US20230420935A1 - Multi-voltage charging apparatus - Google Patents

Multi-voltage charging apparatus Download PDF

Info

Publication number
US20230420935A1
US20230420935A1 US18/244,955 US202318244955A US2023420935A1 US 20230420935 A1 US20230420935 A1 US 20230420935A1 US 202318244955 A US202318244955 A US 202318244955A US 2023420935 A1 US2023420935 A1 US 2023420935A1
Authority
US
United States
Prior art keywords
charging
terminal
voltage
node
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/244,955
Inventor
Bart Potts
Michael Pruden
Hans Westerlind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volvo Truck Corp
Original Assignee
Volvo Truck Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volvo Truck Corp filed Critical Volvo Truck Corp
Priority to US18/244,955 priority Critical patent/US20230420935A1/en
Publication of US20230420935A1 publication Critical patent/US20230420935A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/122Provisions for temporary connection of DC sources of essentially the same voltage, e.g. jumpstart cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/02Movement of the bolt by electromagnetic means; Adaptation of locks, latches, or parts thereof, for movement of the bolt by electromagnetic means
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/02Movement of the bolt by electromagnetic means; Adaptation of locks, latches, or parts thereof, for movement of the bolt by electromagnetic means
    • E05B47/023Movement of the bolt by electromagnetic means; Adaptation of locks, latches, or parts thereof, for movement of the bolt by electromagnetic means the bolt moving pivotally or rotatively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the inventive concepts relate to vehicle electrical systems, and in particular to multi-voltage battery systems for vehicles.
  • Some vehicles may include 24 volt (24V) electrical systems for powering various loads in the vehicle.
  • a 24V vehicle electrical system typically includes first and second 12-volt (12V) batteries, namely, a lower battery and an upper battery, arranged in series to provide a total of 24 volts for powering 24V loads.
  • the batteries are referred to as the “lower battery” and the “upper battery,” because the positive terminal of the upper battery is at a higher electric potential than the positive terminal of the lower battery.
  • 24V loads can be powered from the positive terminal of the upper battery
  • 12V loads can be powered from the positive terminal of the lower battery.
  • the batteries are charged by a 24V alternator that is connected across both batteries.
  • One embodiment of the inventive concepts is directed to a multi-voltage charging apparatus that includes at least one housing including a first compartment and a second compartment, a first access door connected to the housing and covering the first compartment, the first access door being movable from an open position to a closed position, a second access door connected to the housing and covering the second compartment, the second access door being movable from an open position to a closed position, a first releasable latching mechanism configured to latch the first access door in the closed position, a second releasable latching mechanism configured to latch the second access door in the closed position, a first charging terminal in the first compartment, a second charging terminal in the second compartment, a voltage sensing terminal, and a door release circuit coupled to the voltage sensing terminal and to the first and second releasable latching mechanisms and configured to sense a charging voltage applied to the voltage sensing terminal.
  • the door release circuit is configured to selectively unlatch the first releasable latching mechanism in response to a first voltage being applied to the voltage sensing terminal, and to selectively unlatch the second releasable latching mechanism in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
  • a charging apparatus includes at least one housing including a compartment, an access door connected to the housing and covering the compartment, the access door being movable from an open position to a closed position, a releasable latching mechanism configured to latch the access door in the closed position, a charging terminal in the compartment, a voltage sensing terminal, and a door release circuit coupled to the voltage sensing terminal and to the releasable latching mechanisms and configured to sense a charging voltage applied to the voltage sensing terminal.
  • a charging apparatus includes a charging terminal, a ground terminal, and a coupling circuit coupled to the charging terminal, the coupling circuit is configured to sense a charging voltage applied to the charging terminal and to selectively couple the charging terminal to a first charging node in response to a first voltage being applied to the charging terminal, and to selectively couple the charging terminal to a second charging node in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
  • the door release circuit is configured to selectively unlatch the first releasable latching mechanism in response to a first voltage being applied to the voltage sensing terminal, and to selectively unlatch the second releasable latching mechanism in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
  • the first releasable latching mechanism includes a first solenoid and the second releasable latching mechanism includes a second solenoid.
  • the door release circuit includes a voltage regulator configured to supply a third voltage, and a sensing node coupled to the voltage sensing terminal.
  • the door release circuit includes a first transistor switch having an output terminal coupled to the first solenoid and a control terminal coupled to the sensing node, and a second transistor switch coupled in series with the first transistor switch having an input terminal coupled to the voltage regulator, an output terminal coupled to an input terminal of the first transistor switch, and a control terminal coupled to the sensing node.
  • the first transistor switch includes a depletion mode MOSFET that is configured to turn off in response to a first voltage being applied to the sensing node
  • the second transistor switch includes an enhancement mode MOSFET that is configured to turn on in response to a second voltage being applied to the sensing node, the first voltage is higher than the second voltage
  • the multi-voltage charging apparatus includes a third transistor switch having an output terminal coupled to the second solenoid and a control terminal coupled to the sensing node, a fourth transistor switch coupled in series with the third transistor switch having an input terminal coupled to the voltage regulator, an output terminal coupled to an input terminal of the third transistor switch, and a control terminal coupled to the sensing node.
  • the third transistor switch includes a depletion mode MOSFET that is configured to turn off in response to a third voltage being applied to the sensing node
  • the fourth transistor switch includes an enhancement mode MOSFET that is configured to turn on in response to a fourth voltage being applied to the sensing node, the third voltage is higher than the fourth voltage, and the second voltage is higher than the third voltage.
  • the first transistor switch and the second transistor switch are arranged to apply the third voltage that is output by the voltage regulator to the first solenoid when a voltage supplied applied to the sensing node is greater than the second voltage and less than the first voltage.
  • the third transistor switch and the fourth transistor switch are arranged to apply the third voltage that is output by the voltage regulator to the second solenoid when the voltage supplied applied to the sensing node is greater than the fourth voltage and less than the third voltage.
  • the multi-voltage charging apparatus includes a rectifier diode between the voltage regulator and the input terminal of the second transistor switch.
  • the door release circuit includes a microcontroller, and first, second, third and fourth transistor switches, each of the first, second, third and fourth transistor switches including a control terminal coupled to the sensing node, an output terminal coupled to the microcontroller, and an input terminal coupled to the voltage regulator.
  • the first and second solenoids are coupled to the microcontroller, and the microcontroller is configured to control the first and second solenoids in response to signals output by the first, second, third and fourth transistors.
  • the first, second, third and fourth transistor switches include normally off enhancement mode MOSFETs, the first, second, third and fourth transistor switches have respective first, second, third and fourth different turn-on voltages.
  • the microcontroller is configured to activate the first solenoid when a voltage applied to the sensing node is between the third and fourth turn-on voltages, and the microcontroller is configured to activate the second solenoid when the voltage applied to the sensing node is between the first and second turn-on voltages.
  • the multi-voltage charging apparatus includes a light emitting diode (LED) coupled to the microcontroller, the microcontroller is configured to cause the LED to emit light in response to the voltage applied at the sensing node not being between the first voltage and the second voltage or between the third voltage and the fourth voltage.
  • LED light emitting diode
  • the multi-voltage charging apparatus includes a rectifier diode coupled to an output of the voltage regulator.
  • a charging apparatus includes at least one housing including a compartment, an access door connected to the housing and covering the compartment, the access door being movable from an open position to a closed position, a releasable latching mechanism configured to latch the access door in the closed position, a charging terminal in the compartment, a voltage sensing terminal, and a door release circuit coupled to the voltage sensing terminal and to the releasable latching mechanisms and configured to sense a charging voltage applied to the voltage sensing terminal.
  • the door release circuit is configured to selectively unlatch the releasable latching mechanism in response to a voltage within a predetermined voltage range being applied to the voltage sensing terminal.
  • a charging apparatus includes a charging terminal, a ground terminal, and a coupling circuit coupled to the charging terminal, the coupling circuit is configured to sense a charging voltage applied to the charging terminal and to selectively couple the charging terminal to a first charging node in response to a first voltage being applied to the charging terminal, and to selectively couple the charging terminal to a second charging node in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
  • the relays include optically triggered relays that isolate the charging terminal and the first and second charging nodes from the microcontroller.
  • FIG. 1 is a perspective view of a multi-voltage charging apparatus according to some embodiments.
  • FIGS. 2 A, 2 B and 2 C are side views a multi-voltage charging apparatus according to some embodiments.
  • FIG. 3 is a simplified circuit diagram of a door release circuit according to some embodiments.
  • FIG. 5 A is a side view of a multi-voltage charging apparatus according to some embodiments.
  • FIG. 5 B is a simplified circuit diagram of a coupling circuit according to some embodiments.
  • FIGS. 6 A and 6 B illustrate a releasable latching mechanism according to some embodiments.
  • FIGS. 6 C and 6 D illustrate a releasable latching mechanism according to further embodiments.
  • FIGS. 6 E and 6 F illustrate a releasable latching mechanism according to further embodiments.
  • FIGS. 6 G and 6 H illustrate a releasable latching mechanism according to further embodiments.
  • Some embodiments address one or more of the issues described above by providing a multi-voltage charging apparatus that physically controls access to first and second charging terminals, such as a 12V charging terminal and a 24V charging terminal, so that only the correct charging terminal is available for connection to an external charge source. These embodiments sense the external charging voltage at an exposed sensing terminal and then selectively provide physical access only to the charging terminal corresponding to the external charging voltage.
  • Some further embodiments address one or more of the issues described above by sensing an external charging voltage and selectively connecting the charging voltage only to an internal charging node that corresponds to the external charging voltage.
  • a multi-voltage charging system includes multiple charging terminals configured to accept different ranges of charging voltages.
  • only a single charging terminal configured to accept a single range of charging voltages is provided.
  • a single charging terminal configured to accept a plurality of ranges of charging voltages is provided.
  • the first access door 15 may be connected to the housing 22 by a first spring-biased hinge 16 which is biased to move the first access door to the open position when the first access door 15 is unlatched, while the second access door 25 may be connected to the housing 22 by a second spring-biased hinge 26 which is biased to move the second access door to the open position when the second access door 25 is unlatched. That is, when one of the access doors is unlatched, it will spring open to provide physical access to the underlying charging terminal. To close the door, an operator may manually push the access door 15 , 25 shut until it latches in place in the closed position.
  • the multi-voltage charging system 10 may further include a first releasable latching mechanism 40 ( FIGS. 6 A- 6 H ) that is configured to latch the first access door 15 in the closed position and a second releasable latching mechanism 40 that is configured to latch the second access door 25 in the closed position.
  • a first releasable latching mechanism 40 FIGS. 6 A- 6 H
  • a second releasable latching mechanism 40 that is configured to latch the second access door 25 in the closed position.
  • the first and second releasable latching mechanisms 40 may cooperate with latching pins or features 50 provided on the first and second access doors 15 , 25 .
  • the operator may move the charging connector to the now-exposed charging terminal and proceed to charge the vehicle electrical system. Accordingly, in some embodiments, access to the incorrect charging terminal may be physically obstructed until an acceptable charging voltage has been applied to the voltage sensing terminal SENSE.
  • a door release circuit 60 is illustrated in FIG. 3 .
  • the door release circuit comprises first through fourth transistor switches Q1 to Q4.
  • the first through fourth transistor switches Q1 to Q4 are illustrated as MOSFET switches; however, it will be appreciated that other types of electrically controlled switches, such as bipolar junction transistor (BJT) switches, junction field effect transistor (JFET) switches, thyristors, or other types of elements may be used to form the transistor switches.
  • BJT bipolar junction transistor
  • JFET junction field effect transistor
  • thyristors thyristors
  • the first through fourth transistor switches Q1 to Q4 are illustrated as individual transistors, it will be appreciated that one or more of the first through fourth transistor switches Q1 to Q4 may include a plurality of transistors and/or other circuit elements connected together to form switching circuits when properly arranged.
  • Control terminals, such as gate terminals, of the first through fourth transistor switches Q1 to Q4 are connected to the voltage sensing terminal SENSE, so that a voltage applied to the voltage sensing terminal SENSE will appear at the gate terminals of the first through fourth transistor switches Q1 to Q4.
  • Input terminals, such as source terminals, of the second and fourth transistor switches Q2 and Q4 are connected to an output of a voltage regulator 92 that is arranged to supply a regulated DC voltage of, for example, five volts.
  • a rectifier 94 may be provided at the output of the voltage regulator 92 between the voltage regulator 92 and the input terminals of the second and fourth transistor switches Q2 and Q4. The rectifier 94 may be arranged to obstruct a voltage from the second and fourth transistor switches Q2 and Q4 from being applied to the output of the voltage regulator 92 .
  • An output terminal, e.g. a drain terminal, of the second transistor switch Q2 is connected to an input (source) terminal of the first transistor switch Q1, and a drain terminal of the fourth transistor switch Q2 is connected to a source terminal of the third transistor switch Q3.
  • An output (drain) terminal of the first transistor switch Q1 is coupled to a solenoid 80 A which controls a first piston 78 A, while a drain terminal of the third transistor switch Q3 is coupled to a solenoid 80 B which controls a second piston 78 B.
  • the first piston 78 A operates the releasable latch mechanism 40 to selectively unlatch the first access door 15
  • the second piston 78 B operates the releasable latch mechanism 40 to selectively unlatch the second access door 25 .
  • the first through fourth transistor switches Q1 to Q4 have respective different threshold voltages.
  • the first transistor switch Q1 includes a normally ON depletion mode MOSFET that has a threshold voltage of 16V
  • the second transistor switch Q2 includes a normally OFF enhancement mode MOSFET that has a threshold voltage of 12V.
  • the third transistor switch Q3 includes a normally ON depletion mode MOSFET that has a threshold voltage of 30V
  • the fourth transistor switch Q4 includes a normally OFF enhancement mode MOSFET that has a threshold voltage of 24V.
  • the second transistor switch Q2 When a charging voltage applied to the voltage sensing terminal SENSE has a voltage level between 12 volts and 16 volts, the second transistor switch Q2 turns ON while the first transistor switch Q1 remains ON, thereby applying the voltage output by the voltage regulator 92 to the first solenoid 80 A, which moves the first piston 78 A to cause the releasable latching mechanism 40 to unlatch the first access door 15 .
  • the fourth transistor switch Q4 turns ON while the third transistor switch Q3 remains ON, thereby applying the voltage output by the voltage regulator 92 to the second solenoid 80 B, which moves the second piston 78 B to cause the releasable latching mechanism 40 to unlatch the second access door 25 .
  • the first transistor switch Q1 When the voltage applied to the voltage sensing terminal SENSE is greater than 16 volts and less than 24 volts, the first transistor switch Q1 is turned OFF, obstructing the voltage output by the voltage regulator 92 from being applied to the first solenoid 80 A, and the fourth transistor switch Q4 remains OFF, obstructing the voltage output by the voltage regulator 92 from being applied to the second solenoid 80 B.
  • Table 1 The operation of the door release circuit 60 is summarized in Table 1.
  • the 12V access door 15 is opened only when the applied voltage is between 12V and 15V, while the 24V access door 25 is opened only when the applied voltage is between 24V and 29V. In all other cases, both access doors remain closed.
  • door release circuit 60 of FIG. 3 could be modified to support additional voltages by providing additional pairs of transistor switches having threshold voltages that define additional acceptable voltage ranges and by providing additional solenoids to operate additional access doors.
  • the multi-voltage charging system 10 could be modified to support additional voltage ranges by providing additional charging terminals in additional compartments. Moreover, it will be appreciated that the charging system 10 could be modified to support only a single voltage range by providing only a single charging terminal in a single compartment and modifying the door release circuit 60 to check for the single voltage range. Such a single terminal system may still physically restrict access to the single charging terminal unless an appropriate charging voltage is sensed at the voltage sensing terminal.
  • FIG. 4 illustrates a door release circuit 60 B according to further embodiments.
  • the door release circuit 60 B includes first to fourth transistor switches Q5, Q6, Q7 and Q8, each of which has a control terminal (gate) connected to the voltage sensing terminal SENSE.
  • each of the first to fourth transistor switches Q5, Q6, Q7 and Q8 includes a normally OFF enhancement mode MOSFET.
  • BJT switches, JFET switches, thyristors, or other types of elements may be used to form the transistor switches.
  • first through fourth transistor switches Q5 to Q8 are illustrated as individual transistors, it will be appreciated that one or more of the first through fourth transistor switches Q5 to Q8 may include a plurality of transistors and/or other circuit elements connected together to form switching circuits when properly arranged.
  • Each of the first to fourth transistor switches Q5, Q6, Q7 and Q8 has a different threshold voltage at which the transistor turns ON.
  • transistor switch Q5 may have a turn on voltage of 12 volts
  • transistor switch Q6 may have a turn on voltage of 16 volts
  • transistor switch Q7 may have a turn on voltage of 24 volts
  • transistor switch Q8 may have a turn on voltage of 30 volts.
  • Input terminals, such as source terminals, of each of the first to fourth transistor switches Q5, Q6, Q7 and Q8 are connected to an output of a voltage regulator 92 that is arranged to supply a regulated DC voltage of, for example, five volts.
  • a rectifier 94 may be provided at the output of the voltage regulator 92 between the voltage regulator 92 and the input terminals of the first to fourth transistor switches Q5 to Q8. The rectifier 94 may be arranged to obstruct a voltage from the first to fourth transistor switches Q5 to Q8 from being applied to the output of the voltage regulator 92 .
  • Output terminals, such as drain terminals, of each of the first to fourth transistor switches Q5 to Q8 are connected to respective data inputs D0 to D3 of a microcontroller 100 .
  • the microcontroller 100 includes three data outputs, namely, A0, A1 and INC.
  • Output A0 is connected to the first solenoid 80 A which operates the first piston 78 A to unlatch the first access door 15 that covers the 12V charging terminal, while output A1 is connected to the second solenoid 80 B which operates the second piston 78 B to unlatch the second access door 25 that covers the 24V charging terminal.
  • the INC output drives an indicator lamp, such as LED 96 .
  • circuit diagram of FIG. 4 is a highly simplified diagram, and that other components may be included in a final design, such as driver circuits, bias circuits, current limiting resistors, etc.
  • the microcontroller 100 may not be capable of directly supplying sufficient current from an output pin to operate a solenoid.
  • a current limiting resistor would be provided in series with the LED 96 to prevent overcurrent. Such modifications are within the ordinary skill in the art and are omitted for clarity.
  • the microcontroller 100 may, for example, be an 8- 16- or 32-bit microcontroller.
  • the microcontroller 100 may include a 16F1507 8-bit programmable microcontroller manufactured by Microchip Technology Inc. or similar device.
  • the microcontroller 100 sets the output signals A0, A1 and INC in response to the input signals D0 to D3. In particular, the microcontroller 100 sets the output signal A0 to HIGH so that the first solenoid 80 A is activated to open the first access door 15 when the input voltage is greater than 12 volts but less than 16 volts (i.e., when input D0 is HIGH and inputs D1 to D3 are LOW).
  • the microcontroller 100 sets the output signal A1 to HIGH so that the second solenoid 80 B is activated to open the second access door 25 when the input voltage is greater than 24 volts but less than 30 volts (i.e., when inputs D0, D1 and D2 are HIGH and input D3 is LOW). In all other instances, the microcontroller 100 sets the output signal INC to HIGH to cause the indicator lamp 96 to light to indicate that an improper voltage (i.e. a voltage that was not between 12 and 16 volts or between 24 and 30 volts) was applied.
  • an improper voltage i.e. a voltage that was not between 12 and 16 volts or between 24 and 30 volts
  • door release circuit 60 B of FIG. 4 could be modified to support additional voltages by providing additional inputs and outputs to the microcontroller 110 and by providing additional solenoids to operate additional access doors.
  • FIGS. 5 A and 5 B illustrate a multi-voltage charging apparatus 110 according to further embodiments.
  • the multi-voltage charging apparatus 110 includes a charging terminal CHARGE and a ground terminal GND mounted on a support plate 20 .
  • the charging terminal CHARGE and the ground terminal GND may optionally be separated by a divider 36 .
  • the multi-voltage charging apparatus 110 includes a coupling circuit 160 that selectively couples the charging terminal CHARGE to an internal charging node 112 , 124 based on a voltage level applied to the charging terminal CHARGE.
  • the first output A0 is connected to a first solid state relay 102 A, while the second output A1 is connected to a second solid state relay 102 B.
  • the first solid state relay 102 A includes a photodiode and a photosensitive relay circuit that is configured to conduct when the photodiode is energized.
  • the LED in the first solid state relay 102 A is energized, which activates the photosensitive relay circuit therein. This causes the charging node CHARGE to be coupled to an internal 12 volt charging node 112 , and allows a 12-volt battery system to which the internal 12 volt charging node 112 is connected to be charged by the external charge source.
  • the LED in the second solid state relay 102 B is energized, which activates the photosensitive relay circuit therein.
  • This causes the charging node CHARGE to be coupled to an internal 24 volt charging node 124 , and allows a 24-volt battery system to which the internal 24 volt charging node 124 is connected to be charged by the external charge source.
  • the microcontroller 100 may latch the output signal A0, A1 at HIGH so that the solid state relay 102 A, 102 B that was activated remains on even if the input voltage at the charging terminal CHARGE drops when the starter of the vehicle is engaged.
  • separate resettable latch circuits may be provided between the microcontroller 100 and the solid state relays 102 A, 102 B.
  • the design of resettable latch circuits, such as SR flip flop circuits, is well known in the art.
  • FIGS. 6 A and 6 B illustrate a releasable latching mechanism 40 A according to some embodiments.
  • the releasable latching mechanism 40 A includes a latching pin 50 including a body 52 , a notch 54 in the body 52 and a wedge 56 at the end of the body 52 .
  • the latching pin 50 is affixed to one of the access doors 15 , 25 .
  • a latching arm 62 extends from a housing 60 into the notch 54 when the access door 15 , 25 is in the latched (closed) position.
  • the latching arm 62 is biased against the latching pin 50 by a bias spring 66 within the housing 60 .
  • An extension 65 of the latching arm 62 extends from the housing 60 in a longitudinal slot (not shown) that allows the latching arm 60 and the extension 65 to move longitudinally within the housing 60 .
  • a rotating cam 72 includes a tooth 74 that engages the extension 65 of the latching arm 62 to move the latching arm 62 away from the latching pin 50 when the cam 72 is rotated in the clockwise direction.
  • the bias spring 66 pushes the latching arm back towards the latching pin 50 .
  • FIGS. 6 E and 6 F illustrate an even more simplified releasable latching mechanism 40 C in which a latching arm 67 is driven directly as a piston by a solenoid 80 to engage or disengage a latching pin 50 to latch and unlatch an access door 15 , 25 .
  • FIGS. 6 G and 6 H illustrate a magnetic releasable latching mechanism 40 D that includes a ferrous latching arm 68 mounted in a housing 69 and biased against the latching pin 50 by a spring 73 .
  • a coil 81 acts as an electromagnet to move the ferrous latching arm 68 out of engagement with the latching pin 50 to unlatch the access door 15 , 25 .
  • the coil 81 is energized by a signal generated by a circuit, such as the door release circuit 60 , 60 B shown in FIGS. 3 and 4 .
  • latching mechanisms may be used to selectively unlatch one or more access doors that provide access to charging terminals.
  • Some embodiments of the inventive concepts described herein are not limited by the particular latching mechanism employed.
  • the terms “comprise”, “comprising”, “comprises”, “include”, “including”, “includes”, “have”, “has”, “having”, or variants thereof are open-ended, and include one or more stated features, integers, elements, steps, components or functions but do not preclude the presence or addition of one or more other features, integers, elements, steps, components, functions or groups thereof.
  • the common abbreviation “e.g.”, which derives from the Latin phrase “exempli gratia,” may be used to introduce or specify a general example or examples of a previously mentioned item, and is not intended to be limiting of such item.
  • the common abbreviation “i.e.”, which derives from the Latin phrase “id est,” may be used to specify a particular item from a more general recitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A charging apparatus includes a charging terminal, a ground terminal, and a coupling circuit coupled to the charging terminal. The coupling circuit is configured to sense a charging voltage applied to the charging terminal and to selectively couple the charging terminal to a first charging node in response to a first voltage being applied to the charging terminal, and to selectively couple the charging terminal to a second charging node in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/971,717 titled “MULTI-VOLTAGE CHARGING APPARATUS,” filed Aug. 21, 2020, which is a 35 U.S.C. § 371 national stage application of PCT International Application No. PCT/US2018/019098 filed on Feb. 22, 2018, the disclosure and content of which is incorporated by reference herein in their entireties.
  • FIELD
  • The inventive concepts relate to vehicle electrical systems, and in particular to multi-voltage battery systems for vehicles.
  • BACKGROUND
  • Some vehicles, including heavy construction vehicles, may include 24 volt (24V) electrical systems for powering various loads in the vehicle. A 24V vehicle electrical system typically includes first and second 12-volt (12V) batteries, namely, a lower battery and an upper battery, arranged in series to provide a total of 24 volts for powering 24V loads. In this arrangement, the batteries are referred to as the “lower battery” and the “upper battery,” because the positive terminal of the upper battery is at a higher electric potential than the positive terminal of the lower battery. Thus, 24V loads can be powered from the positive terminal of the upper battery, while 12V loads can be powered from the positive terminal of the lower battery. When the engine of the vehicle is running, the batteries are charged by a 24V alternator that is connected across both batteries.
  • In the event that one of the batteries has insufficient charge to operate the vehicle, it is important for there to be a safe and simple way for an operator to jump start the vehicle from either a 12V source or a 24V source. However, attaching a 24V source to a 12V electrical system can damage the 12V electrical system.
  • SUMMARY
  • One embodiment of the inventive concepts is directed to a multi-voltage charging apparatus that includes at least one housing including a first compartment and a second compartment, a first access door connected to the housing and covering the first compartment, the first access door being movable from an open position to a closed position, a second access door connected to the housing and covering the second compartment, the second access door being movable from an open position to a closed position, a first releasable latching mechanism configured to latch the first access door in the closed position, a second releasable latching mechanism configured to latch the second access door in the closed position, a first charging terminal in the first compartment, a second charging terminal in the second compartment, a voltage sensing terminal, and a door release circuit coupled to the voltage sensing terminal and to the first and second releasable latching mechanisms and configured to sense a charging voltage applied to the voltage sensing terminal. The door release circuit is configured to selectively unlatch the first releasable latching mechanism in response to a first voltage being applied to the voltage sensing terminal, and to selectively unlatch the second releasable latching mechanism in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
  • A charging apparatus according to further embodiments includes at least one housing including a compartment, an access door connected to the housing and covering the compartment, the access door being movable from an open position to a closed position, a releasable latching mechanism configured to latch the access door in the closed position, a charging terminal in the compartment, a voltage sensing terminal, and a door release circuit coupled to the voltage sensing terminal and to the releasable latching mechanisms and configured to sense a charging voltage applied to the voltage sensing terminal.
  • A charging apparatus according to further embodiments includes a charging terminal, a ground terminal, and a coupling circuit coupled to the charging terminal, the coupling circuit is configured to sense a charging voltage applied to the charging terminal and to selectively couple the charging terminal to a first charging node in response to a first voltage being applied to the charging terminal, and to selectively couple the charging terminal to a second charging node in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
  • Other apparatus and/or methods for battery charging will be or become apparent to one with skill in the art upon review of the following drawings and shall be included within this description and protected by the accompanying claims. Moreover, it is intended that all embodiments disclosed herein can be implemented separately or combined in any way and/or combination unless expressly excluded.
  • Aspects
  • According to one aspect, a multi-voltage charging apparatus includes at least one housing including a first compartment and a second compartment, a first access door connected to the housing and covering the first compartment, the first access door being movable from an open position to a closed position, a second access door connected to the housing and covering the second compartment, the second access door being movable from an open position to a closed position, a first releasable latching mechanism configured to latch the first access door in the closed position, a second releasable latching mechanism configured to latch the second access door in the closed position, a first charging terminal in the first compartment, a second charging terminal in the second compartment, a voltage sensing terminal, and a door release circuit coupled to the voltage sensing terminal and to the first and second releasable latching mechanisms and configured to sense a charging voltage applied to the voltage sensing terminal. The door release circuit is configured to selectively unlatch the first releasable latching mechanism in response to a first voltage being applied to the voltage sensing terminal, and to selectively unlatch the second releasable latching mechanism in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
  • According to a further aspect, the first releasable latching mechanism includes a first solenoid and the second releasable latching mechanism includes a second solenoid.
  • According to a further aspect, the door release circuit includes a voltage regulator configured to supply a third voltage, and a sensing node coupled to the voltage sensing terminal.
  • According to a further aspect, the door release circuit includes a first transistor switch having an output terminal coupled to the first solenoid and a control terminal coupled to the sensing node, and a second transistor switch coupled in series with the first transistor switch having an input terminal coupled to the voltage regulator, an output terminal coupled to an input terminal of the first transistor switch, and a control terminal coupled to the sensing node.
  • According to a further aspect, the first transistor switch includes a depletion mode MOSFET that is configured to turn off in response to a first voltage being applied to the sensing node, and the second transistor switch includes an enhancement mode MOSFET that is configured to turn on in response to a second voltage being applied to the sensing node, the first voltage is higher than the second voltage.
  • According to a further aspect, the multi-voltage charging apparatus includes a third transistor switch having an output terminal coupled to the second solenoid and a control terminal coupled to the sensing node, a fourth transistor switch coupled in series with the third transistor switch having an input terminal coupled to the voltage regulator, an output terminal coupled to an input terminal of the third transistor switch, and a control terminal coupled to the sensing node.
  • According to a further aspect, the third transistor switch includes a depletion mode MOSFET that is configured to turn off in response to a third voltage being applied to the sensing node, and the fourth transistor switch includes an enhancement mode MOSFET that is configured to turn on in response to a fourth voltage being applied to the sensing node, the third voltage is higher than the fourth voltage, and the second voltage is higher than the third voltage.
  • According to a further aspect, the first transistor switch and the second transistor switch are arranged to apply the third voltage that is output by the voltage regulator to the first solenoid when a voltage supplied applied to the sensing node is greater than the second voltage and less than the first voltage.
  • According to a further aspect, the third transistor switch and the fourth transistor switch are arranged to apply the third voltage that is output by the voltage regulator to the second solenoid when the voltage supplied applied to the sensing node is greater than the fourth voltage and less than the third voltage.
  • According to a further aspect, the multi-voltage charging apparatus includes a rectifier diode between the voltage regulator and the input terminal of the second transistor switch.
  • According to a further aspect, the door release circuit includes a microcontroller, and first, second, third and fourth transistor switches, each of the first, second, third and fourth transistor switches including a control terminal coupled to the sensing node, an output terminal coupled to the microcontroller, and an input terminal coupled to the voltage regulator. The first and second solenoids are coupled to the microcontroller, and the microcontroller is configured to control the first and second solenoids in response to signals output by the first, second, third and fourth transistors.
  • According to a further aspect, the first, second, third and fourth transistor switches include normally off enhancement mode MOSFETs, the first, second, third and fourth transistor switches have respective first, second, third and fourth different turn-on voltages.
  • According to a further aspect, the microcontroller is configured to activate the first solenoid when a voltage applied to the sensing node is between the third and fourth turn-on voltages, and the microcontroller is configured to activate the second solenoid when the voltage applied to the sensing node is between the first and second turn-on voltages.
  • According to a further aspect, the multi-voltage charging apparatus includes a light emitting diode (LED) coupled to the microcontroller, the microcontroller is configured to cause the LED to emit light in response to the voltage applied at the sensing node not being between the first voltage and the second voltage or between the third voltage and the fourth voltage.
  • According to a further aspect, the multi-voltage charging apparatus includes a rectifier diode coupled to an output of the voltage regulator.
  • A charging apparatus according to an aspect includes at least one housing including a compartment, an access door connected to the housing and covering the compartment, the access door being movable from an open position to a closed position, a releasable latching mechanism configured to latch the access door in the closed position, a charging terminal in the compartment, a voltage sensing terminal, and a door release circuit coupled to the voltage sensing terminal and to the releasable latching mechanisms and configured to sense a charging voltage applied to the voltage sensing terminal.
  • According to a further aspect, the door release circuit is configured to selectively unlatch the releasable latching mechanism in response to a voltage within a predetermined voltage range being applied to the voltage sensing terminal.
  • A charging apparatus according to a still further aspect includes a charging terminal, a ground terminal, and a coupling circuit coupled to the charging terminal, the coupling circuit is configured to sense a charging voltage applied to the charging terminal and to selectively couple the charging terminal to a first charging node in response to a first voltage being applied to the charging terminal, and to selectively couple the charging terminal to a second charging node in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
  • According to a further aspect, the coupling circuit includes a voltage regulator configured to supply a third voltage, a microcontroller, first, second, third and fourth transistor switches, each of the first, second, third and fourth transistor switches including a control terminal coupled to the charging node, an output terminal coupled to the microcontroller, and an input terminal coupled to the voltage regulator, a first relay coupled to the microcontroller, the charging terminal, and the first charging node, and a second relay coupled to the microcontroller, the charging terminal, and the second charging node. The microcontroller is configured to cause the first relay to controllably couple the charging terminal to the first charging node and the second relay to controllably couple the charging terminal to the second charging node in response to signals output by the first, second, third and fourth transistor switches.
  • According to a further aspect, the first, second, third and fourth transistor switches include normally off enhancement mode MOSFETs, the first, second, third and fourth transistor switches have respective first, second, third and fourth different turn-on voltages.
  • According to a further aspect, the relays include optically triggered relays that isolate the charging terminal and the first and second charging nodes from the microcontroller.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate certain non-limiting embodiments of inventive concepts. In the drawings:
  • FIG. 1 is a perspective view of a multi-voltage charging apparatus according to some embodiments.
  • FIGS. 2A, 2B and 2C are side views a multi-voltage charging apparatus according to some embodiments.
  • FIG. 3 is a simplified circuit diagram of a door release circuit according to some embodiments.
  • FIG. 4 is a simplified circuit diagram of a door release circuit according to some embodiments.
  • FIG. 5A is a side view of a multi-voltage charging apparatus according to some embodiments.
  • FIG. 5B is a simplified circuit diagram of a coupling circuit according to some embodiments.
  • FIGS. 6A and 6B illustrate a releasable latching mechanism according to some embodiments.
  • FIGS. 6C and 6D illustrate a releasable latching mechanism according to further embodiments.
  • FIGS. 6E and 6F illustrate a releasable latching mechanism according to further embodiments.
  • FIGS. 6G and 6H illustrate a releasable latching mechanism according to further embodiments.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • As noted in the Background section above, multi-voltage vehicles may have both a 12V electrical system and a 24V electrical system. In the event a vehicle operator needs to jump start the system, it is desirable to be able to provide external charge from a 12V source or a 24V source. However, attaching a 24V source to a 12V electrical system can damage the 12V electrical system of the vehicle. Attaching an external charge source to a vehicle for jump starting is often performed in harsh environments, possibly in the dark or with little available light. It is possible that an operator may incorrectly attach a charging source to the wrong charging terminal on the vehicle being jump started, e.g., attaching a 24V charging source to a 12V terminal. Some vehicles may even have more than two electrical systems, e.g., 12V, 24V and 48V systems in the same vehicle.
  • Some embodiments address one or more of the issues described above by providing a multi-voltage charging apparatus that physically controls access to first and second charging terminals, such as a 12V charging terminal and a 24V charging terminal, so that only the correct charging terminal is available for connection to an external charge source. These embodiments sense the external charging voltage at an exposed sensing terminal and then selectively provide physical access only to the charging terminal corresponding to the external charging voltage.
  • Some further embodiments address one or more of the issues described above by sensing an external charging voltage and selectively connecting the charging voltage only to an internal charging node that corresponds to the external charging voltage.
  • Various embodiments are described herein by way of non-limiting examples in the context of a multi-voltage vehicle electrical system. It is to be understood that the embodiments are not limited to the particular configurations disclosed herein. Moreover, although various embodiments are described in the context of dual-voltage vehicle electrical systems, it will be appreciated that the concepts and embodiments described herein may be extended to vehicle electrical systems with more or less than two voltage subsystems. For example, in some embodiments, a multi-voltage charging system includes multiple charging terminals configured to accept different ranges of charging voltages. In other embodiments, only a single charging terminal configured to accept a single range of charging voltages is provided. In still other embodiments, a single charging terminal configured to accept a plurality of ranges of charging voltages is provided.
  • Reference is now made to FIG. 1 , which is a perspective illustration of a multi-voltage charging system 10 according to some embodiments, and to FIGS. 2A to 2C, which are side views of the multi-voltage charging system 10. As shown therein, a multi-voltage charging system 10 according to some embodiments includes at least one housing 22 mounted on a support plate 20. Although illustrated as a single housing in the figures, it will be appreciated that the housing 22 may include multiple separate housings joined together and/or mounted separately. The housing 22 includes a first compartment 18 and a second compartment 28 in which a first charging terminal 12 and a second charging terminal 24 are positioned, respectively. The charging terminals 12, 24 may be provided as conductive metallic posts that are electrically connected to an electronics system of a vehicle. Each of the first and second compartments 18, 28 is covered by respective first and second access doors 15, 25 that cover the respective compartments and physically obstruct access to the charging terminal 12, 24 provided within the respective compartment.
  • The first charging terminal 12 may be connected to a 12V electrical subsystem of a vehicle on which the multi-voltage charging system 10 is provided, and the second charging terminal 24 may be connected to a 24V electrical subsystem of the vehicle. However, other voltages may be used. Moreover, although the multi-voltage charging system 10 is illustrated as having two charging terminals, the system may have more charging terminals to support additional electrical subsystems having different voltage levels, such as 36V, 48V, etc.
  • The first access door 15, which is connected to the housing 22 covers the first compartment 18, is movable from an open position illustrated in FIG. 2C to a closed position illustrated in FIG. 2A. In the open position (FIG. 2C), the first charging terminal 12 is exposed for access by an operator. In the closed position (FIG. 2A), the first charging terminal 12 is obstructed from access by an operator.
  • The second access door 25, which is connected to the housing 22 covers the second compartment 28, is movable from an open position illustrated in FIG. 2B to a closed position illustrated in FIG. 2A. In the open position (FIG. 2B), the second charging terminal 24 is exposed for access by an operator. In the closed position (FIG. 2A), the second charging terminal 12 is obstructed from access by an operator.
  • The first access door 15 may be connected to the housing 22 by a first spring-biased hinge 16 which is biased to move the first access door to the open position when the first access door 15 is unlatched, while the second access door 25 may be connected to the housing 22 by a second spring-biased hinge 26 which is biased to move the second access door to the open position when the second access door 25 is unlatched. That is, when one of the access doors is unlatched, it will spring open to provide physical access to the underlying charging terminal. To close the door, an operator may manually push the access door 15, 25 shut until it latches in place in the closed position.
  • The multi-voltage charging system 10 may further include a first releasable latching mechanism 40 (FIGS. 6A-6H) that is configured to latch the first access door 15 in the closed position and a second releasable latching mechanism 40 that is configured to latch the second access door 25 in the closed position. As will be described in more detail below, the first and second releasable latching mechanisms 40 may cooperate with latching pins or features 50 provided on the first and second access doors 15, 25.
  • Still referring to FIGS. 1 and 2A-2C, the multi-voltage charging system 10 may further include a voltage sensing terminal SENSE and a ground terminal GND that may optionally be separated by a divider 36. To operate the multi-voltage charging system 10, an operator connects a ground connector from an external charging source to the ground terminal GND and connects a charging connector 11 from the external charging source to the voltage sensing terminal SENSE. The multi-voltage charging system 10 includes a door release circuit 60 (FIGS. 3, 4, and 5B) coupled to the voltage sensing terminal SENSE and to the first and second releasable latching mechanisms 40. The door release circuit 60 is configured to sense a charging voltage applied to the voltage sensing terminal and selectively operate the first and second releasable latching mechanisms 40 to open the first access door 15 or the second access door 25 depending on the voltage applied at the sensing terminal SENSE. For example, in some embodiments, if the charging voltage applied to the voltage sensing terminal SENSE is within a first acceptable voltage range, such as between 12 volts and 16 volts, the door release circuit 60 may operate to cause the first releasable latching mechanism 40 to open the first access door 15, and if the charging voltage applied to the voltage sensing terminal SENSE is within a second acceptable voltage range, such as between 24 volts and 30 volts, the door release circuit 60 may operate to cause the second releasable latching mechanism 40 to open the second access door 25. If the charging voltage applied to the voltage sensing terminal SENSE is outside both the first acceptable voltage range and the second acceptable voltage range, the door release circuit 60 may operate to keep both the first access door 15 and the second access door 25 latched and closed.
  • Once one of the access doors 15 and 25 has been unlatched and opened, the operator may move the charging connector to the now-exposed charging terminal and proceed to charge the vehicle electrical system. Accordingly, in some embodiments, access to the incorrect charging terminal may be physically obstructed until an acceptable charging voltage has been applied to the voltage sensing terminal SENSE.
  • A door release circuit 60 according to some embodiments is illustrated in FIG. 3 . As shown therein, the door release circuit comprises first through fourth transistor switches Q1 to Q4. The first through fourth transistor switches Q1 to Q4 are illustrated as MOSFET switches; however, it will be appreciated that other types of electrically controlled switches, such as bipolar junction transistor (BJT) switches, junction field effect transistor (JFET) switches, thyristors, or other types of elements may be used to form the transistor switches. Moreover, although the first through fourth transistor switches Q1 to Q4 are illustrated as individual transistors, it will be appreciated that one or more of the first through fourth transistor switches Q1 to Q4 may include a plurality of transistors and/or other circuit elements connected together to form switching circuits when properly arranged.
  • Control terminals, such as gate terminals, of the first through fourth transistor switches Q1 to Q4 are connected to the voltage sensing terminal SENSE, so that a voltage applied to the voltage sensing terminal SENSE will appear at the gate terminals of the first through fourth transistor switches Q1 to Q4. Input terminals, such as source terminals, of the second and fourth transistor switches Q2 and Q4 are connected to an output of a voltage regulator 92 that is arranged to supply a regulated DC voltage of, for example, five volts. A rectifier 94 may be provided at the output of the voltage regulator 92 between the voltage regulator 92 and the input terminals of the second and fourth transistor switches Q2 and Q4. The rectifier 94 may be arranged to obstruct a voltage from the second and fourth transistor switches Q2 and Q4 from being applied to the output of the voltage regulator 92.
  • An output terminal, e.g. a drain terminal, of the second transistor switch Q2 is connected to an input (source) terminal of the first transistor switch Q1, and a drain terminal of the fourth transistor switch Q2 is connected to a source terminal of the third transistor switch Q3. An output (drain) terminal of the first transistor switch Q1 is coupled to a solenoid 80A which controls a first piston 78A, while a drain terminal of the third transistor switch Q3 is coupled to a solenoid 80B which controls a second piston 78B. The first piston 78A operates the releasable latch mechanism 40 to selectively unlatch the first access door 15, while the second piston 78B operates the releasable latch mechanism 40 to selectively unlatch the second access door 25.
  • The first through fourth transistor switches Q1 to Q4 have respective different threshold voltages. In particular, the first transistor switch Q1 includes a normally ON depletion mode MOSFET that has a threshold voltage of 16V, while the second transistor switch Q2 includes a normally OFF enhancement mode MOSFET that has a threshold voltage of 12V. Likewise, the third transistor switch Q3 includes a normally ON depletion mode MOSFET that has a threshold voltage of 30V, while the fourth transistor switch Q4 includes a normally OFF enhancement mode MOSFET that has a threshold voltage of 24V. When a charging voltage applied to the voltage sensing terminal SENSE has a voltage level between 12 volts and 16 volts, the second transistor switch Q2 turns ON while the first transistor switch Q1 remains ON, thereby applying the voltage output by the voltage regulator 92 to the first solenoid 80A, which moves the first piston 78A to cause the releasable latching mechanism 40 to unlatch the first access door 15. Similarly, when a charging voltage applied to the voltage sensing terminal SENSE has a voltage level between 24 volts and 30 volts, the fourth transistor switch Q4 turns ON while the third transistor switch Q3 remains ON, thereby applying the voltage output by the voltage regulator 92 to the second solenoid 80B, which moves the second piston 78B to cause the releasable latching mechanism 40 to unlatch the second access door 25.
  • Note that when the voltage applied to the voltage sensing terminal SENSE is less than 12 volts, the second transistor switch Q2 and the fourth transistor switch Q4 remain OFF, obstructing the voltage output by the voltage regulator from being applied to either the first or second solenoid 80A, 80B. Likewise, when the voltage applied to the voltage sensing terminal SENSE is greater than 30 volts, both the first transistor switch Q1 and the third transistor switch Q3 are turned OFF, again obstructing the voltage output by the voltage regulator from being applied to either the first or second solenoid 80A, 80B. When the voltage applied to the voltage sensing terminal SENSE is greater than 16 volts and less than 24 volts, the first transistor switch Q1 is turned OFF, obstructing the voltage output by the voltage regulator 92 from being applied to the first solenoid 80A, and the fourth transistor switch Q4 remains OFF, obstructing the voltage output by the voltage regulator 92 from being applied to the second solenoid 80B. The operation of the door release circuit 60 is summarized in Table 1.
  • TABLE 1
    Door Release Circuit Operation
    Applied Q1 Q2 Q3 Q4 12 V access 24 V access
    Voltage state state state state door state door state
     0 V to 11 V ON OFF ON OFF Closed Closed
    12 V to 15 V ON ON ON OFF Open Closed
    16 V to 23 V OFF ON ON OFF Closed Closed
    24 V to 29 V OFF ON ON ON Closed Open
    30 V + OFF ON OFF ON Closed Closed
  • As can be seen in Table 1, the 12V access door 15 is opened only when the applied voltage is between 12V and 15V, while the 24V access door 25 is opened only when the applied voltage is between 24V and 29V. In all other cases, both access doors remain closed.
  • It will be appreciated that the door release circuit 60 of FIG. 3 could be modified to support additional voltages by providing additional pairs of transistor switches having threshold voltages that define additional acceptable voltage ranges and by providing additional solenoids to operate additional access doors.
  • It will further be appreciated that the multi-voltage charging system 10 could be modified to support additional voltage ranges by providing additional charging terminals in additional compartments. Moreover, it will be appreciated that the charging system 10 could be modified to support only a single voltage range by providing only a single charging terminal in a single compartment and modifying the door release circuit 60 to check for the single voltage range. Such a single terminal system may still physically restrict access to the single charging terminal unless an appropriate charging voltage is sensed at the voltage sensing terminal.
  • FIG. 4 illustrates a door release circuit 60B according to further embodiments. The door release circuit 60B includes first to fourth transistor switches Q5, Q6, Q7 and Q8, each of which has a control terminal (gate) connected to the voltage sensing terminal SENSE. In the embodiment illustrated in FIG. 4 , each of the first to fourth transistor switches Q5, Q6, Q7 and Q8 includes a normally OFF enhancement mode MOSFET. However, it will be appreciated that other types of electrically controlled switches, such as BJT switches, JFET switches, thyristors, or other types of elements may be used to form the transistor switches. Moreover, although the first through fourth transistor switches Q5 to Q8 are illustrated as individual transistors, it will be appreciated that one or more of the first through fourth transistor switches Q5 to Q8 may include a plurality of transistors and/or other circuit elements connected together to form switching circuits when properly arranged. Each of the first to fourth transistor switches Q5, Q6, Q7 and Q8 has a different threshold voltage at which the transistor turns ON. For example, transistor switch Q5 may have a turn on voltage of 12 volts, transistor switch Q6 may have a turn on voltage of 16 volts, transistor switch Q7 may have a turn on voltage of 24 volts, and transistor switch Q8 may have a turn on voltage of 30 volts.
  • Input terminals, such as source terminals, of each of the first to fourth transistor switches Q5, Q6, Q7 and Q8 are connected to an output of a voltage regulator 92 that is arranged to supply a regulated DC voltage of, for example, five volts. A rectifier 94 may be provided at the output of the voltage regulator 92 between the voltage regulator 92 and the input terminals of the first to fourth transistor switches Q5 to Q8. The rectifier 94 may be arranged to obstruct a voltage from the first to fourth transistor switches Q5 to Q8 from being applied to the output of the voltage regulator 92.
  • Output terminals, such as drain terminals, of each of the first to fourth transistor switches Q5 to Q8 are connected to respective data inputs D0 to D3 of a microcontroller 100. The microcontroller 100 includes three data outputs, namely, A0, A1 and INC. Output A0 is connected to the first solenoid 80A which operates the first piston 78A to unlatch the first access door 15 that covers the 12V charging terminal, while output A1 is connected to the second solenoid 80B which operates the second piston 78B to unlatch the second access door 25 that covers the 24V charging terminal. The INC output drives an indicator lamp, such as LED 96.
  • It will be appreciated that the circuit diagram of FIG. 4 is a highly simplified diagram, and that other components may be included in a final design, such as driver circuits, bias circuits, current limiting resistors, etc. For example, the microcontroller 100 may not be capable of directly supplying sufficient current from an output pin to operate a solenoid. Likewise, in a practical implementation, a current limiting resistor would be provided in series with the LED 96 to prevent overcurrent. Such modifications are within the ordinary skill in the art and are omitted for clarity.
  • The microcontroller 100 may, for example, be an 8- 16- or 32-bit microcontroller. For example, the microcontroller 100 may include a 16F1507 8-bit programmable microcontroller manufactured by Microchip Technology Inc. or similar device.
  • When the voltage applied at the voltage sensing terminal is less than 12 volts, all four of the first to fourth transistor switches Q5 to Q8 are OFF. When the voltage applied at the voltage sensing terminal is greater than 12 volts but less than 16 volts, then the first transistor switch Q5 is ON, while the remaining three transistor switches Q6 to Q8 are OFF. When the voltage applied at the voltage sensing terminal is greater than 16 volts but less than 24 volts, then the first and second transistor switches Q5 and Q6 are ON, while the remaining two transistor switches Q7 and Q8 are OFF. When the voltage applied at the voltage sensing terminal is greater than 24 volts but less than 30 volts, then the first, second and third transistor switches Q5, Q6 and Q7 are ON, while the remaining transistor switch Q8 is OFF. Finally, when the voltage applied at the voltage sensing terminal is greater than 30 volts, all four transistor switches Q5 to Q8 are ON. The microcontroller 100 sets the output signals A0, A1 and INC in response to the input signals D0 to D3. In particular, the microcontroller 100 sets the output signal A0 to HIGH so that the first solenoid 80A is activated to open the first access door 15 when the input voltage is greater than 12 volts but less than 16 volts (i.e., when input D0 is HIGH and inputs D1 to D3 are LOW). Likewise, the microcontroller 100 sets the output signal A1 to HIGH so that the second solenoid 80B is activated to open the second access door 25 when the input voltage is greater than 24 volts but less than 30 volts (i.e., when inputs D0, D1 and D2 are HIGH and input D3 is LOW). In all other instances, the microcontroller 100 sets the output signal INC to HIGH to cause the indicator lamp 96 to light to indicate that an improper voltage (i.e. a voltage that was not between 12 and 16 volts or between 24 and 30 volts) was applied.
  • The operation of the door release circuit 60B is summarized in Table 2.
  • TABLE 2
    Door Release Circuit Operation
    Applied Input Input Input Input Output Output Output
    Voltage D0 D1 D2 D3 A0 A1 INC
     0 V to 11 V LOW LOW LOW LOW LOW LOW HIGH
    12 V to 15 V HIGH LOW LOW LOW HIGH LOW LOW
    16 V to 23 V HIGH HIGH LOW LOW LOW LOW HIGH
    24 V to 29 V HIGH HIGH HIGH LOW LOW HIGH LOW
    30 V + HIGH HIGH HIGH HIGH LOW LOW HIGH
  • It will be appreciated that the door release circuit 60B of FIG. 4 could be modified to support additional voltages by providing additional inputs and outputs to the microcontroller 110 and by providing additional solenoids to operate additional access doors.
  • FIGS. 5A and 5B illustrate a multi-voltage charging apparatus 110 according to further embodiments. The multi-voltage charging apparatus 110 includes a charging terminal CHARGE and a ground terminal GND mounted on a support plate 20. The charging terminal CHARGE and the ground terminal GND may optionally be separated by a divider 36. The multi-voltage charging apparatus 110 includes a coupling circuit 160 that selectively couples the charging terminal CHARGE to an internal charging node 112, 124 based on a voltage level applied to the charging terminal CHARGE.
  • Referring to FIG. 5B, the coupling circuit 160 includes first to fourth transistor switches Q5, Q6, Q7 and Q8, each of which has a control terminal (gate) connected to the charging terminal CHARGE, and a microcontroller 100 including inputs D0 to D3 coupled to outputs of the respective transistor switches Q5, Q6, Q7 and Q8 and outputs A0 and A1. The configuration of the microcontroller 100, the transistor switches Q5, Q6, Q7 and Q8, the indicator lamp 96 and the voltage regulator 92 is similar to that shown in the door release circuit 60B of FIG. 4 and further description thereof will be omitted for brevity except for differences in the circuits.
  • In the coupling circuit 160, the first output A0 is connected to a first solid state relay 102A, while the second output A1 is connected to a second solid state relay 102B. The first solid state relay 102A includes a photodiode and a photosensitive relay circuit that is configured to conduct when the photodiode is energized. Thus, for example, when the first output A0 is HIGH, the LED in the first solid state relay 102A is energized, which activates the photosensitive relay circuit therein. This causes the charging node CHARGE to be coupled to an internal 12 volt charging node 112, and allows a 12-volt battery system to which the internal 12 volt charging node 112 is connected to be charged by the external charge source. Similarly, when the second output A1 is HIGH, the LED in the second solid state relay 102B is energized, which activates the photosensitive relay circuit therein. This causes the charging node CHARGE to be coupled to an internal 24 volt charging node 124, and allows a 24-volt battery system to which the internal 24 volt charging node 124 is connected to be charged by the external charge source.
  • A first indicator lamp 104A is coupled to the first output A0 to indicate when the 12V system is being charged, while a second indicator lamp 104B is coupled to the second output A1 to indicate when the 24V system is being charged.
  • It will be appreciated that the multi-voltage charging apparatus 110 of FIGS. 5A and 5B could be modified to support additional voltages by providing additional inputs and outputs to the microcontroller 110 and by providing additional solid state relays.
  • When the voltage applied at the voltage sensing terminal is less than 12 volts, all four of the first to fourth transistor switches Q5 to Q8 are OFF. When the voltage applied at the voltage sensing terminal is greater than 12 volts but less than 16 volts, then the first transistor switch Q5 is ON, while the remaining three transistor switches Q6 to Q8 are OFF. When the voltage applied at the voltage sensing terminal is greater than 16 volts but less than 24 volts, then the first and second transistor switches Q5 and Q6 are ON, while the remaining two transistor switches Q7 and Q8 are OFF. When the voltage applied at the voltage sensing terminal is greater than 24 volts but less than 30 volts, then the first, second and third transistor switches Q5, Q6 and Q7 are ON, while the remaining transistor switch Q8 is OFF. Finally, when the voltage applied at the voltage sensing terminal is greater than 30 volts, all four transistor switches Q5 to Q8 are ON.
  • The microcontroller 100 sets the output signals A0, A1 and INC in response to the input signals D0 to D3. In particular, the microcontroller 100 sets the output signal A0 to HIGH so that the first solid state relay 102A is activated to connect the charging terminal CHARGE to the 12 V internal charging node 112 when the input voltage is greater than 12 volts but less than 16 volts (i.e., when input D0 is HIGH and inputs D1 to D3 are LOW). Likewise, the microcontroller 100 sets the output signal A1 to HIGH so that the second solid state relay 102B is activated to connect the charging terminal CHARGE to the 24 V internal charging node 124 when the input voltage is greater than 24 volts but less than 30 volts (i.e., when inputs D0, D1 and D2 are HIGH and input D3 is LOW). In all other instances, the microcontroller 100 sets the output signal INC to HIGH to cause the indicator lamp 96 to light to indicate that an improper voltage (i.e. a voltage that was not between 12 and 16 volts or between 24 and 30 volts) was applied. The operation of the coupling circuit 160 is the same as that shown in Table 2 for the door release circuit 60B. Once the microcontroller 100 sets the output signal A0, A1 to HIGH, the microcontroller 100 may latch the output signal A0, A1 at HIGH so that the solid state relay 102A, 102B that was activated remains on even if the input voltage at the charging terminal CHARGE drops when the starter of the vehicle is engaged. In some embodiments, separate resettable latch circuits (not shown) may be provided between the microcontroller 100 and the solid state relays 102A, 102B. The design of resettable latch circuits, such as SR flip flop circuits, is well known in the art.
  • FIGS. 6A and 6B illustrate a releasable latching mechanism 40A according to some embodiments. Referring to FIGS. 6A and 6B, the releasable latching mechanism 40A includes a latching pin 50 including a body 52, a notch 54 in the body 52 and a wedge 56 at the end of the body 52. The latching pin 50 is affixed to one of the access doors 15, 25. A latching arm 62 extends from a housing 60 into the notch 54 when the access door 15, 25 is in the latched (closed) position. The latching arm 62 is biased against the latching pin 50 by a bias spring 66 within the housing 60. An extension 65 of the latching arm 62 extends from the housing 60 in a longitudinal slot (not shown) that allows the latching arm 60 and the extension 65 to move longitudinally within the housing 60. A rotating cam 72 includes a tooth 74 that engages the extension 65 of the latching arm 62 to move the latching arm 62 away from the latching pin 50 when the cam 72 is rotated in the clockwise direction. When the cam 72 is rotated in the counterclockwise direction, the bias spring 66 pushes the latching arm back towards the latching pin 50.
  • The cam 72 is rotated by a solenoid 80 that drives a piston 78 attached to the cam 72 by a pin 76. As described above, the solenoid 80 is controlled by a circuit, such as the door release circuit 60, 60B shown in FIGS. 3 and 4 .
  • FIGS. 6C and 6DB illustrate a simplified releasable latching mechanism 40B according to further embodiments. Referring to FIGS. 6C and 6D, the releasable latching mechanism 40A includes a latching pin 50 including a body 52, a notch 54 in the body 52 and a wedge 56 at the end of the body 52. The latching pin 50 is affixed to one of the access doors 15, 25. A rotating cam 72 is connected to a latching arm 65 that holds the latching pin in place when held in the latched position shown in FIG. 6C, and rotates away from the latching pin 50 to an unlatched position when the cam 72 is rotated in the clockwise direction. A coil spring 75 in the cam urges the cam to rotate back in the counterclockwise direction, pushing the latching arm back towards the latching pin 50.
  • The cam 72 is rotated in the clockwise direction by a solenoid 80 that drives a piston 78 attached to the cam 72 by a pin 76. As described above, the solenoid 80 is controlled by a circuit, such as the door release circuit 60, 60B shown in FIGS. 3 and 4 .
  • FIGS. 6E and 6F illustrate an even more simplified releasable latching mechanism 40C in which a latching arm 67 is driven directly as a piston by a solenoid 80 to engage or disengage a latching pin 50 to latch and unlatch an access door 15, 25.
  • FIGS. 6G and 6H illustrate a magnetic releasable latching mechanism 40D that includes a ferrous latching arm 68 mounted in a housing 69 and biased against the latching pin 50 by a spring 73. A coil 81 acts as an electromagnet to move the ferrous latching arm 68 out of engagement with the latching pin 50 to unlatch the access door 15, 25. The coil 81 is energized by a signal generated by a circuit, such as the door release circuit 60, 60B shown in FIGS. 3 and 4 .
  • From the foregoing description of various releasable latching mechanisms, it will be apparent that many different type of latching mechanisms may be used to selectively unlatch one or more access doors that provide access to charging terminals. Some embodiments of the inventive concepts described herein are not limited by the particular latching mechanism employed.
  • When an element is referred to as being “connected”, “coupled”, “responsive”, “mounted”, or variants thereof to another element, it can be directly connected, coupled, responsive, or mounted to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected”, “directly coupled”, “directly responsive”, “directly mounted” or variants thereof to another element, there are no intervening elements present. Like numbers refer to like elements throughout. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Well-known functions or constructions may not be described in detail for brevity and/or clarity. The term “and/or” and its abbreviation “/” include any and all combinations of one or more of the associated listed items.
  • It will be understood that although the terms first, second, third, etc. may be used herein to describe various elements/operations, these elements/operations should not be limited by these terms. These terms are only used to distinguish one element/operation from another element/operation. Thus, a first element/operation in some embodiments could be termed a second element/operation in other embodiments without departing from the teachings of present inventive concepts. The same reference numerals or the same reference designators denote the same or similar elements throughout the specification.
  • As used herein, the terms “comprise”, “comprising”, “comprises”, “include”, “including”, “includes”, “have”, “has”, “having”, or variants thereof are open-ended, and include one or more stated features, integers, elements, steps, components or functions but do not preclude the presence or addition of one or more other features, integers, elements, steps, components, functions or groups thereof. Furthermore, as used herein, the common abbreviation “e.g.”, which derives from the Latin phrase “exempli gratia,” may be used to introduce or specify a general example or examples of a previously mentioned item, and is not intended to be limiting of such item. The common abbreviation “i.e.”, which derives from the Latin phrase “id est,” may be used to specify a particular item from a more general recitation.
  • Persons skilled in the art will recognize that certain elements of the above-described embodiments may variously be combined or eliminated to create further embodiments, and such further embodiments fall within the scope and teachings of inventive concepts. It will also be apparent to those of ordinary skill in the art that the above-described embodiments may be combined in whole or in part to create additional embodiments within the scope and teachings of inventive concepts. Thus, although specific embodiments of, and examples for, inventive concepts are described herein for illustrative purposes, various equivalent modifications are possible within the scope of inventive concepts, as those skilled in the relevant art will recognize. Accordingly, the scope of inventive concepts is determined from the appended claims and equivalents thereof.

Claims (20)

1. A charging apparatus, comprising:
a charging terminal;
a ground terminal; and
a coupling circuit coupled to the charging terminal, wherein the coupling circuit is configured to sense a charging voltage applied to the charging terminal and to selectively couple the charging terminal to a first charging node in response to a first voltage being applied to the charging terminal, and to selectively couple the charging terminal to a second charging node in response to a second voltage being applied to the voltage sensing terminal, the second voltage being different from the first voltage.
2. The charging apparatus of claim 1, wherein the coupling circuit comprises:
a voltage regulator configured to supply a third voltage;
a microcontroller;
first, second, third and fourth transistor switches, each of the first, second, third and fourth transistor switches comprising a control terminal coupled to the charging node, an output terminal coupled to the microcontroller, and an input terminal coupled to the voltage regulator;
a first relay coupled to the microcontroller, the charging terminal, and the first charging node; and
a second relay coupled to the microcontroller, the charging terminal, and the second charging node;
wherein the microcontroller is configured to cause the first relay to controllably couple the charging terminal to the first charging node and the second relay to controllably couple the charging terminal to the second charging node in response to signals output by the first, second, third and fourth transistor switches.
3. The charging apparatus of claim 2,
wherein the first, second, third and fourth transistor switches comprise normally off enhancement mode MOSFETs, wherein the first, second, third and fourth transistor switches have respective first, second, third and fourth different turn-on voltages.
4. The charging apparatus of claim 2, wherein the relays comprise optically triggered relays that isolate the charging terminal and the first and second charging nodes from the microcontroller.
5. The charging apparatus of claim 4, wherein each relay comprises a photodiode and a photosensitive relay circuit.
6. The charging apparatus of claim 5, wherein, for each relay, energizing the photodiode causes the photosensitive relay circuit to conduct.
7. The charging apparatus of claim 1, further comprising:
a first indicator lamp coupled between the charging terminal and the first charging node, wherein the first indicator lamp is activated in response to coupling the charging terminal to the first charging node.
8. The charging apparatus of claim 7, further comprising:
a second indicator lamp coupled between the charging terminal and the second charging node, wherein the second indicator lamp is activated in response to coupling the charging terminal to the second charging node.
9. The charging apparatus of claim 1, wherein the first charging node comprises a 12 volt charging node.
10. The charging apparatus of claim 9, wherein the second charging node comprises a 24 volt charging node.
11. A method comprising:
sensing a charging voltage applied to a charging terminal of a charging apparatus;
in response to a first voltage being applied to the charging terminal, selectively couple the charging terminal to a first charging node of the charging apparatus; and
in response to a second voltage being applied to the voltage sensing terminal, selectively couple the charging terminal to a second charging node of the charging apparatus.
12. The method of claim 11, wherein the coupling circuit further comprises:
a voltage regulator configured to supply a third voltage;
a microcontroller;
first, second, third and fourth transistor switches, each of the first, second, third and fourth transistor switches comprising a control terminal coupled to the charging node, an output terminal coupled to the microcontroller, and an input terminal coupled to the voltage regulator;
a first relay coupled to the microcontroller, the charging terminal, and the first charging node; and
a second relay coupled to the microcontroller, the charging terminal, and the second charging node, the method further comprising:
causing the first relay to controllably couple the charging terminal to the first charging node and the second relay to controllably couple the charging terminal to the second charging node in response to signals output by the first, second, third and fourth transistor switches.
13. The method of claim 12, wherein the first, second, third and fourth transistor switches comprise normally off enhancement mode MOSFETs, wherein the first, second, third and fourth transistor switches have respective first, second, third and fourth different turn-on voltages.
14. The method of claim 12, wherein the relays comprise optically triggered relays isolating the charging terminal and the first and second charging nodes from the microcontroller.
15. The method of claim 14, wherein each relay comprises a photodiode and a photosensitive relay circuit.
16. The method of claim 15, further comprising:
selectively energizing the photodiode of each relay to cause the photosensitive relay circuit to conduct.
17. The method of claim 11, further comprising:
activating a first indicator lamp coupled between the charging terminal and the first charging node, in response to coupling the charging terminal to the first charging node.
18. The method of claim 17, further comprising:
activating a second indicator lamp coupled between the charging terminal and the second charging node in response to coupling the charging terminal to the second charging node.
19. The method of claim 11, wherein the first charging node comprises a 12 volt charging node.
20. The method of claim 19, wherein the second charging node comprises a 24 volt charging node.
US18/244,955 2018-02-22 2023-09-12 Multi-voltage charging apparatus Pending US20230420935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/244,955 US20230420935A1 (en) 2018-02-22 2023-09-12 Multi-voltage charging apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/US2018/019098 WO2019164486A1 (en) 2018-02-22 2018-02-22 Multi-voltage charging apparatus
US202016971717A 2020-08-21 2020-08-21
US18/244,955 US20230420935A1 (en) 2018-02-22 2023-09-12 Multi-voltage charging apparatus

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16/971,717 Continuation US11764574B2 (en) 2018-02-22 2018-02-22 Multi-voltage charging apparatus
PCT/US2018/019098 Continuation WO2019164486A1 (en) 2018-02-22 2018-02-22 Multi-voltage charging apparatus

Publications (1)

Publication Number Publication Date
US20230420935A1 true US20230420935A1 (en) 2023-12-28

Family

ID=67687822

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/971,717 Active 2039-02-16 US11764574B2 (en) 2018-02-22 2018-02-22 Multi-voltage charging apparatus
US18/244,955 Pending US20230420935A1 (en) 2018-02-22 2023-09-12 Multi-voltage charging apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/971,717 Active 2039-02-16 US11764574B2 (en) 2018-02-22 2018-02-22 Multi-voltage charging apparatus

Country Status (4)

Country Link
US (2) US11764574B2 (en)
EP (1) EP3756262B1 (en)
CN (1) CN111742457A (en)
WO (1) WO2019164486A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742457A (en) * 2018-02-22 2020-10-02 沃尔沃卡车集团 Multi-voltage charging device
DE102021105676A1 (en) * 2021-03-09 2022-09-15 Compleo Charging Solutions Ag Supply station and basic supply function arrangement therefor
US20220307301A1 (en) * 2021-03-29 2022-09-29 Ford Global Technologies, Llc Traction battery securing assembly and method
CN115476818B (en) * 2022-10-31 2024-04-26 重庆金康赛力斯新能源汽车设计院有限公司 Non-mechanical key power-on method

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267347A (en) * 1961-04-18 1966-08-16 Fox Prod Co Battery chargers
US4532418A (en) * 1982-08-30 1985-07-30 The Detroit Edison Company Microprocessor electric vehicle charging and parking meter system structure and method
US4972135A (en) * 1989-08-04 1990-11-20 Bates Bobby L Switching system for battery jumper cables
JP3391525B2 (en) * 1993-11-12 2003-03-31 株式会社タツノ・メカトロニクス Charging device for electric vehicles
IL108040A (en) * 1993-12-16 1997-01-10 Integral Ind Ltd Dual voltage charge controller device
US5642030A (en) * 1995-06-30 1997-06-24 Seelye Equipment Specialists Charge control circuit
US5781399A (en) * 1996-08-05 1998-07-14 Lanigan; William P. Energy efficient control circuit for solenoid actuated locking device
US5995384A (en) * 1997-07-31 1999-11-30 Philips Electronics North America Corporation Functional on/off switch for switched-mode power supply circuit with burst mode operation
DE19946744A1 (en) * 1999-09-29 2001-05-10 Tyco Electronics Logistics Ag Method for securely coupling an external voltage network to an operating voltage network and circuit arrangement for carrying out the method
US6803743B2 (en) 2002-10-04 2004-10-12 Delphi Technologies, Inc. Jump start and reverse battery protection circuit
DE10313752B4 (en) * 2003-03-27 2021-06-24 Bayerische Motoren Werke Aktiengesellschaft Device and method for charging batteries of a multi-voltage electrical system of a motor vehicle
CN2760832Y (en) * 2004-06-08 2006-02-22 吴月琴 Power pack
US7301303B1 (en) * 2004-08-16 2007-11-27 International Specialty Services, Inc. Portable battery jump start in a soft-sided carrying case
DE202005006945U1 (en) * 2005-04-28 2006-05-04 Grass Gmbh Opening and closing system, especially for furniture parts
FR2888620B1 (en) * 2005-07-12 2007-10-12 Ariance Sarl INTELLIGENT STARTER INTERFACE
JP5313445B2 (en) * 2006-11-06 2013-10-09 パナソニック株式会社 Electric lock controller
CN101304180B (en) * 2007-05-11 2011-07-06 胜德国际研发股份有限公司 Composition energy-saving non power brake system and bidirectional transducer module as well as power transferring method
US20090174362A1 (en) * 2008-01-03 2009-07-09 F.D. Richardson Enterprises, Inc. Doing Business As Richardson Jumpstarters Method and apparatus for providing supplemental power to an engine
US20110174875A1 (en) * 2010-01-15 2011-07-21 Wurzer David T Charging station for electric vehicles
CN102111077B (en) * 2011-02-24 2013-12-11 丰汇新能源有限公司 Charging power supply system
US9512654B2 (en) * 2011-05-16 2016-12-06 Fire & Security Hardware Pty Ltd Locking device
CN202510270U (en) * 2012-02-23 2012-10-31 泉州开普勒车用电机有限公司 Intelligent starting protection system of starter
DE102012006488A1 (en) * 2012-03-29 2013-10-02 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) High-voltage module with disconnector for motor vehicles
US8800206B2 (en) * 2012-08-20 2014-08-12 New Visions Yezirot Aluminum, Ltd. Motorized closure assembly
JP5884699B2 (en) * 2012-09-28 2016-03-15 三菱自動車工業株式会社 Charging connector housing device for truck electric vehicle
CN103855732A (en) * 2012-11-28 2014-06-11 林广生 Multi-voltage charging device
JP5761229B2 (en) * 2013-02-26 2015-08-12 トヨタ自動車株式会社 Vehicle charging device
SG2013019005A (en) * 2013-03-14 2014-10-30 Ev World Pte Ltd Portable battery pack
CN203800631U (en) * 2013-12-27 2014-08-27 武汉航达电源科技有限公司 Smart battery switching module for power supply charger
US11787297B2 (en) * 2014-07-03 2023-10-17 The Noco Company Battery charging device for charging a deeply discharged battery, and battery charging system and method
CN104393713B (en) * 2014-09-17 2016-08-17 柏科(常熟)电机有限公司 A kind of reproducing method of automobile starter
CN107002623B (en) * 2014-12-04 2019-06-04 瑞美技术有限责任公司 Starter system with control relay switch
US9912183B2 (en) * 2015-03-13 2018-03-06 Vanair Manufacturing, Inc. Jump starter
US10211671B2 (en) * 2015-03-24 2019-02-19 Keepvendingusa Holdings Llc Auxiliary A/C power supply system for vending machines
CN106374549B (en) * 2015-07-23 2019-05-17 比亚迪股份有限公司 The charging system of automobile batteries and the charging method of automobile batteries and automobile
CN206225827U (en) * 2016-12-12 2017-06-06 苏州特勒普电气有限公司 A kind of intelligent low-pressure comprehensive distribution box with plug-in type capacitance compensation
DE102016124155A1 (en) * 2016-12-13 2018-06-14 HELLA GmbH & Co. KGaA System, with a flap, an actuator and a controller
CN206542324U (en) * 2016-12-16 2017-10-03 上海传英信息技术有限公司 Power-supply management system
DE102017110346A1 (en) * 2017-05-12 2018-11-15 Keba Ag Method for operating an automatic distribution machine
CN106985671B (en) * 2017-05-31 2019-07-26 北京新能源汽车股份有限公司 A kind of vehicle-mounted bidirectional charger, vehicle-mounted bidirectional power supply method and device
CN207530573U (en) * 2017-11-22 2018-06-22 汪玉华 Car emergency startup power supply
US10862231B2 (en) * 2017-12-25 2020-12-08 Cytherean Mandelbrot LLC Automotive battery booster cable battery clamp
CN207984765U (en) * 2018-02-08 2018-10-19 安徽贵博新能科技有限公司 A kind of electric vehicle igniting startup auxiliary device
CN111742457A (en) * 2018-02-22 2020-10-02 沃尔沃卡车集团 Multi-voltage charging device

Also Published As

Publication number Publication date
CN111742457A (en) 2020-10-02
EP3756262B1 (en) 2024-01-10
WO2019164486A1 (en) 2019-08-29
EP3756262A4 (en) 2022-01-19
US11764574B2 (en) 2023-09-19
US20210384743A1 (en) 2021-12-09
EP3756262A1 (en) 2020-12-30
EP3756262C0 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US20230420935A1 (en) Multi-voltage charging apparatus
US5012381A (en) Motor drive circuit with reverse-battery protection
CN102545199B (en) Power supply protection on plate
JP2012082647A (en) Vehicle window opening/closing controller
AU2013372965B2 (en) Systems and methods for controlling relays
US9590609B1 (en) Gate driver with short circuit protection
AU2013372966B2 (en) Systems and methods for controlling relays
US6724164B2 (en) Opening-and-closing member control device
US6896536B1 (en) Electronic connector utilizing edge board terminal systems
US10139450B2 (en) Plug-in fuel pump power bypass / test system
US7492056B2 (en) Electrical locking system
US4144483A (en) Electrical polarity switch for battery
US11342767B2 (en) Multi-voltage charging terminal access port
US10829967B2 (en) Bus configured latching solenoid
US6414515B1 (en) Failsafe interface circuit with extended drain devices
WO2016208357A1 (en) Electromagnetic switch and engine starting device
US10756729B2 (en) Electronic relay device
JPH09308095A (en) Device for warning reverse connection of car battery
EP0999354B1 (en) Wide voltage range driver circuit for a fuel injector
US6982631B2 (en) Automotive security system with self-biasing bypass immobilizer
WO2023120501A1 (en) Vehicle power supply device and door latch device
EP1036929A2 (en) Drive circuit
CN219046423U (en) Power supply circuit of multi-channel access control lock
CN208233003U (en) A kind of vehicle remote control central lock controller
US9646753B2 (en) Apparatus with a circuit for actuating a magnetic actuator arrangement

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION