US20240024596A1 - Aerosol delivery device including a housing and a coupler - Google Patents
Aerosol delivery device including a housing and a coupler Download PDFInfo
- Publication number
- US20240024596A1 US20240024596A1 US18/480,235 US202318480235A US2024024596A1 US 20240024596 A1 US20240024596 A1 US 20240024596A1 US 202318480235 A US202318480235 A US 202318480235A US 2024024596 A1 US2024024596 A1 US 2024024596A1
- Authority
- US
- United States
- Prior art keywords
- cartridge
- delivery device
- aerosol delivery
- power source
- aerosol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000443 aerosol Substances 0.000 title claims abstract description 235
- 239000002243 precursor Substances 0.000 claims abstract description 55
- 239000000203 mixture Substances 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims description 15
- 241000208125 Nicotiana Species 0.000 claims description 13
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 8
- 230000000717 retained effect Effects 0.000 claims description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 40
- 238000005286 illumination Methods 0.000 description 66
- 238000010438 heat treatment Methods 0.000 description 33
- 230000000391 smoking effect Effects 0.000 description 24
- 239000000463 material Substances 0.000 description 22
- 239000007788 liquid Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 13
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 10
- 235000019504 cigarettes Nutrition 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 235000019506 cigar Nutrition 0.000 description 9
- 239000012530 fluid Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 239000000796 flavoring agent Substances 0.000 description 4
- 235000019634 flavors Nutrition 0.000 description 4
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000003571 electronic cigarette Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000035807 sensation Effects 0.000 description 3
- 235000019615 sensations Nutrition 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 229910000953 kanthal Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000008263 liquid aerosol Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/42—Cartridges or containers for inhalable precursors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/06—Inhaling appliances shaped like cigars, cigarettes or pipes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/167—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/51—Arrangement of sensors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/53—Monitoring, e.g. fault detection
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/60—Devices with integrated user interfaces
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/70—Manufacture
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F47/00—Smokers' requisites not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M11/00—Sprayers or atomisers specially adapted for therapeutic purposes
- A61M11/04—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M11/00—Sprayers or atomisers specially adapted for therapeutic purposes
- A61M11/04—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
- A61M11/041—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
- A61M11/042—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
- A61M2016/0018—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
- A61M2016/0018—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
- A61M2016/0024—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with an on-off output signal, e.g. from a switch
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/13—General characteristics of the apparatus with means for the detection of operative contact with patient, e.g. lip sensor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/27—General characteristics of the apparatus preventing use
- A61M2205/276—General characteristics of the apparatus preventing use preventing unwanted use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/332—Force measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/583—Means for facilitating use, e.g. by people with impaired vision by visual feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/583—Means for facilitating use, e.g. by people with impaired vision by visual feedback
- A61M2205/584—Means for facilitating use, e.g. by people with impaired vision by visual feedback having a color code
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/586—Ergonomic details therefor, e.g. specific ergonomics for left or right-handed users
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/587—Lighting arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/60—General characteristics of the apparatus with identification means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8206—Internal energy supply devices battery-operated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8262—Internal energy supply devices connectable to external power source, e.g. connecting to automobile battery through the cigarette lighter
Definitions
- the present disclosure relates to aerosol delivery devices, and more particularly, to aerosol delivery devices that include a housing and a coupler.
- the aerosol delivery device may include an atomizer comprising a heating element configured to heat an aerosol precursor.
- the aerosol precursor composition which may include components made or derived from tobacco or otherwise incorporate tobacco, is heated by the atomizer to produce an inhalable substance for human consumption.
- aerosol delivery devices include a control body and a cartridge.
- a power source e.g., a battery
- an aerosol precursor composition may be positioned in the cartridge.
- the cartridge and the control body may engage one another to define an elongated tubular configuration.
- certain other form factors for aerosol delivery devices may be desirable.
- the present disclosure relates to aerosol delivery devices which, in certain embodiments, may be characterized as electronic cigarettes.
- an aerosol delivery device may include a housing.
- the housing may define an electrical power source cavity configured to receive an electrical power source, and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition.
- the electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis.
- the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another.
- the aerosol delivery device may further include the electrical power source. Additionally, the aerosol delivery device may include the cartridge. Further, the aerosol delivery device may include a coupler positioned within the housing and configured to engage the cartridge. The aerosol delivery device may additionally include an outer cover engaged with an exterior of the housing.
- the housing may further define a viewing opening at the cartridge cavity.
- the aerosol delivery device may include an illumination source configured to illuminate the cartridge in the cartridge cavity.
- the aerosol delivery device may further include an electronic display.
- the housing may include an access door configured to provide access to the electrical power source cavity.
- the housing may define an external opening at the cartridge cavity configured to receive the cartridge therethrough.
- the housing may define a dividing wall that separates the electrical power source cavity from the cartridge cavity.
- a method for assembling an aerosol delivery device may include providing a housing.
- the housing may define an electrical power source cavity configured to receive an electrical power source and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition.
- the electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis.
- the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another.
- the method may include positioning an electrical contact in the electrical power source cavity.
- the electrical contact may be configured to engage the electrical power source.
- the method may include positioning a coupler in the cartridge cavity.
- the coupler may be configured to engage the cartridge.
- the method may further include inserting the electrical power source in the electrical power source cavity and engaging the electrical power source with the electrical contact. Additionally, the method may include inserting the cartridge into the cartridge cavity and engaging the cartridge with the coupler. Inserting the cartridge into the cartridge cavity may include inserting the cartridge through an external opening defined by the housing.
- providing the housing may include defining a viewing opening at the cartridge cavity. Further, the method may include engaging an outer cover with an exterior of the housing. The method may additionally include positioning an illumination source in the housing. The illumination source may be configured to illuminate the cartridge in the cartridge cavity. In some embodiments the method may additionally include engaging an electronic display with the housing. Providing the housing may include engaging a first body portion with a second body portion. Providing the housing further may further include engaging an access door with at least one of the first body portion and the second body portion. The access door may be configured to selectively provide access to the electrical power source cavity.
- an aerosol delivery device may include a housing defining an electrical power source cavity configured to receive an electrical power source.
- the electrical power source cavity may define a first longitudinal axis.
- the aerosol delivery device may additionally include a coupler engaged with the housing and configured to engage a cartridge including an aerosol precursor composition such that the cartridge extends along a second longitudinal axis.
- the first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another.
- the aerosol delivery device may further include the electrical power source. Additionally, the aerosol delivery device may include a controller. The controller may be wrapped at least partially about the electrical power source.
- the aerosol delivery device may further include the cartridge.
- the cartridge may include a viewing window.
- the aerosol delivery device may additionally include an illumination source configured to direct illumination through the viewing window.
- the housing may include a coupler portion.
- the coupler may be positioned at least partially within the coupler portion.
- the housing may include a button assembly.
- the button assembly may be configured to control a power output level directed from the electrical power source to the cartridge.
- the button assembly may at least partially define a dividing wall that separates the cartridge from the electrical power source cavity.
- the aerosol delivery device may include an illumination source.
- the button assembly may include an illumination source cover configured to direct illumination produced by the illumination source therethrough.
- a method for assembling an aerosol delivery device may include providing a housing defining an electrical power source cavity configured to receive an electrical power source.
- the electrical power source cavity may define a first longitudinal axis.
- the method may additionally include engaging a coupler configured to engage a cartridge including an aerosol precursor composition with the housing such that the cartridge extends along a second longitudinal axis.
- the first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another.
- the method may include positioning a controller in the housing. The controller may be configured to engage the electrical power source.
- the method may further include engaging the electrical power source with the controller. Additionally, the method may include inserting the electrical power source in the electrical power source cavity simultaneously with positioning the controller in the housing. Further, the method may include engaging the cartridge with the coupler. The cartridge may include a viewing window. Further, the method may include positioning an illumination source in the housing. The illumination source may be configured to direct illumination through the viewing window.
- providing the housing may include engaging a first body portion with a second body portion. Further, providing the housing further may include engaging an access door with at least one of the first body portion and the second body portion. The access door may be configured to block access to the electrical power source cavity. Providing the housing may further include engaging a button assembly with at least one of the first body portion and the second body portion. The method may additionally include positioning an illumination source in the housing and engaging an illumination source cover with the button assembly. The illumination source cover may be configured to direct illumination produced by the illumination source therethrough.
- FIG. 1 illustrates a side view of an aerosol delivery device including a control body and a cartridge according to an example embodiment of the present disclosure
- FIG. 2 illustrates a sectional, partially-exploded view through the control body of the aerosol delivery device of FIG. 1 according to an example embodiment of the present disclosure
- FIG. 3 illustrates a modified sectional view through the aerosol delivery device of FIG. 1 according to an example embodiment of the present disclosure
- FIG. 4 illustrates an exploded view of an example embodiment of the cartridge of FIG. 1 including a reservoir substrate
- FIG. 5 illustrates a sectional view through an alternative example embodiment of the cartridge of FIG. 1 including a reservoir according to an example embodiment of the present disclosure
- FIG. 6 illustrates a modified sectional view through the aerosol delivery device of FIG. 1 including the cartridge of FIG. 5 according to an example embodiment of the present disclosure
- FIG. 7 illustrates a perspective view of a control body including a side opening configured to engage an outer cover and a relatively wide viewing opening according to an additional example embodiment of the present disclosure
- FIG. 8 illustrates a perspective view of the control body of FIG. 7 with the outer cover according to an example embodiment of the present disclosure
- FIG. 9 illustrates an enlarged side view of the control body of FIG. 8 at the viewing opening according to an example embodiment of the present disclosure
- FIG. 10 illustrates a section of a body portion of a housing of the control body of FIG. 7 according to an example embodiment of the present disclosure
- FIG. 11 illustrates a perspective view of a control body including side openings configured to engage an outer cover and a relatively narrow viewing opening according to an additional example embodiment of the present disclosure
- FIG. 12 illustrates a section of a body portion of a housing of the control body of FIG. 11 according to an example embodiment of the present disclosure
- FIG. 13 illustrates a bottom view of the control body of FIG. 11 according to an example embodiment of the present disclosure
- FIG. 14 illustrates the control body of FIG. 11 with the outer cover according to an example embodiment of the present disclosure
- FIG. 15 illustrates an enlarged side view of the control body of FIG. 14 at the viewing opening according to an example embodiment of the present disclosure
- FIG. 16 illustrates a method for assembling an aerosol delivery device according to an example embodiment of the present disclosure
- FIG. 17 illustrates a perspective view of an aerosol delivery device including a control body and a cartridge according to an example embodiment of the present disclosure
- FIG. 18 illustrates a partial exploded view of the control body of FIG. 17 according to an example embodiment of the present disclosure
- FIG. 19 illustrates a partial side view of the control body of FIG. 17 in a partially-assembled configuration including a first body portion of a housing thereof according to an example embodiment of the present disclosure
- FIG. 20 illustrates a perspective view of a controller and an electrical power source of the control body of FIG. 17 according to an example embodiment of the present disclosure
- FIG. 21 illustrates a perspective view of the control body of FIG. 17 in a partially-assembled configuration including a first body portion of a housing thereof according to an example embodiment of the present disclosure
- FIG. 22 illustrates a perspective view of the control body of FIG. 17 in a partially-assembled configuration including an electrical power source housing portion and a coupler portion of a housing thereof according to an example embodiment of the present disclosure
- FIG. 23 illustrates a sectional view through a coupler of the control body of FIG. 17 according to an example embodiment of the present disclosure.
- FIG. 24 illustrates a method for assembling an aerosol delivery device according to an example embodiment of the present disclosure.
- Aerosol delivery devices may use electrical energy to heat a material (preferably without combusting the material to any significant degree) to form an inhalable substance; such articles most preferably being sufficiently compact to be considered “hand-held” devices.
- An aerosol delivery device may provide some or all of the sensations (e.g., inhalation and exhalation rituals, types of tastes or flavors, organoleptic effects, physical feel, use rituals, visual cues such as those provided by visible aerosol, and the like) of smoking a cigarette, cigar, or pipe, without any substantial degree of combustion of any component of that article or device.
- the aerosol delivery device may not produce smoke in the sense of the aerosol resulting from by-products of combustion or pyrolysis of tobacco, but rather, that the article or device most preferably yields vapors (including vapors within aerosols that can be considered to be visible aerosols that might be considered to be described as smoke-like) resulting from volatilization or vaporization of certain components of the article or device, although in other embodiments the aerosol may not be visible.
- aerosol delivery devices may incorporate tobacco and/or components derived from tobacco. As such, the aerosol delivery device can be characterized as an electronic smoking article such as an electronic cigarette.
- Aerosol delivery devices of the present disclosure also can be characterized as being vapor-producing articles or medicament delivery articles.
- articles or devices can be adapted so as to provide one or more substances (e.g., flavors and/or pharmaceutical active ingredients) in an inhalable form or state.
- substances e.g., flavors and/or pharmaceutical active ingredients
- inhalable substances can be substantially in the form of a vapor (i.e., a substance that is in the gas phase at a temperature lower than its critical point).
- inhalable substances can be in the form of an aerosol (i.e., a suspension of fine solid particles or liquid droplets in a gas).
- aerosol as used herein is meant to include vapors, gases and aerosols of a form or type suitable for human inhalation, whether or not visible, and whether or not of a form that might be considered to be smoke-like.
- aerosol delivery devices of the present disclosure may be subjected to many of the physical actions employed by an individual in using a traditional type of smoking article (e.g., a cigarette, cigar or pipe that is employed by lighting and inhaling tobacco).
- a traditional type of smoking article e.g., a cigarette, cigar or pipe that is employed by lighting and inhaling tobacco.
- an aerosol delivery device of the present disclosure can be hand-held by a user, a user can draw on a portion of the article for inhalation of aerosol produced by that article, a user can take puffs at selected intervals of time, and the like.
- Aerosol delivery devices of the present disclosure generally include a housing and a number of additional components coupled thereto and/or positioned within the housing, and some of the components may be removable or replaceable.
- the overall design of the housing can vary, and the overall size and shape of the housing can vary.
- the smoking articles can include a cartridge, which can be defined by an outer body or cover—e.g., an elongated body resembling the shape of a portion of a cigarette or cigar.
- an outer cover or body of the cartridge can be substantially tubular in shape and, as such, resemble the shape of a conventional cigarette or cigar.
- the housing may contain one or more reusable components (e.g., a rechargeable battery and various electronics for controlling the operation of that article), and the cartridge can be removable, refillable, and/or disposable.
- Aerosol delivery devices of the present disclosure most preferably comprise some combination of a power source (i.e., an electrical power source), at least one control component (e.g., means for actuating, controlling, regulating and/or ceasing power for heat generation, such as by controlling electrical current flow from the power source to other components of the aerosol delivery device), a heater or heat generation component (e.g., an electrical resistance heating element or component commonly referred to as part of an “atomizer”), and an aerosol precursor composition (e.g., commonly a liquid capable of yielding an aerosol upon application of sufficient heat, such as ingredients commonly referred to as “smoke juice,” “e-liquid” and “e-juice”), and a mouthend region or tip for allowing draw upon the aerosol delivery device for aerosol inhalation (e.g., a defined air flow path through the article such that aerosol generated can be withdrawn therefrom upon draw).
- a power source i.e., an electrical power source
- at least one control component e.g.
- an aerosol is formed, released, or generated in a physical form suitable for inhalation by a consumer.
- release, releasing, releases, or released includes form or generate, forming or generating, forms or generates, and formed or generated.
- an inhalable substance is released in the form of a vapor or aerosol or mixture thereof.
- the aerosol delivery device may incorporate a battery and/or other electrical power source (e.g., a capacitor) to provide current flow sufficient to provide various functionalities to the aerosol delivery device, such as powering of a heater, powering of control systems, powering of indicators, and the like.
- the power source can take on various embodiments.
- the power source is able to deliver sufficient power to rapidly heat the heating element to provide for aerosol formation and power the aerosol delivery device through use for a desired duration of time.
- the power source preferably is sized to fit conveniently within the aerosol delivery device so that the aerosol delivery device can be easily handled. Additionally, a preferred power source is of a sufficiently light weight to not detract from a desirable smoking experience.
- a battery for use in the present devices may be replaceable, removable, and/or rechargeable and thus may be combined with any type of recharging technology, including connection to a typical alternating current electrical outlet, connection to a car charger (i.e., a cigarette lighter receptacle), and connection to a computer, such as through a universal serial bus (USB) cable or connector.
- the electrical power source comprises a lithium-ion battery, which may light weight, rechargeable, and provide a large energy storage capacity. Examples of electrical power sources are described in U.S. Pat. App. Pub. No. 2010/0028766 to Peckerar et al., the disclosure of which is incorporated herein by reference in its entirety.
- An aerosol delivery device preferably incorporates a sensor or detector for control of supply of electric power to a heat generation element when aerosol generation is desired (e.g., upon draw during use).
- a manner or method for turning off the power supply to the heat generation element when the aerosol generating piece is not be drawn upon during use, and for turning on the power supply to actuate or trigger the generation of heat by the heat generation element during draw are described in U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No.
- the aerosol delivery device can include an indicator, which may comprise one or more light emitting diodes.
- the indicator can be in communication with the control component through a connector circuit and illuminate, for example, during a user draw on the mouthend as detected by the flow sensor.
- U.S. App. Pub. No. 2015/0245658 to Worm et al. which is incorporated herein by reference in its entirety.
- Still further components can be utilized in the aerosol delivery device of the present disclosure.
- U.S. Pat. No. 5,154,192 to Sprinkel et al. discloses indicators for smoking articles
- U.S. Pat. No. 5,261,424 to Sprinkel, Jr. discloses piezoelectric sensors that can be associated with the mouth-end of a device to detect user lip activity associated with taking a draw and then trigger heating
- U.S. Pat. No. 5,967,148 to Harris et al. discloses receptacles in a smoking device that include an identifier that detects a non-uniformity in infrared transmissivity of an inserted component and a controller that executes a detection routine as the component is inserted into the receptacle;
- U.S. Pat. No. 6,040,560 to Fleischhauer et al. describes a defined executable power cycle with multiple differential phases;
- U.S. Pat. No. 5,934,289 to Watkins et al. discloses photonic-optronic components; U.S. Pat.
- WO 2010/003480 to Flick discloses a fluid flow sensing system indicative of a puff in an aerosol generating system; all of the foregoing disclosures being incorporated herein by reference in their entireties.
- Further examples of components related to electronic aerosol delivery articles and disclosing materials or components that may be used in the present article include U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No. 5,249,586 to Morgan et al.; U.S. Pat. No. 5,666,977 to Higgins et al.; U.S. Pat. No. 6,053,176 to Adams et al.; U.S. 6,164,287 to White; U.S.
- the aerosol precursor composition also referred to as a vapor precursor composition, may comprise a variety of components including, by way of example, any of a polyhydric alcohol (e.g., glycerin, propylene glycol, or a mixture thereof), nicotine, tobacco, tobacco extract, and/or flavorants.
- a polyhydric alcohol e.g., glycerin, propylene glycol, or a mixture thereof
- nicotine e.g., nicotine, tobacco, tobacco extract, and/or flavorants.
- tobacco extract e.g., glycerin, propylene glycol, or a mixture thereof
- flavorants e.g., nicotine, tobacco, tobacco extract, and/or flavorants.
- Various components that may be included in the aerosol precursor composition are described in U.S. Pat. No. 7,726,320 to Robinson et al., which is incorporated herein by reference in its entirety. Additional representative types of aerosol precursor compositions are set forth in U.S. Pat. No. 4,793,365
- aerosol precursors which may be employed in the aerosol delivery device of the present disclosure include the aerosol precursors included in the VUSE® product by R. J. Reynolds Vapor Company, the BLUTM product by Lorillard Technologies, the Mistic Menthol product by Mistic Ecigs, and the Vype product by CN Creative Ltd.
- the aerosol delivery device preferably includes a reservoir.
- a reservoir may comprise a container for storing a liquid aerosol precursor, a fibrous substrate, or a combination of a fibrous substrate and a container.
- a fibrous substrate suitable for use as a reservoir may comprise a plurality of layers of nonwoven fibers and may be formed substantially into the shape of a tube.
- the formed tube may be shaped and sized for placement within the outer body or cover of a cartridge for use in the aerosol delivery device.
- Liquid components for example, can be sorptively retained by the fibrous substrate and/or be retained within a reservoir container.
- the reservoir preferably is in fluid connection with a liquid transport element.
- the liquid transport element may be configured to transport liquid from the reservoir to a heating element, such as via capillary action and/or via active transport—e.g., pumping or controlled movement with a valve.
- a heating element such as via capillary action and/or via active transport—e.g., pumping or controlled movement with a valve.
- active transport e.g., pumping or controlled movement with a valve.
- the liquid transport element may be in direct contact with the heating element.
- wicking materials and the configuration and operation of those wicking materials within certain types of aerosol delivery devices, are set forth in U.S. Pat. No. 8,910,640 to Sears et al., which is incorporated herein by reference in its entirety.
- a variety of the materials disclosed by the foregoing documents may be incorporated into the present devices in various embodiments, and all of the foregoing disclosures are incorporated herein by reference in their entireties.
- the heating element may comprise a wire defining a plurality of coils wound about the liquid transport element.
- the heating element may be formed by winding the wire about the liquid transport element as described in U.S. Pat. App. Pub. No. 2014/0157583 to Ward et al, which is incorporated herein by reference in its entirety.
- the wire may define a variable coil spacing, as described in U.S. Pat. App. Pub. No. 2014/0270730 to DePiano et al., which is incorporated herein by reference in its entirety.
- materials configured to produce heat when electrical current is applied therethrough may be employed to form the heating element.
- Example materials from which the wire coil may be formed include titanium, platinum, silver, palladium, Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi 2 ), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al) 2 ), graphite and graphite-based materials; and ceramic (e.g., a positive or negative temperature coefficient ceramic).
- the heating element may comprise a wire defining a mesh, screen or lattice structure positioned about the liquid transport element.
- Example materials from which the wire mesh, screen, or lattice may be formed include titanium, platinum, silver, palladium, Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi 2 ), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al) 2 ), graphite and graphite-based materials; and ceramic (e.g., a positive or negative temperature coefficient ceramic).
- An example embodiment of a mesh heating element is disclosed in U.S. Pat. Appl. Pub. No. 2015/0034103 to Hon.
- a stamped heating element may be employed in the atomizer, as described in U.S. Pat. Pub. No.
- a variety of heater components may be used in the present aerosol delivery device.
- one or more microheaters or like solid state heaters may be used.
- Embodiments of microheaters and atomizers incorporating microheaters suitable for use in the presently disclosed devices are described in U.S. Pat. No. 8,881,737 to Collett et al., which is incorporated herein by reference in its entirety.
- One or more heating terminals may connect to the heating element so as to form an electrical connection with the power source and/or a terminal may connect to one or more control elements of the aerosol delivery device.
- a heating terminal e.g., positive and negative terminals
- a terminal may connect to one or more control elements of the aerosol delivery device.
- an aerosol delivery device can be chosen from components described in the art and commercially available. Reference is made for example to the reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article disclosed in U.S. Pat. App. Pub. No. 2014/0000638 to Sebastian et al., which is incorporated herein by reference in its entirety.
- one or more components of the aerosol delivery device may be formed from one or more carbon materials, which may provide advantages in terms of biodegradability and absence of wires.
- the heating element may comprise carbon foam
- the reservoir may comprise carbonized fabric
- graphite may be employed to form an electrical connection with the battery and controller.
- Aerosol delivery devices are often configured in a manner that mimics aspects of certain traditional smoking devices such as cigarettes or cigars.
- aerosol delivery devices typically define a substantially cylindrical configuration.
- aerosol delivery devices often include a control body and a cartridge which attach in an end-to-end relationship to define the substantially cylindrical configuration. While such configurations may provide a look and feel that is similar to traditional smoking articles, these configurations may suffer from certain detriments.
- cylindrically-configured aerosol delivery devices may not define attachment points usable to retain the aerosol delivery device in a desired position when not in use. Further, such configurations may result in a relatively large device when employed with reservoirs having relatively large capacity, resembling the size and shape of a cigar, which may not be suitable for temporary storage or transport in a user's pocket.
- So-called “mod” devices may include configurations other than parallel, coaxial alignment of a control body and a cartridge.
- such devices may include exposed and/or poorly-supported electrical connectors that connect the control body and cartridge, which may be strained during use or storage, thereby potentially affecting the usability thereof. Accordingly, it may be desirable to provide aerosol delivery devices in configurations and shapes that differ from configurations and shapes associated with traditional smoking articles and traditional aerosol delivery devices.
- FIG. 1 illustrates a side view of an aerosol delivery device 100 of the present disclosure.
- the aerosol delivery device 100 may include a control body 101 , which may include a housing 102 .
- the housing may comprise a plastic material, but various other materials, which are preferably substantially rigid, may be employed in other embodiments.
- the housing 102 may be unitary or comprise multiple pieces.
- the housing 102 may include a body portion 102 a, which may itself comprise one or more pieces, and an access door 102 b.
- the aerosol delivery device 100 may additionally include a cartridge 200 , which may be at least partially received in the control body 101 .
- FIG. 2 illustrates a partially-exploded sectional view through the control body 101 of the aerosol delivery device 100 .
- the housing 102 may define an electrical power source cavity 104 .
- the electrical power source cavity 104 may be defined in the body portion 102 a of the housing 102 .
- the electrical power source cavity 104 may be closed by, and accessed via, the access door 102 b.
- the electrical power source cavity 104 may be configured to receive an electrical power source.
- the housing 102 may define a cartridge cavity 106 .
- the cartridge cavity 106 may be configured to receive the cartridge 200 (see, e.g., FIG. 3 ).
- the housing 102 may define an external opening 108 at the cartridge cavity 106 configured to receive the cartridge 200 therethrough.
- the housing 102 may include a divider wall 107 that separates the power source cavity 104 from the cartridge cavity 106 .
- the divider wall 107 completely separates the power source cavity 104 from the cartridge cavity 106 .
- the divider wall 107 may extend across the length and thickness of the control body 101 such that the power source cavity 104 and the cartridge cavity 106 are discrete cavities. This configuration may be preferable in that it may prevent fluid communication between the power source cavity 104 and the cartridge cavity 106 . Thereby, for example, in the event of a structural failure of the electrical power source, chemical intrusion into the cartridge cavity 106 may be resisted.
- the divider wall may be discontinuous in one or both of length and fitness. Such a configuration of the divider wall may still respectively retain an electrical power source in the electrical power source cavity and a cartridge in the cartridge cavity such that these components are securely retained in place.
- the control body 101 may include one or more additional components.
- the components may be received in, or otherwise engaged with, the housing 102 .
- the components may include an electrical circuit, the operation of which is described below.
- the electrical circuit may include a controller 110 , first and second electrical contacts 112 a, 112 b, and a coupler 114 .
- the electrical circuit may additionally include an electronic display 116 (e.g., a liquid crystal display).
- the electrical circuit may include a flow sensor 118 , which may be positioned at, or in fluid communication with, the coupler 114 . Wires or other electrical connectors may provide connections between the various components of the electrical circuit.
- the electrical circuit may further comprise a communication module.
- the communication module may be configured to communicate via Bluetooth or any other communication standard. Examples of communication modules and related antenna components which may be included in the aerosol delivery device 100 are described in U.S. patent application Ser. Nos. 14/802,789, filed Jul. 17, 2015, and Ser. No. 14/638,562, filed Mar. 4, 2015, each to Marion et al.
- FIG. 3 illustrates a sectional view through the aerosol delivery device 100 .
- the cartridge 200 may be at least partially received in the cartridge cavity 106 when engaged with the control body 101 .
- the cartridge 200 may be inserted through the external opening 108 into the cartridge cavity 106 .
- the cartridge 200 may engage the coupler 114 .
- the cartridge 200 may establish an electrical connection with the control circuit such that current may be selectively directed to the cartridge by the controller 110 to produce aerosol.
- the aerosol delivery device 100 may additionally include an electrical power source 300 .
- the electrical power source 300 may be received in the electrical power source cavity 104 , and the access door 102 b may be secured to the body portion 102 a of the housing 102 , such that the electrical power source 300 is retained in the electrical power source cavity 104 .
- the aerosol delivery device 100 may additionally include at least one fastener 120 (e.g., a screw) configured to retain the access door 102 b in engagement with the body portion 102 a of the housing 102 .
- the first electrical contact 112 a When the electrical power source 300 is inserted into the electrical power source cavity 104 , the first electrical contact 112 a may engage a first end of the electrical power source, at which a first terminal of the electrical power source may be positioned. Thereafter, when the access door 102 b is secured to the body portion 102 , the second electrical contact 112 b may engage an opposing second end of the electrical power source 300 , at which a second terminal may be positioned. Thereby, power from the electrical power source 300 may be supplied to the controller 110 .
- the electrical contacts 112 a, 112 b may be positioned and configured in other manners as appropriate for engagement with the terminals of the electrical power source 300 , such that various embodiments of the electrical power source may be employed. For example, in another embodiment both of the electrical contacts may be positioned at and configured to engage either the top or the bottom of the electrical power source.
- the electrical power source 300 may further comprise a protective circuit. Such a protective circuit may prevent overcharging of the electrical power source and/or regulate the release of current within acceptable limits. Further, the electrical power source may additionally include shock absorbing members (e.g., foam pads) in some embodiments, which may protect the electrical power source from damage associated with dropping the aerosol delivery device 100 .
- shock absorbing members e.g., foam pads
- the electrical power source cavity 104 and the cartridge cavity 106 may be elongated and respectively define a longitudinal axis 104 a , 106 a.
- the longitudinal axis 104 a of the electrical power source cavity 104 and the longitudinal axis 106 a of the cartridge cavity 106 may be substantially parallel to one another. Such a configuration may allow for receipt of both the cartridge 200 and the electrical power source 300 in a space efficient manner within the housing 102 .
- aerosol delivery devices define generally elongated, tubular configurations wherein the electrical power source and cartridge are positioned generally end to end to mimic the smoking articles such as cigarettes and cigars.
- existing embodiments of aerosol delivery devices often include cartridges and aerosol delivery devices arranged with the longitudinal axes thereof being parallel to one another.
- the aerosol delivery device 100 of the present disclosure may be configured such that the longitudinal axis 104 a of the electrical power source cavity 104 and the longitudinal axis 106 a of the cartridge cavity 106 are non-coaxial.
- the aerosol delivery device 100 may define a relatively shorter length due to the cartridge 200 and the electrical power source 300 being positioned beside one another, instead of in an end-to-end relationship. Further, by configuring the electrical power source cavity 104 and the cartridge cavity 106 beside one another, the aerosol delivery device 100 may define an overall shape that is more suitable for transport in a user's pocket. Additionally, this configuration may allow the aerosol delivery device 100 to more easily fit in a user's hand. In this regard, a user may more easily carry and use the aerosol delivery device in a concealed fashion within a palm of the user's hand due to the relatively shorter length thereof, which may be desirable in certain social settings.
- the side-by-side configuration may also provide a relatively large internal volume within the housing 102 suitable for receipt of the components of the aerosol delivery device 100 in a number of various positions.
- aerosol delivery devices arranged end-to-end have limited options with respect to the positions of components therein, due to the reservoir in the cartridge and the electrical power source in the control body typically defining cylindrical configurations. Thereby, any remaining space in the cartridge and the control body is typically annular or cylindrical in shape, which is not suitable for receipt of many components in a space efficient manner.
- the relatively larger internal volume of the aerosol delivery device 100 of the present disclosure provided by the housing 102 may accommodate a relatively larger electrical power source 300 and/or a relatively larger cartridge 200 , such that the respective electric and aerosol precursor composition storage capacities thereof may be increased.
- the relatively large internal volume of the aerosol delivery device 100 may accommodate various commercially available electrical power sources, rather than just custom electrical power sources which may be required for cylindrical configurations, such that expenses associated with the components of the aerosol delivery device may be reduced.
- the side-by-side configuration may additionally provide a relatively large exterior surface area. Further, the side-by-side configuration may provide relatively planar exterior surfaces (which may be slightly curved for ergonomic or aesthetic purposes), which may be more suitable for the display 116 , as opposed to the sharply curved surfaces provided by a cylindrical aerosol delivery device. In this regard, commercially-available electronic displays typically define a planar display surface.
- the electronic display 116 may be positioned at a number of locations and may define a relatively larger size than an electronic display on an aerosol delivery device defining a cylindrical configuration.
- the electronic display 116 is positioned at a top of the body portion 102 a of the housing 102 .
- the external opening 108 to the cartridge cavity 106 may also be positioned at the top of the body portion 102 a of the housing. This position of the electronic display 116 may allow a user to view the electronic display while the aerosol delivery device is grasped in the user's hand in a manner suitable for taking a draw on the cartridge 200 .
- the user's hand may extend around the sides of the aerosol delivery device, such that the top surface of the aerosol delivery device, at which the electronic display 116 and the exposed portion of the cartridge 200 are positioned, is exposed and uncovered by the user's hand.
- the data displayed by the electronic display 116 may include a remaining cartridge aerosol precursor composition level, a remaining power source level, historical usage information, heat and aerosol output settings, a charging status, a communication status (e.g., when linked to another device via Bluetooth or other communication protocol), the time, and/or various other data.
- the side-by-side configuration of the aerosol delivery device 100 of the present disclosure may provide additional benefits.
- the cartridge 200 may engage the control body 101 in a manner that may provide for a secure connection therebetween, which may reduce stress and strain thereon as compared to embodiments of aerosol delivery devices in which the connection between the cartridge and control body is exposed (e.g. in embodiments in which the cartridge and the control body are arranged end-to-end).
- the coupler 114 may be recessed in or proximate the cartridge cavity 106 such that the housing 102 protects the connection between the cartridge 200 and the control body 101 .
- a portion, and more preferably a majority, of the longitudinal length of the cartridge 200 may be retained in the cartridge cavity 106 and the size and shape of the cartridge cavity may substantially correspond to that of the cartridge, such that the housing 102 may resist movement of the cartridge, rather than the coupler 114 bearing the entirety of such stress and strain associated with forces applied to one or both of the cartridge and the control body 101 .
- the connection between the cartridge and the control body may bear all or substantially all of the stress and strain associated with force applied to one or both of the cartridge and the control body.
- modify devices may define configurations other than the end-to-end configuration described above, such devices often include exposed electrical connectors that are subject to stress and strain. Accordingly, the side-by side, parallel but non-coaxial configuration of the electric power source cavity 104 and the cartridge cavity 106 of the aerosol delivery device 100 of the present disclosure may provide various benefits.
- FIG. 3 a side view of the cartridge 200 , rather than a sectional view therethrough, is illustrated in FIG. 3 in light of the various possible configurations of the components of the cartridge.
- FIG. 4 one example embodiment of the cartridge is illustrated in FIG. 4 .
- the cartridge 200 ′ may comprise a base shipping plug 202 ′, a base 204 ′, a control component terminal 206 ′, an electronic control component 208 ′, a flow director 210 ′, an atomizer 212 ′, a reservoir substrate 214 ′, an outer body 216 ′, a label 218 ′, a mouthpiece 220 ′, and a mouthpiece shipping plug 222 ′ according to an example embodiment of the present disclosure.
- the base 204 ′ may be coupled to a first end of the outer body 216 ′ and the mouthpiece 220 ′ may be coupled to an opposing second end of the outer body to at least partially enclose the remaining components of the cartridge 200 ′ therein, with the exception of the label 218 ′, the mouthpiece shipping plug 222 ′, and the base shipping plug 202 ′.
- the base 204 ′ may be configured to engage the coupler 114 .
- the base 204 ′ may comprise anti-rotation features that substantially prevent relative rotation between the cartridge and associated device including a power source as disclosed in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety.
- the base shipping plug 202 ′ may be configured to engage and protect the base 204 ′ prior to use of the cartridge 200 ′.
- the mouthpiece shipping plug 222 ′ may be configured to engage and protect the mouthpiece 220 ′ prior to use of the cartridge 200 ′.
- the control component terminal 206 ′, the electronic control component 208 ′, the flow director 210 ′, the atomizer 212 ′, and the reservoir substrate 214 ′ may be retained within the outer body 216 ′.
- the label 218 ′ may at least partially surround the outer body 216 ′ and include information such as a product identifier thereon.
- the atomizer 212 ′ may comprise a first heating terminal 234 a ′ and a second heating terminal 234 b ′, a liquid transport element 238 ′, and a heating element 240 ′.
- the reservoir substrate 214 ′ may be configured to hold an aerosol precursor composition.
- the reservoir substrate 214 ′ is in fluid connection with the liquid transport element 238 ′ so as to transport the aerosol precursor composition from the reservoir substrate 214 ′ to the heating element 240 ′ (e.g., via capillary action).
- the aerosol precursor composition may be vaporized.
- FIG. 7 thereof illustrates an enlarged exploded view of a base and a control component terminal
- FIG. 8 illustrates an enlarged perspective view of the base and the control component terminal in an assembled configuration
- FIG. 9 illustrates an enlarged perspective view of the base, the control component terminal, an electronic control component, and heating terminals of an atomizer in an assembled configuration
- FIG. 10 illustrates an enlarged perspective view of the base, the atomizer, and the control component in an assembled configuration
- FIG. 7 illustrates an enlarged exploded view of a base and a control component terminal
- FIG. 8 illustrates an enlarged perspective view of the base and the control component terminal in an assembled configuration
- FIG. 9 illustrates an enlarged perspective view of the base, the control component terminal, an electronic control component, and heating terminals of an atomizer in an assembled configuration
- FIG. 10 illustrates an enlarged perspective view of the base, the atomizer, and the control component in an assembled configuration
- FIG. 7 illustrates an enlarged exploded view of a base and a control component terminal
- FIG. 11 illustrates an opposing perspective view of the assembly of FIG. 10 thereof;
- FIG. 12 illustrates an enlarged perspective view of the base, the atomizer, the flow director, and the reservoir substrate in an assembled configuration;
- FIG. 13 illustrates a perspective view of the base and an outer body in an assembled configuration;
- FIG. 14 illustrates a perspective view of a cartridge in an assembled configuration;
- FIG. 15 illustrates a first partial perspective view of the cartridge of FIG. 14 thereof and a coupler for a control body;
- FIG. 16 illustrates an opposing second partial perspective view of the cartridge of FIG. 14 thereof and the coupler of FIG. 11 thereof;
- FIG. 17 thereof illustrates a perspective view of a cartridge including a base with an anti-rotation mechanism;
- FIG. 12 illustrates an enlarged perspective view of the base, the atomizer, the flow director, and the reservoir substrate in an assembled configuration
- FIG. 13 illustrates a perspective view of the base and an outer body in an assembled configuration
- FIG. 14 illustrates a perspective view
- FIG. 18 thereof illustrates a perspective view of a control body including a coupler with an anti-rotation mechanism
- FIG. 19 thereof illustrates alignment of the cartridge of FIG. 17 with the control body of FIG. 18
- FIG. 20 thereof illustrates an aerosol delivery device comprising the cartridge of FIG. 17 thereof and the control body of FIG. 18 thereof with a modified view through the aerosol delivery device illustrating the engagement of the anti-rotation mechanism of the cartridge with the anti-rotation mechanism of the connector body
- FIG. 21 thereof illustrates a perspective view of a base with an anti-rotation mechanism
- FIG. 22 thereof illustrates a perspective view of a coupler with an anti-rotation mechanism
- FIG. 23 thereof illustrates a sectional view through the base of FIG. 21 thereof and the coupler of FIG. 22 thereof in an engaged configuration.
- the cartridge 200 may be substantially similar, or identical, to the cartridge disclosed in U.S. patent application Ser. No. 14/286,552 to Brinkley et al., filed May 23, 2014, which is incorporated herein by reference in its entirety.
- the cartridge may include a flow director defining a non-tubular configuration, an electronics compartment sealed with respect to a reservoir compartment, and/or any of the various other features and components disclosed therein. Accordingly, it should be understood that the particular embodiments of the cartridge 200 described herein is provided for example purposes only.
- the cartridge 200 ′′ may include a base 204 ′′, a control component terminal 206 ′′, an electronic control component 208 ′′, a flow director 210 ′′ which may be defined by an outer body 216 ′′ or a separate component, an atomizer 212 ′′, and a mouthpiece 220 ′′ according to an example embodiment of the present disclosure.
- the atomizer 212 ′′ may comprise a first heating terminal 234 a ′′ and a second heating terminal 234 b ′′, a liquid transport element 238 ′′ and a heating element 240 ′′.
- the cartridge 200 ′′ may additionally include a base shipping plug, a label, and a mouthpiece shipping plug, as described above.
- the base 204 ′′ may be coupled to a first end of the outer body 216 ′′ and the mouthpiece 220 ′′ may be coupled to an opposing second end of the outer body to at least partially enclose the remaining components of the cartridge 200 ′′ therein.
- the base 204 ′′ may comprise anti-rotation features that substantially prevent relative rotation between the cartridge and associated device including a power source as disclosed in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety.
- the cartridge 200 ′′ may further comprise a sealing member 242 ′′ and an initial liquid transport element 244 ′′.
- the outer body 216 ′′ and/or an additional component may be configured to hold an aerosol precursor composition 246 ′′ in a reservoir 248 ′′.
- the reservoir 248 ′′ may be configured to be refillable, whereas in other embodiments the cartridge 200 ′′ may be configured for a single use.
- the sealing member 242 ′′ may be positioned at an end of the chamber 248 ′′ and include one or more apertures 250 ′′ that allow the aerosol precursor composition 246 ′′ to contact the initial liquid transport element 244 ′′.
- liquid transport element 238 ′′ of the atomizer 212 ′′ may be in contact with the initial liquid transport element 244 ′′.
- Both the initial liquid transport element 244 ′′ and the liquid transport element 238 ′′ of the atomizer 212 ′′ may comprise wicking and/or porous materials that allow movement of the aerosol precursor composition 246 ′′ therethrough (e.g., via capillary action), such that the aerosol precursor composition may be drawn to the heating element 240 ′′ and heated and vaporized when current is applied to the heating element via the heating terminals 234 a ′′, 234 b ′′ by the controller 110 of the control body 101 (see, e.g., FIG. 6 ).
- FIG. 6 illustrates the aerosol delivery device 100 when the electrical power source 300 is received in the electrical power source cavity 104 , and the cartridge 200 ′′ of FIG. 5 is received in the cartridge cavity 106 .
- the electrical circuit may additionally include an illumination source 122 such as a light emitting diode (LED).
- the control body 101 may include an illumination source cover 124 , which may cover, protect, and/or conceal the illumination source 122 .
- the illumination source cover 124 may be translucent or transparent such that light emitted by the illumination source may travel therethrough.
- the illumination source cover 124 may be tinted or diffuse such that the presence of the illumination source is hidden or obscured when not in use.
- the cartridge 200 ′′ may include a viewing window 252 ′′, which may allow a user to view a quantity of the aerosol precursor composition 246 ′′ remaining in the reservoir 248 ′′.
- a viewing window 252 ′′ may allow a user to view a quantity of the aerosol precursor composition 246 ′′ remaining in the reservoir 248 ′′.
- all or a portion of the outer body 216 ′′ of the cartridge 200 ′′ may comprise a translucent or transparent material.
- the illumination source 122 and the illumination source cover 124 may be positioned in the body portion 102 a of the housing 102 at the cartridge cavity 106 at a position that aligns with the viewing window 252 ′′ such that light produced by the illumination source may be directed into the cartridge 200 ′′ to facilitate viewing of the level of the aerosol precursor composition 246 ′′.
- the body portion 102 a of the housing 102 may include a cutout or other feature defining a viewing opening 126 .
- the user may be able to see the level of the aerosol precursor composition 246 ′′ through the viewing opening 126 .
- the controller 110 may direct the illumination source 122 to output light under certain circumstances, such as after a draw on the cartridge 200 ′′ is detected.
- the illumination source 122 may additionally or alternatively output light when a separate actuator (e.g., a button) is depressed or otherwise actuated. Accordingly, a user may be kept apprised of a level of the aerosol precursor composition in the cartridge 200 ′′.
- inclusion of the illumination source 122 is optional. In this regard, ambient light be sufficient for viewing the level of the aerosol precursor composition 246 ′′ through the viewing opening 126 in some embodiments. However, inclusion of the illumination source 122 may be preferable due to increased usability in low-light situations.
- the controller 110 may be configured to control one or more operations of the aerosol delivery device 100 .
- the controller 110 may verify that the cartridge 200 is authentic using information provided by the control component 208 ′, 208 ′′. Usage of the cartridge 200 may be allowed only if the cartridge is determined to be authentic. Further, when a user draws on the cartridge 200 , the flow sensor 118 (e.g. a pressure sensor) may detect the draw. In response, the controller 110 may direct current to the cartridge 200 such that that the heating element 240 ′, 240 ′′ produces heat and vaporizes the aerosol precursor composition, which may be directed to the user.
- the aerosol delivery device may include an actuator that may be manually actuated to trigger the controller to direct current to the cartridge 200 .
- the actuator may be used in lieu of the flow sensor 118 , or to provide supplemental power from the electrical power source to the cartridge to change (e.g., increase) the aerosol output of the aerosol delivery device.
- the actuator may be used in conjunction with the controller to adjust the amount of power directed from the electrical power source to the cartridge, such that the aerosol delivery device may have various aerosol output settings (e.g., aerosol mass output settings).
- the actuator e.g., a button or button assembly
- the actuator may be configured to control a power output level directed from the electrical power source to the cartridge.
- the actuator may have selective regions or a plurality of regions such as a lower region, a middle region, and an upper region.
- Each region of the actuator may be configured to direct a differing level of power (e.g., current and/or voltage) a from the electrical power source to the cartridge.
- the differing regions of the actuator may each correspond to a differing aerosol output setting.
- the actuator may include one or a plurality of sensors (e.g., pressure and/or force sensors) at each region such that the force applied to the actuator by the user at one or more of the regions may be detected to control the output of the aerosol via differing selectable power output levels directed from the electrical power source to the cartridge.
- the power output level may be controlled based on a location at which the actuator is actuated. Alternatively or additionally, the power output level may be controlled based on the amount of force applied to the actuator, which may be determined via a force sensor (e.g., a stress or strain sensor).
- a force sensor e.g., a stress or strain sensor
- FIGS. 7 - 10 illustrate an alternate embodiment of the control body 101 ′, wherein only those differences with respect to the control body 101 described above are noted.
- each of the aerosol delivery devices may include some or all of the components and features described herein in any combination, unless otherwise noted.
- the control body 101 ′ may define a more rounded profile for improved ergonomics.
- the control body 101 ′ may further comprise an indicator 128 ′.
- the indicator 128 ′ may output light to indicate an operational status of the control body.
- the indicator 128 ′ may be used to communicate the operational status of the device without usage of the electronic display surface 116 ′.
- the indicator 128 ′ may flash or change colors when the cartridge is low in aerosol precursor composition or to indicate the electrical power source needs recharging or replacement.
- the indicator 128 ′ may light up when the flow sensor detects a puff on the cartridge.
- the indicator 128 ′ may be configured to illuminate with one or more of a plurality of colors, durations, frequencies, and/or intensities to indicate to the user certain conditions of the aerosol delivery device such as the power output level, the status of the electrical power source, and/or the activated or inactivated state of the aerosol delivery device which correspond to the output of the indicator.
- the indicator 128 ′ may include an illumination source that activates with one or more of a plurality of colors, durations, frequencies, and/or intensities to indicate to the user certain conditions of the aerosol delivery device such as the power output level, the status of the power source, and/or the activated or inactivated state of the aerosol delivery device.
- the indicator 128 ′ may be configurable by the user to control the color or colors of the illumination source and/or other output parameters thereof. Further, the user may be able to control which device status value is communicated to the user by the illumination signal.
- the body portion 102 a ′ of the housing 102 ′ may include a side opening 130 ′.
- the side opening 130 ′ may be configured to engage an outer cover 132 ′ (e.g., via interference fit), which is illustrated in FIG. 8 .
- the outer cover 132 ′ may be engaged with an exterior of the housing 102 ′.
- the outer cover 132 ′ may comprise silicon, which may provide enhanced grip such that it is easier to retain the control body 101 ′ in the hand without dropping it.
- various other materials e.g., other rubbers
- Use of a resilient outer cover 132 ′ may provide various other benefits.
- depression of the outer cover 132 ′ at the side opening 130 ′ may trigger the illumination source 122 (e.g., via actuation of an actuator) to illuminate the fluid level in the cartridge 200 .
- the depression of the outer cover 132 ′ at the side opening 130 ′ may trigger the illumination source 122 , where the duration of the depression of the outer cover corresponds to the duration of the activation of the illumination source, such that the user may continuously illuminate the cartridge 200 for a desired duration during filling or refilling of the cartridge or when otherwise desired for a user-selected period of time.
- FIG. 9 illustrates a partial side view of the control body 101 ′.
- the illumination source cover 124 ′ may be aligned with the viewing opening 126 ′ as described above.
- the viewing opening 126 ′ may be relatively wide so as to facilitate viewing of the level of the aerosol precursor composition in the cartridge.
- the viewing opening 126 ′ may define an opening with a width perpendicular to the longitudinal axis 106 a ′ of the cartridge cavity 106 ′ that is equal to at least half of a diameter of the cartridge in some embodiments.
- FIG. 10 illustrates a first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′ (see, FIG. 7 ).
- a second section 102 a 2 ′ and a third section 102 a 3 ′ of the body portion 102 a ′ of the housing 102 ′ are illustrated in FIG. 7 .
- the third section 102 a 3 ′ may be integral with the section 102 a 2 ′, or a separate component.
- the first and second sections 102 a 1 ′, 102 a 2 ′ of the body portion 102 ′ of the housing 102 ′ may be configured to engage the access door 102 b ′ (see, FIG. 10 ).
- the electronic display 116 ′ may be positioned at (e.g., under) the third section 102 a 3 ′ of the body portion 102 a ′ of the housing 102 ′.
- all or a portion of the housing 102 ′ may be translucent or transparent in some embodiments.
- the housing 102 ′ may additionally include an illumination source or have an illumination source in proximity thereto.
- the housing 102 ′ may include the illumination source 122 described above, which may be configured to emit direct or indirect illumination through the housing 102 ′ where the housing may be translucent or transparent.
- the first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′ may additionally include a side opening 134 ′ configured to engage the outer cover 132 ′ (see, e.g., FIG. 8 ).
- the outer cover 132 ′ may be firmly held in place via the opposing side openings 130 ′, 134 ′.
- the third section 102 a ′ may comprise a metal such as aluminum for enhanced strength and/or improved cosmetic appearance, or a separate outer body defining such characteristics may be attached to the third section.
- FIG. 10 further illustrates an inside of the first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′.
- the housing 102 ′ may define one or more ribs 136 ′, which may be configured to retain the electric power source 300 (see, e.g., FIG. 3 ) within the electrical power source cavity 104 ′ and/or retain the cartridge 200 (see, e.g., FIG. 3 ) in the cartridge cavity 106 ′.
- the ribs 136 ′ may be curved or otherwise tailored to match the size and shape of the electric power source 300 and/or the cartridge 200 .
- the ribs 136 ′ may extend to an end portion 138 ′.
- the end portions 138 ′ of the ribs 136 ′ at the first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′ may be configured to engage corresponding end portions of the ribs at the second section 102 a 2 ′ (see,
- FIG. 7 of the body portion of the housing so as to separate the electrical power source cavity 104 ′ from the cartridge cavity 106 ′ to retain the electrical power source 300 and the cartridge 200 (see, FIG. 3 ) respectively therein.
- the end portions 138 ′ of the ribs 136 ′ may collectively define a divider wall 107 ′ that is segmented along the length thereof. Usage of the ribs 136 ′, rather than a solid structure, may reduce the quantity of material required to form the housing 102 ′, thereby additionally reducing the weight of the housing while still retaining the components of the control body 101 ′ in the desired positions and providing added stiffness.
- the ribs 136 ′ may comprise a non-rigid material such as foam or a thermoplastic polymer or include an element comprising foam, thermoplastic polymer, or other non-rigid material that allows the ribs 136 ′ to compress or displace in the event that the electrical power source 300 undergoes changes in diameter such that can occur with diametric swelling that is common with lithium-type batteries.
- the ribs 136 ′ may at least partially surround the electrical power source 300 (see, e.g., FIG. 3 ).
- the first section 102 a 1 ′ of the body portion 102 a ′ of the housing 102 ′ may include protrusions and/or receptacles 140 ′, which may be configured to engage corresponding receptacles/protrusions at the second section 102 a 2 ′ (see, FIG. 7 ).
- the sections 102 a 1 ′, 102 a 2 ′ of the housing 102 ′ may interlock with one another when assembled.
- section 102 b ′ may include an orifice 137 ′ or plurality of orifices in fluid communication with the electrical power source cavity 104 ′ and the atmosphere outside of the housing 102 ′ to allow for the escape of any gas or gases that may be produced by the electrical power source 300 (see, e.g., FIG. 3 ) to prevent the gas or gases from generating a region of increased pressure within the housing 102 ′.
- the orifice 137 ′ may comprise one or more openings of sufficient cross sectional area as to prevent a pressure differential between the internal region of the housing 102 ′ and the outside atmosphere.
- the orifice 137 ′ may include a permeable membrane or porous material that allows gas or gases that may be produced by the electrical power source 300 (see, e.g., FIG. 3 ) to escape to the outside atmosphere while preventing the entrance of liquid into the housing 102 ′ due to the selective permeability of the membrane or porous material.
- FIGS. 11 - 15 illustrate an additional embodiment of the control body 101 ′′.
- the control body 101 ′′ may be substantially similar to the control body 101 ′ of FIGS. 7 - 10 in one or more respects.
- the control body 101 ′′ may include a housing 102 ′′ comprising a body portion 102 a ′′ and an access door 102 b ′′ which may be secured to the body portion via a screw 120 ′′ (see, FIG. 13 ).
- the body portion 102 a ′′ may include multiple sections including first and second sections 102 a 1 ′′, 102 a 2 ′′.
- the first section 102 a 1 ′′ may define protrusions and/or receptacles 140 ′′ configured to engage corresponding receptacles/protrusions at the second section 102 a 2 ′ (see, FIG. 7 ).
- the body portion 102 a ′′ may define one or more ribs 136 ′′ that respectively extend to an end portion 138 ′′ to define a dividing wall 107 ′′.
- the ribs 136 ′′ may extend in both the power source cavity 104 ′′ and the cartridge cavity 106 ′′ in some embodiments to thereby assist in respectively retaining the electrical power source and the cartridge therein.
- the control body 101 ′′ may include the indicator 128 ′′ and an outer cover 132 ′′ (see, FIG. 14 ).
- the electronic display 116 ′′ may be positioned at the top of the housing 102 ′′ proximate the opening to the external opening 108 ′′ to the cartridge cavity 106 ′′, which extends along the longitudinal axis 106 a ′′
- control body 101 ′′ may differ in one or more respects from the control bodies described above.
- the dividing wall 107 ′′ may additionally include a partial wall 109 ′′, which further assists in retaining a cartridge in the cartridge cavity 106 ′′.
- the body portion 102 a ′′ of the housing 102 ′′ may include first and second side openings 130 a ′′, 130 b ′′ at the first section 102 a 1 ′′ and first and second side openings 134 a ′′, 134 b ′′ at the second section 102 a 2 ′′ thereof (see, FIGS. 11 and 13 ).
- Usage of multiple side openings 130 a ′′, 130 b ′′, 134 a ′′, 134 b ′′ at each section 102 a 1 ′′, 102 a 2 ′′ of the body portion 102 a ′′ of the housing 102 ′′ may provide for improved engagement of the outer cover 132 ′′ therewith, as illustrated in FIG. 12 .
- the viewing opening 126 ′ may be relatively wide (see e.g., FIG. 9 ). However, as illustrated in FIG. 13 , in other embodiments the viewing opening 126 ′′ may be relatively less wide.
- the viewing opening may define a width that is equal to less than half of a diameter of the configured to be received in the cartridge compartment 106 ′′ in some embodiments. Whereas a wide viewing opening may facilitate viewing of the level of the aerosol precursor composition, a relatively less wide viewing opening may provide more protection to the cartridge, while still allowing a user to view the level of the aerosol precursor composition.
- FIG. 16 illustrates a method for assembling an aerosol delivery.
- the method may include providing a housing at operation 402 .
- the housing may define an electrical power source cavity configured to receive an electrical power source and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition.
- the electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis.
- the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another.
- the method may include positioning an electrical contact in the electrical power source cavity, the electrical contact being configured to engage the electrical power source at operation 404 .
- the method may include positioning a coupler in the cartridge cavity, the coupler being configured to engage the cartridge at operation 406 .
- the method may further comprise inserting the electrical power source in the electrical power source cavity and engaging the electrical power source with the electrical contact.
- the method may additionally include inserting the cartridge into the cartridge cavity and engaging the cartridge with the coupler. Inserting the cartridge into the cartridge cavity may include inserting the cartridge through an external opening defined by the housing.
- Providing the housing at operating 402 may include defining a viewing opening at the cartridge cavity. Further, the method may include engaging an outer cover with an exterior of the housing. The method may additionally include positioning an illumination source in the housing. The illumination source may be configured to illuminate the cartridge in the cartridge cavity. The method may further include engaging an electronic display with the housing. Providing the housing at operation 402 may include engaging a first body portion with a second body portion. Providing the housing at operation 402 may further include engaging an access door with at least one of the first body portion and the second body portion, the access door being configured to selectively provide access to the electrical power source cavity.
- FIG. 17 An additional embodiment of an aerosol delivery device 500 is illustrated in FIG. 17 .
- the aerosol delivery device 500 may include a control body 501 and a cartridge.
- the cartridge 200 ′′ from FIG. 5 is included in the aerosol delivery device 500 .
- other cartridges may be employed in other embodiments.
- the control body 501 may include a housing 502 .
- the housing 502 may be integral or comprise a plurality of pieces.
- the housing 502 may include an electrical power source portion 502 a, an access door 502 b, and a coupler portion 502 c.
- Access door 502 b may include an orifice or plurality of orifices in fluid communication with the atmosphere outside of the housing 502 b to allow for the escape of any gas or gases that may be produced by electrical power source 504 (see, FIG. 18 ) to prevent the gas or gases from generating a region of increased pressure within the housing 502 as described above with respect to the orifice 137 in FIG. 10 .
- each of the housings of the aerosol delivery devices of the present disclosure may include such an orifice.
- the orifice may preferably be located at an access door to conceal the orifice and position the orifice at the electrical power source cavity, but the orifice may be located at other positions in other embodiments.
- FIG. 18 illustrates a partial exploded view of the control body 501 .
- the electrical power source portion 502 a of the housing 502 may include a first body portion 502 a 1 and a second body portion 502 a 2 .
- the first body portion 502 a 1 and the second body portion 502 a 2 may be configured to engage one another and define an electrical power source cavity 504 .
- the electrical power source cavity 504 may be configured to receive an electrical power source 600 (e.g., a battery and/or a capacitor).
- the electrical power source cavity 504 may define a first longitudinal axis 504 a.
- the coupler portion 502 c of the housing 502 may be configured to engage the electrical power source portion 502 a of the housing.
- a coupler 514 may be engaged with the coupler portion 502 c of the housing 502 .
- the coupler 514 may be positioned at least partially within the coupler portion 502 c of the housing 502 .
- the coupler 514 may be configured to engage the cartridge 200 ′′ (see, FIG. 17 ), which may include an aerosol precursor composition.
- the cartridge 200 ′′ When engaged with the coupler 514 , the cartridge 200 ′′ may extend along a second longitudinal axis 200 a ′′, as illustrated in FIG. 17 .
- the first longitudinal axis 504 a which is defined by the electrical power source cavity 504
- the second longitudinal axis 200 a ′′ which is defined by the cartridge 200 ′′, may be non-coaxial and oriented substantially parallel to one another. This configuration may provide various benefits as noted above with respect to embodiments of control bodies wherein the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity are non-coaxial but substantially parallel.
- the cartridge 200 ′′ may be at least partially received in a coupler cavity 506 defined by the coupler portion 502 c of the housing 502 .
- the coupler 514 may be at least partially received in the coupler cavity 506 .
- a depth of the coupler cavity 506 as well as the position of the coupler 514 (see, FIG. 18 ) therein may determine whether or not the cartridge 200 ′′ is at least partially received in the coupler cavity 506 .
- Partially receiving the cartridge 200 ′′ in the coupler cavity 506 may provide for improved engagement of the cartridge with the control body 501 and/or reduce the susceptibility of damage or contamination to the coupler 514 .
- the cartridge 200 ′′ may not extend into the coupler portion 502 c of the housing 502 . This configuration may facilitate engagement of the cartridge 200 ′′ with the coupler 514 and allow for usage of a wider variety of shapes and sizes of cartridges with the control body 501 .
- the control body 501 may additionally include a controller 510 (see, e.g., FIG. 20 ), which is not shown in FIG. 18 for clarity purposes.
- the controller 510 may comprise a control board in some embodiments.
- the controller 510 may be configured to control some or all of the functions of the control body 501 including directing current from the electrical power source 600 to the cartridge 200 ′′. In this regard, the controller 510 may be electrically coupled to the electrical power source 600 .
- the control body 501 may additionally include one or more button assemblies.
- the control body 501 may include a first button assembly 542 and second button assembly 544 .
- the first button assembly 542 may be configured to actuate a first switch 546 on the controller 510 .
- the second button assembly 544 may be configured to actuate a second switch 548 on the controller 510 .
- the button assemblies 542 , 544 may be configured to bend or otherwise move to actuate the switches 546 , 548 .
- first button assembly 542 and the second button assembly 544 may be hingedly coupled to one or both of the first body portion 502 a 1 and the second body portion 502 a 2 (see, e.g., FIG. 18 ) of the electrical power source portion 502 a of the housing 502 .
- actuation of the switches 546 , 548 may control one or more functions of the control body 501 .
- actuation of the first switch 546 may direct current from the electrical power source 600 to the cartridge 200 ′′ (see, FIG. 17 ) to heat an aerosol precursor composition therein and produce an aerosol.
- actuation of the second switch 548 may control other functions.
- control body 501 may further comprise an illumination source 522 such as a light emitting diode (LED).
- the illumination source 522 may be configured to output illumination.
- the control body 501 may include an illumination source cover 524 , which may cover, protect, and/or conceal the illumination source 522 .
- the illumination source cover 524 may be translucent or transparent such that light emitted by the illumination source may travel therethrough. In some embodiments the illumination source cover 524 may be tinted or diffuse such that the presence of the illumination source 522 is hidden or obscured when not in use.
- the illumination source 522 may be configured to illuminate the cartridge 200 ′′.
- the cartridge 200 ′′ may include the viewing window 252 ′′ such that a level of the aerosol precursor therein may be viewed as described above.
- the second button assembly 544 may be employed to turn on the illumination source 522 such that illumination is directed through the viewing window 252 ′′ of the cartridge 200 ′′ and thereby a user may more easily view a level of aerosol precursor composition therein, and/or the second switch may perform other functions.
- depression of the second button assembly 544 and thereby actuation of the second switch 548 , may cause the controller 510 to provide supplemental power from the electrical power source to the cartridge to increase the aerosol output of the aerosol delivery device, or to direct power to the cartridge, regardless of whether a draw on the cartridge is detected.
- the aerosol delivery device may not include a flow sensor.
- the second button assembly 544 may be used to actuate the second switch 548 to cycle through various adjustable controller power levels, such that the device may have various aerosol mass output settings, or various other functions may be controlled.
- the second button assembly 544 and/or any of the other actuators discussed herein may be configured to control a power output level directed from the electrical power source to the cartridge and/or otherwise control a quantity (e.g., mass) of aerosol outputted.
- the second button assembly 544 may at least partially define a dividing wall 550 that separates the cartridge 200 ′′ from the electrical power source cavity 504 (see, FIG. 18 ). Further, as described below, the controller 510 may be received in the electrical power source cavity 504 . Thereby, the second button assembly 544 may include the illumination source cover 524 at the dividing wall 550 such that the illumination may be directed therethrough to the cartridge 200 ′′.
- Assembly of the control body 501 may be performed in various manners.
- the controller 510 may be at least partially wrapped about the electrical power source 600 , as illustrated in FIG. 20 .
- the controller 510 may be bent or configured such that the power source 600 is received between opposing substantially parallel walls of the controller.
- the controller 510 may be electrically connected to the electrical power source 600 at this time as well.
- the electrical power source may include wires or other electrical leads that are soldered or otherwise connected to the controller 510 .
- the controller 510 and the electrical power source 600 may be inserted into the housing 502 . More particularly, the controller 510 and the electrical power source may be received in the electrical power source cavity 504 .
- the housing 500 may include features configured to engage the controller 510 .
- the controller 510 may be received in a slot 552 which may be defined by an extension 554 formed by the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 .
- the extension 554 may support the controller 510 to allow for actuation of the switches 546 , 548 in the manner described above.
- the first button assembly 542 may be engaged with the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 before the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504 .
- a portion of the first button assembly 542 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 .
- the first button assembly 542 may be engaged with the first body portion 502 a 1 , but still able to move to actuate the first switch 546 as described above.
- the second button assembly 544 may be engaged with the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 before the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504 .
- a portion of the second button assembly 544 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 .
- the second button assembly 544 may be engaged with the first body portion 502 a 1 , but still able to move to actuate the second switch 546 as described above.
- the controller 510 may include a connector 556 .
- the connector 556 may comprise an electrical connector and/or a data connector. Thereby, the connector 556 may be employed to recharge the electrical power source 600 and/or transmit data to or from the controller 510 .
- the housing 502 may include a recess 558 configured to receive the connector 556 .
- the recess 558 may be defined by one or both of the first body portion 502 a 1 and the second body portion 502 a 2 of the electrical power source portion 502 a of the housing 502 .
- the second body portion 502 a 2 of the electrical power source portion 502 a of the housing 502 may be engaged with the first body portion 502 a 1 after the controller 510 and the electrical power source 600 are inserted into the electrical power source cavity 504 .
- the second body portion 502 a 2 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the first body portion 502 a 1 of the electrical power source portion 502 a of the housing 502 .
- the coupler portion 502 c of the housing 502 may be engaged with the electrical power source portion 502 a of the housing 502 .
- the coupler portion 502 c may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the electrical power source portion 502 a of the housing 502 .
- FIG. 22 further illustrates the coupler 514 engaged with the housing 502 .
- the coupler 514 may be received in the coupler cavity 506 .
- additional components may be inserted in the coupler cavity 506 .
- a seal 560 may be inserted through the coupler 514 .
- an electrical contact 562 may extend through the seal 560 .
- the seal 560 may be configured to electrically insulate the coupler 514 from the electrical contact 562 .
- the electrical contact 562 may comprise a conductive material such as brass, and the seal 560 may comprising an electrically insulating material such as silicone.
- the electrical contact 562 may be engaged with a first terminal 564 (see, e.g., FIG. 22 ) of the controller 510 .
- the electrical contact 562 may be welded to the first terminal 564 after the first terminal is bent into contact therewith.
- a tab 566 may be engaged with the coupler 514 and received in the coupler cavity 506 defined by the coupler portion 502 c of the housing 502 .
- a fastener 568 e.g., a nut
- the tab 566 may be coupled to a second terminal 570 (see, e.g., FIG. 22 ) of the controller 510 .
- the second terminal 570 may be welded to the tab 566 after the second terminal is bent into engagement therewith.
- the coupler 514 may be electrically coupled to the controller 510 .
- the second terminal 570 may directly engage the coupler 514 .
- positive and negative connections may be established with the cartridge 200 ′′ (see, e.g., FIG. 17 ) when the cartridge is engaged with the control body 501 via the electrical contact 562 and the coupler 514 .
- current may be directed to the cartridge 200 ′′ in order to vaporize the aerosol precursor composition therein as directed by the controller 510 when a user depresses the first button assembly 542 (see, e.g., FIG. 18 ).
- the access door 502 b (see, FIG. 18 ) may be engaged with the electrical power source portion 502 a and the coupler portion 502 c of the housing 502 .
- the control body 501 may define the completed configuration illustrated in FIG. 17 .
- Tanks are distinguishable from other embodiments of cartridges for aerosol delivery devices in that they may not include a reservoir substrate, at least a portion thereof may be transparent or translucent such that a level of aerosol precursor composition may be viewed, and the quantity of the aerosol precursor composition that may be received therein may be relatively large.
- Embodiments of tank-style cartridges are described in U.S. patent application Ser. No. 14/802,667, filed Jul. 17, 2015, to O'Brien, which is incorporated herein by reference in its entirety.
- a method for assembling an aerosol delivery device may include providing a housing defining an electrical power source cavity configured to receive an electrical power source, the electrical power source cavity defining a first longitudinal axis at operation 702 . Further, the method may include engaging a coupler configured to engage a cartridge including an aerosol precursor composition with the housing such that the cartridge extends along a second longitudinal axis, the first longitudinal axis and the second longitudinal axis being non-coaxial and oriented substantially parallel to one another at operation 704 . Additionally, the method may include positioning a controller in the housing, the controller being configured to engage the electrical power source at operation 706 .
- the method may further comprise engaging the electrical power source with the controller. Additionally, the method may include inserting the electrical power source in the electrical power source cavity simultaneously with positioning the controller in the housing at operation 706 . Further, the method may include engaging the cartridge with the coupler. The cartridge may include a viewing window. The method may additionally include positioning an illumination source in the housing, the illumination source being configured to direct illumination through the viewing window.
- providing the housing at operation 702 may include engaging a first body portion with a second body portion.
- Providing the housing at operation 702 may further include engaging an access door with at least one of the first body portion and the second body portion, the access door being configured to block access to the electrical power source cavity.
- Providing the housing at operation 702 may additionally include engaging a button assembly with at least one of the first body portion and the second body portion.
- the method may include positioning an illumination source in the housing and engaging an illumination source cover with the button assembly, the illumination source cover being configured to direct illumination produced by the illumination source therethrough.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Human Computer Interaction (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
- Nozzles (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- The present disclosure relates to aerosol delivery devices, and more particularly, to aerosol delivery devices that include a housing and a coupler. The aerosol delivery device may include an atomizer comprising a heating element configured to heat an aerosol precursor. The aerosol precursor composition, which may include components made or derived from tobacco or otherwise incorporate tobacco, is heated by the atomizer to produce an inhalable substance for human consumption.
- Many smoking devices have been proposed through the years as improvements upon, or alternatives to, smoking products that require combusting tobacco for use. Many of those devices purportedly have been designed to provide the sensations associated with cigarette, cigar or pipe smoking, but without delivering considerable quantities of incomplete combustion and pyrolysis products that result from the burning of tobacco. To this end, there have been proposed numerous smoking products, flavor generators and medicinal inhalers that utilize electrical energy to vaporize or heat a volatile material, or attempt to provide the sensations of cigarette, cigar or pipe smoking without burning tobacco to a significant degree. See, for example, the various alternative smoking articles, aerosol delivery devices and heat generating sources set forth in the background art described in U.S. Pat. No. 7,726,320 to Robinson et al. and U.S. Pat. No. 8,881,737 to Collett et al., which are incorporated herein by reference. See also, for example, the various types of smoking articles, aerosol delivery devices and electrically-powered heat generating sources referenced by brand name and commercial source in U.S. Pat. Pub. No. 2015/0216232 to Bless et al., which is incorporated herein by reference. Additionally, various types of electrically powered aerosol and vapor delivery devices also have been proposed in U.S. Pat. App. Pub. Nos. 2014/0096781 to Sears et al. and 2014/0283859 to Minskoff et al., as well as U.S. patent application Ser. No. 14/282,768 to Sears et al., filed May 20, 2014; Ser. No. 14/286,552 to Brinkley et al., filed May 23, 2014; Ser. No. 14/327,776 to Ampolini et al., filed Jul. 10, 2014; and Ser. No. 14/465,167 to Worm et al., filed Aug. 21, 2014; all of which are incorporated herein by reference.
- Certain existing embodiments of aerosol delivery devices include a control body and a cartridge. A power source (e.g., a battery) may be positioned in the control body and an aerosol precursor composition may be positioned in the cartridge. The cartridge and the control body may engage one another to define an elongated tubular configuration. However, certain other form factors for aerosol delivery devices may be desirable.
- The present disclosure relates to aerosol delivery devices which, in certain embodiments, may be characterized as electronic cigarettes. In one aspect an aerosol delivery device is provided. The aerosol delivery device may include a housing. The housing may define an electrical power source cavity configured to receive an electrical power source, and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition. The electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis. The longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another.
- In some embodiments the aerosol delivery device may further include the electrical power source. Additionally, the aerosol delivery device may include the cartridge. Further, the aerosol delivery device may include a coupler positioned within the housing and configured to engage the cartridge. The aerosol delivery device may additionally include an outer cover engaged with an exterior of the housing.
- In some embodiments the housing may further define a viewing opening at the cartridge cavity. Additionally, the aerosol delivery device may include an illumination source configured to illuminate the cartridge in the cartridge cavity. The aerosol delivery device may further include an electronic display. The housing may include an access door configured to provide access to the electrical power source cavity. The housing may define an external opening at the cartridge cavity configured to receive the cartridge therethrough. The housing may define a dividing wall that separates the electrical power source cavity from the cartridge cavity.
- In an additional aspect a method for assembling an aerosol delivery device is provided. The method may include providing a housing. The housing may define an electrical power source cavity configured to receive an electrical power source and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition. The electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis. The longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another. Further, the method may include positioning an electrical contact in the electrical power source cavity. The electrical contact may be configured to engage the electrical power source. Additionally, the method may include positioning a coupler in the cartridge cavity. The coupler may be configured to engage the cartridge.
- In some embodiments the method may further include inserting the electrical power source in the electrical power source cavity and engaging the electrical power source with the electrical contact. Additionally, the method may include inserting the cartridge into the cartridge cavity and engaging the cartridge with the coupler. Inserting the cartridge into the cartridge cavity may include inserting the cartridge through an external opening defined by the housing.
- In some embodiments providing the housing may include defining a viewing opening at the cartridge cavity. Further, the method may include engaging an outer cover with an exterior of the housing. The method may additionally include positioning an illumination source in the housing. The illumination source may be configured to illuminate the cartridge in the cartridge cavity. In some embodiments the method may additionally include engaging an electronic display with the housing. Providing the housing may include engaging a first body portion with a second body portion. Providing the housing further may further include engaging an access door with at least one of the first body portion and the second body portion. The access door may be configured to selectively provide access to the electrical power source cavity.
- In an additional aspect an aerosol delivery device is provided. The aerosol delivery device may include a housing defining an electrical power source cavity configured to receive an electrical power source. The electrical power source cavity may define a first longitudinal axis. The aerosol delivery device may additionally include a coupler engaged with the housing and configured to engage a cartridge including an aerosol precursor composition such that the cartridge extends along a second longitudinal axis. The first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another.
- In some embodiments the aerosol delivery device may further include the electrical power source. Additionally, the aerosol delivery device may include a controller. The controller may be wrapped at least partially about the electrical power source.
- In some embodiments the aerosol delivery device may further include the cartridge. The cartridge may include a viewing window. The aerosol delivery device may additionally include an illumination source configured to direct illumination through the viewing window.
- In some embodiments the housing may include a coupler portion. The coupler may be positioned at least partially within the coupler portion. The housing may include a button assembly. The button assembly may be configured to control a power output level directed from the electrical power source to the cartridge. The button assembly may at least partially define a dividing wall that separates the cartridge from the electrical power source cavity. Further, the aerosol delivery device may include an illumination source. The button assembly may include an illumination source cover configured to direct illumination produced by the illumination source therethrough.
- In an additional aspect a method for assembling an aerosol delivery device is provided. The method may include providing a housing defining an electrical power source cavity configured to receive an electrical power source. The electrical power source cavity may define a first longitudinal axis. The method may additionally include engaging a coupler configured to engage a cartridge including an aerosol precursor composition with the housing such that the cartridge extends along a second longitudinal axis. The first longitudinal axis and the second longitudinal axis may be non-coaxial and oriented substantially parallel to one another. Further, the method may include positioning a controller in the housing. The controller may be configured to engage the electrical power source.
- In some embodiments the method may further include engaging the electrical power source with the controller. Additionally, the method may include inserting the electrical power source in the electrical power source cavity simultaneously with positioning the controller in the housing. Further, the method may include engaging the cartridge with the coupler. The cartridge may include a viewing window. Further, the method may include positioning an illumination source in the housing. The illumination source may be configured to direct illumination through the viewing window.
- In some embodiments providing the housing may include engaging a first body portion with a second body portion. Further, providing the housing further may include engaging an access door with at least one of the first body portion and the second body portion. The access door may be configured to block access to the electrical power source cavity. Providing the housing may further include engaging a button assembly with at least one of the first body portion and the second body portion. The method may additionally include positioning an illumination source in the housing and engaging an illumination source cover with the button assembly. The illumination source cover may be configured to direct illumination produced by the illumination source therethrough.
- These and other features, aspects, and advantages of the disclosure will be apparent from a reading of the following detailed description together with the accompanying drawings, which are briefly described below.
- Having thus described the disclosure in the foregoing general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
-
FIG. 1 illustrates a side view of an aerosol delivery device including a control body and a cartridge according to an example embodiment of the present disclosure; -
FIG. 2 illustrates a sectional, partially-exploded view through the control body of the aerosol delivery device ofFIG. 1 according to an example embodiment of the present disclosure; -
FIG. 3 illustrates a modified sectional view through the aerosol delivery device ofFIG. 1 according to an example embodiment of the present disclosure; -
FIG. 4 illustrates an exploded view of an example embodiment of the cartridge ofFIG. 1 including a reservoir substrate; -
FIG. 5 illustrates a sectional view through an alternative example embodiment of the cartridge ofFIG. 1 including a reservoir according to an example embodiment of the present disclosure; -
FIG. 6 illustrates a modified sectional view through the aerosol delivery device ofFIG. 1 including the cartridge ofFIG. 5 according to an example embodiment of the present disclosure; -
FIG. 7 illustrates a perspective view of a control body including a side opening configured to engage an outer cover and a relatively wide viewing opening according to an additional example embodiment of the present disclosure; -
FIG. 8 illustrates a perspective view of the control body ofFIG. 7 with the outer cover according to an example embodiment of the present disclosure; -
FIG. 9 illustrates an enlarged side view of the control body ofFIG. 8 at the viewing opening according to an example embodiment of the present disclosure; -
FIG. 10 illustrates a section of a body portion of a housing of the control body ofFIG. 7 according to an example embodiment of the present disclosure; -
FIG. 11 illustrates a perspective view of a control body including side openings configured to engage an outer cover and a relatively narrow viewing opening according to an additional example embodiment of the present disclosure; -
FIG. 12 illustrates a section of a body portion of a housing of the control body ofFIG. 11 according to an example embodiment of the present disclosure; -
FIG. 13 illustrates a bottom view of the control body ofFIG. 11 according to an example embodiment of the present disclosure; -
FIG. 14 illustrates the control body ofFIG. 11 with the outer cover according to an example embodiment of the present disclosure; -
FIG. 15 illustrates an enlarged side view of the control body ofFIG. 14 at the viewing opening according to an example embodiment of the present disclosure; -
FIG. 16 illustrates a method for assembling an aerosol delivery device according to an example embodiment of the present disclosure; -
FIG. 17 illustrates a perspective view of an aerosol delivery device including a control body and a cartridge according to an example embodiment of the present disclosure; -
FIG. 18 illustrates a partial exploded view of the control body ofFIG. 17 according to an example embodiment of the present disclosure; -
FIG. 19 illustrates a partial side view of the control body ofFIG. 17 in a partially-assembled configuration including a first body portion of a housing thereof according to an example embodiment of the present disclosure; -
FIG. 20 illustrates a perspective view of a controller and an electrical power source of the control body ofFIG. 17 according to an example embodiment of the present disclosure; -
FIG. 21 illustrates a perspective view of the control body ofFIG. 17 in a partially-assembled configuration including a first body portion of a housing thereof according to an example embodiment of the present disclosure; -
FIG. 22 illustrates a perspective view of the control body ofFIG. 17 in a partially-assembled configuration including an electrical power source housing portion and a coupler portion of a housing thereof according to an example embodiment of the present disclosure; -
FIG. 23 illustrates a sectional view through a coupler of the control body ofFIG. 17 according to an example embodiment of the present disclosure; and -
FIG. 24 illustrates a method for assembling an aerosol delivery device according to an example embodiment of the present disclosure. - The present disclosure will now be described more fully hereinafter with reference to exemplary embodiments thereof. These exemplary embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Indeed, the disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification, and in the appended claims, the singular forms “a”, “an”, “the”, include plural variations unless the context clearly dictates otherwise.
- Aerosol delivery devices according to the present disclosure may use electrical energy to heat a material (preferably without combusting the material to any significant degree) to form an inhalable substance; such articles most preferably being sufficiently compact to be considered “hand-held” devices. An aerosol delivery device may provide some or all of the sensations (e.g., inhalation and exhalation rituals, types of tastes or flavors, organoleptic effects, physical feel, use rituals, visual cues such as those provided by visible aerosol, and the like) of smoking a cigarette, cigar, or pipe, without any substantial degree of combustion of any component of that article or device. The aerosol delivery device may not produce smoke in the sense of the aerosol resulting from by-products of combustion or pyrolysis of tobacco, but rather, that the article or device most preferably yields vapors (including vapors within aerosols that can be considered to be visible aerosols that might be considered to be described as smoke-like) resulting from volatilization or vaporization of certain components of the article or device, although in other embodiments the aerosol may not be visible. In highly preferred embodiments, aerosol delivery devices may incorporate tobacco and/or components derived from tobacco. As such, the aerosol delivery device can be characterized as an electronic smoking article such as an electronic cigarette.
- Aerosol delivery devices of the present disclosure also can be characterized as being vapor-producing articles or medicament delivery articles. Thus, such articles or devices can be adapted so as to provide one or more substances (e.g., flavors and/or pharmaceutical active ingredients) in an inhalable form or state. For example, inhalable substances can be substantially in the form of a vapor (i.e., a substance that is in the gas phase at a temperature lower than its critical point). Alternatively, inhalable substances can be in the form of an aerosol (i.e., a suspension of fine solid particles or liquid droplets in a gas). For purposes of simplicity, the term “aerosol” as used herein is meant to include vapors, gases and aerosols of a form or type suitable for human inhalation, whether or not visible, and whether or not of a form that might be considered to be smoke-like.
- In use, aerosol delivery devices of the present disclosure may be subjected to many of the physical actions employed by an individual in using a traditional type of smoking article (e.g., a cigarette, cigar or pipe that is employed by lighting and inhaling tobacco). For example, an aerosol delivery device of the present disclosure can be hand-held by a user, a user can draw on a portion of the article for inhalation of aerosol produced by that article, a user can take puffs at selected intervals of time, and the like.
- Aerosol delivery devices of the present disclosure generally include a housing and a number of additional components coupled thereto and/or positioned within the housing, and some of the components may be removable or replaceable. The overall design of the housing can vary, and the overall size and shape of the housing can vary. The smoking articles can include a cartridge, which can be defined by an outer body or cover—e.g., an elongated body resembling the shape of a portion of a cigarette or cigar. For example, an outer cover or body of the cartridge can be substantially tubular in shape and, as such, resemble the shape of a conventional cigarette or cigar. In some embodiments, the housing may contain one or more reusable components (e.g., a rechargeable battery and various electronics for controlling the operation of that article), and the cartridge can be removable, refillable, and/or disposable.
- Aerosol delivery devices of the present disclosure most preferably comprise some combination of a power source (i.e., an electrical power source), at least one control component (e.g., means for actuating, controlling, regulating and/or ceasing power for heat generation, such as by controlling electrical current flow from the power source to other components of the aerosol delivery device), a heater or heat generation component (e.g., an electrical resistance heating element or component commonly referred to as part of an “atomizer”), and an aerosol precursor composition (e.g., commonly a liquid capable of yielding an aerosol upon application of sufficient heat, such as ingredients commonly referred to as “smoke juice,” “e-liquid” and “e-juice”), and a mouthend region or tip for allowing draw upon the aerosol delivery device for aerosol inhalation (e.g., a defined air flow path through the article such that aerosol generated can be withdrawn therefrom upon draw). When the heating element heats the aerosol precursor composition, an aerosol is formed, released, or generated in a physical form suitable for inhalation by a consumer. It should be noted that the foregoing terms are meant to be interchangeable such that reference to release, releasing, releases, or released includes form or generate, forming or generating, forms or generates, and formed or generated. Specifically, an inhalable substance is released in the form of a vapor or aerosol or mixture thereof.
- As noted above, the aerosol delivery device may incorporate a battery and/or other electrical power source (e.g., a capacitor) to provide current flow sufficient to provide various functionalities to the aerosol delivery device, such as powering of a heater, powering of control systems, powering of indicators, and the like. The power source can take on various embodiments. Preferably, the power source is able to deliver sufficient power to rapidly heat the heating element to provide for aerosol formation and power the aerosol delivery device through use for a desired duration of time. The power source preferably is sized to fit conveniently within the aerosol delivery device so that the aerosol delivery device can be easily handled. Additionally, a preferred power source is of a sufficiently light weight to not detract from a desirable smoking experience. A battery for use in the present devices may be replaceable, removable, and/or rechargeable and thus may be combined with any type of recharging technology, including connection to a typical alternating current electrical outlet, connection to a car charger (i.e., a cigarette lighter receptacle), and connection to a computer, such as through a universal serial bus (USB) cable or connector. In one preferred embodiment the electrical power source comprises a lithium-ion battery, which may light weight, rechargeable, and provide a large energy storage capacity. Examples of electrical power sources are described in U.S. Pat. App. Pub. No. 2010/0028766 to Peckerar et al., the disclosure of which is incorporated herein by reference in its entirety.
- An aerosol delivery device according to the present disclosure preferably incorporates a sensor or detector for control of supply of electric power to a heat generation element when aerosol generation is desired (e.g., upon draw during use). As such, for example, there is provided a manner or method for turning off the power supply to the heat generation element when the aerosol generating piece is not be drawn upon during use, and for turning on the power supply to actuate or trigger the generation of heat by the heat generation element during draw. For example, with respect to a flow sensor, representative current regulating components and other current controlling components including various microcontrollers, sensors, and switches for aerosol delivery devices are described in U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No. 4,947,874 to Brooks et al.; U.S. Pat. No. 5,372,148 to McCafferty et al.; U.S. Pat. No. 6,040,560 to Fleischhauer et al.; U.S. Pat. No. 7,040,314 to Nguyen et al.; U.S. Pat. No. 8,205,622 to Pan; and U.S. Pat. No. 8,881,737 to Collet et al.; U.S. Pat. Pub. Nos. 2009/0230117 to Fernando et al.; and 2014/0270727 to Ampolini et al.; and 2015/0257445 to Henry et al.; which are incorporated herein by reference in their entireties. Additional representative types of sensing or detection mechanisms, structures, components, configurations, and general methods of operation thereof, are described in U.S. Pat. No. 5,261,424 to Sprinkel, Jr.; U.S. Pat. No. 5,372,148 to McCafferty et al.; and PCT WO 2010/003480 to Flick; which are incorporated herein by reference in their entireties.
- In some embodiments, the aerosol delivery device can include an indicator, which may comprise one or more light emitting diodes. The indicator can be in communication with the control component through a connector circuit and illuminate, for example, during a user draw on the mouthend as detected by the flow sensor.
- Various elements that may be included in the housing are described in U.S. App. Pub. No. 2015/0245658 to Worm et al., which is incorporated herein by reference in its entirety. Still further components can be utilized in the aerosol delivery device of the present disclosure. For example, U.S. Pat. No. 5,154,192 to Sprinkel et al. discloses indicators for smoking articles; U.S. Pat. No. 5,261,424 to Sprinkel, Jr. discloses piezoelectric sensors that can be associated with the mouth-end of a device to detect user lip activity associated with taking a draw and then trigger heating; U.S. Pat. No. 5,372,148 to McCafferty et al. discloses a puff sensor for controlling energy flow into a heating load array in response to a pressure drop through a mouthpiece; U.S. Pat. No. 5,967,148 to Harris et al. discloses receptacles in a smoking device that include an identifier that detects a non-uniformity in infrared transmissivity of an inserted component and a controller that executes a detection routine as the component is inserted into the receptacle; U.S. Pat. No. 6,040,560 to Fleischhauer et al. describes a defined executable power cycle with multiple differential phases; U.S. Pat. No. 5,934,289 to Watkins et al. discloses photonic-optronic components; U.S. Pat. No. 5,954,979 to Counts et al. discloses means for altering draw resistance through a smoking device; U.S. Pat. No. 6,803,545 to Blake et al. discloses specific battery configurations for use in smoking devices; U.S. Pat. No. 7,293,565 to Griffen et al. discloses various charging systems for use with smoking devices; U.S. Pat. No. 8,402,976 to Fernando et al. discloses computer interfacing means for smoking devices to facilitate charging and allow computer control of the device; U.S. Pat. No. 8,689,804 to Fernando et al. discloses identification systems for smoking devices; and WO 2010/003480 to Flick discloses a fluid flow sensing system indicative of a puff in an aerosol generating system; all of the foregoing disclosures being incorporated herein by reference in their entireties. Further examples of components related to electronic aerosol delivery articles and disclosing materials or components that may be used in the present article include U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No. 5,249,586 to Morgan et al.; U.S. Pat. No. 5,666,977 to Higgins et al.; U.S. Pat. No. 6,053,176 to Adams et al.; U.S. 6,164,287 to White; U.S. Pat No. 6,196,218 to Voges; U.S. Pat. No. 6,810,883 to Felter et al.; U.S. Pat. No. 6,854,461 to Nichols; U.S. Pat. No. 7,832,410 to Hon; U.S. Pat. No. 7,513,253 to Kobayashi; U.S. Pat. No. 7,896,006 to Hamano; U.S. Pat. No. 6,772,756 to Shayan; U.S. Pat. No. 8,156,944 and 8,375,957 to Hon; U.S. Pat. No. 8,794,231 to Thorens et al.; U.S. Pat. No. 8,851,083 to Oglesby et al.; U.S. Pat. Nos. 8,915,254 and 8,925,555to Monsees et al.; U.S. Pat. App. Pub. Nos. 2006/0196518 and 2009/0188490 to Hon; U.S. Pat. App. Pub. No. 2010/0024834 to Oglesby et al.; U.S. Pat. App. Pub. No. 2010/0307518 to Wang; WO 2010/091593 to Hon; WO 2013/089551 to Foo; and U.S. Pat. App. Pub. No. 2014/0261408 to DePiano et al., each of which is incorporated herein by reference in its entirety.
- The aerosol precursor composition, also referred to as a vapor precursor composition, may comprise a variety of components including, by way of example, any of a polyhydric alcohol (e.g., glycerin, propylene glycol, or a mixture thereof), nicotine, tobacco, tobacco extract, and/or flavorants. Various components that may be included in the aerosol precursor composition are described in U.S. Pat. No. 7,726,320 to Robinson et al., which is incorporated herein by reference in its entirety. Additional representative types of aerosol precursor compositions are set forth in U.S. Pat. No. 4,793,365 to Sensabaugh, Jr. et al.; U.S. Pat. No. 5,101,839 to Jakob et al.; PCT WO 98/57556 to Biggs et al.; and Chemical and Biological Studies on New Cigarette Prototypes that Heat Instead of Burn Tobacco, R. J. Reynolds Tobacco Company Monograph (1988); the disclosures of which are incorporated herein by reference in their entireties. Other aerosol precursors which may be employed in the aerosol delivery device of the present disclosure include the aerosol precursors included in the VUSE® product by R. J. Reynolds Vapor Company, the BLU™ product by Lorillard Technologies, the Mistic Menthol product by Mistic Ecigs, and the Vype product by CN Creative Ltd. Also desirable are the so-called “Smoke Juices” for electronic cigarettes that have been available from Johnson Creek Enterprises LLC. Additional exemplary formulations for aerosol precursor materials that may be used according to the present disclosure are described in U.S. Pat. Pub. No. 2013/0008457 to Zheng et al., and U.S. Pat. Pub. No. 2013/0213417 to Chong et al., the disclosures of which are incorporated herein by reference in their entireties.
- The aerosol delivery device preferably includes a reservoir. In some embodiments, a reservoir may comprise a container for storing a liquid aerosol precursor, a fibrous substrate, or a combination of a fibrous substrate and a container. A fibrous substrate suitable for use as a reservoir may comprise a plurality of layers of nonwoven fibers and may be formed substantially into the shape of a tube. For example, the formed tube may be shaped and sized for placement within the outer body or cover of a cartridge for use in the aerosol delivery device. Liquid components, for example, can be sorptively retained by the fibrous substrate and/or be retained within a reservoir container. The reservoir preferably is in fluid connection with a liquid transport element. Thus, the liquid transport element may be configured to transport liquid from the reservoir to a heating element, such as via capillary action and/or via active transport—e.g., pumping or controlled movement with a valve. Representative types of substrates, reservoirs, or other components for supporting the aerosol precursor are described in U.S. Pat. No. 8,528,569 to Newton; and U.S. Pat. App. Pub. Nos. 2014/0261487 to Chapman et al.; 2014/0004930 to Davis et al.; and 2015/0216232 to Bless et al.; which are incorporated herein by reference in their entireties.
- The liquid transport element may be in direct contact with the heating element. Various wicking materials, and the configuration and operation of those wicking materials within certain types of aerosol delivery devices, are set forth in U.S. Pat. No. 8,910,640 to Sears et al., which is incorporated herein by reference in its entirety. A variety of the materials disclosed by the foregoing documents may be incorporated into the present devices in various embodiments, and all of the foregoing disclosures are incorporated herein by reference in their entireties.
- The heating element may comprise a wire defining a plurality of coils wound about the liquid transport element. In some embodiments the heating element may be formed by winding the wire about the liquid transport element as described in U.S. Pat. App. Pub. No. 2014/0157583 to Ward et al, which is incorporated herein by reference in its entirety. Further, in some embodiments the wire may define a variable coil spacing, as described in U.S. Pat. App. Pub. No. 2014/0270730 to DePiano et al., which is incorporated herein by reference in its entirety. Various embodiments of materials configured to produce heat when electrical current is applied therethrough may be employed to form the heating element. Example materials from which the wire coil may be formed include titanium, platinum, silver, palladium, Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi2), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al)2), graphite and graphite-based materials; and ceramic (e.g., a positive or negative temperature coefficient ceramic). The heating element may comprise a wire defining a mesh, screen or lattice structure positioned about the liquid transport element. Example materials from which the wire mesh, screen, or lattice may be formed include titanium, platinum, silver, palladium, Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi2), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al)2), graphite and graphite-based materials; and ceramic (e.g., a positive or negative temperature coefficient ceramic). An example embodiment of a mesh heating element is disclosed in U.S. Pat. Appl. Pub. No. 2015/0034103 to Hon. In some embodiments, a stamped heating element may be employed in the atomizer, as described in U.S. Pat. Pub. No. 2014/0270729 to DePiano et al., which is incorporated herein by reference in its entirety. Further to the above, additional representative heating elements and materials for use therein are described in U.S. Pat. No. 5,060,671 to Counts et al.; U.S. Pat. No. 5,093,984 to Deevi et al.; U.S. Pat. No. 5,224,498 to Deevi et al.; U.S. Pat. No. 5,228,460 to Sprinkel Jr., et al.; U.S. Pat. No. 5,322,075 to Deevi et al.; U.S. Pat. No. 5,353,813 to Deevi et al.; U.S. Pat. No. 5,468,936 to Deevi et al.; U.S. Pat. No. 5,498,850 to Das; U.S. Pat. No. 5,659,656 to Das; U.S. Pat. No. 5,498,855 to Deevi et al.; U.S. Pat. No. 5,530,225 to Hajaligol; U.S. Pat. No. 5,665,262 to Hajaligol; U.S. Pat. No. 5,573,692 to Das et al.; and U.S. Pat. No. 5,591,368 to Fleischhauer et al., the disclosures of which are incorporated herein by reference in their entireties. Further, chemical heating may be employed in other embodiments. Various additional examples of heaters and materials employed to form heaters are described in U.S. Pat. No. 8,881,737 to Collett et al., which is incorporated herein by reference, as noted above.
- A variety of heater components may be used in the present aerosol delivery device. In various embodiments, one or more microheaters or like solid state heaters may be used. Embodiments of microheaters and atomizers incorporating microheaters suitable for use in the presently disclosed devices are described in U.S. Pat. No. 8,881,737 to Collett et al., which is incorporated herein by reference in its entirety.
- One or more heating terminals (e.g., positive and negative terminals) may connect to the heating element so as to form an electrical connection with the power source and/or a terminal may connect to one or more control elements of the aerosol delivery device. Further, various examples of electronic control components and functions performed thereby are described in U.S. Pat. App. Pub. No. 2014/0096781 to Sears et al., which is incorporated herein by reference in its entirety.
- Various components of an aerosol delivery device according to the present disclosure can be chosen from components described in the art and commercially available. Reference is made for example to the reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article disclosed in U.S. Pat. App. Pub. No. 2014/0000638 to Sebastian et al., which is incorporated herein by reference in its entirety.
- In further embodiments, one or more components of the aerosol delivery device may be formed from one or more carbon materials, which may provide advantages in terms of biodegradability and absence of wires. In this regard, the heating element may comprise carbon foam, the reservoir may comprise carbonized fabric, and graphite may be employed to form an electrical connection with the battery and controller. An example embodiment of a carbon-based cartridge is provided in U.S. Pat. App. Pub. No. 2013/0255702 to Griffith et al., which is incorporated herein by reference in its entirety.
- Aerosol delivery devices are often configured in a manner that mimics aspects of certain traditional smoking devices such as cigarettes or cigars. In this regard, aerosol delivery devices typically define a substantially cylindrical configuration. For example, aerosol delivery devices often include a control body and a cartridge which attach in an end-to-end relationship to define the substantially cylindrical configuration. While such configurations may provide a look and feel that is similar to traditional smoking articles, these configurations may suffer from certain detriments. For example, cylindrically-configured aerosol delivery devices may not define attachment points usable to retain the aerosol delivery device in a desired position when not in use. Further, such configurations may result in a relatively large device when employed with reservoirs having relatively large capacity, resembling the size and shape of a cigar, which may not be suitable for temporary storage or transport in a user's pocket.
- So-called “mod” devices may include configurations other than parallel, coaxial alignment of a control body and a cartridge. However, such devices may include exposed and/or poorly-supported electrical connectors that connect the control body and cartridge, which may be strained during use or storage, thereby potentially affecting the usability thereof. Accordingly, it may be desirable to provide aerosol delivery devices in configurations and shapes that differ from configurations and shapes associated with traditional smoking articles and traditional aerosol delivery devices.
- As such, embodiments of the present disclosure provide alternative aerosol delivery devices configured to address the above-noted deficiencies of existing configurations of aerosol delivery devices and/or provide other benefits.
FIG. 1 illustrates a side view of anaerosol delivery device 100 of the present disclosure. As illustrated, theaerosol delivery device 100 may include acontrol body 101, which may include ahousing 102. In some embodiments the housing may comprise a plastic material, but various other materials, which are preferably substantially rigid, may be employed in other embodiments. Thehousing 102 may be unitary or comprise multiple pieces. For example, thehousing 102 may include abody portion 102 a, which may itself comprise one or more pieces, and anaccess door 102 b. As further illustrated inFIG. 1 , theaerosol delivery device 100 may additionally include acartridge 200, which may be at least partially received in thecontrol body 101. -
FIG. 2 illustrates a partially-exploded sectional view through thecontrol body 101 of theaerosol delivery device 100. As illustrated, thehousing 102 may define an electricalpower source cavity 104. In particular, the electricalpower source cavity 104 may be defined in thebody portion 102 a of thehousing 102. The electricalpower source cavity 104 may be closed by, and accessed via, theaccess door 102 b. As described below, the electricalpower source cavity 104 may be configured to receive an electrical power source. - Further, the
housing 102 may define acartridge cavity 106. As described in detail below, thecartridge cavity 106 may be configured to receive the cartridge 200 (see, e.g.,FIG. 3 ). In this regard, thehousing 102 may define anexternal opening 108 at thecartridge cavity 106 configured to receive thecartridge 200 therethrough. - The
housing 102 may include adivider wall 107 that separates thepower source cavity 104 from thecartridge cavity 106. In some embodiments thedivider wall 107 completely separates thepower source cavity 104 from thecartridge cavity 106. For example, thedivider wall 107 may extend across the length and thickness of thecontrol body 101 such that thepower source cavity 104 and thecartridge cavity 106 are discrete cavities. This configuration may be preferable in that it may prevent fluid communication between thepower source cavity 104 and thecartridge cavity 106. Thereby, for example, in the event of a structural failure of the electrical power source, chemical intrusion into thecartridge cavity 106 may be resisted. However, as may be understood, in other embodiments the divider wall may be discontinuous in one or both of length and fitness. Such a configuration of the divider wall may still respectively retain an electrical power source in the electrical power source cavity and a cartridge in the cartridge cavity such that these components are securely retained in place. - The
control body 101 may include one or more additional components. The components may be received in, or otherwise engaged with, thehousing 102. For example, the components may include an electrical circuit, the operation of which is described below. The electrical circuit may include acontroller 110, first and secondelectrical contacts coupler 114. In some embodiments the electrical circuit may additionally include an electronic display 116 (e.g., a liquid crystal display). Further, the electrical circuit may include aflow sensor 118, which may be positioned at, or in fluid communication with, thecoupler 114. Wires or other electrical connectors may provide connections between the various components of the electrical circuit. In some embodiments the electrical circuit may further comprise a communication module. The communication module may be configured to communicate via Bluetooth or any other communication standard. Examples of communication modules and related antenna components which may be included in theaerosol delivery device 100 are described in U.S. patent application Ser. Nos. 14/802,789, filed Jul. 17, 2015, and Ser. No. 14/638,562, filed Mar. 4, 2015, each to Marion et al. -
FIG. 3 illustrates a sectional view through theaerosol delivery device 100. As illustrated, thecartridge 200 may be at least partially received in thecartridge cavity 106 when engaged with thecontrol body 101. In this regard, thecartridge 200 may be inserted through theexternal opening 108 into thecartridge cavity 106. As thecartridge 200 is inserted into thecartridge cavity 106, thecartridge 200 may engage thecoupler 114. Thereby, thecartridge 200 may establish an electrical connection with the control circuit such that current may be selectively directed to the cartridge by thecontroller 110 to produce aerosol. - As further illustrated in
FIG. 3 , theaerosol delivery device 100 may additionally include anelectrical power source 300. Theelectrical power source 300 may be received in the electricalpower source cavity 104, and theaccess door 102 b may be secured to thebody portion 102 a of thehousing 102, such that theelectrical power source 300 is retained in the electricalpower source cavity 104. In this regard, theaerosol delivery device 100 may additionally include at least one fastener 120 (e.g., a screw) configured to retain theaccess door 102 b in engagement with thebody portion 102 a of thehousing 102. - When the
electrical power source 300 is inserted into the electricalpower source cavity 104, the firstelectrical contact 112 a may engage a first end of the electrical power source, at which a first terminal of the electrical power source may be positioned. Thereafter, when theaccess door 102 b is secured to thebody portion 102, the secondelectrical contact 112 b may engage an opposing second end of theelectrical power source 300, at which a second terminal may be positioned. Thereby, power from theelectrical power source 300 may be supplied to thecontroller 110. However, as may be understood, theelectrical contacts electrical power source 300, such that various embodiments of the electrical power source may be employed. For example, in another embodiment both of the electrical contacts may be positioned at and configured to engage either the top or the bottom of the electrical power source. - In some embodiments the
electrical power source 300 may further comprise a protective circuit. Such a protective circuit may prevent overcharging of the electrical power source and/or regulate the release of current within acceptable limits. Further, the electrical power source may additionally include shock absorbing members (e.g., foam pads) in some embodiments, which may protect the electrical power source from damage associated with dropping theaerosol delivery device 100. - As further illustrated in
FIGS. 2 and 3 , in some embodiments the electricalpower source cavity 104 and thecartridge cavity 106 may be elongated and respectively define alongitudinal axis longitudinal axis 104 a of the electricalpower source cavity 104 and thelongitudinal axis 106 a of thecartridge cavity 106 may be substantially parallel to one another. Such a configuration may allow for receipt of both thecartridge 200 and theelectrical power source 300 in a space efficient manner within thehousing 102. - As noted herein, many existing embodiments of aerosol delivery devices define generally elongated, tubular configurations wherein the electrical power source and cartridge are positioned generally end to end to mimic the smoking articles such as cigarettes and cigars. Thereby, existing embodiments of aerosol delivery devices often include cartridges and aerosol delivery devices arranged with the longitudinal axes thereof being parallel to one another. However, as illustrated in
FIGS. 2 and 3 , theaerosol delivery device 100 of the present disclosure may be configured such that thelongitudinal axis 104 a of the electricalpower source cavity 104 and thelongitudinal axis 106 a of thecartridge cavity 106 are non-coaxial. - Configuring the electrical
power source cavity 104 and thecartridge cavity 106 with parallel, but non-coaxial,longitudinal axes aerosol delivery device 100 may define a relatively shorter length due to thecartridge 200 and theelectrical power source 300 being positioned beside one another, instead of in an end-to-end relationship. Further, by configuring the electricalpower source cavity 104 and thecartridge cavity 106 beside one another, theaerosol delivery device 100 may define an overall shape that is more suitable for transport in a user's pocket. Additionally, this configuration may allow theaerosol delivery device 100 to more easily fit in a user's hand. In this regard, a user may more easily carry and use the aerosol delivery device in a concealed fashion within a palm of the user's hand due to the relatively shorter length thereof, which may be desirable in certain social settings. - The side-by-side configuration may also provide a relatively large internal volume within the
housing 102 suitable for receipt of the components of theaerosol delivery device 100 in a number of various positions. By contrast, aerosol delivery devices arranged end-to-end have limited options with respect to the positions of components therein, due to the reservoir in the cartridge and the electrical power source in the control body typically defining cylindrical configurations. Thereby, any remaining space in the cartridge and the control body is typically annular or cylindrical in shape, which is not suitable for receipt of many components in a space efficient manner. Further, the relatively larger internal volume of theaerosol delivery device 100 of the present disclosure provided by thehousing 102 may accommodate a relatively largerelectrical power source 300 and/or a relativelylarger cartridge 200, such that the respective electric and aerosol precursor composition storage capacities thereof may be increased. Additionally, the relatively large internal volume of theaerosol delivery device 100 may accommodate various commercially available electrical power sources, rather than just custom electrical power sources which may be required for cylindrical configurations, such that expenses associated with the components of the aerosol delivery device may be reduced. - The side-by-side configuration may additionally provide a relatively large exterior surface area. Further, the side-by-side configuration may provide relatively planar exterior surfaces (which may be slightly curved for ergonomic or aesthetic purposes), which may be more suitable for the
display 116, as opposed to the sharply curved surfaces provided by a cylindrical aerosol delivery device. In this regard, commercially-available electronic displays typically define a planar display surface. - Thereby, for example, the
electronic display 116 may be positioned at a number of locations and may define a relatively larger size than an electronic display on an aerosol delivery device defining a cylindrical configuration. In the illustrated embodiment theelectronic display 116 is positioned at a top of thebody portion 102 a of thehousing 102. Theexternal opening 108 to thecartridge cavity 106 may also be positioned at the top of thebody portion 102 a of the housing. This position of theelectronic display 116 may allow a user to view the electronic display while the aerosol delivery device is grasped in the user's hand in a manner suitable for taking a draw on thecartridge 200. In this regard, the user's hand may extend around the sides of the aerosol delivery device, such that the top surface of the aerosol delivery device, at which theelectronic display 116 and the exposed portion of thecartridge 200 are positioned, is exposed and uncovered by the user's hand. Thus, various information regarding theaerosol delivery device 100 may be easily viewed during normal usage. For example, the data displayed by theelectronic display 116 may include a remaining cartridge aerosol precursor composition level, a remaining power source level, historical usage information, heat and aerosol output settings, a charging status, a communication status (e.g., when linked to another device via Bluetooth or other communication protocol), the time, and/or various other data. - The side-by-side configuration of the
aerosol delivery device 100 of the present disclosure may provide additional benefits. For example, thecartridge 200 may engage thecontrol body 101 in a manner that may provide for a secure connection therebetween, which may reduce stress and strain thereon as compared to embodiments of aerosol delivery devices in which the connection between the cartridge and control body is exposed (e.g. in embodiments in which the cartridge and the control body are arranged end-to-end). In this regard, thecoupler 114 may be recessed in or proximate thecartridge cavity 106 such that thehousing 102 protects the connection between thecartridge 200 and thecontrol body 101. Further, a portion, and more preferably a majority, of the longitudinal length of thecartridge 200 may be retained in thecartridge cavity 106 and the size and shape of the cartridge cavity may substantially correspond to that of the cartridge, such that thehousing 102 may resist movement of the cartridge, rather than thecoupler 114 bearing the entirety of such stress and strain associated with forces applied to one or both of the cartridge and thecontrol body 101. In this regard, in aerosol delivery devices configured with a control body and a cartridge arranged end-to-end, the connection between the cartridge and the control body may bear all or substantially all of the stress and strain associated with force applied to one or both of the cartridge and the control body. Such stress and strain may damage the connection therebetween, which can impede operation thereof, due to the connection including an electrical connection that supplies current to the cartridge for vaporization purposes. Further, although “mod” devices may define configurations other than the end-to-end configuration described above, such devices often include exposed electrical connectors that are subject to stress and strain. Accordingly, the side-by side, parallel but non-coaxial configuration of the electricpower source cavity 104 and thecartridge cavity 106 of theaerosol delivery device 100 of the present disclosure may provide various benefits. - Various embodiments of the
cartridge 200 may be employed in theaerosol delivery device 100. In this regard, a side view of thecartridge 200, rather than a sectional view therethrough, is illustrated inFIG. 3 in light of the various possible configurations of the components of the cartridge. However, one example embodiment of the cartridge is illustrated inFIG. 4 . - As illustrated in
FIG. 4 , thecartridge 200′ may comprise abase shipping plug 202′, a base 204′, acontrol component terminal 206′, anelectronic control component 208′, aflow director 210′, anatomizer 212′, areservoir substrate 214′, anouter body 216′, alabel 218′, amouthpiece 220′, and amouthpiece shipping plug 222′ according to an example embodiment of the present disclosure. The base 204′ may be coupled to a first end of theouter body 216′ and themouthpiece 220′ may be coupled to an opposing second end of the outer body to at least partially enclose the remaining components of thecartridge 200′ therein, with the exception of thelabel 218′, themouthpiece shipping plug 222′, and thebase shipping plug 202′. The base 204′ may be configured to engage thecoupler 114. In some embodiments the base 204′ may comprise anti-rotation features that substantially prevent relative rotation between the cartridge and associated device including a power source as disclosed in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety. - The
base shipping plug 202′ may be configured to engage and protect the base 204′ prior to use of thecartridge 200′. Similarly, themouthpiece shipping plug 222′ may be configured to engage and protect themouthpiece 220′ prior to use of thecartridge 200′. Thecontrol component terminal 206′, theelectronic control component 208′, theflow director 210′, theatomizer 212′, and thereservoir substrate 214′ may be retained within theouter body 216′. Thelabel 218′ may at least partially surround theouter body 216′ and include information such as a product identifier thereon. - The
atomizer 212′ may comprise afirst heating terminal 234 a′ and asecond heating terminal 234 b′, aliquid transport element 238′, and aheating element 240′. In this regard, thereservoir substrate 214′ may be configured to hold an aerosol precursor composition. Thereservoir substrate 214′ is in fluid connection with theliquid transport element 238′ so as to transport the aerosol precursor composition from thereservoir substrate 214′ to theheating element 240′ (e.g., via capillary action). Thereby, when current is directed to theheating element 240′ via theheating terminals 234 a′, 234 b′, the aerosol precursor composition may be vaporized. - Various other details with respect to the components that may be included in the
cartridge 200′, are provided, for example, in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety. In this regard,FIG. 7 thereof illustrates an enlarged exploded view of a base and a control component terminal;FIG. 8 thereof illustrates an enlarged perspective view of the base and the control component terminal in an assembled configuration;FIG. 9 thereof illustrates an enlarged perspective view of the base, the control component terminal, an electronic control component, and heating terminals of an atomizer in an assembled configuration;FIG. 10 thereof illustrates an enlarged perspective view of the base, the atomizer, and the control component in an assembled configuration;FIG. 11 thereof illustrates an opposing perspective view of the assembly ofFIG. 10 thereof;FIG. 12 thereof illustrates an enlarged perspective view of the base, the atomizer, the flow director, and the reservoir substrate in an assembled configuration;FIG. 13 thereof illustrates a perspective view of the base and an outer body in an assembled configuration;FIG. 14 thereof illustrates a perspective view of a cartridge in an assembled configuration;FIG. 15 thereof illustrates a first partial perspective view of the cartridge ofFIG. 14 thereof and a coupler for a control body;FIG. 16 thereof illustrates an opposing second partial perspective view of the cartridge ofFIG. 14 thereof and the coupler ofFIG. 11 thereof;FIG. 17 thereof illustrates a perspective view of a cartridge including a base with an anti-rotation mechanism;FIG. 18 thereof illustrates a perspective view of a control body including a coupler with an anti-rotation mechanism;FIG. 19 thereof illustrates alignment of the cartridge ofFIG. 17 with the control body ofFIG. 18 ;FIG. 20 thereof illustrates an aerosol delivery device comprising the cartridge ofFIG. 17 thereof and the control body ofFIG. 18 thereof with a modified view through the aerosol delivery device illustrating the engagement of the anti-rotation mechanism of the cartridge with the anti-rotation mechanism of the connector body;FIG. 21 thereof illustrates a perspective view of a base with an anti-rotation mechanism;FIG. 22 thereof illustrates a perspective view of a coupler with an anti-rotation mechanism; andFIG. 23 thereof illustrates a sectional view through the base ofFIG. 21 thereof and the coupler ofFIG. 22 thereof in an engaged configuration. - In another embodiment the
cartridge 200 may be substantially similar, or identical, to the cartridge disclosed in U.S. patent application Ser. No. 14/286,552 to Brinkley et al., filed May 23, 2014, which is incorporated herein by reference in its entirety. Thus, for example, the cartridge may include a flow director defining a non-tubular configuration, an electronics compartment sealed with respect to a reservoir compartment, and/or any of the various other features and components disclosed therein. Accordingly, it should be understood that the particular embodiments of thecartridge 200 described herein is provided for example purposes only. - In this regard, a sectional view through an additional embodiment of the
cartridge 200 is illustrated inFIG. 5 . As illustrated, thecartridge 200″ may include a base 204″, acontrol component terminal 206″, anelectronic control component 208″, aflow director 210″ which may be defined by anouter body 216″ or a separate component, anatomizer 212″, and amouthpiece 220″ according to an example embodiment of the present disclosure. Theatomizer 212″ may comprise afirst heating terminal 234 a″ and asecond heating terminal 234 b″, aliquid transport element 238″ and aheating element 240″. Thecartridge 200″ may additionally include a base shipping plug, a label, and a mouthpiece shipping plug, as described above. - The base 204″ may be coupled to a first end of the
outer body 216″ and themouthpiece 220″ may be coupled to an opposing second end of the outer body to at least partially enclose the remaining components of thecartridge 200″ therein. In some embodiments the base 204″ may comprise anti-rotation features that substantially prevent relative rotation between the cartridge and associated device including a power source as disclosed in U.S. Pat. App. Pub. No. 2014/0261495 to Novak et al., which is incorporated herein by reference in its entirety. - The
cartridge 200″ may further comprise a sealingmember 242″ and an initialliquid transport element 244″. In this regard, theouter body 216″ and/or an additional component may be configured to hold anaerosol precursor composition 246″ in areservoir 248″. In some embodiments thereservoir 248″ may be configured to be refillable, whereas in other embodiments thecartridge 200″ may be configured for a single use. The sealingmember 242″ may be positioned at an end of thechamber 248″ and include one ormore apertures 250″ that allow theaerosol precursor composition 246″ to contact the initialliquid transport element 244″. Further, theliquid transport element 238″ of theatomizer 212″ may be in contact with the initialliquid transport element 244″. Both the initialliquid transport element 244″ and theliquid transport element 238″ of theatomizer 212″ may comprise wicking and/or porous materials that allow movement of theaerosol precursor composition 246″ therethrough (e.g., via capillary action), such that the aerosol precursor composition may be drawn to theheating element 240″ and heated and vaporized when current is applied to the heating element via theheating terminals 234 a″, 234 b″ by thecontroller 110 of the control body 101 (see, e.g.,FIG. 6 ). -
FIG. 6 illustrates theaerosol delivery device 100 when theelectrical power source 300 is received in the electricalpower source cavity 104, and thecartridge 200″ ofFIG. 5 is received in thecartridge cavity 106. As illustrated, in some embodiments, the electrical circuit may additionally include anillumination source 122 such as a light emitting diode (LED). Further, thecontrol body 101 may include anillumination source cover 124, which may cover, protect, and/or conceal theillumination source 122. Theillumination source cover 124 may be translucent or transparent such that light emitted by the illumination source may travel therethrough. In some embodiments theillumination source cover 124 may be tinted or diffuse such that the presence of the illumination source is hidden or obscured when not in use. - As further illustrated in
FIG. 6 , in some embodiments thecartridge 200″ may include aviewing window 252″, which may allow a user to view a quantity of theaerosol precursor composition 246″ remaining in thereservoir 248″. For example, all or a portion of theouter body 216″ of thecartridge 200″ may comprise a translucent or transparent material. Theillumination source 122 and theillumination source cover 124 may be positioned in thebody portion 102 a of thehousing 102 at thecartridge cavity 106 at a position that aligns with theviewing window 252″ such that light produced by the illumination source may be directed into thecartridge 200″ to facilitate viewing of the level of theaerosol precursor composition 246″. In this regard, thebody portion 102 a of thehousing 102 may include a cutout or other feature defining aviewing opening 126. Thereby, the user may be able to see the level of theaerosol precursor composition 246″ through theviewing opening 126. - The
controller 110 may direct theillumination source 122 to output light under certain circumstances, such as after a draw on thecartridge 200″ is detected. Theillumination source 122 may additionally or alternatively output light when a separate actuator (e.g., a button) is depressed or otherwise actuated. Accordingly, a user may be kept apprised of a level of the aerosol precursor composition in thecartridge 200″. - Note that inclusion of the
illumination source 122 is optional. In this regard, ambient light be sufficient for viewing the level of theaerosol precursor composition 246″ through theviewing opening 126 in some embodiments. However, inclusion of theillumination source 122 may be preferable due to increased usability in low-light situations. - The
controller 110 may be configured to control one or more operations of theaerosol delivery device 100. Thecontroller 110 may verify that thecartridge 200 is authentic using information provided by thecontrol component 208′, 208″. Usage of thecartridge 200 may be allowed only if the cartridge is determined to be authentic. Further, when a user draws on thecartridge 200, the flow sensor 118 (e.g. a pressure sensor) may detect the draw. In response, thecontroller 110 may direct current to thecartridge 200 such that that theheating element 240′, 240″ produces heat and vaporizes the aerosol precursor composition, which may be directed to the user. In addition, the aerosol delivery device may include an actuator that may be manually actuated to trigger the controller to direct current to thecartridge 200. The actuator may be used in lieu of theflow sensor 118, or to provide supplemental power from the electrical power source to the cartridge to change (e.g., increase) the aerosol output of the aerosol delivery device. In other embodiments the actuator may be used in conjunction with the controller to adjust the amount of power directed from the electrical power source to the cartridge, such that the aerosol delivery device may have various aerosol output settings (e.g., aerosol mass output settings). Accordingly the actuator (e.g., a button or button assembly) may be configured to control a power output level directed from the electrical power source to the cartridge. - In some embodiments the actuator (e.g., button or button assembly) may have selective regions or a plurality of regions such as a lower region, a middle region, and an upper region. Each region of the actuator may be configured to direct a differing level of power (e.g., current and/or voltage) a from the electrical power source to the cartridge. Thereby, the differing regions of the actuator may each correspond to a differing aerosol output setting. The actuator may include one or a plurality of sensors (e.g., pressure and/or force sensors) at each region such that the force applied to the actuator by the user at one or more of the regions may be detected to control the output of the aerosol via differing selectable power output levels directed from the electrical power source to the cartridge. Accordingly, the power output level may be controlled based on a location at which the actuator is actuated. Alternatively or additionally, the power output level may be controlled based on the amount of force applied to the actuator, which may be determined via a force sensor (e.g., a stress or strain sensor).
- As may be understood, the exact shape and dimensions of the
aerosol delivery device 100 may vary. In this regard,FIGS. 7-10 illustrate an alternate embodiment of thecontrol body 101′, wherein only those differences with respect to thecontrol body 101 described above are noted. Thus, each of the aerosol delivery devices may include some or all of the components and features described herein in any combination, unless otherwise noted. - As illustrated in
FIG. 7 , thecontrol body 101′ may define a more rounded profile for improved ergonomics. As further illustrated inFIG. 7 , thecontrol body 101′ may further comprise anindicator 128′. Theindicator 128′ may output light to indicate an operational status of the control body. In some embodiments theindicator 128′ may be used to communicate the operational status of the device without usage of theelectronic display surface 116′. For instance, theindicator 128′ may flash or change colors when the cartridge is low in aerosol precursor composition or to indicate the electrical power source needs recharging or replacement. In addition, theindicator 128′ may light up when the flow sensor detects a puff on the cartridge. - In some embodiments the
indicator 128′ may be configured to illuminate with one or more of a plurality of colors, durations, frequencies, and/or intensities to indicate to the user certain conditions of the aerosol delivery device such as the power output level, the status of the electrical power source, and/or the activated or inactivated state of the aerosol delivery device which correspond to the output of the indicator. Thereby, theindicator 128′ may include an illumination source that activates with one or more of a plurality of colors, durations, frequencies, and/or intensities to indicate to the user certain conditions of the aerosol delivery device such as the power output level, the status of the power source, and/or the activated or inactivated state of the aerosol delivery device. Theindicator 128′ may be configurable by the user to control the color or colors of the illumination source and/or other output parameters thereof. Further, the user may be able to control which device status value is communicated to the user by the illumination signal. - As additionally illustrated in
FIG. 7 , thebody portion 102 a′ of thehousing 102′ may include aside opening 130′. Theside opening 130′ may be configured to engage anouter cover 132′ (e.g., via interference fit), which is illustrated inFIG. 8 . Thereby, theouter cover 132′ may be engaged with an exterior of thehousing 102′. In some embodiments theouter cover 132′ may comprise silicon, which may provide enhanced grip such that it is easier to retain thecontrol body 101′ in the hand without dropping it. However, various other materials (e.g., other rubbers), which may be textured or smooth, may be employed in other embodiments. Use of a resilientouter cover 132′ may provide various other benefits. For example, in one embodiment, depression of theouter cover 132′ at theside opening 130′ may trigger the illumination source 122 (e.g., via actuation of an actuator) to illuminate the fluid level in thecartridge 200. In another embodiment, the depression of theouter cover 132′ at theside opening 130′ may trigger theillumination source 122, where the duration of the depression of the outer cover corresponds to the duration of the activation of the illumination source, such that the user may continuously illuminate thecartridge 200 for a desired duration during filling or refilling of the cartridge or when otherwise desired for a user-selected period of time. -
FIG. 9 illustrates a partial side view of thecontrol body 101′. As illustrated, the illumination source cover 124′ may be aligned with theviewing opening 126′ as described above. In this illustrated embodiment, theviewing opening 126′ may be relatively wide so as to facilitate viewing of the level of the aerosol precursor composition in the cartridge. For example, theviewing opening 126′ may define an opening with a width perpendicular to thelongitudinal axis 106 a′ of thecartridge cavity 106′ that is equal to at least half of a diameter of the cartridge in some embodiments. - As noted above, in some embodiments the body portion of the housing of the control body may comprise multiple pieces. In this regard,
FIG. 10 illustrates afirst section 102 a 1′ of thebody portion 102 a′ of thehousing 102′ (see,FIG. 7 ). Asecond section 102 a 2′ and athird section 102 a 3′ of thebody portion 102 a′ of thehousing 102′ are illustrated inFIG. 7 . Thethird section 102 a 3′ may be integral with thesection 102 a 2′, or a separate component. The first andsecond sections 102 a 1′, 102 a 2′ of thebody portion 102′ of thehousing 102′ may be configured to engage theaccess door 102 b′ (see,FIG. 10 ). Theelectronic display 116′ may be positioned at (e.g., under) thethird section 102 a 3′ of thebody portion 102 a′ of thehousing 102′. In this regard, all or a portion of thehousing 102′ may be translucent or transparent in some embodiments. Thehousing 102′ may additionally include an illumination source or have an illumination source in proximity thereto. For example, thehousing 102′ may include theillumination source 122 described above, which may be configured to emit direct or indirect illumination through thehousing 102′ where the housing may be translucent or transparent. - As illustrated in
FIG. 10 , thefirst section 102 a 1′ of thebody portion 102 a′ of thehousing 102′ may additionally include aside opening 134′ configured to engage theouter cover 132′ (see, e.g.,FIG. 8 ). Thereby, theouter cover 132′ may be firmly held in place via the opposingside openings 130′, 134′. Whereas theouter body 132′ may provide enhanced grip, thethird section 102 a′ may comprise a metal such as aluminum for enhanced strength and/or improved cosmetic appearance, or a separate outer body defining such characteristics may be attached to the third section. -
FIG. 10 further illustrates an inside of thefirst section 102 a 1′ of thebody portion 102 a′ of thehousing 102′. As illustrated, thehousing 102′ may define one ormore ribs 136′, which may be configured to retain the electric power source 300 (see, e.g.,FIG. 3 ) within the electricalpower source cavity 104′ and/or retain the cartridge 200 (see, e.g.,FIG. 3 ) in thecartridge cavity 106′. In this regard, theribs 136′ may be curved or otherwise tailored to match the size and shape of theelectric power source 300 and/or thecartridge 200. Theribs 136′ may extend to anend portion 138′. Theend portions 138′ of theribs 136′ at thefirst section 102 a 1′ of thebody portion 102 a′ of thehousing 102′ may be configured to engage corresponding end portions of the ribs at thesecond section 102 a 2′ (see, -
FIG. 7 ) of the body portion of the housing so as to separate the electricalpower source cavity 104′ from thecartridge cavity 106′ to retain theelectrical power source 300 and the cartridge 200 (see,FIG. 3 ) respectively therein. In this regard, theend portions 138′ of theribs 136′ may collectively define adivider wall 107′ that is segmented along the length thereof. Usage of theribs 136′, rather than a solid structure, may reduce the quantity of material required to form thehousing 102′, thereby additionally reducing the weight of the housing while still retaining the components of thecontrol body 101′ in the desired positions and providing added stiffness. Theribs 136′ may comprise a non-rigid material such as foam or a thermoplastic polymer or include an element comprising foam, thermoplastic polymer, or other non-rigid material that allows theribs 136′ to compress or displace in the event that theelectrical power source 300 undergoes changes in diameter such that can occur with diametric swelling that is common with lithium-type batteries. In this regard, theribs 136′ may at least partially surround the electrical power source 300 (see, e.g.,FIG. 3 ). - As additionally illustrated in
FIG. 10 , thefirst section 102 a 1′ of thebody portion 102 a′ of thehousing 102′ may include protrusions and/orreceptacles 140′, which may be configured to engage corresponding receptacles/protrusions at thesecond section 102 a 2′ (see,FIG. 7 ). Thereby, thesections 102 a 1′, 102 a 2′ of thehousing 102′ may interlock with one another when assembled. - As illustrated in
FIG. 10 ,section 102 b′ may include anorifice 137′ or plurality of orifices in fluid communication with the electricalpower source cavity 104′ and the atmosphere outside of thehousing 102′ to allow for the escape of any gas or gases that may be produced by the electrical power source 300 (see, e.g.,FIG. 3 ) to prevent the gas or gases from generating a region of increased pressure within thehousing 102′. Theorifice 137′ may comprise one or more openings of sufficient cross sectional area as to prevent a pressure differential between the internal region of thehousing 102′ and the outside atmosphere. In one embodiment theorifice 137′ may include a permeable membrane or porous material that allows gas or gases that may be produced by the electrical power source 300 (see, e.g.,FIG. 3 ) to escape to the outside atmosphere while preventing the entrance of liquid into thehousing 102′ due to the selective permeability of the membrane or porous material. -
FIGS. 11-15 illustrate an additional embodiment of thecontrol body 101″. Thecontrol body 101″ may be substantially similar to thecontrol body 101′ ofFIGS. 7-10 in one or more respects. In this regard, as illustrated inFIGS. 11 and 12 , thecontrol body 101″ may include ahousing 102″ comprising abody portion 102 a″ and anaccess door 102 b″ which may be secured to the body portion via ascrew 120″ (see,FIG. 13 ). Thebody portion 102 a″ may include multiple sections including first andsecond sections 102 a 1″, 102 a 2″. Thefirst section 102 a 1″ may define protrusions and/orreceptacles 140″ configured to engage corresponding receptacles/protrusions at thesecond section 102 a 2′ (see,FIG. 7 ). Thebody portion 102 a″ may define one ormore ribs 136″ that respectively extend to anend portion 138″ to define a dividingwall 107″. As illustrated theribs 136″ may extend in both thepower source cavity 104″ and thecartridge cavity 106″ in some embodiments to thereby assist in respectively retaining the electrical power source and the cartridge therein. Further, thecontrol body 101″ may include theindicator 128″ and anouter cover 132″ (see,FIG. 14 ). Theelectronic display 116″ may be positioned at the top of thehousing 102″ proximate the opening to theexternal opening 108″ to thecartridge cavity 106″, which extends along thelongitudinal axis 106 a″. - However, the
control body 101″ may differ in one or more respects from the control bodies described above. In this regard, in addition to theend portions 138″ of theribs 136″, the dividingwall 107″ may additionally include apartial wall 109″, which further assists in retaining a cartridge in thecartridge cavity 106″. Further, as illustrated inFIGS. 11 and 12 , in some embodiments thebody portion 102 a″ of thehousing 102″ may include first and second side openings 130 a″, 130 b″ at thefirst section 102 a 1″ and first andsecond side openings 134 a″, 134 b″ at thesecond section 102 a 2″ thereof (see,FIGS. 11 and 13 ). Usage of multiple side openings 130 a″, 130 b″, 134 a″, 134 b″ at eachsection 102 a 1″, 102 a 2″ of thebody portion 102 a″ of thehousing 102″ may provide for improved engagement of theouter cover 132″ therewith, as illustrated inFIG. 12 . - Further, as illustrated in
FIG. 15 , and as noted above, in some embodiments theviewing opening 126′ may be relatively wide (see e.g.,FIG. 9 ). However, as illustrated inFIG. 13 , in other embodiments theviewing opening 126″ may be relatively less wide. For example, the viewing opening may define a width that is equal to less than half of a diameter of the configured to be received in thecartridge compartment 106″ in some embodiments. Whereas a wide viewing opening may facilitate viewing of the level of the aerosol precursor composition, a relatively less wide viewing opening may provide more protection to the cartridge, while still allowing a user to view the level of the aerosol precursor composition. - In an additional embodiment,
FIG. 16 illustrates a method for assembling an aerosol delivery. As illustrated, the method may include providing a housing atoperation 402. The housing may define an electrical power source cavity configured to receive an electrical power source and a cartridge cavity configured to receive a cartridge including an aerosol precursor composition. The electrical power source cavity and the cartridge cavity may be elongated and respectively define a longitudinal axis. The longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity may be non-coaxial and oriented substantially parallel to one another. Further, the method may include positioning an electrical contact in the electrical power source cavity, the electrical contact being configured to engage the electrical power source atoperation 404. Additionally, the method may include positioning a coupler in the cartridge cavity, the coupler being configured to engage the cartridge atoperation 406. - In some embodiments the method may further comprise inserting the electrical power source in the electrical power source cavity and engaging the electrical power source with the electrical contact. The method may additionally include inserting the cartridge into the cartridge cavity and engaging the cartridge with the coupler. Inserting the cartridge into the cartridge cavity may include inserting the cartridge through an external opening defined by the housing.
- Providing the housing at operating 402 may include defining a viewing opening at the cartridge cavity. Further, the method may include engaging an outer cover with an exterior of the housing. The method may additionally include positioning an illumination source in the housing. The illumination source may be configured to illuminate the cartridge in the cartridge cavity. The method may further include engaging an electronic display with the housing. Providing the housing at
operation 402 may include engaging a first body portion with a second body portion. Providing the housing atoperation 402 may further include engaging an access door with at least one of the first body portion and the second body portion, the access door being configured to selectively provide access to the electrical power source cavity. - An additional embodiment of an
aerosol delivery device 500 is illustrated inFIG. 17 . As illustrated theaerosol delivery device 500 may include acontrol body 501 and a cartridge. In the illustrated embodiment thecartridge 200″ fromFIG. 5 is included in theaerosol delivery device 500. However, as may be understood, other cartridges may be employed in other embodiments. - The
control body 501 may include ahousing 502. Thehousing 502 may be integral or comprise a plurality of pieces. For example, thehousing 502 may include an electricalpower source portion 502 a, anaccess door 502 b, and acoupler portion 502 c.Access door 502 b may include an orifice or plurality of orifices in fluid communication with the atmosphere outside of thehousing 502 b to allow for the escape of any gas or gases that may be produced by electrical power source 504 (see,FIG. 18 ) to prevent the gas or gases from generating a region of increased pressure within thehousing 502 as described above with respect to theorifice 137 inFIG. 10 . In this regard, each of the housings of the aerosol delivery devices of the present disclosure may include such an orifice. The orifice may preferably be located at an access door to conceal the orifice and position the orifice at the electrical power source cavity, but the orifice may be located at other positions in other embodiments. - In this regard,
FIG. 18 illustrates a partial exploded view of thecontrol body 501. As illustrated, the electricalpower source portion 502 a of thehousing 502 may include afirst body portion 502 a 1 and asecond body portion 502 a 2. Thefirst body portion 502 a 1 and thesecond body portion 502 a 2 may be configured to engage one another and define an electricalpower source cavity 504. The electricalpower source cavity 504 may be configured to receive an electrical power source 600 (e.g., a battery and/or a capacitor). The electricalpower source cavity 504 may define a firstlongitudinal axis 504 a. - Further, the
coupler portion 502 c of thehousing 502 may be configured to engage the electricalpower source portion 502 a of the housing. Acoupler 514 may be engaged with thecoupler portion 502 c of thehousing 502. For example, thecoupler 514 may be positioned at least partially within thecoupler portion 502 c of thehousing 502. - The
coupler 514 may be configured to engage thecartridge 200″ (see,FIG. 17 ), which may include an aerosol precursor composition. When engaged with thecoupler 514, thecartridge 200″ may extend along a secondlongitudinal axis 200 a″, as illustrated inFIG. 17 . The firstlongitudinal axis 504 a, which is defined by the electricalpower source cavity 504, and the secondlongitudinal axis 200 a″, which is defined by thecartridge 200″, may be non-coaxial and oriented substantially parallel to one another. This configuration may provide various benefits as noted above with respect to embodiments of control bodies wherein the longitudinal axis of the electrical power source cavity and the longitudinal axis of the cartridge cavity are non-coaxial but substantially parallel. - In some embodiments the
cartridge 200″ may be at least partially received in acoupler cavity 506 defined by thecoupler portion 502 c of thehousing 502. In this regard, as noted above, thecoupler 514 may be at least partially received in thecoupler cavity 506. Thereby, a depth of thecoupler cavity 506 as well as the position of the coupler 514 (see,FIG. 18 ) therein may determine whether or not thecartridge 200″ is at least partially received in thecoupler cavity 506. Partially receiving thecartridge 200″ in thecoupler cavity 506 may provide for improved engagement of the cartridge with thecontrol body 501 and/or reduce the susceptibility of damage or contamination to thecoupler 514. However, in other embodiments thecartridge 200″ may not extend into thecoupler portion 502 c of thehousing 502. This configuration may facilitate engagement of thecartridge 200″ with thecoupler 514 and allow for usage of a wider variety of shapes and sizes of cartridges with thecontrol body 501. - The
control body 501 may additionally include a controller 510 (see, e.g.,FIG. 20 ), which is not shown inFIG. 18 for clarity purposes. Thecontroller 510 may comprise a control board in some embodiments. Thecontroller 510 may be configured to control some or all of the functions of thecontrol body 501 including directing current from theelectrical power source 600 to thecartridge 200″. In this regard, thecontroller 510 may be electrically coupled to theelectrical power source 600. - As illustrated in
FIG. 18 , thecontrol body 501 may additionally include one or more button assemblies. In particular, thecontrol body 501 may include afirst button assembly 542 andsecond button assembly 544. As illustrated inFIG. 19 , thefirst button assembly 542 may be configured to actuate afirst switch 546 on thecontroller 510. Similarly, thesecond button assembly 544 may be configured to actuate asecond switch 548 on thecontroller 510. In this regard, thebutton assemblies switches first button assembly 542 and thesecond button assembly 544 may be hingedly coupled to one or both of thefirst body portion 502 a 1 and thesecond body portion 502 a 2 (see, e.g.,FIG. 18 ) of the electricalpower source portion 502 a of thehousing 502. - Thereby, actuation of the
switches control body 501. For example, actuation of thefirst switch 546 may direct current from theelectrical power source 600 to thecartridge 200″ (see,FIG. 17 ) to heat an aerosol precursor composition therein and produce an aerosol. Further, actuation of thesecond switch 548 may control other functions. - By way of example, the
control body 501 may further comprise anillumination source 522 such as a light emitting diode (LED). Theillumination source 522 may be configured to output illumination. In this regard, thecontrol body 501 may include anillumination source cover 524, which may cover, protect, and/or conceal theillumination source 522. Theillumination source cover 524 may be translucent or transparent such that light emitted by the illumination source may travel therethrough. In some embodiments theillumination source cover 524 may be tinted or diffuse such that the presence of theillumination source 522 is hidden or obscured when not in use. - The
illumination source 522 may be configured to illuminate thecartridge 200″. In particular, as schematically illustrated inFIG. 17 , thecartridge 200″ may include theviewing window 252″ such that a level of the aerosol precursor therein may be viewed as described above. Accordingly, thesecond button assembly 544 may be employed to turn on theillumination source 522 such that illumination is directed through theviewing window 252″ of thecartridge 200″ and thereby a user may more easily view a level of aerosol precursor composition therein, and/or the second switch may perform other functions. For example, in another embodiment depression of thesecond button assembly 544, and thereby actuation of thesecond switch 548, may cause thecontroller 510 to provide supplemental power from the electrical power source to the cartridge to increase the aerosol output of the aerosol delivery device, or to direct power to the cartridge, regardless of whether a draw on the cartridge is detected. In this regard, in some embodiments the aerosol delivery device may not include a flow sensor. In other embodiments thesecond button assembly 544 may be used to actuate thesecond switch 548 to cycle through various adjustable controller power levels, such that the device may have various aerosol mass output settings, or various other functions may be controlled. Accordingly, thesecond button assembly 544 and/or any of the other actuators discussed herein may be configured to control a power output level directed from the electrical power source to the cartridge and/or otherwise control a quantity (e.g., mass) of aerosol outputted. - In some embodiments the
second button assembly 544 may at least partially define a dividingwall 550 that separates thecartridge 200″ from the electrical power source cavity 504 (see,FIG. 18 ). Further, as described below, thecontroller 510 may be received in the electricalpower source cavity 504. Thereby, thesecond button assembly 544 may include the illumination source cover 524 at the dividingwall 550 such that the illumination may be directed therethrough to thecartridge 200″. - Assembly of the
control body 501 may be performed in various manners. In one embodiment thecontroller 510 may be at least partially wrapped about theelectrical power source 600, as illustrated inFIG. 20 . For example, thecontroller 510 may be bent or configured such that thepower source 600 is received between opposing substantially parallel walls of the controller. Thecontroller 510 may be electrically connected to theelectrical power source 600 at this time as well. In this regard, by way of example, the electrical power source may include wires or other electrical leads that are soldered or otherwise connected to thecontroller 510. - As illustrated in
FIG. 21 , thecontroller 510 and theelectrical power source 600 may be inserted into thehousing 502. More particularly, thecontroller 510 and the electrical power source may be received in the electricalpower source cavity 504. In some embodiments thehousing 500 may include features configured to engage thecontroller 510. For example, as illustrated, thecontroller 510 may be received in aslot 552 which may be defined by anextension 554 formed by thefirst body portion 502 a 1 of the electricalpower source portion 502 a of thehousing 502. Thereby, theextension 554 may support thecontroller 510 to allow for actuation of theswitches - In one embodiment the
first button assembly 542 may be engaged with thefirst body portion 502 a 1 of the electricalpower source portion 502 a of thehousing 502 before thecontroller 510 and theelectrical power source 600 are inserted into the electricalpower source cavity 504. For example, a portion of thefirst button assembly 542 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to thefirst body portion 502 a 1 of the electricalpower source portion 502 a of thehousing 502. Thereby, thefirst button assembly 542 may be engaged with thefirst body portion 502 a 1, but still able to move to actuate thefirst switch 546 as described above. Additionally, as further illustrated inFIG. 21 , in some embodiments thesecond button assembly 544 may be engaged with thefirst body portion 502 a 1 of the electricalpower source portion 502 a of thehousing 502 before thecontroller 510 and theelectrical power source 600 are inserted into the electricalpower source cavity 504. For example, a portion of thesecond button assembly 544 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to thefirst body portion 502 a 1 of the electricalpower source portion 502 a of thehousing 502. Thereby, thesecond button assembly 544 may be engaged with thefirst body portion 502 a 1, but still able to move to actuate thesecond switch 546 as described above. - Returning to
FIG. 20 , thecontroller 510 may include aconnector 556. Theconnector 556 may comprise an electrical connector and/or a data connector. Thereby, theconnector 556 may be employed to recharge theelectrical power source 600 and/or transmit data to or from thecontroller 510. As illustrated inFIG. 21 , thehousing 502 may include arecess 558 configured to receive theconnector 556. For example, therecess 558 may be defined by one or both of thefirst body portion 502 a 1 and thesecond body portion 502 a 2 of the electricalpower source portion 502 a of thehousing 502. - As illustrated in
FIG. 22 , thesecond body portion 502 a 2 of the electricalpower source portion 502 a of thehousing 502 may be engaged with thefirst body portion 502 a 1 after thecontroller 510 and theelectrical power source 600 are inserted into the electricalpower source cavity 504. For example, thesecond body portion 502 a 2 may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to thefirst body portion 502 a 1 of the electricalpower source portion 502 a of thehousing 502. Further, thecoupler portion 502 c of thehousing 502 may be engaged with the electricalpower source portion 502 a of thehousing 502. For example, thecoupler portion 502 c may be welded (e.g., ultrasonic welded), adhered, engaged via interference fit, or mechanically coupled to the electricalpower source portion 502 a of thehousing 502. -
FIG. 22 further illustrates thecoupler 514 engaged with thehousing 502. In particular, thecoupler 514 may be received in thecoupler cavity 506. As illustrated inFIG. 23 , additional components may be inserted in thecoupler cavity 506. In particular, aseal 560 may be inserted through thecoupler 514. Further, anelectrical contact 562 may extend through theseal 560. Theseal 560 may be configured to electrically insulate thecoupler 514 from theelectrical contact 562. In this regard, theelectrical contact 562 may comprise a conductive material such as brass, and theseal 560 may comprising an electrically insulating material such as silicone. Theelectrical contact 562 may be engaged with a first terminal 564 (see, e.g.,FIG. 22 ) of thecontroller 510. For example, theelectrical contact 562 may be welded to thefirst terminal 564 after the first terminal is bent into contact therewith. - Further, a
tab 566 may be engaged with thecoupler 514 and received in thecoupler cavity 506 defined by thecoupler portion 502 c of thehousing 502. A fastener 568 (e.g., a nut) may be secured to thecoupler 514 in order to retain thetab 566 in engagement therewith. Thetab 566 may be coupled to a second terminal 570 (see, e.g.,FIG. 22 ) of thecontroller 510. For example, thesecond terminal 570 may be welded to thetab 566 after the second terminal is bent into engagement therewith. Thereby, thecoupler 514 may be electrically coupled to thecontroller 510. In another embodiment thesecond terminal 570 may directly engage thecoupler 514. Regardless, positive and negative connections may be established with thecartridge 200″ (see, e.g.,FIG. 17 ) when the cartridge is engaged with thecontrol body 501 via theelectrical contact 562 and thecoupler 514. Thereby, current may be directed to thecartridge 200″ in order to vaporize the aerosol precursor composition therein as directed by thecontroller 510 when a user depresses the first button assembly 542 (see, e.g.,FIG. 18 ). - After the various components noted above are inserted into the
coupler cavity 506, theaccess door 502 b (see,FIG. 18 ) may be engaged with the electricalpower source portion 502 a and thecoupler portion 502 c of thehousing 502. Thereby, thecontrol body 501 may define the completed configuration illustrated inFIG. 17 . - Note that although the control bodies of the present disclosure are described herein as being usable with cartridges, it should be understood that the term “cartridge” is intended to include embodiments thereof referred to as “tanks” or “tank-style cartridges.” Tanks are distinguishable from other embodiments of cartridges for aerosol delivery devices in that they may not include a reservoir substrate, at least a portion thereof may be transparent or translucent such that a level of aerosol precursor composition may be viewed, and the quantity of the aerosol precursor composition that may be received therein may be relatively large. Embodiments of tank-style cartridges are described in U.S. patent application Ser. No. 14/802,667, filed Jul. 17, 2015, to O'Brien, which is incorporated herein by reference in its entirety.
- In an additional embodiment a method for assembling an aerosol delivery device is provided. As illustrated in
FIG. 24 , the method may include providing a housing defining an electrical power source cavity configured to receive an electrical power source, the electrical power source cavity defining a first longitudinal axis atoperation 702. Further, the method may include engaging a coupler configured to engage a cartridge including an aerosol precursor composition with the housing such that the cartridge extends along a second longitudinal axis, the first longitudinal axis and the second longitudinal axis being non-coaxial and oriented substantially parallel to one another atoperation 704. Additionally, the method may include positioning a controller in the housing, the controller being configured to engage the electrical power source atoperation 706. - In some embodiments the method may further comprise engaging the electrical power source with the controller. Additionally, the method may include inserting the electrical power source in the electrical power source cavity simultaneously with positioning the controller in the housing at
operation 706. Further, the method may include engaging the cartridge with the coupler. The cartridge may include a viewing window. The method may additionally include positioning an illumination source in the housing, the illumination source being configured to direct illumination through the viewing window. - In some embodiments providing the housing at
operation 702 may include engaging a first body portion with a second body portion. Providing the housing atoperation 702 may further include engaging an access door with at least one of the first body portion and the second body portion, the access door being configured to block access to the electrical power source cavity. Providing the housing atoperation 702 may additionally include engaging a button assembly with at least one of the first body portion and the second body portion. Further, the method may include positioning an illumination source in the housing and engaging an illumination source cover with the button assembly, the illumination source cover being configured to direct illumination produced by the illumination source therethrough. - Many modifications and other embodiments of the disclosure will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed herein and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/480,235 US20240024596A1 (en) | 2015-12-28 | 2023-10-03 | Aerosol delivery device including a housing and a coupler |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/981,051 US10092036B2 (en) | 2015-12-28 | 2015-12-28 | Aerosol delivery device including a housing and a coupler |
US16/125,519 US11311688B2 (en) | 2015-12-28 | 2018-09-07 | Aerosol delivery device including a housing and a coupler |
US16/791,427 US20200178600A1 (en) | 2015-12-28 | 2020-02-14 | Aerosol delivery device including a housing and a coupler |
US18/480,235 US20240024596A1 (en) | 2015-12-28 | 2023-10-03 | Aerosol delivery device including a housing and a coupler |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/791,427 Continuation US20200178600A1 (en) | 2015-12-28 | 2020-02-14 | Aerosol delivery device including a housing and a coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240024596A1 true US20240024596A1 (en) | 2024-01-25 |
Family
ID=57799754
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/981,051 Active 2036-10-24 US10092036B2 (en) | 2015-12-28 | 2015-12-28 | Aerosol delivery device including a housing and a coupler |
US16/125,519 Active 2036-12-02 US11311688B2 (en) | 2015-12-28 | 2018-09-07 | Aerosol delivery device including a housing and a coupler |
US16/791,427 Pending US20200178600A1 (en) | 2015-12-28 | 2020-02-14 | Aerosol delivery device including a housing and a coupler |
US18/480,235 Pending US20240024596A1 (en) | 2015-12-28 | 2023-10-03 | Aerosol delivery device including a housing and a coupler |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/981,051 Active 2036-10-24 US10092036B2 (en) | 2015-12-28 | 2015-12-28 | Aerosol delivery device including a housing and a coupler |
US16/125,519 Active 2036-12-02 US11311688B2 (en) | 2015-12-28 | 2018-09-07 | Aerosol delivery device including a housing and a coupler |
US16/791,427 Pending US20200178600A1 (en) | 2015-12-28 | 2020-02-14 | Aerosol delivery device including a housing and a coupler |
Country Status (17)
Country | Link |
---|---|
US (4) | US10092036B2 (en) |
EP (1) | EP3397097B1 (en) |
JP (5) | JP6810755B2 (en) |
KR (4) | KR102257612B1 (en) |
CN (4) | CN113826959A (en) |
BR (1) | BR112018013248B1 (en) |
CA (1) | CA3010115A1 (en) |
ES (1) | ES2774699T3 (en) |
HK (1) | HK1255421A1 (en) |
HU (1) | HUE047685T2 (en) |
MY (1) | MY195827A (en) |
PH (1) | PH12018501384A1 (en) |
PL (1) | PL3397097T3 (en) |
RU (4) | RU202752U1 (en) |
UA (1) | UA124261C2 (en) |
WO (1) | WO2017115277A1 (en) |
ZA (1) | ZA202106216B (en) |
Families Citing this family (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10244793B2 (en) | 2005-07-19 | 2019-04-02 | Juul Labs, Inc. | Devices for vaporization of a substance |
US10279934B2 (en) | 2013-03-15 | 2019-05-07 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
USD842536S1 (en) | 2016-07-28 | 2019-03-05 | Juul Labs, Inc. | Vaporizer cartridge |
US10076139B2 (en) | 2013-12-23 | 2018-09-18 | Juul Labs, Inc. | Vaporizer apparatus |
US10058129B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Vaporization device systems and methods |
US10159282B2 (en) | 2013-12-23 | 2018-12-25 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
CN110664012A (en) | 2013-12-23 | 2020-01-10 | 尤尔实验室有限公司 | Evaporation apparatus system and method |
USD825102S1 (en) | 2016-07-28 | 2018-08-07 | Juul Labs, Inc. | Vaporizer device with cartridge |
US20160366947A1 (en) | 2013-12-23 | 2016-12-22 | James Monsees | Vaporizer apparatus |
US10238764B2 (en) * | 2014-08-19 | 2019-03-26 | Vapium Inc. | Aromatherapy vaporization device |
US11065402B2 (en) | 2014-02-04 | 2021-07-20 | Gseh Holistic, Inc. | Aromatherapy vaporization device |
KR102574658B1 (en) | 2014-12-05 | 2023-09-05 | 쥴 랩스, 인크. | Calibrated dose control |
US10092036B2 (en) * | 2015-12-28 | 2018-10-09 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a housing and a coupler |
JP2018504886A (en) * | 2016-01-20 | 2018-02-22 | ジュ, シャオチュンZHU, Xiaochun | Ceramic vaporizer and electronic cigarette with ceramic vaporizer |
WO2017128038A1 (en) * | 2016-01-26 | 2017-08-03 | Xiaochun Zhu | Ceramic vaporizer with replaceable e-liquid storage medium and electronic cigarettes having the same |
USD861975S1 (en) | 2016-02-08 | 2019-10-01 | Juul Labs, Inc. | Vaporizer device with cartridges |
USD858868S1 (en) | 2016-02-08 | 2019-09-03 | Juul Labs, Inc. | Vaporizer cartridge |
UA125687C2 (en) | 2016-02-11 | 2022-05-18 | Джуул Лебз, Інк. | Fillable vaporizer cartridge and method of filling |
SG10202108578XA (en) | 2016-02-11 | 2021-09-29 | Juul Labs Inc | Securely attaching cartridges for vaporizer devices |
US10405582B2 (en) | 2016-03-10 | 2019-09-10 | Pax Labs, Inc. | Vaporization device with lip sensing |
CN105901773A (en) * | 2016-05-27 | 2016-08-31 | 深圳市合元科技有限公司 | Electronic cigarette and smoking method thereof |
USD849996S1 (en) | 2016-06-16 | 2019-05-28 | Pax Labs, Inc. | Vaporizer cartridge |
USD851830S1 (en) | 2016-06-23 | 2019-06-18 | Pax Labs, Inc. | Combined vaporizer tamp and pick tool |
USD836541S1 (en) | 2016-06-23 | 2018-12-25 | Pax Labs, Inc. | Charging device |
US9795169B1 (en) * | 2016-07-05 | 2017-10-24 | Xiaochun Zhu | Replaceable vaporizer assembly and electronic cigarette having the same |
CN106509991B (en) * | 2016-10-18 | 2018-11-13 | 云南中烟工业有限责任公司 | A kind of slidingtype hood-opening device |
US10492530B2 (en) * | 2016-11-15 | 2019-12-03 | Rai Strategic Holdings, Inc. | Two-wire authentication system for an aerosol delivery device |
US20180220706A1 (en) * | 2017-02-03 | 2018-08-09 | Trisha Furin | Vaporizer cover and protector |
ES2845139T3 (en) | 2017-04-18 | 2021-07-26 | Philip Morris Products Sa | Aerosol generator system with overheating prevention |
US11621570B2 (en) * | 2017-04-18 | 2023-04-04 | Altria Client Services Llc | Aerosol-generating systems with overheating prevention |
CN117859959A (en) | 2017-08-23 | 2024-04-12 | 菲利普莫里斯生产公司 | Electrically operable aerosol-generating system, aerosol-generating device and charging device |
USD887632S1 (en) | 2017-09-14 | 2020-06-16 | Pax Labs, Inc. | Vaporizer cartridge |
US10505383B2 (en) * | 2017-09-19 | 2019-12-10 | Rai Strategic Holdings, Inc. | Intelligent charger for an aerosol delivery device |
GB201717489D0 (en) | 2017-10-24 | 2017-12-06 | Nicoventures Holdings Ltd | Electronic aerosol provision device |
GB201717486D0 (en) | 2017-10-24 | 2017-12-06 | Nicoventures Holdings Ltd | Mechanism for hatch of electronic aerosol provision device |
GB201717476D0 (en) * | 2017-10-24 | 2017-12-06 | British American Tobacco Investments Ltd | Aerosol provision system and removable member |
GB201717480D0 (en) | 2017-10-24 | 2017-12-06 | Nicoventures Holdings Ltd | Electronic aerosol provision device with seal |
GB201717479D0 (en) | 2017-10-24 | 2017-12-06 | Nicoventures Holdings Ltd | Hatch section for an electronic aerosol provision device |
GB201718462D0 (en) | 2017-11-08 | 2017-12-20 | British American Tobacco Investments Ltd | Vapour provision systems |
US10786010B2 (en) * | 2017-12-15 | 2020-09-29 | Rai Strategic Holdings, Inc. | Aerosol delivery device with multiple aerosol delivery pathways |
USD889035S1 (en) | 2018-01-26 | 2020-06-30 | Juul Labs, Inc. | Case |
US11196274B2 (en) | 2018-01-26 | 2021-12-07 | Juul Labs, Inc. | Charging case assembly |
USD889739S1 (en) | 2018-07-12 | 2020-07-07 | Juul Labs, Inc. | Case |
CN111556716B (en) | 2018-01-29 | 2024-04-30 | 菲利普莫里斯生产公司 | Lighting unit for aerosol-generating system |
US11758948B2 (en) | 2018-01-29 | 2023-09-19 | Altria Client Services Llc | Lighting unit for aerosol-generating systems |
USD860523S1 (en) | 2018-02-28 | 2019-09-17 | Juul Labs, Inc. | Case |
JP1710794S (en) | 2018-02-28 | 2022-03-25 | Case for vaporizer | |
GB201805256D0 (en) | 2018-03-29 | 2018-05-16 | Nicoventures Trading Ltd | Aerosol provision system |
GB201805263D0 (en) | 2018-03-29 | 2018-05-16 | Nicoventures Trading Ltd | Apparatus for generating aerosol from an aerosolisable medium, an article of aerosolisable medium and a method of operating an aerosol generating apparatus |
EP3560362A1 (en) * | 2018-04-24 | 2019-10-30 | JT International SA | Electronic cigarette with protective cover |
TW202011840A (en) | 2018-05-29 | 2020-04-01 | 美商派克斯實驗公司 | Vaporizer device with cartridge |
US11399566B2 (en) | 2018-06-05 | 2022-08-02 | Kt&G Corporation | Aerosol generating device |
KR102096065B1 (en) * | 2018-06-05 | 2020-04-01 | 주식회사 케이티앤지 | Apparatus for generating aerosols |
CN211794315U (en) | 2018-07-23 | 2020-10-30 | 尤尔实验室有限公司 | Cartridge for an evaporator device |
US11291249B2 (en) * | 2018-10-12 | 2022-04-05 | Rai Strategic Holdings, Inc. | Aerosol delivery device with visible indicator |
US20200113240A1 (en) * | 2018-10-12 | 2020-04-16 | Rai Strategic Holdings, Inc. | Vaporization system |
CN113365518A (en) | 2018-11-05 | 2021-09-07 | 尤尔实验室有限公司 | Cartridge for an evaporator device |
CA3118504A1 (en) | 2018-11-08 | 2020-05-14 | Juul Labs, Inc. | Vaporizer device with more than one heating element |
US11156766B2 (en) | 2018-11-19 | 2021-10-26 | Rai Strategic Holdings, Inc. | Aerosol delivery device |
EP3906074A1 (en) | 2018-12-31 | 2021-11-10 | Juul Labs, Inc. | Cartridges for vaporizer devices |
JP6647435B1 (en) * | 2019-01-17 | 2020-02-14 | 日本たばこ産業株式会社 | Power supply unit for aerosol inhaler |
US11576435B2 (en) * | 2019-01-18 | 2023-02-14 | Hava Health, inc. | Smoking cessation system |
CN210203316U (en) * | 2019-05-07 | 2020-03-31 | 深圳市合元科技有限公司 | Cigarette bullet and electron cigarette |
CN110150754A (en) * | 2019-05-13 | 2019-08-23 | 刘团芳 | A kind of small cigarette of non smoke |
CN113710113A (en) | 2019-05-16 | 2021-11-26 | 菲利普莫里斯生产公司 | Device assembly method and device manufactured according to such method |
CN210382634U (en) * | 2019-05-22 | 2020-04-24 | 深圳市基克纳科技有限公司 | USB direct charging sub-atomization device |
US11246954B2 (en) * | 2019-06-14 | 2022-02-15 | The Procter & Gamble Company | Volatile composition cartridge replacement detection |
KR20220045227A (en) * | 2019-08-21 | 2022-04-12 | 센젠 퍼스트 유니온 테크놀러지 캄파니 리미티드 | Aerosol-generating devices, charging stations and electrical systems |
GB201912477D0 (en) * | 2019-08-30 | 2019-10-16 | Nicoventures Trading Ltd | Aerosol provision systems |
KR102390421B1 (en) * | 2019-10-11 | 2022-04-25 | 주식회사 케이티앤지 | Aerosol generating device and method for showing the remaining amount of liquid composition using light source |
USD943159S1 (en) | 2019-11-14 | 2022-02-08 | Juul Labs, Inc. | Component for a vaporizer cartridge |
USD943160S1 (en) | 2019-11-14 | 2022-02-08 | Juul Labs, Inc. | Vaporizer device |
USD943161S1 (en) | 2019-11-14 | 2022-02-08 | Juul Labs, Inc. | Vaporizer device |
USD943158S1 (en) | 2019-11-14 | 2022-02-08 | Juul Labs, Inc. | Vaporizer cartridge |
EP4179893A4 (en) * | 2020-07-09 | 2024-04-03 | Japan Tobacco Inc. | Body unit for aerosol generation device, aerosol generation device, and non-combustion-type inhaler |
EP4179894A4 (en) * | 2020-07-09 | 2024-03-27 | Japan Tobacco Inc. | Main body unit of aerosol generation device, aerosol generation device, and non-combustion-type inhaler |
WO2022009360A1 (en) * | 2020-07-09 | 2022-01-13 | 日本たばこ産業株式会社 | Body unit for aerosol generation device, aerosol generation device, and non-combustion-type suction device |
WO2022009364A1 (en) * | 2020-07-09 | 2022-01-13 | 日本たばこ産業株式会社 | Body unit of aerosol generation device, aerosol generation device, and non-combustion-type inhaler |
WO2022009385A1 (en) * | 2020-07-09 | 2022-01-13 | 日本たばこ産業株式会社 | Main body unit for aerosol generation device, aerosol generation device, and non-combustion-type inhaler |
WO2022009362A1 (en) * | 2020-07-09 | 2022-01-13 | 日本たばこ産業株式会社 | Main body unit for aerosol generation device, aerosol generation device, and non-combustion-type inhaler |
US11696602B2 (en) | 2020-08-04 | 2023-07-11 | Altria Client Services Llc | Heat-not-burn (HNB) aerosol-generating devices with compression assembly |
JP7316435B2 (en) * | 2020-09-02 | 2023-07-27 | ケーティー アンド ジー コーポレイション | AEROSOL SUPPLY DEVICE AND AEROSOL GENERATOR WITH SAME |
EP4216739A1 (en) | 2020-09-28 | 2023-08-02 | JT International S.A. | Aerosol-generating device and aerosol-generating article |
GB202018301D0 (en) * | 2020-11-20 | 2021-01-06 | Nicoventures Holdings Ltd | Aerosol provision device |
JPWO2022137426A1 (en) * | 2020-12-24 | 2022-06-30 | ||
KR102586970B1 (en) * | 2021-01-22 | 2023-10-06 | 주식회사 케이티앤지 | Device for generating aerosol |
KR102586969B1 (en) * | 2021-02-08 | 2023-10-06 | 주식회사 케이티앤지 | Aerosol generating device |
KR102623265B1 (en) * | 2021-03-17 | 2024-01-09 | 주식회사 케이티앤지 | Device for generating aerosol |
KR20240006048A (en) | 2021-05-10 | 2024-01-12 | 니뽄 다바코 산교 가부시키가이샤 | Power unit of aerosol generating device |
CN117279533A (en) | 2021-05-10 | 2023-12-22 | 日本烟草产业株式会社 | Power supply unit for aerosol-generating device |
KR102545834B1 (en) * | 2021-06-25 | 2023-06-20 | 주식회사 케이티앤지 | Cartridges and device for generating aerosol including the same |
CN115968324A (en) | 2021-08-13 | 2023-04-14 | 韩国烟草人参公社 | Body for an aerosol-generating device and aerosol-generating device comprising the body |
CN113598430B (en) * | 2021-08-19 | 2024-08-23 | 浙江中烟工业有限责任公司 | Aerosol generating device and aerosol generating system convenient for power supply heat dissipation |
CN118369000A (en) | 2021-12-10 | 2024-07-19 | 日本烟草产业株式会社 | Power supply unit for aerosol-generating device |
US20230189881A1 (en) | 2021-12-20 | 2023-06-22 | Rai Strategic Holdings, Inc. | Aerosol delivery device with improved sealing arrangement |
CN114304717A (en) * | 2022-02-23 | 2022-04-12 | 云南景立新材料科技有限公司 | Method for generating aerosol by adopting ultrafine powder |
JP2024533023A (en) * | 2022-08-10 | 2024-09-12 | ケーティー アンド ジー コーポレイション | Aerosol generating device including a buffer structure |
Family Cites Families (276)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2057353A (en) | 1936-10-13 | Vaporizing unit fob therapeutic | ||
US1514682A (en) | 1923-05-03 | 1924-11-11 | Wilson Harold | Electric vaporizer |
US1771366A (en) | 1926-10-30 | 1930-07-22 | R W Cramer & Company Inc | Medicating apparatus |
US2104266A (en) | 1935-09-23 | 1938-01-04 | William J Mccormick | Means for the production and inhalation of tobacco fumes |
US3200819A (en) | 1963-04-17 | 1965-08-17 | Herbert A Gilbert | Smokeless non-tobacco cigarette |
US3479561A (en) | 1967-09-25 | 1969-11-18 | John L Janning | Breath operated device |
US4284089A (en) | 1978-10-02 | 1981-08-18 | Ray Jon P | Simulated smoking device |
US4303083A (en) | 1980-10-10 | 1981-12-01 | Burruss Jr Robert P | Device for evaporation and inhalation of volatile compounds and medications |
US4793365A (en) | 1984-09-14 | 1988-12-27 | R. J. Reynolds Tobacco Company | Smoking article |
SE8405479D0 (en) | 1984-11-01 | 1984-11-01 | Nilsson Sven Erik | WANT TO ADMINISTER VOCABULARY, PHYSIOLOGY, ACTIVE SUBJECTS AND DEVICE FOR THIS |
US4735217A (en) | 1986-08-21 | 1988-04-05 | The Procter & Gamble Company | Dosing device to provide vaporized medicament to the lungs as a fine aerosol |
GB8713645D0 (en) | 1987-06-11 | 1987-07-15 | Imp Tobacco Ltd | Smoking device |
US5019122A (en) | 1987-08-21 | 1991-05-28 | R. J. Reynolds Tobacco Company | Smoking article with an enclosed heat conductive capsule containing an aerosol forming substance |
US4947874A (en) | 1988-09-08 | 1990-08-14 | R. J. Reynolds Tobacco Company | Smoking articles utilizing electrical energy |
US4947875A (en) | 1988-09-08 | 1990-08-14 | R. J. Reynolds Tobacco Company | Flavor delivery articles utilizing electrical energy |
US4922901A (en) | 1988-09-08 | 1990-05-08 | R. J. Reynolds Tobacco Company | Drug delivery articles utilizing electrical energy |
EP0358114A3 (en) * | 1988-09-08 | 1990-11-14 | R.J. Reynolds Tobacco Company | Aerosol delivery articles utilizing electrical energy |
US4986286A (en) | 1989-05-02 | 1991-01-22 | R. J. Reynolds Tobacco Company | Tobacco treatment process |
US4945931A (en) | 1989-07-14 | 1990-08-07 | Brown & Williamson Tobacco Corporation | Simulated smoking device |
US5154192A (en) | 1989-07-18 | 1992-10-13 | Philip Morris Incorporated | Thermal indicators for smoking articles and the method of application of the thermal indicators to the smoking article |
US5101839A (en) | 1990-08-15 | 1992-04-07 | R. J. Reynolds Tobacco Company | Cigarette and smokable filler material therefor |
US5093894A (en) | 1989-12-01 | 1992-03-03 | Philip Morris Incorporated | Electrically-powered linear heating element |
US5060671A (en) | 1989-12-01 | 1991-10-29 | Philip Morris Incorporated | Flavor generating article |
US5408574A (en) | 1989-12-01 | 1995-04-18 | Philip Morris Incorporated | Flat ceramic heater having discrete heating zones |
US5144962A (en) | 1989-12-01 | 1992-09-08 | Philip Morris Incorporated | Flavor-delivery article |
US5224498A (en) | 1989-12-01 | 1993-07-06 | Philip Morris Incorporated | Electrically-powered heating element |
US5042510A (en) | 1990-01-08 | 1991-08-27 | Curtiss Philip F | Simulated cigarette |
US5591368A (en) * | 1991-03-11 | 1997-01-07 | Philip Morris Incorporated | Heater for use in an electrical smoking system |
US5573692A (en) | 1991-03-11 | 1996-11-12 | Philip Morris Incorporated | Platinum heater for electrical smoking article having ohmic contact |
US5530225A (en) | 1991-03-11 | 1996-06-25 | Philip Morris Incorporated | Interdigitated cylindrical heater for use in an electrical smoking article |
US5505214A (en) * | 1991-03-11 | 1996-04-09 | Philip Morris Incorporated | Electrical smoking article and method for making same |
US5388594A (en) * | 1991-03-11 | 1995-02-14 | Philip Morris Incorporated | Electrical smoking system for delivering flavors and method for making same |
US5726421A (en) | 1991-03-11 | 1998-03-10 | Philip Morris Incorporated | Protective and cigarette ejection system for an electrical smoking system |
US5665262A (en) | 1991-03-11 | 1997-09-09 | Philip Morris Incorporated | Tubular heater for use in an electrical smoking article |
US5249586A (en) | 1991-03-11 | 1993-10-05 | Philip Morris Incorporated | Electrical smoking |
US5261424A (en) | 1991-05-31 | 1993-11-16 | Philip Morris Incorporated | Control device for flavor-generating article |
US5228460A (en) | 1991-12-12 | 1993-07-20 | Philip Morris Incorporated | Low mass radial array heater for electrical smoking article |
CA2527939C (en) | 1992-03-25 | 2008-07-15 | Japan Tobacco Inc. | Apparatus for manufacturing components for smoking articles |
US5353813A (en) | 1992-08-19 | 1994-10-11 | Philip Morris Incorporated | Reinforced carbon heater with discrete heating zones |
US5322075A (en) | 1992-09-10 | 1994-06-21 | Philip Morris Incorporated | Heater for an electric flavor-generating article |
US5498850A (en) | 1992-09-11 | 1996-03-12 | Philip Morris Incorporated | Semiconductor electrical heater and method for making same |
US5498855A (en) | 1992-09-11 | 1996-03-12 | Philip Morris Incorporated | Electrically powered ceramic composite heater |
US5369723A (en) | 1992-09-11 | 1994-11-29 | Philip Morris Incorporated | Tobacco flavor unit for electrical smoking article comprising fibrous mat |
US5441060A (en) | 1993-02-08 | 1995-08-15 | Duke University | Dry powder delivery system |
US5372148A (en) | 1993-02-24 | 1994-12-13 | Philip Morris Incorporated | Method and apparatus for controlling the supply of energy to a heating load in a smoking article |
US5468936A (en) | 1993-03-23 | 1995-11-21 | Philip Morris Incorporated | Heater having a multiple-layer ceramic substrate and method of fabrication |
US5666977A (en) | 1993-06-10 | 1997-09-16 | Philip Morris Incorporated | Electrical smoking article using liquid tobacco flavor medium delivery system |
DE69430196T2 (en) | 1993-06-29 | 2002-10-31 | Ponwell Enterprises Ltd., Hongkong | DONOR |
US5388574A (en) | 1993-07-29 | 1995-02-14 | Ingebrethsen; Bradley J. | Aerosol delivery article |
CH686872A5 (en) | 1993-08-09 | 1996-07-31 | Disetronic Ag | Medical Inhalationsgeraet. |
DE4328243C1 (en) | 1993-08-19 | 1995-03-09 | Sven Mielordt | Smoke or inhalation device |
IE72523B1 (en) | 1994-03-10 | 1997-04-23 | Elan Med Tech | Nicotine oral delivery device |
US5649554A (en) | 1995-10-16 | 1997-07-22 | Philip Morris Incorporated | Electrical lighter with a rotatable tobacco supply |
US5564442A (en) * | 1995-11-22 | 1996-10-15 | Angus Collingwood MacDonald | Battery powered nicotine vaporizer |
US5743251A (en) | 1996-05-15 | 1998-04-28 | Philip Morris Incorporated | Aerosol and a method and apparatus for generating an aerosol |
CN1106812C (en) | 1996-06-17 | 2003-04-30 | 日本烟业产业株式会社 | Flavor producing article |
CN1113621C (en) | 1996-06-17 | 2003-07-09 | 日本烟业产业株式会社 | Flavor generating product and flavor generating tool |
US6089857A (en) | 1996-06-21 | 2000-07-18 | Japan Tobacco, Inc. | Heater for generating flavor and flavor generation appliance |
US5934289A (en) | 1996-10-22 | 1999-08-10 | Philip Morris Incorporated | Electronic smoking system |
US6040560A (en) | 1996-10-22 | 2000-03-21 | Philip Morris Incorporated | Power controller and method of operating an electrical smoking system |
US5878752A (en) | 1996-11-25 | 1999-03-09 | Philip Morris Incorporated | Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses |
US5865186A (en) | 1997-05-21 | 1999-02-02 | Volsey, Ii; Jack J | Simulated heated cigarette |
GB9712815D0 (en) | 1997-06-19 | 1997-08-20 | British American Tobacco Co | Smoking article and smoking material therefor |
KR100289448B1 (en) | 1997-07-23 | 2001-05-02 | 미즈노 마사루 | Flavor generator |
US5967148A (en) | 1997-10-16 | 1999-10-19 | Philip Morris Incorporated | Lighter actuation system |
US5954979A (en) | 1997-10-16 | 1999-09-21 | Philip Morris Incorporated | Heater fixture of an electrical smoking system |
EP0923957B1 (en) | 1997-11-19 | 2001-10-31 | Microflow Engineering SA | Nozzle body and liquid droplet spray device for an inhaler suitable for respiratory therapies |
CN1044314C (en) | 1997-12-01 | 1999-07-28 | 蒲邯名 | Healthy cigarette |
US6164287A (en) | 1998-06-10 | 2000-12-26 | R. J. Reynolds Tobacco Company | Smoking method |
US6095153A (en) | 1998-06-19 | 2000-08-01 | Kessler; Stephen B. | Vaporization of volatile materials |
US6234167B1 (en) * | 1998-10-14 | 2001-05-22 | Chrysalis Technologies, Incorporated | Aerosol generator and methods of making and using an aerosol generator |
US6053176A (en) | 1999-02-23 | 2000-04-25 | Philip Morris Incorporated | Heater and method for efficiently generating an aerosol from an indexing substrate |
US6196218B1 (en) | 1999-02-24 | 2001-03-06 | Ponwell Enterprises Ltd | Piezo inhaler |
AU777249B2 (en) | 1999-09-22 | 2004-10-07 | Microcoating Technologies, Inc. | Liquid atomization methods and devices |
WO2001070054A1 (en) | 2000-03-23 | 2001-09-27 | Philip Morris Products Inc. | Electrical smoking system and method |
US7559324B2 (en) | 2000-06-21 | 2009-07-14 | Fisher & Paykel Healthcare Limited | Conduit with heated wick |
US6536442B2 (en) | 2000-12-11 | 2003-03-25 | Brown & Williamson Tobacco Corporation | Lighter integral with a smoking article |
ATE275821T1 (en) | 2001-04-05 | 2004-10-15 | C T R Consultoria Tecnica E Re | DEVICE FOR VAPORIZING VOLATILE SUBSTANCES, IN PARTICULAR INSECTICIDES AND/OR FRAGRANCES |
CA2446904A1 (en) * | 2001-05-24 | 2003-04-03 | Alexza Molecular Delivery Corporation | Delivery of drug esters through an inhalation route |
US6652378B2 (en) | 2001-06-01 | 2003-11-25 | Igt | Gaming machines and systems offering simultaneous play of multiple games and methods of gaming |
US6598607B2 (en) | 2001-10-24 | 2003-07-29 | Brown & Williamson Tobacco Corporation | Non-combustible smoking device and fuel element |
EP1468618B1 (en) | 2001-12-28 | 2008-07-09 | Japan Tobacco Inc. | Smoking implement |
US6772756B2 (en) | 2002-02-09 | 2004-08-10 | Advanced Inhalation Revolutions Inc. | Method and system for vaporization of a substance |
US6615840B1 (en) | 2002-02-15 | 2003-09-09 | Philip Morris Incorporated | Electrical smoking system and method |
WO2003095005A1 (en) | 2002-05-10 | 2003-11-20 | Chrysalis Technologies Incorporated | Aerosol generator for drug formulation and methods of generating aerosol |
US6803545B2 (en) | 2002-06-05 | 2004-10-12 | Philip Morris Incorporated | Electrically heated smoking system and methods for supplying electrical power from a lithium ion power source |
WO2004022128A2 (en) | 2002-09-06 | 2004-03-18 | Chrysalis Technologies Incorporated | Liquid aerosol formulations and aerosol generating devices and methods for generating aerosols |
WO2004041007A2 (en) | 2002-10-31 | 2004-05-21 | Philip Morris Products S.A. | Electrically heated cigarette including controlled-release flavoring |
US6810883B2 (en) | 2002-11-08 | 2004-11-02 | Philip Morris Usa Inc. | Electrically heated cigarette smoking system with internal manifolding for puff detection |
US6803550B2 (en) * | 2003-01-30 | 2004-10-12 | Philip Morris Usa Inc. | Inductive cleaning system for removing condensates from electronic smoking systems |
CN100381082C (en) | 2003-03-14 | 2008-04-16 | 韩力 | Noncombustible electronic atomized cigarette |
CN100381083C (en) | 2003-04-29 | 2008-04-16 | 韩力 | Electronic nonflammable spraying cigarette |
US7293565B2 (en) | 2003-06-30 | 2007-11-13 | Philip Morris Usa Inc. | Electrically heated cigarette smoking system |
JP2005034021A (en) | 2003-07-17 | 2005-02-10 | Seiko Epson Corp | Electronic cigarette |
CN2719043Y (en) | 2004-04-14 | 2005-08-24 | 韩力 | Atomized electronic cigarette |
US7540286B2 (en) | 2004-06-03 | 2009-06-02 | Alexza Pharmaceuticals, Inc. | Multiple dose condensation aerosol devices and methods of forming condensation aerosols |
US7775459B2 (en) | 2004-06-17 | 2010-08-17 | S.C. Johnson & Son, Inc. | Liquid atomizing device with reduced settling of atomized liquid droplets |
US20060016453A1 (en) | 2004-07-22 | 2006-01-26 | Kim In Y | Cigarette substitute device |
EP1785155A1 (en) | 2004-08-02 | 2007-05-16 | Canon Kabushiki Kaisha | Chemical liquid cartridge and inhalation device using the same |
DE102004061883A1 (en) | 2004-12-22 | 2006-07-06 | Vishay Electronic Gmbh | Heating device for inhalation device, inhaler and heating method |
CA2595831C (en) | 2005-02-02 | 2013-08-06 | Oglesby & Butler Research & Development Limited | A device for vaporising vaporisable matter |
US9675109B2 (en) | 2005-07-19 | 2017-06-13 | J. T. International Sa | Method and system for vaporization of a substance |
DE102005034169B4 (en) | 2005-07-21 | 2008-05-29 | NjoyNic Ltd., Glen Parva | Smoke-free cigarette |
JPWO2007013144A1 (en) | 2005-07-27 | 2009-02-05 | 株式会社ルネサステクノロジ | Optical disc apparatus and semiconductor integrated circuit |
US20070215167A1 (en) | 2006-03-16 | 2007-09-20 | Evon Llewellyn Crooks | Smoking article |
US8658089B2 (en) * | 2005-08-04 | 2014-02-25 | Saban Ventures Pty Limited | Membrane concentrator |
US20070102013A1 (en) | 2005-09-30 | 2007-05-10 | Philip Morris Usa Inc. | Electrical smoking system |
US20070074734A1 (en) | 2005-09-30 | 2007-04-05 | Philip Morris Usa Inc. | Smokeless cigarette system |
WO2007078273A1 (en) | 2005-12-22 | 2007-07-12 | Augite Incorporation | No-tar electronic smoking utensils |
FR2895644B1 (en) | 2006-01-03 | 2008-05-16 | Didier Gerard Martzel | SUBSTITUTE OF CIGARETTE |
DE102006004484A1 (en) | 2006-01-29 | 2007-08-09 | Karsten Schmidt | Re-usable part for smoke-free cigarette, has filament preheated by attaching filter, where filament is brought to operating temperature, when pulling on entire construction of cigarette |
US8371310B2 (en) * | 2006-02-17 | 2013-02-12 | Jake Brenneise | Portable vaporizing device and method for inhalation and/or aromatherapy without combustion |
CN201067079Y (en) | 2006-05-16 | 2008-06-04 | 韩力 | Simulation aerosol inhaler |
JP4895388B2 (en) | 2006-07-25 | 2012-03-14 | キヤノン株式会社 | Drug delivery device |
US7734159B2 (en) | 2006-08-31 | 2010-06-08 | S.C. Johnson & Son, Inc. | Dispersion device for dispersing multiple volatile materials |
DE102006041042B4 (en) | 2006-09-01 | 2009-06-25 | W + S Wagner + Söhne Mess- und Informationstechnik GmbH & Co.KG | Device for dispensing a nicotine-containing aerosol |
US20100024834A1 (en) | 2006-09-05 | 2010-02-04 | Oglesby & Butler Research & Development Limited | Container comprising vaporisable matter for use in a vaporising device for vaporising a vaporisable constituent thereof |
DE102007026979A1 (en) | 2006-10-06 | 2008-04-10 | Friedrich Siller | inhalator |
US7726320B2 (en) | 2006-10-18 | 2010-06-01 | R. J. Reynolds Tobacco Company | Tobacco-containing smoking article |
CN101626700B (en) | 2006-11-06 | 2011-08-03 | 坚石Sci有限责任公司 | Mechanically regulated vaporization pipe |
CN200966824Y (en) | 2006-11-10 | 2007-10-31 | 韩力 | Inhalation atomizing device |
CN100536951C (en) | 2006-11-11 | 2009-09-09 | 达福堡国际有限公司 | Device for feeding drug into pulmones |
CN200997909Y (en) | 2006-12-15 | 2008-01-02 | 王玉民 | Disposable electric purified cigarette |
US7845359B2 (en) | 2007-03-22 | 2010-12-07 | Pierre Denain | Artificial smoke cigarette |
US20080257367A1 (en) | 2007-04-23 | 2008-10-23 | Greg Paterno | Electronic evaporable substance delivery device and method |
EP1989946A1 (en) | 2007-05-11 | 2008-11-12 | Rauchless Inc. | Smoking device, charging means and method of using it |
WO2009001082A1 (en) | 2007-06-25 | 2008-12-31 | Kind Consumer Limited | A simulated cigarette device |
CN100593982C (en) | 2007-09-07 | 2010-03-17 | 中国科学院理化技术研究所 | Electronic cigarette with nanometer scale hyperfine space heating atomization function |
US8123082B2 (en) | 2008-01-22 | 2012-02-28 | McNeil-AB | Hand-held dispensing device |
EP2260733B8 (en) | 2008-02-29 | 2018-12-19 | Yunqiang Xiu | Electronic simulated cigarette and smoking set comprising said electronic simulated cigarette |
EP2100525A1 (en) | 2008-03-14 | 2009-09-16 | Philip Morris Products S.A. | Electrically heated aerosol generating system and method |
EP2110034A1 (en) | 2008-04-17 | 2009-10-21 | Philip Morris Products S.A. | An electrically heated smoking system |
RU2360583C1 (en) | 2008-04-28 | 2009-07-10 | Владимир Николаевич Урцев | Tobacco pipe for smokeless smoking |
EP2113178A1 (en) * | 2008-04-30 | 2009-11-04 | Philip Morris Products S.A. | An electrically heated smoking system having a liquid storage portion |
US20090283103A1 (en) | 2008-05-13 | 2009-11-19 | Nielsen Michael D | Electronic vaporizing devices and docking stations |
EP2443946B1 (en) | 2008-06-27 | 2014-11-05 | Fontem Holdings 2 B.V. | An electronic substitute cigarette |
EP2143346A1 (en) | 2008-07-08 | 2010-01-13 | Philip Morris Products S.A. | A flow sensor system |
EP2304834A4 (en) | 2008-07-18 | 2014-03-19 | Flexel Llc | Thin flexible rechargeable electrochemical energy cell and method of fabrication |
AT507187B1 (en) * | 2008-10-23 | 2010-03-15 | Helmut Dr Buchberger | INHALER |
CA2641869A1 (en) | 2008-11-06 | 2010-05-06 | Hao Ran Xia | Environmental friendly, non-combustible, atomizing electronic cigarette having the function of a cigarette substitute |
EP2201850A1 (en) | 2008-12-24 | 2010-06-30 | Philip Morris Products S.A. | An article including identification information for use in an electrically heated smoking system |
CN201379072Y (en) | 2009-02-11 | 2010-01-13 | 韩力 | Improved atomizing electronic cigarette |
CN101518361B (en) | 2009-03-24 | 2010-10-06 | 北京格林世界科技发展有限公司 | High-simulation electronic cigarette |
CN201683029U (en) | 2009-04-15 | 2010-12-29 | 中国科学院理化技术研究所 | Heating atomization electronic cigarette adopting capacitor for power supply |
GB2469850A (en) | 2009-04-30 | 2010-11-03 | British American Tobacco Co | Volatilization device |
EP2253233A1 (en) | 2009-05-21 | 2010-11-24 | Philip Morris Products S.A. | An electrically heated smoking system |
CN101606758B (en) | 2009-07-14 | 2011-04-13 | 方晓林 | Electronic cigarette |
ITNA20090023U1 (en) | 2009-07-21 | 2011-01-22 | Rml S R L | ELECTRONIC CIGARETTE WITH ATOMISER INCORPORATED IN THE FAILED FILTER. |
DE202009010400U1 (en) | 2009-07-31 | 2009-11-12 | Asch, Werner, Dipl.-Biol. | Control and control of electronic inhalation smoke machines |
US9254002B2 (en) | 2009-08-17 | 2016-02-09 | Chong Corporation | Tobacco solution for vaporized inhalation |
WO2011022431A1 (en) | 2009-08-17 | 2011-02-24 | Chong Corporation | Vaporized tobacco product and methods of use |
PL2485792T3 (en) | 2009-10-09 | 2018-05-30 | Philip Morris Products S.A. | Aerosol generator including multi-component wick |
EP2319334A1 (en) | 2009-10-27 | 2011-05-11 | Philip Morris Products S.A. | A smoking system having a liquid storage portion |
EP2316286A1 (en) | 2009-10-29 | 2011-05-04 | Philip Morris Products S.A. | An electrically heated smoking system with improved heater |
EP2327318A1 (en) | 2009-11-27 | 2011-06-01 | Philip Morris Products S.A. | An electrically heated smoking system with internal or external heater |
EP2340730A1 (en) | 2009-12-30 | 2011-07-06 | Philip Morris Products S.A. | A shaped heater for an aerosol generating system |
EP2340729A1 (en) | 2009-12-30 | 2011-07-06 | Philip Morris Products S.A. | An improved heater for an electrically heated aerosol generating system |
CA2797975C (en) | 2010-04-30 | 2017-06-06 | Blec, Llc | Electronic smoking device |
US20120042885A1 (en) | 2010-08-19 | 2012-02-23 | James Richard Stone | Segmented smoking article with monolithic substrate |
US20110277780A1 (en) | 2010-05-15 | 2011-11-17 | Nathan Andrew Terry | Personal vaporizing inhaler with mouthpiece cover |
US10159278B2 (en) | 2010-05-15 | 2018-12-25 | Rai Strategic Holdings, Inc. | Assembly directed airflow |
US8757147B2 (en) | 2010-05-15 | 2014-06-24 | Minusa Holdings Llc | Personal vaporizing inhaler with internal light source |
US9259035B2 (en) | 2010-05-15 | 2016-02-16 | R. J. Reynolds Tobacco Company | Solderless personal vaporizing inhaler |
EP4397344A3 (en) | 2010-08-24 | 2024-10-02 | JT International SA | Inhalation device including substance usage controls |
US8499766B1 (en) | 2010-09-15 | 2013-08-06 | Kyle D. Newton | Electronic cigarette with function illuminator |
US9301547B2 (en) | 2010-11-19 | 2016-04-05 | Huizhou Kimree Technology Co., Ltd. Shenzhen Branch | Electronic cigarette, electronic cigarette smoke capsule and atomization device thereof |
EP2454956A1 (en) * | 2010-11-19 | 2012-05-23 | Philip Morris Products S.A. | An electrically heated smoking system comprising at least two units |
KR20120058138A (en) | 2010-11-29 | 2012-06-07 | 삼성전자주식회사 | Micro heater and micro heater array |
EP2460423A1 (en) | 2010-12-03 | 2012-06-06 | Philip Morris Products S.A. | An electrically heated aerosol generating system having improved heater control |
EP2460424A1 (en) | 2010-12-03 | 2012-06-06 | Philip Morris Products S.A. | An aerosol generating system with leakage prevention |
KR101057774B1 (en) | 2010-12-13 | 2011-08-19 | 신종수 | Electronic cigarette |
EP2468118A1 (en) | 2010-12-24 | 2012-06-27 | Philip Morris Products S.A. | An aerosol generating system with means for disabling a consumable |
WO2012100523A1 (en) | 2011-01-27 | 2012-08-02 | Tu Martin | Multi-functional inhalation type electronic smoke generator with memory device |
AT510837B1 (en) | 2011-07-27 | 2012-07-15 | Helmut Dr Buchberger | INHALATORKOMPONENTE |
WO2012114322A1 (en) | 2011-02-24 | 2012-08-30 | Oglesby & Butler Research & Development Limited | A vaporising device |
US20120231464A1 (en) | 2011-03-10 | 2012-09-13 | Instrument Technology Research Center, National Applied Research Laboratories | Heatable Droplet Device |
WO2012142190A1 (en) | 2011-04-11 | 2012-10-18 | Visionary Road | Portable vaporizer |
US20120318882A1 (en) | 2011-06-16 | 2012-12-20 | Vapor Corp. | Vapor delivery devices |
US8528569B1 (en) | 2011-06-28 | 2013-09-10 | Kyle D. Newton | Electronic cigarette with liquid reservoir |
CN102349699B (en) | 2011-07-04 | 2013-07-03 | 郑俊祥 | Preparation method for electronic cigarette liquid |
KR101285225B1 (en) | 2011-07-21 | 2013-07-11 | 신종수 | Electronic cigarette |
US9078473B2 (en) | 2011-08-09 | 2015-07-14 | R.J. Reynolds Tobacco Company | Smoking articles and use thereof for yielding inhalation materials |
US20160262459A1 (en) * | 2011-08-16 | 2016-09-15 | James Monsees | Electronic vaporization device |
EA037480B1 (en) * | 2011-08-16 | 2021-04-01 | Джуул Лэбз, Инк. | Low temperature electronic vaporization device |
US9351522B2 (en) | 2011-09-29 | 2016-05-31 | Robert Safari | Cartomizer e-cigarette |
US9205220B2 (en) | 2011-09-30 | 2015-12-08 | Carefusion 207, Inc. | Fluted heater wire |
MY154105A (en) | 2011-12-15 | 2015-04-30 | Foo Kit Seng | An electronic vaporisation cigarette |
LT2779851T (en) | 2012-01-03 | 2016-11-25 | Philip Morris Products S.A. | Aerosol-generating device and system |
KR20140109455A (en) | 2012-01-03 | 2014-09-15 | 필립모리스 프로덕츠 에스.에이. | Power supply system for portable aerosol-generating device |
US9854839B2 (en) * | 2012-01-31 | 2018-01-02 | Altria Client Services Llc | Electronic vaping device and method |
US20130255702A1 (en) | 2012-03-28 | 2013-10-03 | R.J. Reynolds Tobacco Company | Smoking article incorporating a conductive substrate |
CN104254258B (en) * | 2012-04-12 | 2018-11-30 | Jt国际公司 | aerosol generating device |
MX349523B (en) | 2012-04-18 | 2017-08-01 | Fontem Holdings 1 Bv | Electronic cigarette. |
US20130340775A1 (en) | 2012-04-25 | 2013-12-26 | Bernard Juster | Application development for a network with an electronic cigarette |
US11517042B2 (en) | 2012-04-25 | 2022-12-06 | Altria Client Services Llc | Digital marketing applications for electronic cigarette users |
GB2502053B (en) * | 2012-05-14 | 2014-09-24 | Nicoventures Holdings Ltd | Electronic smoking device |
CN204426680U (en) * | 2012-06-20 | 2015-07-01 | 惠州市吉瑞科技有限公司 | Electronic cigarette packet |
US10004259B2 (en) * | 2012-06-28 | 2018-06-26 | Rai Strategic Holdings, Inc. | Reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article |
EP2701268A1 (en) * | 2012-08-24 | 2014-02-26 | Philip Morris Products S.A. | Portable electronic system including charging device and method of charging a secondary battery |
US8881737B2 (en) | 2012-09-04 | 2014-11-11 | R.J. Reynolds Tobacco Company | Electronic smoking article comprising one or more microheaters |
US8910639B2 (en) | 2012-09-05 | 2014-12-16 | R. J. Reynolds Tobacco Company | Single-use connector and cartridge for a smoking article and related method |
CN102835737B (en) | 2012-09-28 | 2015-07-01 | 深圳市合元科技有限公司 | Electronic cigarette case |
CN103960781A (en) | 2013-09-29 | 2014-08-06 | 深圳市麦克韦尔科技有限公司 | Electronic cigarette |
US10117460B2 (en) | 2012-10-08 | 2018-11-06 | Rai Strategic Holdings, Inc. | Electronic smoking article and associated method |
US9854841B2 (en) | 2012-10-08 | 2018-01-02 | Rai Strategic Holdings, Inc. | Electronic smoking article and associated method |
US10058122B2 (en) | 2012-10-25 | 2018-08-28 | Matthew Steingraber | Electronic cigarette |
US9210738B2 (en) | 2012-12-07 | 2015-12-08 | R.J. Reynolds Tobacco Company | Apparatus and method for winding a substantially continuous heating element about a substantially continuous wick |
US8910640B2 (en) | 2013-01-30 | 2014-12-16 | R.J. Reynolds Tobacco Company | Wick suitable for use in an electronic smoking article |
CN104026742A (en) * | 2013-03-05 | 2014-09-10 | 向智勇 | Heating control method and device for electronic cigarette |
US10031183B2 (en) | 2013-03-07 | 2018-07-24 | Rai Strategic Holdings, Inc. | Spent cartridge detection method and system for an electronic smoking article |
US20140261486A1 (en) | 2013-03-12 | 2014-09-18 | R.J. Reynolds Tobacco Company | Electronic smoking article having a vapor-enhancing apparatus and associated method |
US9277770B2 (en) | 2013-03-14 | 2016-03-08 | R. J. Reynolds Tobacco Company | Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method |
US20140261487A1 (en) | 2013-03-14 | 2014-09-18 | R. J. Reynolds Tobacco Company | Electronic smoking article with improved storage and transport of aerosol precursor compositions |
US9491974B2 (en) | 2013-03-15 | 2016-11-15 | Rai Strategic Holdings, Inc. | Heating elements formed from a sheet of a material and inputs and methods for the production of atomizers |
US9423152B2 (en) | 2013-03-15 | 2016-08-23 | R. J. Reynolds Tobacco Company | Heating control arrangement for an electronic smoking article and associated system and method |
US9220302B2 (en) | 2013-03-15 | 2015-12-29 | R.J. Reynolds Tobacco Company | Cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article |
US9609893B2 (en) | 2013-03-15 | 2017-04-04 | Rai Strategic Holdings, Inc. | Cartridge and control body of an aerosol delivery device including anti-rotation mechanism and related method |
KR102305865B1 (en) * | 2013-03-15 | 2021-09-27 | 레이 스트라티직 홀딩스, 인크. | Heating elements formed from a sheet of a material, inputs and methods for the production of atomizers, cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article |
US9723876B2 (en) * | 2013-03-15 | 2017-08-08 | Altria Client Services Llc | Electronic smoking article |
GB2514758B (en) | 2013-03-26 | 2015-06-24 | Kind Consumer Ltd | A Pressurised Refill Canister with an Outlet Valve |
US10036548B2 (en) * | 2013-04-07 | 2018-07-31 | Huizhou Kimree Technology Co., Ltd., Shenzhen Branch | Electronic-cigarette box, LED light guide piece and box body |
CA3208137A1 (en) | 2013-05-06 | 2014-11-13 | Juul Labs, Inc. | Nicotine salt formulations for aerosol devices and methods thereof |
US20140338685A1 (en) * | 2013-05-20 | 2014-11-20 | Sis Resources, Ltd. | Burning prediction and communications for an electronic cigarette |
BR112015026971B1 (en) * | 2013-05-21 | 2021-02-17 | Philip Morris Products S.A. | cartridge, system and method of delivery to an electrically heated aerosol user containing medicine |
WO2014195687A1 (en) | 2013-06-04 | 2014-12-11 | Nicoventures Holdings Limited | Container |
ES2799434T3 (en) | 2013-06-04 | 2020-12-17 | Nicoventures Holdings Ltd | Container |
GB2514893B (en) | 2013-06-04 | 2017-12-06 | Nicoventures Holdings Ltd | Container |
EP3039974B1 (en) * | 2013-09-30 | 2018-04-18 | Japan Tobacco, Inc. | Non-combusting flavor inhaler |
US9820509B2 (en) * | 2013-10-10 | 2017-11-21 | Kyle D. Newton | Electronic cigarette with encoded cartridge |
US10292424B2 (en) | 2013-10-31 | 2019-05-21 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a pressure-based aerosol delivery mechanism |
IL279066B (en) * | 2013-12-03 | 2022-09-01 | Philip Morris Products Sa | Aerosol-generating article and electrically operated system incorporating a taggant |
KR101656061B1 (en) | 2013-12-18 | 2016-09-22 | 신종수 | Electronic cigarette |
US10076139B2 (en) * | 2013-12-23 | 2018-09-18 | Juul Labs, Inc. | Vaporizer apparatus |
CN110664012A (en) * | 2013-12-23 | 2020-01-10 | 尤尔实验室有限公司 | Evaporation apparatus system and method |
US9197726B2 (en) | 2014-01-29 | 2015-11-24 | Vaportronix, LLC | Combination mobile phone case and electronic cigarette |
US20150216232A1 (en) | 2014-02-03 | 2015-08-06 | R.J. Reynolds Tobacco Company | Aerosol Delivery Device Comprising Multiple Outer Bodies and Related Assembly Method |
WO2015120589A1 (en) * | 2014-02-12 | 2015-08-20 | 吉瑞高新科技股份有限公司 | Electronic cigarette |
WO2015123832A1 (en) * | 2014-02-19 | 2015-08-27 | 吉瑞高新科技股份有限公司 | Electronic cigarette and method for assembling same |
CN203723451U (en) * | 2014-02-20 | 2014-07-23 | 刘秋明 | Electronic cigarette |
USD761999S1 (en) * | 2014-02-27 | 2016-07-19 | Huizhou Kimree Technology Co., Ltd. Shenzhen Branch | Electronic cigarette |
US9839238B2 (en) | 2014-02-28 | 2017-12-12 | Rai Strategic Holdings, Inc. | Control body for an electronic smoking article |
US20170045994A1 (en) * | 2014-02-28 | 2017-02-16 | Beyond Twenty Ltd. | Electronic vaporiser system |
US20160366946A1 (en) | 2014-02-28 | 2016-12-22 | Beyond Twenty Ltd. | Electronic vaporiser system |
GB201413032D0 (en) | 2014-02-28 | 2014-09-03 | Beyond Twenty Ltd | Beyond 7 |
US11696604B2 (en) | 2014-03-13 | 2023-07-11 | Rai Strategic Holdings, Inc. | Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics |
US20150257451A1 (en) * | 2014-03-13 | 2015-09-17 | Terry Brannon | Vapor device with switch assembly |
GB2524295B (en) | 2014-03-19 | 2018-10-24 | Kind Consumer Ltd | An inhaler |
GB2524293B (en) * | 2014-03-19 | 2017-12-06 | Kind Consumer Ltd | An inhaler |
CN114209106B (en) * | 2014-03-19 | 2024-09-13 | 菲利普莫里斯生产公司 | Monolithic plane with electrical contacts and method for manufacturing the same |
WO2015149220A1 (en) * | 2014-03-31 | 2015-10-08 | 吉瑞高新科技股份有限公司 | Electronic cigarette |
WO2015149332A1 (en) | 2014-04-03 | 2015-10-08 | 吉瑞高新科技股份有限公司 | Electronic cigarette |
EP2941970B1 (en) * | 2014-04-28 | 2021-03-10 | Shenzhen First Union Technology Co., Ltd. | Aerosol inhaling device |
US20150313282A1 (en) * | 2014-05-01 | 2015-11-05 | R.J. Reynolds Tobacco Company | Electronic smoking article |
ES2745200T3 (en) | 2014-05-02 | 2020-02-28 | Japan Tobacco Inc | Non-combustion type flavor inhaler and computer readable medium |
WO2015192084A1 (en) * | 2014-06-14 | 2015-12-17 | Evolv, Llc | Electronic vaporizer having temperature sensing and limit |
US9913493B2 (en) | 2014-08-21 | 2018-03-13 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a moveable cartridge and related assembly method |
US10624391B2 (en) * | 2014-09-26 | 2020-04-21 | Shenzhen Smoore Technology Limited | Inhaler, atomizing assembly and atomizing core |
JP6533582B2 (en) * | 2014-10-02 | 2019-06-19 | ディジレッツ, インコーポレイテッド | Disposable tank type electronic cigarette, manufacturing method and use method |
KR101696363B1 (en) | 2014-12-16 | 2017-01-13 | 신종수 | Electronic Cigarette |
CN204313306U (en) * | 2014-12-18 | 2015-05-06 | 杨宗文 | There is the portable cigarette box lighter of interior compartmentalized design |
CN204444245U (en) * | 2015-01-05 | 2015-07-08 | 深圳市合元科技有限公司 | Removable atomization unit and the atomizer and the electronic cigarette that comprise this atomization unit |
CN204409587U (en) * | 2015-01-15 | 2015-06-24 | 李辉 | There is the electronic cigarette of transparent windows |
CN204560959U (en) * | 2015-01-26 | 2015-08-19 | 东莞市福皇五金有限公司 | A kind of Novel electric cigarette |
CN105077594A (en) * | 2015-02-15 | 2015-11-25 | 卓尔悦(常州)电子科技有限公司 | Electronic cigarette |
CN104770878B (en) * | 2015-03-23 | 2017-11-24 | 云南中烟工业有限责任公司 | A kind of electric heating type cigarette smoking device with electronic cigarette pumping function |
US20160338407A1 (en) * | 2015-05-18 | 2016-11-24 | Andrew Kerdemelidis | Programmable vaporizer device and method |
CN204888730U (en) * | 2015-07-01 | 2015-12-23 | 张雷 | Pressure regulating formula electron cigarette |
US10792685B2 (en) * | 2015-10-08 | 2020-10-06 | Fontem Holdings 1 B.V. | Liquid supply for an electronic smoking device |
US10058125B2 (en) * | 2015-10-13 | 2018-08-28 | Rai Strategic Holdings, Inc. | Method for assembling an aerosol delivery device |
US10201187B2 (en) * | 2015-11-02 | 2019-02-12 | Rai Strategic Holdings, Inc. | User interface for an aerosol delivery device |
US20170119044A1 (en) * | 2015-11-03 | 2017-05-04 | Hydra Vapor Tech, Llc | Vaporizer case |
US10092036B2 (en) * | 2015-12-28 | 2018-10-09 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a housing and a coupler |
US20170181474A1 (en) * | 2015-12-28 | 2017-06-29 | Lunatech, Llc | Methods and Systems For Substance Reduction Via Electronic Vapor Device Delivery |
US10757976B2 (en) * | 2016-02-12 | 2020-09-01 | Altria Client Services Llc | Aerosol-generating system with puff detector |
US10231486B2 (en) * | 2016-03-10 | 2019-03-19 | Pax Labs, Inc. | Vaporization device having integrated games |
CN205848683U (en) * | 2016-03-21 | 2017-01-04 | 深圳市合元科技有限公司 | Electronic cigarette and nebulizer thereof |
-
2015
- 2015-12-28 US US14/981,051 patent/US10092036B2/en active Active
-
2016
- 2016-12-27 WO PCT/IB2016/058021 patent/WO2017115277A1/en active Application Filing
- 2016-12-27 CN CN202111216301.4A patent/CN113826959A/en active Pending
- 2016-12-27 JP JP2018552927A patent/JP6810755B2/en active Active
- 2016-12-27 CN CN202111229098.4A patent/CN113826960A/en active Pending
- 2016-12-27 PL PL16826473T patent/PL3397097T3/en unknown
- 2016-12-27 RU RU2020115413U patent/RU202752U1/en active
- 2016-12-27 KR KR1020207019132A patent/KR102257612B1/en active IP Right Grant
- 2016-12-27 BR BR112018013248-9A patent/BR112018013248B1/en active IP Right Grant
- 2016-12-27 HU HUE16826473A patent/HUE047685T2/en unknown
- 2016-12-27 CN CN201680082558.6A patent/CN108697165B/en active Active
- 2016-12-27 KR KR1020207004520A patent/KR102182909B1/en active IP Right Grant
- 2016-12-27 RU RU2020115409A patent/RU2744608C1/en active
- 2016-12-27 KR KR1020237034526A patent/KR20230146135A/en active Application Filing
- 2016-12-27 EP EP16826473.7A patent/EP3397097B1/en active Active
- 2016-12-27 KR KR1020187021431A patent/KR102590264B1/en active IP Right Grant
- 2016-12-27 UA UAA201808247A patent/UA124261C2/en unknown
- 2016-12-27 CN CN202111216214.9A patent/CN113826958A/en active Pending
- 2016-12-27 ES ES16826473T patent/ES2774699T3/en active Active
- 2016-12-27 CA CA3010115A patent/CA3010115A1/en active Pending
- 2016-12-27 RU RU2018127204A patent/RU2721630C2/en active
- 2016-12-27 MY MYPI2018001159A patent/MY195827A/en unknown
-
2018
- 2018-06-27 PH PH12018501384A patent/PH12018501384A1/en unknown
- 2018-09-07 US US16/125,519 patent/US11311688B2/en active Active
- 2018-11-15 HK HK18114584.3A patent/HK1255421A1/en unknown
-
2020
- 2020-02-14 US US16/791,427 patent/US20200178600A1/en active Pending
- 2020-04-15 JP JP2020072688A patent/JP7073439B2/en active Active
-
2021
- 2021-03-04 RU RU2021105563A patent/RU2766172C1/en active
- 2021-07-19 JP JP2021118457A patent/JP7238251B2/en active Active
- 2021-08-27 ZA ZA2021/06216A patent/ZA202106216B/en unknown
-
2022
- 2022-12-23 JP JP2022207004A patent/JP7350967B2/en active Active
-
2023
- 2023-09-13 JP JP2023148442A patent/JP2023175798A/en active Pending
- 2023-10-03 US US18/480,235 patent/US20240024596A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240024596A1 (en) | Aerosol delivery device including a housing and a coupler | |
US9936733B2 (en) | Accessory configured to charge an aerosol delivery device and related method | |
US20210000183A1 (en) | Refillable aerosol delivery device and related method | |
EP3684208B1 (en) | Differential pressure sensor for an aerosol delivery device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RAI STRATEGIC HOLDINGS, INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:R. J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:065111/0153 Effective date: 20160317 Owner name: R. J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PHILLIPS, PERCY D.;DAVIS, MICHAEL F.;WATSON, NICHOLAS H.;AND OTHERS;SIGNING DATES FROM 20160104 TO 20160129;REEL/FRAME:065111/0068 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |