US20230355636A1 - Combinations of 15-pgdh inhibitors with corticosteroids and/or tnf inhibitors and uses thereof - Google Patents

Combinations of 15-pgdh inhibitors with corticosteroids and/or tnf inhibitors and uses thereof Download PDF

Info

Publication number
US20230355636A1
US20230355636A1 US18/144,065 US202318144065A US2023355636A1 US 20230355636 A1 US20230355636 A1 US 20230355636A1 US 202318144065 A US202318144065 A US 202318144065A US 2023355636 A1 US2023355636 A1 US 2023355636A1
Authority
US
United States
Prior art keywords
alkyl
aryl
pgdh
weight
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/144,065
Inventor
Sanford Markowitz
Won Jin Ho
Stephen P. Fink
Vinay Varadan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Case Western Reserve University
Original Assignee
Case Western Reserve University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Case Western Reserve University filed Critical Case Western Reserve University
Priority to US18/144,065 priority Critical patent/US20230355636A1/en
Publication of US20230355636A1 publication Critical patent/US20230355636A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/4211,3-Oxazoles, e.g. pemoline, trimethadione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system having sulfur as a ring hetero atom, e.g. ticlopidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/34Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/46Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/36Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Abstract

A method of treating intestinal, gastrointestinal, or bowel disorders in a subject in need thereof includes administering to the subject a therapeutically effective amount of 15-PGDH inhibitor alone or in combination with a corticosteroid and/or TNF alpha antagonist.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/465,500, filed May 30, 2019, which is a National Phase Filing of PCT/US2017/063959, filed Nov. 30, 2017, which claims benefit of U.S. Provisional Application No. 62/428,259, filed on Nov. 30, 2016, and U.S. Provisional Application No. 62/510,166, filed on May 23, 2017; all of which are incorporated by reference herein in their entireties.
  • GOVERNMENT FUNDING
  • This invention was made with government support under Grant No. DK150964 AND CA150964, awarded by The National Institutes of Health. The United States government has certain rights in the invention.
  • BACKGROUND
  • Short-chain dehydrogenases (SCDs) are a family of dehydrogenases that share only 15% to 30% sequence identity, with similarity predominantly in the coenzyme binding domain and the substrate binding domain. In addition to their role in detoxification of ethanol, SCDs are involved in synthesis and degradation of fatty acids, steroids, and some prostaglandins, and are therefore implicated in a variety of disorders, such as lipid storage disease, myopathy, SCD deficiency, and certain genetic disorders.
  • The SCD, 15-hydroxy-prostaglandin dehydrogenase (15-PGDH), (hydroxyprostaglandin dehydrogenase 15-(nicotinamide adeninedinucleotide); 15-PGDH; Enzyme Commission number 1.1.1.141; encoded by the HPGD gene), represents the key enzyme in the inactivation of a number of active prostaglandins, leukotrienes and hydroxyeicosatetraenoic acids (HETEs) (e.g., by catalyzing oxidation of PGE2 to 15-keto-prostaglandin E2, 15k-PGE). The human enzyme is encoded by the HPGD gene and consists of a homodimer with subunits of a size of 29 kDa. The enzyme belongs to the evolutionarily conserved superfamily of short-chain dehydrogenase/reductase enzymes (SDRs), and according to the recently approved nomenclature for human enzymes, it is named SDR36C1. Thus far, two forms of 15-PGDH enzyme activity have been identified, NAD+-dependent type I 15-PGDH, which is encoded by the HPGD gene, and the type II NADP-dependent 15-PGDH, also known as carbonyl reductase 1 (CBR1, SDR21C1). However, the preference of CBR1 for NADP and the high Km values of CBR1 for most prostaglandin suggest that the majority of the in vivo activity can be attributed to type I 15-PGDH encoded by the HPGD gene, that hereafter, and throughout all following text, simply denoted as 15-PGDH.
  • SUMMARY
  • Embodiments described herein relate to the use of 15-PGDH inhibitors in combination with corticosteroids and TNF inhibitors to treat inflammation, reduce aberrant activity of the immune system, and/or promote wound healing in a subject in need thereof. It was found that corticosteroids administered to a subject can induce 15-PGDH expression in tissue of the subject. Administration of a 15-PGDH inhibitor in combination with a corticosteroid was found to enhance anti-inflammatory and/or immunosuppressive effects of the corticosteroid while attenuating corticosteroid induced adverse and/or cytotoxic effects. Treatment of inflammatory disorders, immune disorders, and/or wounds by administration of 15-PGDH inhibitors in combination with corticosteroids can increase therapeutic efficacy of the corticosteroids and can allow the corticosteroids to be administered, in some instances, at lower dosages to achieve similar effects, and, in other instances, at higher dosages and for prolonged periods of times with attenuated and/or reduced adverse or cytotoxic effects.
  • In some embodiments, an inflammatory and/or immune disease or disorder treated with the combination of 15-PGDH inhibitor and a corticosteroid and TNF inhibitor can include intestinal, gastrointestinal, or bowel disorders. As described below, it was found that inhibitors of short-chain dehydrogenase activity, such as 15-PGDH inhibitors, can be administered to a subject in need thereof alone or in combination with corticosteroids and/or tumor necrosis factor (TNF)-alpha antagonists to treat intestinal, gastrointestinal, or bowel disorders, such as oral ulcers, gum disease, gastritis, colitis, ulcerative colitis, gastric ulcers, inflammatory bowel disease, and Crohn's disease.
  • In other embodiments, the 15-PGDH inhibitor can be used as a glucocorticoid sensitizer to treat glucocorticoid insensitivity, restore corticosteroid sensitivity, enhance glucocorticoid sensitivity, and/or reverse glucocorticoid insensitivity in a subject experiencing corticosteroid dependence or corticoid resistance or unresponsiveness or intolerance to corticosteroids. For example, a 15-PGDH inhibitor can be administered to a subject in combination with a corticosteroid to treat glucocorticoid insensitivity, restore corticosteroid sensitivity, enhance glucocorticoid sensitivity, and/or reverse glucocorticoid insensitivity in a subject experiencing corticosteroid dependence or corticoid resistance or unresponsiveness or intolerance to corticosteroids.
  • The 15-PGDH inhibitor can also be administered in combination with a corticosteroid and/or TNF inhibitor to a subject to promote wound healing, tissue repair, and/or tissue regeneration and/or engraftment or regeneration of a tissue graft.
  • In some embodiments, the 15-PGDH inhibitor can be administered to a subject at an amount effective to increase prostaglandin levels in the subject and attenuate corticosteroid induced adverse and/or cytotoxic effects. The 15-PGDH inhibitor can include a compound having formula (I):
  • Figure US20230355636A1-20231109-C00001
      • wherein n is 0-2;
      • Y1, Y2, and R1 are the same or different and are each selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heteroaryl, heterocycloalkenyl containing from 5-6 ring atoms (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O) (C1-C6 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, —Si(C1-C3 alkyl)3, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), combinations thereof, and wherein Y1 and Y2 may be linked to form a cyclic or polycyclic ring, wherein the ring is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted cycloalkyl, and a substituted or unsubstituted heterocyclyl;
      • U1 is N, C—R2, or C—NR3R4, wherein R2 is selected from the group consisting of a H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, O—CH2—CH2X, CH2—CH2—CH2X, O—CH2—CH2X, X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, O(CO)R′, COOR′ (wherein R′ is H or a lower alkyl group), and wherein R1 and R2 may be linked to form a cyclic or polycyclic ring, wherein R3 and R4 are same or different and are each selected from the group consisting of H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, CH2—CH2—CH2X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, COOR′ (wherein R′ is H or a lower alkyl group), and R3 or R4 may be absent;
      • X1 and X2 are independently N or C, and wherein when X1 and/or X2 are N, Y1 and/or Y2, respectively, are absent;
      • Z1 is O, S, CRaRb or NRa, wherein Ra and Rb are independently H or a C1-8 alkyl, which is linear, branched, or cyclic, and which is unsubstituted or substituted; and pharmaceutically acceptable salts thereof.
  • In other embodiments, the 15-PGDH inhibitor can include a compound having the following formula (V):
  • Figure US20230355636A1-20231109-C00002
      • wherein n is 0-2
      • X6 is independently is N or CRc
      • R1, R6, R7, and Rc are each independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heteroaryl, heterocycloalkenyl containing from 5-6 ring atoms (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O)(C1-C6 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, —Si(C1-C3 alkyl)3, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C+), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkylethers, phosphates, phosphate esters, groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, combinations thereof, and wherein R6 and R7 may be linked to form a cyclic or polycyclic ring, wherein the ring is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted cycloalkyl, and a substituted or unsubstituted heterocyclyl;
      • U1 is N, C—R2, or C—NR3R4, wherein R2 is selected from the group consisting of a H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, O—CH2—CH2X, CH2—CH2—CH2X, O—CH2—CH2X, X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, O(CO)R′, COOR′ (wherein R′ is H or a lower alkyl group), and wherein R1 and R2 may be linked to form a cyclic or polycyclic ring, wherein R3 and R4 are the same or different and are each selected from the group consisting of H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, CH2—CH2—CH2X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, COOR′ (wherein R′ is H or a lower alkyl group), and R3 or R4 may be absent;
      • and pharmaceutically acceptable salts thereof.
  • In some embodiments, R1 is selected from the group consisting of branched or linear alkyl including —(CH2)n1CH3 (n1=0-7),
  • Figure US20230355636A1-20231109-C00003
  • wherein n2=0-6 and X is any of the following: CFyHz (y+z=3), CClyHz (y+z=3), OH, OAc, OMe, R71, OR72, CN, N(R73)2,
  • Figure US20230355636A1-20231109-C00004
  • n3 (n3=0-5, m=1-5), and
  • Figure US20230355636A1-20231109-C00005
  • (n4=0-5).
  • In other embodiments, R6 and R7 can each independently be one of the following:
  • Figure US20230355636A1-20231109-C00006
    Figure US20230355636A1-20231109-C00007
      • R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56, R57, R58, R59, R60, R61, R62, R63, R64, R65, R66, R67, R68, R69, R70, R71, R72, R73, and R74 are the same or different and are independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heterocycloalkenyl containing from 5-6 ring atoms, (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O)(C1-C6 alkyl), O, and S), heteroaryl or heterocyclyl containing from 5-14 ring atoms, (wherein from 1-6 of the ring atoms is independently selected from N, NH, N(C1-C3 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, silyl, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C+), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), sulfanamido (—SO2N(R)2 where R is independently H, alkyl, aryl or heteroaryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkyl ethers (—[(CH2)nO]m), phosphates, phosphate esters [—OP(O)(OR)2 where R═H, methyl or other alkyl], groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, and combinations thereof, and pharmaceutically acceptable salts thereof.
  • In some embodiments, the 15-PGDH inhibitor can inhibit the enzymatic activity of recombinant 15-PGDH at an IC50 of less than 1 μM, or preferably at an IC50 of less than 250 nM, or more preferably at an IC50 of less than 50 nM, or more preferably at an IC50 of less than 10 nM, or more preferably at an IC50 of less than 5 nM at a recombinant 15-PGDH concentration of about 5 nM to about 10 nM.
  • In other embodiments, the corticosteroid can be selected from the group consisting of aclovate, alclometasone dipropionate, amcinafel, amcinafide, amcinonide, aristocort A, augmented betamethasone dipropionate, beclomethasone, beclomethasone dipropionate, betamethasone, betamethasone benzoate, betamethasone-17-benzoate, betamethasone dipropionate, betamethasone sodium phosphate and acetate, betamethasone valerate, betamethasone-17-valerate, chloroprednisone, clobetasol propionate, clobetasone propionate, clocortolone, cordran, corticosterone, cortisol, cortisol acetate, cortisol cypionate, cortisol sodium phosphate, cortisol sodium succinate, cortisone, cortisone acetate, cortodoxone, cyclocort, deflazacort, defluprednate, descinolone, desonide, desowen, desoximetasone, desoxycorticosterone acetate, desoxycorticosterone pivalate, 11-desoxycortisol, dexamethasone, dexamethasone acetate, dexamethasone sodium phosphate, dichlorisone, diflorasone diacetate, dihydroxycortisone, diprolen, diprolene, diprosone, esters of betamethasone, florone, flucetonide, flucloronide, fluocortolone, fludrocortisone, fludrocortisone acetate, flumethalone, flumethasone, flumethasone pivalate, flunisolide, fluocinolone acetonide, fluocinolone acetonide acetate, fluocinonide, fluorometholone, fluorocortisone, fluperolone, fluprednisolone, flurandrenolide, fluroandrenolone acetonide, fluticasone propionate, fuprednisolone, halcinonide, halobetasol propionate, halog, hydrocortamate, hydrocortisone, hydrocortisone acetate, hydrocortisone butyrate, hydrocortisone valerate, hydrocortisone-17-valerate, kenalog, lidex, locold, locorten, maxiflor, medrysone, meprednisone, methylprednisolone, 6α-methylprednisolone, methylprednisolone acetate, methylprednisolone sodium succinate, methylprednisone, mometasone furoate, paramethasone, paramethasone acetate, prednidone, prednisone, prednisolone, prednisolone acetate, prednisolone sodium phosphate, prednisolone sodium succinate, prednisolone tebutate, prednisone, psorcon, synalar, temovate, tetrahydrocortisol, topicort, topicort LP, triamcinolone, triamcinolone acetonide, triamcinolone diacetate, triamcinolone hexacotonide, tridesilone, valisone, and westcort.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a graph showing the average changes from baseline weight of the cohort of control (diamonds) versus SW033291 (squares) treated mice all treated with 2% dextran sulfate sodium (DSS) in the drinking water.
  • FIG. 2 illustrates a graph of the daily disease activity index of the cohort of control (diamonds) versus SW033291 (squares) treated mice all treated with 2% DSS in the drinking water.
  • FIG. 3 illustrates a graph showing the average changes from baseline weight of the cohort of DSS treated mice receiving a control vehicle (diamonds) versus SW033291 (squares).
  • FIGS. 4 (A-B) illustrate: (A) a graph showing the number of ulcers in a colon of DSS treated mice receiving a control vehicle versus SW033291; and (B) photographs showing ulcers of DSS treated mice receiving control (left) or SW033291 (right).
  • FIG. 5 illustrates a graph showing quantitation of ulcer burden on day 15 of DSS treated mice receiving a control vehicle or SW033291.
  • FIGS. 6 (A-B) illustrate photographs showing colonoscopic findings and mouse endoscopic index of colitis severity (MEICs) for a DSS treated mouse receiving a control vehicle or SW033291.
  • FIG. 7 illustrates a graph showing MEICS score of DSS treated mice receiving a control vehicle or SW033291.
  • FIG. 8 illustrates photomicrographs of high powered fields from the mid-colon on day 8 of the DSS protocol from control mice, SW033291 treated mice (treatment) and 15-PGDHknockout mice (KO) and a graph depicting sum of the average number of BrdU positive cells per crypt in the distal plus middle colons of control (Cn), SW033219 treated mice (Tx), and 15-PGDH knockout mice (KO) on day 1, day 8, and day 15 of the DSS treatment protocol.
  • FIG. 9 illustrates a graph showing colon length at day 22 of DSS treated mice receiving a control vehicle or SW033291.
  • FIG. 10 is a schematic illustration showing PARADIGM SuperPathway sub-networks whose activities are significantly correlated with 15-PGDH gene expression in normal colon tissues.
  • FIGS. 11 (A-C) illustrate: (A) a schema of a study in which mice received three daily doses of dexamethasone and were sacrificed 6 hours after the third dose for analysis; (B) representative western blot analysis showing dexamethasone induction of 15-PGDH protein in mouse colon, at two different doses of dexamethasone; and (C) graphical summary of real time RT-PCR from all mice in the study showing an approximate doubling of colon 15-PGDH expression level by dexamethasone treatment.
  • FIGS. 12 (A-B) illustrate: (A) a schema of a study in which mice received three daily doses of dexamethasone and were sacrificed 6 hours after the third dose for analysis; and (B) a graph showing near doubling of 15-PGDH enzyme activity in colons of dexamethasone treated mice.
  • FIGS. 13 (A-B) illustrate graphs showing higher dexamethasone doses exacerbate colitis induction by DSS.
  • FIG. 14 illustrate a schema of a study in which mice receive 7 days of 2.5% DSS in drinking water (from day 1 to day 8), a regime that induces murine colitis, and followed by treatment with vehicle, (+) SW033291, dexamethasone, or both (+) SW033291 and dexamethasone.
  • FIG. 15 illustrates plots showing daily weights of mice on the study from days 1-17 in mice administered (+) SW033291 and dexamethasone treatment individually or in combination.
  • FIG. 16 illustrates plots of disease activity (DAI) as measured by the disease activity index in which diarrhea (on a 0-3 scale) and fecal blood (on a 0-3 scale) are combined (on a 0-6 scale) in mice administered (+) SW033291 and dexamethasone treatment individually or in combination.
  • FIGS. 17 (A-B) illustrate graphs showing area under the DAI curve (total DAI) at left, and showing the percent decrease in total DAI (relative disease reduction) graph at right of the results of FIG. 16 .
  • FIG. 18 illustrates a graph showing the survival of mice on a daily basis for each treatment arm through day 16 of the disease model.
  • FIG. 19 illustrates a graph of data shown in FIG. 17B with the addition of p values and reordering of arms.
  • FIGS. 20 (A-D) show representative endoscopic image for each treatment group on day 13 of treatment.
  • FIG. 21 illustrates a graph showing murine endoscopic index of colitis severity (MEICS) scores on day 13 for each treatment group. **p<0.01, ***p<0.005 by ANOVA and Student's t-test.
  • FIGS. 22A-D show representative histological pictures of distal colons on day 13 of each treatment group (A) control, (B) dexamethasone, (C) SW033291, and (D) combination.
  • FIG. 23 graphs semi-quantitatively scored histological extent of inflammatory damage to the crypts.
  • FIG. 24 graphs the severity of mesenteric lymphadenopathy assessed by collective mesenteric lymph node weight normalized by body weight on day 13 of each treatment group.
  • DETAILED DESCRIPTION
  • For convenience, certain terms employed in the specification, examples, and appended claims are collected here. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
  • The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
  • The terms “comprise,” “comprising,” “include,” “including,” “have,” and “having” are used in the inclusive, open sense, meaning that additional elements may be included. The terms “such as”, “e.g.”, as used herein are non-limiting and are for illustrative purposes only. “Including” and “including but not limited to” are used interchangeably.
  • The term “or” as used herein should be understood to mean “and/or”, unless the context clearly indicates otherwise.
  • As used herein, the term “about” or “approximately” refers to a quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% or 1% to a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length. In one embodiment, the term “about” or “approximately” refers a range of quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length ±15%, ±10%, ±9%, ±8%, ±7%, ±6%, ±5%, ±4%, ±3%, ±2%, or ±1% about a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length.
  • It will be noted that the structure of some of the compounds of the application include asymmetric (chiral) carbon or sulfur atoms. It is to be understood accordingly that the isomers arising from such asymmetry are included herein, unless indicated otherwise. Such isomers can be obtained in substantially pure form by classical separation techniques and by stereochemically controlled synthesis. The compounds of this application may exist in stereoisomeric form, therefore can be produced as individual stereoisomers or as mixtures.
  • The term “isomerism” means compounds that have identical molecular formulae but that differ in the nature or the sequence of bonding of their atoms or in the arrangement of their atoms in space. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers”. Stereoisomers that are not mirror images of one another are termed “diastereoisomers”, and stereoisomers that are non-superimposable mirror images are termed “enantiomers”, or sometimes optical isomers. A carbon atom bonded to four nonidentical substituents is termed a “chiral center” whereas a sulfur bound to three or four different substitutents, e.g., sulfoxides or sulfinimides, is likewise termed a “chiral center”.
  • The term “chiral isomer” means a compound with at least one chiral center. It has two enantiomeric forms of opposite chirality and may exist either as an individual enantiomer or as a mixture of enantiomers. A mixture containing equal amounts of individual enantiomeric forms of opposite chirality is termed a “racemic mixture”. A compound that has more than one chiral center has 2n−1 enantiomeric pairs, where n is the number of chiral centers. Compounds with more than one chiral center may exist as either an individual diastereomer or as a mixture of diastereomers, termed a “diastereomeric mixture”. When one chiral center is present, a stereoisomer may be characterized by the absolute configuration (R or S) of that chiral center. Alternatively, when one or more chiral centers are present, a stereoisomer may be characterized as (+) or (−). Absolute configuration refers to the arrangement in space of the substituents attached to the chiral center. The substituents attached to the chiral center under consideration are ranked in accordance with the Sequence Rule of Cahn, Ingold and Prelog. (Cahn et al, Angew. Chem. Inter. Edit. 1966, 5, 385; errata 511; Cahn et al., Angew. Chem. 1966, 78, 413; Cahn and Ingold, J Chem. Soc. 1951 (London), 612; Cahn et al., Experientia 1956, 12, 81; Cahn, J., Chem. Educ. 1964, 41, 116).
  • The term “geometric Isomers” means the diastereomers that owe their existence to hindered rotation about double bonds. These configurations are differentiated in their names by the prefixes cis and trans, or Z and E, which indicate that the groups are on the same or opposite side of the double bond in the molecule according to the Cahn-Ingold-Prelog rules. Further, the structures and other compounds discussed in this application include all atropic isomers thereof.
  • The term “atropic isomers” are a type of stereoisomer in which the atoms of two isomers are arranged differently in space. Atropic isomers owe their existence to a restricted rotation caused by hindrance of rotation of large groups about a central bond. Such atropic isomers typically exist as a mixture, however as a result of recent advances in chromatography techniques, it has been possible to separate mixtures of two atropic isomers in select cases.
  • The terms “crystal polymorphs” or “polymorphs” or “crystal forms” means crystal structures in which a compound (or salt or solvate thereof) can crystallize in different crystal packing arrangements, all of which have the same elemental composition. Different crystal forms usually have different X-ray diffraction patterns, infrared spectral, melting points, density hardness, crystal shape, optical and electrical properties, stability and solubility. Recrystallization solvent, rate of crystallization, storage temperature, and other factors may cause one crystal form to dominate. Crystal polymorphs of the compounds can be prepared by crystallization under different conditions.
  • The term “derivative” refers to compounds that have a common core structure, and are substituted with various groups as described herein.
  • The term “bioisostere” refers to a compound resulting from the exchange of an atom or of a group of atoms with another, broadly similar, atom or group of atoms. The objective of a bioisosteric replacement is to create a new compound with similar biological properties to the parent compound. The bioisosteric replacement may be physicochemically or topologically based. Examples of carboxylic acid bioisosteres include acyl sulfonimides, tetrazoles, sulfonates, and phosphonates. See, e.g., Patani and LaVoie, Chem. Rev. 96, 3147-3176 (1996).
  • The phrases “parenteral administration” and “administered parenterally” are art-recognized terms, and include modes of administration other than enteral and topical administration, such as injections, and include, without limitation, intravenous, intramuscular, intrapleural, intravascular, intrapericardial, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal and intrastemal injection and infusion.
  • The term “treating” is art-recognized and includes inhibiting a disease, disorder or condition in a subject, e.g., impeding its progress; and relieving the disease, disorder or condition, e.g., causing regression of the disease, disorder and/or condition. Treating the disease or condition includes ameliorating at least one symptom of the particular disease or condition, even if the underlying pathophysiology is not affected.
  • The term “preventing” is art-recognized and includes stopping a disease, disorder or condition from occurring in a subject, which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it. Preventing a condition related to a disease includes stopping the condition from occurring after the disease has been diagnosed but before the condition has been diagnosed.
  • The term “pharmaceutical composition” refers to a formulation containing the disclosed compounds in a form suitable for administration to a subject. In a preferred embodiment, the pharmaceutical composition is in bulk or in unit dosage form. The unit dosage form is any of a variety of forms, including, for example, a capsule, an IV bag, a tablet, a single pump on an aerosol inhaler, or a vial. The quantity of active ingredient (e.g., a formulation of the disclosed compound or salts thereof) in a unit dose of composition is an effective amount and is varied according to the particular treatment involved. One skilled in the art will appreciate that it is sometimes necessary to make routine variations to the dosage depending on the age and condition of the patient. The dosage will also depend on the route of administration. A variety of routes are contemplated, including oral, pulmonary, rectal, parenteral, transdermal, subcutaneous, intravenous, intramuscular, intraperitoneal, intranasal, inhalational, and the like. Dosage forms for the topical or transdermal administration of a compound described herein includes powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, nebulized compounds, and inhalants. In a preferred embodiment, the active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that are required.
  • The term “flash dose” refers to compound formulations that are rapidly dispersing dosage forms.
  • The term “immediate release” is defined as a release of compound from a dosage form in a relatively brief period of time, generally up to about 60 minutes. The term “modified release” is defined to include delayed release, extended release, and pulsed release. The term “pulsed release” is defined as a series of releases of drug from a dosage form. The term “sustained release” or “extended release” is defined as continuous release of a compound from a dosage form over a prolonged period.
  • The phrase “pharmaceutically acceptable” is art-recognized. In certain embodiments, the term includes compositions, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • The phrase “pharmaceutically acceptable carrier” is art-recognized, and includes, for example, pharmaceutically acceptable materials, compositions or vehicles, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting any subject composition from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of a subject composition and not injurious to the patient. In certain embodiments, a pharmaceutically acceptable carrier is non-pyrogenic. Some examples of materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
  • The compounds of the application are capable of further forming salts. All of these forms are also contemplated herein.
  • “Pharmaceutically acceptable salt” of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. For example, the salt can be an acid addition salt. One embodiment of an acid addition salt is a hydrochloride salt. The pharmaceutically acceptable salts can be synthesized from a parent compound that contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile being preferred. Lists of salts are found in Remington's Pharmaceutical Sciences, 18th ed. (Mack Publishing Company, 1990).
  • The compounds described herein can also be prepared as esters, for example pharmaceutically acceptable esters. For example, a carboxylic acid function group in a compound can be converted to its corresponding ester, e.g., a methyl, ethyl, or other ester. Also, an alcohol group in a compound can be converted to its corresponding ester, e.g., an acetate, propionate, or other ester.
  • The compounds described herein can also be prepared as prodrugs, for example pharmaceutically acceptable prodrugs. The terms “pro-drug” and “prodrug” are used interchangeably herein and refer to any compound, which releases an active parent drug in vivo. Since prodrugs are known to enhance numerous desirable qualities of pharmaceuticals (e.g., solubility, bioavailability, manufacturing, etc.) the compounds can be delivered in prodrug form. Thus, the compounds described herein are intended to cover prodrugs of the presently claimed compounds, methods of delivering the same and compositions containing the same. “Prodrugs” are intended to include any covalently bonded carriers that release an active parent drug in vivo when such prodrug is administered to a subject. Prodrugs are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound. Prodrugs include compounds wherein a hydroxy, amino, sulfhydryl, carboxy, or carbonyl group is bonded to any group that may be cleaved in vivo to form a free hydroxyl, free amino, free sulfhydryl, free carboxy or free carbonyl group, respectively. Prodrugs can also include a precursor (forerunner) of a compound described herein that undergoes chemical conversion by metabolic processes before becoming an active or more active pharmacological agent or active compound described herein.
  • Examples of prodrugs include, but are not limited to, esters (e.g., acetate, dialkylaminoacetates, formates, phosphates, sulfates, and benzoate derivatives) and carbamates (e.g., N,N-dimethylaminocarbonyl) of hydroxy functional groups, ester groups (e.g., ethyl esters, morpholinoethanol esters) of carboxyl functional groups, N-acyl derivatives (e.g., N-acetyl)N-Mannich bases, Schiff bases and enaminones of amino functional groups, oximes, acetals, ketals and enol esters of ketone and aldehyde functional groups in compounds, and the like, as well as sulfides that are oxidized to form sulfoxides or sulfones.
  • The term “protecting group” refers to a grouping of atoms that when attached to a reactive group in a molecule masks, reduces or prevents that reactivity. Examples of protecting groups can be found in Green and Wuts, Protective Groups in Organic Chemistry, (Wiley, 2.sup.nd ed. 1991); Harrison and Harrison et al., Compendium of Synthetic Organic Methods, Vols. 1-8 (John Wiley and Sons, 1971-1996); and Kocienski, Protecting Groups, (Verlag, 3rd ed. 2003).
  • The term “amine protecting group” is intended to mean a functional group that converts an amine, amide, or other nitrogen-containing moiety into a different chemical group that is substantially inert to the conditions of a particular chemical reaction. Amine protecting groups are preferably removed easily and selectively in good yield under conditions that do not affect other functional groups of the molecule. Examples of amine protecting groups include, but are not limited to, formyl, acetyl, benzyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, t-butyloxycarbonyl (Boc), p-methoxybenzyl, methoxymethyl, tosyl, trifluoroacetyl, trimethylsilyl (TMS), fluorenyl-methyloxycarbonyl, 2-trimethylsilyl-ethyloxycarbonyl, 1-methyl-1-(4-biphenylyl) ethoxycarbonyl, allyloxycarbonyl, benzyloxycarbonyl (CBZ), 2-trimethylsilyl-ethanesulfonyl (SES), trityl and substituted trityl groups, 9-fluorenylmethyloxycarbonyl (FMOC), nitro-veratryloxycarbonyl (NVOC), and the like. Those of skill in the art can identify other suitable amine protecting groups.
  • Representative hydroxy protecting groups include those where the hydroxy group is either acylated or alkylated such as benzyl, and trityl ethers as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers and allyl ethers.
  • Additionally, the salts of the compounds described herein, can exist in either hydrated or unhydrated (the anhydrous) form or as solvates with other solvent molecules. Non-limiting examples of hydrates include monohydrates, dihydrates, etc. Nonlimiting examples of solvates include ethanol solvates, acetone solvates, etc.
  • The term “solvates” means solvent addition forms that contain either stoichiometric or non-stoichiometric amounts of solvent. Some compounds have a tendency to trap a fixed molar ratio of solvent molecules in the crystalline solid state, thus forming a solvate. If the solvent is water the solvate formed is a hydrate, when the solvent is alcohol, the solvate formed is an alcoholate. Hydrates are formed by the combination of one or more molecules of water with one of the substances in which the water retains its molecular state as H2O, such combination being able to form one or more hydrate.
  • The compounds, salts and prodrugs described herein can exist in several tautomeric forms, including the enol and imine form, and the keto and enamine form and geometric isomers and mixtures thereof. Tautomers exist as mixtures of a tautomeric set in solution. In solid form, usually one tautomer predominates. Even though one tautomer may be described, the present application includes all tautomers of the present compounds. A tautomer is one of two or more structural isomers that exist in equilibrium and are readily converted from one isomeric form to another. This reaction results in the formal migration of a hydrogen atom accompanied by a switch of adjacent conjugated double bonds. In solutions where tautomerization is possible, a chemical equilibrium of the tautomers will be reached. The exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH. The concept of tautomers that are interconvertible by tautomerizations is called tautomerism.
  • Of the various types of tautomerism that are possible, two are commonly observed. In keto-enol tautomerism a simultaneous shift of electrons and a hydrogen atom occurs.
  • Tautomerizations can be catalyzed by: Base: 1. deprotonation; 2. formation of a delocalized anion (e.g., an enolate); 3. protonation at a different position of the anion; Acid: 1. protonation; 2. formation of a delocalized cation; 3. deprotonation at a different position adjacent to the cation.
  • The term “analogue” refers to a chemical compound that is structurally similar to another but differs slightly in composition (as in the replacement of one atom by an atom of a different element or in the presence of a particular functional group, or the replacement of one functional group by another functional group). Thus, an analogue is a compound that is similar or comparable in function and appearance, but not in structure or origin to the reference compound.
  • A “patient,” “subject,” or “host” to be treated by the subject method may mean either a human or non-human animal, such as a mammal, a fish, a bird, a reptile, or an amphibian. Thus, the subject of the herein disclosed methods can be a human, non-human primate, horse, pig, rabbit, dog, sheep, goat, cow, cat, guinea pig or rodent. The term does not denote a particular age or sex. Thus, adult and newborn subjects, as well as fetuses, whether male or female, are intended to be covered. In one aspect, the subject is a mammal. A patient refers to a subject afflicted with a disease or disorder.
  • The terms “prophylactic” or “therapeutic” treatment is art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition or side effects thereof).
  • The terms “therapeutic agent”, “drug”, “medicament” and “bioactive substance” are art-recognized and include molecules and other agents that are biologically, physiologically, or pharmacologically active substances that act locally or systemically in a patient or subject to treat a disease or condition. The terms include without limitation pharmaceutically acceptable salts thereof and prodrugs. Such agents may be acidic, basic, or salts; they may be neutral molecules, polar molecules, or molecular complexes capable of hydrogen bonding; they may be prodrugs in the form of ethers, esters, amides and the like that are biologically activated when administered into a patient or subject.
  • The phrase “therapeutically effective amount” or “pharmaceutically effective amount” is an art-recognized term. In certain embodiments, the term refers to an amount of a therapeutic agent that produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment. In certain embodiments, the term refers to that amount necessary or sufficient to eliminate, reduce or maintain a target of a particular therapeutic regimen. The effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular compound without necessitating undue experimentation. In certain embodiments, a therapeutically effective amount of a therapeutic agent for in vivo use will likely depend on a number of factors, including: the rate of release of an agent from a polymer matrix, which will depend in part on the chemical and physical characteristics of the polymer; the identity of the agent; the mode and method of administration; and any other materials incorporated in the polymer matrix in addition to the agent.
  • The term “ED50” is art-recognized. In certain embodiments, ED50 means the dose of a drug, which produces 50% of its maximum response or effect, or alternatively, the dose, which produces a pre-determined response in 50% of test subjects or preparations. The term “LD50” is art-recognized. In certain embodiments, LD50 means the dose of a drug, which is lethal in 50% of test subjects. The term “therapeutic index” is an art-recognized term, which refers to the therapeutic index of a drug, defined as LD50/ED50.
  • The terms “IC50,” or “half maximal inhibitory concentration” is intended to refer to the concentration of a substance (e.g., a compound or a drug) that is required for 50% inhibition of a biological process, or component of a process, including a protein, subunit, organelle, ribonucleoprotein, etc.
  • With respect to any chemical compounds, the present application is intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include tritium and deuterium, and isotopes of carbon include C-13 and C-14.
  • When a bond to a substituent is shown to cross a bond connecting two atoms in a ring, then such substituent can be bonded to any atom in the ring. When a substituent is listed without indicating the atom via which such substituent is bonded to the rest of the compound of a given formula, then such substituent can be bonded via any atom in such substituent. Combinations of substituents and/or variables are permissible, but only if such combinations result in stable compounds.
  • When an atom or a chemical moiety is followed by a subscripted numeric range (e.g., C1-6), it is meant to encompass each number within the range as well as all intermediate ranges. For example, “C1-6 alkyl” is meant to include alkyl groups with 1, 2, 3, 4, 5, 6, 1-6, 1-5, 1-4, 1-3, 1-2, 2-6, 2-5, 2-4, 2-3, 3-6, 3-5, 3-4, 4-6, 4-5, and 5-6 carbons.
  • The term “alkyl” is intended to include both branched (e.g., isopropyl, tert-butyl, isobutyl), straight-chain e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl), and cycloalkyl (e.g., alicyclic) groups (e.g., cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. Such aliphatic hydrocarbon groups have a specified number of carbon atoms. For example, C1-6 alkyl is intended to include C1, C2, C3, C4, C5, and C6 alkyl groups. As used herein, “lower alkyl” refers to alkyl groups having from 1 to 6 carbon atoms in the backbone of the carbon chain. “Alkyl” further includes alkyl groups that have oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more hydrocarbon backbone carbon atoms. In certain embodiments, a straight chain or branched chain alkyl has six or fewer carbon atoms in its backbone (e.g., C1-C6 for straight chain, C3-C6 for branched chain), for example four or fewer. Likewise, certain cycloalkyls have from three to eight carbon atoms in their ring structure, such as five or six carbons in the ring structure.
  • The term “substituted alkyls” refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Cycloalkyls can be further substituted, e.g., with the substituents described above. An “alkylaryl” or an “aralkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)). If not otherwise indicated, the terms “alkyl” and “lower alkyl” include linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkyl or lower alkyl, respectively.
  • The term “alkenyl” refers to a linear, branched or cyclic hydrocarbon group of 2 to about 24 carbon atoms containing at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, tetradecenyl, hexadecenyl, eicosenyl, tetracosenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl, and the like. Generally, although again not necessarily, alkenyl groups can contain 2 to about 18 carbon atoms, and more particularly 2 to 12 carbon atoms. The term “lower alkenyl” refers to an alkenyl group of 2 to 6 carbon atoms, and the specific term “cycloalkenyl” intends a cyclic alkenyl group, preferably having 5 to 8 carbon atoms. The term “substituted alkenyl” refers to alkenyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkenyl” and “heteroalkenyl” refer to alkenyl or heterocycloalkenyl (e.g., heterocylcohexenyl) in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the terms “alkenyl” and “lower alkenyl” include linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkenyl and lower alkenyl, respectively.
  • The term “alkynyl” refers to a linear or branched hydrocarbon group of 2 to 24 carbon atoms containing at least one triple bond, such as ethynyl, n-propynyl, and the like. Generally, although again not necessarily, alkynyl groups can contain 2 to about 18 carbon atoms, and more particularly can contain 2 to 12 carbon atoms. The term “lower alkynyl” intends an alkynyl group of 2 to 6 carbon atoms. The term “substituted alkynyl” refers to alkynyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkynyl” and “heteroalkynyl” refer to alkynyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the terms “alkynyl” and “lower alkynyl” include linear, branched, unsubstituted, substituted, and/or heteroatom-containing alkynyl and lower alkynyl, respectively.
  • The terms “alkyl”, “alkenyl”, and “alkynyl” are intended to include moieties which are diradicals, i.e., having two points of attachment. A nonlimiting example of such an alkyl moiety that is a diradical is —CH2CH2—, i.e., a C2 alkyl group that is covalently bonded via each terminal carbon atom to the remainder of the molecule.
  • The term “alkoxy” refers to an alkyl group bound through a single, terminal ether linkage; that is, an “alkoxy” group may be represented as —O-alkyl where alkyl is as defined above. A “lower alkoxy” group intends an alkoxy group containing 1 to 6 carbon atoms, and includes, for example, methoxy, ethoxy, n-propoxy, isopropoxy, t-butyloxy, etc. Preferred substituents identified as “C1-C6 alkoxy” or “lower alkoxy” herein contain 1 to 3 carbon atoms, and particularly preferred such substituents contain 1 or 2 carbon atoms (i.e., methoxy and ethoxy).
  • The term “aryl” refers to an aromatic substituent containing a single aromatic ring or multiple aromatic rings that are fused together, directly linked, or indirectly linked (such that the different aromatic rings are bound to a common group such as a methylene or ethylene moiety). Aryl groups can contain 5 to 20 carbon atoms, and particularly preferred aryl groups can contain 5 to 14 carbon atoms. Examples of aryl groups include benzene, phenyl, pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, tetrazole, pyrazole, oxazole, isoxazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like. Furthermore, the term “aryl” includes multicyclic aryl groups, e.g., tricyclic, bicyclic, e.g., naphthalene, benzoxazole, benzodioxazole, benzothiazole, benzoimidazole, benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, naphthridine, indole, benzofuran, purine, benzofuran, deazapurine, or indolizine. Those aryl groups having heteroatoms in the ring structure may also be referred to as “aryl heterocycles”, “heterocycles,” “heteroaryls” or “heteroaromatics”. The aromatic ring can be substituted at one or more ring positions with such substituents as described above, as for example, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminocarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diaryl amino, and alkylaryl amino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Aryl groups can also be fused or bridged with alicyclic or heterocyclic rings, which are not aromatic so as to form a multicyclic system (e.g., tetralin, methylenedioxyphenyl). If not otherwise indicated, the term “aryl” includes unsubstituted, substituted, and/or heteroatom-containing aromatic substituents.
  • The term “alkaryl” refers to an aryl group with an alkyl substituent, and the term “aralkyl” refers to an alkyl group with an aryl substituent, wherein “aryl” and “alkyl” are as defined above. Exemplary aralkyl groups contain 6 to 24 carbon atoms, and particularly preferred aralkyl groups contain 6 to 16 carbon atoms. Examples of aralkyl groups include, without limitation, benzyl, 2-phenyl-ethyl, 3-phenyl-propyl, 4-phenyl-butyl, 5-phenyl-pentyl, 4-phenylcyclohexyl, 4-benzylcyclohexyl, 4-phenylcyclohexylmethyl, 4-benzylcyclohexylmethyl, and the like. Alkaryl groups include, for example, p-methylphenyl, 2,4-dimethylphenyl, p-cyclohexylphenyl, 2,7-dimethylnaphthyl, 7-cyclooctylnaphthyl, 3-ethyl-cyclopenta-1,4-diene, and the like.
  • The terms “heterocyclyl” or “heterocyclic group” include closed ring structures, e.g., 3- to 10-, or 4- to 7-membered rings, which include one or more heteroatoms. “Heteroatom” includes atoms of any element other than carbon or hydrogen. Examples of heteroatoms include nitrogen, oxygen, sulfur and phosphorus.
  • Heterocyclyl groups can be saturated or unsaturated and include pyrrolidine, oxolane, thiolane, piperidine, piperazine, morpholine, lactones, lactams, such as azetidinones and pyrrolidinones, sultams, and sultones. Heterocyclic groups such as pyrrole and furan can have aromatic character. They include fused ring structures, such as quinoline and isoquinoline. Other examples of heterocyclic groups include pyridine and purine. The heterocyclic ring can be substituted at one or more positions with such substituents as described above, as for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, or an aromatic or heteroaromatic moiety. Heterocyclic groups can also be substituted at one or more constituent atoms with, for example, a lower alkyl, a lower alkenyl, a lower alkoxy, a lower alkylthio, a lower alkylamino, a lower alkylcarboxyl, a nitro, a hydroxyl, —CF3, or —CN, or the like.
  • The term “halo” or “halogen” refers to fluoro, chloro, bromo, and iodo. “Counterion” is used to represent a small, negatively charged species such as fluoride, chloride, bromide, iodide, hydroxide, acetate, and sulfate. The term sulfoxide refers to a sulfur attached to 2 different carbon atoms and one oxygen and the S—O bond can be graphically represented with a double bond (S═O), a single bond without charges (S—O) or a single bond with charges [S(+)—O(−)].
  • The terms “substituted” as in “substituted alkyl,” “substituted aryl,” and the like, as alluded to in some of the aforementioned definitions, is meant that in the alkyl, aryl, or other moiety, at least one hydrogen atom bound to a carbon (or other) atom is replaced with one or more non-hydrogen substituents. Examples of such substituents include, without limitation: functional groups such as halo, hydroxyl, silyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO—), carbamoyl (—(CO)—NH2), mono-(C1-C24 alkyl)-substituted carbamoyl (—(CO)—NH(C1-C24 alkyl)), di-(C1-C4 alkyl)-substituted carbamoyl (—(CO)—N(C1-C24 alkyl)2), mono-substituted arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C+), cyanato (—O—CN), isocyanato (—ON+C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), mono- and di-(C1-C24 alkyl)-substituted amino, mono- and di-(C5-C20 aryl)-substituted amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R=hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), and phosphino (—PH2); and the hydrocarbyl moieties C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C5-C20 aryl, C6-C24 alkaryl, and C6-C24 aralkyl.
  • In addition, the aforementioned functional groups may, if a particular group permits, be further substituted with one or more additional functional groups or with one or more hydrocarbyl moieties such as those specifically enumerated above. Analogously, the above-mentioned hydrocarbyl moieties may be further substituted with one or more functional groups or additional hydrocarbyl moieties such as those specifically enumerated.
  • When the term “substituted” appears prior to a list of possible substituted groups, it is intended that the term apply to every member of that group. For example, the phrase “substituted alkyl, alkenyl, and aryl” is to be interpreted as “substituted alkyl, substituted alkenyl, and substituted aryl.” Analogously, when the term “heteroatom-containing” appears prior to a list of possible heteroatom-containing groups, it is intended that the term apply to every member of that group. For example, the phrase “heteroatom-containing alkyl, alkenyl, and aryl” is to be interpreted as “heteroatom-containing alkyl, substituted alkenyl, and substituted aryl.
  • “Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, the phrase “optionally substituted” means that a non-hydrogen substituent may or may not be present on a given atom, and, thus, the description includes structures wherein a non-hydrogen substituent is present and structures wherein a non-hydrogen substituent is not present.
  • The terms “stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation, and as appropriate, purification from a reaction mixture, and formulation into an efficacious therapeutic agent.
  • The terms “free compound” is used herein to describe a compound in the unbound state.
  • Throughout the description, where compositions are described as having, including, or comprising, specific components, it is contemplated that compositions also consist essentially of, or consist of, the recited components. Similarly, where methods or processes are described as having, including, or comprising specific process steps, the processes also consist essentially of, or consist of, the recited processing steps. Further, it should be understood that the order of steps or order for performing certain actions is immaterial so long as the compositions and methods described herein remains operable. Moreover, two or more steps or actions can be conducted simultaneously.
  • The term “small molecule” is an art-recognized term. In certain embodiments, this term refers to a molecule, which has a molecular weight of less than about 2000 amu, or less than about 1000 amu, and even less than about 500 amu.
  • All percentages and ratios used herein, unless otherwise indicated, are by weight.
  • The terms “gene expression” or “protein expression” includes any information pertaining to the amount of gene transcript or protein present in a sample, as well as information about the rate at which genes or proteins are produced or are accumulating or being degraded (e.g., reporter gene data, data from nuclear runoff experiments, pulse-chase data etc.). Certain kinds of data might be viewed as relating to both gene and protein expression. For example, protein levels in a cell are reflective of the level of protein as well as the level of transcription, and such data is intended to be included by the phrase “gene or protein expression information”. Such information may be given in the form of amounts per cell, amounts relative to a control gene or protein, in unitless measures, etc.; the term “information” is not to be limited to any particular means of representation and is intended to mean any representation that provides relevant information. The term “expression levels” refers to a quantity reflected in or derivable from the gene or protein expression data, whether the data is directed to gene transcript accumulation or protein accumulation or protein synthesis rates, etc.
  • The terms “healthy” and “normal” are used interchangeably herein to refer to a subject or particular cell or tissue that is devoid (at least to the limit of detection) of a disease condition.
  • The term “nucleic acid” refers to polynucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). The term should also be understood to include analogues of either RNA or DNA made from nucleotide analogues, and, as applicable to the embodiment being described, single-stranded (such as sense or antisense) and double-stranded polynucleotides. In some embodiments, “nucleic acid” refers to inhibitory nucleic acids. Some categories of inhibitory nucleic acid compounds include antisense nucleic acids, RNAi constructs, and catalytic nucleic acid constructs. Such categories of nucleic acids are well-known in the art.
  • The term “corticosteroid resistance to the anti-inflammatory effects of corticosteroids” refers to no clinical improvement after treatment with high-dose glucocorticoid.
  • The term “corticosteroid dependence” refers to a condition that initially responds to corticosteroids but relapses quickly upon drug withdrawal or dose tapering.
  • The term “corticosteroid refractory response” refers to a condition that does not respond to an adequate induction dose of corticosteroids. It includes relatively or totally refractory responses to glucocorticoid therapy, and often needs to be controlled by add-on treatment.
  • Other types of corticosteroid ineffectiveness include the need for a very high dose treatment, “difficult to treat” and “do not respond well” or severe cases, and impaired in vitro and in vivo responsiveness.
  • The term “corticosteroid intolerance” refers to toxicity of the therapy and/or risks for developing corticosteroid-related adverse events such as opportunistic infections and bone loss.
  • Embodiments described herein relate to the use of 15-PGDH inhibitors in combination with corticosteroids to treat inflammation and/or reduce aberrant activity of the immune system in a subject in need thereof. It was found that corticosteroids administered to a subject can induce 15-PGDH expression in tissue of the subject. Administration of a 15-PGDH inhibitor in combination with a corticosteroid was found to enhance anti-inflammatory and/or immunosuppressive effects of the corticosteroid while attenuating corticosteroid induced adverse and/or cytotoxic effects. Treatment of inflammatory and/or immune disorders by administration of 15-PGDH inhibitors in combination with corticosteroids can increase therapeutic efficacy and can allow the corticosteroids to be administered, in some instances, at lower dosages to achieve similar effects, and, in other instances, at higher dosages and for prolonged periods of times with attenuated and/or reduced adverse or cytotoxic effects. Additional embodiments herein relate to the use of 15-PGDH inhibitors in combination with TNF alpha inhibitors to treat inflammation and/or reduce aberrant activity of the immune system in a subject in need thereof.
  • In some embodiments, the 15-PGDH inhibitors can be administered in combination with corticosteroids and/or TNF inhibitors to treat intestinal, gastrointestinal, or bowel disorders. The intestinal, gastrointestinal, or bowel disorders treated can include oral ulcers, gum disease, gastritis, colitis, ulcerative colitis, gastric ulcers, inflammatory bowel disease, and Crohn's disease. As described below, it was found that that inhibitors of short-chain dehydrogenase activity, such as 15-PGDH inhibitors, can be administered to a subject in need thereof alone or in combination with corticosteroids to treat intestinal, gastrointestinal, or bowel disorders, such as oral ulcers, gum disease, gastritis, colitis, ulcerative colitis, gastric ulcers, inflammatory bowel disease, and Crohn's disease.
  • The 15-PGDH inhibitors described herein can be used in a pharmaceutical composition for the prevention or the treatment of oral, intestinal, and/or gastrointestinal injury or diseases, or inflammatory bowel disease (IBD), such as Crohn's disease, oral ulcers, gum disease, gastritis, colitis, ulcerative colitis, and gastric ulcers. Gastritis and gastric ulcer, representatives of the gastrointestinal diseases, are defined as the conditions where gastrointestinal mucus membrane is digested by gastric acid to form ulcer. In the stomach walls generally consisting of mucosa, submucosa, muscle layer and serosa, gastric ulcer even damages submucosa and muscle layer, while gastritis damages mucosa only. Although the morbidity rates of gastritis and gastric ulcer are relatively high, the causes thereof have not been clarified yet. Until now, they are known to be caused by an imbalance between aggressive factors and defensive factors, that is, the increase in aggressive factors such as the increase in gastric acid or pepsin secretion, or the decrease in defensive factors such as structural or morphological deficit of the gastric mucus membrane, the decrease in mucus and bicarbonate ion secretion, the decrease in prostaglandin production, or the like.
  • Currently available therapeutic agents for gastritis and gastric ulcer comprise various drugs for strengthening the defensive factors such as an antacid, which does not affect, gastric acid secretion but neutralizes gastric acid that has been already produced, an inhibitor of gastric acid secretion, a promoter of prostaglandin secretion, and a coating agent for stomach walls. Especially, prostaglandins are known to be essential in maintaining the mechanism for protecting and defending gastric mucus membrane (Wallace J L., 2008, Physiol Rev., 88(4), 1547-65, S. J. Konturek et al., 2005, Journal of Physiology and Pharmacology, 56(5)). In view of the above, since the 15-PGDH inhibitors described herein show a suppressive or inhibitory activity against 15-PGDH, which degrades prostaglandins that protect gastric mucus membrane, they can be effective for the prevention or the treatment of gastrointestinal diseases, inter alia, gastritis and gastric ulcer.
  • Additionally, corticosteroids and TNF alpha antagonists are both used in the treatment of ulcerative colitis and IBD patients. In mouse models, 15-PGDH inhibitors speed healing of ulcerative colitis. We have found that administering corticosteroids to mice elevates levels of colon 15-PGDH, an effect that should reduce the therapeutic effectiveness of corticosteroids in colitis treatment. This suggests that combining a corticosteroid with a 15-PGDH inhibitor should be more effective in colitis (and IBD) treatment than using either agent alone.
  • Similarly, we have shown that TNF-alpha suppresses colon 15-PGDH expression. This suggests that TNF-alpha antagonists will increase colon 15-PGDH expression, an effect that should reduce the therapeutic effectiveness of corticosteroids in colitis treatment. This suggests that combining a TNF-alpha antagonist, e.g., the chimeric antibody REMICADE (infliximab), with a 15-PGDH inhibitor should be more effective in colitis (and IBD) treatment than using either agent alone.
  • In other embodiments, the 15-PGDH inhibitors and corticosteroids or 15-PGDH inhibitors and TNF inhibitors can be provided in a topical composition or formulation that is used to treat inflammation and/or aberrant immune system activity associated with medical conditions, such as atopic dermatitis, psoriasis, eczematous dermatitis, nummular dermatitis, irritant contact dermatitis, allergic contact dermatitis (such as poison ivy exposure, poison oak exposure, and poison sumac exposure), seborrheic dermatitis, stasis dermatitis, and other steroid responsive dermatoses.
  • In other embodiments, the 15-PGDH inhibitors and corticosteroids or 15-PGDH inhibitors and TNF inhibitors provided in a topical composition can be used to treat, for example, acne vulgaris, alopecia, alopecia greata, vitiligo, eczema, xerotic eczema, keratosis pilaris, Lichen planus, Lichen sclerosus, Lichen striatus, Lichen simplex chronicus, prurigo nodularis, discoid lupus erythematosus, lymphocytic infiltrate of Jessner/Kanof, lymphacytoma cutis, pyoderma gangrenosum, pruritis ani, sarcoidosis, chondrodermatitis nodularis helices, and other inflammatory dermatological disorders.
  • Medical conditions treated by the 15-PGDH inhibitors and corticosteroids or 15-PGDH inhibitors and TNF inhibitors can also include, for example, keloids, hypertrophic scars, pretibial myxedema and other infiltrative dermatological disorders. Additional medical conditions include, for example, granuloma annulare, necrobiosis lipoidica diabeticorum, sarcoidosis, and other noninfectious granulomas.
  • In still other embodiments, the 15-PGDH inhibitors described herein can be administered in combination with corticosteroids or TNF inhibitors for wound healing, tissue regeneration, and/or tissue repair. Among various prostaglandins, PGE2 is known to serve as a mediator for wound healing. Therefore, subjects who are receiving steroids, including those healing of wounds from undergoing surgery, can be administered a 15-PGDH inhibitor to enhance PGE2 and promote would healing.
  • Additionally, increased prostaglandin levels have been shown to stimulate signaling through the Wnt signaling pathway via increased beta-catenin mediated transcriptional activity. Wnt signaling is known to be a key pathway employed by tissue stem cells. Hence, 15-PGDH inhibitors described herein may be utilized to increase tissue stem cell numbers for purposes that would include promoting tissue regeneration or repair in subjects receiving corticosteroid treatment. In addition, 15-PGDH inhibitors described herein may be utilized to promote tissue regeneration or repair in additional organs that would include but are not limited to brain, eye, cornea, retina, lung, heart, stomach, small intestine, pancreas, beta-cells of the pancreas, kidney, bone, cartilage, and peripheral nerve.
  • In other embodiments, the 15-PGDH inhibitor can be used as a glucocorticoid sensitizer to treat glucocorticoid insensitivity, restore corticosteroid sensitivity, enhance glucocorticoid sensitivity, and/or reverse the glucocorticoid insensitivity in a subject experiencing corticosteroid dependence or corticoid resistance or unresponsiveness or intolerance to corticosteroids. Therapeutic effects of the 15-PGDH inhibitors when used as a glucocorticoid sensitizer include any, but are not limited to, steroid-sparing in corticosteroid-dependent patients, better responsiveness or tolerance to corticosteroids, achieving efficacy by using a lower dose of corticosteroid, preventing individuals at risk for developing refractory responses or resistance or exacerbations in response to antigen exposures, infections, exercise, or irritants, achieving optimal immune functions, easier responses for the subject or patient when steroid administration is tapered or withdrawn, or after prolonged administration of corticosteroids, decreased risks for developing corticosteroid-related adverse events such as opportunistic infections, bone loss, pathologic fracture, diabetes, cataract, and combinations thereof.
  • In some embodiments, the 15-PGDH inhibitor can be administered to a subject in combination with the corticosteroid to treat glucocorticoid insensitivity, restore corticosteroid sensitivity, enhance glucocorticoid sensitivity, and/or reverse the glucocorticoid insensitivity in a subject experiencing corticosteroid dependence or corticoid resistance or unresponsiveness or intolerance to corticosteroids. The glucocorticoid insensitivity related conditions can include a range of immune-inflammatory disorders/diseases treated with steroids when the therapy fails to achieve disease control or is not effective or intolerant or dependent to corticosteroids, and combinations thereof.
  • In other embodiments, the 15-PGDH inhibitor and corticosteroid or the 15-PGDH inhibitor and TNF inhibitor can be administered to a subject that exhibits one or more glucocorticoid insensitivity related diseases, disorders, or conditions selected from the group consisting of glucocorticoid resistant asthma, refractory rheumatoid arthritis, refractory inflammatory bowel disease, chronic obstructive pulmonary disease, acute respiratory distress syndrome, interstitial pulmonary fibrosis, cystic fibrosis, refractory ulcerative colitis, children with severe Crohn's disease, corticosteroid refractory asthma, desquamative interstitial pneumonia refractory to corticosteroid, refractory inflammatory myopathies, refractory myasthenia gravis, refractory pemphigus vulgaris, methotrexate-refractory RA patients, refractory nephrotic syndrome, refractory multiple sclerosis, refractory sprue-like disease, steroid-resistant sarcoidosis, refractory mucosal lesions of pemphigus vulgaris, refractory Schnitzler syndrome, resistant dermatitis of the head and neck, severe refractory atopic dermatitis, refractory Idiopathic thrombocytopenia purpura, refractory orbital myositis, refractory or recurrent lymphomas, critically ill patients with sepsis or acute respiratory distress syndrome (ARDS) and relative adrenal insufficiency, rosacea, polymyalgia rheumatic, giant cell arteritis, polymyositis, dermatomyositis, Kawasaki syndrome, Guillain-Barre syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, Stiff man syndrome, corticosteroid dependent systemic lupus erythematosus, corticosteroid dependent multiple sclerosis, symptomatic corticosteroid dependent asthma, primary Sjogren's syndrome, systemic vasculitis, polymyositis, organ transplants, graft-versus-host disease, inflammatory diseases, autoimmune diseases, hyperproliferative diseases, lupus, osteoarthritis, rhinosinusitis, polyarteritis nodosa, Wegener's granulomatosis, giant cell arteritis, allergic rhinitis, urticaria, hereditary angioedema, tendonitis, bursitis, autoimmune chronic active hepatitis, cirrhosis, transplant rejection, psoriasis, dermatitis, malignancies, leukemia, myelomas, lymphomas, acute adrenal insufficiency, rheumatic fever, granulomatous disease, immune proliferation/apotosis, hypothalamic-pituitary-adrenal (HPA) axis suppression and regulation, hypercortisolemia, modulation of the Th1/Th2 cytokine balance, chronic kidney disease, spinal cord injury, cerebral edema, thrombocytopenia, Little's syndrome, Addison's disease, autoimmune hemolytic anemia, uveitis, pemphigus vulgaris, nasal polyps, sepsis, bacterial infections, viral infections, rickettsial infections, parasitic infections, type IL diabetes, obesity, metabolic syndrome, depression, schizophrenia, mood disorders, Cushing's syndrome, anxiety, sleep disorders, memory and learning enhancement, glucocorticoid-induced glaucoma, atopic dermatitis, drug hypersensitivity reactions, serum sickness, bullous dermatitis herpetiformis, contact dermatitis, exfoliative erythroderma, mycosis fungoides, pemphigus, nonsuppurative thyroiditis, sympathetic ophthalmia, uveitis, ocular inflammatory conditions unresponsive to topical steroids, allergic bronchopulmonary aspergillosis, fulminating or disseminated pulmonary tuberculosis when used concurrently with appropriate chemotherapy, hypersensitivity pneumonitis, idiopathic bronchiolitis obliterans with organizing pneumonia, idiopathic eosinophilic pneumonias, idiopathic pulmonary fibrosis, Pneumocystis carinii pneumonia (PCP) associated with hypoxemia occurring in an HIV(+) individual who is also under treatment with appropriate anti-PCP antibiotics, a diuresis or remission of proteinuria in nephrotic syndrome, without uremia, of the idiopathic type or that due to lupus erythematosus, ankylosing spondylitis, polymyalgia rheumatic, psoriatic arthritis, relapsing polychondritis, trichinosis with neurologic or myocardial involvement, and tuberculous meningitis.
  • The 15-PGDH inhibitors used in the methods described herein can be identified using assays in which putative inhibitor compounds are applied to cells expressing 15-PGDH and then the functional effects on 15-PGDH activity are determined. Samples or assays comprising 15-PGDH that are treated with a potential inhibitor are compared to control samples without the inhibitor to examine the extent of effect. Control samples (untreated with modulators) are assigned a relative 15-PGDH activity value of 100%. Inhibition of 15-PGDH is achieved when the 15-PGDH activity value relative to the control is about 80%, optionally 50% or 25%, 10%, 5% or 1%.
  • Agents tested as inhibitors of 15-PGDH can be any small chemical molecule or compound. Typically, test compounds will be small chemical molecules, natural products, or peptides. The assays are designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).
  • In some embodiments, the 15-PGDH inhibitor can include a compound having the following formula (I):
  • Figure US20230355636A1-20231109-C00008
      • wherein n is 0-2;
      • Y1, Y2, and R1 are the same or different and are each selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heteroaryl, heterocycloalkenyl containing from 5-6 ring atoms (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O) (C1-C6 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, —Si(C1-C3 alkyl)3, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C+), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkylethers, phosphates, phosphate esters, groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, combinations thereof, and wherein Y1 and Y2 may be linked to form a cyclic or polycyclic ring, wherein the ring is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted cycloalkyl, and a substituted or unsubstituted heterocyclyl;
      • U1 is N, C—R2, or C—NR3R4, wherein R2 is selected from the group consisting of a H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, O—CH2—CH2X, CH2—CH2—CH2X, O—CH2—CH2X, X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, O(CO)R′, COOR′ (wherein R′ is H or a lower alkyl group), and wherein R1 and R2 may be linked to form a cyclic or polycyclic ring, wherein R3 and R4 are the same or different and are each selected from the group consisting of H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, CH2—CH2—CH2X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, COOR′ (wherein R′ is H or a lower alkyl group), and R3 or R4 may be absent;
      • X1 and X2 are independently N or C, and wherein when X1 and/or X2 are N, Y and/or Y2, respectively, are absent;
      • Z1 is O, S, CRaRb or NRa, wherein Ra and Rb are independently H or a C1-8 alkyl, which is linear, branched, or cyclic, and which is unsubstituted or substituted; and pharmaceutically acceptable salts thereof.
  • Examples of 15-PGDH inhibitors having formula (I) include the following compounds:
  • Figure US20230355636A1-20231109-C00009
  • and pharmaceutically acceptable salts thereof.
  • In other embodiments, the 15-PGDH inhibitor can include a compound having the following formula (II):
  • Figure US20230355636A1-20231109-C00010
      • wherein n is 0-2
      • X4, X5, X6, and X7 are independently N or CRc;
      • R1, R6, R7, and Rc are independently selected from the group consisting of hydrogen, substituted or unsubstituted C, —C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heteroaryl, heterocycloalkenyl containing from 5-6 ring atoms (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O)(C1-C6 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, —Si(C1-C3 alkyl)3, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C+), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkylethers, phosphates, phosphate esters, groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, combinations thereof, and wherein R6 and R7 may be linked to form a cyclic or polycyclic ring, wherein the ring is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted cycloalkyl, and a substituted or unsubstituted heterocyclyl;
      • U1 is N, C—R2, or C—NR3R4, wherein R2 is selected from the group consisting of a H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, O—CH2—CH2X, CH2—CH2—CH2X, O—CH2—CH2X, X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, O(CO)R′, COOR′ (wherein R′ is H or a lower alkyl group), and wherein R1 and R2 may be linked to form a cyclic or polycyclic ring, wherein R3 and R4 are the same or different and are each selected from the group consisting of H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, CH2—CH2—CH2X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, COOR′ (wherein R′ is H or a lower alkyl group), and R3 or R4 may be absent;
      • Z1 is O, S, CRaRb or NRa, wherein Ra and Rb are independently H or a C1-8 alkyl, which is linear, branched, or cyclic, and which is unsubstituted or substituted; and pharmaceutically acceptable salts thereof.
  • Examples of 15-PGDH inhibitors having formulas (II) include the following compounds:
  • Figure US20230355636A1-20231109-C00011
  • and pharmaceutically acceptable salts thereof.
  • In yet other embodiments, the 15-PGDH inhibitor can include a compound having the following formulas (III) or (IV):
  • Figure US20230355636A1-20231109-C00012
      • X6 is independently is N or CRc;
      • R1, R6, R7, and Rc are independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heteroaryl, heterocycloalkenyl containing from 5-6 ring atoms (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O)(C1-C6 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, —Si(C1-C3 alkyl)3, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkylethers, phosphates, phosphate esters, groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, combinations thereof, and wherein R6 and R7 may be linked to form a cyclic or polycyclic ring, wherein the ring is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted cycloalkyl, and a substituted or unsubstituted heterocyclyl;
      • U1 is N, C—R2, or C—NR3R4, wherein R2 is selected from the group consisting of a H, a lower alkyl group, O, (CH2)1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, O—CH2—CH2X, CH2—CH2—CH2X, O—CH2—CH2X, X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, O(CO)R′, COOR′ (wherein R′ is H or a lower alkyl group), and wherein R1 and R2 may be linked to form a cyclic or polycyclic ring, wherein R3 and R4 are the same or different and are each selected from the group consisting of H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, CH2—CH2—CH2X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, COOR′ (wherein R′ is H or a lower alkyl group), and R3 or R4 may be absent;
      • Z1 is O, S, CRaRb or NRa, wherein Ra and Rb are independently H or a C1-8 alkyl, which is linear, branched, or cyclic, and which is unsubstituted or substituted; and pharmaceutically acceptable salts thereof.
  • In some embodiments, R is selected from the group consisting of branched or linear alkyl including —(CH2)n1CH3 (n1=0-7),
  • Figure US20230355636A1-20231109-C00013
  • wherein n2=0-6 and X is any of the following: CFyHz (y+z=3), CClyHz (y+z=3), OH, OAc, OMe, R71, OR72, CN, N(R73)2,
  • Figure US20230355636A1-20231109-C00014
  • (n3=0-5, m=1-5), and
  • Figure US20230355636A1-20231109-C00015
  • (n4=0-5).
  • In other embodiments, R6 and R7 can each independently be one of the following:
  • Figure US20230355636A1-20231109-C00016
    Figure US20230355636A1-20231109-C00017
    Figure US20230355636A1-20231109-C00018
      • each R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56, R57, R58, R59, R60, R61, R62, R63, R64, R65, R66, R67, R68, R69, R70, R71, R72, R73, and R74 are the same or different and are independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heterocycloalkenyl containing from 5-6 ring atoms, (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O) (C1-C6 alkyl), O, and S), heteroaryl or heterocyclyl containing from 5-14 ring atoms, (wherein from 1-6 of the ring atoms is independently selected from N, NH, N(C1-C3 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, silyl, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C+), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), sulfanamido (—SO2N(R)2 where R is independently H, alkyl, aryl or heteroaryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkyl ethers (—[(CH2)˜O]m), phosphates, phosphate esters [—OP(O)(OR)2 where R═H, methyl or other alkyl], groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, and combinations thereof, and pharmaceutically acceptable salts thereof.
  • In still other embodiments, R6 and R7 can independently be a group that improves aqueous solubility, for example, a phosphate ester (—OPO3H2), a phenyl ring linked to a phosphate ester (—OPO3H2), a phenyl ring substituted with one or more methoxyethoxy groups, or a morpholine, or an aryl or heteroaryl ring substituted with such a group.
  • Examples of 15-PGDH inhibitors having formulas (III) or (IV) include the following compounds:
  • Figure US20230355636A1-20231109-C00019
    Figure US20230355636A1-20231109-C00020
    Figure US20230355636A1-20231109-C00021
  • and pharmaceutically acceptable salts thereof.
  • In other embodiments, the 15-PGDH inhibitor can include a compound having the following formula (V):
  • Figure US20230355636A1-20231109-C00022
      • wherein n is 0-2
      • X6 is independently is N or CRc
      • R1, R6, R7, and Rc are each independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heteroaryl, heterocycloalkenyl containing from 5-6 ring atoms (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O)(C1-C6 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, —Si(C1-C3 alkyl)3, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkylethers, phosphates, phosphate esters, groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, combinations thereof, and wherein R6 and R7 may be linked to form a cyclic or polycyclic ring, wherein the ring is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted cycloalkyl, and a substituted or unsubstituted heterocyclyl;
      • U1 is N, C—R2, or C—NR3R4, wherein R2 is selected from the group consisting of a H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, O—CH2—CH2X, CH2—CH2—CH2X, O—CH2—CH2X, X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, O(CO)R′, COOR′ (wherein R′ is H or a lower alkyl group), and wherein R1 and R2 may be linked to form a cyclic or polycyclic ring, wherein R3 and R4 are the same or different and are each selected from the group consisting of H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1=1, 2, or 3), CF3, CH2—CH2X, CH2—CH2—CH2X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)—R′, (C═O)N(R′)2, COOR′ (wherein R′ is H or a lower alkyl group), and R3 or R4 may be absent;
      • and pharmaceutically acceptable salts thereof.
  • In some embodiments, R1 is selected from the group consisting of branched or linear alkyl including —(CH2)n1CH3 (n1=0-7),
  • Figure US20230355636A1-20231109-C00023
  • wherein n2=0-6 and X is any of the following: CFyHz (y+z=3), CClyHz (y+z=3), OH, OAc, OMe, R71, OR72, CN, N(R73)2,
  • Figure US20230355636A1-20231109-C00024
  • (n3=0-5, m=1-5), and 4
  • Figure US20230355636A1-20231109-C00025
  • (n4=0-5).
  • In other embodiments, R6 and R7 can each independently be one of the following:
  • Figure US20230355636A1-20231109-C00026
    Figure US20230355636A1-20231109-C00027
      • each R8, R9, R10, R11, R12, R3, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56, R57, R58, R59, R60, R61, R62, R63, R64, R65, R66, R67, R68, R69, R70, R71, R72, R73 and R74, are the same or different and are independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heterocycloalkenyl containing from 5-6 ring atoms, (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O) (C1-C5 alkyl), O, and S), heteroaryl or heterocyclyl containing from 5-14 ring atoms, (wherein from 1-6 of the ring atoms is independently selected from N, NH, N(C1-C3 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, silyl, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C5-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C+), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), sulfanamido (—SO2N(R)2 where R is independently H, alkyl, aryl or heteroaryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkyl ethers (—[(CH2)O]m), phosphates, phosphate esters [—OP(O)(OR)2 where R═H, methyl or other alkyl], groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, and combinations thereof, and pharmaceutically acceptable salts thereof.
  • In still other embodiments, R6 and R7 can independently be a group that improves aqueous solubility, for example, a phosphate ester (—OPO3H2), a phenyl ring linked to a phosphate ester (—OPO3H2), a phenyl ring substituted with one or more methoxyethoxy groups, or a morpholine, or an aryl or heteroaryl ring substituted with such a group.
  • In other embodiments, the 15-PGDH inhibitor can include a compound having the following formula (VI):
  • Figure US20230355636A1-20231109-C00028
      • wherein n=0-2;
      • X6 is N or CRc;
      • R1 is selected from the group consisting of branched or linear alkyl including —(CH2)n1CH3 (n1=0-7),
  • Figure US20230355636A1-20231109-C00029
  • wherein n2=0-6 and X is any of the following: CFyHz (y+z=3), CCyHz (y+z=3), OH, OAc, OMe, R71, OR72, CN, N(R73)2,
  • Figure US20230355636A1-20231109-C00030
  • (n3=0-5, m=1-5), and
  • Figure US20230355636A1-20231109-C00031
  • n4 (n4=0-5).
  • R5 is selected from the group consisting of H, Cl, F, NH2, and N(R76)2;
      • R6 and R7 can each independently be one of the following:
  • Figure US20230355636A1-20231109-C00032
    Figure US20230355636A1-20231109-C00033
    Figure US20230355636A1-20231109-C00034
      • R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56, R57, R58, R59, R60, R61, R62, R63, R64, R65, R66, R67, R68, R69, R70, R71, R72, R73, R74, R75, R76, and Rc are the same or different and are independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heterocycloalkenyl containing from 5-6 ring atoms, (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O) (C1-C6 alkyl), O, and S), heteroaryl or heterocyclyl containing from 5-14 ring atoms, (wherein from 1-6 of the ring atoms is independently selected from N, NH, N(C1-C3 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, silyl, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), sulfanamido (—SO2N(R)2 where R is independently H, alkyl, aryl or heteroaryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkyl ethers (—[(CH2)nO]m), phosphates, phosphate esters [—OP(O)(OR)2 where R═H, methyl or other alkyl], groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, and combinations thereof, and pharmaceutically acceptable salts thereof.
  • In other embodiments, the 15-PGDH inhibitor can include a compound having the following formula (VII):
  • Figure US20230355636A1-20231109-C00035
      • wherein n=0-2;
      • X6 is N or CRc;
      • R1 is selected from the group consisting of branched or linear alkyl including —(CH2)n1CH3 (n1=0-7),
  • Figure US20230355636A1-20231109-C00036
  • wherein n2=0-6 and X is any of the following: CFyHz (y+z=3), CClyHz (y+z=3), OH, OAc, OMe, R71, OR72, CN, N(R73)2,
  • Figure US20230355636A1-20231109-C00037
  • (n3=0-5, m=1-5), and
  • Figure US20230355636A1-20231109-C00038
      • R5 is selected from the group consisting of H, Cl, F, NH2, and N(R76)2;
      • R7 can each independently be one of the following:
  • Figure US20230355636A1-20231109-C00039
    Figure US20230355636A1-20231109-C00040
      • each R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56, R57, R58, R59, R60, R61, R62, R63, R64, R65, R66, R67, R68, R69, R70, R71, R72, R73, R74, R76, and Rc are the same or different and are independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heterocycloalkenyl containing from 5-6 ring atoms, (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O)(C1-C6 alkyl), O, and S), heteroaryl or heterocyclyl containing from 5-14 ring atoms, (wherein from 1-6 of the ring atoms is independently selected from N, NH, N(C1-C3 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, silyl, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), sulfanamido (—SO2N(R)2 where R is independently H, alkyl, aryl or heteroaryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkyl ethers (—[(CH2)nO]m), phosphates, phosphate esters [—OP(O)(OR)2 where R═H, methyl or other alkyl], groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, and combinations thereof, and pharmaceutically acceptable salts thereof.
  • Examples of compounds having formulas (V), (VI), or (VII) are selected from the group consisting of:
  • Figure US20230355636A1-20231109-C00041
    Figure US20230355636A1-20231109-C00042
    Figure US20230355636A1-20231109-C00043
    Figure US20230355636A1-20231109-C00044
    Figure US20230355636A1-20231109-C00045
    Figure US20230355636A1-20231109-C00046
    Figure US20230355636A1-20231109-C00047
    Figure US20230355636A1-20231109-C00048
    Figure US20230355636A1-20231109-C00049
    Figure US20230355636A1-20231109-C00050
    Figure US20230355636A1-20231109-C00051
    Figure US20230355636A1-20231109-C00052
    Figure US20230355636A1-20231109-C00053
    Figure US20230355636A1-20231109-C00054
    Figure US20230355636A1-20231109-C00055
    Figure US20230355636A1-20231109-C00056
    Figure US20230355636A1-20231109-C00057
    Figure US20230355636A1-20231109-C00058
    Figure US20230355636A1-20231109-C00059
    Figure US20230355636A1-20231109-C00060
    Figure US20230355636A1-20231109-C00061
    Figure US20230355636A1-20231109-C00062
    Figure US20230355636A1-20231109-C00063
    Figure US20230355636A1-20231109-C00064
    Figure US20230355636A1-20231109-C00065
    Figure US20230355636A1-20231109-C00066
    Figure US20230355636A1-20231109-C00067
    Figure US20230355636A1-20231109-C00068
    Figure US20230355636A1-20231109-C00069
    Figure US20230355636A1-20231109-C00070
    Figure US20230355636A1-20231109-C00071
    Figure US20230355636A1-20231109-C00072
  • and pharmaceutically acceptable salts thereof.
  • In certain embodiments, the 15-PGDH inhibitor having formula (I), (II), (III), (IV), (V), (VI), and (VII) can be selected that can ia) at 2.5 μM concentration, stimulate a Vaco503 reporter cell line expressing a 15-PGDH luciferase fusion construct to a luciferase output level of greater than 70 (using a scale on which a value of 100 indicates a doubling of reporter output over baseline); iia) at 2.5 μM concentration stimulate a V9m reporter cell line expressing a 15-PGDH luciferase fusion construct to a luciferase output level of greater than 75; iiia) at 7.5 μM concentration stimulate a LS174T reporter cell line expressing a 15-PGDH luciferase fusion construct to a luciferase output level of greater than 70; and iva) at 7.5 μM concentration, does not activate a negative control V9m cell line expressing TK-Renilla luciferase reporter to a level greater than 20; and va) inhibits the enzymatic activity of recombinant 15-PGDH protein at an IC50 of less than 1 μM.
  • In other embodiments, the 15-PGDH inhibitor can ib) at 2.5 μM concentration, stimulate a Vaco503 reporter cell line expressing a 15-PGDH luciferase fusion construct to increase luciferase output; iib) at 2.5 μM concentration stimulate a V9m reporter cell line expressing a 15-PGDH luciferase fusion construct to increase luciferase output; iiib) at 7.5 μM concentration stimulate a LS174T reporter cell line expressing a 15-PGDH luciferase fusion construct to increase luciferase output; ivb) at 7.5 μM concentration, does not activate a negative control V9m cell line expressing TK-Renilla luciferase reporter to a luciferase level greater than 20% above background; and vb) inhibits the enzymatic activity of recombinant 15-PGDH protein at an IC50 of less than 1 μM.
  • In other embodiments, the 15-PGDH inhibitor can inhibit the enzymatic activity of recombinant 15-PGDH at an IC50 of less than 1 μM, or preferably at an IC50 of less than 250 nM, or more preferably at an IC50 of less than 50 nM, or more preferably at an IC50 of less than 10 nM, or more preferably at an IC50 of less than 5 nM at a recombinant 15-PGDH concentration of about 5 nM to about 10 nM.
  • In other embodiments, the 15-PGDH inhibitor can increase the cellular levels of PGE-2 following stimulation of an A459 cell with an appropriate agent, for example IL1-beta.
  • In some embodiments, a15-PGDH inhibitor can include a compound having the following formula (VIII):
  • Figure US20230355636A1-20231109-C00073
      • wherein n is 0-2;
      • R1, R6, and R7 are the same or different and are each selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2-C24 alkynyl, C3-C20 aryl, heteroaryl, heterocycloalkenyl containing from 5-6 ring atoms (wherein from 1-3 of the ring atoms is independently selected from N, NH, N(C1-C6 alkyl), NC(O) (C1-C6 alkyl), O, and S), C6-C24 alkaryl, C6-C24 aralkyl, halo, —Si(C1-C3 alkyl)3, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-C24 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl (including C2-C24 alkylcarbonyl (—CO-alkyl) and C6-C20 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl), C2-C24 alkoxycarbonyl (—(CO)—O-alkyl), C6-C20 aryloxycarbonyl (—(CO)—O-aryl), C2-C24 alkylcarbonato (—O—(CO)—O-alkyl), C6-C20 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), C1-C24 alkyl-carbamoyl (—(CO)—NH(C1-C24 alkyl)), arylcarbamoyl (—(CO)—NH-aryl), thiocarbamoyl (—(CS)—NH2), carbamido (—NH—(CO)—NH2), cyano(—CN), isocyano (—N+C+), cyanato (—O—CN), isocyanato (—O—N+═C), isothiocyanato (—S—CN), azido (—N═N+═N), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido (—NH—(CO)-alkyl), C6-C20 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R is hydrogen, C1-C24 alkyl, C5-C20 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), alkylimino (—CR═N(alkyl), where R=hydrogen, alkyl, aryl, alkaryl, aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, alkyl, aryl, alkaryl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C24 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C24 alkylsulfinyl (—(SO)-alkyl), C5-C20 arylsulfinyl (—(SO)-aryl), C1-C24 alkylsulfonyl (—SO2-alkyl), C5-C20 arylsulfonyl (—SO2-aryl), sulfonamide (—SO2—NH2, —SO2NY2 (wherein Y is independently H, aryl or alkyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), polyalkylethers, phosphates, phosphate esters, groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, combinations thereof, and wherein R6 and R7 may be linked to form a cyclic or polycyclic ring, wherein the ring is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted cycloalkyl, and a substituted or unsubstituted heterocyclyl; and pharmaceutically acceptable salts thereof.
  • 15-PGDH inhibitors having formula (VIII) can be synthesized as shown:
  • Figure US20230355636A1-20231109-C00074
  • Any reaction solvent can be used in the above preparation process as long as it is not involved in the reaction. For example, the reaction solvent includes ethers such as diethyl ether, tetrahydrofuran and dioxane; halogenized hydrocarbons, such as dichloromethane and chloroform; amines such as pyridine, piperidine and triethylamine; alkylketones, such as acetone, methylethylketone and methylisobutyl; alcohols, such as methanol, ethanol and propanol; non-protonic polar solvent, such as N,N-dimethylformamide, N,N-dimethylacetoamide, acetonitrile, dimethylsulfoxide and hexamethyl phosphoric acid triamide. Among non-reactive organic solvents that are ordinarily used in the organic synthesis, preferable solvents are those from which water generated in the reaction can be removed by a Dean-Stark trap. The examples of such solvents include, but are not limited to benzene, toluene, xylene and the like. The reaction product thus obtained may be isolated and purified by condensation, extraction and the like, which is ordinarily conducted in the field of the organic synthesis, if desired, by silica gel column chromatography. The individual enantiomers of PGDH inhibitors having the formula III can be separated by a preparative HPLC using chromatography columns containing chiral stationary phases.
  • Further, embodiments of this application include any modifications for the preparation method of the 15-PGDH inhibitors described above. In this connection, any intermediate product obtainable from any step of the preparation method can be used as a starting material in the other steps. Such starting material can be formed in situ under certain reaction conditions. Reaction reagents can also be used in the form of their salts or optical isomers.
  • Depending on the kinds of the substituents to be used in the preparation of the 15-PGDH inhibitors, and the intermediate product and the preparation method selected, novel 15-PGDH inhibitors can be in the form of any possible isomers such as substantially pure geometrical (cis or trans) isomers, optical isomers (enantiomers) and racemates.
  • In some embodiments, a 15-PGDH inhibitor having formula (V111) can include a compound with the following formula (IX):
  • Figure US20230355636A1-20231109-C00075
      • and pharmaceutically acceptable salts thereof.
  • Advantageously, the 15-PDGH inhibitor having formula (IX) was found to: i) inhibit recombinant 15-PGDH at 1 nM concentration; ii) inhibit 15-PGDH in cell lines at 100 nM concentration, iii) increase PGE2 production by cell lines; iv) is chemically stable in aqueous solutions over broad pH range; v) is chemically stable when incubated with hepatocyte extracts, vi) is chemically stable when incubated with hepatocyte cell lines; vii) shows 253 minutes plasma half-life when injected IP into mice; and viii) shows no immediate toxicity over 24 hours when injected IP into mice at 0.6 μmole/per mouse and at 1.2 μmole/per mouse and also no toxicity when injected IP into mice at 0.3 μmole/per mouse twice daily for 21 days.
  • In other embodiments, a 15-PGDH inhibitor having formula (IX) can include a compound with the following formula (IXa):
  • Figure US20230355636A1-20231109-C00076
      • and pharmaceutically acceptable salts thereof.
  • In still other embodiments, a 15-PGDH inhibitor having formula (IX) can include a compound with the following formula (IXb):
  • Figure US20230355636A1-20231109-C00077
      • and pharmaceutically acceptable salts thereof.
  • In other embodiments, the 15-PDHG inhibitor can comprise a (+) or (−) optical isomer of a 15-PGDH inhibitor having formula (IX). In still other embodiments, the 15-PDHG inhibitor can comprise a mixture at least one of a (+) or (−) optical isomer of a 15-PGDH inhibitor having formula (IX). For example, the 15-PGDH inhibitor can comprise a mixture of: less than about 50% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX) and greater than about 50% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX), less than about 25% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX) and greater than about 75% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX), less than about 10% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX) and greater than about 90% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX), less than about 1% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX) and greater than about 99% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX), greater than about 50% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX) and less than about 50% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX), greater than about 75% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX) and less than about 25% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX), greater than about 90% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX) and less than about 10% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX), or greater than about 99% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX) and less than about 1% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX).
  • In a still further embodiment, the 15-PDGH inhibitor can consist essentially of or consist of the (+) optical isomer of a 15-PGDH inhibitor having formula (IX). In yet another embodiment, the PDGH inhibitor can consist essentially of or consist of the (−) optical isomer of a 15-PGDH inhibitor having formula (IX).
  • In other embodiments, a 15-PGDH inhibitor having formula (VIII) can include a compound with the following formula (X):
  • Figure US20230355636A1-20231109-C00078
      • and pharmaceutically acceptable salts thereof.
  • Advantageously, the 15-PDGH inhibitor having formula (X) was found to: i) inhibit recombinant 15-PGDH at 3 nM concentration; ii) increase PGE2 production by cell lines at 20 nM; iii) is chemically stable in aqueous solutions over broad pH range; iv) is chemically stable when incubated with mouse, rat and human liver extracts, v) shows 33 minutes plasma half-life when injected IP into mice; viii) shows no immediate toxicity over 24 hours when injected IP into mice at 50 mg/kg body weight, and ix) is soluble in water (pH=3) at 1 mg/mL.
  • In other embodiments, a 15-PGDH inhibitor having formula (X) can include a compound with the following formula (Xa):
  • Figure US20230355636A1-20231109-C00079
      • and pharmaceutically acceptable salts thereof.
  • In still other embodiments, a 15-PGDH inhibitor having formula (X) can include a compound with the following formula (Xb):
  • Figure US20230355636A1-20231109-C00080
      • and pharmaceutically acceptable salts thereof.
  • In other embodiments, the 15-PDHG inhibitor can comprise a (+) or (−) optical isomer of a 15-PGDH inhibitor having formula (X). In still other embodiments, the 15-PDHG inhibitor can comprise a mixture at least one of a (+) or (−) optical isomer of a 15-PGDH inhibitor having formula (X). For example, the 15-PGDH inhibitor can comprise a mixture of: less than about 50% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (X) and greater than about 50% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (X), less than about 25% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (X) and greater than about 75% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (X), less than about 10% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (X) and greater than about 90% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (X), less than about 1% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (X) and greater than about 99% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (X), greater than about 50% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (X) and less than about 50% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (X), greater than about 75% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (X) and less than about 25% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (X), greater than about 90% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (X) and less than about 10% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (X), or greater than about 99% by weight of the (−) optical isomer of a 15-PGDH inhibitor having formula (X) and less than about 1% by weight of the (+) optical isomer of a 15-PGDH inhibitor having formula (X).
  • In a still further embodiment, the 15-PDGH inhibitor can consist essentially of or consist of the (+) optical isomer of a 15-PGDH inhibitor having formula (X). In yet another embodiment, the PDGH inhibitor can consist essentially of or consist of the (−) optical isomer of a 15-PGDH inhibitor having formula (X).
  • It will be appreciated that the other 15-PGDH inhibitors can be used in the methods described herein. These other 15-PGDH inhibitors can include known 15-PGDH inhibitors including, for example, tetrazole compounds of formulas (I) and (II), 2-alkylideneaminooxyacetamide compounds of formula (I), heterocyclic compounds of formulas (VI) and (VII), and pyrazole compounds of formula (III) described in U.S. Patent Application Publication No. 2006/0034786 and U.S. Pat. No. 7,705,041; benzylidene-1,3-thiazolidine compounds of formula (I) described in U.S. Patent Application Publication No. 2007/0071699; phenylfurylmethylthiazolidine-2,4-dione and phenylthienylmethylthiazolidine-2,4-dione compounds described in U.S. Patent Application Publication No. 2007/0078175; thiazolidenedione derivatives described in U.S. Patent Application Publication No. 2011/0269954; phenylfuran, phenylthiophene, or phenylpyrazole compounds described in U.S. Pat. No. 7,294,641, 5-(3,5-disubstituted phenylazo)-2-hydroxybenzene-acetic acids and salts and lactones described in U.S. Pat. No. 4,725,676, and azo compounds described in U.S. Pat. No. 4,889,846.
  • In certain embodiments, the corticosteroid is selected from the group consisting of aclovate, alclometasone dipropionate, amcinafel, amcinafide, amcinonide, aristocort A, augmented betamethasone dipropionate, beclomethasone, beclomethasone dipropionate, betamethasone, betamethasone benzoate, betamethasone-17-benzoate, betamethasone dipropionate, betamethasone sodium phosphate and acetate, betamethasone valerate, betamethasone-17-valerate, chloroprednisone, clobetasol propionate, clobetasone propionate, clocortolone, cordran, corticosterone, cortisol, cortisol acetate, cortisol cypionate, cortisol sodium phosphate, cortisol sodium succinate, cortisone, cortisone acetate, cortodoxone, cyclocort, deflazacort, defluprednate, descinolone, desonide, desowen, desoximetasone, desoxycorticosterone acetate, desoxycorticosterone pivalate, 11-desoxycortisol, dexamethasone, dexamethasone acetate, dexamethasone sodium phosphate, dichlorisone, diflorasone diacetate, dihydroxycortisone, diprolen, diprolene, diprosone, esters of betamethasone, florone, flucetonide, flucloronide, fluocortolone, fludrocortisone, fludrocortisone acetate, flumethalone, flumethasone, flumethasone pivalate, flunisolide, fluocinolone acetonide, fluocinolone acetonide acetate, fluocinonide, fluorometholone, fluorocortisone, fluperolone, fluprednisolone, flurandrenolide, fluroandrenolone acetonide, fluticasone propionate, fuprednisolone, halcinonide, halobetasol propionate, halog, hydrocortamate, hydrocortisone, hydrocortisone acetate, hydrocortisone butyrate, hydrocortisone valerate, hydrocortisone-17-valerate, kenalog, lidex, locold, locorten, maxiflor, medrysone, meprednisone, methylprednisolone, 6 α-methylprednisolone, methylprednisolone acetate, methylprednisolone sodium succinate, methylprednisone, mometasone furoate, paramethasone, paramethasone acetate, prednidone, prednisone, prednisolone, prednisolone acetate, prednisolone sodium phosphate, prednisolone sodium succinate, prednisolone tebutate, prednisone, psorcon, synalar, temovate, tetrahydrocortisol, topicort, topicort LP, triamcinolone, triamcinolone acetonide, triamcinolone diacetate, triamcinolone hexacotonide, tridesilone, valisone, and westcort.
  • In other embodiments, the corticosteroids to be used in combination with the 15-PGDH inhibitors described herein are prednisolone, methylprednisolone, dexamethasone, naflocort, deflazacort, halopredone acetate, budesonide, beclomethasone dipropionate, hydrocortisone, triamcinolone acetonide, fluocinolone acetonide, fluocinonide, clocortolone pivalate, methylprednisolone aceponate, dexamethasone palmitate, tipredane, hydrocortisone aceponate, prednicarbate, alclometasone dipropionate, halometasone, methylprednisolone suleptanate, mometasone furoate, rimexolone, prednisolone famesylate, ciclesonide, deprodone propionate, fluticasone, fluticasone propionate, fluticasone furoate, halobetasol propionate, loteprednol etabonate, betamethasone butyrate propionate, flunisolide, prednisone, dexamethasone sodium phosphate, triamcinolone, betamethasone 17-valerate, betamethasone, hydrocortisone acetate, hydrocortisone sodium succinate, prednisolone sodium phosphate and hydrocortisone probutate.
  • In certain embodiments, TNF inhibitors described herein can include, but are not limited to, anti-TNF alpha antibodies (such as infliximab, adalimumab certolizumab pegol, and/or golimumab), receptor-construct fusion proteins (such as etanercept), or small molecules, such as, but not limited to, pomalidomide, thalidomide, lenalidomide and bupropion.
  • The 15-PGDH inhibitors and corticosteroids and TNF inhibitors described herein can be provided in a pharmaceutical composition. A pharmaceutical composition containing the 15-PGDH inhibitors and corticosteroids described herein as an active ingredient may be manufactured by mixing the derivative with a pharmaceutically acceptable carrier(s) or an excipient(s) or diluting the 15-PGDH inhibitors and corticosteroids and TNF inhibitors described herein with a diluent in accordance with conventional methods. The pharmaceutical composition may further contain fillers, anti-cohesives, lubricants, wetting agents, flavoring agents, emulsifying agents, preservatives and the like. The pharmaceutical composition may be formulated into a suitable formulation in accordance with the methods known to those skilled in the art so that it can provide an immediate, controlled or sustained release of the 15-PGDH inhibitors and/or corticosteroids described herein after being administered into a mammal.
  • In some embodiments, the pharmaceutical composition may be formulated into a parenteral or oral dosage form. The solid dosage form for oral administration may be manufactured by adding excipient, if necessary, together with binder, disintegrants, lubricants, coloring agents, and/or flavoring agents, to the 15-PGDH inhibitors and corticosteroids described herein and shaping the resulting mixture into the form of tablets, sugar-coated pills, granules, powder or capsules. The additives that can be added in the composition may be ordinary ones in the art. For example, examples of the excipient include lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, silicate and the like. Exemplary binders include water, ethanol, propanol, sweet syrup, sucrose solution, starch solution, gelatin solution, carboxymethylcellulose, hydroxypropyl cellulose, hydroxypropyl starch, methylcellulose, ethylcellulose, shellac, calcium phosphonate and polypyrrolidone. Examples of the disintegrant include dry starch, sodium arginate, agar powder, sodium bicarbonate, calcium carbonate, sodium lauryl sulfate, stearic monoglyceride and lactose. Further, purified talc, stearates, sodium borate, and polyethylene glycol may be used as a lubricant; and sucrose, bitter orange peel, citric acid, tartaric acid, may be used as a flavoring agent. In some embodiments, the pharmaceutical composition can be made into aerosol formulations (e.g., they can be nebulized) to be administered via inhalation.
  • The 15-PGDH inhibitors and corticosteroids described herein described herein may be combined with flavoring agents, buffers, stabilizing agents, and the like and incorporated into oral liquid dosage forms such as solutions, syrups or elixirs in accordance with conventional methods. One example of the buffers may be sodium citrate. Examples of the stabilizing agents include tragacanth, acacia and gelatin.
  • In some embodiments, the 15-PGDH inhibitors and corticosteroids described herein described herein may be incorporated into an injection dosage form, for example, for a subcutaneous, intramuscular or intravenous route by adding thereto pH adjusters, buffers, stabilizing agents, relaxants, topical anesthetics. Examples of the pH adjusters and the buffers include sodium citrate, sodium acetate and sodium phosphate. Examples of the stabilizing agents include sodium pyrosulfite, EDTA, thioglycolic acid and thiolactic acid. The topical anesthetics may be procaine HCl, lidocaine HCl and the like. The relaxants may be sodium chloride, glucose and the like.
  • In other embodiments, the 15-PGDH inhibitors and corticosteroids described herein described herein may be incorporated into suppositories in accordance with conventional methods by adding thereto pharmaceutically acceptable carriers that are known in the art, for example, polyethylene glycol, lanolin, cacao butter or fatty acid triglycerides, if necessary, together with surfactants such as Tween.
  • The pharmaceutical composition may be formulated into various dosage forms as discussed above and then administered through various routes including an oral, inhalational, transdermal, subcutaneous, intravenous or intramuscular route. The dosage can be a pharmaceutically or therapeutically effective amount.
  • Therapeutically effective dosage amounts of the 15-PGDH inhibitor and corticosteroids described herein may be present in varying amounts in various embodiments. For example, in some embodiments, a therapeutically effective amount of the 15-PGDH inhibitor may be an amount ranging from about 10-1000 mg (e.g., about 20 mg-1,000 mg, 30 mg-1,000 mg, 40 mg-1,000 mg, 50 mg-1,000 mg, 60 mg-1,000 mg, 70 mg-1,000 mg, 80 mg-1,000 mg, 90 mg-1,000 mg, about 10-900 mg, 10-800 mg, 10-700 mg, 10-600 mg, 10-500 mg, 100-1000 mg, 100-900 mg, 100-800 mg, 100-700 mg, 100-600 mg, 100-500 mg, 100-400 mg, 100-300 mg, 200-1000 mg, 200-900 mg, 200-800 mg, 200-700 mg, 200-600 mg, 200-500 mg, 200-400 mg, 300-1000 mg, 300-900 mg, 300-800 mg, 300-700 mg, 300-600 mg, 300-500 mg, 400 mg-1,000 mg, 500 mg-1,000 mg, 100 mg-900 mg, 200 mg-800 mg, 300 mg-700 mg, 400 mg-700 mg, and 500 mg-600 mg). In some embodiments, the 15-PGDH inhibitor is present in an amount of or greater than about 10 mg, 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg. In some embodiments, the 15-PGDH inhibitor is present in an amount of or less than about 1000 mg, 950 mg, 900 mg, 850 mg, 800 mg, 750 mg, 700 mg, 650 mg, 600 mg, 550 mg, 500 mg, 450 mg, 400 mg, 350 mg, 300 mg, 250 mg, 200 mg, 150 mg, or 100 mg.
  • In other embodiments, a therapeutically effective amount of the corticosteroid may be an amount ranging from about 10-1000 mg (e.g., about 20 mg-1,000 mg, 30 mg-1,000 mg, 40 mg-1,000 mg, 50 mg-1,000 mg, 60 mg-1,000 mg, 70 mg-1,000 mg, 80 mg-1,000 mg, 90 mg-1,000 mg, about 10-900 mg, 10-800 mg, 10-700 mg, 10-600 mg, 10-500 mg, 100-1000 mg, 100-900 mg, 100-800 mg, 100-700 mg, 100-600 mg, 100-500 mg, 100-400 mg, 100-300 mg, 200-1000 mg, 200-900 mg, 200-800 mg, 200-700 mg, 200-600 mg, 200-500 mg, 200-400 mg, 300-1000 mg, 300-900 mg, 300-800 mg, 300-700 mg, 300-600 mg, 300-500 mg, 400 mg-1,000 mg, 500 mg-1,000 mg, 100 mg-900 mg, 200 mg-800 mg, 300 mg-700 mg, 400 mg-700 mg, and 500 mg-600 mg). In some embodiments, the corticosteroid is present in an amount of or greater than about 10 mg, 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg. In some embodiments, the corticosteroid is present in an amount of or less than about 1000 mg, 950 mg, 900 mg, 850 mg, 800 mg, 750 mg, 700 mg, 650 mg, 600 mg, 550 mg, 500 mg, 450 mg, 400 mg, 350 mg, 300 mg, 250 mg, 200 mg, 150 mg, or 100 mg.
  • In other embodiments, a therapeutically effective dosage amount of the 15-PGHD inhibitor and/or the corticosteroid may be, for example, about 0.001 mg/kg weight to 500 mg/kg weight, e.g., from about 0.001 mg/kg weight to 400 mg/kg weight, from about 0.001 mg/kg weight to 300 mg/kg weight, from about 0.001 mg/kg weight to 200 mg/kg weight, from about 0.001 mg/kg weight to 100 mg/kg weight, from about 0.001 mg/kg weight to 90 mg/kg weight, from about 0.001 mg/kg weight to 80 mg/kg weight, from about 0.001 mg/kg weight to 70 mg/kg weight, from about 0.001 mg/kg weight to 60 mg/kg weight, from about 0.001 mg/kg weight to 50 mg/kg weight, from about 0.001 mg/kg weight to 40 mg/kg weight, from about 0.001 mg/kg weight to 30 mg/kg weight, from about 0.001 mg/kg weight to 25 mg/kg weight, from about 0.001 mg/kg weight to 20 mg/kg weight, from about 0.001 mg/kg weight to 15 mg/kg weight, from about 0.001 mg/kg weight to 10 mg/kg weight.
  • In still other embodiments, a therapeutically effective dosage amount of the 15-PGHD inhibitor and/or the corticosteroid may be, for example, about 0.0001 mg/kg weight to 0.1 mg/kg weight, e.g. from about 0.0001 mg/kg weight to 0.09 mg/kg weight, from about 0.0001 mg/kg weight to 0.08 mg/kg weight, from about 0.0001 mg/kg weight to 0.07 mg/kg weight, from about 0.0001 mg/kg weight to 0.06 mg/kg weight, from about 0.0001 mg/kg weight to 0.05 mg/kg weight, from about 0.0001 mg/kg weight to about 0.04 mg/kg weight, from about 0.0001 mg/kg weight to 0.03 mg/kg weight, from about 0.0001 mg/kg weight to 0.02 mg/kg weight, from about 0.0001 mg/kg weight to 0.019 mg/kg weight, from about 0.0001 mg/kg weight to 0.018 mg/kg weight, from about 0.0001 mg/kg weight to 0.017 mg/kg weight, from about 0.0001 mg/kg weight to 0.016 mg/kg weight, from about 0.0001 mg/kg weight to 0.015 mg/kg weight, from about 0.0001 mg/kg weight to 0.014 mg/kg weight, from about 0.0001 mg/kg weight to 0.013 mg/kg weight, from about 0.0001 mg/kg weight to 0.012 mg/kg weight, from about 0.0001 mg/kg weight to 0.011 mg/kg weight, from about 0.0001 mg/kg weight to 0.01 mg/kg weight, from about 0.0001 mg/kg weight to 0.009 mg/kg weight, from about 0.0001 mg/kg weight to 0.008 mg/kg weight, from about 0.0001 mg/kg weight to 0.007 mg/kg weight, from about 0.0001 mg/kg weight to 0.006 mg/kg weight, from about 0.0001 mg/kg weight to 0.005 mg/kg weight, from about 0.0001 mg/kg weight to 0.004 mg/kg weight, from about 0.0001 mg/kg weight to 0.003 mg/kg weight, from about 0.0001 mg/kg weight to 0.002 mg/kg weight. In some embodiments, the therapeutically effective dose may be 0.0001 mg/kg weight, 0.0002 mg/kg weight, 0.0003 mg/kg weight, 0.0004 mg/kg weight, 0.0005 mg/kg weight, 0.0006 mg/kg weight, 0.0007 mg/kg weight, 0.0008 mg/kg weight, 0.0009 mg/kg weight, 0.001 mg/kg weight, 0.002 mg/kg weight, 0.003 mg/kg weight, 0.004 mg/kg weight, 0.005 mg/kg weight, 0.006 mg/kg weight, 0.007 mg/kg weight, 0.008 mg/kg weight, 0.009 mg/kg weight, 0.01 mg/kg weight, 0.02 mg/kg weight, 0.03 mg/kg weight, 0.04 mg/kg weight, 0.05 mg/kg weight, 0.06 mg/kg weight, 0.07 mg/kg weight, 0.08 mg/kg weight, 0.09 mg/kg weight, or 0.1 mg/kg weight. The effective dose for a particular individual can be varied (e.g., increased or decreased) over time, depending on the needs of the individual.
  • In some embodiments, a therapeutically effective dosage of the 15-PGHD inhibitor and/or the corticosteroid may be a dosage of 10 μg/kg/day, 50 μg/kg/day, 100 μg/kg/day, 250 μg/kg/day, 500 μg/kg/day, 1000 μg/kg/day or more. In various embodiments, the amount of the 15-PGDH inhibitor and/or corticosteroid is sufficient to provide a dosage to a patient of between 0.01 μg/kg and 10 μg/kg; 0.1 μg/kg and 5 μg/kg; 0.1 μg/kg and 1000 μg/kg; 0.1 μg/kg and 900 μg/kg; 0.1 μg/kg and 900 μg/kg; 0.1 μg/kg and 800 μg/kg; 0.1 μg/kg and 700 μg/kg; 0.1 μg/kg and 600 μg/kg; 0.1 μg/kg and 500 μg/kg; or 0.1 μg/kg and 400 jig/kg.
  • Particular doses or amounts to be administered in accordance with the present invention may vary, for example, depending on the nature and/or extent of the desired outcome, on particulars of route and/or timing of administration, and/or on one or more characteristics (e.g., weight, age, personal history, genetic characteristic, lifestyle parameter, severity of cardiac defect and/or level of risk of cardiac defect, etc., or combinations thereof). Such doses or amounts can be determined by those of ordinary skill. In some embodiments, an appropriate dose or amount is determined in accordance with standard clinical techniques. For example, in some embodiments, an appropriate dose or amount is a dose or amount sufficient to reduce a disease severity index score by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% or more. For example, in some embodiments, an appropriate dose or amount is a dose or amount sufficient to reduce a disease severity index score by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100%. Alternatively or additionally, in some embodiments, an appropriate dose or amount is determined through use of one or more in vitro or in vivo assays to help identify desirable or optimal dosage ranges or amounts to be administered.
  • Various embodiments may include differing dosing regimen. In some embodiments, the 15-PGDH inhibitor and corticosteroids described herein can be administered via continuous infusion. In some embodiments, the continuous infusion is intravenous. In other embodiments, the continuous infusion is subcutaneous. Alternatively or additionally, in some embodiments, the 15-PGDH inhibitor can be administered bimonthly, monthly, twice monthly, triweekly, biweekly, weekly, twice weekly, thrice weekly, daily, twice daily, or on another clinically desirable dosing schedule. The dosing regimen for a single subject need not be at a fixed interval, but can be varied over time, depending on the needs of the subject.
  • For topical application, the composition can be administered in the form of aqueous, alcoholic, aqueous-alcoholic or oily solutions or suspensions, or of a dispersion of the lotion or serum type, of emulsions that have a liquid or semi-liquid consistency or are pasty, obtained by dispersion of a fatty phase in an aqueous phase (O/W) or vice versa (W/O) or multiple emulsions, of a free or compacted powder to be used as it is or to be incorporated into a physiologically acceptable medium, or else of microcapsules or microparticles, or of vesicular dispersions of ionic and/or nonionic type. It may thus be in the form of a salve, a tincture, milks, a cream, an ointment, a powder, a patch, an impregnated pad, a solution, an emulsion or a vesicular dispersion, a lotion, aqueous or anhydrous gels, a spray, a suspension, a shampoo, an aerosol or a foam. It may be anhydrous or aqueous. It may also comprise solid preparations constituting soaps or cleansing cakes.
  • Pharmaceutical compositions including the 15-PGDH inhibitor and corticosteroids described herein can additionally contain, for example, at least one compound chosen from prostaglandins, in particular prostaglandin PGE1, PGE2, their salts, their esters, their analogues and their derivatives, in particular those described in WO 98/33497, WO 95/11003, JP 97-100091, JP 96-134242, in particular agonists of the prostaglandin receptors. It may in particular contain at least one compound such as the agonists (in acid form or in the form of a precursor, in particular in ester form) of the prostaglandin F2a receptor, such as for example latanoprost, fluprostenol, cloprostenol, bimatoprost, unoprostone, the agonists (and their precursors, in particular the esters such as travoprost) of the prostaglandin E2 receptors such as 17-phenyl PGE2, viprostol, butaprost, misoprostol, sulprostone, 16,16-dimethyl PGE2, 11-deoxy PGE1, 1-deoxy PGE1, the agonists and their precursors, in particular esters, of the prostacycline (IP) receptor such as cicaprost, iloprost, isocarbacycline, beraprost, eprostenol, treprostinil, the agonists and their precursors, in particular the esters, of the prostaglandin D2 receptor such as BW245C ((4S)-(3-[(3R,S)-3-cyclohexyl-3-isopropyl]-2,5-dioxo)-4-imidazolidinehept-anoic acid), BW246C ((4R)-(3-[(3R,S)-3-cyclohexyl-3-isopropyl]-2,5-dioxo)-4-imidazolidinehept-anoic acid), the agonists and their precursors, in particular the esters, of the receptor for the thromboxanes A2 (TP) such as I-BOP ([1S-[1a,2a(Z), 3b(1E,3S), 4a]]-7-[3-[3-hydroxy-4-[4-(iodophenoxy)-1-butenyl]-7-oxabicyclo-[2.2.1]hept-2-yl]-5-heptenoic acid).
  • Advantageously, the composition can include at least one 15-PGDH inhibitor and corticosteroid as defined above and at least one prostaglandin or one prostaglandin derivative such as for example the prostaglandins of series 2 including in particular PGF and PGE2 in saline form or in the form of precursors, in particular of the esters (example isopropyl esters), their derivatives such as 16,16-dimethyl PGE2, 17-phenyl PGE2 and 16,16-dimethyl PGF2a 17-phenyl PGF2a, prostaglandins of series 1 such as 11-desoxyprostaglandin E1, 1-desoxyprostaglandin E1 in saline or ester form, is their analogues, in particular latanoprost, travoprost, fluprostenol, unoprostone, bimatoprost, cloprostenol, viprostol, butaprost, misoprostol, their salts or their esters.
  • The invention is further illustrated by the following examples, which is not intended to limit the scope of the claims.
  • Example 1 Analysis of Effect of SW033291 on Dextan Sodium Sulfate (DSS) Induced Colitis
  • This Example provides data from studies of the effect of SW033291 on prevention of induction of colitis in the dextran sodium sulfate (DSS) treated mouse. In the study, 8-12 week old FVB male mice were fed with 2% DSS in drinking water for days 1-7, and then switched to normal drinking water beginning on day 8, and continued through day 22. Mice were treated with twice daily SW033291 5 mg/kg IP in a vehicle of 10% Ethanol, 5% Cremophor EL, 85% D5W, at 125 μg/200 ul, versus with vehicle alone. Clinical scoring (body weight, rectal bleeding, stool consistency) was recorded daily, endoscopic scoring (ulcer number, mucosal thickening, and vascular pattern) was assessed on days 8, 11, 15. Mice were sacrificed on days 1, 8, 15 and 22 for assessment of colon length, colon weight, ulcer number, ulcer area, and crypt damage.
  • Table 1 shows a summary of the baseline properties of age and weight of the 24 SW033291 treated mice and the 24 control group mice used in the study. Also provided are baseline characteristics of 4 FVB male 15-PGDH knockout (KO) mice that are used as a comparator group.
  • TABLE 1
    FVB PGDH WT/KO male mice
    8-12 weeks old
    DSS Study WT-Control WT-Treatment KC p-value
    Number 24 24 4
    Sex M M M
    Age (Days) 74.1 ± 3.7  74.2 ± 4.0  73.9 ± 3.4 0.655
    Weight (gm) 26.3 ± 1.19 26.8 ± 1.78 27.4 ± 1.4 0.391
  • FIG. 1 shows a graph of the average changes from baseline weight of the cohort of control versus SW033291 treated mice across the 22 days of the study. SW033291 treated mice (squares) show greater weight at all time points, and in particular, show faster weight gain after washout of DSS then do the control mice (diamonds), P=0.001.
  • FIG. 2 shows a graph of the daily Disease Activity Index (DAI) of the cohort of control (diamonds) versus SW033291 treated mice across (squares) the 22 days of the study. The Disease Activity Index is calculated as an equally weighted average of the change from baseline weight, the consistency of stool, and the presence of rectal bleeding, with each component normalized to span an identical numerical range. SW033291 treated mice (squares) show a lower Disease Activity Index than do control (diamonds) on each day of the study, P<0.001.
  • FIG. 3 shows the design of the study in which colonoscopic examination of the left colon, up to the splenic flexure, was performed on live mice on days 8, 11 and 15, under isoflurane anesthesia. Daily weights of these SW033291 treated (squares) and untreated mice (diamonds) were also recorded and are shown. In addition, post-mortem colonoscopy of the full colon was performed on two SW033291 treated (squares) and two control treated mice (diamonds) on day 15, with findings confirming that DSS induced ulcerations are largely confined to the descending colon distal to the splenic flexure.
  • FIGS. 4 (A-B) show at bottom left the colon as visualized during colonoscopy of a DSS treated control mouse that shows loss of the mucosal vascular pattern and a gross ulceration (FIG. 4B). At bottom right is shown the colonoscopic findings of a DSS treated mouse receiving SW033291, with only a small ulcer and with maintenance of the normal mucosal vascular pattern otherwise (FIG. 4B). FIG. 4A is a graph showing numbers of ulcers present on days 8 (bottom), 11 (middle), and 15 (top) in the control versus SW033291 treated mice. SW033291 treatment prevents two-thirds of ulcer formation. Additional studies of 15-PGDH knockout mice show that 15-PGDH gene knockout prevents 95% of colon ulcer formation. These findings support that the colitis prevention activity of SW033291 is mediated through its activity as a 15-PGDH inhibitor, and suggest further modifications of drug dosing and delivery may provide added colitis prevention and would also be expected to protect from other forms of intestinal injury that would include toxicity from radiation, toxicity from chemotherapy, and chemotherapy induced mucositis.
  • FIG. 5 shows quantitation of ulcer burden on day 15 of DSS treated mice as determined by embedding the full length of the formalin fixed colons of mice in paraffin blocks, and then microscopic inspection of a random 5 μm section along the full colon length for visualization and measurement of ulcerated mucosa. The graph shows that the average length of ulcerated mucosa is 4.48 mm per colon section in control mice (N=9 mice) and is reduced by 61% to a length of 1.74 mm per colon section in SW033291 (drug) treated mice (N=6 mice), P=0.045. Again, 15-PGDH gene knockout (KO) is highly effective in preventing colon ulceration, supporting that the therapeutic effect of SW033291 is mediated through inhibition of 15-PGDH.
  • FIGS. 6 (A-B) show examples of scoring murine colonic mucosa according to the Murine Endoscopic Index of Colitis Severity (MEICS) (Becker C. et al. Gut 2005; 54: 950-954). FIG. 6A shows the colonoscopic findings and MEICS scoring for a DSS treated mouse receiving SW033291. FIG. 6B the colonoscopic findings and MEICS scoring of a DSS treated mouse receiving vehicle only.
  • FIG. 7 shows graphs of the MEICS scores for DSS treated mice receiving SW033291 (treatment, right) versus vehicle (control, left). MEICS scores show significantly less colitis activity in SW033291 treated mice on days 8, 11 and 15 of the study.
  • In addition to the gross visual inspection and scoring of colitis activity by the MEICS index, full length colons of mice were formalin fixed and paraffin embedded, and microscopic scoring of crypt damage was performed using the 0-4 severity scale of Cooper H S. Et al., Lab Invest. 1993; 69:238-249. For this analysis, the colons were divided into 3 segments of proximal, middle, and distal colon, each approximately 1.6 cm in length, with each segment was further subdivided into 4 sections each approximately 4 mm in length. For each section the crypt damage severity score was multiplied by the length in mm of the damaged area, creating a 0-16 cryptitis severity index. An average cryptitis severity index was calculated for each segment (proximal, middle, and distal colon), and the summed whole colon cryptitis severity index was determined on a scale of 0-48 for each mouse colon. In parallel with the visual MEICS score, the microscopic cryptitis severity index on day 8 of the DSS protocol was significantly greater in control mice (value of 9.49) than in the SW033291 treated mice (value of 3.16), P<0.05 (data described but not shown in the figure).
  • FIG. 8 shows assessment of the effect of SW033291 on maintaining DNA synthesis in the colonic mucosa of DSS treated mice. Mice were injected with BrdU at 100 mg/kg IP 3 hours before sacrifice and then full length colons were formalin fixed and embedded in paraffin. S-phase cells, that have incorporated BrdU into DNA, were visualized by immuno-fluorescent staining of 5 μm thick sections with an antibody that detects the BrdU. Colonic crypts were visualized by immuno-fluorescent staining with an antibody to the epithelial marker E-Cadherin. Photographic insets show photomicrographs of high powered fields taken from the mid-colon on day 8 of the DSS protocol from control mice, SW033291 treated mice (treatment) and 15-PGDH knockout mice (KO). Red immune-fluorescence identifies BrdU positive nuclei, and green immune-fluorescence identifies E-Cadherin positive colonocytes. The number of BrdU positive cell per crypt is determined by counting the number of dual labeled red and green cells per average crypt. Green only cells that are not in S-phase are not counted, and red only cells, that are likely stromal cells outside of crypts, are also not counted. On the photomicrograph shown crypts are displayed as vertically oriented in control and SW033291 treated mice, and crypts are displayed as horizontally oriented in the 15-PGDH knockout mice. In the photographs the numbers of S-phase cells are fewest in the control mice and are increased in the SW033291 treated mice, and increased further in the knockout mice. In the particular photographs shown, the crypts from control mice both lack S-phase cells and are also visually decreased in height; whereas, crypt height is increased in the crypts shown from SW033291 treated mice, and crypt heights is increased further in the crypts shown from 15-PGDH knockout mice. The graph depicts the sum of the average number of BrdU positive cells per crypt in the distal colon plus the average number of BrdU positive cells per crypt middle colons of control (Cn), SW033219 treated (Tx), and 15-PGDH knockout mice (KO) on day 1, day 8, and day 15 of the DSS treatment protocol. On day 8, SW033291 treated mice demonstrate 5.7-fold greater numbers of BrdU positive cells than do control mice, which have lost 85% of the day 1 value of BrdU positive cells per crypt. 15-PGDH knockout mice show no loss of BrdU positive cells in the crypt on day 8, consistent with the protective effect of SW033291 being mediated by inhibition of 15-PGDH.
  • Table 2 shows a summary of colon length (in cm) in DSS treated mice sacrificed on days 8, 15 and 22, in SW033291 treated mice, versus vehicle treated control mice, versus 15-PGDH knockout (KO) mice, where shortening of the colon is a measure of disease activity.
  • TABLE 2
    Colon length shortening may be
    correlated to severity of the colon ulceration
    Time Point Control SW033291 KO P-value
    Baseline 8.3 + 0.2 8.4 + 0.2 0.71
    Day 8 6.6 + 0.4 6.6 + 0.1 1.0
    Day 15 7.1 + 0.1 7.5 + 0.1 8.5 + 0.1 0.001
    Day 22 7.4 + 0.2 8.6 + 0.3 0.012
  • Vehicle treated control mice show significantly greater colon shortening at day 22 versus SW033291 treated mice, P=0.012. This comparison is also shown graphically in FIG. 9 .
  • Table 3 shows a summary on day of sacrifice of mouse weights (gms) and colon lengths (cm) for DSS treated mice receiving SW033291 or vehicle control.
  • TABLE 3
    Vehicle SW033291 KO
    Wt @ sacrifice-gm
    Time Point
    Baseline 26.3 + 0.7 25.9 + 0.7 29.2 + 1.3 
    Day 8 25.4 + 0.7 26.4 + 0.5
    Day 15 24.4 + 0.5 25.2 + 0.9
    Day 22 * 26.3 + 0.7 28.2 + 0.5
    Colon length-cm
    Time Point
    Baseline  8.3 + 0.2  8.4 + 0.2 8.5 + 0.1
    Day 8  6.6 + 0.4  6.6 + 0.1
    Day 15  7.1 + 0.1  7.5 + 0.1
    Day 22 *  7.4 + 0.2  8.6 + 0.3
  • On day 22 SW033291 treated mice show greater body weight and greater colon lengths, indicative of therapeutic effect of SW033291 in protecting against DSS induced colitis.
  • Example 2
  • Identifying Signaling Networks Associated with 15-PGDH Expression
  • In order to identify signaling networks that are significantly correlated with 15-PGDH gene expression in colon tissues, we first to comprehensively characterized global pathway network activities across 16 normal colon tissue samples using an integrative pathway network modeling framework, PARADIGM. (Vaske, C. J., et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237-245 (2010).) The PARADIGM analytics framework leverages gene expression measurements for a given sample in order to explicitly model regulatory relationships detailed in a given signaling network and estimate the biological activity state of each of the signaling network components in the tissue sample. (Varadan, V., Mittal, P., Vaske, C. J. & Benz, S. C. The integration of biological pathway knowledge in cancer genomics: A review of existing computational approaches. IEEE Signal Processing Magazine 29, 35-50 (2012); Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337 (2012); Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70 (2012); t1as, T. C. G. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615 (2011)). PARADIGM incorporates known signaling network information curated within public databases such as the National Cancer Institute's Pathway Interaction Database (NCI-PID), Reactome and BioCarta pathway databases, resulting in a merged signaling network structure (SuperPathway) containing over 17000 concepts representing 7324 proteins, 1574 protein families, 7813 complexes, and 586 processes. (Schaefer, C. F., et al. PID: the Pathway Interaction Database. Nucleic acids research 37, D674-679 (2009); Croft, D., et al. The Reactome pathway knowledgebase. Nucleic acids research 42, D472-477 (2014)). Thus, PARADIGM leverages gene expression data obtained for genes within the SuperPathway network to infer sample-specific activity levels, called Integrated Pathway Levels (IPLs) for each network component in the SuperPathway network. The IPLs are typically distributed between −1 and +1, with negative IPLs corresponding to lower activity and positive IPLs corresponding to higher pathway-specific activity.
  • Accordingly, we used PARADIGM to analyze normalized, log 2-transformed gene expression values across normal colon tissue samples (N=16) resulting in the estimation of Integrated Pathway Levels (IPL) for each component of the SuperPathway network, and then evaluated the correlation of the IPLs across all components in the SuperPathway with the normalized 15-PGDH gene expression. The extent and statistical significance of the correlation was determined using the Spearman's rho statistic. Pathway network components with a Spearman correlation p-value ≤0.01 were considered significant and the resulting sub-networks along with their regulatory relationships were plotted using Cytoscape. (Shannon, P., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498-2504 (2003)). The resulting interconnected component sub-networks provide insights into transcription factor activities associated with 15-PGDH gene expression across normal colon tissues.
  • In order to further evaluate the likelihood of identifying a sub-network of a given size purely by chance, we performed 10,000 randomization experiments. In each iteration, we randomly selected the same number of network components from the SuperPathway as originally identified to be significantly associated with 15-PGDH expression. Subsequently, for each iteration, we determined the sizes and numbers of connected sub-networks derived from these random component selections. The resulting distribution of sub-network sizes obtained from the 10,000 random iterations were modeled as a Poisson distribution, thus allowing us to estimate the probability of obtaining a sub-network of a given size purely by chance.
  • FIG. 10 illustrates identifying that Glucocorticoid receptor NR3C1-centered sub-network activities are significantly correlated with 15-PGDH gene expression in normal human colons via examining PARADIGM SuperPathway sub-networks whose activities are significantly correlated with 15-PGDH gene expression in normal colon tissues. Pathway components showing significant activity correlation with 15-PGDH gene expression across 16 normal colon cancer tissues (Spearman Correlation P-Value ≤0.01) are plotted along with their regulatory relationships in shades of red (positively correlated) and green (negatively correlated), with darker colors corresponding to higher absolute correlation. The size of the node corresponds to the statistical significance of the correlation. The p-value assigned to each sub-network is the probability of obtaining a sub-network of this size purely by chance.
  • Example 3 Combination of a Corticosteroid and an Inhibitor of 15-PGDH
  • We have previously demonstrated that SW033291, an inhibitor of 15-PGDH, has activity in treatment of DSS induced colitis, a murine model of ulcerative colitis. This example provides new findings showing inhibitors of 15-PGDH synergistically enhance corticosteroid treatment of DSS induced colitis, a murine model of ulcerative colitis.
  • FIG. 11A shows a schema of the study in which mice received three daily doses of dexamethasone and were sacrificed 6 hours after the third dose for analysis. FIG. 11B shows representative western blot analysis showing dexamethasone induction of 15-PGDH protein in mouse colon, at two different doses of dexamethasone. FIG. 11C is a graphical summary of real time RT-PCR from all mice in the study, showing an approximate doubling of colon 15-PGDH expression level by dexamethasone treatment.
  • FIG. 12A shows a schema of near doubling of 15-PGDH enzyme activity in colons of dexamethasone treated mice. FIG. 12B shows findings that corticosteroids increase colon 15-PGDH activity suggesting that these agents paradoxically induce a negative feedback loop that would act to retard healing of colon mucosa in ulcerative colitis and intestinal mucosa in Crohn's disease. These findings predict that combining corticosteroid therapy with a 15-PGDH inhibitor would be predicted to improve the efficacy of corticosteroid therapy of ulcerative colitis and Crohn's disease.
  • FIGS. 13 (A-B) show higher dexamethasone doses exacerbate colitis induction by DSS. 8-week old FVB/NJ male mice were exposed to 2% DSS in drinking water concurrent with daily dexamethasone intraperitoneal injections at specified dose, 0 mpk (diamonds), 0.06 mpk (squares), 0.3 mpk (triangles), 3.0 mpk(x). To compare the effects of increasing dexamethasone doses on the induction of colitis, daily weights and disease activity indices (severity of diarrhea and hematochezia) were compared and are graphed as shown (mean±SEM, N=5-8), with relative daily weights shown in FIG. 13A and daily disease activity shown in FIG. 13B. Higher doses of dexamethasone significantly exacerbated the induction of colitis; mice with 0.3 or 3 mpk of dexamethasone displayed significantly worse weight loss and mice with 3 mpk developed significantly worse disease activity compared to the lower dose.
  • FIG. 14 shows the schematic of a study in which mice receive 7 days of 2.5% DSS in drinking water (from day 1 to day 8), a regime that induces murine colitis. Starting on day 8 mice are then treated with either: vehicle control; with a 15-PGDH inhibitor—(+) SW033291 at 5 mpk IP twice daily (abbreviated (+) 291); with dexamethasone 0.06 mpk IP daily (abbreviated dex); or with the combination of (+) SW033291 at 5 mpk IP twice daily plus dexamethasone 0.06 mpk IP daily. (mpk=mg/kg).
  • FIG. 15 shows daily weights of mice on the study from days 1-17, mice were treated with control (diamonds), SW033291 (squares), dexamethasone 0.06 mpk (triangles), and combination of both SW033291 and dexamethasone (x). While both (+) SW033291 (squares) and dexamethasone (triangles) treatment as single agents provide some amelioration of weight loss, the combination of (+) SW033291 plus dexamethasone (x) was significantly more effective.
  • FIG. 16 shows disease activity as measured by the disease activity index (DAI) in which diarrhea (on a 0-3 scale) and fecal blood (on a 0-3 scale) are combined (on a 0-6 scale). Mice were treated with control (diamonds), SW033291 (squares), dexamethasone 0.06 mpk (triangles), and combination of both SW033291 and dexamethasone (x). While both (+) SW033291 (squares) and dexamethasone (triangles) treatment as single agents provide some amelioration of DAI, the combination of (+) SW033291 plus dexamethasone (x) was significantly more effective.
  • FIG. 17A graphs these results showing area under the DAI curve (total DAI) and FIG. 17B the percent decrease in total DAI (relative disease reduction) graphed. Single agent (+) SW033291 reduced total DAI by 14%. Single agent dexamethasone reduced total DAI by 15%. However the combination of (+) SW033291 plus dexamethasone reduced total DAI by 35%.
  • FIG. 18 graphs the survival of mice with control, dexamethasone, SW033291, and combination treatment on a daily basis through day 16 of the disease model (N=12 per group). *p<0.05 by Mantel-Cox test.
  • FIG. 19 is a regraphing of the data of FIG. 17B, with P-values, and a reordering of the sequence of presenting the groups. Combination group (green bar) is significantly improved compared to control (blue bar) or dexamethasone (yellow bar) or (+)-SW033291 (red bar) and is superior to either of the monotherapy regimens. Means+SEM (N=6 per arm). **p<0.01, ***p<0.005 by ANOVA and Student's t-test.
  • FIGS. 20 (A-D) show representative endoscopic images for each group (A) control, (B) dexamethasone, (C) SW033291, and (D) combination) on day 13 of treatment. Signs of mucosal bleeding and reduced wall transparency were evident in the control group whereas reduced wall transparency is more prominent in the dexamethasone group when compared to (+)-SW033291 or combination.
  • FIG. 21 shows graphs of murine endoscopic index of colitis severity (MEICS) scores as means+SEM (N=8-10 per arm) on day 13 for each treatment group (control, dexamethasone, SW033291, and combination). **p<0.01, ***p<0.005 by ANOVA and Student's t-test.
  • FIGS. 22 (A-D) show representative histological pictures of distal colons on day 13 of each treatment group (A) control, (B) dexamethasone, (C) SW033291, and (D) combination. Destruction of epithelial crypt structures were more severely manifested in both control and dexamethasone-treated mice compared to (+)-SW033291—or combination-treated mice. Scale bar: 200 μm.
  • FIG. 23 shows graphs of semi-quantitatively scored histological extent of inflammatory damage to the crypts (“cryptits”). **p<0.01, ***p<0.005 by ANOVA and Student's t-test.
  • FIG. 24 shows graphs of the severity of mesenteric lymphadenopathy assessed by collective mesenteric lymph node weight normalized by body weight on day 13 of each treatment group (control, dexamethasone, SW033291, and combination). Means+SEM (N=11-16). ***p<0.005 by ANOVA and Student's t-test.
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. All patents, publications and references cited in the foregoing specification are herein incorporated by reference in their entirety.

Claims (15)

1-23 (canceled)
24. A method of treating intestinal, gastrointestinal, or bowel disorders in a subject in need thereof, the method comprising administering to the subject a 15-PGDH inhibitor and a tumor necrosis factor α (TNFα) inhibitor in a therapeutically effective amount.
25. The method of claim 24, wherein the disorder is inflammatory bowel disease.
26. The method of claim 24, wherein the disorder is ulcerative colitis.
27. The method of claim 24, wherein the disorder is Crohn's disease.
28. The method of claim 24, wherein the disease is inflammatory bowel disease.
29. The method of claim 24, wherein the 15-PGDH inhibitor is a compound having Formula (V):
Figure US20230355636A1-20231109-C00081
wherein n is 0-2;
X6 is independently N or CRc;
R1, R6, R7, and Rc are each independently selected from the group consisting of hydrogen, substituted or unsubstituted C1-C24 alkyl, C2-C24 alkenyl, C2C24 alkynyl, C3-C20 aryl, heteroaryl, heterocycloalkenyl containing from 5-6 ring atoms, C6-C24 aralkyl, halo, -Si(C1-C3alkyl)3, hydroxyl, sulfhydryl, C1-C24 alkoxy, C2-Cz4 alkenyloxy, C2-C24 alkynyloxy, C5-C20 aryloxy, acyl, acyloxy, C2-C24 alkoxycarbonyl, C6-C20 aryloxycarbonyl, C2-C24 alkylcarbonato, C6-C20 arylcarbonato, carboxy, carboxylato, carbamoyl, C1-C24 alkyl-carbamoyl, arylcarbamoyl, thiocarbamoyl, carbamido, cyano, isocyano, cyanato, isocyanato, isothiocyanato, azido, formyl, thioformyl, amino, C1-C24 alkyl amino, C5-C20 aryl amino, C2-C24 alkylamido, C6-C20 arylamido, imino, alkylimino, arylimino, nitro, nitroso, sulfo, sulfonato, C1-C24 alkylsulfanyl, arylsulfanyl, C1-C24 alkylsulfinyl, C5-C20 arylsulfinyl, C1-C24 alkylsulfonyl, C5-C20 arylsulfonyl, sulfonamide, phosphono, phosphonato, phosphinato, phospho, phosphino, polyalkylethers, phosphates, phosphate esters, groups incorporating amino acids or other moieties expected to bear positive or negative charge at physiological pH, combinations thereof, and wherein R6 and R7 may be linked to form a cyclic or polycyclic ring, wherein the ring is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted cycloalkyl, and a substituted or unsubstituted heterocyclyl;
U1 is N, C-R2, or C-NR3R4, wherein R2 is selected from the group consisting of a H. a lower alkyl group, O, (CH2)n1 OR (wherein n1═1, 2, or 3), CF3, CH2-CH2X, O-CH2-CH2X, CH2-CH2-CH2X, O-CH2-CH:X, X, (wherein X═H, F, Cl, Br, or I), CN, (C═O)-R, (C═O)N(R')2, O(CO)R', COOR' (wherein R′is H or a lower alkyl group), and wherein R1 and R2 may be linked to form a cyclic or polycyelie ring, wherein R3 and R4 are the same or different and are each selected from the group consisting of H, a lower alkyl group, O, (CH2)n1OR′ (wherein n1═1, 2, or 3), CF3, CH2- CH2X, CH2-CH2- CH2X, (wherein X═H, F, Cl, Br, or D), CN, (C═O)-R′, (C═O)N(R′)2, COOR′ (wherein R′ is H or a lower alkyl group), and R3 or R4 may be absent;
or a pharmaceutically acceptable salt thereof.
30. The method of claim 24, wherein the 15-PGDH inhibitor is:
Figure US20230355636A1-20231109-C00082
Figure US20230355636A1-20231109-C00083
Figure US20230355636A1-20231109-C00084
Figure US20230355636A1-20231109-C00085
Figure US20230355636A1-20231109-C00086
Figure US20230355636A1-20231109-C00087
Figure US20230355636A1-20231109-C00088
Figure US20230355636A1-20231109-C00089
Figure US20230355636A1-20231109-C00090
Figure US20230355636A1-20231109-C00091
Figure US20230355636A1-20231109-C00092
Figure US20230355636A1-20231109-C00093
Figure US20230355636A1-20231109-C00094
Figure US20230355636A1-20231109-C00095
or a pharmaceutically acceptable salt thereof.
31. The method of claim 24, wherein the TNFα inhibitor is an anti-TNF alpha antibody.
32. The method of claim 31, wherein the anti-TNF alpha antibody is infliximab, adalimumab certolizumab pegol, or golimumab.
33. The method of claim 24, wherein the TNFα inhibitor is a receptor-construct fusion protein.
34. The method of claim 33, wherein the receptor-construct fusion protein is etanercept.
35. The method of claim 24, wherein the TNFα inhibitor is a small molecule.
36. The method of claim 35, wherein the small molecule is pomalidomide, thalidomide, lenalidomide, or bupropion.
37. The method of claim 24, wherein the 15-PGDH inhibitor and the TNFα inhibitor are provided in a pharmaceutical composition together.
US18/144,065 2016-11-30 2023-05-05 Combinations of 15-pgdh inhibitors with corticosteroids and/or tnf inhibitors and uses thereof Pending US20230355636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/144,065 US20230355636A1 (en) 2016-11-30 2023-05-05 Combinations of 15-pgdh inhibitors with corticosteroids and/or tnf inhibitors and uses thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662428259P 2016-11-30 2016-11-30
US201762510166P 2017-05-23 2017-05-23
PCT/US2017/063959 WO2018102552A1 (en) 2016-11-30 2017-11-30 Combinations of 15-pgdh inhibitors with corcosteroids and/or tnf inhibitors and uses thereof
US201916465500A 2019-05-30 2019-05-30
US18/144,065 US20230355636A1 (en) 2016-11-30 2023-05-05 Combinations of 15-pgdh inhibitors with corticosteroids and/or tnf inhibitors and uses thereof

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2017/063959 Continuation WO2018102552A1 (en) 2016-11-30 2017-11-30 Combinations of 15-pgdh inhibitors with corcosteroids and/or tnf inhibitors and uses thereof
US16/465,500 Continuation US11690847B2 (en) 2016-11-30 2017-11-30 Combinations of 15-PGDH inhibitors with corticosteroids and/or TNF inhibitors and uses thereof

Publications (1)

Publication Number Publication Date
US20230355636A1 true US20230355636A1 (en) 2023-11-09

Family

ID=62242708

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/465,500 Active 2039-09-12 US11690847B2 (en) 2016-11-30 2017-11-30 Combinations of 15-PGDH inhibitors with corticosteroids and/or TNF inhibitors and uses thereof
US18/144,065 Pending US20230355636A1 (en) 2016-11-30 2023-05-05 Combinations of 15-pgdh inhibitors with corticosteroids and/or tnf inhibitors and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/465,500 Active 2039-09-12 US11690847B2 (en) 2016-11-30 2017-11-30 Combinations of 15-PGDH inhibitors with corticosteroids and/or TNF inhibitors and uses thereof

Country Status (4)

Country Link
US (2) US11690847B2 (en)
EP (1) EP3548035A4 (en)
JP (1) JP2020502070A (en)
WO (1) WO2018102552A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2927730A1 (en) 2013-10-15 2015-05-07 Case Western Reserve University Compositions and methods of modulating short-chain dehydrogenase activity
EP3096756A1 (en) 2014-01-21 2016-11-30 Neurocrine Biosciences, Inc. Crf1 receptor antagonists for the treatment of congenital adrenal hyperplasia
CN107921025A (en) 2015-03-08 2018-04-17 卡斯西部储备大学 Inhibitor for the short-chain dehydrogenase enzymatic activity for treating cystic fibrosis
US11690847B2 (en) 2016-11-30 2023-07-04 Case Western Reserve University Combinations of 15-PGDH inhibitors with corticosteroids and/or TNF inhibitors and uses thereof
AU2018215678A1 (en) 2017-02-06 2019-08-22 Board Of Regents Of The University Of Texas System Compositions and methods of modulating short-chain dehydrogenase activity
CN110891568A (en) 2017-04-07 2020-03-17 凯斯西储大学 Inhibitors of short-chain dehydrogenase activity for the treatment of coronary artery disorders
EA202191422A1 (en) * 2018-11-21 2021-10-21 Кейс Вестерн Ризерв Юниверсити COMPOSITIONS AND METHODS FOR MODULATING THE ACTIVITY OF SHORT RENAL DEHYDROGENASE
CN113226310B (en) * 2019-01-08 2024-03-19 杏林制药株式会社 15-PGDH inhibitors
AU2021211732A1 (en) 2020-01-23 2022-08-25 Myoforte Therapeutics, Inc. PGDH inhibitors and methods of making and using
IL298043A (en) 2020-05-20 2023-01-01 Rodeo Therapeutics Corp Compositions and methods of modulating short-chain dehydrogenase activity

Family Cites Families (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382248A (en) 1965-11-01 1968-05-07 Upjohn Co 6-amino-4, 5-di(substituted amino)-1, 2-dihydro-1-hydroxy-2-iminopyrimidines
IL73495A0 (en) 1983-11-14 1985-02-28 Dow Chemical Co Method of preparing 1,2,4-triazolo(1,5-a)-pyrimidine-2-sulfonyl chlorides
SE8405924L (en) 1984-11-23 1986-05-24 Pharmacia Ab NEW AZO ASSOCIATIONS
EP0271273A3 (en) 1986-12-08 1989-07-12 Merck & Co. Inc. Thieno-and furopyridine sulfonamides
US4904672A (en) 1987-01-30 1990-02-27 Merck & Co., Inc. Derivatives of 3-hydroxyazabenzo[b]thiophene useful as 5-lipoxygenase inhibitors
GB8709248D0 (en) 1987-04-16 1987-05-20 Wyeth John & Brother Ltd Azo compounds
US4910226A (en) 1987-04-29 1990-03-20 Smithkline Beckman Corporation Steroid 5-alpha-reductase inhibitors
DE3812177A1 (en) 1988-04-13 1989-10-26 Bayer Ag 2-PHENYLSULFINYL-NITRO-PYRIDINE, METHOD FOR THE PRODUCTION AND THEIR USE
LU87308A1 (en) 1988-08-01 1990-03-13 Oreal NOVEL 2,4-DIAMINO PYRIMIDINE OXIDE-3 DERIVATIVES AND THEIR USE FOR THE TREATMENT AND PREVENTION OF HAIR LOSS
JPH04501851A (en) * 1988-12-02 1992-04-02 ジ・アップジョン・カンパニー Minoxidil and vasoconstrictor composition for the treatment of alopecia
ATE119163T1 (en) 1989-01-11 1995-03-15 Ciba Geigy Ag ANTIDOTS TO IMPROVE THE CROPS TOLERABILITY OF AGROCHEMICAL ACTIVE INGREDIENTS.
JP2821690B2 (en) 1989-06-16 1998-11-05 日本ゼオン株式会社 Medical tubing
US5015629A (en) 1989-06-26 1991-05-14 University Of Southern California Tissue repair
FR2651122B1 (en) 1989-08-29 1994-10-28 Oreal COMPOSITIONS FOR USE IN BRAKING HAIR LOSS AND INDUCING AND STIMULATING THEIR GROWTH, CONTAINING 2-AMINO PYRIMIDINE OXIDE-3 DERIVATIVES AND NEW AMINO-2 PYRIMIDINE OXIDE-3 DERIVATIVES.
US5480913A (en) 1989-09-27 1996-01-02 Arch Development Corporation Anti-androgen compounds
US5217521A (en) 1989-12-22 1993-06-08 Ciba-Geigy Corporation Triazolylsulfonamides
DE59008431D1 (en) 1989-12-22 1995-03-23 Ciba Geigy Ag Triazolylsulfonamides.
US5061620A (en) 1990-03-30 1991-10-29 Systemix, Inc. Human hematopoietic stem cell
US5635387A (en) 1990-04-23 1997-06-03 Cellpro, Inc. Methods and device for culturing human hematopoietic cells and their precursors
FR2662607B1 (en) 1990-05-30 1992-08-28 Oreal COMPOSITION FOR USE IN BRAKING HAIR LOSS AND INDUCING AND STIMULATING THEIR GROWTH, CONTAINING ALKYL-2 AMINO-4 (OR DIALKYL-2-4) PYRIMIDINE OXIDE-3 DERIVATIVES.
US5411981A (en) 1991-01-09 1995-05-02 Roussel Uclaf Phenylimidazolidines having antiandrogenic activity
FR2677884B1 (en) 1991-06-20 1993-07-09 Oreal COMPOSITION FOR BRAKING HAIR LOSS BASED ON TRISUBSTITUTED N-OXIDE PYRIMIDINES OR THEIR SULFOCONJUGAL DERIVATIVES, NOVEL PYRIMIDINE N-OXIDE COMPOUNDS OR THEIR SULFOCONJUGAL DERIVATIVES.
FR2678929A1 (en) 1991-07-11 1993-01-15 Oreal COMPOSITIONS FOR BRAKING THE FALL OF HAIR AND FOR INDUCING AND STIMULATING THEIR GROWTH BASED ON 2,4-DIAMINO PYRIMIDINE 3-OXIDE DERIVATIVES, NOVEL 2,4-DIAMINO PYRIMIDINE 3-OXIDE DERIVATIVES.
FR2683531B1 (en) 1991-11-13 1993-12-31 Rhone Poulenc Rorer Sa NEW LUPANE DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
WO1993013664A2 (en) 1992-01-11 1993-07-22 Schering Agrochemicals Limited Biheterocyclic fungicidal compounds
US5460964A (en) 1992-04-03 1995-10-24 Regents Of The University Of Minnesota Method for culturing hematopoietic cells
ATE262592T1 (en) 1992-10-13 2004-04-15 Univ Duke METHOD FOR DETECTING ALZHEIMER'S DISEASE
US5445164A (en) 1993-05-11 1995-08-29 Gynetech, Inc. Cervical tissue sampling device
EP0722331A4 (en) 1993-08-25 1997-10-01 Systemix Inc Method for producing a highly enriched population of hematopoietic stem cells
TW369521B (en) 1993-09-17 1999-09-11 Smithkline Beecham Corp Androstenone derivative
US5409813A (en) 1993-09-30 1995-04-25 Systemix, Inc. Method for mammalian cell separation from a mixture of cell populations
FR2711060B1 (en) 1993-10-13 1995-11-17 Oreal Method for modifying the growth of hair and / or hair and compositions which can be used for this purpose.
SE9303444D0 (en) 1993-10-20 1993-10-20 Kabi Pharmacia Ab New use of prostaglandins
US5405842A (en) * 1994-01-28 1995-04-11 Silverman; Bernard A. Treatment of steroid dependent asthmatics
FR2719481B1 (en) 1994-05-05 1996-05-31 Oreal Composition based on antifungal compounds and halogenated antibacterial compounds to reduce hair loss.
US5516779A (en) 1994-06-08 1996-05-14 Merck & Co., Inc. 17β-substituted-6-azasteroid derivatives useful as 5α-reductase inhibitors
US5677136A (en) 1994-11-14 1997-10-14 Systemix, Inc. Methods of obtaining compositions enriched for hematopoietic stem cells, compositions derived therefrom and methods of use thereof
US5807895A (en) 1994-11-29 1998-09-15 Schwarz Pharma, Inc. Use of prostaglandin E1, E2 or analogs to prevent renal failure induced by medical tests that utilize contrast media agents
US5529769A (en) 1994-12-20 1996-06-25 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Cosmetic compositions containing betulinic acid
FR2732597B1 (en) 1995-04-05 1997-05-16 Oreal USE IN A COMPOSITION AS A CYCLOOXYGENASE ACTIVATOR AND/OR STABILIZER OF AT LEAST ONE 6-SUBSTITUTE PYRIMIDINE DERIVATIVE
US5631282A (en) 1995-06-07 1997-05-20 Merck & Co., Inc. Triterpenes
US6080772A (en) 1995-06-07 2000-06-27 Sugen, Inc. Thiazole compounds and methods of modulating signal transduction
FR2739553B1 (en) 1995-10-06 1998-01-02 Oreal USE OF BRADYKININE ANTAGONISTS TO STIMULATE OR INDUCE HAIR GROWTH AND / OR STOP THE HAIR LOSS
JP3049593B2 (en) 1996-05-01 2000-06-05 株式会社ビメーク Hair restorer
US6281227B1 (en) 1996-12-13 2001-08-28 Aventis Pharma Deutschland Gmbh Sulfonic acid sulfonylamino n-(heteroaralkyl)-azaheterocyclylamide compounds
CA2279967C (en) 1997-02-04 2006-08-22 Murray A. Johnstone Method of enhancing hair growth
JP3217293B2 (en) 1997-04-17 2001-10-09 株式会社アールテック・ウエノ Hair growth / hair restorer
WO1999002147A1 (en) 1997-07-09 1999-01-21 Androsolutions, Inc. Improved methods and compositions for treating male erectile dysfunction
WO1999031125A1 (en) 1997-12-12 1999-06-24 University Of Southern California Wound healing compositions
US6214533B1 (en) 1998-04-10 2001-04-10 Konica Corporation Thermally developable photosensitive material
US7473528B2 (en) 1999-01-06 2009-01-06 Genenews Inc. Method for the detection of Chagas disease related gene transcripts in blood
US20040241726A1 (en) 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of allergies related gene transcripts in blood
US20040241727A1 (en) 1999-01-06 2004-12-02 Chondrogene Limited Method for the detection of schizophrenia related gene transcripts in blood
US8068897B1 (en) 1999-03-01 2011-11-29 Gazdzinski Robert F Endoscopic smart probe and method
WO2000054808A1 (en) 1999-03-16 2000-09-21 Toray Industries, Inc. Prostaglandin ep4 receptor agonist and treatment method
AU7360000A (en) 1999-09-09 2001-04-10 Androsolutions, Inc. Methods and compositions for preventing and treating prostate disorders
US20020013294A1 (en) 2000-03-31 2002-01-31 Delong Mitchell Anthony Cosmetic and pharmaceutical compositions and methods using 2-decarboxy-2-phosphinico derivatives
US20020172693A1 (en) 2000-03-31 2002-11-21 Delong Michell Anthony Compositions and methods for treating hair loss using non-naturally occurring prostaglandins
WO2001072268A1 (en) 2000-03-31 2001-10-04 Toray Industries, Inc. Hair growth or hair formation controlling agents
US20020037914A1 (en) 2000-03-31 2002-03-28 Delong Mitchell Anthony Compositions and methods for treating hair loss using C16-C20 aromatic tetrahydro prostaglandins
US20020146439A1 (en) 2000-03-31 2002-10-10 Delong Mitchell Anthony Compositions and methods for treating hair loss using oximyl and hydroxylamino prostaglandins
FR2812190B1 (en) 2000-07-28 2003-01-31 Oreal USE OF NON-PROSTANOIC AGONISTS OF EP-2 AND / OR EP-4 PROSTAGLANDIN RECEPTORS AS A COSMETIC AGENT FOR MITIGATING, DECREASING OR STOPPING HAIR AND HAIR LOSS
FR2812191B1 (en) 2000-07-28 2003-10-17 Oreal USE OF PROSTAGLANDIN E2 RECEPTOR AGONISTS (EP-3) TO ATTENUATE, DECREASE OR STOP HAIR AND HAIR GROWTH IN COSMETIC PREPARATIONS
GEP20053675B (en) 2001-03-30 2005-11-25 Pfizer Prod Inc Pyridazinone Aldose Reductase Inhibitors
US7004913B1 (en) 2001-05-04 2006-02-28 Cdx Laboratories, Inc. Retractable brush for use with endoscope for brush biopsy
FR2825261B1 (en) 2001-06-01 2003-09-12 Maco Pharma Sa PLACENTAL BLOOD COLLECTION LINE COMPRISING A RINSING POCKET
US20030096823A1 (en) 2001-11-16 2003-05-22 Beryl Asp Method for the treatment of cardiotoxicity induced by antitumor compounds
JP2003286171A (en) 2002-03-28 2003-10-07 Sumitomo Pharmaceut Co Ltd Par inhibitor
US7320967B2 (en) 2002-04-23 2008-01-22 L'oreal Cosmetic composition, method of cosmetic treatment and preparation of a composition for promoting the growth and/or preventing or delaying the loss of hair
FR2838641B1 (en) 2002-04-23 2005-12-23 Oreal COSMETIC COMPOSITION, METHOD FOR COSMETIC TREATMENT AND PREPARATION OF COMPOSITION FOR PROMOTING GROWTH AND / OR PREVENTING OR DELAYING HAIR FALL
ES2294330T3 (en) 2002-08-02 2008-04-01 MERCK &amp; CO., INC. FURO DERIVATIVES (2,3-B) SUBSTITUTED PYRIDINE.
BR0314130A (en) 2002-09-20 2005-06-28 Seiji Kagawa Shape Memory Polybutylene Terephthalate Laminate Film and its Method of Production and Use, and Method of Production of the Polybutylene Terephthalate Film
FR2845000B1 (en) 2002-09-27 2005-05-27 Oreal USE OF A HETEROCYCLIC COMPOUND OR ONE OF ITS SALTS FOR STIMULATING OR INDUCING THE GROWTH OF HAIR AND / OR BRAKING THEIR FALL
RU2324693C2 (en) 2002-10-18 2008-05-20 Ф.Хоффманн-Ля Рош Аг 4-pyperazinyl-benzen-sulfanylindoles with affinity to 5-ht6 receptor
FR2845917B1 (en) 2002-10-21 2006-07-07 Negma Gild PHARMACEUTICAL COMPOSITION COMPRISING TENATOPRAZOLE AND ANTI-INFLAMMATORY
US7105117B2 (en) 2003-01-06 2006-09-12 General Motors Corporation Manufacturing method for increasing thermal and electrical conductivities of polymers
WO2004069213A2 (en) 2003-01-15 2004-08-19 L'oreal Cosmetic composition comprising a 2-alkylideneaminooxyacetamide
EP1594438B1 (en) 2003-02-12 2013-07-17 L'Oréal Use of an inhibitor of 15-hydroxyprostaglandin dehydrogenase in order to stimulate pigmentation of the skin or hair
JP2006522744A (en) 2003-04-11 2006-10-05 ノボ ノルディスク アクティーゼルスカブ Combination therapy using 11β-hydroxysteroid dehydrogenase type 1 inhibitor and glucocorticoid receptor agonist to minimize side effects associated with glucocorticoid receptor agonist therapy
WO2004089471A2 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S NEW PYRAZOLO[1,5-a] PYRIMIDINES DERIVATIVES AND PHARMACEUTICAL USE THEREOF
US7700583B2 (en) 2003-04-11 2010-04-20 High Point Pharmaceuticals, Llc 11β-hydroxysteroid dehydrogenase type 1 active compounds
JP2006522750A (en) 2003-04-11 2006-10-05 ノボ ノルディスク アクティーゼルスカブ Combination therapy using 11β-hydroxysteroid dehydrogenase type 1 inhibitors and antihypertensive agents to treat metabolic syndrome and related diseases and disorders
US7189724B2 (en) 2003-04-15 2007-03-13 Valeant Research And Development Quinoxaline derivatives having antiviral activity
SE0301373D0 (en) 2003-05-09 2003-05-09 Astrazeneca Ab Novel compounds
CN1589793A (en) 2003-07-24 2005-03-09 山东绿叶天然药物研究开发有限公司 Application of tannic acid berberine in preparation of medicine for treating ulcero colonitis
EP1675861B1 (en) 2003-08-29 2015-12-23 Vernalis (R&D) Ltd. Pyrimidothiophene compounds
US20050187221A1 (en) 2003-09-08 2005-08-25 Japan Tobacco Inc. Method of treating ischemia reperfusion injury
JP4579246B2 (en) 2003-09-24 2010-11-10 オンコセラピー・サイエンス株式会社 How to diagnose breast cancer
JPWO2005030773A1 (en) 2003-09-26 2006-12-07 大日本住友製薬株式会社 New pyrazolopyrimidine derivatives
FR2860431A1 (en) 2003-10-02 2005-04-08 Oreal Use of phenylazo benzene, pyridine or pyridazine derivatives as agents for inducing and/or stimulating growth of human keratinic fibers and/or inhibiting their loss and/or increasing their density
US20050209181A1 (en) 2003-11-05 2005-09-22 Huda Akil Compositions and methods for diagnosing and treating mental disorders
BRPI0418334A (en) 2003-12-31 2007-05-02 Basell Poliolefine Srl loaded olefin polymer compositions having improved mechanical properties and peel strength
DE602005014621D1 (en) 2004-03-09 2009-07-09 Boehringer Ingelheim Pharma 3-A4-HETEROCYCLYL-1,2,3-TRIAZOL-1-YLÜ-N-ARYLBENZAMIDES AS INHIBITORS OF CYTOKIN PRODUCTION FOR THE TREATMENT OF CHRONIC INFLAMMATORY DISEASES
EP1764367A1 (en) 2004-04-12 2007-03-21 Sankyo Company, Limited Thienopyridine derivatives
JP2005325099A (en) 2004-04-12 2005-11-24 Sankyo Co Ltd Thienopyridine derivative
US7981229B2 (en) 2004-06-04 2011-07-19 Cornerstone Research Group, Inc Method of making and using shape memory polymer patches
AU2005275182A1 (en) 2004-07-22 2006-02-23 Ptc Therapeutics, Inc. Thienopyridines for treating Hepatitis C
US7147626B2 (en) 2004-09-23 2006-12-12 Celgene Corporation Cord blood and placenta collection kit
WO2006048266A2 (en) 2004-11-04 2006-05-11 Roche Diagnostics Gmbh Gene expression profiling of leukemias with mll gene rearrangements
WO2006048264A2 (en) 2004-11-04 2006-05-11 Roche Diagnostics Gmbh Gene expression profiling in acute lymphoblastic leukemia (all), biphenotypic acute leukemia (bal), and acute myeloid leukemia (aml) m0
US20070155884A1 (en) 2004-11-12 2007-07-05 Basell Poliolefine Italia S.R.L. Filled olefin polymer compositions having improved mechanical properties and scratch resistance
US8000795B2 (en) 2004-12-17 2011-08-16 Lozano Andres M Cognitive function within a human brain
EP1833485A2 (en) 2005-01-05 2007-09-19 Novacea, Inc. Prevention of thrombotic disorders with active vitamin d compounds or mimics thereof
JP5094412B2 (en) 2005-01-19 2012-12-12 メルク・シャープ・エンド・ドーム・コーポレイション Bicyclic pyrimidines as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
WO2006096649A2 (en) 2005-03-05 2006-09-14 Harc (Houston Advanced Research Center) Methods and biomarkers for detecting nanoparticle exposure
WO2006098961A2 (en) 2005-03-09 2006-09-21 Schering Corporation Fused thieno [2, 3-b] pyridine and thiazolo [5, 4-b] pyridine compounds for inhibiting ksp kinesin activity
AR053579A1 (en) * 2005-04-15 2007-05-09 Genentech Inc TREATMENT OF INTESTINAL INFLAMMATORY DISEASE (IBD)
US20090118337A1 (en) 2005-06-03 2009-05-07 Davis Pamela B Methods and compositions for treating inflammation
WO2006138275A2 (en) 2005-06-13 2006-12-28 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20070071699A1 (en) 2005-06-28 2007-03-29 L'oreal Benzylidene-1,3-thiazolidine-2,4-dione compounds for promoting and/or inducing and/or stimulating the pigmentation of keratin materials and/or for limiting their depigmentation and/or whitening
US20070059265A1 (en) * 2005-06-28 2007-03-15 L'oreal Benzylidene-1,3-thiazolidine-2,4-dione compounds for stimulating or inducing the growth and/or for reducing the loss and/or for increasing the density of keratin fibers
EP2298895A1 (en) 2005-07-27 2011-03-23 Oncotherapy Science, Inc. Method of diagnosing small cell lung cancer
US7875721B2 (en) 2005-08-04 2011-01-25 Stc.Unm Compounds for binding to ERα/β and GPR30, methods of treating disease states and conditions mediated through these receptors and identification thereof
KR20080052630A (en) 2005-09-01 2008-06-11 어레이 바이오파마 인크. Raf inhibitor compounds and methods of use thereof
PE20070619A1 (en) 2005-09-27 2007-07-02 Wyeth Corp I HAVE (2,3-b) PYRIDIN-5-CARBONITRILES AS PROTEIN KINASE INHIBITORS
US20070078175A1 (en) 2005-10-05 2007-04-05 L'oreal Administration of novel phenylfurylmethylthiazolidine-2,4-dione and phenylthienylmethylthiazolidine-2,4-dione compounds for stimulating or inducing the growth of keratinous fibers and/or slowing loss thereof
EP1963337B1 (en) 2005-12-20 2010-09-01 Richter Gedeon Nyrt. THIENO[2,3-b]PYRIDINE DERIVATIVES
CA2643802A1 (en) 2006-02-27 2007-09-07 Alexander Michalow Methods for regulating neurotransmitter systems by inducing counteradaptations
AU2007220040A1 (en) 2006-02-27 2007-09-07 The Board Of Trustees Of The Leland Stanford Junior University Methods to identify inhibitors of the unfolded protein response
MX2008013583A (en) 2006-04-26 2008-10-31 Genentech Inc Phosphoinositide 3-kinase inhibitor compounds and pharmaceutical compositions containing them.
CA2670083A1 (en) 2006-11-20 2008-05-29 Alantos Pharmaceuticals Holding, Inc. Heterobicyclic metalloprotease inhibitors
CA2679866A1 (en) 2007-03-09 2008-09-18 High Point Pharmaceuticals, Llc Indole- and benzimidazole amides as hydroxysteroid dehydrogenase inhibitors
US20100120732A1 (en) * 2007-03-09 2010-05-13 Kowa Co., Ltd. Agent for prevention and/or treatment of systemic lupus erythematosus
WO2009029669A1 (en) 2007-08-27 2009-03-05 Novelmed Therapeutics, Inc. Method of inhibiting complement activation with factor bb specific antibodies
AR060498A1 (en) 2007-04-17 2008-06-18 Richter Gedeon Vegyeszet HAIR COMPOUNDS [2,3-B] PIRIDINES
JP2010529195A (en) 2007-06-14 2010-08-26 シェーリング コーポレイション Imidazopyrazine as an inhibitor of protein kinase
KR100901127B1 (en) 2007-06-22 2009-06-08 한국과학기술연구원 Marker genes based on doxorubicin treatment for screening of drug inducing cardiotoxicity and screening method using thereof
US20090007243A1 (en) 2007-06-27 2009-01-01 Trusteer Ltd. Method for rendering password theft ineffective
US8637009B2 (en) 2007-07-10 2014-01-28 The Trustees Of Columbia University In The City Of New York Thermostabilization of proteins
FR2920309B1 (en) 2007-08-28 2010-05-28 Galderma Res & Dev USE OF TRAVOPROST TO TREAT THE FALL OF HAIR
DE102007049451A1 (en) 2007-10-16 2009-04-23 Merck Patent Gmbh 5-Cyano-thienopyridine
WO2009073460A2 (en) 2007-12-03 2009-06-11 Bausch & Lomb Incorporated Inhibition of 11 beta-hydroxysteroid dehydrogenase type 1 for ocular neuroprotection
US9216983B2 (en) 2007-12-21 2015-12-22 Board Of Regents, University Of Texas System Dihydroorotate dehydrogenase inhibitors with selective anti-malarial activity
CA2709784A1 (en) 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
WO2009101263A2 (en) 2008-02-15 2009-08-20 Novobion Oy Soluble complexes of curcumin
JP2011516412A (en) 2008-03-05 2011-05-26 ビカス セラピューティクス,エルエルシー Compositions and methods for the treatment of cancer and mucositis
WO2009120877A2 (en) 2008-03-26 2009-10-01 The Johns Hopkins University Microrna-based diagnostic testing and therapies for inflammatory bowel disease and related diseases
US7629112B1 (en) 2008-05-30 2009-12-08 Eastman Kodak Company Color photographic materials with yellow minimum density colorants
JP5180882B2 (en) 2008-07-29 2013-04-10 株式会社プライムポリマー Polypropylene resin composition and molded article thereof
BRPI0918971A2 (en) * 2008-08-26 2015-12-01 Boehringer Ingelheim Int thienopyrimidines for pharmaceutical compositions
US20100093764A1 (en) 2008-10-13 2010-04-15 Devraj Chakravarty AMINES AND SULFOXIDES OF THIENO[2,3-d]PYRIMIDINE AND THEIR USE AS ADENOSINE A2a RECEPTOR ANTAGONISTS
GB2465405A (en) 2008-11-10 2010-05-19 Univ Basel Triazine, pyrimidine and pyridine analogues and their use in therapy
WO2010077101A2 (en) 2008-12-30 2010-07-08 조선대학교산학협력단 Novel thiazolidinedione derivative and use thereof
TWI558710B (en) 2009-01-08 2016-11-21 古利斯股份有限公司 Phosphoinositide 3-kinase inhibitors with a zinc binding moiety
WO2010091808A1 (en) 2009-02-13 2010-08-19 Bayer Schering Pharma Aktiengesellschaft Fused pyrimidines
WO2010111711A2 (en) 2009-03-27 2010-09-30 Zacharon Pharmaceuticals, Inc. Ganglioside biosynthesis modulators
KR20100137090A (en) 2009-06-22 2010-12-30 조선대학교산학협력단 Novel thiazolidinedione derivative and uses thereof
JP2012532889A (en) * 2009-07-09 2012-12-20 クレッシェンド セラピューティクス、エルエルシー Wound treatment method and scar degeneration method
JP5818266B2 (en) 2009-09-29 2015-11-18 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Antimalarial agents that are inhibitors of dihydroorotic acid dehydrogenase
EP2308883A1 (en) 2009-10-05 2011-04-13 Centre National De La Recherche Scientifique New derivatives of thieno[2,3-b]pyridine and 5,6,7,8 tetrahydrothieno[2,3 b]quinoline in particular useful in the treatment of malaria
WO2011094847A1 (en) 2010-02-04 2011-08-11 Penn Linda Z Methods and compositions for diagnosing and treating patients having multiple myeloma that respond to statin therapy
RU2016101363A (en) * 2010-02-08 2018-11-21 Прэари Фармасьютикалз, Ллк METHOD FOR TREATING DISEASES ASSOCIATED WITH Glucocorticoid Insensitivity
GB201012889D0 (en) 2010-08-02 2010-09-15 Univ Leuven Kath Antiviral activity of novel bicyclic heterocycles
GB201107197D0 (en) 2011-04-28 2011-06-15 Cxr Biosciences Ltd Compounds
JP6051632B2 (en) 2011-07-20 2016-12-27 日立化成株式会社 Abrasive and substrate polishing method
GB201115635D0 (en) 2011-09-09 2011-10-26 Univ Liverpool Compositions of lopinavir and ritonavir
WO2013041684A1 (en) 2011-09-23 2013-03-28 Academisch Medisch Centrum Materials and methods for prognosis of progression of barrett's esophagus
CA2857640C (en) 2011-12-02 2021-11-16 Fate Therapeutics, Inc. Enhanced stem cell composition
GB201120993D0 (en) 2011-12-06 2012-01-18 Imp Innovations Ltd Novel compounds and their use in therapy
JP6049143B2 (en) * 2011-12-15 2016-12-21 国立大学法人東京農工大学 Oligonucleotide, glucocorticoid sensitivity enhancer, pharmaceutical composition, and expression vector
CA2861462A1 (en) 2012-01-25 2013-08-01 Proteostasis Therapeutics, Inc. Proteasome activity modulating tricyclic compounds
KR101370670B1 (en) 2012-03-12 2014-03-06 조선대학교산학협력단 Flavone compounds with 15-hydroxyprostaglandin dehydrogenase inhibitory activity and uses thereof
US9801863B2 (en) 2012-04-16 2017-10-31 Case Western Reserve University Inhibitors of short-chain dehydrogenase activity for modulating hematopoietic stem cells and hematopoiesis
US9790233B2 (en) 2012-04-16 2017-10-17 Case Western Reserve University Compositions and methods of modulating 15-PGDH activity
KR101244964B1 (en) 2012-05-30 2013-03-18 조선대학교산학협력단 Use of dendropanax morbifera extracts for controlling a 15-hydroxyprostaglandin dehydrogenase and pge2 activity
US9273033B2 (en) 2012-11-20 2016-03-01 Merck Sharp & Dohme Corp. Substituted pyridone derivatives as PDE10 inhibitors
US9163027B2 (en) 2012-11-21 2015-10-20 Stategics, Inc. Substituted triazolo-pyrimidine compounds for modulating cell proliferation differentiation and survival
WO2014160183A1 (en) 2013-03-13 2014-10-02 The United States Of America,As Represented By The Secretary,Department Of Health And Human Services Methods for modulating chemotherapeutic cytotoxicity
WO2014160947A1 (en) 2013-03-29 2014-10-02 The Board Of Trustees Of The Leland Stanford Junior University Dimethylarginine dimethylaminohydrolase inhibitors and methods of use thereof
JP6389173B2 (en) 2013-07-08 2018-09-12 株式会社プライムポリマー Propylene resin composition
BR112016006151A2 (en) 2013-09-25 2017-08-01 Vertex Pharma imidazopyridazines useful as inhibitors of the par-2 signaling pathway
CA2927730A1 (en) 2013-10-15 2015-05-07 Case Western Reserve University Compositions and methods of modulating short-chain dehydrogenase activity
WO2015077382A2 (en) 2013-11-19 2015-05-28 Fight Against Cancer Innovation Trust Combined cytology and molecular testing for early detection of esophageal adenocarcinoma
EA201692091A1 (en) 2014-04-18 2017-04-28 Милленниум Фармасьютикалз, Инк. CHINOXALINE COMPOUNDS AND THEIR APPLICATION
EP3179995B1 (en) 2014-08-12 2018-11-07 University of Pécs (Pécsi Tudományegyetem) Methods and materials for reducing ischemia-reperfusion injury
KR102255308B1 (en) * 2014-11-18 2021-05-24 삼성전자주식회사 Composition for preventing or treating a side effect of steroid in a subject compprising acetylsalicylic acid and use thereof
CN107109491A (en) 2014-12-23 2017-08-29 豪夫迈·罗氏有限公司 Composition and method for treating and diagnosing chemotherapy resistant cancer
GB201502020D0 (en) 2015-02-06 2015-03-25 Cancer Rec Tech Ltd Autotaxin inhibitory compounds
CN107921025A (en) 2015-03-08 2018-04-17 卡斯西部储备大学 Inhibitor for the short-chain dehydrogenase enzymatic activity for treating cystic fibrosis
EP3280398A4 (en) 2015-04-10 2018-12-12 Bioresponse LLC Self-emulsifying formulations of dim-related indoles
US20180118756A1 (en) 2015-04-14 2018-05-03 Case Western Reserve University Compositions and methods of modulating short-chain dehydrogenase activity
EP3095820B1 (en) 2015-05-22 2019-04-24 Borealis AG Fiber reinforced polymer composition
EP3095818B1 (en) 2015-05-22 2019-05-01 Borealis AG Polypropylene - carbon fiber composite
BR112018017228A2 (en) 2016-03-04 2019-02-05 Univ Leland Stanford Junior compositions and methods for muscle regeneration using prostaglandin e2
WO2018017582A1 (en) 2016-07-18 2018-01-25 Case Western Reserve University Inhibitors of short-chain dehydrogenase activity for promoting neurogenesis and inhibiting nerve cell death
US11690847B2 (en) 2016-11-30 2023-07-04 Case Western Reserve University Combinations of 15-PGDH inhibitors with corticosteroids and/or TNF inhibitors and uses thereof
WO2018100091A1 (en) 2016-11-30 2018-06-07 Institut Pasteur Human innate lymphoid cell precursors: identification, characterization, applications
AU2018215678A1 (en) 2017-02-06 2019-08-22 Board Of Regents Of The University Of Texas System Compositions and methods of modulating short-chain dehydrogenase activity
CN110891568A (en) 2017-04-07 2020-03-17 凯斯西储大学 Inhibitors of short-chain dehydrogenase activity for the treatment of coronary artery disorders
CN111132982A (en) 2017-05-26 2020-05-08 卡斯西部储备大学 Compositions and methods for modulating short-chain dehydrogenase activity
JP7372911B2 (en) 2017-06-09 2023-11-01 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Compositions and methods for preventing or treating muscle conditions
WO2019010482A1 (en) 2017-07-07 2019-01-10 Case Western Reserve University Compositions and methods for modulating cervical ripening
JP2019066312A (en) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
EP3781154A4 (en) 2018-04-04 2022-02-23 Case Western Reserve University Compositions and methods for treating renal injury
EP3919486B1 (en) 2018-04-25 2023-06-07 Bayer Aktiengesellschaft Novel heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
GB201807968D0 (en) 2018-05-16 2018-07-04 Naturex Sa Eutectic extract formation and purification
EP3828620A4 (en) 2018-08-24 2022-03-16 Shenzhen Shokz Co., Ltd. Spectacles
KR20210071976A (en) 2018-09-04 2021-06-16 마젠타 테라퓨틱스 인코포레이티드 Aryl hydrocarbon receptor antagonists and methods of use
CA3119973A1 (en) * 2018-11-21 2020-05-28 Enanta Pharmaceuticals, Inc. Functionalized heterocycles as antiviral agents
EA202191422A1 (en) 2018-11-21 2021-10-21 Кейс Вестерн Ризерв Юниверсити COMPOSITIONS AND METHODS FOR MODULATING THE ACTIVITY OF SHORT RENAL DEHYDROGENASE
JP2022524290A (en) 2019-01-31 2022-05-02 杏林製薬株式会社 15-PGDH inhibitor
KR20220019760A (en) 2019-06-11 2022-02-17 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 A method for rejuvenating aged tissue by inhibiting 15-hydroxyprostaglandin dehydrogenase (15-PGDH)
AU2021211732A1 (en) 2020-01-23 2022-08-25 Myoforte Therapeutics, Inc. PGDH inhibitors and methods of making and using
JP2023515081A (en) 2020-02-21 2023-04-12 ケース ウエスタン リザーブ ユニバーシティ Compositions and methods for treating kidney damage
IL298043A (en) 2020-05-20 2023-01-01 Rodeo Therapeutics Corp Compositions and methods of modulating short-chain dehydrogenase activity
CN116133683A (en) 2020-06-11 2023-05-16 莱兰斯坦福初级大学评议会 Regeneration of aged tissues and organs by inhibition of the PGE2 degrading enzyme 15-PGDH
EP4192455A1 (en) 2020-08-07 2023-06-14 Case Western Reserve University Inhibitors of short-chain dehydrogenase activity for treating neurodegeneration

Also Published As

Publication number Publication date
US20200061073A1 (en) 2020-02-27
EP3548035A4 (en) 2020-07-22
JP2020502070A (en) 2020-01-23
EP3548035A1 (en) 2019-10-09
WO2018102552A1 (en) 2018-06-07
US11690847B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
US20230355636A1 (en) Combinations of 15-pgdh inhibitors with corticosteroids and/or tnf inhibitors and uses thereof
AU2021204985B2 (en) Compositions and methods of modulating 15-pgdh activity
AU2021200610B2 (en) Inhibitors of short-chain dehydrogenase activity for treating fibrosis
US20230165883A1 (en) Inhibitors of short-chain dehydrogenase activity for treating coronary disorders
ES2353822T3 (en) TRICICLIC COMPOUNDS AND THEIR USE AS MODULATORS OF THE GLUCOCORTICOID RECEPTOR.
US9549934B2 (en) Cyclohexylamine derivatives having β2 adrenergic agonist and M3 muscarinic antagonist activities
EP2776426A1 (en) New cyclohexylamine derivatives having beta 2 adrenergic agonist and m3 muscarinic antagonist activities
KR100878421B1 (en) Cyclic diamine compounds having five-membered cyclic groups
US20230114153A1 (en) Imidazolyl thiopehene sulfonyl carbamates for use in the treatment of diseases associated with angiotensin ii
US9000032B2 (en) Substituted cyclopentenes as therapeutic agents
KR20240035402A (en) Novel Selective Angiotensin II Compounds
US20230159438A1 (en) Arylamides and methods of use thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION