US20240024596A1 - Aerosol delivery device including a housing and a coupler - Google Patents

Aerosol delivery device including a housing and a coupler Download PDF

Info

Publication number
US20240024596A1
US20240024596A1 US18/480,235 US202318480235A US2024024596A1 US 20240024596 A1 US20240024596 A1 US 20240024596A1 US 202318480235 A US202318480235 A US 202318480235A US 2024024596 A1 US2024024596 A1 US 2024024596A1
Authority
US
United States
Prior art keywords
cartridge
delivery device
aerosol delivery
power source
aerosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/480,235
Inventor
Percy D. Phillips
Michael F. Davis
Nicholas H. Watson
Noah M. Minskoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAI Strategic Holdings Inc
Original Assignee
RAI Strategic Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAI Strategic Holdings Inc filed Critical RAI Strategic Holdings Inc
Priority to US18/480,235 priority Critical patent/US20240024596A1/en
Assigned to RAI STRATEGIC HOLDINGS, INC. reassignment RAI STRATEGIC HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: R. J. REYNOLDS TOBACCO COMPANY
Assigned to R. J. REYNOLDS TOBACCO COMPANY reassignment R. J. REYNOLDS TOBACCO COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PHILLIPS, PERCY D., WATSON, NICHOLAS H., DAVIS, MICHAEL F., MINSKOFF, NOAH M.
Publication of US20240024596A1 publication Critical patent/US20240024596A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0024Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with an on-off output signal, e.g. from a switch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/13General characteristics of the apparatus with means for the detection of operative contact with patient, e.g. lip sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/27General characteristics of the apparatus preventing use
    • A61M2205/276General characteristics of the apparatus preventing use preventing unwanted use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/332Force measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback
    • A61M2205/584Means for facilitating use, e.g. by people with impaired vision by visual feedback having a color code
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/586Ergonomic details therefor, e.g. specific ergonomics for left or right-handed users
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/587Lighting arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8262Internal energy supply devices connectable to external power source, e.g. connecting to automobile battery through the cigarette lighter

Definitions

  • the present disclosure relates to aerosol delivery devices, and more particularly, to aerosol delivery devices that include a housing and a coupler.
  • the aerosol delivery device may include an atomizer comprising a heating element configured to heat an aerosol precursor.
  • the aerosol precursor composition which may include components made or derived from tobacco or otherwise incorporate tobacco, is heated by the atomizer to produce an inhalable substance for human consumption.
  • aerosol delivery devices include a control body and a cartridge.
  • a power source e.g., a battery
  • an aerosol precursor composition may be positioned in the cartridge.
  • the cartridge and the control body may engage one another to define an elongated tubular configuration.
  • certain other form factors for aerosol delivery devices may be desirable.
  • the present disclosure relates to aerosol delivery devices which, in certain embodiments, may be characterized as electronic cigarettes.
  • an aerosol delivery device may include a housing.
  • the housing may define an electrical power source cavity configured to receive an electrical power source, and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition.
  • the electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis.
  • the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another.
  • the aerosol delivery device may further include the electrical power source. Additionally, the aerosol delivery device may include the cartridge. Further, the aerosol delivery device may include a coupler positioned within the housing and configured to engage the cartridge. The aerosol delivery device may additionally include an outer cover engaged with an exterior of the housing.
  • the housing may further define a viewing opening at the cartridge cavity.
  • the aerosol delivery device may include an illumination source configured to illuminate the cartridge in the cartridge cavity.
  • the aerosol delivery device may further include an electronic display.
  • the housing may include an access door configured to provide access to the electrical power source cavity.
  • the housing may define an external opening at the cartridge cavity configured to receive the cartridge therethrough.
  • the housing may define a dividing wall that separates the electrical power source cavity from the cartridge cavity.
  • a method for assembling an aerosol delivery device may include providing a housing.
  • the housing may define an electrical power source cavity configured to receive an electrical power source and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition.
  • the electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis.
  • the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another.
  • the method may include positioning an electrical contact in the electrical power source cavity.
  • the electrical contact may be configured to engage the electrical power source.
  • the method may include positioning a coupler in the cartridge cavity.
  • the coupler may be configured to engage the cartridge.
  • the method may further include inserting the electrical power source in the electrical power source cavity and engaging the electrical power source with the electrical contact. Additionally, the method may include inserting the cartridge into the cartridge cavity and engaging the cartridge with the coupler. Inserting the cartridge into the cartridge cavity may include inserting the cartridge through an external opening defined by the housing.
  • providing the housing may include defining a viewing opening at the cartridge cavity. Further, the method may include engaging an outer cover with an exterior of the housing. The method may additionally include positioning an illumination source in the housing. The illumination source may be configured to illuminate the cartridge in the cartridge cavity. In some embodiments the method may additionally include engaging an electronic display with the housing. Providing the housing may include engaging a first body portion with a second body portion. Providing the housing further may further include engaging an access door with at least one of the first body portion and the second body portion. The access door may be configured to selectively provide access to the electrical power source cavity.
  • an aerosol delivery device may include a housing defining an electrical power source cavity configured to receive an electrical power source.
  • the electrical power source cavity may define a first longitudinal axis.
  • the aerosol delivery device may additionally include a coupler engaged with the housing and configured to engage a cartridge including an aerosol precursor composition such that the cartridge extends along a second longitudinal axis.
  • the first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another.
  • the aerosol delivery device may further include the electrical power source. Additionally, the aerosol delivery device may include a controller. The controller may be wrapped at least partially about the electrical power source.
  • the aerosol delivery device may further include the cartridge.
  • the cartridge may include a viewing window.
  • the aerosol delivery device may additionally include an illumination source configured to direct illumination through the viewing window.
  • the housing may include a coupler portion.
  • the coupler may be positioned at least partially within the coupler portion.
  • the housing may include a button assembly.
  • the button assembly may be configured to control a power output level directed from the electrical power source to the cartridge.
  • the button assembly may at least partially define a dividing wall that separates the cartridge from the electrical power source cavity.
  • the aerosol delivery device may include an illumination source.
  • the button assembly may include an illumination source cover configured to direct illumination produced by the illumination source therethrough.
  • a method for assembling an aerosol delivery device may include providing a housing defining an electrical power source cavity configured to receive an electrical power source.
  • the electrical power source cavity may define a first longitudinal axis.
  • the method may additionally include engaging a coupler configured to engage a cartridge including an aerosol precursor composition with the housing such that the cartridge extends along a second longitudinal axis.
  • the first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another.
  • the method may include positioning a controller in the housing. The controller may be configured to engage the electrical power source.
  • the method may further include engaging the electrical power source with the controller. Additionally, the method may include inserting the electrical power source in the electrical power source cavity simultaneously with positioning the controller in the housing. Further, the method may include engaging the cartridge with the coupler. The cartridge may include a viewing window. Further, the method may include positioning an illumination source in the housing. The illumination source may be configured to direct illumination through the viewing window.
  • providing the housing may include engaging a first body portion with a second body portion. Further, providing the housing further may include engaging an access door with at least one of the first body portion and the second body portion. The access door may be configured to block access to the electrical power source cavity. Providing the housing may further include engaging a button assembly with at least one of the first body portion and the second body portion. The method may additionally include positioning an illumination source in the housing and engaging an illumination source cover with the button assembly. The illumination source cover may be configured to direct illumination produced by the illumination source therethrough.
  • FIG. 1 illustrates a side view of an aerosol delivery device including a control body and a cartridge according to an example embodiment of the present disclosure
  • FIG. 2 illustrates a sectional, partially-exploded view through the control body of the aerosol delivery device of FIG. 1 according to an example embodiment of the present disclosure
  • FIG. 3 illustrates a modified sectional view through the aerosol delivery device of FIG. 1 according to an example embodiment of the present disclosure
  • FIG. 4 illustrates an exploded view of an example embodiment of the cartridge of FIG. 1 including a reservoir substrate
  • FIG. 5 illustrates a sectional view through an alternative example embodiment of the cartridge of FIG. 1 including a reservoir according to an example embodiment of the present disclosure
  • FIG. 6 illustrates a modified sectional view through the aerosol delivery device of FIG. 1 including the cartridge of FIG. 5 according to an example embodiment of the present disclosure
  • FIG. 7 illustrates a perspective view of a control body including a side opening configured to engage an outer cover and a relatively wide viewing opening according to an additional example embodiment of the present disclosure
  • FIG. 8 illustrates a perspective view of the control body of FIG. 7 with the outer cover according to an example embodiment of the present disclosure
  • FIG. 9 illustrates an enlarged side view of the control body of FIG. 8 at the viewing opening according to an example embodiment of the present disclosure
  • FIG. 10 illustrates a section of a body portion of a housing of the control body of FIG. 7 according to an example embodiment of the present disclosure
  • FIG. 11 illustrates a perspective view of a control body including side openings configured to engage an outer cover and a relatively narrow viewing opening according to an additional example embodiment of the present disclosure
  • FIG. 12 illustrates a section of a body portion of a housing of the control body of FIG. 11 according to an example embodiment of the present disclosure
  • FIG. 13 illustrates a bottom view of the control body of FIG. 11 according to an example embodiment of the present disclosure
  • FIG. 14 illustrates the control body of FIG. 11 with the outer cover according to an example embodiment of the present disclosure
  • FIG. 15 illustrates an enlarged side view of the control body of FIG. 14 at the viewing opening according to an example embodiment of the present disclosure
  • FIG. 16 illustrates a method for assembling an aerosol delivery device according to an example embodiment of the present disclosure
  • FIG. 17 illustrates a perspective view of an aerosol delivery device including a control body and a cartridge according to an example embodiment of the present disclosure
  • FIG. 18 illustrates a partial exploded view of the control body of FIG. 17 according to an example embodiment of the present disclosure
  • FIG. 19 illustrates a partial side view of the control body of FIG. 17 in a partially-assembled configuration including a first body portion of a housing thereof according to an example embodiment of the present disclosure
  • FIG. 20 illustrates a perspective view of a controller and an electrical power source of the control body of FIG. 17 according to an example embodiment of the present disclosure
  • FIG. 21 illustrates a perspective view of the control body of FIG. 17 in a partially-assembled configuration including a first body portion of a housing thereof according to an example embodiment of the present disclosure
  • FIG. 22 illustrates a perspective view of the control body of FIG. 17 in a partially-assembled configuration including an electrical power source housing portion and a coupler portion of a housing thereof according to an example embodiment of the present disclosure
  • FIG. 23 illustrates a sectional view through a coupler of the control body of FIG. 17 according to an example embodiment of the present disclosure.
  • FIG. 24 illustrates a method for assembling an aerosol delivery device according to an example embodiment of the present disclosure.
  • Aerosol delivery devices may use electrical energy to heat a material (preferably without combusting the material to any significant degree) to form an inhalable substance; such articles most preferably being sufficiently compact to be considered “hand-held” devices.
  • An aerosol delivery device may provide some or all of the sensations (e.g., inhalation and exhalation rituals, types of tastes or flavors, organoleptic effects, physical feel, use rituals, visual cues such as those provided by visible aerosol, and the like) of smoking a cigarette, cigar, or pipe, without any substantial degree of combustion of any component of that article or device.
  • the aerosol delivery device may not produce smoke in the sense of the aerosol resulting from by-products of combustion or pyrolysis of tobacco, but rather, that the article or device most preferably yields vapors (including vapors within aerosols that can be considered to be visible aerosols that might be considered to be described as smoke-like) resulting from volatilization or vaporization of certain components of the article or device, although in other embodiments the aerosol may not be visible.
  • aerosol delivery devices may incorporate tobacco and/or components derived from tobacco. As such, the aerosol delivery device can be characterized as an electronic smoking article such as an electronic cigarette.
  • Aerosol delivery devices of the present disclosure also can be characterized as being vapor-producing articles or medicament delivery articles.
  • articles or devices can be adapted so as to provide one or more substances (e.g., flavors and/or pharmaceutical active ingredients) in an inhalable form or state.
  • substances e.g., flavors and/or pharmaceutical active ingredients
  • inhalable substances can be substantially in the form of a vapor (i.e., a substance that is in the gas phase at a temperature lower than its critical point).
  • inhalable substances can be in the form of an aerosol (i.e., a suspension of fine solid particles or liquid droplets in a gas).
  • aerosol as used herein is meant to include vapors, gases and aerosols of a form or type suitable for human inhalation, whether or not visible, and whether or not of a form that might be considered to be smoke-like.
  • aerosol delivery devices of the present disclosure may be subjected to many of the physical actions employed by an individual in using a traditional type of smoking article (e.g., a cigarette, cigar or pipe that is employed by lighting and inhaling tobacco).
  • a traditional type of smoking article e.g., a cigarette, cigar or pipe that is employed by lighting and inhaling tobacco.
  • an aerosol delivery device of the present disclosure can be hand-held by a user, a user can draw on a portion of the article for inhalation of aerosol produced by that article, a user can take puffs at selected intervals of time, and the like.
  • Aerosol delivery devices of the present disclosure generally include a housing and a number of additional components coupled thereto and/or positioned within the housing, and some of the components may be removable or replaceable.
  • the overall design of the housing can vary, and the overall size and shape of the housing can vary.
  • the smoking articles can include a cartridge, which can be defined by an outer body or cover—e.g., an elongated body resembling the shape of a portion of a cigarette or cigar.
  • an outer cover or body of the cartridge can be substantially tubular in shape and, as such, resemble the shape of a conventional cigarette or cigar.
  • the housing may contain one or more reusable components (e.g., a rechargeable battery and various electronics for controlling the operation of that article), and the cartridge can be removable, refillable, and/or disposable.
  • Aerosol delivery devices of the present disclosure most preferably comprise some combination of a power source (i.e., an electrical power source), at least one control component (e.g., means for actuating, controlling, regulating and/or ceasing power for heat generation, such as by controlling electrical current flow from the power source to other components of the aerosol delivery device), a heater or heat generation component (e.g., an electrical resistance heating element or component commonly referred to as part of an “atomizer”), and an aerosol precursor composition (e.g., commonly a liquid capable of yielding an aerosol upon application of sufficient heat, such as ingredients commonly referred to as “smoke juice,” “e-liquid” and “e-juice”), and a mouthend region or tip for allowing draw upon the aerosol delivery device for aerosol inhalation (e.g., a defined air flow path through the article such that aerosol generated can be withdrawn therefrom upon draw).
  • a power source i.e., an electrical power source
  • at least one control component e.g.
  • an aerosol is formed, released, or generated in a physical form suitable for inhalation by a consumer.
  • release, releasing, releases, or released includes form or generate, forming or generating, forms or generates, and formed or generated.
  • an inhalable substance is released in the form of a vapor or aerosol or mixture thereof.
  • the aerosol delivery device may incorporate a battery and/or other electrical power source (e.g., a capacitor) to provide current flow sufficient to provide various functionalities to the aerosol delivery device, such as powering of a heater, powering of control systems, powering of indicators, and the like.
  • the power source can take on various embodiments.
  • the power source is able to deliver sufficient power to rapidly heat the heating element to provide for aerosol formation and power the aerosol delivery device through use for a desired duration of time.
  • the power source preferably is sized to fit conveniently within the aerosol delivery device so that the aerosol delivery device can be easily handled. Additionally, a preferred power source is of a sufficiently light weight to not detract from a desirable smoking experience.
  • a battery for use in the present devices may be replaceable, removable, and/or rechargeable and thus may be combined with any type of recharging technology, including connection to a typical alternating current electrical outlet, connection to a car charger (i.e., a cigarette lighter receptacle), and connection to a computer, such as through a universal serial bus (USB) cable or connector.
  • the electrical power source comprises a lithium-ion battery, which may light weight, rechargeable, and provide a large energy storage capacity. Examples of electrical power sources are described in U.S. Pat. App. Pub. No. 2010/0028766 to Peckerar et al., the disclosure of which is incorporated herein by reference in its entirety.
  • An aerosol delivery device preferably incorporates a sensor or detector for control of supply of electric power to a heat generation element when aerosol generation is desired (e.g., upon draw during use).
  • a manner or method for turning off the power supply to the heat generation element when the aerosol generating piece is not be drawn upon during use, and for turning on the power supply to actuate or trigger the generation of heat by the heat generation element during draw are described in U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No.
  • the aerosol delivery device can include an indicator, which may comprise one or more light emitting diodes.
  • the indicator can be in communication with the control component through a connector circuit and illuminate, for example, during a user draw on the mouthend as detected by the flow sensor.
  • U.S. App. Pub. No. 2015/0245658 to Worm et al. which is incorporated herein by reference in its entirety.
  • Still further components can be utilized in the aerosol delivery device of the present disclosure.
  • U.S. Pat. No. 5,154,192 to Sprinkel et al. discloses indicators for smoking articles
  • U.S. Pat. No. 5,261,424 to Sprinkel, Jr. discloses piezoelectric sensors that can be associated with the mouth-end of a device to detect user lip activity associated with taking a draw and then trigger heating
  • U.S. Pat. No. 5,967,148 to Harris et al. discloses receptacles in a smoking device that include an identifier that detects a non-uniformity in infrared transmissivity of an inserted component and a controller that executes a detection routine as the component is inserted into the receptacle;
  • U.S. Pat. No. 6,040,560 to Fleischhauer et al. describes a defined executable power cycle with multiple differential phases;
  • U.S. Pat. No. 5,934,289 to Watkins et al. discloses photonic-optronic components; U.S. Pat.
  • WO 2010/003480 to Flick discloses a fluid flow sensing system indicative of a puff in an aerosol generating system; all of the foregoing disclosures being incorporated herein by reference in their entireties.
  • Further examples of components related to electronic aerosol delivery articles and disclosing materials or components that may be used in the present article include U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No. 5,249,586 to Morgan et al.; U.S. Pat. No. 5,666,977 to Higgins et al.; U.S. Pat. No. 6,053,176 to Adams et al.; U.S. 6,164,287 to White; U.S.
  • the aerosol precursor composition also referred to as a vapor precursor composition, may comprise a variety of components including, by way of example, any of a polyhydric alcohol (e.g., glycerin, propylene glycol, or a mixture thereof), nicotine, tobacco, tobacco extract, and/or flavorants.
  • a polyhydric alcohol e.g., glycerin, propylene glycol, or a mixture thereof
  • nicotine e.g., nicotine, tobacco, tobacco extract, and/or flavorants.
  • tobacco extract e.g., glycerin, propylene glycol, or a mixture thereof
  • flavorants e.g., nicotine, tobacco, tobacco extract, and/or flavorants.
  • Various components that may be included in the aerosol precursor composition are described in U.S. Pat. No. 7,726,320 to Robinson et al., which is incorporated herein by reference in its entirety. Additional representative types of aerosol precursor compositions are set forth in U.S. Pat. No. 4,793,365
  • aerosol precursors which may be employed in the aerosol delivery device of the present disclosure include the aerosol precursors included in the VUSE® product by R. J. Reynolds Vapor Company, the BLUTM product by Lorillard Technologies, the Mistic Menthol product by Mistic Ecigs, and the Vype product by CN Creative Ltd.
  • the aerosol delivery device preferably includes a reservoir.
  • a reservoir may comprise a container for storing a liquid aerosol precursor, a fibrous substrate, or a combination of a fibrous substrate and a container.
  • a fibrous substrate suitable for use as a reservoir may comprise a plurality of layers of nonwoven fibers and may be formed substantially into the shape of a tube.
  • the formed tube may be shaped and sized for placement within the outer body or cover of a cartridge for use in the aerosol delivery device.
  • Liquid components for example, can be sorptively retained by the fibrous substrate and/or be retained within a reservoir container.
  • the reservoir preferably is in fluid connection with a liquid transport element.
  • the liquid transport element may be configured to transport liquid from the reservoir to a heating element, such as via capillary action and/or via active transport—e.g., pumping or controlled movement with a valve.
  • a heating element such as via capillary action and/or via active transport—e.g., pumping or controlled movement with a valve.
  • active transport e.g., pumping or controlled movement with a valve.
  • the liquid transport element may be in direct contact with the heating element.
  • wicking materials and the configuration and operation of those wicking materials within certain types of aerosol delivery devices, are set forth in U.S. Pat. No. 8,910,640 to Sears et al., which is incorporated herein by reference in its entirety.
  • a variety of the materials disclosed by the foregoing documents may be incorporated into the present devices in various embodiments, and all of the foregoing disclosures are incorporated herein by reference in their entireties.
  • the heating element may comprise a wire defining a plurality of coils wound about the liquid transport element.
  • the heating element may be formed by winding the wire about the liquid transport element as described in U.S. Pat. App. Pub. No. 2014/0157583 to Ward et al, which is incorporated herein by reference in its entirety.
  • the wire may define a variable coil spacing, as described in U.S. Pat. App. Pub. No. 2014/0270730 to DePiano et al., which is incorporated herein by reference in its entirety.
  • materials configured to produce heat when electrical current is applied therethrough may be employed to form the heating element.
  • Example materials from which the wire coil may be formed include titanium, platinum, silver, palladium, Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi 2 ), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al) 2 ), graphite and graphite-based materials; and ceramic (e.g., a positive or negative temperature coefficient ceramic).
  • the heating element may comprise a wire defining a mesh, screen or lattice structure positioned about the liquid transport element.
  • Example materials from which the wire mesh, screen, or lattice may be formed include titanium, platinum, silver, palladium, Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi 2 ), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al) 2 ), graphite and graphite-based materials; and ceramic (e.g., a positive or negative temperature coefficient ceramic).
  • An example embodiment of a mesh heating element is disclosed in U.S. Pat. Appl. Pub. No. 2015/0034103 to Hon.
  • a stamped heating element may be employed in the atomizer, as described in U.S. Pat. Pub. No.
  • a variety of heater components may be used in the present aerosol delivery device.
  • one or more microheaters or like solid state heaters may be used.
  • Embodiments of microheaters and atomizers incorporating microheaters suitable for use in the presently disclosed devices are described in U.S. Pat. No. 8,881,737 to Collett et al., which is incorporated herein by reference in its entirety.
  • One or more heating terminals may connect to the heating element so as to form an electrical connection with the power source and/or a terminal may connect to one or more control elements of the aerosol delivery device.
  • a heating terminal e.g., positive and negative terminals
  • a terminal may connect to one or more control elements of the aerosol delivery device.
  • an aerosol delivery device can be chosen from components described in the art and commercially available. Reference is made for example to the reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article disclosed in U.S. Pat. App. Pub. No. 2014/0000638 to Sebastian et al., which is incorporated herein by reference in its entirety.
  • one or more components of the aerosol delivery device may be formed from one or more carbon materials, which may provide advantages in terms of biodegradability and absence of wires.
  • the heating element may comprise carbon foam
  • the reservoir may comprise carbonized fabric
  • graphite may be employed to form an electrical connection with the battery and controller.
  • Aerosol delivery devices are often configured in a manner that mimics aspects of certain traditional smoking devices such as cigarettes or cigars.
  • aerosol delivery devices typically define a substantially cylindrical configuration.
  • aerosol delivery devices often include a control body and a cartridge which attach in an end-to-end relationship to define the substantially cylindrical configuration. While such configurations may provide a look and feel that is similar to traditional smoking articles, these configurations may suffer from certain detriments.
  • cylindrically-configured aerosol delivery devices may not define attachment points usable to retain the aerosol delivery device in a desired position when not in use. Further, such configurations may result in a relatively large device when employed with reservoirs having relatively large capacity, resembling the size and shape of a cigar, which may not be suitable for temporary storage or transport in a user's pocket.
  • So-called “mod” devices may include configurations other than parallel, coaxial alignment of a control body and a cartridge.
  • such devices may include exposed and/or poorly-supported electrical connectors that connect the control body and cartridge, which may be strained during use or storage, thereby potentially affecting the usability thereof. Accordingly, it may be desirable to provide aerosol delivery devices in configurations and shapes that differ from configurations and shapes associated with traditional smoking articles and traditional aerosol delivery devices.
  • FIG. 1 illustrates a side view of an aerosol delivery device 100 of the present disclosure.
  • the aerosol delivery device 100 may include a control body 101 , which may include a housing 102 .
  • the housing may comprise a plastic material, but various other materials, which are preferably substantially rigid, may be employed in other embodiments.
  • the housing 102 may be unitary or comprise multiple pieces.
  • the housing 102 may include a body portion 102 a, which may itself comprise one or more pieces, and an access door 102 b.
  • the aerosol delivery device 100 may additionally include a cartridge 200 , which may be at least partially received in the control body 101 .
  • FIG. 2 illustrates a partially-exploded sectional view through the control body 101 of the aerosol delivery device 100 .
  • the housing 102 may define an electrical power source cavity 104 .
  • the electrical power source cavity 104 may be defined in the body portion 102 a of the housing 102 .
  • the electrical power source cavity 104 may be closed by, and accessed via, the access door 102 b.
  • the electrical power source cavity 104 may be configured to receive an electrical power source.
  • the housing 102 may define a cartridge cavity 106 .
  • the cartridge cavity 106 may be configured to receive the cartridge 200 (see, e.g., FIG. 3 ).
  • the housing 102 may define an external opening 108 at the cartridge cavity 106 configured to receive the cartridge 200 therethrough.
  • the housing 102 may include a divider wall 107 that separates the power source cavity 104 from the cartridge cavity 106 .
  • the divider wall 107 completely separates the power source cavity 104 from the cartridge cavity 106 .
  • the divider wall 107 may extend across the length and thickness of the control body 101 such that the power source cavity 104 and the cartridge cavity 106 are discrete cavities. This configuration may be preferable in that it may prevent fluid communication between the power source cavity 104 and the cartridge cavity 106 . Thereby, for example, in the event of a structural failure of the electrical power source, chemical intrusion into the cartridge cavity 106 may be resisted.
  • the divider wall may be discontinuous in one or both of length and fitness. Such a configuration of the divider wall may still respectively retain an electrical power source in the electrical power source cavity and a cartridge in the cartridge cavity such that these components are securely retained in place.
  • the control body 101 may include one or more additional components.
  • the components may be received in, or otherwise engaged with, the housing 102 .
  • the components may include an electrical circuit, the operation of which is described below.
  • the electrical circuit may include a controller 110 , first and second electrical contacts 112 a, 112 b, and a coupler 114 .
  • the electrical circuit may additionally include an electronic display 116 (e.g., a liquid crystal display).
  • the electrical circuit may include a flow sensor 118 , which may be positioned at, or in fluid communication with, the coupler 114 . Wires or other electrical connectors may provide connections between the various components of the electrical circuit.
  • the electrical circuit may further comprise a communication module.
  • the communication module may be configured to communicate via Bluetooth or any other communication standard. Examples of communication modules and related antenna components which may be included in the aerosol delivery device 100 are described in U.S. patent application Ser. Nos. 14/802,789, filed Jul. 17, 2015, and Ser. No. 14/638,562, filed Mar. 4, 2015, each to Marion et al.
  • FIG. 3 illustrates a sectional view through the aerosol delivery device 100 .
  • the cartridge 200 may be at least partially received in the cartridge cavity 106 when engaged with the control body 101 .
  • the cartridge 200 may be inserted through the external opening 108 into the cartridge cavity 106 .
  • the cartridge 200 may engage the coupler 114 .
  • the cartridge 200 may establish an electrical connection with the control circuit such that current may be selectively directed to the cartridge by the controller 110 to produce aerosol.
  • the aerosol delivery device 100 may additionally include an electrical power source 300 .
  • the electrical power source 300 may be received in the electrical power source cavity 104 , and the access door 102 b may be secured to the body portion 102 a of the housing 102 , such that the electrical power source 300 is retained in the electrical power source cavity 104 .
  • the aerosol delivery device 100 may additionally include at least one fastener 120 (e.g., a screw) configured to retain the access door 102 b in engagement with the body portion 102 a of the housing 102 .
  • the first electrical contact 112 a When the electrical power source 300 is inserted into the electrical power source cavity 104 , the first electrical contact 112 a may engage a first end of the electrical power source, at which a first terminal of the electrical power source may be positioned. Thereafter, when the access door 102 b is secured to the body portion 102 , the second electrical contact 112 b may engage an opposing second end of the electrical power source 300 , at which a second terminal may be positioned. Thereby, power from the electrical power source 300 may be supplied to the controller 110 .
  • the electrical contacts 112 a, 112 b may be positioned and configured in other manners as appropriate for engagement with the terminals of the electrical power source 300 , such that various embodiments of the electrical power source may be employed. For example, in another embodiment both of the electrical contacts may be positioned at and configured to engage either the top or the bottom of the electrical power source.
  • the electrical power source 300 may further comprise a protective circuit. Such a protective circuit may prevent overcharging of the electrical power source and/or regulate the release of current within acceptable limits. Further, the electrical power source may additionally include shock absorbing members (e.g., foam pads) in some embodiments, which may protect the electrical power source from damage associated with dropping the aerosol delivery device 100 .
  • shock absorbing members e.g., foam pads
  • the electrical power source cavity 104 and the cartridge cavity 106 may be elongated and respectively define a longitudinal axis 104 a , 106 a.
  • the longitudinal axis 104 a of the electrical power source cavity 104 and the longitudinal axis 106 a of the cartridge cavity 106 may be substantially parallel to one another. Such a configuration may allow for receipt of both the cartridge 200 and the electrical power source 300 in a space efficient manner within the housing 102 .
  • aerosol delivery devices define generally elongated, tubular configurations wherein the electrical power source and cartridge are positioned generally end to end to mimic the smoking articles such as cigarettes and cigars.
  • existing embodiments of aerosol delivery devices often include cartridges and aerosol delivery devices arranged with the longitudinal axes thereof being parallel to one another.
  • the aerosol delivery device 100 of the present disclosure may be configured such that the longitudinal axis 104 a of the electrical power source cavity 104 and the longitudinal axis 106 a of the cartridge cavity 106 are non-coaxial.
  • the aerosol delivery device 100 may define a relatively shorter length due to the cartridge 200 and the electrical power source 300 being positioned beside one another, instead of in an end-to-end relationship. Further, by configuring the electrical power source cavity 104 and the cartridge cavity 106 beside one another, the aerosol delivery device 100 may define an overall shape that is more suitable for transport in a user's pocket. Additionally, this configuration may allow the aerosol delivery device 100 to more easily fit in a user's hand. In this regard, a user may more easily carry and use the aerosol delivery device in a concealed fashion within a palm of the user's hand due to the relatively shorter length thereof, which may be desirable in certain social settings.
  • the side-by-side configuration may also provide a relatively large internal volume within the housing 102 suitable for receipt of the components of the aerosol delivery device 100 in a number of various positions.
  • aerosol delivery devices arranged end-to-end have limited options with respect to the positions of components therein, due to the reservoir in the cartridge and the electrical power source in the control body typically defining cylindrical configurations. Thereby, any remaining space in the cartridge and the control body is typically annular or cylindrical in shape, which is not suitable for receipt of many components in a space efficient manner.
  • the relatively larger internal volume of the aerosol delivery device 100 of the present disclosure provided by the housing 102 may accommodate a relatively larger electrical power source 300 and/or a relatively larger cartridge 200 , such that the respective electric and aerosol precursor composition storage capacities thereof may be increased.
  • the relatively large internal volume of the aerosol delivery device 100 may accommodate various commercially available electrical power sources, rather than just custom electrical power sources which may be required for cylindrical configurations, such that expenses associated with the components of the aerosol delivery device may be reduced.
  • the side-by-side configuration may additionally provide a relatively large exterior surface area. Further, the side-by-side configuration may provide relatively planar exterior surfaces (which may be slightly curved for ergonomic or aesthetic purposes), which may be more suitable for the display 116 , as opposed to the sharply curved surfaces provided by a cylindrical aerosol delivery device. In this regard, commercially-available electronic displays typically define a planar display surface.
  • the electronic display 116 may be positioned at a number of locations and may define a relatively larger size than an electronic display on an aerosol delivery device defining a cylindrical configuration.
  • the electronic display 116 is positioned at a top of the body portion 102 a of the housing 102 .
  • the external opening 108 to the cartridge cavity 106 may also be positioned at the top of the body portion 102 a of the housing. This position of the electronic display 116 may allow a user to view the electronic display while the aerosol delivery device is grasped in the user's hand in a manner suitable for taking a draw on the cartridge 200 .
  • the user's hand may extend around the sides of the aerosol delivery device, such that the top surface of the aerosol delivery device, at which the electronic display 116 and the exposed portion of the cartridge 200 are positioned, is exposed and uncovered by the user's hand.
  • the data displayed by the electronic display 116 may include a remaining cartridge aerosol precursor composition level, a remaining power source level, historical usage information, heat and aerosol output settings, a charging status, a communication status (e.g., when linked to another device via Bluetooth or other communication protocol), the time, and/or various other data.
  • the side-by-side configuration of the aerosol delivery device 100 of the present disclosure may provide additional benefits.
  • the cartridge 200 may engage the control body 101 in a manner that may provide for a secure connection therebetween, which may reduce stress and strain thereon as compared to embodiments of aerosol delivery devices in which the connection between the cartridge and control body is exposed (e.g. in embodiments in which the cartridge and the control body are arranged end-to-end).
  • the coupler 114 may be recessed in or proximate the cartridge cavity 106 such that the housing 102 protects the connection between the cartridge 200 and the control body 101 .
  • a portion, and more preferably a majority, of the longitudinal length of the cartridge 200 may be retained in the cartridge cavity 106 and the size and shape of the cartridge cavity may substantially correspond to that of the cartridge, such that the housing 102 may resist movement of the cartridge, rather than the coupler 114 bearing the entirety of such stress and strain associated with forces applied to one or both of the cartridge and the control body 101 .
  • the connection between the cartridge and the control body may bear all or substantially all of the stress and strain associated with force applied to one or both of the cartridge and the control body.
  • modify devices may define configurations other than the end-to-end configuration described above, such devices often include exposed electrical connectors that are subject to stress and strain. Accordingly, the side-by side, parallel but non-coaxial configuration of the electric power source cavity 104 and the cartridge cavity 106 of the aerosol delivery device 100 of the present disclosure may provide various benefits.
  • FIG. 3 a side view of the cartridge 200 , rather than a sectional view therethrough, is illustrated in FIG. 3 in light of the various possible configurations of the components of the cartridge.
  • FIG. 4 one example embodiment of the cartridge is illustrated in FIG. 4 .
  • the cartridge 200 ′ may comprise a base shipping plug 202 ′, a base 204 ′, a control component terminal 206 ′, an electronic control component 208 ′, a flow director 210 ′, an atomizer 212 ′, a reservoir substrate 214 ′, an outer body 216 ′, a label 218 ′, a mouthpiece 220 ′, and a mouthpiece shipping plug 222 ′ according to an example embodiment of the present disclosure.
  • the base 204 ′ may be coupled to a first end of the outer body 216 ′ and the mouthpiece 220 ′ may be coupled to an opposing second end of the outer body to at least partially enclose the remaining components of the cartridge 200 ′ therein, with the exception of the label 218 ′, the mouthpiece shipping plug 222 ′, and the base shipping plug 202 ′.
  • the base 204 ′ may be configured to engage the coupler 114 .
  • the base 204 ′ may comprise anti-rotation features that substantially prevent relative rotation between the cartridge and associated device including a power source as disclosed in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety.
  • the base shipping plug 202 ′ may be configured to engage and protect the base 204 ′ prior to use of the cartridge 200 ′.
  • the mouthpiece shipping plug 222 ′ may be configured to engage and protect the mouthpiece 220 ′ prior to use of the cartridge 200 ′.
  • the control component terminal 206 ′, the electronic control component 208 ′, the flow director 210 ′, the atomizer 212 ′, and the reservoir substrate 214 ′ may be retained within the outer body 216 ′.
  • the label 218 ′ may at least partially surround the outer body 216 ′ and include information such as a product identifier thereon.
  • the atomizer 212 ′ may comprise a first heating terminal 234 a ′ and a second heating terminal 234 b ′, a liquid transport element 238 ′, and a heating element 240 ′.
  • the reservoir substrate 214 ′ may be configured to hold an aerosol precursor composition.
  • the reservoir substrate 214 ′ is in fluid connection with the liquid transport element 238 ′ so as to transport the aerosol precursor composition from the reservoir substrate 214 ′ to the heating element 240 ′ (e.g., via capillary action).
  • the aerosol precursor composition may be vaporized.
  • FIG. 7 thereof illustrates an enlarged exploded view of a base and a control component terminal
  • FIG. 8 illustrates an enlarged perspective view of the base and the control component terminal in an assembled configuration
  • FIG. 9 illustrates an enlarged perspective view of the base, the control component terminal, an electronic control component, and heating terminals of an atomizer in an assembled configuration
  • FIG. 10 illustrates an enlarged perspective view of the base, the atomizer, and the control component in an assembled configuration
  • FIG. 7 illustrates an enlarged exploded view of a base and a control component terminal
  • FIG. 8 illustrates an enlarged perspective view of the base and the control component terminal in an assembled configuration
  • FIG. 9 illustrates an enlarged perspective view of the base, the control component terminal, an electronic control component, and heating terminals of an atomizer in an assembled configuration
  • FIG. 10 illustrates an enlarged perspective view of the base, the atomizer, and the control component in an assembled configuration
  • FIG. 7 illustrates an enlarged exploded view of a base and a control component terminal
  • FIG. 11 illustrates an opposing perspective view of the assembly of FIG. 10 thereof;
  • FIG. 12 illustrates an enlarged perspective view of the base, the atomizer, the flow director, and the reservoir substrate in an assembled configuration;
  • FIG. 13 illustrates a perspective view of the base and an outer body in an assembled configuration;
  • FIG. 14 illustrates a perspective view of a cartridge in an assembled configuration;
  • FIG. 15 illustrates a first partial perspective view of the cartridge of FIG. 14 thereof and a coupler for a control body;
  • FIG. 16 illustrates an opposing second partial perspective view of the cartridge of FIG. 14 thereof and the coupler of FIG. 11 thereof;
  • FIG. 17 thereof illustrates a perspective view of a cartridge including a base with an anti-rotation mechanism;
  • FIG. 12 illustrates an enlarged perspective view of the base, the atomizer, the flow director, and the reservoir substrate in an assembled configuration
  • FIG. 13 illustrates a perspective view of the base and an outer body in an assembled configuration
  • FIG. 14 illustrates a perspective view
  • FIG. 18 thereof illustrates a perspective view of a control body including a coupler with an anti-rotation mechanism
  • FIG. 19 thereof illustrates alignment of the cartridge of FIG. 17 with the control body of FIG. 18
  • FIG. 20 thereof illustrates an aerosol delivery device comprising the cartridge of FIG. 17 thereof and the control body of FIG. 18 thereof with a modified view through the aerosol delivery device illustrating the engagement of the anti-rotation mechanism of the cartridge with the anti-rotation mechanism of the connector body
  • FIG. 21 thereof illustrates a perspective view of a base with an anti-rotation mechanism
  • FIG. 22 thereof illustrates a perspective view of a coupler with an anti-rotation mechanism
  • FIG. 23 thereof illustrates a sectional view through the base of FIG. 21 thereof and the coupler of FIG. 22 thereof in an engaged configuration.
  • the cartridge 200 may be substantially similar, or identical, to the cartridge disclosed in U.S. patent application Ser. No. 14/286,552 to Brinkley et al., filed May 23, 2014, which is incorporated herein by reference in its entirety.
  • the cartridge may include a flow director defining a non-tubular configuration, an electronics compartment sealed with respect to a reservoir compartment, and/or any of the various other features and components disclosed therein. Accordingly, it should be understood that the particular embodiments of the cartridge 200 described herein is provided for example purposes only.
  • the cartridge 200 ′′ may include a base 204 ′′, a control component terminal 206 ′′, an electronic control component 208 ′′, a flow director 210 ′′ which may be defined by an outer body 216 ′′ or a separate component, an atomizer 212 ′′, and a mouthpiece 220 ′′ according to an example embodiment of the present disclosure.
  • the atomizer 212 ′′ may comprise a first heating terminal 234 a ′′ and a second heating terminal 234 b ′′, a liquid transport element 238 ′′ and a heating element 240 ′′.
  • the cartridge 200 ′′ may additionally include a base shipping plug, a label, and a mouthpiece shipping plug, as described above.
  • the base 204 ′′ may be coupled to a first end of the outer body 216 ′′ and the mouthpiece 220 ′′ may be coupled to an opposing second end of the outer body to at least partially enclose the remaining components of the cartridge 200 ′′ therein.
  • the base 204 ′′ may comprise anti-rotation features that substantially prevent relative rotation between the cartridge and associated device including a power source as disclosed in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety.
  • the cartridge 200 ′′ may further comprise a sealing member 242 ′′ and an initial liquid transport element 244 ′′.
  • the outer body 216 ′′ and/or an additional component may be configured to hold an aerosol precursor composition 246 ′′ in a reservoir 248 ′′.
  • the reservoir 248 ′′ may be configured to be refillable, whereas in other embodiments the cartridge 200 ′′ may be configured for a single use.
  • the sealing member 242 ′′ may be positioned at an end of the chamber 248 ′′ and include one or more apertures 250 ′′ that allow the aerosol precursor composition 246 ′′ to contact the initial liquid transport element 244 ′′.
  • liquid transport element 238 ′′ of the atomizer 212 ′′ may be in contact with the initial liquid transport element 244 ′′.
  • Both the initial liquid transport element 244 ′′ and the liquid transport element 238 ′′ of the atomizer 212 ′′ may comprise wicking and/or porous materials that allow movement of the aerosol precursor composition 246 ′′ therethrough (e.g., via capillary action), such that the aerosol precursor composition may be drawn to the heating element 240 ′′ and heated and vaporized when current is applied to the heating element via the heating terminals 234 a ′′, 234 b ′′ by the controller 110 of the control body 101 (see, e.g., FIG. 6 ).
  • FIG. 6 illustrates the aerosol delivery device 100 when the electrical power source 300 is received in the electrical power source cavity 104 , and the cartridge 200 ′′ of FIG. 5 is received in the cartridge cavity 106 .
  • the electrical circuit may additionally include an illumination source 122 such as a light emitting diode (LED).
  • the control body 101 may include an illumination source cover 124 , which may cover, protect, and/or conceal the illumination source 122 .
  • the illumination source cover 124 may be translucent or transparent such that light emitted by the illumination source may travel therethrough.
  • the illumination source cover 124 may be tinted or diffuse such that the presence of the illumination source is hidden or obscured when not in use.
  • the cartridge 200 ′′ may include a viewing window 252 ′′, which may allow a user to view a quantity of the aerosol precursor composition 246 ′′ remaining in the reservoir 248 ′′.
  • a viewing window 252 ′′ may allow a user to view a quantity of the aerosol precursor composition 246 ′′ remaining in the reservoir 248 ′′.
  • all or a portion of the outer body 216 ′′ of the cartridge 200 ′′ may comprise a translucent or transparent material.
  • the illumination source 122 and the illumination source cover 124 may be positioned in the body portion 102 a of the housing 102 at the cartridge cavity 106 at a position that aligns with the viewing window 252 ′′ such that light produced by the illumination source may be directed into the cartridge 200 ′′ to facilitate viewing of the level of the aerosol precursor composition 246 ′′.
  • the body portion 102 a of the housing 102 may include a cutout or other feature defining a viewing opening 126 .
  • the user may be able to see the level of the aerosol precursor composition 246 ′′ through the viewing opening 126 .
  • the controller 110 may direct the illumination source 122 to output light under certain circumstances, such as after a draw on the cartridge 200 ′′ is detected.
  • the illumination source 122 may additionally or alternatively output light when a separate actuator (e.g., a button) is depressed or otherwise actuated. Accordingly, a user may be kept apprised of a level of the aerosol precursor composition in the cartridge 200 ′′.
  • inclusion of the illumination source 122 is optional. In this regard, ambient light be sufficient for viewing the level of the aerosol precursor composition 246 ′′ through the viewing opening 126 in some embodiments. However, inclusion of the illumination source 122 may be preferable due to increased usability in low-light situations.
  • the controller 110 may be configured to control one or more operations of the aerosol delivery device 100 .
  • the controller 110 may verify that the cartridge 200 is authentic using information provided by the control component 208 ′, 208 ′′. Usage of the cartridge 200 may be allowed only if the cartridge is determined to be authentic. Further, when a user draws on the cartridge 200 , the flow sensor 118 (e.g. a pressure sensor) may detect the draw. In response, the controller 110 may direct current to the cartridge 200 such that that the heating element 240 ′, 240 ′′ produces heat and vaporizes the aerosol precursor composition, which may be directed to the user.
  • the aerosol delivery device may include an actuator that may be manually actuated to trigger the controller to direct current to the cartridge 200 .
  • the actuator may be used in lieu of the flow sensor 118 , or to provide supplemental power from the electrical power source to the cartridge to change (e.g., increase) the aerosol output of the aerosol delivery device.
  • the actuator may be used in conjunction with the controller to adjust the amount of power directed from the electrical power source to the cartridge, such that the aerosol delivery device may have various aerosol output settings (e.g., aerosol mass output settings).
  • the actuator e.g., a button or button assembly
  • the actuator may be configured to control a power output level directed from the electrical power source to the cartridge.
  • the actuator may have selective regions or a plurality of regions such as a lower region, a middle region, and an upper region.
  • Each region of the actuator may be configured to direct a differing level of power (e.g., current and/or voltage) a from the electrical power source to the cartridge.
  • the differing regions of the actuator may each correspond to a differing aerosol output setting.
  • the actuator may include one or a plurality of sensors (e.g., pressure and/or force sensors) at each region such that the force applied to the actuator by the user at one or more of the regions may be detected to control the output of the aerosol via differing selectable power output levels directed from the electrical power source to the cartridge.
  • the power output level may be controlled based on a location at which the actuator is actuated. Alternatively or additionally, the power output level may be controlled based on the amount of force applied to the actuator, which may be determined via a force sensor (e.g., a stress or strain sensor).
  • a force sensor e.g., a stress or strain sensor
  • FIGS. 7 - 10 illustrate an alternate embodiment of the control body 101 ′, wherein only those differences with respect to the control body 101 described above are noted.
  • each of the aerosol delivery devices may include some or all of the components and features described herein in any combination, unless otherwise noted.
  • the control body 101 ′ may define a more rounded profile for improved ergonomics.
  • the control body 101 ′ may further comprise an indicator 128 ′.
  • the indicator 128 ′ may output light to indicate an operational status of the control body.
  • the indicator 128 ′ may be used to communicate the operational status of the device without usage of the electronic display surface 116 ′.
  • the indicator 128 ′ may flash or change colors when the cartridge is low in aerosol precursor composition or to indicate the electrical power source needs recharging or replacement.
  • the indicator 128 ′ may light up when the flow sensor detects a puff on the cartridge.
  • the indicator 128 ′ may be configured to illuminate with one or more of a plurality of colors, durations, frequencies, and/or intensities to indicate to the user certain conditions of the aerosol delivery device such as the power output level, the status of the electrical power source, and/or the activated or inactivated state of the aerosol delivery device which correspond to the output of the indicator.
  • the indicator 128 ′ may include an illumination source that activates with one or more of a plurality of colors, durations, frequencies, and/or intensities to indicate to the user certain conditions of the aerosol delivery device such as the power output level, the status of the power source, and/or the activated or inactivated state of the aerosol delivery device.
  • the indicator 128 ′ may be configurable by the user to control the color or colors of the illumination source and/or other output parameters thereof. Further, the user may be able to control which device status value is communicated to the user by the illumination signal.
  • the body portion 102 a ′ of the housing 102 ′ may include a side opening 130 ′.
  • the side opening 130 ′ may be configured to engage an outer cover 132 ′ (e.g., via interference fit), which is illustrated in FIG. 8 .
  • the outer cover 132 ′ may be engaged with an exterior of the housing 102 ′.
  • the outer cover 132 ′ may comprise silicon, which may provide enhanced grip such that it is easier to retain the control body 101 ′ in the hand without dropping it.
  • various other materials e.g., other rubbers
  • Use of a resilient outer cover 132 ′ may provide various other benefits.
  • depression of the outer cover 132 ′ at the side opening 130 ′ may trigger the illumination source 122 (e.g., via actuation of an actuator) to illuminate the fluid level in the cartridge 200 .
  • the depression of the outer cover 132 ′ at the side opening 130 ′ may trigger the illumination source 122 , where the duration of the depression of the outer cover corresponds to the duration of the activation of the illumination source, such that the user may continuously illuminate the cartridge 200 for a desired duration during filling or refilling of the cartridge or when otherwise desired for a user-selected period of time.
  • FIG. 9 illustrates a partial side view of the control body 101 ′.
  • the illumination source cover 124 ′ may be aligned with the viewing opening 126 ′ as described above.
  • the viewing opening 126 ′ may be relatively wide so as to facilitate viewing of the level of the aerosol precursor composition in the cartridge.
  • the viewing opening 126 ′ may define an opening with a width perpendicular to the longitudinal axis 106 a ′ of the cartridge cavity 106 ′ that is equal to at least half of a diameter of the cartridge in some embodiments.
  • FIG. 10 illustrates a first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′ (see, FIG. 7 ).
  • a second section 102 a 2 ′ and a third section 102 a 3 ′ of the body portion 102 a ′ of the housing 102 ′ are illustrated in FIG. 7 .
  • the third section 102 a 3 ′ may be integral with the section 102 a 2 ′, or a separate component.
  • the first and second sections 102 a 1 ′, 102 a 2 ′ of the body portion 102 ′ of the housing 102 ′ may be configured to engage the access door 102 b ′ (see, FIG. 10 ).
  • the electronic display 116 ′ may be positioned at (e.g., under) the third section 102 a 3 ′ of the body portion 102 a ′ of the housing 102 ′.
  • all or a portion of the housing 102 ′ may be translucent or transparent in some embodiments.
  • the housing 102 ′ may additionally include an illumination source or have an illumination source in proximity thereto.
  • the housing 102 ′ may include the illumination source 122 described above, which may be configured to emit direct or indirect illumination through the housing 102 ′ where the housing may be translucent or transparent.
  • the first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′ may additionally include a side opening 134 ′ configured to engage the outer cover 132 ′ (see, e.g., FIG. 8 ).
  • the outer cover 132 ′ may be firmly held in place via the opposing side openings 130 ′, 134 ′.
  • the third section 102 a ′ may comprise a metal such as aluminum for enhanced strength and/or improved cosmetic appearance, or a separate outer body defining such characteristics may be attached to the third section.
  • FIG. 10 further illustrates an inside of the first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′.
  • the housing 102 ′ may define one or more ribs 136 ′, which may be configured to retain the electric power source 300 (see, e.g., FIG. 3 ) within the electrical power source cavity 104 ′ and/or retain the cartridge 200 (see, e.g., FIG. 3 ) in the cartridge cavity 106 ′.
  • the ribs 136 ′ may be curved or otherwise tailored to match the size and shape of the electric power source 300 and/or the cartridge 200 .
  • the ribs 136 ′ may extend to an end portion 138 ′.
  • the end portions 138 ′ of the ribs 136 ′ at the first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′ may be configured to engage corresponding end portions of the ribs at the second section 102 a 2 ′ (see,
  • FIG. 7 of the body portion of the housing so as to separate the electrical power source cavity 104 ′ from the cartridge cavity 106 ′ to retain the electrical power source 300 and the cartridge 200 (see, FIG. 3 ) respectively therein.
  • the end portions 138 ′ of the ribs 136 ′ may collectively define a divider wall 107 ′ that is segmented along the length thereof. Usage of the ribs 136 ′, rather than a solid structure, may reduce the quantity of material required to form the housing 102 ′, thereby additionally reducing the weight of the housing while still retaining the components of the control body 101 ′ in the desired positions and providing added stiffness.
  • the ribs 136 ′ may comprise a non-rigid material such as foam or a thermoplastic polymer or include an element comprising foam, thermoplastic polymer, or other non-rigid material that allows the ribs 136 ′ to compress or displace in the event that the electrical power source 300 undergoes changes in diameter such that can occur with diametric swelling that is common with lithium-type batteries.
  • the ribs 136 ′ may at least partially surround the electrical power source 300 (see, e.g., FIG. 3 ).
  • the first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′ may include protrusions and/or receptacles 140 ′, which may be configured to engage corresponding receptacles/protrusions at the second section 102 a 2 ′ (see, FIG. 7 ).
  • the sections 102 a 1 ′, 102 a 2 ′ of the housing 102 ′ may interlock with one another when assembled.
  • section 102 b ′ may include an orifice 137 ′ or plurality of orifices in fluid communication with the electrical power source cavity 104 ′ and the atmosphere outside of the housing 102 ′ to allow for the escape of any gas or gases that may be produced by the electrical power source 300 (see, e.g., FIG. 3 ) to prevent the gas or gases from generating a region of increased pressure within the housing 102 ′.
  • the orifice 137 ′ may comprise one or more openings of sufficient cross sectional area as to prevent a pressure differential between the internal region of the housing 102 ′ and the outside atmosphere.
  • the orifice 137 ′ may include a permeable membrane or porous material that allows gas or gases that may be produced by the electrical power source 300 (see, e.g., FIG. 3 ) to escape to the outside atmosphere while preventing the entrance of liquid into the housing 102 ′ due to the selective permeability of the membrane or porous material.
  • FIGS. 11 - 15 illustrate an additional embodiment of the control body 101 ′′.
  • the control body 101 ′′ may be substantially similar to the control body 101 ′ of FIGS. 7 - 10 in one or more respects.
  • the control body 101 ′′ may include a housing 102 ′′ comprising a body portion 102 a ′′ and an access door 102 b ′′ which may be secured to the body portion via a screw 120 ′′ (see, FIG. 13 ).
  • the body portion 102 a ′′ may include multiple sections including first and second sections 102 a 1 ′′, 102 a 2 ′′.
  • the first section 102 a 1 ′′ may define protrusions and/or receptacles 140 ′′ configured to engage corresponding receptacles/protrusions at the second section 102 a 2 ′ (see, FIG. 7 ).
  • the body portion 102 a ′′ may define one or more ribs 136 ′′ that respectively extend to an end portion 138 ′′ to define a dividing wall 107 ′′.
  • the ribs 136 ′′ may extend in both the power source cavity 104 ′′ and the cartridge cavity 106 ′′ in some embodiments to thereby assist in respectively retaining the electrical power source and the cartridge therein.
  • the control body 101 ′′ may include the indicator 128 ′′ and an outer cover 132 ′′ (see, FIG. 14 ).
  • the electronic display 116 ′′ may be positioned at the top of the housing 102 ′′ proximate the opening to the external opening 108 ′′ to the cartridge cavity 106 ′′, which extends along the longitudinal axis 106 a ′′
  • control body 101 ′′ may differ in one or more respects from the control bodies described above.
  • the dividing wall 107 ′′ may additionally include a partial wall 109 ′′, which further assists in retaining a cartridge in the cartridge cavity 106 ′′.
  • the body portion 102 a ′′ of the housing 102 ′′ may include first and second side openings 130 a ′′, 130 b ′′ at the first section 102 a 1 ′′ and first and second side openings 134 a ′′, 134 b ′′ at the second section 102 a 2 ′′ thereof (see, FIGS. 11 and 13 ).
  • Usage of multiple side openings 130 a ′′, 130 b ′′, 134 a ′′, 134 b ′′ at each section 102 a 1 ′′, 102 a 2 ′′ of the body portion 102 a ′′ of the housing 102 ′′ may provide for improved engagement of the outer cover 132 ′′ therewith, as illustrated in FIG. 12 .
  • the viewing opening 126 ′ may be relatively wide (see e.g., FIG. 9 ). However, as illustrated in FIG. 13 , in other embodiments the viewing opening 126 ′′ may be relatively less wide.
  • the viewing opening may define a width that is equal to less than half of a diameter of the configured to be received in the cartridge compartment 106 ′′ in some embodiments. Whereas a wide viewing opening may facilitate viewing of the level of the aerosol precursor composition, a relatively less wide viewing opening may provide more protection to the cartridge, while still allowing a user to view the level of the aerosol precursor composition.
  • FIG. 16 illustrates a method for assembling an aerosol delivery.
  • the method may include providing a housing at operation 402 .
  • the housing may define an electrical power source cavity configured to receive an electrical power source and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition.
  • the electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis.
  • the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another.
  • the method may include positioning an electrical contact in the electrical power source cavity, the electrical contact being configured to engage the electrical power source at operation 404 .
  • the method may include positioning a coupler in the cartridge cavity, the coupler being configured to engage the cartridge at operation 406 .
  • the method may further comprise inserting the electrical power source in the electrical power source cavity and engaging the electrical power source with the electrical contact.
  • the method may additionally include inserting the cartridge into the cartridge cavity and engaging the cartridge with the coupler. Inserting the cartridge into the cartridge cavity may include inserting the cartridge through an external opening defined by the housing.
  • Providing the housing at operating 402 may include defining a viewing opening at the cartridge cavity. Further, the method may include engaging an outer cover with an exterior of the housing. The method may additionally include positioning an illumination source in the housing. The illumination source may be configured to illuminate the cartridge in the cartridge cavity. The method may further include engaging an electronic display with the housing. Providing the housing at operation 402 may include engaging a first body portion with a second body portion. Providing the housing at operation 402 may further include engaging an access door with at least one of the first body portion and the second body portion, the access door being configured to selectively provide access to the electrical power source cavity.
  • FIG. 17 An additional embodiment of an aerosol delivery device 500 is illustrated in FIG. 17 .
  • the aerosol delivery device 500 may include a control body 501 and a cartridge.
  • the cartridge 200 ′′ from FIG. 5 is included in the aerosol delivery device 500 .
  • other cartridges may be employed in other embodiments.
  • the control body 501 may include a housing 502 .
  • the housing 502 may be integral or comprise a plurality of pieces.
  • the housing 502 may include an electrical power source portion 502 a, an access door 502 b, and a coupler portion 502 c.
  • Access door 502 b may include an orifice or plurality of orifices in fluid communication with the atmosphere outside of the housing 502 b to allow for the escape of any gas or gases that may be produced by electrical power source 504 (see, FIG. 18 ) to prevent the gas or gases from generating a region of increased pressure within the housing 502 as described above with respect to the orifice 137 in FIG. 10 .
  • each of the housings of the aerosol delivery devices of the present disclosure may include such an orifice.
  • the orifice may preferably be located at an access door to conceal the orifice and position the orifice at the electrical power source cavity, but the orifice may be located at other positions in other embodiments.
  • FIG. 18 illustrates a partial exploded view of the control body 501 .
  • the electrical power source portion 502 a of the housing 502 may include a first body portion 502 a 1 and a second body portion 502 a 2 .
  • the first body portion 502 a 1 and the second body portion 502 a 2 may be configured to engage one another and define an electrical power source cavity 504 .
  • the electrical power source cavity 504 may be configured to receive an electrical power source 600 (e.g., a battery and/or a capacitor).
  • the electrical power source cavity 504 may define a first longitudinal axis 504 a.
  • the coupler portion 502 c of the housing 502 may be configured to engage the electrical power source portion 502 a of the housing.
  • a coupler 514 may be engaged with the coupler portion 502 c of the housing 502 .
  • the coupler 514 may be positioned at least partially within the coupler portion 502 c of the housing 502 .
  • the coupler 514 may be configured to engage the cartridge 200 ′′ (see, FIG. 17 ), which may include an aerosol precursor composition.
  • the cartridge 200 ′′ When engaged with the coupler 514 , the cartridge 200 ′′ may extend along a second longitudinal axis 200 a ′′, as illustrated in FIG. 17 .
  • the first longitudinal axis 504 a which is defined by the electrical power source cavity 504
  • the second longitudinal axis 200 a ′′ which is defined by the cartridge 200 ′′, may be non-coaxial and oriented substantially parallel to one another. This configuration may provide various benefits as noted above with respect to embodiments of control bodies wherein the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity are non-coaxial but substantially parallel.
  • the cartridge 200 ′′ may be at least partially received in a coupler cavity 506 defined by the coupler portion 502 c of the housing 502 .
  • the coupler 514 may be at least partially received in the coupler cavity 506 .
  • a depth of the coupler cavity 506 as well as the position of the coupler 514 (see, FIG. 18 ) therein may determine whether or not the cartridge 200 ′′ is at least partially received in the coupler cavity 506 .
  • Partially receiving the cartridge 200 ′′ in the coupler cavity 506 may provide for improved engagement of the cartridge with the control body 501 and/or reduce the susceptibility of damage or contamination to the coupler 514 .
  • the cartridge 200 ′′ may not extend into the coupler portion 502 c of the housing 502 . This configuration may facilitate engagement of the cartridge 200 ′′ with the coupler 514 and allow for usage of a wider variety of shapes and sizes of cartridges with the control body 501 .
  • the control body 501 may additionally include a controller 510 (see, e.g., FIG. 20 ), which is not shown in FIG. 18 for clarity purposes.
  • the controller 510 may comprise a control board in some embodiments.
  • the controller 510 may be configured to control some or all of the functions of the control body 501 including directing current from the electrical power source 600 to the cartridge 200 ′′. In this regard, the controller 510 may be electrically coupled to the electrical power source 600 .
  • the control body 501 may additionally include one or more button assemblies.
  • the control body 501 may include a first button assembly 542 and second button assembly 544 .
  • the first button assembly 542 may be configured to actuate a first switch 546 on the controller 510 .
  • the second button assembly 544 may be configured to actuate a second switch 548 on the controller 510 .
  • the button assemblies 542 , 544 may be configured to bend or otherwise move to actuate the switches 546 , 548 .
  • first button assembly 542 and the second button assembly 544 may be hingedly coupled to one or both of the first body portion 502 a 1 and the second body portion 502 a 2 (see, e.g., FIG. 18 ) of the electrical power source portion 502 a of the housing 502 .
  • actuation of the switches 546 , 548 may control one or more functions of the control body 501 .
  • actuation of the first switch 546 may direct current from the electrical power source 600 to the cartridge 200 ′′ (see, FIG. 17 ) to heat an aerosol precursor composition therein and produce an aerosol.
  • actuation of the second switch 548 may control other functions.
  • control body 501 may further comprise an illumination source 522 such as a light emitting diode (LED).
  • the illumination source 522 may be configured to output illumination.
  • the control body 501 may include an illumination source cover 524 , which may cover, protect, and/or conceal the illumination source 522 .
  • the illumination source cover 524 may be translucent or transparent such that light emitted by the illumination source may travel therethrough. In some embodiments the illumination source cover 524 may be tinted or diffuse such that the presence of the illumination source 522 is hidden or obscured when not in use.
  • the illumination source 522 may be configured to illuminate the cartridge 200 ′′.
  • the cartridge 200 ′′ may include the viewing window 252 ′′ such that a level of the aerosol precursor therein may be viewed as described above.
  • the second button assembly 544 may be employed to turn on the illumination source 522 such that illumination is directed through the viewing window 252 ′′ of the cartridge 200 ′′ and thereby a user may more easily view a level of aerosol precursor composition therein, and/or the second switch may perform other functions.
  • depression of the second button assembly 544 and thereby actuation of the second switch 548 , may cause the controller 510 to provide supplemental power from the electrical power source to the cartridge to increase the aerosol output of the aerosol delivery device, or to direct power to the cartridge, regardless of whether a draw on the cartridge is detected.
  • the aerosol delivery device may not include a flow sensor.
  • the second button assembly 544 may be used to actuate the second switch 548 to cycle through various adjustable controller power levels, such that the device may have various aerosol mass output settings, or various other functions may be controlled.
  • the second button assembly 544 and/or any of the other actuators discussed herein may be configured to control a power output level directed from the electrical power source to the cartridge and/or otherwise control a quantity (e.g., mass) of aerosol outputted.
  • the second button assembly 544 may at least partially define a dividing wall 550 that separates the cartridge 200 ′′ from the electrical power source cavity 504 (see, FIG. 18 ). Further, as described below, the controller 510 may be received in the electrical power source cavity 504 . Thereby, the second button assembly 544 may include the illumination source cover 524 at the dividing wall 550 such that the illumination may be directed therethrough to the cartridge 200 ′′.
  • Assembly of the control body 501 may be performed in various manners.
  • the controller 510 may be at least partially wrapped about the electrical power source 600 , as illustrated in FIG. 20 .
  • the controller 510 may be bent or configured such that the power source 600 is received between opposing substantially parallel walls of the controller.
  • the controller 510 may be electrically connected to the electrical power source 600 at this time as well.
  • the electrical power source may include wires or other electrical leads that are soldered or otherwise connected to the controller 510 .
  • the controller 510 and the electrical power source 600 may be inserted into the housing 502 . More particularly, the controller 510 and the electrical power source may be received in the electrical power source cavity 504 .
  • the housing 500 may include features configured to engage the controller 510 .
  • the controller 510 may be received in a slot 552 which may be defined by an extension 554 formed by the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 .
  • the extension 554 may support the controller 510 to allow for actuation of the switches 546 , 548 in the manner described above.
  • the first button assembly 542 may be engaged with the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 before the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504 .
  • a portion of the first button assembly 542 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 .
  • the first button assembly 542 may be engaged with the first body portion 502 a 1 , but still able to move to actuate the first switch 546 as described above.
  • the second button assembly 544 may be engaged with the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 before the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504 .
  • a portion of the second button assembly 544 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 .
  • the second button assembly 544 may be engaged with the first body portion 502 a 1 , but still able to move to actuate the second switch 546 as described above.
  • the controller 510 may include a connector 556 .
  • the connector 556 may comprise an electrical connector and/or a data connector. Thereby, the connector 556 may be employed to recharge the electrical power source 600 and/or transmit data to or from the controller 510 .
  • the housing 502 may include a recess 558 configured to receive the connector 556 .
  • the recess 558 may be defined by one or both of the first body portion 502 a 1 and the second body portion 502 a 2 of the electrical power source portion 502 a of the housing 502 .
  • the second body portion 502 a 2 of the electrical power source portion 502 a of the housing 502 may be engaged with the first body portion 502 a 1 after the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504 .
  • the second body portion 502 a 2 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 .
  • the coupler portion 502 c of the housing 502 may be engaged with the electrical power source portion 502 a of the housing 502 .
  • the coupler portion 502 c may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the electrical power source portion 502 a of the housing 502 .
  • FIG. 22 further illustrates the coupler 514 engaged with the housing 502 .
  • the coupler 514 may be received in the coupler cavity 506 .
  • additional components may be inserted in the coupler cavity 506 .
  • a seal 560 may be inserted through the coupler 514 .
  • an electrical contact 562 may extend through the seal 560 .
  • the seal 560 may be configured to electrically insulate the coupler 514 from the electrical contact 562 .
  • the electrical contact 562 may comprise a conductive material such as brass, and the seal 560 may comprising an electrically insulating material such as silicone.
  • the electrical contact 562 may be engaged with a first terminal 564 (see, e.g., FIG. 22 ) of the controller 510 .
  • the electrical contact 562 may be welded to the first terminal 564 after the first terminal is bent into contact therewith.
  • a tab 566 may be engaged with the coupler 514 and received in the coupler cavity 506 defined by the coupler portion 502 c of the housing 502 .
  • a fastener 568 e.g., a nut
  • the tab 566 may be coupled to a second terminal 570 (see, e.g., FIG. 22 ) of the controller 510 .
  • the second terminal 570 may be welded to the tab 566 after the second terminal is bent into engagement therewith.
  • the coupler 514 may be electrically coupled to the controller 510 .
  • the second terminal 570 may directly engage the coupler 514 .
  • positive and negative connections may be established with the cartridge 200 ′′ (see, e.g., FIG. 17 ) when the cartridge is engaged with the control body 501 via the electrical contact 562 and the coupler 514 .
  • current may be directed to the cartridge 200 ′′ in order to vaporize the aerosol precursor composition therein as directed by the controller 510 when a user depresses the first button assembly 542 (see, e.g., FIG. 18 ).
  • the access door 502 b (see, FIG. 18 ) may be engaged with the electrical power source portion 502 a and the coupler portion 502 c of the housing 502 .
  • the control body 501 may define the completed configuration illustrated in FIG. 17 .
  • Tanks are distinguishable from other embodiments of cartridges for aerosol delivery devices in that they may not include a reservoir substrate, at least a portion thereof may be transparent or translucent such that a level of aerosol precursor composition may be viewed, and the quantity of the aerosol precursor composition that may be received therein may be relatively large.
  • Embodiments of tank-style cartridges are described in U.S. patent application Ser. No. 14/802,667, filed Jul. 17, 2015, to O'Brien, which is incorporated herein by reference in its entirety.
  • a method for assembling an aerosol delivery device may include providing a housing defining an electrical power source cavity configured to receive an electrical power source, the electrical power source cavity defining a first longitudinal axis at operation 702 . Further, the method may include engaging a coupler configured to engage a cartridge including an aerosol precursor composition with the housing such that the cartridge extends along a second longitudinal axis, the first longitudinal axis and the second longitudinal axis being non-coaxial and oriented substantially parallel to one another at operation 704 . Additionally, the method may include positioning a controller in the housing, the controller being configured to engage the electrical power source at operation 706 .
  • the method may further comprise engaging the electrical power source with the controller. Additionally, the method may include inserting the electrical power source in the electrical power source cavity simultaneously with positioning the controller in the housing at operation 706 . Further, the method may include engaging the cartridge with the coupler. The cartridge may include a viewing window. The method may additionally include positioning an illumination source in the housing, the illumination source being configured to direct illumination through the viewing window.
  • providing the housing at operation 702 may include engaging a first body portion with a second body portion.
  • Providing the housing at operation 702 may further include engaging an access door with at least one of the first body portion and the second body portion, the access door being configured to block access to the electrical power source cavity.
  • Providing the housing at operation 702 may additionally include engaging a button assembly with at least one of the first body portion and the second body portion.
  • the method may include positioning an illumination source in the housing and engaging an illumination source cover with the button assembly, the illumination source cover being configured to direct illumination produced by the illumination source therethrough.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present disclosure relates to aerosol delivery devices. The aerosol delivery devices may include a control body and a cartridge including an atomizer and a reservoir configured to contain an aerosol precursor composition. The control body may include a housing defining an electrical power source cavity that extends along a first longitudinal axis and is configured to receive an electrical power source. The control body may additionally include a coupler configured to engage a cartridge including an aerosol precursor composition such that the cartridge extends along a second longitudinal axis. The first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another. A related assembly method is also provided.

Description

    FIELD OF THE DISCLOSURE
  • The present disclosure relates to aerosol delivery devices, and more particularly, to aerosol delivery devices that include a housing and a coupler. The aerosol delivery device may include an atomizer comprising a heating element configured to heat an aerosol precursor. The aerosol precursor composition, which may include components made or derived from tobacco or otherwise incorporate tobacco, is heated by the atomizer to produce an inhalable substance for human consumption.
  • BACKGROUND
  • Many smoking devices have been proposed through the years as improvements upon, or alternatives to, smoking products that require combusting tobacco for use. Many of those devices purportedly have been designed to provide the sensations associated with cigarette, cigar or pipe smoking, but without delivering considerable quantities of incomplete combustion and pyrolysis products that result from the burning of tobacco. To this end, there have been proposed numerous smoking products, flavor generators and medicinal inhalers that utilize electrical energy to vaporize or heat a volatile material, or attempt to provide the sensations of cigarette, cigar or pipe smoking without burning tobacco to a significant degree. See, for example, the various alternative smoking articles, aerosol delivery devices and heat generating sources set forth in the background art described in U.S. Pat. No. 7,726,320 to Robinson et al. and U.S. Pat. No. 8,881,737 to Collett et al., which are incorporated herein by reference. See also, for example, the various types of smoking articles, aerosol delivery devices and electrically-powered heat generating sources referenced by brand name and commercial source in U.S. Pat. Pub. No. 2015/0216232 to Bless et al., which is incorporated herein by reference. Additionally, various types of electrically powered aerosol and vapor delivery devices also have been proposed in U.S. Pat. App. Pub. Nos. 2014/0096781 to Sears et al. and 2014/0283859 to Minskoff et al., as well as U.S. patent application Ser. No. 14/282,768 to Sears et al., filed May 20, 2014; Ser. No. 14/286,552 to Brinkley et al., filed May 23, 2014; Ser. No. 14/327,776 to Ampolini et al., filed Jul. 10, 2014; and Ser. No. 14/465,167 to Worm et al., filed Aug. 21, 2014; all of which are incorporated herein by reference.
  • Certain existing embodiments of aerosol delivery devices include a control body and a cartridge. A power source (e.g., a battery) may be positioned in the control body and an aerosol precursor composition may be positioned in the cartridge. The cartridge and the control body may engage one another to define an elongated tubular configuration. However, certain other form factors for aerosol delivery devices may be desirable.
  • BRIEF SUMMARY OF THE DISCLOSURE
  • The present disclosure relates to aerosol delivery devices which, in certain embodiments, may be characterized as electronic cigarettes. In one aspect an aerosol delivery device is provided. The aerosol delivery device may include a housing. The housing may define an electrical power source cavity configured to receive an electrical power source, and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition. The electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis. The longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another.
  • In some embodiments the aerosol delivery device may further include the electrical power source. Additionally, the aerosol delivery device may include the cartridge. Further, the aerosol delivery device may include a coupler positioned within the housing and configured to engage the cartridge. The aerosol delivery device may additionally include an outer cover engaged with an exterior of the housing.
  • In some embodiments the housing may further define a viewing opening at the cartridge cavity. Additionally, the aerosol delivery device may include an illumination source configured to illuminate the cartridge in the cartridge cavity. The aerosol delivery device may further include an electronic display. The housing may include an access door configured to provide access to the electrical power source cavity. The housing may define an external opening at the cartridge cavity configured to receive the cartridge therethrough. The housing may define a dividing wall that separates the electrical power source cavity from the cartridge cavity.
  • In an additional aspect a method for assembling an aerosol delivery device is provided. The method may include providing a housing. The housing may define an electrical power source cavity configured to receive an electrical power source and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition. The electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis. The longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another. Further, the method may include positioning an electrical contact in the electrical power source cavity. The electrical contact may be configured to engage the electrical power source. Additionally, the method may include positioning a coupler in the cartridge cavity. The coupler may be configured to engage the cartridge.
  • In some embodiments the method may further include inserting the electrical power source in the electrical power source cavity and engaging the electrical power source with the electrical contact. Additionally, the method may include inserting the cartridge into the cartridge cavity and engaging the cartridge with the coupler. Inserting the cartridge into the cartridge cavity may include inserting the cartridge through an external opening defined by the housing.
  • In some embodiments providing the housing may include defining a viewing opening at the cartridge cavity. Further, the method may include engaging an outer cover with an exterior of the housing. The method may additionally include positioning an illumination source in the housing. The illumination source may be configured to illuminate the cartridge in the cartridge cavity. In some embodiments the method may additionally include engaging an electronic display with the housing. Providing the housing may include engaging a first body portion with a second body portion. Providing the housing further may further include engaging an access door with at least one of the first body portion and the second body portion. The access door may be configured to selectively provide access to the electrical power source cavity.
  • In an additional aspect an aerosol delivery device is provided. The aerosol delivery device may include a housing defining an electrical power source cavity configured to receive an electrical power source. The electrical power source cavity may define a first longitudinal axis. The aerosol delivery device may additionally include a coupler engaged with the housing and configured to engage a cartridge including an aerosol precursor composition such that the cartridge extends along a second longitudinal axis. The first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another.
  • In some embodiments the aerosol delivery device may further include the electrical power source. Additionally, the aerosol delivery device may include a controller. The controller may be wrapped at least partially about the electrical power source.
  • In some embodiments the aerosol delivery device may further include the cartridge. The cartridge may include a viewing window. The aerosol delivery device may additionally include an illumination source configured to direct illumination through the viewing window.
  • In some embodiments the housing may include a coupler portion. The coupler may be positioned at least partially within the coupler portion. The housing may include a button assembly. The button assembly may be configured to control a power output level directed from the electrical power source to the cartridge. The button assembly may at least partially define a dividing wall that separates the cartridge from the electrical power source cavity. Further, the aerosol delivery device may include an illumination source. The button assembly may include an illumination source cover configured to direct illumination produced by the illumination source therethrough.
  • In an additional aspect a method for assembling an aerosol delivery device is provided. The method may include providing a housing defining an electrical power source cavity configured to receive an electrical power source. The electrical power source cavity may define a first longitudinal axis. The method may additionally include engaging a coupler configured to engage a cartridge including an aerosol precursor composition with the housing such that the cartridge extends along a second longitudinal axis. The first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another. Further, the method may include positioning a controller in the housing. The controller may be configured to engage the electrical power source.
  • In some embodiments the method may further include engaging the electrical power source with the controller. Additionally, the method may include inserting the electrical power source in the electrical power source cavity simultaneously with positioning the controller in the housing. Further, the method may include engaging the cartridge with the coupler. The cartridge may include a viewing window. Further, the method may include positioning an illumination source in the housing. The illumination source may be configured to direct illumination through the viewing window.
  • In some embodiments providing the housing may include engaging a first body portion with a second body portion. Further, providing the housing further may include engaging an access door with at least one of the first body portion and the second body portion. The access door may be configured to block access to the electrical power source cavity. Providing the housing may further include engaging a button assembly with at least one of the first body portion and the second body portion. The method may additionally include positioning an illumination source in the housing and engaging an illumination source cover with the button assembly. The illumination source cover may be configured to direct illumination produced by the illumination source therethrough.
  • These and other features, aspects, and advantages of the disclosure will be apparent from a reading of the following detailed description together with the accompanying drawings, which are briefly described below.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Having thus described the disclosure in the foregoing general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
  • FIG. 1 illustrates a side view of an aerosol delivery device including a control body and a cartridge according to an example embodiment of the present disclosure;
  • FIG. 2 illustrates a sectional, partially-exploded view through the control body of the aerosol delivery device of FIG. 1 according to an example embodiment of the present disclosure;
  • FIG. 3 illustrates a modified sectional view through the aerosol delivery device of FIG. 1 according to an example embodiment of the present disclosure;
  • FIG. 4 illustrates an exploded view of an example embodiment of the cartridge of FIG. 1 including a reservoir substrate;
  • FIG. 5 illustrates a sectional view through an alternative example embodiment of the cartridge of FIG. 1 including a reservoir according to an example embodiment of the present disclosure;
  • FIG. 6 illustrates a modified sectional view through the aerosol delivery device of FIG. 1 including the cartridge of FIG. 5 according to an example embodiment of the present disclosure;
  • FIG. 7 illustrates a perspective view of a control body including a side opening configured to engage an outer cover and a relatively wide viewing opening according to an additional example embodiment of the present disclosure;
  • FIG. 8 illustrates a perspective view of the control body of FIG. 7 with the outer cover according to an example embodiment of the present disclosure;
  • FIG. 9 illustrates an enlarged side view of the control body of FIG. 8 at the viewing opening according to an example embodiment of the present disclosure;
  • FIG. 10 illustrates a section of a body portion of a housing of the control body of FIG. 7 according to an example embodiment of the present disclosure;
  • FIG. 11 illustrates a perspective view of a control body including side openings configured to engage an outer cover and a relatively narrow viewing opening according to an additional example embodiment of the present disclosure;
  • FIG. 12 illustrates a section of a body portion of a housing of the control body of FIG. 11 according to an example embodiment of the present disclosure;
  • FIG. 13 illustrates a bottom view of the control body of FIG. 11 according to an example embodiment of the present disclosure;
  • FIG. 14 illustrates the control body of FIG. 11 with the outer cover according to an example embodiment of the present disclosure;
  • FIG. 15 illustrates an enlarged side view of the control body of FIG. 14 at the viewing opening according to an example embodiment of the present disclosure;
  • FIG. 16 illustrates a method for assembling an aerosol delivery device according to an example embodiment of the present disclosure;
  • FIG. 17 illustrates a perspective view of an aerosol delivery device including a control body and a cartridge according to an example embodiment of the present disclosure;
  • FIG. 18 illustrates a partial exploded view of the control body of FIG. 17 according to an example embodiment of the present disclosure;
  • FIG. 19 illustrates a partial side view of the control body of FIG. 17 in a partially-assembled configuration including a first body portion of a housing thereof according to an example embodiment of the present disclosure;
  • FIG. 20 illustrates a perspective view of a controller and an electrical power source of the control body of FIG. 17 according to an example embodiment of the present disclosure;
  • FIG. 21 illustrates a perspective view of the control body of FIG. 17 in a partially-assembled configuration including a first body portion of a housing thereof according to an example embodiment of the present disclosure;
  • FIG. 22 illustrates a perspective view of the control body of FIG. 17 in a partially-assembled configuration including an electrical power source housing portion and a coupler portion of a housing thereof according to an example embodiment of the present disclosure;
  • FIG. 23 illustrates a sectional view through a coupler of the control body of FIG. 17 according to an example embodiment of the present disclosure; and
  • FIG. 24 illustrates a method for assembling an aerosol delivery device according to an example embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present disclosure will now be described more fully hereinafter with reference to exemplary embodiments thereof. These exemplary embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Indeed, the disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification, and in the appended claims, the singular forms “a”, “an”, “the”, include plural variations unless the context clearly dictates otherwise.
  • Aerosol delivery devices according to the present disclosure may use electrical energy to heat a material (preferably without combusting the material to any significant degree) to form an inhalable substance; such articles most preferably being sufficiently compact to be considered “hand-held” devices. An aerosol delivery device may provide some or all of the sensations (e.g., inhalation and exhalation rituals, types of tastes or flavors, organoleptic effects, physical feel, use rituals, visual cues such as those provided by visible aerosol, and the like) of smoking a cigarette, cigar, or pipe, without any substantial degree of combustion of any component of that article or device. The aerosol delivery device may not produce smoke in the sense of the aerosol resulting from by-products of combustion or pyrolysis of tobacco, but rather, that the article or device most preferably yields vapors (including vapors within aerosols that can be considered to be visible aerosols that might be considered to be described as smoke-like) resulting from volatilization or vaporization of certain components of the article or device, although in other embodiments the aerosol may not be visible. In highly preferred embodiments, aerosol delivery devices may incorporate tobacco and/or components derived from tobacco. As such, the aerosol delivery device can be characterized as an electronic smoking article such as an electronic cigarette.
  • Aerosol delivery devices of the present disclosure also can be characterized as being vapor-producing articles or medicament delivery articles. Thus, such articles or devices can be adapted so as to provide one or more substances (e.g., flavors and/or pharmaceutical active ingredients) in an inhalable form or state. For example, inhalable substances can be substantially in the form of a vapor (i.e., a substance that is in the gas phase at a temperature lower than its critical point). Alternatively, inhalable substances can be in the form of an aerosol (i.e., a suspension of fine solid particles or liquid droplets in a gas). For purposes of simplicity, the term “aerosol” as used herein is meant to include vapors, gases and aerosols of a form or type suitable for human inhalation, whether or not visible, and whether or not of a form that might be considered to be smoke-like.
  • In use, aerosol delivery devices of the present disclosure may be subjected to many of the physical actions employed by an individual in using a traditional type of smoking article (e.g., a cigarette, cigar or pipe that is employed by lighting and inhaling tobacco). For example, an aerosol delivery device of the present disclosure can be hand-held by a user, a user can draw on a portion of the article for inhalation of aerosol produced by that article, a user can take puffs at selected intervals of time, and the like.
  • Aerosol delivery devices of the present disclosure generally include a housing and a number of additional components coupled thereto and/or positioned within the housing, and some of the components may be removable or replaceable. The overall design of the housing can vary, and the overall size and shape of the housing can vary. The smoking articles can include a cartridge, which can be defined by an outer body or cover—e.g., an elongated body resembling the shape of a portion of a cigarette or cigar. For example, an outer cover or body of the cartridge can be substantially tubular in shape and, as such, resemble the shape of a conventional cigarette or cigar. In some embodiments, the housing may contain one or more reusable components (e.g., a rechargeable battery and various electronics for controlling the operation of that article), and the cartridge can be removable, refillable, and/or disposable.
  • Aerosol delivery devices of the present disclosure most preferably comprise some combination of a power source (i.e., an electrical power source), at least one control component (e.g., means for actuating, controlling, regulating and/or ceasing power for heat generation, such as by controlling electrical current flow from the power source to other components of the aerosol delivery device), a heater or heat generation component (e.g., an electrical resistance heating element or component commonly referred to as part of an “atomizer”), and an aerosol precursor composition (e.g., commonly a liquid capable of yielding an aerosol upon application of sufficient heat, such as ingredients commonly referred to as “smoke juice,” “e-liquid” and “e-juice”), and a mouthend region or tip for allowing draw upon the aerosol delivery device for aerosol inhalation (e.g., a defined air flow path through the article such that aerosol generated can be withdrawn therefrom upon draw). When the heating element heats the aerosol precursor composition, an aerosol is formed, released, or generated in a physical form suitable for inhalation by a consumer. It should be noted that the foregoing terms are meant to be interchangeable such that reference to release, releasing, releases, or released includes form or generate, forming or generating, forms or generates, and formed or generated. Specifically, an inhalable substance is released in the form of a vapor or aerosol or mixture thereof.
  • As noted above, the aerosol delivery device may incorporate a battery and/or other electrical power source (e.g., a capacitor) to provide current flow sufficient to provide various functionalities to the aerosol delivery device, such as powering of a heater, powering of control systems, powering of indicators, and the like. The power source can take on various embodiments. Preferably, the power source is able to deliver sufficient power to rapidly heat the heating element to provide for aerosol formation and power the aerosol delivery device through use for a desired duration of time. The power source preferably is sized to fit conveniently within the aerosol delivery device so that the aerosol delivery device can be easily handled. Additionally, a preferred power source is of a sufficiently light weight to not detract from a desirable smoking experience. A battery for use in the present devices may be replaceable, removable, and/or rechargeable and thus may be combined with any type of recharging technology, including connection to a typical alternating current electrical outlet, connection to a car charger (i.e., a cigarette lighter receptacle), and connection to a computer, such as through a universal serial bus (USB) cable or connector. In one preferred embodiment the electrical power source comprises a lithium-ion battery, which may light weight, rechargeable, and provide a large energy storage capacity. Examples of electrical power sources are described in U.S. Pat. App. Pub. No. 2010/0028766 to Peckerar et al., the disclosure of which is incorporated herein by reference in its entirety.
  • An aerosol delivery device according to the present disclosure preferably incorporates a sensor or detector for control of supply of electric power to a heat generation element when aerosol generation is desired (e.g., upon draw during use). As such, for example, there is provided a manner or method for turning off the power supply to the heat generation element when the aerosol generating piece is not be drawn upon during use, and for turning on the power supply to actuate or trigger the generation of heat by the heat generation element during draw. For example, with respect to a flow sensor, representative current regulating components and other current controlling components including various microcontrollers, sensors, and switches for aerosol delivery devices are described in U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No. 4,947,874 to Brooks et al.; U.S. Pat. No. 5,372,148 to McCafferty et al.; U.S. Pat. No. 6,040,560 to Fleischhauer et al.; U.S. Pat. No. 7,040,314 to Nguyen et al.; U.S. Pat. No. 8,205,622 to Pan; and U.S. Pat. No. 8,881,737 to Collet et al.; U.S. Pat. Pub. Nos. 2009/0230117 to Fernando et al.; and 2014/0270727 to Ampolini et al.; and 2015/0257445 to Henry et al.; which are incorporated herein by reference in their entireties. Additional representative types of sensing or detection mechanisms, structures, components, configurations, and general methods of operation thereof, are described in U.S. Pat. No. 5,261,424 to Sprinkel, Jr.; U.S. Pat. No. 5,372,148 to McCafferty et al.; and PCT WO 2010/003480 to Flick; which are incorporated herein by reference in their entireties.
  • In some embodiments, the aerosol delivery device can include an indicator, which may comprise one or more light emitting diodes. The indicator can be in communication with the control component through a connector circuit and illuminate, for example, during a user draw on the mouthend as detected by the flow sensor.
  • Various elements that may be included in the housing are described in U.S. App. Pub. No. 2015/0245658 to Worm et al., which is incorporated herein by reference in its entirety. Still further components can be utilized in the aerosol delivery device of the present disclosure. For example, U.S. Pat. No. 5,154,192 to Sprinkel et al. discloses indicators for smoking articles; U.S. Pat. No. 5,261,424 to Sprinkel, Jr. discloses piezoelectric sensors that can be associated with the mouth-end of a device to detect user lip activity associated with taking a draw and then trigger heating; U.S. Pat. No. 5,372,148 to McCafferty et al. discloses a puff sensor for controlling energy flow into a heating load array in response to a pressure drop through a mouthpiece; U.S. Pat. No. 5,967,148 to Harris et al. discloses receptacles in a smoking device that include an identifier that detects a non-uniformity in infrared transmissivity of an inserted component and a controller that executes a detection routine as the component is inserted into the receptacle; U.S. Pat. No. 6,040,560 to Fleischhauer et al. describes a defined executable power cycle with multiple differential phases; U.S. Pat. No. 5,934,289 to Watkins et al. discloses photonic-optronic components; U.S. Pat. No. 5,954,979 to Counts et al. discloses means for altering draw resistance through a smoking device; U.S. Pat. No. 6,803,545 to Blake et al. discloses specific battery configurations for use in smoking devices; U.S. Pat. No. 7,293,565 to Griffen et al. discloses various charging systems for use with smoking devices; U.S. Pat. No. 8,402,976 to Fernando et al. discloses computer interfacing means for smoking devices to facilitate charging and allow computer control of the device; U.S. Pat. No. 8,689,804 to Fernando et al. discloses identification systems for smoking devices; and WO 2010/003480 to Flick discloses a fluid flow sensing system indicative of a puff in an aerosol generating system; all of the foregoing disclosures being incorporated herein by reference in their entireties. Further examples of components related to electronic aerosol delivery articles and disclosing materials or components that may be used in the present article include U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No. 5,249,586 to Morgan et al.; U.S. Pat. No. 5,666,977 to Higgins et al.; U.S. Pat. No. 6,053,176 to Adams et al.; U.S. 6,164,287 to White; U.S. Pat No. 6,196,218 to Voges; U.S. Pat. No. 6,810,883 to Felter et al.; U.S. Pat. No. 6,854,461 to Nichols; U.S. Pat. No. 7,832,410 to Hon; U.S. Pat. No. 7,513,253 to Kobayashi; U.S. Pat. No. 7,896,006 to Hamano; U.S. Pat. No. 6,772,756 to Shayan; U.S. Pat. No. 8,156,944 and 8,375,957 to Hon; U.S. Pat. No. 8,794,231 to Thorens et al.; U.S. Pat. No. 8,851,083 to Oglesby et al.; U.S. Pat. Nos. 8,915,254 and 8,925,555to Monsees et al.; U.S. Pat. App. Pub. Nos. 2006/0196518 and 2009/0188490 to Hon; U.S. Pat. App. Pub. No. 2010/0024834 to Oglesby et al.; U.S. Pat. App. Pub. No. 2010/0307518 to Wang; WO 2010/091593 to Hon; WO 2013/089551 to Foo; and U.S. Pat. App. Pub. No. 2014/0261408 to DePiano et al., each of which is incorporated herein by reference in its entirety.
  • The aerosol precursor composition, also referred to as a vapor precursor composition, may comprise a variety of components including, by way of example, any of a polyhydric alcohol (e.g., glycerin, propylene glycol, or a mixture thereof), nicotine, tobacco, tobacco extract, and/or flavorants. Various components that may be included in the aerosol precursor composition are described in U.S. Pat. No. 7,726,320 to Robinson et al., which is incorporated herein by reference in its entirety. Additional representative types of aerosol precursor compositions are set forth in U.S. Pat. No. 4,793,365 to Sensabaugh, Jr. et al.; U.S. Pat. No. 5,101,839 to Jakob et al.; PCT WO 98/57556 to Biggs et al.; and Chemical and Biological Studies on New Cigarette Prototypes that Heat Instead of Burn Tobacco, R. J. Reynolds Tobacco Company Monograph (1988); the disclosures of which are incorporated herein by reference in their entireties. Other aerosol precursors which may be employed in the aerosol delivery device of the present disclosure include the aerosol precursors included in the VUSE® product by R. J. Reynolds Vapor Company, the BLU™ product by Lorillard Technologies, the Mistic Menthol product by Mistic Ecigs, and the Vype product by CN Creative Ltd. Also desirable are the so-called “Smoke Juices” for electronic cigarettes that have been available from Johnson Creek Enterprises LLC. Additional exemplary formulations for aerosol precursor materials that may be used according to the present disclosure are described in U.S. Pat. Pub. No. 2013/0008457 to Zheng et al., and U.S. Pat. Pub. No. 2013/0213417 to Chong et al., the disclosures of which are incorporated herein by reference in their entireties.
  • The aerosol delivery device preferably includes a reservoir. In some embodiments, a reservoir may comprise a container for storing a liquid aerosol precursor, a fibrous substrate, or a combination of a fibrous substrate and a container. A fibrous substrate suitable for use as a reservoir may comprise a plurality of layers of nonwoven fibers and may be formed substantially into the shape of a tube. For example, the formed tube may be shaped and sized for placement within the outer body or cover of a cartridge for use in the aerosol delivery device. Liquid components, for example, can be sorptively retained by the fibrous substrate and/or be retained within a reservoir container. The reservoir preferably is in fluid connection with a liquid transport element. Thus, the liquid transport element may be configured to transport liquid from the reservoir to a heating element, such as via capillary action and/or via active transport—e.g., pumping or controlled movement with a valve. Representative types of substrates, reservoirs, or other components for supporting the aerosol precursor are described in U.S. Pat. No. 8,528,569 to Newton; and U.S. Pat. App. Pub. Nos. 2014/0261487 to Chapman et al.; 2014/0004930 to Davis et al.; and 2015/0216232 to Bless et al.; which are incorporated herein by reference in their entireties.
  • The liquid transport element may be in direct contact with the heating element. Various wicking materials, and the configuration and operation of those wicking materials within certain types of aerosol delivery devices, are set forth in U.S. Pat. No. 8,910,640 to Sears et al., which is incorporated herein by reference in its entirety. A variety of the materials disclosed by the foregoing documents may be incorporated into the present devices in various embodiments, and all of the foregoing disclosures are incorporated herein by reference in their entireties.
  • The heating element may comprise a wire defining a plurality of coils wound about the liquid transport element. In some embodiments the heating element may be formed by winding the wire about the liquid transport element as described in U.S. Pat. App. Pub. No. 2014/0157583 to Ward et al, which is incorporated herein by reference in its entirety. Further, in some embodiments the wire may define a variable coil spacing, as described in U.S. Pat. App. Pub. No. 2014/0270730 to DePiano et al., which is incorporated herein by reference in its entirety. Various embodiments of materials configured to produce heat when electrical current is applied therethrough may be employed to form the heating element. Example materials from which the wire coil may be formed include titanium, platinum, silver, palladium, Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi2), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al)2), graphite and graphite-based materials; and ceramic (e.g., a positive or negative temperature coefficient ceramic). The heating element may comprise a wire defining a mesh, screen or lattice structure positioned about the liquid transport element. Example materials from which the wire mesh, screen, or lattice may be formed include titanium, platinum, silver, palladium, Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi2), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al)2), graphite and graphite-based materials; and ceramic (e.g., a positive or negative temperature coefficient ceramic). An example embodiment of a mesh heating element is disclosed in U.S. Pat. Appl. Pub. No. 2015/0034103 to Hon. In some embodiments, a stamped heating element may be employed in the atomizer, as described in U.S. Pat. Pub. No. 2014/0270729 to DePiano et al., which is incorporated herein by reference in its entirety. Further to the above, additional representative heating elements and materials for use therein are described in U.S. Pat. No. 5,060,671 to Counts et al.; U.S. Pat. No. 5,093,984 to Deevi et al.; U.S. Pat. No. 5,224,498 to Deevi et al.; U.S. Pat. No. 5,228,460 to Sprinkel Jr., et al.; U.S. Pat. No. 5,322,075 to Deevi et al.; U.S. Pat. No. 5,353,813 to Deevi et al.; U.S. Pat. No. 5,468,936 to Deevi et al.; U.S. Pat. No. 5,498,850 to Das; U.S. Pat. No. 5,659,656 to Das; U.S. Pat. No. 5,498,855 to Deevi et al.; U.S. Pat. No. 5,530,225 to Hajaligol; U.S. Pat. No. 5,665,262 to Hajaligol; U.S. Pat. No. 5,573,692 to Das et al.; and U.S. Pat. No. 5,591,368 to Fleischhauer et al., the disclosures of which are incorporated herein by reference in their entireties. Further, chemical heating may be employed in other embodiments. Various additional examples of heaters and materials employed to form heaters are described in U.S. Pat. No. 8,881,737 to Collett et al., which is incorporated herein by reference, as noted above.
  • A variety of heater components may be used in the present aerosol delivery device. In various embodiments, one or more microheaters or like solid state heaters may be used. Embodiments of microheaters and atomizers incorporating microheaters suitable for use in the presently disclosed devices are described in U.S. Pat. No. 8,881,737 to Collett et al., which is incorporated herein by reference in its entirety.
  • One or more heating terminals (e.g., positive and negative terminals) may connect to the heating element so as to form an electrical connection with the power source and/or a terminal may connect to one or more control elements of the aerosol delivery device. Further, various examples of electronic control components and functions performed thereby are described in U.S. Pat. App. Pub. No. 2014/0096781 to Sears et al., which is incorporated herein by reference in its entirety.
  • Various components of an aerosol delivery device according to the present disclosure can be chosen from components described in the art and commercially available. Reference is made for example to the reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article disclosed in U.S. Pat. App. Pub. No. 2014/0000638 to Sebastian et al., which is incorporated herein by reference in its entirety.
  • In further embodiments, one or more components of the aerosol delivery device may be formed from one or more carbon materials, which may provide advantages in terms of biodegradability and absence of wires. In this regard, the heating element may comprise carbon foam, the reservoir may comprise carbonized fabric, and graphite may be employed to form an electrical connection with the battery and controller. An example embodiment of a carbon-based cartridge is provided in U.S. Pat. App. Pub. No. 2013/0255702 to Griffith et al., which is incorporated herein by reference in its entirety.
  • Aerosol delivery devices are often configured in a manner that mimics aspects of certain traditional smoking devices such as cigarettes or cigars. In this regard, aerosol delivery devices typically define a substantially cylindrical configuration. For example, aerosol delivery devices often include a control body and a cartridge which attach in an end-to-end relationship to define the substantially cylindrical configuration. While such configurations may provide a look and feel that is similar to traditional smoking articles, these configurations may suffer from certain detriments. For example, cylindrically-configured aerosol delivery devices may not define attachment points usable to retain the aerosol delivery device in a desired position when not in use. Further, such configurations may result in a relatively large device when employed with reservoirs having relatively large capacity, resembling the size and shape of a cigar, which may not be suitable for temporary storage or transport in a user's pocket.
  • So-called “mod” devices may include configurations other than parallel, coaxial alignment of a control body and a cartridge. However, such devices may include exposed and/or poorly-supported electrical connectors that connect the control body and cartridge, which may be strained during use or storage, thereby potentially affecting the usability thereof. Accordingly, it may be desirable to provide aerosol delivery devices in configurations and shapes that differ from configurations and shapes associated with traditional smoking articles and traditional aerosol delivery devices.
  • As such, embodiments of the present disclosure provide alternative aerosol delivery devices configured to address the above-noted deficiencies of existing configurations of aerosol delivery devices and/or provide other benefits. FIG. 1 illustrates a side view of an aerosol delivery device 100 of the present disclosure. As illustrated, the aerosol delivery device 100 may include a control body 101, which may include a housing 102. In some embodiments the housing may comprise a plastic material, but various other materials, which are preferably substantially rigid, may be employed in other embodiments. The housing 102 may be unitary or comprise multiple pieces. For example, the housing 102 may include a body portion 102 a, which may itself comprise one or more pieces, and an access door 102 b. As further illustrated in FIG. 1 , the aerosol delivery device 100 may additionally include a cartridge 200, which may be at least partially received in the control body 101.
  • FIG. 2 illustrates a partially-exploded sectional view through the control body 101 of the aerosol delivery device 100. As illustrated, the housing 102 may define an electrical power source cavity 104. In particular, the electrical power source cavity 104 may be defined in the body portion 102 a of the housing 102. The electrical power source cavity 104 may be closed by, and accessed via, the access door 102 b. As described below, the electrical power source cavity 104 may be configured to receive an electrical power source.
  • Further, the housing 102 may define a cartridge cavity 106. As described in detail below, the cartridge cavity 106 may be configured to receive the cartridge 200 (see, e.g., FIG. 3 ). In this regard, the housing 102 may define an external opening 108 at the cartridge cavity 106 configured to receive the cartridge 200 therethrough.
  • The housing 102 may include a divider wall 107 that separates the power source cavity 104 from the cartridge cavity 106. In some embodiments the divider wall 107 completely separates the power source cavity 104 from the cartridge cavity 106. For example, the divider wall 107 may extend across the length and thickness of the control body 101 such that the power source cavity 104 and the cartridge cavity 106 are discrete cavities. This configuration may be preferable in that it may prevent fluid communication between the power source cavity 104 and the cartridge cavity 106. Thereby, for example, in the event of a structural failure of the electrical power source, chemical intrusion into the cartridge cavity 106 may be resisted. However, as may be understood, in other embodiments the divider wall may be discontinuous in one or both of length and fitness. Such a configuration of the divider wall may still respectively retain an electrical power source in the electrical power source cavity and a cartridge in the cartridge cavity such that these components are securely retained in place.
  • The control body 101 may include one or more additional components. The components may be received in, or otherwise engaged with, the housing 102. For example, the components may include an electrical circuit, the operation of which is described below. The electrical circuit may include a controller 110, first and second electrical contacts 112 a, 112 b, and a coupler 114. In some embodiments the electrical circuit may additionally include an electronic display 116 (e.g., a liquid crystal display). Further, the electrical circuit may include a flow sensor 118, which may be positioned at, or in fluid communication with, the coupler 114. Wires or other electrical connectors may provide connections between the various components of the electrical circuit. In some embodiments the electrical circuit may further comprise a communication module. The communication module may be configured to communicate via Bluetooth or any other communication standard. Examples of communication modules and related antenna components which may be included in the aerosol delivery device 100 are described in U.S. patent application Ser. Nos. 14/802,789, filed Jul. 17, 2015, and Ser. No. 14/638,562, filed Mar. 4, 2015, each to Marion et al.
  • FIG. 3 illustrates a sectional view through the aerosol delivery device 100. As illustrated, the cartridge 200 may be at least partially received in the cartridge cavity 106 when engaged with the control body 101. In this regard, the cartridge 200 may be inserted through the external opening 108 into the cartridge cavity 106. As the cartridge 200 is inserted into the cartridge cavity 106, the cartridge 200 may engage the coupler 114. Thereby, the cartridge 200 may establish an electrical connection with the control circuit such that current may be selectively directed to the cartridge by the controller 110 to produce aerosol.
  • As further illustrated in FIG. 3 , the aerosol delivery device 100 may additionally include an electrical power source 300. The electrical power source 300 may be received in the electrical power source cavity 104, and the access door 102 b may be secured to the body portion 102 a of the housing 102, such that the electrical power source 300 is retained in the electrical power source cavity 104. In this regard, the aerosol delivery device 100 may additionally include at least one fastener 120 (e.g., a screw) configured to retain the access door 102 b in engagement with the body portion 102 a of the housing 102.
  • When the electrical power source 300 is inserted into the electrical power source cavity 104, the first electrical contact 112 a may engage a first end of the electrical power source, at which a first terminal of the electrical power source may be positioned. Thereafter, when the access door 102 b is secured to the body portion 102, the second electrical contact 112 b may engage an opposing second end of the electrical power source 300, at which a second terminal may be positioned. Thereby, power from the electrical power source 300 may be supplied to the controller 110. However, as may be understood, the electrical contacts 112 a, 112 b may be positioned and configured in other manners as appropriate for engagement with the terminals of the electrical power source 300, such that various embodiments of the electrical power source may be employed. For example, in another embodiment both of the electrical contacts may be positioned at and configured to engage either the top or the bottom of the electrical power source.
  • In some embodiments the electrical power source 300 may further comprise a protective circuit. Such a protective circuit may prevent overcharging of the electrical power source and/or regulate the release of current within acceptable limits. Further, the electrical power source may additionally include shock absorbing members (e.g., foam pads) in some embodiments, which may protect the electrical power source from damage associated with dropping the aerosol delivery device 100.
  • As further illustrated in FIGS. 2 and 3 , in some embodiments the electrical power source cavity 104 and the cartridge cavity 106 may be elongated and respectively define a longitudinal axis 104 a, 106 a. The longitudinal axis 104 a of the electrical power source cavity 104 and the longitudinal axis 106 a of the cartridge cavity 106 may be substantially parallel to one another. Such a configuration may allow for receipt of both the cartridge 200 and the electrical power source 300 in a space efficient manner within the housing 102.
  • As noted herein, many existing embodiments of aerosol delivery devices define generally elongated, tubular configurations wherein the electrical power source and cartridge are positioned generally end to end to mimic the smoking articles such as cigarettes and cigars. Thereby, existing embodiments of aerosol delivery devices often include cartridges and aerosol delivery devices arranged with the longitudinal axes thereof being parallel to one another. However, as illustrated in FIGS. 2 and 3 , the aerosol delivery device 100 of the present disclosure may be configured such that the longitudinal axis 104 a of the electrical power source cavity 104 and the longitudinal axis 106 a of the cartridge cavity 106 are non-coaxial.
  • Configuring the electrical power source cavity 104 and the cartridge cavity 106 with parallel, but non-coaxial, longitudinal axes 104 a, 106 a may provide numerous benefits. In this regard, the aerosol delivery device 100 may define a relatively shorter length due to the cartridge 200 and the electrical power source 300 being positioned beside one another, instead of in an end-to-end relationship. Further, by configuring the electrical power source cavity 104 and the cartridge cavity 106 beside one another, the aerosol delivery device 100 may define an overall shape that is more suitable for transport in a user's pocket. Additionally, this configuration may allow the aerosol delivery device 100 to more easily fit in a user's hand. In this regard, a user may more easily carry and use the aerosol delivery device in a concealed fashion within a palm of the user's hand due to the relatively shorter length thereof, which may be desirable in certain social settings.
  • The side-by-side configuration may also provide a relatively large internal volume within the housing 102 suitable for receipt of the components of the aerosol delivery device 100 in a number of various positions. By contrast, aerosol delivery devices arranged end-to-end have limited options with respect to the positions of components therein, due to the reservoir in the cartridge and the electrical power source in the control body typically defining cylindrical configurations. Thereby, any remaining space in the cartridge and the control body is typically annular or cylindrical in shape, which is not suitable for receipt of many components in a space efficient manner. Further, the relatively larger internal volume of the aerosol delivery device 100 of the present disclosure provided by the housing 102 may accommodate a relatively larger electrical power source 300 and/or a relatively larger cartridge 200, such that the respective electric and aerosol precursor composition storage capacities thereof may be increased. Additionally, the relatively large internal volume of the aerosol delivery device 100 may accommodate various commercially available electrical power sources, rather than just custom electrical power sources which may be required for cylindrical configurations, such that expenses associated with the components of the aerosol delivery device may be reduced.
  • The side-by-side configuration may additionally provide a relatively large exterior surface area. Further, the side-by-side configuration may provide relatively planar exterior surfaces (which may be slightly curved for ergonomic or aesthetic purposes), which may be more suitable for the display 116, as opposed to the sharply curved surfaces provided by a cylindrical aerosol delivery device. In this regard, commercially-available electronic displays typically define a planar display surface.
  • Thereby, for example, the electronic display 116 may be positioned at a number of locations and may define a relatively larger size than an electronic display on an aerosol delivery device defining a cylindrical configuration. In the illustrated embodiment the electronic display 116 is positioned at a top of the body portion 102 a of the housing 102. The external opening 108 to the cartridge cavity 106 may also be positioned at the top of the body portion 102 a of the housing. This position of the electronic display 116 may allow a user to view the electronic display while the aerosol delivery device is grasped in the user's hand in a manner suitable for taking a draw on the cartridge 200. In this regard, the user's hand may extend around the sides of the aerosol delivery device, such that the top surface of the aerosol delivery device, at which the electronic display 116 and the exposed portion of the cartridge 200 are positioned, is exposed and uncovered by the user's hand. Thus, various information regarding the aerosol delivery device 100 may be easily viewed during normal usage. For example, the data displayed by the electronic display 116 may include a remaining cartridge aerosol precursor composition level, a remaining power source level, historical usage information, heat and aerosol output settings, a charging status, a communication status (e.g., when linked to another device via Bluetooth or other communication protocol), the time, and/or various other data.
  • The side-by-side configuration of the aerosol delivery device 100 of the present disclosure may provide additional benefits. For example, the cartridge 200 may engage the control body 101 in a manner that may provide for a secure connection therebetween, which may reduce stress and strain thereon as compared to embodiments of aerosol delivery devices in which the connection between the cartridge and control body is exposed (e.g. in embodiments in which the cartridge and the control body are arranged end-to-end). In this regard, the coupler 114 may be recessed in or proximate the cartridge cavity 106 such that the housing 102 protects the connection between the cartridge 200 and the control body 101. Further, a portion, and more preferably a majority, of the longitudinal length of the cartridge 200 may be retained in the cartridge cavity 106 and the size and shape of the cartridge cavity may substantially correspond to that of the cartridge, such that the housing 102 may resist movement of the cartridge, rather than the coupler 114 bearing the entirety of such stress and strain associated with forces applied to one or both of the cartridge and the control body 101. In this regard, in aerosol delivery devices configured with a control body and a cartridge arranged end-to-end, the connection between the cartridge and the control body may bear all or substantially all of the stress and strain associated with force applied to one or both of the cartridge and the control body. Such stress and strain may damage the connection therebetween, which can impede operation thereof, due to the connection including an electrical connection that supplies current to the cartridge for vaporization purposes. Further, although “mod” devices may define configurations other than the end-to-end configuration described above, such devices often include exposed electrical connectors that are subject to stress and strain. Accordingly, the side-by side, parallel but non-coaxial configuration of the electric power source cavity 104 and the cartridge cavity 106 of the aerosol delivery device 100 of the present disclosure may provide various benefits.
  • Various embodiments of the cartridge 200 may be employed in the aerosol delivery device 100. In this regard, a side view of the cartridge 200, rather than a sectional view therethrough, is illustrated in FIG. 3 in light of the various possible configurations of the components of the cartridge. However, one example embodiment of the cartridge is illustrated in FIG. 4 .
  • As illustrated in FIG. 4 , the cartridge 200′ may comprise a base shipping plug 202′, a base 204′, a control component terminal 206′, an electronic control component 208′, a flow director 210′, an atomizer 212′, a reservoir substrate 214′, an outer body 216′, a label 218′, a mouthpiece 220′, and a mouthpiece shipping plug 222′ according to an example embodiment of the present disclosure. The base 204′ may be coupled to a first end of the outer body 216′ and the mouthpiece 220′ may be coupled to an opposing second end of the outer body to at least partially enclose the remaining components of the cartridge 200′ therein, with the exception of the label 218′, the mouthpiece shipping plug 222′, and the base shipping plug 202′. The base 204′ may be configured to engage the coupler 114. In some embodiments the base 204′ may comprise anti-rotation features that substantially prevent relative rotation between the cartridge and associated device including a power source as disclosed in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety.
  • The base shipping plug 202′ may be configured to engage and protect the base 204′ prior to use of the cartridge 200′. Similarly, the mouthpiece shipping plug 222′ may be configured to engage and protect the mouthpiece 220′ prior to use of the cartridge 200′. The control component terminal 206′, the electronic control component 208′, the flow director 210′, the atomizer 212′, and the reservoir substrate 214′ may be retained within the outer body 216′. The label 218′ may at least partially surround the outer body 216′ and include information such as a product identifier thereon.
  • The atomizer 212′ may comprise a first heating terminal 234 a′ and a second heating terminal 234 b′, a liquid transport element 238′, and a heating element 240′. In this regard, the reservoir substrate 214′ may be configured to hold an aerosol precursor composition. The reservoir substrate 214′ is in fluid connection with the liquid transport element 238′ so as to transport the aerosol precursor composition from the reservoir substrate 214′ to the heating element 240′ (e.g., via capillary action). Thereby, when current is directed to the heating element 240′ via the heating terminals 234 a′, 234 b′, the aerosol precursor composition may be vaporized.
  • Various other details with respect to the components that may be included in the cartridge 200′, are provided, for example, in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety. In this regard, FIG. 7 thereof illustrates an enlarged exploded view of a base and a control component terminal; FIG. 8 thereof illustrates an enlarged perspective view of the base and the control component terminal in an assembled configuration; FIG. 9 thereof illustrates an enlarged perspective view of the base, the control component terminal, an electronic control component, and heating terminals of an atomizer in an assembled configuration; FIG. 10 thereof illustrates an enlarged perspective view of the base, the atomizer, and the control component in an assembled configuration; FIG. 11 thereof illustrates an opposing perspective view of the assembly of FIG. 10 thereof; FIG. 12 thereof illustrates an enlarged perspective view of the base, the atomizer, the flow director, and the reservoir substrate in an assembled configuration; FIG. 13 thereof illustrates a perspective view of the base and an outer body in an assembled configuration; FIG. 14 thereof illustrates a perspective view of a cartridge in an assembled configuration; FIG. 15 thereof illustrates a first partial perspective view of the cartridge of FIG. 14 thereof and a coupler for a control body; FIG. 16 thereof illustrates an opposing second partial perspective view of the cartridge of FIG. 14 thereof and the coupler of FIG. 11 thereof; FIG. 17 thereof illustrates a perspective view of a cartridge including a base with an anti-rotation mechanism; FIG. 18 thereof illustrates a perspective view of a control body including a coupler with an anti-rotation mechanism; FIG. 19 thereof illustrates alignment of the cartridge of FIG. 17 with the control body of FIG. 18 ; FIG. 20 thereof illustrates an aerosol delivery device comprising the cartridge of FIG. 17 thereof and the control body of FIG. 18 thereof with a modified view through the aerosol delivery device illustrating the engagement of the anti-rotation mechanism of the cartridge with the anti-rotation mechanism of the connector body; FIG. 21 thereof illustrates a perspective view of a base with an anti-rotation mechanism; FIG. 22 thereof illustrates a perspective view of a coupler with an anti-rotation mechanism; and FIG. 23 thereof illustrates a sectional view through the base of FIG. 21 thereof and the coupler of FIG. 22 thereof in an engaged configuration.
  • In another embodiment the cartridge 200 may be substantially similar, or identical, to the cartridge disclosed in U.S. patent application Ser. No. 14/286,552 to Brinkley et al., filed May 23, 2014, which is incorporated herein by reference in its entirety. Thus, for example, the cartridge may include a flow director defining a non-tubular configuration, an electronics compartment sealed with respect to a reservoir compartment, and/or any of the various other features and components disclosed therein. Accordingly, it should be understood that the particular embodiments of the cartridge 200 described herein is provided for example purposes only.
  • In this regard, a sectional view through an additional embodiment of the cartridge 200 is illustrated in FIG. 5 . As illustrated, the cartridge 200″ may include a base 204″, a control component terminal 206″, an electronic control component 208″, a flow director 210″ which may be defined by an outer body 216″ or a separate component, an atomizer 212″, and a mouthpiece 220″ according to an example embodiment of the present disclosure. The atomizer 212″ may comprise a first heating terminal 234 a″ and a second heating terminal 234 b″, a liquid transport element 238″ and a heating element 240″. The cartridge 200″ may additionally include a base shipping plug, a label, and a mouthpiece shipping plug, as described above.
  • The base 204″ may be coupled to a first end of the outer body 216″ and the mouthpiece 220″ may be coupled to an opposing second end of the outer body to at least partially enclose the remaining components of the cartridge 200″ therein. In some embodiments the base 204″ may comprise anti-rotation features that substantially prevent relative rotation between the cartridge and associated device including a power source as disclosed in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety.
  • The cartridge 200″ may further comprise a sealing member 242″ and an initial liquid transport element 244″. In this regard, the outer body 216″ and/or an additional component may be configured to hold an aerosol precursor composition 246″ in a reservoir 248″. In some embodiments the reservoir 248″ may be configured to be refillable, whereas in other embodiments the cartridge 200″ may be configured for a single use. The sealing member 242″ may be positioned at an end of the chamber 248″ and include one or more apertures 250″ that allow the aerosol precursor composition 246″ to contact the initial liquid transport element 244″. Further, the liquid transport element 238″ of the atomizer 212″ may be in contact with the initial liquid transport element 244″. Both the initial liquid transport element 244″ and the liquid transport element 238″ of the atomizer 212″ may comprise wicking and/or porous materials that allow movement of the aerosol precursor composition 246″ therethrough (e.g., via capillary action), such that the aerosol precursor composition may be drawn to the heating element 240″ and heated and vaporized when current is applied to the heating element via the heating terminals 234 a″, 234 b″ by the controller 110 of the control body 101 (see, e.g., FIG. 6 ).
  • FIG. 6 illustrates the aerosol delivery device 100 when the electrical power source 300 is received in the electrical power source cavity 104, and the cartridge 200″ of FIG. 5 is received in the cartridge cavity 106. As illustrated, in some embodiments, the electrical circuit may additionally include an illumination source 122 such as a light emitting diode (LED). Further, the control body 101 may include an illumination source cover 124, which may cover, protect, and/or conceal the illumination source 122. The illumination source cover 124 may be translucent or transparent such that light emitted by the illumination source may travel therethrough. In some embodiments the illumination source cover 124 may be tinted or diffuse such that the presence of the illumination source is hidden or obscured when not in use.
  • As further illustrated in FIG. 6 , in some embodiments the cartridge 200″ may include a viewing window 252″, which may allow a user to view a quantity of the aerosol precursor composition 246″ remaining in the reservoir 248″. For example, all or a portion of the outer body 216″ of the cartridge 200″ may comprise a translucent or transparent material. The illumination source 122 and the illumination source cover 124 may be positioned in the body portion 102 a of the housing 102 at the cartridge cavity 106 at a position that aligns with the viewing window 252″ such that light produced by the illumination source may be directed into the cartridge 200″ to facilitate viewing of the level of the aerosol precursor composition 246″. In this regard, the body portion 102 a of the housing 102 may include a cutout or other feature defining a viewing opening 126. Thereby, the user may be able to see the level of the aerosol precursor composition 246″ through the viewing opening 126.
  • The controller 110 may direct the illumination source 122 to output light under certain circumstances, such as after a draw on the cartridge 200″ is detected. The illumination source 122 may additionally or alternatively output light when a separate actuator (e.g., a button) is depressed or otherwise actuated. Accordingly, a user may be kept apprised of a level of the aerosol precursor composition in the cartridge 200″.
  • Note that inclusion of the illumination source 122 is optional. In this regard, ambient light be sufficient for viewing the level of the aerosol precursor composition 246″ through the viewing opening 126 in some embodiments. However, inclusion of the illumination source 122 may be preferable due to increased usability in low-light situations.
  • The controller 110 may be configured to control one or more operations of the aerosol delivery device 100. The controller 110 may verify that the cartridge 200 is authentic using information provided by the control component 208′, 208″. Usage of the cartridge 200 may be allowed only if the cartridge is determined to be authentic. Further, when a user draws on the cartridge 200, the flow sensor 118 (e.g. a pressure sensor) may detect the draw. In response, the controller 110 may direct current to the cartridge 200 such that that the heating element 240′, 240″ produces heat and vaporizes the aerosol precursor composition, which may be directed to the user. In addition, the aerosol delivery device may include an actuator that may be manually actuated to trigger the controller to direct current to the cartridge 200. The actuator may be used in lieu of the flow sensor 118, or to provide supplemental power from the electrical power source to the cartridge to change (e.g., increase) the aerosol output of the aerosol delivery device. In other embodiments the actuator may be used in conjunction with the controller to adjust the amount of power directed from the electrical power source to the cartridge, such that the aerosol delivery device may have various aerosol output settings (e.g., aerosol mass output settings). Accordingly the actuator (e.g., a button or button assembly) may be configured to control a power output level directed from the electrical power source to the cartridge.
  • In some embodiments the actuator (e.g., button or button assembly) may have selective regions or a plurality of regions such as a lower region, a middle region, and an upper region. Each region of the actuator may be configured to direct a differing level of power (e.g., current and/or voltage) a from the electrical power source to the cartridge. Thereby, the differing regions of the actuator may each correspond to a differing aerosol output setting. The actuator may include one or a plurality of sensors (e.g., pressure and/or force sensors) at each region such that the force applied to the actuator by the user at one or more of the regions may be detected to control the output of the aerosol via differing selectable power output levels directed from the electrical power source to the cartridge. Accordingly, the power output level may be controlled based on a location at which the actuator is actuated. Alternatively or additionally, the power output level may be controlled based on the amount of force applied to the actuator, which may be determined via a force sensor (e.g., a stress or strain sensor).
  • As may be understood, the exact shape and dimensions of the aerosol delivery device 100 may vary. In this regard, FIGS. 7-10 illustrate an alternate embodiment of the control body 101′, wherein only those differences with respect to the control body 101 described above are noted. Thus, each of the aerosol delivery devices may include some or all of the components and features described herein in any combination, unless otherwise noted.
  • As illustrated in FIG. 7 , the control body 101′ may define a more rounded profile for improved ergonomics. As further illustrated in FIG. 7 , the control body 101′ may further comprise an indicator 128′. The indicator 128′ may output light to indicate an operational status of the control body. In some embodiments the indicator 128′ may be used to communicate the operational status of the device without usage of the electronic display surface 116′. For instance, the indicator 128′ may flash or change colors when the cartridge is low in aerosol precursor composition or to indicate the electrical power source needs recharging or replacement. In addition, the indicator 128′ may light up when the flow sensor detects a puff on the cartridge.
  • In some embodiments the indicator 128′ may be configured to illuminate with one or more of a plurality of colors, durations, frequencies, and/or intensities to indicate to the user certain conditions of the aerosol delivery device such as the power output level, the status of the electrical power source, and/or the activated or inactivated state of the aerosol delivery device which correspond to the output of the indicator. Thereby, the indicator 128′ may include an illumination source that activates with one or more of a plurality of colors, durations, frequencies, and/or intensities to indicate to the user certain conditions of the aerosol delivery device such as the power output level, the status of the power source, and/or the activated or inactivated state of the aerosol delivery device. The indicator 128′ may be configurable by the user to control the color or colors of the illumination source and/or other output parameters thereof. Further, the user may be able to control which device status value is communicated to the user by the illumination signal.
  • As additionally illustrated in FIG. 7 , the body portion 102 a′ of the housing 102′ may include a side opening 130′. The side opening 130′ may be configured to engage an outer cover 132′ (e.g., via interference fit), which is illustrated in FIG. 8 . Thereby, the outer cover 132′ may be engaged with an exterior of the housing 102′. In some embodiments the outer cover 132′ may comprise silicon, which may provide enhanced grip such that it is easier to retain the control body 101′ in the hand without dropping it. However, various other materials (e.g., other rubbers), which may be textured or smooth, may be employed in other embodiments. Use of a resilient outer cover 132′ may provide various other benefits. For example, in one embodiment, depression of the outer cover 132′ at the side opening 130′ may trigger the illumination source 122 (e.g., via actuation of an actuator) to illuminate the fluid level in the cartridge 200. In another embodiment, the depression of the outer cover 132′ at the side opening 130′ may trigger the illumination source 122, where the duration of the depression of the outer cover corresponds to the duration of the activation of the illumination source, such that the user may continuously illuminate the cartridge 200 for a desired duration during filling or refilling of the cartridge or when otherwise desired for a user-selected period of time.
  • FIG. 9 illustrates a partial side view of the control body 101′. As illustrated, the illumination source cover 124′ may be aligned with the viewing opening 126′ as described above. In this illustrated embodiment, the viewing opening 126′ may be relatively wide so as to facilitate viewing of the level of the aerosol precursor composition in the cartridge. For example, the viewing opening 126′ may define an opening with a width perpendicular to the longitudinal axis 106 a′ of the cartridge cavity 106′ that is equal to at least half of a diameter of the cartridge in some embodiments.
  • As noted above, in some embodiments the body portion of the housing of the control body may comprise multiple pieces. In this regard, FIG. 10 illustrates a first section 102 a 1′ of the body portion 102 a′ of the housing 102′ (see, FIG. 7 ). A second section 102 a 2′ and a third section 102 a 3′ of the body portion 102 a′ of the housing 102′ are illustrated in FIG. 7 . The third section 102 a 3′ may be integral with the section 102 a 2′, or a separate component. The first and second sections 102 a 1′, 102 a 2′ of the body portion 102′ of the housing 102′ may be configured to engage the access door 102 b′ (see, FIG. 10 ). The electronic display 116′ may be positioned at (e.g., under) the third section 102 a 3′ of the body portion 102 a′ of the housing 102′. In this regard, all or a portion of the housing 102′ may be translucent or transparent in some embodiments. The housing 102′ may additionally include an illumination source or have an illumination source in proximity thereto. For example, the housing 102′ may include the illumination source 122 described above, which may be configured to emit direct or indirect illumination through the housing 102′ where the housing may be translucent or transparent.
  • As illustrated in FIG. 10 , the first section 102 a 1′ of the body portion 102 a′ of the housing 102′ may additionally include a side opening 134′ configured to engage the outer cover 132′ (see, e.g., FIG. 8 ). Thereby, the outer cover 132′ may be firmly held in place via the opposing side openings 130′, 134′. Whereas the outer body 132′ may provide enhanced grip, the third section 102 a′ may comprise a metal such as aluminum for enhanced strength and/or improved cosmetic appearance, or a separate outer body defining such characteristics may be attached to the third section.
  • FIG. 10 further illustrates an inside of the first section 102 a 1′ of the body portion 102 a′ of the housing 102′. As illustrated, the housing 102′ may define one or more ribs 136′, which may be configured to retain the electric power source 300 (see, e.g., FIG. 3 ) within the electrical power source cavity 104′ and/or retain the cartridge 200 (see, e.g., FIG. 3 ) in the cartridge cavity 106′. In this regard, the ribs 136′ may be curved or otherwise tailored to match the size and shape of the electric power source 300 and/or the cartridge 200. The ribs 136′ may extend to an end portion 138′. The end portions 138′ of the ribs 136′ at the first section 102 a 1′ of the body portion 102 a′ of the housing 102′ may be configured to engage corresponding end portions of the ribs at the second section 102 a 2′ (see,
  • FIG. 7 ) of the body portion of the housing so as to separate the electrical power source cavity 104′ from the cartridge cavity 106′ to retain the electrical power source 300 and the cartridge 200 (see, FIG. 3 ) respectively therein. In this regard, the end portions 138′ of the ribs 136′ may collectively define a divider wall 107′ that is segmented along the length thereof. Usage of the ribs 136′, rather than a solid structure, may reduce the quantity of material required to form the housing 102′, thereby additionally reducing the weight of the housing while still retaining the components of the control body 101′ in the desired positions and providing added stiffness. The ribs 136′ may comprise a non-rigid material such as foam or a thermoplastic polymer or include an element comprising foam, thermoplastic polymer, or other non-rigid material that allows the ribs 136′ to compress or displace in the event that the electrical power source 300 undergoes changes in diameter such that can occur with diametric swelling that is common with lithium-type batteries. In this regard, the ribs 136′ may at least partially surround the electrical power source 300 (see, e.g., FIG. 3 ).
  • As additionally illustrated in FIG. 10 , the first section 102 a 1′ of the body portion 102 a′ of the housing 102′ may include protrusions and/or receptacles 140′, which may be configured to engage corresponding receptacles/protrusions at the second section 102 a 2′ (see, FIG. 7 ). Thereby, the sections 102 a 1′, 102 a 2′ of the housing 102′ may interlock with one another when assembled.
  • As illustrated in FIG. 10 , section 102 b′ may include an orifice 137′ or plurality of orifices in fluid communication with the electrical power source cavity 104′ and the atmosphere outside of the housing 102′ to allow for the escape of any gas or gases that may be produced by the electrical power source 300 (see, e.g., FIG. 3 ) to prevent the gas or gases from generating a region of increased pressure within the housing 102′. The orifice 137′ may comprise one or more openings of sufficient cross sectional area as to prevent a pressure differential between the internal region of the housing 102′ and the outside atmosphere. In one embodiment the orifice 137′ may include a permeable membrane or porous material that allows gas or gases that may be produced by the electrical power source 300 (see, e.g., FIG. 3 ) to escape to the outside atmosphere while preventing the entrance of liquid into the housing 102′ due to the selective permeability of the membrane or porous material.
  • FIGS. 11-15 illustrate an additional embodiment of the control body 101″. The control body 101″ may be substantially similar to the control body 101′ of FIGS. 7-10 in one or more respects. In this regard, as illustrated in FIGS. 11 and 12 , the control body 101″ may include a housing 102″ comprising a body portion 102 a″ and an access door 102 b″ which may be secured to the body portion via a screw 120″ (see, FIG. 13 ). The body portion 102 a″ may include multiple sections including first and second sections 102 a 1″, 102 a 2″. The first section 102 a 1″ may define protrusions and/or receptacles 140″ configured to engage corresponding receptacles/protrusions at the second section 102 a 2′ (see, FIG. 7 ). The body portion 102 a″ may define one or more ribs 136″ that respectively extend to an end portion 138″ to define a dividing wall 107″. As illustrated the ribs 136″ may extend in both the power source cavity 104″ and the cartridge cavity 106″ in some embodiments to thereby assist in respectively retaining the electrical power source and the cartridge therein. Further, the control body 101″ may include the indicator 128″ and an outer cover 132″ (see, FIG. 14 ). The electronic display 116″ may be positioned at the top of the housing 102″ proximate the opening to the external opening 108″ to the cartridge cavity 106″, which extends along the longitudinal axis 106 a″.
  • However, the control body 101″ may differ in one or more respects from the control bodies described above. In this regard, in addition to the end portions 138″ of the ribs 136″, the dividing wall 107″ may additionally include a partial wall 109″, which further assists in retaining a cartridge in the cartridge cavity 106″. Further, as illustrated in FIGS. 11 and 12 , in some embodiments the body portion 102 a″ of the housing 102″ may include first and second side openings 130 a″, 130 b″ at the first section 102 a 1″ and first and second side openings 134 a″, 134 b″ at the second section 102 a 2″ thereof (see, FIGS. 11 and 13 ). Usage of multiple side openings 130 a″, 130 b″, 134 a″, 134 b″ at each section 102 a 1″, 102 a 2″ of the body portion 102 a″ of the housing 102″ may provide for improved engagement of the outer cover 132″ therewith, as illustrated in FIG. 12 .
  • Further, as illustrated in FIG. 15 , and as noted above, in some embodiments the viewing opening 126′ may be relatively wide (see e.g., FIG. 9 ). However, as illustrated in FIG. 13 , in other embodiments the viewing opening 126″ may be relatively less wide. For example, the viewing opening may define a width that is equal to less than half of a diameter of the configured to be received in the cartridge compartment 106″ in some embodiments. Whereas a wide viewing opening may facilitate viewing of the level of the aerosol precursor composition, a relatively less wide viewing opening may provide more protection to the cartridge, while still allowing a user to view the level of the aerosol precursor composition.
  • In an additional embodiment, FIG. 16 illustrates a method for assembling an aerosol delivery. As illustrated, the method may include providing a housing at operation 402. The housing may define an electrical power source cavity configured to receive an electrical power source and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition. The electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis. The longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another. Further, the method may include positioning an electrical contact in the electrical power source cavity, the electrical contact being configured to engage the electrical power source at operation 404. Additionally, the method may include positioning a coupler in the cartridge cavity, the coupler being configured to engage the cartridge at operation 406.
  • In some embodiments the method may further comprise inserting the electrical power source in the electrical power source cavity and engaging the electrical power source with the electrical contact. The method may additionally include inserting the cartridge into the cartridge cavity and engaging the cartridge with the coupler. Inserting the cartridge into the cartridge cavity may include inserting the cartridge through an external opening defined by the housing.
  • Providing the housing at operating 402 may include defining a viewing opening at the cartridge cavity. Further, the method may include engaging an outer cover with an exterior of the housing. The method may additionally include positioning an illumination source in the housing. The illumination source may be configured to illuminate the cartridge in the cartridge cavity. The method may further include engaging an electronic display with the housing. Providing the housing at operation 402 may include engaging a first body portion with a second body portion. Providing the housing at operation 402 may further include engaging an access door with at least one of the first body portion and the second body portion, the access door being configured to selectively provide access to the electrical power source cavity.
  • An additional embodiment of an aerosol delivery device 500 is illustrated in FIG. 17 . As illustrated the aerosol delivery device 500 may include a control body 501 and a cartridge. In the illustrated embodiment the cartridge 200″ from FIG. 5 is included in the aerosol delivery device 500. However, as may be understood, other cartridges may be employed in other embodiments.
  • The control body 501 may include a housing 502. The housing 502 may be integral or comprise a plurality of pieces. For example, the housing 502 may include an electrical power source portion 502 a, an access door 502 b, and a coupler portion 502 c. Access door 502 b may include an orifice or plurality of orifices in fluid communication with the atmosphere outside of the housing 502 b to allow for the escape of any gas or gases that may be produced by electrical power source 504 (see, FIG. 18 ) to prevent the gas or gases from generating a region of increased pressure within the housing 502 as described above with respect to the orifice 137 in FIG. 10 . In this regard, each of the housings of the aerosol delivery devices of the present disclosure may include such an orifice. The orifice may preferably be located at an access door to conceal the orifice and position the orifice at the electrical power source cavity, but the orifice may be located at other positions in other embodiments.
  • In this regard, FIG. 18 illustrates a partial exploded view of the control body 501. As illustrated, the electrical power source portion 502 a of the housing 502 may include a first body portion 502 a 1 and a second body portion 502 a 2. The first body portion 502 a 1 and the second body portion 502 a 2 may be configured to engage one another and define an electrical power source cavity 504. The electrical power source cavity 504 may be configured to receive an electrical power source 600 (e.g., a battery and/or a capacitor). The electrical power source cavity 504 may define a first longitudinal axis 504 a.
  • Further, the coupler portion 502 c of the housing 502 may be configured to engage the electrical power source portion 502 a of the housing. A coupler 514 may be engaged with the coupler portion 502 c of the housing 502. For example, the coupler 514 may be positioned at least partially within the coupler portion 502 c of the housing 502.
  • The coupler 514 may be configured to engage the cartridge 200″ (see, FIG. 17 ), which may include an aerosol precursor composition. When engaged with the coupler 514, the cartridge 200″ may extend along a second longitudinal axis 200 a″, as illustrated in FIG. 17 . The first longitudinal axis 504 a, which is defined by the electrical power source cavity 504, and the second longitudinal axis 200 a″, which is defined by the cartridge 200″, may be non-coaxial and oriented substantially parallel to one another. This configuration may provide various benefits as noted above with respect to embodiments of control bodies wherein the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity are non-coaxial but substantially parallel.
  • In some embodiments the cartridge 200″ may be at least partially received in a coupler cavity 506 defined by the coupler portion 502 c of the housing 502. In this regard, as noted above, the coupler 514 may be at least partially received in the coupler cavity 506. Thereby, a depth of the coupler cavity 506 as well as the position of the coupler 514 (see, FIG. 18 ) therein may determine whether or not the cartridge 200″ is at least partially received in the coupler cavity 506. Partially receiving the cartridge 200″ in the coupler cavity 506 may provide for improved engagement of the cartridge with the control body 501 and/or reduce the susceptibility of damage or contamination to the coupler 514. However, in other embodiments the cartridge 200″ may not extend into the coupler portion 502 c of the housing 502. This configuration may facilitate engagement of the cartridge 200″ with the coupler 514 and allow for usage of a wider variety of shapes and sizes of cartridges with the control body 501.
  • The control body 501 may additionally include a controller 510 (see, e.g., FIG. 20 ), which is not shown in FIG. 18 for clarity purposes. The controller 510 may comprise a control board in some embodiments. The controller 510 may be configured to control some or all of the functions of the control body 501 including directing current from the electrical power source 600 to the cartridge 200″. In this regard, the controller 510 may be electrically coupled to the electrical power source 600.
  • As illustrated in FIG. 18 , the control body 501 may additionally include one or more button assemblies. In particular, the control body 501 may include a first button assembly 542 and second button assembly 544. As illustrated in FIG. 19 , the first button assembly 542 may be configured to actuate a first switch 546 on the controller 510. Similarly, the second button assembly 544 may be configured to actuate a second switch 548 on the controller 510. In this regard, the button assemblies 542, 544 may be configured to bend or otherwise move to actuate the switches 546, 548. By way of example, the first button assembly 542 and the second button assembly 544 may be hingedly coupled to one or both of the first body portion 502 a 1 and the second body portion 502 a 2 (see, e.g., FIG. 18 ) of the electrical power source portion 502 a of the housing 502.
  • Thereby, actuation of the switches 546, 548 may control one or more functions of the control body 501. For example, actuation of the first switch 546 may direct current from the electrical power source 600 to the cartridge 200″ (see, FIG. 17 ) to heat an aerosol precursor composition therein and produce an aerosol. Further, actuation of the second switch 548 may control other functions.
  • By way of example, the control body 501 may further comprise an illumination source 522 such as a light emitting diode (LED). The illumination source 522 may be configured to output illumination. In this regard, the control body 501 may include an illumination source cover 524, which may cover, protect, and/or conceal the illumination source 522. The illumination source cover 524 may be translucent or transparent such that light emitted by the illumination source may travel therethrough. In some embodiments the illumination source cover 524 may be tinted or diffuse such that the presence of the illumination source 522 is hidden or obscured when not in use.
  • The illumination source 522 may be configured to illuminate the cartridge 200″. In particular, as schematically illustrated in FIG. 17 , the cartridge 200″ may include the viewing window 252″ such that a level of the aerosol precursor therein may be viewed as described above. Accordingly, the second button assembly 544 may be employed to turn on the illumination source 522 such that illumination is directed through the viewing window 252″ of the cartridge 200″ and thereby a user may more easily view a level of aerosol precursor composition therein, and/or the second switch may perform other functions. For example, in another embodiment depression of the second button assembly 544, and thereby actuation of the second switch 548, may cause the controller 510 to provide supplemental power from the electrical power source to the cartridge to increase the aerosol output of the aerosol delivery device, or to direct power to the cartridge, regardless of whether a draw on the cartridge is detected. In this regard, in some embodiments the aerosol delivery device may not include a flow sensor. In other embodiments the second button assembly 544 may be used to actuate the second switch 548 to cycle through various adjustable controller power levels, such that the device may have various aerosol mass output settings, or various other functions may be controlled. Accordingly, the second button assembly 544 and/or any of the other actuators discussed herein may be configured to control a power output level directed from the electrical power source to the cartridge and/or otherwise control a quantity (e.g., mass) of aerosol outputted.
  • In some embodiments the second button assembly 544 may at least partially define a dividing wall 550 that separates the cartridge 200″ from the electrical power source cavity 504 (see, FIG. 18 ). Further, as described below, the controller 510 may be received in the electrical power source cavity 504. Thereby, the second button assembly 544 may include the illumination source cover 524 at the dividing wall 550 such that the illumination may be directed therethrough to the cartridge 200″.
  • Assembly of the control body 501 may be performed in various manners. In one embodiment the controller 510 may be at least partially wrapped about the electrical power source 600, as illustrated in FIG. 20 . For example, the controller 510 may be bent or configured such that the power source 600 is received between opposing substantially parallel walls of the controller. The controller 510 may be electrically connected to the electrical power source 600 at this time as well. In this regard, by way of example, the electrical power source may include wires or other electrical leads that are soldered or otherwise connected to the controller 510.
  • As illustrated in FIG. 21 , the controller 510 and the electrical power source 600 may be inserted into the housing 502. More particularly, the controller 510 and the electrical power source may be received in the electrical power source cavity 504. In some embodiments the housing 500 may include features configured to engage the controller 510. For example, as illustrated, the controller 510 may be received in a slot 552 which may be defined by an extension 554 formed by the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502. Thereby, the extension 554 may support the controller 510 to allow for actuation of the switches 546, 548 in the manner described above.
  • In one embodiment the first button assembly 542 may be engaged with the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 before the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504. For example, a portion of the first button assembly 542 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502. Thereby, the first button assembly 542 may be engaged with the first body portion 502 a 1, but still able to move to actuate the first switch 546 as described above. Additionally, as further illustrated in FIG. 21 , in some embodiments the second button assembly 544 may be engaged with the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 before the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504. For example, a portion of the second button assembly 544 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502. Thereby, the second button assembly 544 may be engaged with the first body portion 502 a 1, but still able to move to actuate the second switch 546 as described above.
  • Returning to FIG. 20 , the controller 510 may include a connector 556. The connector 556 may comprise an electrical connector and/or a data connector. Thereby, the connector 556 may be employed to recharge the electrical power source 600 and/or transmit data to or from the controller 510. As illustrated in FIG. 21 , the housing 502 may include a recess 558 configured to receive the connector 556. For example, the recess 558 may be defined by one or both of the first body portion 502 a 1 and the second body portion 502 a 2 of the electrical power source portion 502 a of the housing 502.
  • As illustrated in FIG. 22 , the second body portion 502 a 2 of the electrical power source portion 502 a of the housing 502 may be engaged with the first body portion 502 a 1 after the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504. For example, the second body portion 502 a 2 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502. Further, the coupler portion 502 c of the housing 502 may be engaged with the electrical power source portion 502 a of the housing 502. For example, the coupler portion 502 c may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the electrical power source portion 502 a of the housing 502.
  • FIG. 22 further illustrates the coupler 514 engaged with the housing 502. In particular, the coupler 514 may be received in the coupler cavity 506. As illustrated in FIG. 23 , additional components may be inserted in the coupler cavity 506. In particular, a seal 560 may be inserted through the coupler 514. Further, an electrical contact 562 may extend through the seal 560. The seal 560 may be configured to electrically insulate the coupler 514 from the electrical contact 562. In this regard, the electrical contact 562 may comprise a conductive material such as brass, and the seal 560 may comprising an electrically insulating material such as silicone. The electrical contact 562 may be engaged with a first terminal 564 (see, e.g., FIG. 22 ) of the controller 510. For example, the electrical contact 562 may be welded to the first terminal 564 after the first terminal is bent into contact therewith.
  • Further, a tab 566 may be engaged with the coupler 514 and received in the coupler cavity 506 defined by the coupler portion 502 c of the housing 502. A fastener 568 (e.g., a nut) may be secured to the coupler 514 in order to retain the tab 566 in engagement therewith. The tab 566 may be coupled to a second terminal 570 (see, e.g., FIG. 22 ) of the controller 510. For example, the second terminal 570 may be welded to the tab 566 after the second terminal is bent into engagement therewith. Thereby, the coupler 514 may be electrically coupled to the controller 510. In another embodiment the second terminal 570 may directly engage the coupler 514. Regardless, positive and negative connections may be established with the cartridge 200″ (see, e.g., FIG. 17 ) when the cartridge is engaged with the control body 501 via the electrical contact 562 and the coupler 514. Thereby, current may be directed to the cartridge 200″ in order to vaporize the aerosol precursor composition therein as directed by the controller 510 when a user depresses the first button assembly 542 (see, e.g., FIG. 18 ).
  • After the various components noted above are inserted into the coupler cavity 506, the access door 502 b (see, FIG. 18 ) may be engaged with the electrical power source portion 502 a and the coupler portion 502 c of the housing 502. Thereby, the control body 501 may define the completed configuration illustrated in FIG. 17 .
  • Note that although the control bodies of the present disclosure are described herein as being usable with cartridges, it should be understood that the term “cartridge” is intended to include embodiments thereof referred to as “tanks” or “tank-style cartridges.” Tanks are distinguishable from other embodiments of cartridges for aerosol delivery devices in that they may not include a reservoir substrate, at least a portion thereof may be transparent or translucent such that a level of aerosol precursor composition may be viewed, and the quantity of the aerosol precursor composition that may be received therein may be relatively large. Embodiments of tank-style cartridges are described in U.S. patent application Ser. No. 14/802,667, filed Jul. 17, 2015, to O'Brien, which is incorporated herein by reference in its entirety.
  • In an additional embodiment a method for assembling an aerosol delivery device is provided. As illustrated in FIG. 24 , the method may include providing a housing defining an electrical power source cavity configured to receive an electrical power source, the electrical power source cavity defining a first longitudinal axis at operation 702. Further, the method may include engaging a coupler configured to engage a cartridge including an aerosol precursor composition with the housing such that the cartridge extends along a second longitudinal axis, the first longitudinal axis and the second longitudinal axis being non-coaxial and oriented substantially parallel to one another at operation 704. Additionally, the method may include positioning a controller in the housing, the controller being configured to engage the electrical power source at operation 706.
  • In some embodiments the method may further comprise engaging the electrical power source with the controller. Additionally, the method may include inserting the electrical power source in the electrical power source cavity simultaneously with positioning the controller in the housing at operation 706. Further, the method may include engaging the cartridge with the coupler. The cartridge may include a viewing window. The method may additionally include positioning an illumination source in the housing, the illumination source being configured to direct illumination through the viewing window.
  • In some embodiments providing the housing at operation 702 may include engaging a first body portion with a second body portion. Providing the housing at operation 702 may further include engaging an access door with at least one of the first body portion and the second body portion, the access door being configured to block access to the electrical power source cavity. Providing the housing at operation 702 may additionally include engaging a button assembly with at least one of the first body portion and the second body portion. Further, the method may include positioning an illumination source in the housing and engaging an illumination source cover with the button assembly, the illumination source cover being configured to direct illumination produced by the illumination source therethrough.
  • Many modifications and other embodiments of the disclosure will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed herein and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (19)

1-21. (canceled)
22. An aerosol delivery device comprising:
a body portion comprising an elongated shape defined between a first end and an opposed second end and a first side and a second side, with a longitudinal axis extending between the first end and the second end, a cartridge cavity defined within the body portion, the cartridge cavity comprising:
a reservoir containing an aerosol precursor composition, and
an atomizer proximate the reservoir and in contact with the aerosol precursor composition for aerosolizing the aerosol precursor composition to form an aerosol;
a power source housed within the body portion and arranged adjacent to the cartridge cavity, the power source transmitting power to the atomizer; and
a mouthpiece proximate the second end of the body portion, the mouthpiece being offset from the longitudinal axis and arranged to receive the aerosol.
23. The aerosol delivery device of claim 22, wherein the mouthpiece is removable and replaceable relative to the body portion.
24. The aerosol delivery device of claim 22, wherein the reservoir comprises a fibrous reservoir substrate arranged within the cartridge cavity to contain the aerosol precursor composition therein.
25. The aerosol delivery device of claim 24, wherein the aerosol precursor composition is sorptively retained within the reservoir substrate.
26. The aerosol delivery device of claim 22, wherein the reservoir defines a top end and a bottom end with an opening extending between the top end and the bottom end.
27. The aerosol delivery device of claim 26, wherein the reservoir extends along the longitudinal axis such that the opening in the top end of the reservoir is aligned with the mouthpiece and the bottom end of the reservoir is proximate the first end of the body portion.
28. The aerosol delivery device of claim 22, wherein the power source extends along the longitudinal axis and is arranged adjacent to the reservoir within the body portion.
29. The aerosol delivery device of claim 22, further comprising a flow tube extending through the opening in the reservoir to direct the aerosol entrained with air therethrough for passage through the mouthpiece.
30. The aerosol delivery device of claim 22, wherein the atomizer is inserted in the opening of the reservoir.
31. The aerosol delivery device of claim 22, further comprising at least one of an input mechanism, an indicator, and a light emitter.
32. The aerosol delivery device of claim 22, wherein the device comprises one or more operational modes.
33. The aerosol delivery device of claim 22, wherein the atomizer is a wire defining a plurality of coils that generates heat to heat the aerosol precursor composition and form the aerosol for passage through the mouthpiece.
34. The aerosol delivery device of claim 22, wherein the aerosol precursor composition includes tobacco and/or a glycol.
35. The aerosol delivery device of claim 22, wherein the device defines the shape of a key fob, a rectangular prism, a cylindrical shape, or a cuboid shape.
36. The aerosol delivery device of claim 22, wherein the first side and the second side are parallel.
37. The aerosol delivery device of claim 22, wherein the power source is rechargeable.
38. The aerosol delivery device of claim 22, wherein the reservoir is refillable.
39. The aerosol delivery device of claim 26, wherein electrical terminals are arranged proximate the bottom end of the reservoir, the electrical terminals being in electrical communication with the power source.
US18/480,235 2015-12-28 2023-10-03 Aerosol delivery device including a housing and a coupler Pending US20240024596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/480,235 US20240024596A1 (en) 2015-12-28 2023-10-03 Aerosol delivery device including a housing and a coupler

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14/981,051 US10092036B2 (en) 2015-12-28 2015-12-28 Aerosol delivery device including a housing and a coupler
US16/125,519 US11311688B2 (en) 2015-12-28 2018-09-07 Aerosol delivery device including a housing and a coupler
US16/791,427 US20200178600A1 (en) 2015-12-28 2020-02-14 Aerosol delivery device including a housing and a coupler
US18/480,235 US20240024596A1 (en) 2015-12-28 2023-10-03 Aerosol delivery device including a housing and a coupler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/791,427 Continuation US20200178600A1 (en) 2015-12-28 2020-02-14 Aerosol delivery device including a housing and a coupler

Publications (1)

Publication Number Publication Date
US20240024596A1 true US20240024596A1 (en) 2024-01-25

Family

ID=57799754

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/981,051 Active 2036-10-24 US10092036B2 (en) 2015-12-28 2015-12-28 Aerosol delivery device including a housing and a coupler
US16/125,519 Active 2036-12-02 US11311688B2 (en) 2015-12-28 2018-09-07 Aerosol delivery device including a housing and a coupler
US16/791,427 Pending US20200178600A1 (en) 2015-12-28 2020-02-14 Aerosol delivery device including a housing and a coupler
US18/480,235 Pending US20240024596A1 (en) 2015-12-28 2023-10-03 Aerosol delivery device including a housing and a coupler

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/981,051 Active 2036-10-24 US10092036B2 (en) 2015-12-28 2015-12-28 Aerosol delivery device including a housing and a coupler
US16/125,519 Active 2036-12-02 US11311688B2 (en) 2015-12-28 2018-09-07 Aerosol delivery device including a housing and a coupler
US16/791,427 Pending US20200178600A1 (en) 2015-12-28 2020-02-14 Aerosol delivery device including a housing and a coupler

Country Status (17)

Country Link
US (4) US10092036B2 (en)
EP (1) EP3397097B1 (en)
JP (5) JP6810755B2 (en)
KR (4) KR102257612B1 (en)
CN (4) CN113826959A (en)
BR (1) BR112018013248B1 (en)
CA (1) CA3010115A1 (en)
ES (1) ES2774699T3 (en)
HK (1) HK1255421A1 (en)
HU (1) HUE047685T2 (en)
MY (1) MY195827A (en)
PH (1) PH12018501384A1 (en)
PL (1) PL3397097T3 (en)
RU (4) RU202752U1 (en)
UA (1) UA124261C2 (en)
WO (1) WO2017115277A1 (en)
ZA (1) ZA202106216B (en)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
CN110664012A (en) 2013-12-23 2020-01-10 尤尔实验室有限公司 Evaporation apparatus system and method
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
US10238764B2 (en) * 2014-08-19 2019-03-26 Vapium Inc. Aromatherapy vaporization device
US11065402B2 (en) 2014-02-04 2021-07-20 Gseh Holistic, Inc. Aromatherapy vaporization device
KR102574658B1 (en) 2014-12-05 2023-09-05 쥴 랩스, 인크. Calibrated dose control
US10092036B2 (en) * 2015-12-28 2018-10-09 Rai Strategic Holdings, Inc. Aerosol delivery device including a housing and a coupler
JP2018504886A (en) * 2016-01-20 2018-02-22 ジュ, シャオチュンZHU, Xiaochun Ceramic vaporizer and electronic cigarette with ceramic vaporizer
WO2017128038A1 (en) * 2016-01-26 2017-08-03 Xiaochun Zhu Ceramic vaporizer with replaceable e-liquid storage medium and electronic cigarettes having the same
USD861975S1 (en) 2016-02-08 2019-10-01 Juul Labs, Inc. Vaporizer device with cartridges
USD858868S1 (en) 2016-02-08 2019-09-03 Juul Labs, Inc. Vaporizer cartridge
UA125687C2 (en) 2016-02-11 2022-05-18 Джуул Лебз, Інк. Fillable vaporizer cartridge and method of filling
SG10202108578XA (en) 2016-02-11 2021-09-29 Juul Labs Inc Securely attaching cartridges for vaporizer devices
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
CN105901773A (en) * 2016-05-27 2016-08-31 深圳市合元科技有限公司 Electronic cigarette and smoking method thereof
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
US9795169B1 (en) * 2016-07-05 2017-10-24 Xiaochun Zhu Replaceable vaporizer assembly and electronic cigarette having the same
CN106509991B (en) * 2016-10-18 2018-11-13 云南中烟工业有限责任公司 A kind of slidingtype hood-opening device
US10492530B2 (en) * 2016-11-15 2019-12-03 Rai Strategic Holdings, Inc. Two-wire authentication system for an aerosol delivery device
US20180220706A1 (en) * 2017-02-03 2018-08-09 Trisha Furin Vaporizer cover and protector
ES2845139T3 (en) 2017-04-18 2021-07-26 Philip Morris Products Sa Aerosol generator system with overheating prevention
US11621570B2 (en) * 2017-04-18 2023-04-04 Altria Client Services Llc Aerosol-generating systems with overheating prevention
CN117859959A (en) 2017-08-23 2024-04-12 菲利普莫里斯生产公司 Electrically operable aerosol-generating system, aerosol-generating device and charging device
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10505383B2 (en) * 2017-09-19 2019-12-10 Rai Strategic Holdings, Inc. Intelligent charger for an aerosol delivery device
GB201717489D0 (en) 2017-10-24 2017-12-06 Nicoventures Holdings Ltd Electronic aerosol provision device
GB201717486D0 (en) 2017-10-24 2017-12-06 Nicoventures Holdings Ltd Mechanism for hatch of electronic aerosol provision device
GB201717476D0 (en) * 2017-10-24 2017-12-06 British American Tobacco Investments Ltd Aerosol provision system and removable member
GB201717480D0 (en) 2017-10-24 2017-12-06 Nicoventures Holdings Ltd Electronic aerosol provision device with seal
GB201717479D0 (en) 2017-10-24 2017-12-06 Nicoventures Holdings Ltd Hatch section for an electronic aerosol provision device
GB201718462D0 (en) 2017-11-08 2017-12-20 British American Tobacco Investments Ltd Vapour provision systems
US10786010B2 (en) * 2017-12-15 2020-09-29 Rai Strategic Holdings, Inc. Aerosol delivery device with multiple aerosol delivery pathways
USD889035S1 (en) 2018-01-26 2020-06-30 Juul Labs, Inc. Case
US11196274B2 (en) 2018-01-26 2021-12-07 Juul Labs, Inc. Charging case assembly
USD889739S1 (en) 2018-07-12 2020-07-07 Juul Labs, Inc. Case
CN111556716B (en) 2018-01-29 2024-04-30 菲利普莫里斯生产公司 Lighting unit for aerosol-generating system
US11758948B2 (en) 2018-01-29 2023-09-19 Altria Client Services Llc Lighting unit for aerosol-generating systems
USD860523S1 (en) 2018-02-28 2019-09-17 Juul Labs, Inc. Case
JP1710794S (en) 2018-02-28 2022-03-25 Case for vaporizer
GB201805256D0 (en) 2018-03-29 2018-05-16 Nicoventures Trading Ltd Aerosol provision system
GB201805263D0 (en) 2018-03-29 2018-05-16 Nicoventures Trading Ltd Apparatus for generating aerosol from an aerosolisable medium, an article of aerosolisable medium and a method of operating an aerosol generating apparatus
EP3560362A1 (en) * 2018-04-24 2019-10-30 JT International SA Electronic cigarette with protective cover
TW202011840A (en) 2018-05-29 2020-04-01 美商派克斯實驗公司 Vaporizer device with cartridge
US11399566B2 (en) 2018-06-05 2022-08-02 Kt&G Corporation Aerosol generating device
KR102096065B1 (en) * 2018-06-05 2020-04-01 주식회사 케이티앤지 Apparatus for generating aerosols
CN211794315U (en) 2018-07-23 2020-10-30 尤尔实验室有限公司 Cartridge for an evaporator device
US11291249B2 (en) * 2018-10-12 2022-04-05 Rai Strategic Holdings, Inc. Aerosol delivery device with visible indicator
US20200113240A1 (en) * 2018-10-12 2020-04-16 Rai Strategic Holdings, Inc. Vaporization system
CN113365518A (en) 2018-11-05 2021-09-07 尤尔实验室有限公司 Cartridge for an evaporator device
CA3118504A1 (en) 2018-11-08 2020-05-14 Juul Labs, Inc. Vaporizer device with more than one heating element
US11156766B2 (en) 2018-11-19 2021-10-26 Rai Strategic Holdings, Inc. Aerosol delivery device
EP3906074A1 (en) 2018-12-31 2021-11-10 Juul Labs, Inc. Cartridges for vaporizer devices
JP6647435B1 (en) * 2019-01-17 2020-02-14 日本たばこ産業株式会社 Power supply unit for aerosol inhaler
US11576435B2 (en) * 2019-01-18 2023-02-14 Hava Health, inc. Smoking cessation system
CN210203316U (en) * 2019-05-07 2020-03-31 深圳市合元科技有限公司 Cigarette bullet and electron cigarette
CN110150754A (en) * 2019-05-13 2019-08-23 刘团芳 A kind of small cigarette of non smoke
CN113710113A (en) 2019-05-16 2021-11-26 菲利普莫里斯生产公司 Device assembly method and device manufactured according to such method
CN210382634U (en) * 2019-05-22 2020-04-24 深圳市基克纳科技有限公司 USB direct charging sub-atomization device
US11246954B2 (en) * 2019-06-14 2022-02-15 The Procter & Gamble Company Volatile composition cartridge replacement detection
KR20220045227A (en) * 2019-08-21 2022-04-12 센젠 퍼스트 유니온 테크놀러지 캄파니 리미티드 Aerosol-generating devices, charging stations and electrical systems
GB201912477D0 (en) * 2019-08-30 2019-10-16 Nicoventures Trading Ltd Aerosol provision systems
KR102390421B1 (en) * 2019-10-11 2022-04-25 주식회사 케이티앤지 Aerosol generating device and method for showing the remaining amount of liquid composition using light source
USD943159S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Component for a vaporizer cartridge
USD943160S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer device
USD943161S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer device
USD943158S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer cartridge
EP4179893A4 (en) * 2020-07-09 2024-04-03 Japan Tobacco Inc. Body unit for aerosol generation device, aerosol generation device, and non-combustion-type inhaler
EP4179894A4 (en) * 2020-07-09 2024-03-27 Japan Tobacco Inc. Main body unit of aerosol generation device, aerosol generation device, and non-combustion-type inhaler
WO2022009360A1 (en) * 2020-07-09 2022-01-13 日本たばこ産業株式会社 Body unit for aerosol generation device, aerosol generation device, and non-combustion-type suction device
WO2022009364A1 (en) * 2020-07-09 2022-01-13 日本たばこ産業株式会社 Body unit of aerosol generation device, aerosol generation device, and non-combustion-type inhaler
WO2022009385A1 (en) * 2020-07-09 2022-01-13 日本たばこ産業株式会社 Main body unit for aerosol generation device, aerosol generation device, and non-combustion-type inhaler
WO2022009362A1 (en) * 2020-07-09 2022-01-13 日本たばこ産業株式会社 Main body unit for aerosol generation device, aerosol generation device, and non-combustion-type inhaler
US11696602B2 (en) 2020-08-04 2023-07-11 Altria Client Services Llc Heat-not-burn (HNB) aerosol-generating devices with compression assembly
JP7316435B2 (en) * 2020-09-02 2023-07-27 ケーティー アンド ジー コーポレイション AEROSOL SUPPLY DEVICE AND AEROSOL GENERATOR WITH SAME
EP4216739A1 (en) 2020-09-28 2023-08-02 JT International S.A. Aerosol-generating device and aerosol-generating article
GB202018301D0 (en) * 2020-11-20 2021-01-06 Nicoventures Holdings Ltd Aerosol provision device
JPWO2022137426A1 (en) * 2020-12-24 2022-06-30
KR102586970B1 (en) * 2021-01-22 2023-10-06 주식회사 케이티앤지 Device for generating aerosol
KR102586969B1 (en) * 2021-02-08 2023-10-06 주식회사 케이티앤지 Aerosol generating device
KR102623265B1 (en) * 2021-03-17 2024-01-09 주식회사 케이티앤지 Device for generating aerosol
KR20240006048A (en) 2021-05-10 2024-01-12 니뽄 다바코 산교 가부시키가이샤 Power unit of aerosol generating device
CN117279533A (en) 2021-05-10 2023-12-22 日本烟草产业株式会社 Power supply unit for aerosol-generating device
KR102545834B1 (en) * 2021-06-25 2023-06-20 주식회사 케이티앤지 Cartridges and device for generating aerosol including the same
CN115968324A (en) 2021-08-13 2023-04-14 韩国烟草人参公社 Body for an aerosol-generating device and aerosol-generating device comprising the body
CN113598430B (en) * 2021-08-19 2024-08-23 浙江中烟工业有限责任公司 Aerosol generating device and aerosol generating system convenient for power supply heat dissipation
CN118369000A (en) 2021-12-10 2024-07-19 日本烟草产业株式会社 Power supply unit for aerosol-generating device
US20230189881A1 (en) 2021-12-20 2023-06-22 Rai Strategic Holdings, Inc. Aerosol delivery device with improved sealing arrangement
CN114304717A (en) * 2022-02-23 2022-04-12 云南景立新材料科技有限公司 Method for generating aerosol by adopting ultrafine powder
JP2024533023A (en) * 2022-08-10 2024-09-12 ケーティー アンド ジー コーポレイション Aerosol generating device including a buffer structure

Family Cites Families (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2057353A (en) 1936-10-13 Vaporizing unit fob therapeutic
US1514682A (en) 1923-05-03 1924-11-11 Wilson Harold Electric vaporizer
US1771366A (en) 1926-10-30 1930-07-22 R W Cramer & Company Inc Medicating apparatus
US2104266A (en) 1935-09-23 1938-01-04 William J Mccormick Means for the production and inhalation of tobacco fumes
US3200819A (en) 1963-04-17 1965-08-17 Herbert A Gilbert Smokeless non-tobacco cigarette
US3479561A (en) 1967-09-25 1969-11-18 John L Janning Breath operated device
US4284089A (en) 1978-10-02 1981-08-18 Ray Jon P Simulated smoking device
US4303083A (en) 1980-10-10 1981-12-01 Burruss Jr Robert P Device for evaporation and inhalation of volatile compounds and medications
US4793365A (en) 1984-09-14 1988-12-27 R. J. Reynolds Tobacco Company Smoking article
SE8405479D0 (en) 1984-11-01 1984-11-01 Nilsson Sven Erik WANT TO ADMINISTER VOCABULARY, PHYSIOLOGY, ACTIVE SUBJECTS AND DEVICE FOR THIS
US4735217A (en) 1986-08-21 1988-04-05 The Procter & Gamble Company Dosing device to provide vaporized medicament to the lungs as a fine aerosol
GB8713645D0 (en) 1987-06-11 1987-07-15 Imp Tobacco Ltd Smoking device
US5019122A (en) 1987-08-21 1991-05-28 R. J. Reynolds Tobacco Company Smoking article with an enclosed heat conductive capsule containing an aerosol forming substance
US4947874A (en) 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Smoking articles utilizing electrical energy
US4947875A (en) 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Flavor delivery articles utilizing electrical energy
US4922901A (en) 1988-09-08 1990-05-08 R. J. Reynolds Tobacco Company Drug delivery articles utilizing electrical energy
EP0358114A3 (en) * 1988-09-08 1990-11-14 R.J. Reynolds Tobacco Company Aerosol delivery articles utilizing electrical energy
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US4945931A (en) 1989-07-14 1990-08-07 Brown & Williamson Tobacco Corporation Simulated smoking device
US5154192A (en) 1989-07-18 1992-10-13 Philip Morris Incorporated Thermal indicators for smoking articles and the method of application of the thermal indicators to the smoking article
US5101839A (en) 1990-08-15 1992-04-07 R. J. Reynolds Tobacco Company Cigarette and smokable filler material therefor
US5093894A (en) 1989-12-01 1992-03-03 Philip Morris Incorporated Electrically-powered linear heating element
US5060671A (en) 1989-12-01 1991-10-29 Philip Morris Incorporated Flavor generating article
US5408574A (en) 1989-12-01 1995-04-18 Philip Morris Incorporated Flat ceramic heater having discrete heating zones
US5144962A (en) 1989-12-01 1992-09-08 Philip Morris Incorporated Flavor-delivery article
US5224498A (en) 1989-12-01 1993-07-06 Philip Morris Incorporated Electrically-powered heating element
US5042510A (en) 1990-01-08 1991-08-27 Curtiss Philip F Simulated cigarette
US5591368A (en) * 1991-03-11 1997-01-07 Philip Morris Incorporated Heater for use in an electrical smoking system
US5573692A (en) 1991-03-11 1996-11-12 Philip Morris Incorporated Platinum heater for electrical smoking article having ohmic contact
US5530225A (en) 1991-03-11 1996-06-25 Philip Morris Incorporated Interdigitated cylindrical heater for use in an electrical smoking article
US5505214A (en) * 1991-03-11 1996-04-09 Philip Morris Incorporated Electrical smoking article and method for making same
US5388594A (en) * 1991-03-11 1995-02-14 Philip Morris Incorporated Electrical smoking system for delivering flavors and method for making same
US5726421A (en) 1991-03-11 1998-03-10 Philip Morris Incorporated Protective and cigarette ejection system for an electrical smoking system
US5665262A (en) 1991-03-11 1997-09-09 Philip Morris Incorporated Tubular heater for use in an electrical smoking article
US5249586A (en) 1991-03-11 1993-10-05 Philip Morris Incorporated Electrical smoking
US5261424A (en) 1991-05-31 1993-11-16 Philip Morris Incorporated Control device for flavor-generating article
US5228460A (en) 1991-12-12 1993-07-20 Philip Morris Incorporated Low mass radial array heater for electrical smoking article
CA2527939C (en) 1992-03-25 2008-07-15 Japan Tobacco Inc. Apparatus for manufacturing components for smoking articles
US5353813A (en) 1992-08-19 1994-10-11 Philip Morris Incorporated Reinforced carbon heater with discrete heating zones
US5322075A (en) 1992-09-10 1994-06-21 Philip Morris Incorporated Heater for an electric flavor-generating article
US5498850A (en) 1992-09-11 1996-03-12 Philip Morris Incorporated Semiconductor electrical heater and method for making same
US5498855A (en) 1992-09-11 1996-03-12 Philip Morris Incorporated Electrically powered ceramic composite heater
US5369723A (en) 1992-09-11 1994-11-29 Philip Morris Incorporated Tobacco flavor unit for electrical smoking article comprising fibrous mat
US5441060A (en) 1993-02-08 1995-08-15 Duke University Dry powder delivery system
US5372148A (en) 1993-02-24 1994-12-13 Philip Morris Incorporated Method and apparatus for controlling the supply of energy to a heating load in a smoking article
US5468936A (en) 1993-03-23 1995-11-21 Philip Morris Incorporated Heater having a multiple-layer ceramic substrate and method of fabrication
US5666977A (en) 1993-06-10 1997-09-16 Philip Morris Incorporated Electrical smoking article using liquid tobacco flavor medium delivery system
DE69430196T2 (en) 1993-06-29 2002-10-31 Ponwell Enterprises Ltd., Hongkong DONOR
US5388574A (en) 1993-07-29 1995-02-14 Ingebrethsen; Bradley J. Aerosol delivery article
CH686872A5 (en) 1993-08-09 1996-07-31 Disetronic Ag Medical Inhalationsgeraet.
DE4328243C1 (en) 1993-08-19 1995-03-09 Sven Mielordt Smoke or inhalation device
IE72523B1 (en) 1994-03-10 1997-04-23 Elan Med Tech Nicotine oral delivery device
US5649554A (en) 1995-10-16 1997-07-22 Philip Morris Incorporated Electrical lighter with a rotatable tobacco supply
US5564442A (en) * 1995-11-22 1996-10-15 Angus Collingwood MacDonald Battery powered nicotine vaporizer
US5743251A (en) 1996-05-15 1998-04-28 Philip Morris Incorporated Aerosol and a method and apparatus for generating an aerosol
CN1106812C (en) 1996-06-17 2003-04-30 日本烟业产业株式会社 Flavor producing article
CN1113621C (en) 1996-06-17 2003-07-09 日本烟业产业株式会社 Flavor generating product and flavor generating tool
US6089857A (en) 1996-06-21 2000-07-18 Japan Tobacco, Inc. Heater for generating flavor and flavor generation appliance
US5934289A (en) 1996-10-22 1999-08-10 Philip Morris Incorporated Electronic smoking system
US6040560A (en) 1996-10-22 2000-03-21 Philip Morris Incorporated Power controller and method of operating an electrical smoking system
US5878752A (en) 1996-11-25 1999-03-09 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
US5865186A (en) 1997-05-21 1999-02-02 Volsey, Ii; Jack J Simulated heated cigarette
GB9712815D0 (en) 1997-06-19 1997-08-20 British American Tobacco Co Smoking article and smoking material therefor
KR100289448B1 (en) 1997-07-23 2001-05-02 미즈노 마사루 Flavor generator
US5967148A (en) 1997-10-16 1999-10-19 Philip Morris Incorporated Lighter actuation system
US5954979A (en) 1997-10-16 1999-09-21 Philip Morris Incorporated Heater fixture of an electrical smoking system
EP0923957B1 (en) 1997-11-19 2001-10-31 Microflow Engineering SA Nozzle body and liquid droplet spray device for an inhaler suitable for respiratory therapies
CN1044314C (en) 1997-12-01 1999-07-28 蒲邯名 Healthy cigarette
US6164287A (en) 1998-06-10 2000-12-26 R. J. Reynolds Tobacco Company Smoking method
US6095153A (en) 1998-06-19 2000-08-01 Kessler; Stephen B. Vaporization of volatile materials
US6234167B1 (en) * 1998-10-14 2001-05-22 Chrysalis Technologies, Incorporated Aerosol generator and methods of making and using an aerosol generator
US6053176A (en) 1999-02-23 2000-04-25 Philip Morris Incorporated Heater and method for efficiently generating an aerosol from an indexing substrate
US6196218B1 (en) 1999-02-24 2001-03-06 Ponwell Enterprises Ltd Piezo inhaler
AU777249B2 (en) 1999-09-22 2004-10-07 Microcoating Technologies, Inc. Liquid atomization methods and devices
WO2001070054A1 (en) 2000-03-23 2001-09-27 Philip Morris Products Inc. Electrical smoking system and method
US7559324B2 (en) 2000-06-21 2009-07-14 Fisher & Paykel Healthcare Limited Conduit with heated wick
US6536442B2 (en) 2000-12-11 2003-03-25 Brown & Williamson Tobacco Corporation Lighter integral with a smoking article
ATE275821T1 (en) 2001-04-05 2004-10-15 C T R Consultoria Tecnica E Re DEVICE FOR VAPORIZING VOLATILE SUBSTANCES, IN PARTICULAR INSECTICIDES AND/OR FRAGRANCES
CA2446904A1 (en) * 2001-05-24 2003-04-03 Alexza Molecular Delivery Corporation Delivery of drug esters through an inhalation route
US6652378B2 (en) 2001-06-01 2003-11-25 Igt Gaming machines and systems offering simultaneous play of multiple games and methods of gaming
US6598607B2 (en) 2001-10-24 2003-07-29 Brown & Williamson Tobacco Corporation Non-combustible smoking device and fuel element
EP1468618B1 (en) 2001-12-28 2008-07-09 Japan Tobacco Inc. Smoking implement
US6772756B2 (en) 2002-02-09 2004-08-10 Advanced Inhalation Revolutions Inc. Method and system for vaporization of a substance
US6615840B1 (en) 2002-02-15 2003-09-09 Philip Morris Incorporated Electrical smoking system and method
WO2003095005A1 (en) 2002-05-10 2003-11-20 Chrysalis Technologies Incorporated Aerosol generator for drug formulation and methods of generating aerosol
US6803545B2 (en) 2002-06-05 2004-10-12 Philip Morris Incorporated Electrically heated smoking system and methods for supplying electrical power from a lithium ion power source
WO2004022128A2 (en) 2002-09-06 2004-03-18 Chrysalis Technologies Incorporated Liquid aerosol formulations and aerosol generating devices and methods for generating aerosols
WO2004041007A2 (en) 2002-10-31 2004-05-21 Philip Morris Products S.A. Electrically heated cigarette including controlled-release flavoring
US6810883B2 (en) 2002-11-08 2004-11-02 Philip Morris Usa Inc. Electrically heated cigarette smoking system with internal manifolding for puff detection
US6803550B2 (en) * 2003-01-30 2004-10-12 Philip Morris Usa Inc. Inductive cleaning system for removing condensates from electronic smoking systems
CN100381082C (en) 2003-03-14 2008-04-16 韩力 Noncombustible electronic atomized cigarette
CN100381083C (en) 2003-04-29 2008-04-16 韩力 Electronic nonflammable spraying cigarette
US7293565B2 (en) 2003-06-30 2007-11-13 Philip Morris Usa Inc. Electrically heated cigarette smoking system
JP2005034021A (en) 2003-07-17 2005-02-10 Seiko Epson Corp Electronic cigarette
CN2719043Y (en) 2004-04-14 2005-08-24 韩力 Atomized electronic cigarette
US7540286B2 (en) 2004-06-03 2009-06-02 Alexza Pharmaceuticals, Inc. Multiple dose condensation aerosol devices and methods of forming condensation aerosols
US7775459B2 (en) 2004-06-17 2010-08-17 S.C. Johnson & Son, Inc. Liquid atomizing device with reduced settling of atomized liquid droplets
US20060016453A1 (en) 2004-07-22 2006-01-26 Kim In Y Cigarette substitute device
EP1785155A1 (en) 2004-08-02 2007-05-16 Canon Kabushiki Kaisha Chemical liquid cartridge and inhalation device using the same
DE102004061883A1 (en) 2004-12-22 2006-07-06 Vishay Electronic Gmbh Heating device for inhalation device, inhaler and heating method
CA2595831C (en) 2005-02-02 2013-08-06 Oglesby & Butler Research & Development Limited A device for vaporising vaporisable matter
US9675109B2 (en) 2005-07-19 2017-06-13 J. T. International Sa Method and system for vaporization of a substance
DE102005034169B4 (en) 2005-07-21 2008-05-29 NjoyNic Ltd., Glen Parva Smoke-free cigarette
JPWO2007013144A1 (en) 2005-07-27 2009-02-05 株式会社ルネサステクノロジ Optical disc apparatus and semiconductor integrated circuit
US20070215167A1 (en) 2006-03-16 2007-09-20 Evon Llewellyn Crooks Smoking article
US8658089B2 (en) * 2005-08-04 2014-02-25 Saban Ventures Pty Limited Membrane concentrator
US20070102013A1 (en) 2005-09-30 2007-05-10 Philip Morris Usa Inc. Electrical smoking system
US20070074734A1 (en) 2005-09-30 2007-04-05 Philip Morris Usa Inc. Smokeless cigarette system
WO2007078273A1 (en) 2005-12-22 2007-07-12 Augite Incorporation No-tar electronic smoking utensils
FR2895644B1 (en) 2006-01-03 2008-05-16 Didier Gerard Martzel SUBSTITUTE OF CIGARETTE
DE102006004484A1 (en) 2006-01-29 2007-08-09 Karsten Schmidt Re-usable part for smoke-free cigarette, has filament preheated by attaching filter, where filament is brought to operating temperature, when pulling on entire construction of cigarette
US8371310B2 (en) * 2006-02-17 2013-02-12 Jake Brenneise Portable vaporizing device and method for inhalation and/or aromatherapy without combustion
CN201067079Y (en) 2006-05-16 2008-06-04 韩力 Simulation aerosol inhaler
JP4895388B2 (en) 2006-07-25 2012-03-14 キヤノン株式会社 Drug delivery device
US7734159B2 (en) 2006-08-31 2010-06-08 S.C. Johnson & Son, Inc. Dispersion device for dispersing multiple volatile materials
DE102006041042B4 (en) 2006-09-01 2009-06-25 W + S Wagner + Söhne Mess- und Informationstechnik GmbH & Co.KG Device for dispensing a nicotine-containing aerosol
US20100024834A1 (en) 2006-09-05 2010-02-04 Oglesby & Butler Research & Development Limited Container comprising vaporisable matter for use in a vaporising device for vaporising a vaporisable constituent thereof
DE102007026979A1 (en) 2006-10-06 2008-04-10 Friedrich Siller inhalator
US7726320B2 (en) 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
CN101626700B (en) 2006-11-06 2011-08-03 坚石Sci有限责任公司 Mechanically regulated vaporization pipe
CN200966824Y (en) 2006-11-10 2007-10-31 韩力 Inhalation atomizing device
CN100536951C (en) 2006-11-11 2009-09-09 达福堡国际有限公司 Device for feeding drug into pulmones
CN200997909Y (en) 2006-12-15 2008-01-02 王玉民 Disposable electric purified cigarette
US7845359B2 (en) 2007-03-22 2010-12-07 Pierre Denain Artificial smoke cigarette
US20080257367A1 (en) 2007-04-23 2008-10-23 Greg Paterno Electronic evaporable substance delivery device and method
EP1989946A1 (en) 2007-05-11 2008-11-12 Rauchless Inc. Smoking device, charging means and method of using it
WO2009001082A1 (en) 2007-06-25 2008-12-31 Kind Consumer Limited A simulated cigarette device
CN100593982C (en) 2007-09-07 2010-03-17 中国科学院理化技术研究所 Electronic cigarette with nanometer scale hyperfine space heating atomization function
US8123082B2 (en) 2008-01-22 2012-02-28 McNeil-AB Hand-held dispensing device
EP2260733B8 (en) 2008-02-29 2018-12-19 Yunqiang Xiu Electronic simulated cigarette and smoking set comprising said electronic simulated cigarette
EP2100525A1 (en) 2008-03-14 2009-09-16 Philip Morris Products S.A. Electrically heated aerosol generating system and method
EP2110034A1 (en) 2008-04-17 2009-10-21 Philip Morris Products S.A. An electrically heated smoking system
RU2360583C1 (en) 2008-04-28 2009-07-10 Владимир Николаевич Урцев Tobacco pipe for smokeless smoking
EP2113178A1 (en) * 2008-04-30 2009-11-04 Philip Morris Products S.A. An electrically heated smoking system having a liquid storage portion
US20090283103A1 (en) 2008-05-13 2009-11-19 Nielsen Michael D Electronic vaporizing devices and docking stations
EP2443946B1 (en) 2008-06-27 2014-11-05 Fontem Holdings 2 B.V. An electronic substitute cigarette
EP2143346A1 (en) 2008-07-08 2010-01-13 Philip Morris Products S.A. A flow sensor system
EP2304834A4 (en) 2008-07-18 2014-03-19 Flexel Llc Thin flexible rechargeable electrochemical energy cell and method of fabrication
AT507187B1 (en) * 2008-10-23 2010-03-15 Helmut Dr Buchberger INHALER
CA2641869A1 (en) 2008-11-06 2010-05-06 Hao Ran Xia Environmental friendly, non-combustible, atomizing electronic cigarette having the function of a cigarette substitute
EP2201850A1 (en) 2008-12-24 2010-06-30 Philip Morris Products S.A. An article including identification information for use in an electrically heated smoking system
CN201379072Y (en) 2009-02-11 2010-01-13 韩力 Improved atomizing electronic cigarette
CN101518361B (en) 2009-03-24 2010-10-06 北京格林世界科技发展有限公司 High-simulation electronic cigarette
CN201683029U (en) 2009-04-15 2010-12-29 中国科学院理化技术研究所 Heating atomization electronic cigarette adopting capacitor for power supply
GB2469850A (en) 2009-04-30 2010-11-03 British American Tobacco Co Volatilization device
EP2253233A1 (en) 2009-05-21 2010-11-24 Philip Morris Products S.A. An electrically heated smoking system
CN101606758B (en) 2009-07-14 2011-04-13 方晓林 Electronic cigarette
ITNA20090023U1 (en) 2009-07-21 2011-01-22 Rml S R L ELECTRONIC CIGARETTE WITH ATOMISER INCORPORATED IN THE FAILED FILTER.
DE202009010400U1 (en) 2009-07-31 2009-11-12 Asch, Werner, Dipl.-Biol. Control and control of electronic inhalation smoke machines
US9254002B2 (en) 2009-08-17 2016-02-09 Chong Corporation Tobacco solution for vaporized inhalation
WO2011022431A1 (en) 2009-08-17 2011-02-24 Chong Corporation Vaporized tobacco product and methods of use
PL2485792T3 (en) 2009-10-09 2018-05-30 Philip Morris Products S.A. Aerosol generator including multi-component wick
EP2319334A1 (en) 2009-10-27 2011-05-11 Philip Morris Products S.A. A smoking system having a liquid storage portion
EP2316286A1 (en) 2009-10-29 2011-05-04 Philip Morris Products S.A. An electrically heated smoking system with improved heater
EP2327318A1 (en) 2009-11-27 2011-06-01 Philip Morris Products S.A. An electrically heated smoking system with internal or external heater
EP2340730A1 (en) 2009-12-30 2011-07-06 Philip Morris Products S.A. A shaped heater for an aerosol generating system
EP2340729A1 (en) 2009-12-30 2011-07-06 Philip Morris Products S.A. An improved heater for an electrically heated aerosol generating system
CA2797975C (en) 2010-04-30 2017-06-06 Blec, Llc Electronic smoking device
US20120042885A1 (en) 2010-08-19 2012-02-23 James Richard Stone Segmented smoking article with monolithic substrate
US20110277780A1 (en) 2010-05-15 2011-11-17 Nathan Andrew Terry Personal vaporizing inhaler with mouthpiece cover
US10159278B2 (en) 2010-05-15 2018-12-25 Rai Strategic Holdings, Inc. Assembly directed airflow
US8757147B2 (en) 2010-05-15 2014-06-24 Minusa Holdings Llc Personal vaporizing inhaler with internal light source
US9259035B2 (en) 2010-05-15 2016-02-16 R. J. Reynolds Tobacco Company Solderless personal vaporizing inhaler
EP4397344A3 (en) 2010-08-24 2024-10-02 JT International SA Inhalation device including substance usage controls
US8499766B1 (en) 2010-09-15 2013-08-06 Kyle D. Newton Electronic cigarette with function illuminator
US9301547B2 (en) 2010-11-19 2016-04-05 Huizhou Kimree Technology Co., Ltd. Shenzhen Branch Electronic cigarette, electronic cigarette smoke capsule and atomization device thereof
EP2454956A1 (en) * 2010-11-19 2012-05-23 Philip Morris Products S.A. An electrically heated smoking system comprising at least two units
KR20120058138A (en) 2010-11-29 2012-06-07 삼성전자주식회사 Micro heater and micro heater array
EP2460423A1 (en) 2010-12-03 2012-06-06 Philip Morris Products S.A. An electrically heated aerosol generating system having improved heater control
EP2460424A1 (en) 2010-12-03 2012-06-06 Philip Morris Products S.A. An aerosol generating system with leakage prevention
KR101057774B1 (en) 2010-12-13 2011-08-19 신종수 Electronic cigarette
EP2468118A1 (en) 2010-12-24 2012-06-27 Philip Morris Products S.A. An aerosol generating system with means for disabling a consumable
WO2012100523A1 (en) 2011-01-27 2012-08-02 Tu Martin Multi-functional inhalation type electronic smoke generator with memory device
AT510837B1 (en) 2011-07-27 2012-07-15 Helmut Dr Buchberger INHALATORKOMPONENTE
WO2012114322A1 (en) 2011-02-24 2012-08-30 Oglesby & Butler Research & Development Limited A vaporising device
US20120231464A1 (en) 2011-03-10 2012-09-13 Instrument Technology Research Center, National Applied Research Laboratories Heatable Droplet Device
WO2012142190A1 (en) 2011-04-11 2012-10-18 Visionary Road Portable vaporizer
US20120318882A1 (en) 2011-06-16 2012-12-20 Vapor Corp. Vapor delivery devices
US8528569B1 (en) 2011-06-28 2013-09-10 Kyle D. Newton Electronic cigarette with liquid reservoir
CN102349699B (en) 2011-07-04 2013-07-03 郑俊祥 Preparation method for electronic cigarette liquid
KR101285225B1 (en) 2011-07-21 2013-07-11 신종수 Electronic cigarette
US9078473B2 (en) 2011-08-09 2015-07-14 R.J. Reynolds Tobacco Company Smoking articles and use thereof for yielding inhalation materials
US20160262459A1 (en) * 2011-08-16 2016-09-15 James Monsees Electronic vaporization device
EA037480B1 (en) * 2011-08-16 2021-04-01 Джуул Лэбз, Инк. Low temperature electronic vaporization device
US9351522B2 (en) 2011-09-29 2016-05-31 Robert Safari Cartomizer e-cigarette
US9205220B2 (en) 2011-09-30 2015-12-08 Carefusion 207, Inc. Fluted heater wire
MY154105A (en) 2011-12-15 2015-04-30 Foo Kit Seng An electronic vaporisation cigarette
LT2779851T (en) 2012-01-03 2016-11-25 Philip Morris Products S.A. Aerosol-generating device and system
KR20140109455A (en) 2012-01-03 2014-09-15 필립모리스 프로덕츠 에스.에이. Power supply system for portable aerosol-generating device
US9854839B2 (en) * 2012-01-31 2018-01-02 Altria Client Services Llc Electronic vaping device and method
US20130255702A1 (en) 2012-03-28 2013-10-03 R.J. Reynolds Tobacco Company Smoking article incorporating a conductive substrate
CN104254258B (en) * 2012-04-12 2018-11-30 Jt国际公司 aerosol generating device
MX349523B (en) 2012-04-18 2017-08-01 Fontem Holdings 1 Bv Electronic cigarette.
US20130340775A1 (en) 2012-04-25 2013-12-26 Bernard Juster Application development for a network with an electronic cigarette
US11517042B2 (en) 2012-04-25 2022-12-06 Altria Client Services Llc Digital marketing applications for electronic cigarette users
GB2502053B (en) * 2012-05-14 2014-09-24 Nicoventures Holdings Ltd Electronic smoking device
CN204426680U (en) * 2012-06-20 2015-07-01 惠州市吉瑞科技有限公司 Electronic cigarette packet
US10004259B2 (en) * 2012-06-28 2018-06-26 Rai Strategic Holdings, Inc. Reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article
EP2701268A1 (en) * 2012-08-24 2014-02-26 Philip Morris Products S.A. Portable electronic system including charging device and method of charging a secondary battery
US8881737B2 (en) 2012-09-04 2014-11-11 R.J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
US8910639B2 (en) 2012-09-05 2014-12-16 R. J. Reynolds Tobacco Company Single-use connector and cartridge for a smoking article and related method
CN102835737B (en) 2012-09-28 2015-07-01 深圳市合元科技有限公司 Electronic cigarette case
CN103960781A (en) 2013-09-29 2014-08-06 深圳市麦克韦尔科技有限公司 Electronic cigarette
US10117460B2 (en) 2012-10-08 2018-11-06 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
US9854841B2 (en) 2012-10-08 2018-01-02 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
US10058122B2 (en) 2012-10-25 2018-08-28 Matthew Steingraber Electronic cigarette
US9210738B2 (en) 2012-12-07 2015-12-08 R.J. Reynolds Tobacco Company Apparatus and method for winding a substantially continuous heating element about a substantially continuous wick
US8910640B2 (en) 2013-01-30 2014-12-16 R.J. Reynolds Tobacco Company Wick suitable for use in an electronic smoking article
CN104026742A (en) * 2013-03-05 2014-09-10 向智勇 Heating control method and device for electronic cigarette
US10031183B2 (en) 2013-03-07 2018-07-24 Rai Strategic Holdings, Inc. Spent cartridge detection method and system for an electronic smoking article
US20140261486A1 (en) 2013-03-12 2014-09-18 R.J. Reynolds Tobacco Company Electronic smoking article having a vapor-enhancing apparatus and associated method
US9277770B2 (en) 2013-03-14 2016-03-08 R. J. Reynolds Tobacco Company Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method
US20140261487A1 (en) 2013-03-14 2014-09-18 R. J. Reynolds Tobacco Company Electronic smoking article with improved storage and transport of aerosol precursor compositions
US9491974B2 (en) 2013-03-15 2016-11-15 Rai Strategic Holdings, Inc. Heating elements formed from a sheet of a material and inputs and methods for the production of atomizers
US9423152B2 (en) 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US9220302B2 (en) 2013-03-15 2015-12-29 R.J. Reynolds Tobacco Company Cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article
US9609893B2 (en) 2013-03-15 2017-04-04 Rai Strategic Holdings, Inc. Cartridge and control body of an aerosol delivery device including anti-rotation mechanism and related method
KR102305865B1 (en) * 2013-03-15 2021-09-27 레이 스트라티직 홀딩스, 인크. Heating elements formed from a sheet of a material, inputs and methods for the production of atomizers, cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article
US9723876B2 (en) * 2013-03-15 2017-08-08 Altria Client Services Llc Electronic smoking article
GB2514758B (en) 2013-03-26 2015-06-24 Kind Consumer Ltd A Pressurised Refill Canister with an Outlet Valve
US10036548B2 (en) * 2013-04-07 2018-07-31 Huizhou Kimree Technology Co., Ltd., Shenzhen Branch Electronic-cigarette box, LED light guide piece and box body
CA3208137A1 (en) 2013-05-06 2014-11-13 Juul Labs, Inc. Nicotine salt formulations for aerosol devices and methods thereof
US20140338685A1 (en) * 2013-05-20 2014-11-20 Sis Resources, Ltd. Burning prediction and communications for an electronic cigarette
BR112015026971B1 (en) * 2013-05-21 2021-02-17 Philip Morris Products S.A. cartridge, system and method of delivery to an electrically heated aerosol user containing medicine
WO2014195687A1 (en) 2013-06-04 2014-12-11 Nicoventures Holdings Limited Container
ES2799434T3 (en) 2013-06-04 2020-12-17 Nicoventures Holdings Ltd Container
GB2514893B (en) 2013-06-04 2017-12-06 Nicoventures Holdings Ltd Container
EP3039974B1 (en) * 2013-09-30 2018-04-18 Japan Tobacco, Inc. Non-combusting flavor inhaler
US9820509B2 (en) * 2013-10-10 2017-11-21 Kyle D. Newton Electronic cigarette with encoded cartridge
US10292424B2 (en) 2013-10-31 2019-05-21 Rai Strategic Holdings, Inc. Aerosol delivery device including a pressure-based aerosol delivery mechanism
IL279066B (en) * 2013-12-03 2022-09-01 Philip Morris Products Sa Aerosol-generating article and electrically operated system incorporating a taggant
KR101656061B1 (en) 2013-12-18 2016-09-22 신종수 Electronic cigarette
US10076139B2 (en) * 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
CN110664012A (en) * 2013-12-23 2020-01-10 尤尔实验室有限公司 Evaporation apparatus system and method
US9197726B2 (en) 2014-01-29 2015-11-24 Vaportronix, LLC Combination mobile phone case and electronic cigarette
US20150216232A1 (en) 2014-02-03 2015-08-06 R.J. Reynolds Tobacco Company Aerosol Delivery Device Comprising Multiple Outer Bodies and Related Assembly Method
WO2015120589A1 (en) * 2014-02-12 2015-08-20 吉瑞高新科技股份有限公司 Electronic cigarette
WO2015123832A1 (en) * 2014-02-19 2015-08-27 吉瑞高新科技股份有限公司 Electronic cigarette and method for assembling same
CN203723451U (en) * 2014-02-20 2014-07-23 刘秋明 Electronic cigarette
USD761999S1 (en) * 2014-02-27 2016-07-19 Huizhou Kimree Technology Co., Ltd. Shenzhen Branch Electronic cigarette
US9839238B2 (en) 2014-02-28 2017-12-12 Rai Strategic Holdings, Inc. Control body for an electronic smoking article
US20170045994A1 (en) * 2014-02-28 2017-02-16 Beyond Twenty Ltd. Electronic vaporiser system
US20160366946A1 (en) 2014-02-28 2016-12-22 Beyond Twenty Ltd. Electronic vaporiser system
GB201413032D0 (en) 2014-02-28 2014-09-03 Beyond Twenty Ltd Beyond 7
US11696604B2 (en) 2014-03-13 2023-07-11 Rai Strategic Holdings, Inc. Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
US20150257451A1 (en) * 2014-03-13 2015-09-17 Terry Brannon Vapor device with switch assembly
GB2524295B (en) 2014-03-19 2018-10-24 Kind Consumer Ltd An inhaler
GB2524293B (en) * 2014-03-19 2017-12-06 Kind Consumer Ltd An inhaler
CN114209106B (en) * 2014-03-19 2024-09-13 菲利普莫里斯生产公司 Monolithic plane with electrical contacts and method for manufacturing the same
WO2015149220A1 (en) * 2014-03-31 2015-10-08 吉瑞高新科技股份有限公司 Electronic cigarette
WO2015149332A1 (en) 2014-04-03 2015-10-08 吉瑞高新科技股份有限公司 Electronic cigarette
EP2941970B1 (en) * 2014-04-28 2021-03-10 Shenzhen First Union Technology Co., Ltd. Aerosol inhaling device
US20150313282A1 (en) * 2014-05-01 2015-11-05 R.J. Reynolds Tobacco Company Electronic smoking article
ES2745200T3 (en) 2014-05-02 2020-02-28 Japan Tobacco Inc Non-combustion type flavor inhaler and computer readable medium
WO2015192084A1 (en) * 2014-06-14 2015-12-17 Evolv, Llc Electronic vaporizer having temperature sensing and limit
US9913493B2 (en) 2014-08-21 2018-03-13 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
US10624391B2 (en) * 2014-09-26 2020-04-21 Shenzhen Smoore Technology Limited Inhaler, atomizing assembly and atomizing core
JP6533582B2 (en) * 2014-10-02 2019-06-19 ディジレッツ, インコーポレイテッド Disposable tank type electronic cigarette, manufacturing method and use method
KR101696363B1 (en) 2014-12-16 2017-01-13 신종수 Electronic Cigarette
CN204313306U (en) * 2014-12-18 2015-05-06 杨宗文 There is the portable cigarette box lighter of interior compartmentalized design
CN204444245U (en) * 2015-01-05 2015-07-08 深圳市合元科技有限公司 Removable atomization unit and the atomizer and the electronic cigarette that comprise this atomization unit
CN204409587U (en) * 2015-01-15 2015-06-24 李辉 There is the electronic cigarette of transparent windows
CN204560959U (en) * 2015-01-26 2015-08-19 东莞市福皇五金有限公司 A kind of Novel electric cigarette
CN105077594A (en) * 2015-02-15 2015-11-25 卓尔悦(常州)电子科技有限公司 Electronic cigarette
CN104770878B (en) * 2015-03-23 2017-11-24 云南中烟工业有限责任公司 A kind of electric heating type cigarette smoking device with electronic cigarette pumping function
US20160338407A1 (en) * 2015-05-18 2016-11-24 Andrew Kerdemelidis Programmable vaporizer device and method
CN204888730U (en) * 2015-07-01 2015-12-23 张雷 Pressure regulating formula electron cigarette
US10792685B2 (en) * 2015-10-08 2020-10-06 Fontem Holdings 1 B.V. Liquid supply for an electronic smoking device
US10058125B2 (en) * 2015-10-13 2018-08-28 Rai Strategic Holdings, Inc. Method for assembling an aerosol delivery device
US10201187B2 (en) * 2015-11-02 2019-02-12 Rai Strategic Holdings, Inc. User interface for an aerosol delivery device
US20170119044A1 (en) * 2015-11-03 2017-05-04 Hydra Vapor Tech, Llc Vaporizer case
US10092036B2 (en) * 2015-12-28 2018-10-09 Rai Strategic Holdings, Inc. Aerosol delivery device including a housing and a coupler
US20170181474A1 (en) * 2015-12-28 2017-06-29 Lunatech, Llc Methods and Systems For Substance Reduction Via Electronic Vapor Device Delivery
US10757976B2 (en) * 2016-02-12 2020-09-01 Altria Client Services Llc Aerosol-generating system with puff detector
US10231486B2 (en) * 2016-03-10 2019-03-19 Pax Labs, Inc. Vaporization device having integrated games
CN205848683U (en) * 2016-03-21 2017-01-04 深圳市合元科技有限公司 Electronic cigarette and nebulizer thereof

Also Published As

Publication number Publication date
ES2774699T3 (en) 2020-07-22
WO2017115277A1 (en) 2017-07-06
JP2020114249A (en) 2020-07-30
RU2018127204A3 (en) 2020-03-05
KR20200084912A (en) 2020-07-13
KR20230146135A (en) 2023-10-18
KR102590264B1 (en) 2023-10-17
JP2019506894A (en) 2019-03-14
JP7238251B2 (en) 2023-03-14
EP3397097A1 (en) 2018-11-07
CA3010115A1 (en) 2017-07-06
HUE047685T2 (en) 2020-05-28
US20190000149A1 (en) 2019-01-03
PL3397097T3 (en) 2020-05-18
US20170181471A1 (en) 2017-06-29
CN108697165A (en) 2018-10-23
RU2744608C1 (en) 2021-03-11
JP6810755B2 (en) 2021-01-06
KR102182909B1 (en) 2020-11-25
US11311688B2 (en) 2022-04-26
MY195827A (en) 2023-02-23
JP2021180664A (en) 2021-11-25
RU2018127204A (en) 2020-01-30
JP2023175798A (en) 2023-12-12
BR112018013248A2 (en) 2018-12-04
JP2023030136A (en) 2023-03-07
BR112018013248B1 (en) 2023-01-24
RU2721630C2 (en) 2020-05-21
US20200178600A1 (en) 2020-06-11
HK1255421A1 (en) 2019-08-16
CN113826958A (en) 2021-12-24
US10092036B2 (en) 2018-10-09
RU2766172C1 (en) 2022-02-08
CN108697165B (en) 2021-11-09
ZA202106216B (en) 2022-07-27
KR102257612B1 (en) 2021-05-27
JP7350967B2 (en) 2023-09-26
KR20200020971A (en) 2020-02-26
KR20180108613A (en) 2018-10-04
EP3397097B1 (en) 2019-11-20
JP7073439B2 (en) 2022-05-23
CN113826960A (en) 2021-12-24
RU202752U1 (en) 2021-03-04
UA124261C2 (en) 2021-08-18
CN113826959A (en) 2021-12-24
PH12018501384A1 (en) 2019-02-18

Similar Documents

Publication Publication Date Title
US20240024596A1 (en) Aerosol delivery device including a housing and a coupler
US9936733B2 (en) Accessory configured to charge an aerosol delivery device and related method
US20210000183A1 (en) Refillable aerosol delivery device and related method
EP3684208B1 (en) Differential pressure sensor for an aerosol delivery device

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAI STRATEGIC HOLDINGS, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:R. J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:065111/0153

Effective date: 20160317

Owner name: R. J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PHILLIPS, PERCY D.;DAVIS, MICHAEL F.;WATSON, NICHOLAS H.;AND OTHERS;SIGNING DATES FROM 20160104 TO 20160129;REEL/FRAME:065111/0068

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION