAL unit having aps_params_type equal to ALF_APS and adaptation_parameter_set_id equal to slice_cc_alf_cb_aps_id shall be equal to 1.
  • slice_cc_alf_cr_aps_id specifies the adaptation_parameter_set_id that the Cr colour component of the slice refers to.
  • the TemporalId of the APS NAL unit having aps_params_type equal to ALF_APS and adaptation_parameter_set_id equal to slice_cc_alf_cr_aps_id shall be less than or equal to the TemporalId of the coded slice NAL unit.
  • slice_cc_alf_cr_enabled_flag is equal to 1 and slice_cc_alf_cr_aps_id is not present
  • the value of slice_cc_alf_cr_aps_id is inferred to be equal to the value of ph_cc_alf_cr_aps_id.
  • adaptation_parameter_set_id provides an identifier for the APS for reference by other syntax elements.
  • M is equal to a value no smaller than 3 (e.g., 4, 5, 6, 7, 8, 9).
  • the value of ‘200, 64, 64’ may be replaced by other non-zero integer values.
  • the value of ‘327’ may be replaced by other non-zero integer values.
  • FIG. 5 is a block diagram showing an example video processing system 1900 in which various techniques disclosed herein may be implemented.
  • the system 1900 may include input 1902 for receiving video content.
  • the video content may be received in a raw or uncompressed format, e.g., 8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format.
  • the input 1902 may represent a network interface, a peripheral bus interface, or a storage interface. Examples of network interface include wired interfaces such as Ethernet, passive optical network (PON), etc. and wireless interfaces such as wireless fidelity (Wi-Fi) or cellular interfaces.
  • Wi-Fi wireless fidelity
  • the system 1900 may include a coding component 1904 that may implement the various coding or encoding methods described in the present disclosure.
  • the coding component 1904 may reduce the average bitrate of video from the input 1902 to the output of the coding component 1904 to produce a coded representation of the video.
  • the coding techniques are therefore sometimes called video compression or video transcoding techniques.
  • the output of the coding component 1904 may be either stored, or transmitted via a communication connected, as represented by the component 1906 .
  • the stored or communicated bitstream (or coded) representation of the video received at the input 1902 may be used by the component 1908 for generating pixel values or displayable video that is sent to a display interface 1910 .
  • the process of generating user-viewable video from the bitstream representation is sometimes called video decompression.
  • certain video processing operations are referred to as “coding” operations or tools, it will be appreciated that the coding tools or operations are used at an encoder and corresponding decoding tools or operations that reverse the results of the coding will be performed
  • peripheral bus interface or a display interface may include universal serial bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on.
  • storage interfaces include serial advanced technology attachment (SATA), peripheral component interconnect (PCI), integrated drive electronics (IDE) interface, and the like.
  • SATA serial advanced technology attachment
  • PCI peripheral component interconnect
  • IDE integrated drive electronics
  • FIG. 6 is a block diagram of a video processing apparatus 3600 .
  • the apparatus 3600 may be used to implement one or more of the methods described herein.
  • the apparatus 3600 may be embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on.
  • the apparatus 3600 may include one or more processors 3602 , one or more memories 3604 and video processing hardware 3606 .
  • the processor(s) 3602 may be configured to implement one or more methods described in the present disclosure.
  • the memory (memories) 3604 may be used for storing data and code used for implementing the methods and techniques described herein.
  • the video processing hardware 3606 may be used to implement, in hardware circuitry, some techniques described in the present disclosure.
  • FIG. 8 is a block diagram that illustrates an example video coding system 100 that may utilize the techniques of this disclosure.
  • video coding system 100 may include a source device 110 and a destination device 120 .
  • Source device 110 generates encoded video data which may be referred to as a video encoding device.
  • Destination device 120 may decode the encoded video data generated by source device 110 which may be referred to as a video decoding device.
  • Source device 110 may include a video source 112 , a video encoder 114 , and an input/output (I/O) interface 116 .
  • Video source 112 may include a source such as a video capture device, an interface to receive video data from a video content provider, and/or a computer graphics system for generating video data, or a combination of such sources.
  • the video data may comprise one or more pictures.
  • Video encoder 114 encodes the video data from video source 112 to generate a bitstream.
  • the bitstream may include a sequence of bits that form a coded representation of the video data.
  • the bitstream may include coded pictures and associated data.
  • the coded picture is a coded representation of a picture.
  • the associated data may include sequence parameter sets, picture parameter sets, and other syntax structures.
  • I/O interface 116 may include a modulator/demodulator (modem) and/or a transmitter.
  • the encoded video data may be transmitted directly to destination device 120 via I/O interface 116 through network 130 a.
  • the encoded video data may also be stored onto a storage medium/server 130 b for access by destination device 120 .
  • Destination device 120 may include an I/O interface 126 , a video decoder 124 , and a display device 122 .
  • I/O interface 126 may include a receiver and/or a modem. I/O interface 126 may acquire encoded video data from the source device 110 or the storage medium/server 130 b. Video decoder 124 may decode the encoded video data. Display device 122 may display the decoded video data to a user. Display device 122 may be integrated with the destination device 120 , or may be external to destination device 120 which be configured to interface with an external display device.
  • Video encoder 114 and video decoder 124 may operate according to a video compression standard, such as the High Efficiency Video Coding (HEVC) standard, Versatile Video Coding (VVM) standard and other current and/or further standards.
  • HEVC High Efficiency Video Coding
  • VVM Versatile Video Coding
  • FIG. 9 is a block diagram illustrating an example of video encoder 200 , which may be video encoder 114 in the system 100 illustrated in FIG. 8 .
  • Video encoder 200 may be configured to perform any or all of the techniques of this disclosure.
  • video encoder 200 includes a plurality of functional components. The techniques described in this disclosure may be shared among the various components of video encoder 200 .
  • a processor may be configured to perform any or all of the techniques described in this disclosure.
  • the functional components of video encoder 200 may include a partition unit 201 , a prediction unit 202 which may include a mode select unit 203 , a motion estimation unit 204 , a motion compensation unit 205 and an intra prediction unit 206 , a residual generation unit 207 , a transform unit 208 , a quantization unit 209 , an inverse quantization unit 210 , an inverse transform unit 211 , a reconstruction unit 212 , a buffer 213 , and an entropy encoding unit 214 .
  • a partition unit 201 may include a mode select unit 203 , a motion estimation unit 204 , a motion compensation unit 205 and an intra prediction unit 206 , a residual generation unit 207 , a transform unit 208 , a quantization unit 209 , an inverse quantization unit 210 , an inverse transform unit 211 , a reconstruction unit 212 , a buffer 213 , and an entropy encoding unit 214 .
  • video encoder 200 may include more, fewer, or different functional components.
  • prediction unit 202 may include an intra block copy (IBC) unit.
  • the IBC unit may perform prediction in an IBC mode in which at least one reference picture is a picture where the current video block is located.
  • IBC intra block copy
  • motion estimation unit 204 and motion compensation unit 205 may be highly integrated, but are represented in the example of FIG. 9 separately for purposes of explanation.
  • Partition unit 201 may partition a picture into one or more video blocks.
  • Video encoder 200 and video decoder 300 may support various video block sizes.
  • Mode select unit 203 may select one of the coding modes, intra or inter, e.g., based on error results, and provide the resulting intra- or inter-coded block to a residual generation unit 207 to generate residual block data and to a reconstruction unit 212 to reconstruct the encoded block for use as a reference picture.
  • Mode select unit 203 may select a combination of intra and inter prediction (CIIP) mode in which the prediction is based on an inter prediction signal and an intra prediction signal.
  • CIIP intra and inter prediction
  • Mode select unit 203 may also select a resolution for a motion vector (e.g., a sub-pixel or integer pixel precision) for the block in the case of inter-prediction.
  • motion estimation unit 204 may generate motion information for the current video block by comparing one or more reference frames from buffer 213 to the current video block.
  • Motion compensation unit 205 may determine a predicted video block for the current video block based on the motion information and decoded samples of pictures from buffer 213 other than the picture associated with the current video block.
  • Motion estimation unit 204 and motion compensation unit 205 may perform different operations for a current video block, for example, depending on whether the current video block is in an I slice, a P slice, or a B slice.
  • motion estimation unit 204 may perform uni-directional prediction for the current video block, and motion estimation unit 204 may search reference pictures of list 0 or list 1 for a reference video block for the current video block. Motion estimation unit 204 may then generate a reference index that indicates the reference picture in list 0 or list 1 that contains the reference video block and a motion vector that indicates a spatial displacement between the current video block and the reference video block. Motion estimation unit 204 may output the reference index, a prediction direction indicator, and the motion vector as the motion information of the current video block. Motion compensation unit 205 may generate the predicted video block of the current block based on the reference video block indicated by the motion information of the current video block.
  • motion estimation unit 204 may perform bi-directional prediction for the current video block, motion estimation unit 204 may search the reference pictures in list 0 for a reference video block for the current video block and may also search the reference pictures in list 1 for another reference video block for the current video block. Motion estimation unit 204 may then generate reference indexes that indicate the reference pictures in list 0 and list 1 containing the reference video blocks and motion vectors that indicate spatial displacements between the reference video blocks and the current video block. Motion estimation unit 204 may output the reference indexes and the motion vectors of the current video block as the motion information of the current video block. Motion compensation unit 205 may generate the predicted video block of the current video block based on the reference video blocks indicated by the motion information of the current video block.
  • motion estimation unit 204 may output a full set of motion information for decoding processing of a decoder.
  • motion estimation unit 204 may not output a full set of motion information for the current video. Rather, motion estimation unit 204 may signal the motion information of the current video block with reference to the motion information of another video block. For example, motion estimation unit 204 may determine that the motion information of the current video block is sufficiently similar to the motion information of a neighboring video block.
  • motion estimation unit 204 may indicate, in a syntax structure associated with the current video block, a value that indicates to the video decoder 300 that the current video block has the same motion information as another video block.
  • motion estimation unit 204 may identify, in a syntax structure associated with the current video block, another video block and a motion vector difference (MVD).
  • the motion vector difference indicates a difference between the motion vector of the current video block and the motion vector of the indicated video block.
  • the video decoder 300 may use the motion vector of the indicated video block and the motion vector difference to determine the motion vector of the current video block.
  • video encoder 200 may predictively signal the motion vector.
  • Two examples of predictive signaling techniques that may be implemented by video encoder 200 include advanced motion vector prediction (AMVP) and merge mode signaling.
  • AMVP advanced motion vector prediction
  • merge mode signaling merge mode signaling
  • Intra prediction unit 206 may perform intra prediction on the current video block. When intra prediction unit 206 performs intra prediction on the current video block, intra prediction unit 206 may generate prediction data for the current video block based on decoded samples of other video blocks in the same picture.
  • the prediction data for the current video block may include a predicted video block and various syntax elements.
  • Residual generation unit 207 may generate residual data for the current video block by subtracting (e.g., indicated by the minus sign) the predicted video block(s) of the current video block from the current video block.
  • the residual data of the current video block may include residual video blocks that correspond to different sample components of the samples in the current video block.
  • residual generation unit 207 may not perform the subtracting operation.
  • Transform processing unit 208 may generate one or more transform coefficient video blocks for the current video block by applying one or more transforms to a residual video block associated with the current video block.
  • quantization unit 209 may quantize the transform coefficient video block associated with the current video block based on one or more quantization parameter (QP) values associated with the current video block.
  • QP quantization parameter
  • Inverse quantization unit 210 and inverse transform unit 211 may apply inverse quantization and inverse transforms to the transform coefficient video block, respectively, to reconstruct a residual video block from the transform coefficient video block.
  • Reconstruction unit 212 may add the reconstructed residual video block to corresponding samples from one or more predicted video blocks generated by the prediction unit 202 to produce a reconstructed video block associated with the current block for storage in the buffer 213 .
  • loop filtering operation may be performed reduce video blocking artifacts in the video block.
  • Entropy encoding unit 214 may receive data from other functional components of the video encoder 200 . When entropy encoding unit 214 receives the data, entropy encoding unit 214 may perform one or more entropy encoding operations to generate entropy encoded data and output a bitstream that includes the entropy encoded data.
  • FIG. 10 is a block diagram illustrating an example of video decoder 300 which may be video decoder 124 in the system 100 illustrated in FIG. 8 .
  • the video decoder 300 may be configured to perform any or all of the techniques of this disclosure.
  • the video decoder 300 includes a plurality of functional components.
  • the techniques described in this disclosure may be shared among the various components of the video decoder 300 .
  • a processor may be configured to perform any or all of the techniques described in this disclosure.
  • video decoder 300 includes an entropy decoding unit 301 , a motion compensation unit 302 , an intra prediction unit 303 , an inverse quantization unit 304 , an inverse transformation unit 305 , and a reconstruction unit 306 and a buffer 307 .
  • Video decoder 300 may, in some examples, perform a decoding pass generally reciprocal to the encoding pass described with respect to video encoder 200 ( FIG. 9 ).
  • Entropy decoding unit 301 may retrieve an encoded bitstream.
  • the encoded bitstream may include entropy coded video data (e.g., encoded blocks of video data).
  • Entropy decoding unit 301 may decode the entropy coded video data, and from the entropy decoded video data, motion compensation unit 302 may determine motion information including motion vectors, motion vector precision, reference picture list indexes, and other motion information. Motion compensation unit 302 may, for example, determine such information by performing the AMVP and merge mode.
  • Motion compensation unit 302 may produce motion compensated blocks, possibly performing interpolation based on interpolation filters. Identifiers for interpolation filters to be used with sub-pixel precision may be included in the syntax elements.
  • Motion compensation unit 302 may use interpolation filters as used by video encoder 200 during encoding of the video block to calculate interpolated values for sub-integer pixels of a reference block. Motion compensation unit 302 may determine the interpolation filters used by video encoder 200 according to received syntax information and use the interpolation filters to produce predictive blocks.
  • Motion compensation unit 302 may use some of the syntax information to determine sizes of blocks used to encode frame(s) and/or slice(s) of the encoded video sequence, partition information that describes how each macroblock of a picture of the encoded video sequence is partitioned, modes indicating how each partition is encoded, one or more reference frames (and reference frame lists) for each inter-encoded block, and other information to decode the encoded video sequence.
  • Intra prediction unit 303 may use intra prediction modes for example received in the bitstream to form a prediction block from spatially adjacent blocks.
  • Inverse quantization unit 303 inverse quantizes, e.g., de-quantizes, the quantized video block coefficients provided in the bitstream and decoded by entropy decoding unit 301 .
  • Inverse transform unit 303 applies an inverse transform.
  • Reconstruction unit 306 may sum the residual blocks with the corresponding prediction blocks generated by motion compensation unit 302 or intra-prediction unit 303 to form decoded blocks. If desired, a deblocking filter may also be applied to filter the decoded blocks in order to remove blockiness artifacts.
  • the decoded video blocks are then stored in buffer 307 , which provides reference blocks for subsequent motion compensation/intra prediction and also produces decoded video for presentation on a display device.
  • FIG. 13 is a flowchart representation of a method 1300 for video processing in accordance with the present technology.
  • the method 1300 includes, at operation 1310 , performing a conversion between a video picture of a video and a bitstream of the video according to a rule.
  • the rule specifies that at least one of scaling window offsets applicable to the video picture is allowed to be a negative value.
  • the scaling window offsets comprises at least one of a scaling window right offset, a scaling window left offset, a scaling window top offset, or a scaling window bottom offset.
  • the at least one of scaling window offsets is no smaller than an integer X, and wherein X is negative.
  • the at least one of scaling window offsets is greater than an integer X, wherein X is negative.
  • X is based on a dimension of the video picture.
  • the at least one of scaling window offsets is associated with a dimension of the video picture.
  • the dimension of the video picture comprises a picture width represented in luma samples or a picture height represented in luma samples.
  • an output picture is determined based on scaling the video picture.
  • a first variable that specifies a width of the output picture is equal to a width of the video picture represented in luma samples minus a weighted sum of the scaling window right offset and the scaling window left offset.
  • a second variable that specifies a height of the output picture is equal to a height of the video picture represented in luma samples minus a weighted sum of the scaling window top offset and the scaling window bottom offset.
  • the rule further specifies that the first variable and the second variable satisfy a constraint.
  • the first variable is represented as WidthL
  • the constraint specifies that X*WidthL is greater than or equal to a first integer and less than or equal to a second integer, X being an integer.
  • the second variable is represented as HeightL
  • the constraint specifies that Y*WidthL is greater than or equal to a third integer and less than or equal to a fourth integer, Y being an integer.
  • the first integer or the third integer is represented as A*(B ⁇ C), where A, B, C are integers.
  • the at least one of scaling window offsets is indictive of a scaling ratio used for resampling a reference picture of the video picture. In some embodiments, the at least one of scaling window offsets is coded using signed binarization.
  • the rule specifies a constraint between the at least one of scaling window offsets and a dimension of the video picture based on whether the at least one of scaling window offsets is negative or not. In some embodiments, the constraint is specified based on whether at least one of a left window offset and/or a right window offset is negative. In some embodiments, the constraint is specified based on whether at least one of a top window offset and/or a bottom window offset is negative. In some embodiments, the constraint between the at least one of scaling window offsets and the dimension of the video picture is only specified in case at least one of the scaling window offsets is zero.
  • a weighted sum of the left window offset and the right window offset is smaller than a width of the video picture in luma samples.
  • a weighted sum of the top window offset and the top window offset is smaller than a height of the video picture in luma samples.
  • the constraint is specified according to an absolute value of the at least on of scaling window offsets.
  • a weighted sum of absolute values of the left window offset and the right window offset is smaller than X1 times a width of the video picture in luma samples, where X1 is a positive integer that is greater than or equal to 1.
  • a weighted sum of absolute values of the top window offset and the bottom window offset is smaller than X2 times a height of the video picture in luma samples, where X2 is a positive integer that is greater than or equal to 1.
  • the rule specifies that the constraint is not applicable in case any of the scaling window offsets is negative. In some embodiments, the rule specifies that a dimension of the video picture or a dimension of a reference picture of the video picture is based on whether a scaling window offset is negative or not. In some embodiments, a dimension of an output picture of the video picture is determined based on whether the at least one of scaling window offsets is negative or not. In some embodiments, a scaling window offset of a reference picture is negative, the dimension of the output picture is determined by treating the scaling window offset as zero.
  • the rule specifies that a manner of performing a fractional sample interpolation is based on whether the at least one of scaling window offsets is negative or not. In some embodiments, in case the scaling window offset of a reference picture is negative, motion compensation is performed for the conversion by treating the scaling window offset as zero. In some embodiments, in case the scaling window offset of the video picture is negative, fractional sample interpolation is performed for the conversion by treating the scaling window offset as zero.
  • FIG. 14 is a flowchart representation of a method 1400 for video processing in accordance with the present technology.
  • the method 1400 includes, at operation 1410 , performing a conversion between a block of a video and a bitstream of the video according to a rule.
  • the rule specifies that whether a syntax flag indicating whether transform skip residual coding is enabled at a video unit level is present in the bitstream is based on values of a first syntax element indicating usage of sign data hiding in the video unit and a second syntax element indicating usage of dependent quantization in the video unit.
  • the video unit level comprises a slice level.
  • whether the syntax flag is represented as ts_residual_coding_disabled_flag in a slice header.
  • whether the syntax flag is present in the bitstream further based on a third syntax element in a sequence parameter set indicating whether transform skip is enabled at a sequence level, and wherein the syntax flag is present in case (1) a value of the third syntax element specifies that transform skip is enabled at a sequence level, (2) a value of the second syntax element specifies that dependent quantization is not used for the video unit, and (3) a value of the first syntax element specifies that sign data hiding is not used for the video unit.
  • the value of the third syntax element specifying that transform skip is enabled at a sequence level is equal to 1
  • the value of the second syntax element specifying that dependent quantization is not used for the video unit is equal to 0
  • the value of the first syntax element specifying that sign data hiding is not used for the video unit is equal to 0.
  • the first syntax element indicating usage of sign data hiding in the video unit has a default value of 0 in case the first syntax element is not present.
  • the second syntax element indicating usage of dependent quantization in the video unit has a default value of 0 in case the second syntax element is not present.
  • the first syntax element is based on a fourth syntax element in a sequence parameter set indicating whether sign data hiding is enabled at a sequence level.
  • the first syntax element is determined based on the second syntax element and the fourth syntax element.
  • the second syntax element is based on a fifth syntax element in a sequence parameter set indicating whether dependent quantization is enabled at a sequence level.
  • whether the sign data hiding or whether the dependent quantization is applied for the conversion of the block is based on whether the transform skip residual coding is enabled. In some embodiments, in case the transform skip residual coding is enabled, the sign data hiding or the dependent quantization is not applicable for the conversion of the block.
  • the syntax flag is indicated prior to the first syntax element or the second syntax element. In some embodiments, whether the first syntax element or the second syntax element is present is based on the syntax element indicating whether the transform skip residual coding is enabled in the video unit. In some embodiments, the video unit comprises a sequence, a group of pictures, or a picture. In some embodiments, the transform skip residual coding is not used when the sign data hiding or the dependent quantization is used for the conversion.
  • the transform skip residual coding is a transform coefficient coding technique applied for a video block which is coded with transform skip mode
  • the sign data hiding is a technique that omits coding of a coefficient sign flag for the last non-zero coefficient
  • the dependent quantization is a mode in which quantization of a sample depends on state of previous samples.
  • FIG. 15 is a flowchart representation of a method 1500 for video processing in accordance with the present technology.
  • the method 1500 includes, at operation 1510 , performing a conversion between a video and a bitstream of the video according to a rule.
  • the rule specifies that a syntax element specifying a maximum number of subblock-based merging motion vector prediction candidates supported in a sequence parameter set subtracted from 5 is in a range of 0 to N inclusive, where N is an integer equal to 5 minus a value of a syntax flag that specifies whether a subblock-based temporal motion vector predictor is enabled for the conversion.
  • the syntax element is in the range of 0 to 4, inclusive.
  • the syntax element is inferred to be equal to 5 in case the syntax flag is not present.
  • the conversion comprises encoding the video into the bitstream. In some embodiments, the conversion comprises decoding the video from the bitstream.
  • an encoder may conform to the format rule by producing a coded representation according to the format rule.
  • a decoder may use the format rule to parse syntax elements in the coded representation with the knowledge of presence and absence of syntax elements according to the format rule to produce decoded video.
  • video processing may refer to video encoding, video decoding, video compression or video decompression.
  • video compression algorithms may be applied during conversion from pixel representation of a video to a corresponding bitstream representation or vice versa.
  • the bitstream representation of a current video block may, for example, correspond to bits that are either co-located or spread in different places within the bitstream, as is defined by the syntax.
  • a macroblock may be encoded in terms of transformed and coded error residual values and also using bits in headers and other fields in the bitstream.
  • a decoder may parse a bitstream with the knowledge that some fields may be present, or absent, based on the determination, as is described in the above solutions.
  • an encoder may determine that certain syntax fields are or are not to be included and generate the coded representation accordingly by including or excluding the syntax fields from the coded representation.
  • the disclosed and other solutions, examples, embodiments, modules and the functional operations described in the present disclosure can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in the present disclosure and their structural equivalents, or in combinations of one or more of them.
  • the disclosed and other embodiments can be implemented as one or more computer program products, e.g., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them.
  • data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code).
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in the present disclosure can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC).
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random-access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and compact disc, read-only memory (CD ROM) and digital versatile disc read-only memory (DVD-ROM) disks.
  • semiconductor memory devices e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices
  • magnetic disks e.g., internal hard disks or removable disks
  • magneto optical disks magneto optical disks
  • CD ROM compact disc, read-only memory
  • DVD-ROM digital versatile disc read-only memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
US18/504,317 2020-04-19 2023-11-08 Transform Skip Residual Coding Pending US20240089504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/504,317 US20240089504A1 (en) 2020-04-19 2023-11-08 Transform Skip Residual Coding

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN2020085489 2020-04-19
WOPCT/CN2020/085489 2020-04-19
PCT/CN2021/088056 WO2021213309A1 (en) 2020-04-19 2021-04-19 Transform skip residual coding
US17/968,958 US12010346B2 (en) 2020-04-19 2022-10-19 Transform skip residual coding
US18/504,317 US20240089504A1 (en) 2020-04-19 2023-11-08 Transform Skip Residual Coding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/968,958 Continuation US12010346B2 (en) 2020-04-19 2022-10-19 Transform skip residual coding

Publications (1)

Publication Number Publication Date
US20240089504A1 true US20240089504A1 (en) 2024-03-14

Family

ID=78270241

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/968,958 Active US12010346B2 (en) 2020-04-19 2022-10-19 Transform skip residual coding
US18/504,317 Pending US20240089504A1 (en) 2020-04-19 2023-11-08 Transform Skip Residual Coding

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/968,958 Active US12010346B2 (en) 2020-04-19 2022-10-19 Transform skip residual coding

Country Status (6)

Country Link
US (2) US12010346B2 (ja)
EP (1) EP4128794A4 (ja)
JP (2) JP7525639B2 (ja)
KR (1) KR20230002446A (ja)
CN (2) CN115428464A (ja)
WO (2) WO2021213307A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021276676B2 (en) 2020-05-22 2024-08-22 Bytedance Inc. Scalable nested SEI message handling in video sub-bitstream extraction process
JP7549045B2 (ja) 2020-06-09 2024-09-10 バイトダンス インコーポレイテッド マルチレイヤ映像ビットストリームのサブビットストリーム抽出

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104221384A (zh) 2012-04-13 2014-12-17 夏普株式会社 用于发送和接收长期参考画面指示符的设备
US9307264B2 (en) * 2012-06-22 2016-04-05 Sharp Kabushiki Kaisha Arithmetic decoding device, arithmetic coding device, image decoding apparatus, and image coding apparatus
US20140003539A1 (en) 2012-07-02 2014-01-02 Cisco Technology, Inc. Signalling Information for Consecutive Coded Video Sequences that Have the Same Aspect Ratio but Different Picture Resolutions
US10230970B2 (en) 2012-07-10 2019-03-12 Cisco Technology, Inc. Decoded picture buffer size management
US9294776B2 (en) 2013-03-05 2016-03-22 Qualcomm Incorporated Parallel processing for video coding
US20140301436A1 (en) 2013-04-05 2014-10-09 Qualcomm Incorporated Cross-layer alignment in multi-layer video coding
US9674533B2 (en) 2013-04-05 2017-06-06 Qualcomm Incorporated Picture alignments in multi-layer video coding
US10003815B2 (en) 2013-06-03 2018-06-19 Qualcomm Incorporated Hypothetical reference decoder model and conformance for cross-layer random access skipped pictures
US20150103924A1 (en) 2013-10-13 2015-04-16 Sharp Laboratories Of America, Inc. On operation of decoded picture buffer for interlayer pictures
WO2015125494A1 (en) 2014-02-21 2015-08-27 Sharp Kabushiki Kaisha System for temporal identifier handling for hybrid scalability
EP3254465A1 (en) * 2015-02-05 2017-12-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-view video codec supporting residual prediction
FI20165114A (fi) 2016-02-17 2017-08-18 Nokia Technologies Oy Laitteisto, menetelmä ja tietokoneohjelma videokoodausta ja videokoodauksen purkua varten
CN116866564A (zh) 2016-10-04 2023-10-10 株式会社Kt 用于处理视频信号的方法和装置
CN110100440B (zh) 2016-12-22 2023-04-25 株式会社Kt 一种用于对视频进行解码、编码的方法
CN107071494B (zh) * 2017-05-09 2019-10-11 珠海市杰理科技股份有限公司 视频图像帧的二进制语法元素的生成方法和系统
WO2018207956A1 (ko) * 2017-05-10 2018-11-15 엘지전자(주) 비디오 신호를 엔트로피 인코딩, 디코딩하는 방법 및 장치
WO2019004888A1 (en) * 2017-06-30 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) ENCODING AND DECODING AN IMAGE BLOCK USING A CURVED INTRA-PREDICTION MODE
US10834409B2 (en) * 2018-04-06 2020-11-10 Arris Enterprises Llc System and method of implementing multiple prediction models for local illumination compensation
KR102576194B1 (ko) 2018-06-27 2023-09-08 엘지전자 주식회사 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
US20210274217A1 (en) 2018-06-29 2021-09-02 Electronics And Telecommunications Research Institute Image encoding/decoding method and apparatus for throughput enhancement, and recording medium storing bitstream
EP3834418A1 (en) * 2018-09-23 2021-06-16 Beijing Bytedance Network Technology Co. Ltd. Modification of motion vector with adaptive motion vector resolution
WO2020069651A1 (en) * 2018-10-05 2020-04-09 Huawei Technologies Co., Ltd. A candidate mv construction method for affine merge mode
EP4072139A3 (en) 2019-01-02 2022-11-09 Nokia Technologies Oy An apparatus, a method and a computer program for video coding and decoding
US11523136B2 (en) * 2019-01-28 2022-12-06 Hfi Innovation Inc. Methods and apparatuses for coding transform blocks
US11889118B2 (en) * 2019-02-24 2024-01-30 Sharp Kabushiki Kaisha Systems and methods for signaling types of pictures and associated information in video coding
CN113853792A (zh) 2019-05-11 2021-12-28 北京字节跳动网络技术有限公司 带有参考图片重采样的编解码工具
KR20220012352A (ko) 2019-05-30 2022-02-03 후아웨이 테크놀러지 컴퍼니 리미티드 인코더, 디코더 및 대응하는 방법
US11659201B2 (en) * 2019-08-16 2023-05-23 Qualcomm Incorporated Systems and methods for generating scaling ratios and full resolution pictures
CN114287135A (zh) 2019-08-23 2022-04-05 北京字节跳动网络技术有限公司 参考图片重采样中的剪切
KR20220061245A (ko) 2019-09-20 2022-05-12 노키아 테크놀로지스 오와이 비디오 코딩 및 디코딩 장치, 방법 및 컴퓨터 프로그램
CN114762330A (zh) 2019-09-22 2022-07-15 北京字节跳动网络技术有限公司 视频的子图片编码和解码
JP7323099B2 (ja) 2019-09-24 2023-08-08 ホアウェイ・テクノロジーズ・カンパニー・リミテッド マルチレイヤビデオビットストリームのためのdpbパラメータのシグナリング
AU2020321174A1 (en) 2019-10-07 2022-04-28 Huawei Technologies Co., Ltd. DPB size based reference picture entry constraints
JP7395727B2 (ja) 2019-10-23 2023-12-11 北京字節跳動網絡技術有限公司 ビデオ・データを処理する方法、装置及び記憶方法
CN114600462A (zh) 2019-10-25 2022-06-07 夏普株式会社 用于在视频编码中发送信号通知图片信息的系统和方法
WO2021112037A1 (en) 2019-12-06 2021-06-10 Sharp Kabushiki Kaisha Systems and methods for signaling temporal sublayer information in video coding
EP4074038A4 (en) 2020-01-12 2023-01-25 Beijing Bytedance Network Technology Co., Ltd. RESTRICTIONS ON VIDEO ENCODING AND DECODING
EP4088462A4 (en) 2020-02-14 2023-05-24 Beijing Bytedance Network Technology Co., Ltd. SUBPICTURE INFORMATION SIGNALING IN VIDEO BITSTREAM
KR20220137935A (ko) * 2020-02-27 2022-10-12 엘지전자 주식회사 레지듀얼 코딩에 대한 영상 디코딩 방법 및 그 장치
CN118540503A (zh) * 2020-02-27 2024-08-23 Lg电子株式会社 图像解码设备、图像编码设备和发送设备
CN115299053A (zh) 2020-03-16 2022-11-04 字节跳动有限公司 可缩放视频编解码中的随机访问点访问单元
JP2021150703A (ja) * 2020-03-17 2021-09-27 シャープ株式会社 画像復号装置及び画像符号化装置
US11671627B2 (en) 2020-09-17 2023-06-06 Lemon Inc. Operating point entity group signaling in coded video
EP3972279A1 (en) 2020-09-17 2022-03-23 Lemon Inc. Subpicture track referencing and processing
US20220086387A1 (en) 2020-09-17 2022-03-17 Lemon Inc. Subpicture entity groups in video coding
US12041386B2 (en) 2020-09-29 2024-07-16 Lemon Inc. Dependent random access point indication in video bitstreams
US20220321919A1 (en) 2021-03-23 2022-10-06 Sharp Kabushiki Kaisha Systems and methods for signaling neural network-based in-loop filter parameter information in video coding

Also Published As

Publication number Publication date
WO2021213307A1 (en) 2021-10-28
CN115428464A (zh) 2022-12-02
EP4128794A1 (en) 2023-02-08
US20230063674A1 (en) 2023-03-02
CN115699761A (zh) 2023-02-03
JP2024099764A (ja) 2024-07-25
KR20230002446A (ko) 2023-01-05
WO2021213309A1 (en) 2021-10-28
EP4128794A4 (en) 2023-12-27
US12010346B2 (en) 2024-06-11
JP2023522115A (ja) 2023-05-26
JP7525639B2 (ja) 2024-07-30

Similar Documents

Publication Publication Date Title
US11968375B2 (en) Scaling window in subpicture sub-bitstream extraction process
US11849149B2 (en) Order relationship between subpictures according to value for layer and value of subpicture index
US11917208B2 (en) Reference picture resampling
US12010346B2 (en) Transform skip residual coding
US11956454B2 (en) Decoded picture buffer management and subpictures in video coding
US11825124B2 (en) Scaling window in video coding
US20240340459A1 (en) Reference picture resampling
US20240098254A1 (en) Inter layer prediction with different coding block size
US20240107046A1 (en) Sublayer signaling in a video bitstream
US11889060B2 (en) Constraints on reference picture lists
WO2021209062A1 (en) Adaptive loop filtering
US11997301B2 (en) Constraints on supplemental enhancement information in video coding
US20230041260A1 (en) High Level Control Of Filtering In Video Coding
US20240107039A1 (en) Number restriction for sublayers

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION