US20230329346A1 - Electronic vaporization device, vaporizer, and vaporization assembly - Google Patents

Electronic vaporization device, vaporizer, and vaporization assembly Download PDF

Info

Publication number
US20230329346A1
US20230329346A1 US18/343,422 US202318343422A US2023329346A1 US 20230329346 A1 US20230329346 A1 US 20230329346A1 US 202318343422 A US202318343422 A US 202318343422A US 2023329346 A1 US2023329346 A1 US 2023329346A1
Authority
US
United States
Prior art keywords
vaporization
electrode
sealing ring
vaporizer
vent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/343,422
Inventor
Guoliang OU
Aping Zhou
Yisong WEI
Xushan XIE
Zhenyu Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Smoore Technology Ltd
Original Assignee
Shenzhen Smoore Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Smoore Technology Ltd filed Critical Shenzhen Smoore Technology Ltd
Assigned to SHENZHEN SMOORE TECHNOLOGY LIMITED reassignment SHENZHEN SMOORE TECHNOLOGY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OU, GUOLIANG, WEI, YISONG, WU, ZHENYU, XIE, Xushan, ZHOU, APING
Publication of US20230329346A1 publication Critical patent/US20230329346A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures

Definitions

  • the present invention relates to the field of vaporization, and in particular, to an electronic vaporization device, a vaporizer, and a vaporization assembly.
  • an electronic vaporization device configured to inhale aerosols generally uses a porous ceramic to manufacture a vaporization core, and a lead of the porous ceramic vaporization core generally needs to run through the porous ceramic, leading to an internal structure change of the porous ceramic and cracking.
  • a circuit wiring length is relatively long, increasing manufacturing difficulty and production costs of the electronic vaporization device.
  • the present invention provides a vaporization assembly, comprising: a cylindrical vaporization core comprising a first end and a second end opposite the first end; and at least one sealing ring tightly attached to the first end and/or the second end, wherein a vent structure is arranged on the sealing ring.
  • FIG. 1 is a three-dimensional schematic structural diagram of an electronic vaporization device according to some embodiments of the present invention.
  • FIG. 2 is a three-dimensional schematic exploded structural view of the electronic vaporization device shown in FIG. 1 .
  • FIG. 3 is a schematic longitudinal cross-sectional structural view of a vaporizer of the electronic vaporization device shown in FIG. 2 .
  • FIG. 4 is a three-dimensional schematic exploded structural view of the vaporizer shown in FIG. 2 .
  • FIG. 5 is a schematic longitudinal cross-sectional structural view of the vaporizer shown in FIG. 2 in a disassembled state.
  • FIG. 6 is a three-dimensional schematic exploded structural view of a vaporization main body shown in FIG. 4 .
  • FIG. 7 is a schematic longitudinal cross-sectional structural view of the vaporization main body shown in FIG. 4 in a disassembled state.
  • FIG. 8 is a three-dimensional schematic exploded structural view of a vaporization core shown in FIG. 6 .
  • FIG. 9 is a partial three-dimensional schematic structural diagram of a vaporization main body according to some other embodiments of the present invention.
  • FIG. 10 is a schematic longitudinal cross-sectional structural view of a vaporization main body shown in FIG. 9 .
  • FIG. 11 is a schematic longitudinal cross-sectional structural view of the vaporization main body shown in FIG. 9 in a disassembled state.
  • FIG. 12 is a schematic longitudinal cross-sectional structural view of a vaporization main body according to still some embodiments of the present invention.
  • FIG. 13 is a three-dimensional schematic exploded structural view of the vaporization main body shown in FIG. 12 .
  • FIG. 14 is a schematic longitudinal cross-sectional structural view of the vaporization main body shown in FIG. 12 in a disassembled state.
  • FIG. 15 is a three-dimensional schematic exploded structural view of a vaporization core shown in FIG. 12 .
  • FIG. 16 is a three-dimensional schematic structural diagram of a vaporizer according to further some embodiments of the present invention.
  • FIG. 17 is a schematic longitudinal cross-sectional structural view of the vaporizer shown in FIG. 16 .
  • FIG. 18 is a three-dimensional schematic exploded structural view of the vaporizer shown in FIG. 16 .
  • FIG. 19 is a schematic longitudinal cross-sectional structural view of the vaporizer shown in FIG. 16 in a disassembled state.
  • FIG. 20 is a three-dimensional schematic exploded structural view of a vaporization core shown in FIG. 18 .
  • FIG. 21 is a schematic longitudinal cross-sectional structural view of a vaporization main body according to still some embodiments of the present invention.
  • the present invention provides an improved electronic vaporization device, a vaporizer, and a vaporization assembly.
  • the present invention provides a vaporization assembly, including a cylindrical vaporization core, the vaporization core including a first end and a second end opposite to the first end; and the vaporization assembly further including a sealing ring tightly attached to the first end and/or the second end, where a vent structure is arranged on the sealing ring.
  • the vent structure includes a vent groove formed on a surface attached to the first end and/or the second end of the sealing ring.
  • the vent groove is distributed on the surface in a shape of a labyrinth.
  • the sealing ring includes a cylindrical first sealing portion and an annular second sealing portion connected to an upper end edge of the first sealing portion, the first sealing portion is sleeved on a side wall surface of the first end and/or the second end, and the second sealing portion covers an end surface of the first end and/or the second end.
  • the vent groove continuously runs through inner wall surfaces of the first sealing portion and the second sealing portion.
  • the vent groove includes capillary force.
  • the vaporization assembly includes a first sealing ring and a second sealing ring, the first sealing ring and the second sealing ring are tightly attached to the first end and the second end respectively, and inner wall surfaces of the first sealing ring and the second sealing ring are both provided with the vent groove.
  • a vaporizer including the vaporization assembly according to any one of the foregoing, a liquid storage cavity in fluid connection to a periphery of the vaporization core, and an airflow channel running through a middle portion of the vaporization core, where the airflow channel is in air communication with the liquid storage cavity through the vent structure.
  • the vaporizer includes a vent tube, the vent tube defines a columnar vaporization cavity, the vaporization core and the sealing ring are axially arranged in the vaporization cavity, and the sealing ring implements liquid sealing between an end portion corresponding to the vaporization core and an inner wall surface of the vaporization cavity.
  • a liquid inlet hole communicating the liquid storage cavity with an outer side wall of the vaporization core is further formed on the vent tube.
  • the vaporizer further includes a housing arranged on a periphery of the vent tube, where the liquid storage cavity is defined between an inner wall surface of the housing and an outer wall surface of the vent tube.
  • the vent tube is conductive
  • the vaporizer further includes an electrode claw electrically connecting the vent tube to the end portion of the vaporization core.
  • the electrode claw includes a mounting portion and at least one elastic conductive arm connected to the mounting portion, the mounting portion is mounted on one of the vent tube and the end portion of the vaporization core, and the at least one elastic conductive arm elastically abuts against the other of the vent tube and the end portion of the vaporization core.
  • the vaporizer further includes a conductive bottom base, where the vent tube is longitudinally mounted on a top portion of the bottom base and is electrically connected to the bottom base.
  • the mounting portion is in a shape of a cylinder.
  • the mounting portion includes a fracture.
  • the mounting portion is in a shape of an annular sheet and is sandwiched between the sealing ring and an end surface of the vaporization core.
  • the vaporization core includes a cylindrical porous body, a heating element arranged on an inner surface of the porous body, and a first electrode and a second electrode connected to the heating element respectively.
  • the first electrode and the second electrode are respectively arranged on two end portions of the inner surface of the porous body.
  • the first electrode and the second electrode are distributed on an end surface of the porous body in a mutual insulation manner.
  • the vaporization assembly is arranged vertically, and the vent structure is only arranged on a sealing ring at an upper end.
  • the vaporization assembly is arranged vertically, and the vent structure is only arranged on a sealing ring at a lower end.
  • the vaporization assembly is arranged vertically, and the thickness of a material of a sealing ring at a lower end is greater than the thickness of a material of a sealing ring at an upper end.
  • An electronic vaporization device including the vaporizer according to any one of the foregoing and a battery device mechanically and electrically connected to the vaporizer.
  • a vent structure is arranged on a sealing ring to achieve vapor-liquid equilibrium, which has characteristics such as a simple structure and convenient operation.
  • FIG. 1 and FIG. 2 show an electronic vaporization device according to some embodiments of the present invention.
  • the electronic vaporization device may be provided for a user to inhale aerosols and may include a vaporizer 1 and a battery device 2 cooperating with the vaporizer 1 .
  • the vaporizer 1 may be configured to store and heat and vaporize a liquid aerosol-generation substrate such as liquid medicine, and output aerosols.
  • the battery device 2 may be configured to supply power to the vaporizer 1 .
  • the vaporizer 1 and the battery device 2 may be both in a shape of a cylinder and are mechanically and electrically connected to each other in an axial direction.
  • the vaporizer 1 and the battery device 2 are detachably connected to each other in a threaded connection manner. It may be understood that, the vaporizer 1 and the battery device 2 are not limited to being connected through threads, and may also be detachably connected to each other in a magnetic attraction manner. Further, it may be understood that, the vaporizer 1 and the battery device 2 are not limited to a shape of a cylinder, and may alternatively be in a shape of a column whose cross section is in a shape of an ellipse, a racetrack, or an irregular shape.
  • the vaporizer 1 may include a cylindrical vaporization main body 10 located at a lower portion and a suction nozzle component 20 axially connected to an upper end of the vaporization main body 10 .
  • the vaporization main body 10 is configured to store and heat and vaporize the liquid aerosol-generation substrate
  • the suction nozzle component 20 is configured to block the liquid aerosol-generation substrate in the vaporization main body 10 and output the aerosols.
  • the suction nozzle component 20 is embedded in the upper end of the vaporization main body 10 in a tight fitting manner, which is conducive to inject the liquid aerosol-generation substrate into the vaporization main body 10 .
  • the suction nozzle component 20 may be detachably connected to the upper end of the vaporization main body 10 .
  • the liquid aerosol-generation substrate may be added repeatedly, thereby prolonging a service life of the vaporizer 1 .
  • connection between the suction nozzle component 20 and the vaporization main body 10 may be non-detachable. That is, once the suction nozzle component and the vaporization main body are connected, the two components are locked and cannot be separated without destroying an existing structure.
  • the suction nozzle component and the vaporization main body may be integrally formed by adding a liquid injector, such as a vaporizer 1 c shown in FIG. 16 .
  • the vaporization main body 10 may include a bottom base 11 , a vent tube 12 , a housing 13 , a vaporization assembly 14 , an electrode column 15 , an insulating sealing ring 16 , a first electrode claw 17 , and a second electrode claw 18 that are assembled coaxially.
  • the bottom base 11 may be in a shape of a cylinder and conductive.
  • the vent tube 12 may also be conductive, is longitudinally embedded in an upper portion of the bottom base 11 , and is electrically connected to the bottom base 11 .
  • the vent tube 12 defines a columnar vaporization cavity 120 .
  • the housing 13 may be in a shape of a cylinder, is longitudinally sleeved on the upper portion of the bottom base 11 , and surrounds the vent tube 12 .
  • An annular liquid storage cavity 130 is defined between an inner wall surface of the housing 13 and an outer wall surface of the vent tube 12 .
  • a liquid inlet hole 122 communicating the liquid storage cavity 130 with the vaporization cavity 120 may be further formed on the vent tube 12 .
  • the vaporization assembly 14 may be in a shape of a cylinder and is longitudinally arranged in the vaporization cavity 120 .
  • a middle portion of the vaporization assembly 14 may form a longitudinally run-through airflow channel 140 .
  • the electrode column 15 longitudinally runs through a lower portion of the bottom base 11 and is electrically insulated from the bottom base 11 .
  • the lower portion of the bottom base 11 is longitudinally provided with an insulating sealing ring 16 , and the electrode column 15 further runs through the insulating sealing ring 16 , to implement insulating and sealing connection to the bottom base 11 .
  • One end of the first electrode claw 17 is fixed to an inner wall of the vent tube 12 and is electrically connected to the vent tube 12 , and the other end is in elastic contact with an upper end of the vaporization assembly 14 , so as to electrically connect the upper end of the vaporization assembly 14 to the vent tube 12 .
  • One end of the second electrode claw 18 is fixed to the electrode column 15 and is electrically connected to the electrode column 15 , and the other end is in elastic contact with a lower end of the vaporization assembly 14 , so as to electrically connect the lower end of the vaporization assembly 14 to the electrode column 15 .
  • the electrode column 15 is configured to be electrically connected to a positive electrode of the battery device 2
  • the bottom base 11 is configured to be electrically connected to a negative electrode of the battery device 2 , to form an electrical loop. Therefore, after flowing out of the positive electrode of the battery device 2 , a current can flow through the electrode column 15 and the second electrode claw 18 sequentially and reach the lower end of the vaporization assembly 14 ; and after running through the vaporization assembly 14 and causing the vaporization assembly 14 to generate heat, the current reaches the upper end of the vaporization assembly 14 , and then flows back to the negative electrode of the battery device 2 after flowing through the first electrode claw 17 , the vent tube 12 , and the bottom base 11 sequentially. It may be understood that, in some embodiments, the electrode column 15 and the bottom base 11 may alternatively be electrically connected to the negative electrode and the positive electrode of the battery device 2 respectively. In this case, a flowing direction of the current is opposite to the foregoing flowing direction.
  • the bottom base 11 may be integrally formed by using a metal material and may include a circular base 111 , a first mounting tube 112 longitudinally arranged on an upper surface of the base 111 , and a second mounting tube 113 longitudinally arranged on a bottom surface of the base 111 .
  • a middle portion of the base 111 is provided with a longitudinally run-through through hole 1110 , and the through hole 1110 communicates the first mounting tube 112 with the second mounting tube 113 .
  • An outer wall surface of the second mounting tube 113 forms a threaded structure 1131 matching threads on an upper end of the battery device 2 , and a mounting ring 1132 matching the insulating sealing ring 16 is formed on an inner wall surface.
  • the vent tube 12 may be integrally formed by using a metal material and may include a first tube section 121 , a second tube section 123 axially connected to an upper end of the first tube section 121 , and a third tube section 125 axially connected to a lower end of the first tube section 121 , where inner diameters and outer diameters of the third tube section 125 , the first tube section 121 , and the second tube section 123 are sequentially decreased.
  • the first tube section 121 defines the vaporization cavity 120 , and there may be a plurality of liquid inlet holes 122 uniformly formed on a circumferential direction of a side wall of the first tube section 121 .
  • a block ring 1231 extending toward a central axis may be arranged at a position close to the first tube section 121 on an inner wall surface of the second tube section 123 , which is configured to provide axial resistance force for the first electrode claw 17 .
  • An end surface of the block ring 1231 close to the first electrode claw 17 may be a flat surface perpendicular to the central axis of the second tube section 123 , and an end surface away from the first electrode claw 17 may be a conical surface in a shape of a horn.
  • An outer diameter of the third tube section 125 matches an inner diameter of the first mounting tube 112 , so that the third tube section 125 is longitudinally embedded in the first mounting tube 112 and tightly fits the first mounting tube 112 .
  • the height of the third tube section 125 is equal to the height of the first mounting tube 112 .
  • a guide portion 1251 is further formed on an outer wall surface of the third tube section 125 close to a lower end thereof through inward retraction, and an outer diameter of the guide portion 125 is less than that of the first mounting tube 112 .
  • the housing 13 may be made of a transparent material, and an inner diameter thereof matches the outer diameter of the first mounting tube 112 , so that the housing 13 can be axially sleeved on the first mounting tube 112 through a lower end and tightly fits the first mounting tube 112 .
  • An upper end surface of the housing 13 may be slightly lower than an upper end surface of the second tube section 123 , to better match the suction nozzle component 20 .
  • the liquid storage cavity 130 is defined between the inner wall surface of the housing 13 and the inner wall surfaces of the first tube section 121 and the second tube section 123 , and an annular liquid injection opening 132 is formed between an upper end of the housing 13 and an upper end of the second tube section 123 .
  • the vaporization assembly 14 may include a longitudinally arranged cylindrical vaporization core 141 , a first sealing ring 142 sleeved on an upper end of the vaporization core 141 , and a second sealing ring 143 sleeved on a lower end of the vaporization core 141 .
  • the first sealing ring 142 may include an L-shaped cross section configured to seal a gap between the upper end of the vaporization core 141 and the upper end of the first tube section 121 .
  • the first sealing ring 142 may include a cylindrical first sealing portion 1421 and an annular second sealing portion 1423 connected to an upper end edge of the first sealing portion 1421 , where the first sealing portion 1421 is sleeved on an outer wall surface of the upper end of the vaporization core 141 , and the second sealing portion 1423 covers an upper end surface of the vaporization core 141 .
  • An inner diameter of the second sealing portion 1423 is preferentially greater than a pore size of the vaporization core 141 , so that the first electrode claw 17 may not be blocked by the second sealing portion 1423 when matching the vaporization core 141 .
  • the second sealing ring 143 may also include an L-shaped cross section configured to seal a gap between the lower end of the vaporization core 141 and the third tube section 125 .
  • the second sealing ring 143 may include a cylindrical third sealing portion 1431 and an annular fourth sealing portion 1433 connected to a lower end edge of the third sealing portion 1431 , where the third sealing portion 1431 is sleeved on an outer wall surface of the lower end of the vaporization core 141 , and the fourth sealing portion 1433 covers a lower end surface of the vaporization core 141 .
  • a middle portion of the outer wall surface of the vaporization core 141 may directly face the liquid inlet hole 122 .
  • a middle portion of the vaporization core 141 forms a longitudinally run-through central through hole 1410 .
  • An inner diameter of the fourth sealing portion 1433 is preferentially greater than the pore size of the vaporization core 141 , so that the second electrode claw 18 may not be blocked by the fourth sealing portion 1433 when matching the vaporization core 141 .
  • a first vent groove 1420 in a shape of a labyrinth is formed on an inner wall surface of the first sealing ring 142 , and the first vent groove 1420 runs through inner wall surfaces of the first sealing portion 1421 and the second sealing portion 1423 .
  • a size of the first vent groove 1420 may be designed to be small enough to include capillary force in a use state, so as to communicate the liquid storage cavity 130 with an airflow channel in the vent tube 12 when the liquid storage cavity 130 is under a relatively great negative pressure, thereby achieving vapor-liquid equilibrium and preventing dry heating.
  • a second vent groove 1430 in a shape of a labyrinth may also be provided on an inner wall surface of the second sealing ring 143 , and the second vent groove 1430 runs through inner wall surfaces of the third sealing portion 1431 and the fourth sealing portion 1433 and has a same function as the first vent groove 1420 .
  • the first sealing ring 142 and the second sealing ring 143 have a same structure and may be compatible, thereby facilitating automated mounting and reducing mold making costs for a sealing ring.
  • a vent structure may be arranged on any one of the first sealing ring 142 or the second sealing ring 143 , which have advantages and disadvantages respectively.
  • the vent structure is only arranged on the first sealing ring 142 , namely, the first vent groove 1420 of the first sealing ring 142 , if liquid leakage occurs, some leaked liquid may flow downward from the upper end of the vaporization core 141 and is vaporized again after being absorbed by the vaporization core 141 .
  • the vent structure is only arranged on the second sealing ring 143 , although the possible leaked liquid easily leaks into the bottom base 11 , an airflow direction in the airflow channel is flowing upward from the bottom, so that air supplement through the second sealing ring 143 is smoother.
  • the thickness of sealing silicone namely, a distance between a surface in contact with the vaporization core 141 of the second sealing ring 143 and a surface in contact with the vent tube 12 , at a lower end of the second sealing ring 143 is relatively large, so that the second sealing ring can better seal the lower end of the vaporization core 141 through interference fitting, thereby preventing liquid leakage.
  • the thickness of the sealing silicon of the second sealing ring is compared with the thickness of a corresponding part of the first sealing ring 142 .
  • the vaporization core 141 may include a cylindrical porous body 1411 , a heating element 1412 arranged on an inner wall surface of the porous body 1411 , a first electrode 1413 arranged at an upper end of the inner wall surface of the porous body 1411 and electrically connected to an upper end of the heating element 1412 , and a second electrode 1414 arranged at a lower end of the inner wall surface of the porous body 1411 and electrically connected to a lower end of the heating element 1412 .
  • the porous body 1411 may be a porous ceramic and may be a small-size porous body 1411 .
  • a length of the small-size porous body 1411 may range from 0.8 cm to 1.2 cm, and an inner diameter thereof may range from 0.18 cm to 0.22 cm.
  • the heating element 1412 may be made of a material such as a nickel-chromium alloy, an iron-chromium-aluminum alloy, or a silver-palladium alloy, and is first printed or coated on an inner surface of a green body of the porous body 1411 and then formed on the inner wall surface of the porous body 1411 in a sintering manner.
  • the heating element may include two long flat and clip-shaped heating circuits B arranged in parallel in an axial direction of the porous body 1411 and a connection circuit C connecting the two heating circuits in series, where a length direction of each of the two heating circuits B extending in a circumferential direction of the inner wall surface of the porous body 1411 , so that the entire heating element is C-shaped.
  • the heating element 1412 may further include an upper end circuit D and a lower end circuit A connected to an upper end and a lower end respectively, which are electrically connected to the first electrode 1413 and the second electrode 1414 respectively.
  • the first electrode 1413 and/or the second electrode 1414 may be made of a material such as silver or copper, and specifically, may be formed on the inner wall surface of the cylindrical porous body 1411 by coating/printing and sintering silver slurry or copper slurry.
  • the first electrode and/or the second electrode are/is at least partially connected to the heating element 1412 .
  • the first electrode 1413 and/or the second electrode 1414 may be C-shaped.
  • slurry of the heating element 1412 is first printed on the green body of the porous body 1411 , and slurry of the electrode is then printed or coated, and then the slurry is sintered together.
  • the width of a notch of the first electrode 1413 may be less than the width of a conductive portion 173 , so that the first electrode claw 17 is in electrical contact with all conductive portions 173 ; and the width of a notch of the second electrode 1414 may be less than the width of a conductive portion 183 , so that the second electrode claw 18 is in electrical contact with all conductive portions 183 .
  • the heating element 1412 may also be made of a metal heating sheet, and the porous body 1411 is also not limited to a porous ceramic material and may be made of any other suitable porous body material.
  • first electrode 1413 and/or the second electrode 1414 are/is not limited to being distributed on an end portion of the inner wall surface of the porous body 1411 in a shape of C, and may also distributed on an entire circumferential direction of the end portion of the inner wall surface of the porous body 1411 , namely, may be annular.
  • first electrode 1413 and/or the second electrode 1414 does not require opening holes and introducing leads in the porous body 1411 , so that an internal structure of the porous body 1411 is more complete, controllable, and reliable, and the product consistency is therefore well ensured.
  • use of leads may be avoided, thereby reducing the manufacturing difficulty and production costs, which is more apparent for the small-size porous body 1411 .
  • first electrode 1413 and the second electrode 1414 at two ends of the inner wall surface of the small-size porous body 1411 respectively may also have various benefits.
  • An area of an inner wall of the small-size porous body 1411 is quite small, if two electrodes are arranged at one end, areas of the two electrodes are excessive small and are not conducive to establish stable electrical connection with an electrode connector, and a problem of short circuit may easily occur.
  • deployment of the first electrode 1413 and the second electrode 1414 may be facilitated, and areas of the first electrode 1413 and the second electrode 1414 may be greater, thereby facilitating to establish stable electrical connection with the electrode connector.
  • the electrode column 15 includes a central hole 150 extending upward from a lower end surface, an air outlet hole 152 formed on a side wall of a top portion, and a clamping groove 154 formed on a side wall surface, where the air outlet hole 152 is in communication with the central hole 150 for air intaking.
  • the clamping groove 154 is configured to be clamped with the insulating sealing ring 16 .
  • An outer wall surface of the insulating sealing ring 16 forms a clamping groove 160 configured to be clamped with the mounting ring 1132 of the bottom base 11 .
  • the first electrode claw 17 may be made of a material such as phosphor copper or 316 stainless steel, and a gold plated coating may be arranged on a surface of the first electrode claw.
  • the first electrode claw 17 is made of a phosphor copper material, and an impedance of the phosphor copper material is relatively small.
  • the first electrode claw 17 may include a mounting portion 171 embedded in the inner wall surface of the second tube section 123 , three extension portions 172 connected to the mounting portion 171 , and three conductive portions 173 connected to the three extension portions 172 respectively. Each extension portion 172 and a corresponding conductive portion 173 form an elastic conductive arm of the first electrode claw 17 .
  • a quantity of elastic conductive arms of the first electrode claw 17 is not limited to three and may be one or more than one, and when the first electrode claw includes a plurality of elastic conductive arms, electrical connection may be more reliable and assembly may be more convenient.
  • the mounting portion 171 may be in a shape of a cylinder and includes a longitudinal fracture 1710 running through two side edges, where existence of the fracture 1710 causes deformation during mounting, thereby ensuring that the mounting portion 171 is better fixed to the inner wall surface of the second tube section 123 .
  • a horn-shaped guide surface 1210 is arranged at a junction of the second tube section 123 and the first tube section 121 .
  • the guide surface 1210 applies a radially inward component force to the mounting portion 171 of the first electrode claw 17 , so that the fracture 1710 of the mounting portion 171 is closed, an outer diameter is reduced, and the first electrode claw can be inserted into the second tube section 123 .
  • the mounting portion 171 provides a reaction force to the inner wall surface of the second tube section 123 , so that the mounting portion can be firmly fixed to the second tube section 123 . It may be understood that, in some embodiments, the mounting portion 171 may also be integrated together with the second tube section 123 .
  • the mounting portion 171 may also be axially embedded in an upper end of the central through hole 1410 of the vaporization core 141 and elastically abuts against and fixed to the first electrode 1413 , so that the elastic conductive arm extends out to be in elastic contact with the vent tube 12 .
  • the extension portion 172 may be in a shape of a bar and includes good elasticity, which first bends and extends by a certain distance from the mounting portion 171 toward a central axis of the mounting portion 171 and then extends in a direction parallel to the central axis of the mounting portion 171 and away from the mounting portion 171 , to provide space for bending of the conductive portion 173 in a direction away from the central axis of the mounting portion 171 and provide a good elastic characteristic.
  • extension portions 172 there are two or more than two extension portions 172 , to ensure more reliable electrical connection; and when there are a plurality of extension portions 172 , a best situation is that the extension portions are uniformly distributed at a lower side edge of the mounting portion 171 and extend downward.
  • the extension portion 172 first obliquely extends by a certain distance from the mounting portion 171 toward the central axis of the mounting portion 171 , and then extends out in a direction parallel to the central axis and away from the mounting portion 171 .
  • One conductive portion 173 is arranged at a tail end of each extension portion 172 , and is configured to be in elastic contact with the first electrode 1413 of the vaporization core 141 .
  • the conductive portion 173 may be in a shape of a spoon. Specifically, the conductive portion 173 first obliquely extends toward a direction away from the central axis of the mounting portion 171 , and then bends and obliquely extends toward a direction of the central axis. An inclined surface of the spoon-shaped structure leans inward and plays a role of guiding, and a bottom portion of the spoon-shaped structure is in arc transition, so that the spoon-shaped structure can be in better contact with the first electrode 1413 of the vaporization core 141 and may not scratch the first electrode 1413 during assembly.
  • a vertical distance between a bottom portion of the conductive portion 173 and the central axis is slightly greater than a radius of a position of the central through hole 1410 of the vaporization core 141 at the first electrode 1413 . Therefore, when the conductive portion 173 is axially inserted into the central through hole 1410 , because the conductive portion 173 includes an inclined surface leaning inward, a reaction force applied by the vaporization core 141 to the conductive portion 173 includes a component force toward the direction of the central axis, so that the extension portion 171 is elastically deformed toward the direction of the central axis, and the conductive portion 173 can be inserted in this case. After the conductive portion 173 is inserted into the central through hole 1410 , the elasticity of the extension portion 171 maintains close contact between the conductive portion 173 and the first electrode 1413 .
  • the second electrode claw 18 may be made of a material such as phosphor copper or 316 stainless steel, and a gold plated coating may be arranged on a surface of the second electrode claw.
  • the second electrode claw 18 is made of a phosphor copper material, and an impedance of the phosphor copper material is relatively small.
  • the second electrode claw 18 may include a mounting portion 181 sleeved on an upper portion of the electrode column 15 , an extension portion 182 connected to the mounting portion 181 , and a conductive portion 183 connected to the extension portion 182 .
  • the mounting portion 181 may be in a shape of a cylinder and includes a longitudinal fracture 1810 running through two side edges, where existence of the fracture 1810 causes deformation during mounting, thereby ensuring that the mounting portion 181 is better fixed to the upper portion of the electrode column 15 . It may be understood that, in some embodiments, the mounting portion 181 may also be integrated with the electrode column 15 . In some embodiments, the extension portion 182 may be in a shape of a bar and includes good elasticity.
  • extension portions 182 there are two or more than two extension portions 182 , to ensure more reliable electrical connection; and when there are a plurality of extension portions 181 , a best situation is that the extension portions are uniformly distributed at a lower side edge of the mounting portion 181 and extend downward.
  • One conductive portion 183 is arranged at a tail end of each extension portion 182 , and is configured to be in elastic contact with the second electrode 1414 of the vaporization core 141 .
  • the conductive portion 183 may be in shape of a spoon.
  • An inclined surface of the spoon-shaped structure leans inward and plays a role of guiding, and a bottom portion of the spoon-shaped structure is in arc transition, so that the spoon-shaped structure can be in better contact with the second electrode 1414 of the vaporization core 141 and may not scratch the second electrode 1414 during assembly.
  • the second electrode claw 18 and the first electrode claw 17 may have a same structure and may be compatible. In this way, the assembly difficulty and costs may be reduced.
  • the first electrode claw 17 and the second electrode claw 18 implement quick electrical contact and conduction between components, which is more convenient and quick in operations when compared with an implementation of lead welding in the related art, so that automated assembly of products can be implemented more easily.
  • the serial numbers before the steps are only provided for ease of statement, and do not represent a sequence of the steps.
  • the vent tube combination body may be first constructed, and the bottom base combination body is then constructed.
  • the suction nozzle component 20 may include an annular block portion 21 and a flat suction nozzle portion 22 connected to the annular block portion 21 , where the annular block portion 21 is configured to be embedded in the annular liquid injection opening 132 at the upper end of the vaporization main body 10 .
  • a middle portion of the suction nozzle portion 22 is provided with a longitudinal air guide hole 220 , and the air guide hole 220 is configured to be in communication with the upper end of the second tube section 123 of the vent tube 12 , to output a mixture of aerosols and air.
  • the liquid aerosol-generation substrate is first injected in the liquid storage cavity 130 of the vaporization main body 10 through the liquid injection opening 132 , the suction nozzle component 20 is then inserted in the liquid injection opening 132 to seal the liquid storage cavity 130 after the liquid storage cavity is filled, and the air guide hole 220 of the suction nozzle component 20 is in communication with the vent tube 12 .
  • the liquid aerosol-generation substrate reaches a periphery of the vaporization core 141 through the liquid inlet hole 122 , and the porous body 1411 of the vaporization core 141 absorbs the liquid aerosol-generation substrate through capillary force to the inner surface so as to be in contact with the heating element 1412 .
  • the vaporization assembly 1 is mounted onto the battery device 2 .
  • a user inhales through the suction nozzle portion 22 , as shown by arrows X in FIG. 3 , external air enters through the central hole 150 of the electrode column 15 , enters the central through hole 1410 of the vaporization core 141 after flowing through the through hole 1110 of the bottom base 11 , and is then outputted through the air guide hole 220 of the suction nozzle component 20 . Meanwhile, an air switch in the battery device 2 is conducted, to drive the battery device 2 to supply power to the vaporizer 1 .
  • the heating element 1412 of the vaporization core 141 generates heat after being energized, to heat and vaporize the liquid aerosol-generation substrate on the inner surface of the porous body 1411 to form aerosols, and the aerosols are carried out by an airflow after the aerosols are mixed in the air flowing through the central through hole 1410 .
  • FIG. 9 to FIG. 11 show a vaporization main body 10 a in some embodiments of the present invention, a housing is omitted in the figures, and the vaporization main body 10 a may be used as an alternative of the vaporization main body 10 .
  • the vaporization main body 10 a may include a bottom base 11 a , a vent tube 12 a , a vaporization assembly 14 a , an electrode column 15 a , an insulating sealing ring 16 a , a first electrode claw 17 a , and a second electrode claw 18 a that are assembled coaxially.
  • the bottom base 11 a may be in a shape of a cylinder and conductive.
  • the vent tube 12 a may also be conductive, is longitudinally embedded in an upper portion of the bottom base 11 a , and is electrically connected to the bottom base 11 a .
  • the vent tube 12 a defines a columnar vaporization cavity 120 a .
  • a liquid inlet hole 122 a communicating a liquid storage cavity with the vaporization cavity 120 a may be further formed on the vent tube 12 a .
  • the vaporization assembly 14 a may be in a shape of a cylinder and is longitudinally arranged in the vaporization cavity 120 a .
  • a middle portion of the vaporization assembly 14 a may form a longitudinally run-through airflow channel 140 a .
  • the electrode column 15 a longitudinally runs through a lower portion of the bottom base 11 a and is electrically insulated from the bottom base 11 a .
  • the lower portion of the bottom base 11 a is longitudinally provided with an insulating sealing ring 16 a
  • the electrode column 15 a further runs through the insulating sealing ring 16 a , to implement insulating and sealing connection to the bottom base 11 a .
  • One end of the first electrode claw 17 a is fixed to an inner wall of the vent tube 12 a and is electrically connected to the vent tube 12 a , and the other end is in elastic contact with an upper end of the vaporization assembly 14 a , so as to electrically connect the upper end of the vaporization assembly 14 a to the vent tube 12 a .
  • One end of the second electrode claw 18 a is fixed to the electrode column 15 a and is electrically connected to the electrode column 15 a , and the other end is in elastic contact with a lower end of the vaporization assembly 14 a , so as to electrically connect the lower end of the vaporization assembly 14 a to the electrode column 15 a.
  • the electrode column 15 a is configured to be electrically connected to a positive electrode of a battery device 2 a
  • the bottom base 11 a is configured to be electrically connected to a negative electrode of the battery device 2 a , to form an electrical loop.
  • a current can flow through the electrode column 15 a and the second electrode claw 18 a sequentially and reach the lower end of the vaporization assembly 14 a ; and after running through the vaporization assembly 14 a and causing the vaporization assembly 14 a to generate heat, the current reaches the upper end of the vaporization assembly 14 a , and then flows back to the negative electrode of the battery device 2 a after flowing through the first electrode claw 17 a , the vent tube 12 a , and the bottom base 11 a sequentially.
  • the electrode column 15 a and the bottom base 11 a may alternatively be electrically connected to the negative electrode and the positive electrode of the battery device 2 a respectively. In this case, a flowing direction of the current is opposite to the foregoing flowing direction.
  • the bottom base 11 a may be integrally formed by using a metal material and may include a circular base 111 a and a second mounting tube 113 a longitudinally arranged on a bottom surface of the base 111 a .
  • a middle portion of the base 111 a is provided with a longitudinally run-through through hole 1110 a , and the through hole 1110 a communicates a first tube section 121 a of the vent tube 12 a with the second mounting tube 113 a .
  • a mounting ring 1132 a matching the insulating sealing ring 16 a is formed on an inner wall surface of the second mounting tube 113 a .
  • An air inlet hole 1130 a is further formed on a side wall of the second mounting tube 113 a.
  • the vent tube 12 a may include a first tube section 121 a integrally formed with the bottom base 11 a and a second tube section 123 a axially embedded in an upper end of the first tube section 121 a and electrically connected to the first tube section 121 a .
  • the first tube section 121 a defines the vaporization cavity 120 a , and there may be a plurality of liquid inlet holes 122 a uniformly formed on a circumferential direction of a side wall of the first tube section 121 a .
  • a block ring 1231 a may be arranged at a position close to the first tube section 121 a on an inner wall surface of the second tube section 123 a , which is configured to provide axial resistance force for the first electrode claw 17 a.
  • the vaporization assembly 14 a may include a longitudinally arranged cylindrical vaporization core 141 a , a first sealing ring 142 a sleeved on an upper end of the vaporization core 141 a , and a second sealing ring 143 a sleeved on a lower end of the vaporization core 141 a .
  • the first sealing ring 142 a may include an L-shaped cross section configured to seal gaps between the upper end of the vaporization core 141 a with the first tube section 121 a and the second tube section 123 a .
  • the second sealing ring 143 a may also include an L-shaped cross section configured to seal a gap between the lower end of the vaporization core 141 a and the bottom base 11 a .
  • a middle portion of the outer wall surface of the vaporization core 141 a may directly face the liquid inlet hole 122 a .
  • the first sealing ring 142 a and the second sealing ring 143 a may have a same structure.
  • a first vent groove 1420 a in a shape of a labyrinth is formed on an inner wall surface of the first sealing ring 142 a .
  • a size of the first vent groove 1420 a may be designed to be small enough to include capillary force in a use state, so as to communicate the liquid storage cavity with an airflow channel in the vent tube 12 a when the liquid storage cavity is under a relatively great negative pressure, thereby achieving vapor-liquid equilibrium and preventing dry heating.
  • a second vent groove 1430 a in a shape of a labyrinth may also be provided on an inner wall surface of the second sealing ring 143 a , which has a same function as the first vent groove 1420 a .
  • a vent groove may be arranged on any one of the first sealing ring 142 a or the second sealing ring 143 a .
  • the first sealing ring 142 a and the second sealing ring 143 a may have a same structure and may be compatible.
  • the vaporization core 141 a may include a cylindrical porous body 1411 a , a heating element 1412 a arranged on an inner wall surface of the porous body 1411 a , a first electrode 1413 a arranged at an upper end of the inner wall surface of the porous body 1411 a and electrically connected to an upper end of the heating element 1412 a , and a second electrode 1414 a arranged at a lower end of the inner wall surface of the porous body 1411 a and electrically connected to a lower end of the heating element 1412 a .
  • a structure of the vaporization core 141 a may be the same as a structure of the vaporization core 141 , which may be compatible.
  • the electrode column 15 a includes a central hole 150 a extending downward from an upper end surface.
  • the electrode column 15 a may include a bottom wall 155 a to block the central hole 150 a , so that the central hole 150 a can accommodate leaked liquid and prevent the leaked liquid from leaking to the outside.
  • an upper end of an inner wall surface of the central hole 150 a is further provided with a block ring 156 a to block the second electrode claw 18 a .
  • An outer wall surface of the insulating sealing ring 16 a forms a clamping groove 160 a configured to be clamped with the mounting ring 1132 a of the bottom base 11 a.
  • the first electrode claw 17 a may be made of an elastic metal material, and may include a mounting portion 171 a embedded in the inner wall surface of the second tube section 123 a , an extension portion 172 a connected to the mounting portion 171 a , and a conductive portion 173 a connected to the extension portion 172 a .
  • the mounting portion 171 a may be in a shape of a cylinder and include a longitudinal fracture 1710 a running through upper and lower side edges, where existence of the fracture 1710 a causes the mounting portion 171 a to match an error of an inner diameter size of the second tube section 123 a , thereby improving the applicability.
  • the extension portion 172 a may be in a shape of a bar, and preferably, there may be three or more than three extension portions.
  • the three or more than three extension portions 171 a are uniformly connected to a lower side edge of the mounting portion 171 a and extend downward.
  • One conductive portion 173 a is arranged at a tail end of each extension portion 172 a , and is configured to be in elastic contact with the first electrode 1413 a of the vaporization core 141 a , so as to implement conduction and improve the assembly efficiency.
  • the first electrode claw 17 a and the first connector 17 may have a same structure, which may be compatible.
  • the second electrode claw 18 a may have a same structure as the first electrode claw 17 a , which may also be made of an elastic metal material and include a mounting portion 181 a embedded in the central hole 150 a of the electrode column 15 a , an extension portion 182 a connected to the mounting portion 181 a , and a conductive portion 183 a connected to the extension portion 182 a .
  • the mounting portion 181 a may be in a shape of a cylinder and include a longitudinal fracture 1810 a running through upper and lower side edges, where existence of the fracture 1810 a causes the mounting portion 181 a to match an error of a size of the central hole 150 a of the electrode column 15 a , thereby improving the applicability.
  • the extension portion 182 a may be in a shape of a bar, and preferably, there may be three or more than three extension portions. The three or more than three extension portions 181 a are uniformly connected to a lower side edge of the mounting portion 181 a and extend downward.
  • One conductive portion 183 a is arranged at a tail end of each extension portion 182 a , and is configured to be in elastic contact with the second electrode 1414 a of the vaporization core 141 a , so as to implement conduction and improve the assembly efficiency.
  • the second electrode claw 18 a and the second connector 18 may have a same structure, which may be compatible.
  • the first electrode claw 17 a and the second electrode claw 18 a implement electrical contact and conduction between components, which is more convenient and quick in operations when compared with an implementation of lead welding in the related art, so that automated assembly of products can be implemented more easily.
  • FIG. 12 to FIG. 14 show a vaporization main body 10 b in some embodiments of the present invention, where the vaporization main body 10 b may be used as an alternative of the vaporization main body 10 , and has same appearance as the vaporization main body 10 .
  • the vaporization main body 10 b may include a bottom base 11 b , a vent tube 12 b , a housing 13 b , a vaporization assembly 14 b , an electrode column 15 b , an insulating sealing ring 16 b , a first electrode claw 17 b , and a second electrode claw 18 b that are assembled coaxially.
  • the bottom base 11 b may be in a shape of a cylinder and conductive.
  • the vent tube 12 b may also be conductive, is longitudinally embedded in an upper portion of the bottom base 11 b , and is electrically connected to the bottom base 11 b .
  • the vent tube 12 b defines a columnar vaporization cavity 120 b .
  • the housing 13 b may be in a shape of a cylinder, is longitudinally sleeved on the upper portion of the bottom base 11 b , and surrounds the vent tube 12 b .
  • An annular liquid storage cavity 130 b is defined between an inner wall surface of the housing 13 b and an outer wall surface of the vent tube 12 b .
  • a liquid inlet hole 122 b communicating the liquid storage cavity 130 b with the vaporization cavity 120 b may be further formed on the vent tube 12 b .
  • the vaporization assembly 14 b may be in a shape of a cylinder and is longitudinally arranged in the vaporization cavity 120 b .
  • a middle portion of the vaporization assembly 14 b may form a longitudinally run-through central through hole 1410 b .
  • the electrode column 15 b longitudinally runs through a lower portion of the bottom base 11 b and is electrically insulated from the bottom base 11 b .
  • the lower portion of the bottom base 11 b is longitudinally provided with an insulating sealing ring 16 b , and the electrode column 15 b further runs through the insulating sealing ring 16 b , to implement insulating and sealing connection to the bottom base 11 b .
  • One end of the first electrode claw 17 b is fixed to an upper end of the vaporization assembly 14 a and is electrically connected to the upper end of the vaporization assembly 14 b , and the other end is in elastic contact with an inner wall of the vent tube 12 b , so as to electrically connect the upper end of the vaporization assembly 14 b to the vent tube 12 b .
  • One end of the second electrode claw 18 b is fixed to a lower end of the vaporization assembly 14 b and is electrically connected to the lower end of the vaporization assembly 14 b , and the other end is in elastic contact with the electrode column 15 b , so as to electrically connect the lower end of the vaporization assembly 14 b to the electrode column 15 b.
  • the electrode column 15 b is configured to be electrically connected to a positive electrode of a battery device 2 b
  • the bottom base 11 b is configured to be electrically connected to a negative electrode of the battery device 2 b , to form an electrical loop.
  • a current can flow through the electrode column 15 b and the second electrode claw 18 b sequentially and reach the lower end of the vaporization assembly 14 b ; and after running through the vaporization assembly 14 b and causing the vaporization assembly 14 b to generate heat, the current reaches the upper end of the vaporization assembly 14 b , and then flows back to the negative electrode of the battery device 2 b after flowing through the first electrode claw 17 b , the vent tube 12 b , and the bottom base 11 b sequentially.
  • the electrode column 15 b and the bottom base 11 b may alternatively be electrically connected to the negative electrode and the positive electrode of the battery device 2 b respectively. In this case, a flowing direction of the current is opposite to the foregoing flowing direction.
  • the bottom base 11 b may be integrally formed by using a metal material and may include a circular base 111 b , a first mounting tube 112 b longitudinally arranged on an upper surface of the base 111 b , and a second mounting tube 113 b longitudinally arranged on a bottom surface of the base 111 b .
  • a middle portion of the base 111 b is provided with a longitudinally run-through through hole 1110 b , and the through hole 1110 b communicates the first mounting tube 112 b with the second mounting tube 113 b .
  • An outer wall surface of the second mounting tube 113 b forms a threaded structure 1131 b matching threads on an upper end of the battery device 2 b , and a mounting ring 1132 b matching the insulating sealing ring 16 b is formed on an inner wall surface.
  • the bottom base 11 b and the bottom base 11 may have a same structure and may be compatible.
  • the vent tube 12 b may be integrally formed by using a metal material and may include a first tube section 121 b , a second tube section 123 b axially connected to an upper end of the first tube section 121 b , and a third tube section 125 b axially connected to a lower end of the first tube section 121 b , where inner diameters and outer diameters of the third tube section 125 b , the first tube section 121 b , and the second tube section 123 b are sequentially decreased.
  • the first tube section 121 b defines the vaporization cavity 120 b , and there may be a plurality of liquid inlet holes 122 b uniformly formed on a circumferential direction of a side wall of the first tube section 121 b .
  • An outer diameter of the third tube section 125 b matches an inner diameter of the first mounting tube 112 b , so that the third tube section 125 b is longitudinally embedded in the first mounting tube 112 b and tightly fits the first mounting tube 112 b .
  • the height of the third tube section 125 b is equal to the height of the first mounting tube 112 b .
  • a guide portion 1251 b is further formed on an outer wall surface of the third tube section 125 b close to a lower end thereof through inward retraction, and an outer diameter of the guide portion 125 b is less than that of the first mounting tube 112 b .
  • a horn-shaped guide surface 1210 b leaning outward may be arranged on an inner wall surface of a junction of the first tube section 121 b and the second tube section 123 b , which is configured to match the conductive portion 173 b of the first electrode claw 17 b , thereby facilitating smooth connection between the conductive portion 173 b and the vent tube 12 b , and facilitating quick assembly.
  • the housing 13 b may be made of a transparent material, and an inner diameter thereof matches the outer diameter of the first mounting tube 112 b , so that the housing 13 b can be axially sleeved on the first mounting tube 112 b through a lower end and tightly fits the first mounting tube 112 b .
  • An upper end surface of the housing 13 b may be slightly lower than an upper end surface of the second tube section 123 b , to better match the suction nozzle component 20 .
  • the liquid storage cavity 130 b is defined between the inner wall surface of the housing 13 b and the inner wall surfaces of the first tube section 121 b and the second tube section 123 b , and an annular liquid injection opening 132 b is formed between an upper end of the housing 13 b and an upper end of the second tube section 123 b.
  • the vaporization assembly 14 b may include a longitudinally arranged cylindrical vaporization core 141 b , a first sealing ring 142 b sleeved on an upper end of the vaporization core 141 b , and a second sealing ring 143 b sleeved on a lower end of the vaporization core 141 b .
  • the first sealing ring 142 b may include an L-shaped cross section configured to seal a gap between the upper end of the vaporization core 141 b and the upper end of the first tube section 121 b .
  • the second sealing ring 143 b may also include an L-shaped cross section configured to seal a gap between the lower end of the vaporization core 141 b and the third tube section 125 b .
  • a middle portion of the outer wall surface of the vaporization core 141 b may directly face the liquid inlet hole 122 b .
  • a middle portion of the vaporization core 141 b forms a longitudinally run-through central through hole 1410 b.
  • the vaporization core 141 b may include a cylindrical porous body 1411 b , a heating element 1412 b arranged on an inner wall surface of the porous body 1411 b , a first electrode 1413 b arranged at an upper end of the porous body 1411 b and electrically connected to an upper end of the heating element 1412 b , and a second electrode 1414 b arranged at a lower end of the porous body 1411 b and electrically connected to a lower end of the heating element 1412 b .
  • the heating element 1412 b may be formed on an inner wall surface of the porous body 1411 b in a manner of silk-screening, printing, or coating heating film slurry on an inner surface of a green body of the porous body 1411 b and then sintering the slurry to form a heating circuit.
  • the heating element may be spirally distributed on the inner wall surface of the porous body 1411 b along a longitudinal direction of the porous body 1411 b.
  • the first electrode 1413 b and/or the second electrode 1414 b may be formed on a surface of the cylindrical porous body 1411 b by coating and sintering silver slurry, and at least partially connected to the heating element 1412 b .
  • the first electrode 1413 b includes a cylindrical first electrode portion M and a circular ring-shaped second electrode portion N connected to an upper end edge of the first electrode portion M.
  • the first electrode portion M is formed at an upper end of the inner wall surface of the porous body 1411 b and is connected to the upper end of the heating element 1412 b .
  • the second electrode portion N is formed on an upper end surface of the heating element 1412 b and is connected to the first electrode claw 17 b .
  • the second electrode 1414 b includes a cylindrical third electrode portion P and a circular ring-shaped fourth electrode portion Q connected to a lower end edge of the third electrode portion P.
  • the third electrode portion P is formed at a lower end of the inner wall surface of the porous body 1411 b and is connected to the lower end of the heating element 1412 b .
  • the fourth electrode portion Q is formed on a lower end surface of the heating element 1412 b and is connected to the second electrode claw 18 b .
  • the first electrode 1413 b may not be provided with the first electrode portion M, and the second electrode 1414 b may not be provided with the third electrode portion P.
  • the first electrode 1413 b and the second electrode 1414 b are only arranged on an end surface of the porous body 1411 b .
  • a structure of an electrode becomes very simple, and a printing or coating forming process becomes simpler, thereby providing great convenience for the diversity of electrical connection.
  • a vaporization main body 1 d shown in FIG. 21 implements electrical connection through conductive silicone.
  • the electrode column 15 b includes a central hole 150 b extending upward from a lower end surface, an air outlet hole 152 b formed on a side wall of a middle portion, and a clamping groove 154 b formed on a side wall surface, where the air outlet hole 152 b is in communication with the central hole 150 b for air intaking.
  • the clamping groove 154 b is configured to be clamped with the insulating sealing ring 16 b .
  • An outer wall surface of the insulating sealing ring 16 b forms a clamping groove 160 b configured to be clamped with the mounting ring 1132 b of the bottom base 11 b .
  • an upper end of the electrode column 15 b runs through the through hole 1110 b of the bottom base 11 b , and extends to a position near the lower end of the vaporization core 141 b , so as to be in contact and conducted with the second electrode claw 18 b arranged at the lower end of the vaporization core 141 b.
  • the first electrode claw 17 b may be made of a material such as phosphor copper or 316 stainless steel, and a gold plated coating may be arranged on a surface of the first electrode claw.
  • the first electrode claw 17 b is made of a phosphor copper material, and an impedance of the phosphor copper material is relatively small.
  • the first electrode claw 17 b may include a mounting portion 171 b sandwiched between an upper end surface of the vaporization core 141 b and the first sealing ring 142 b , an extension portion 172 b connected to the mounting portion 171 b , and a conductive portion 173 b connected to the extension portion 172 b .
  • Each extension portion 172 b and a corresponding conductive portion 173 b form an elastic conductive arm of the first electrode claw 17 b .
  • a quantity of elastic conductive arms of the first electrode claw 17 b is not limited to three and may be one or more than one, and when the first electrode claw includes a plurality of elastic conductive arms, electrical connection may be more reliable and assembly may be more convenient.
  • the mounting portion 171 b may be in a shape of a circular ring-shaped sheet, and is in electrical contact with the second electrode portion N of the first electrode 1413 b .
  • the extension portion 172 b may be in a shape of a bar and includes good elasticity.
  • there are two or more than two extension portions 172 b to ensure more reliable electrical connection; and when there are a plurality of extension portions 172 b , a best situation is that the extension portions are uniformly distributed at an inner ring of the mounting portion 171 b and extend upward.
  • One conductive portion 173 b is arranged at a tail end of each extension portion 172 b , and is configured to be in elastic contact with the vent tube 12 b .
  • the conductive portion 173 b may be in shape of a spoon. An inclined surface of the spoon-shaped structure leans inward and plays a role of guiding, and a bottom portion of the spoon-shaped structure is in arc transition, so that the spoon-shaped structure can be in better contact and conducted with the vent tube 12 b .
  • the mounting portion 171 b further includes several first convex points 174 b protruding toward the upper end surface of the vaporization core 141 b .
  • Burrs may be easily generated in a manufacturing process of the mounting portion 171 b in a shape of a circular ring-shape sheet, and as a result, contact between the mounting portion 171 b and the upper end surface of the vaporization core 141 b may be not stable enough.
  • the mounting portion can be in better contact with the first electrode 1413 b on the upper end surface of the vaporization core 141 b , and the consistency is better.
  • a quantity of the first convex points 174 b ranges from two to three, and the first convex points are uniformly distributed in a circumferential direction of the mounting portion 171 b.
  • the second electrode claw 18 b may be made of a material such as phosphor copper or 316 stainless steel, and a gold plated coating may be arranged on a surface of the second electrode claw.
  • the second electrode claw 18 b is made of a phosphor copper material, and an impedance of the phosphor copper material is relatively small.
  • the second electrode claw 18 b may include a mounting portion 181 b sandwiched between a lower end surface of the vaporization core 141 b and the second sealing ring 143 b , an extension portion 182 b connected to the mounting portion 181 b , and a conductive portion 183 b connected to the extension portion 182 b .
  • Each extension portion 182 b and a corresponding conductive portion 183 b form an elastic conductive arm of the second electrode claw 18 b .
  • a quantity of elastic conductive arms of the second electrode claw 18 b is not limited to three and may be one or more than one, and when the second electrode claw includes a plurality of elastic conductive arms, electrical connection may be more reliable and assembly may be more convenient.
  • the mounting portion 181 b may be in a shape of a circular ring-shaped sheet, and is in electrical contact with the fourth electrode portion Q of the second electrode 1414 b .
  • the extension portion 182 b may be in a shape of a bar and includes good elasticity.
  • there are two or more than two extension portions 182 b to ensure more reliable electrical connection; and when there are a plurality of extension portions 182 b , a best situation is that the extension portions are uniformly distributed at an inner ring of the mounting portion 181 b and extend downward.
  • One conductive portion 183 b is arranged at a tail end of each extension portion 182 b , and is configured to be in elastic contact with the upper end of the electrode column 15 b .
  • the conductive portion 183 b may be in shape of a spoon. An inclined surface of the spoon-shaped structure leans outward and plays a role of guiding, and a bottom portion of the spoon-shaped structure is in arc transition, so that the spoon-shaped structure can be in better contact and conducted with a side wall surface of the upper end of the electrode column 15 b .
  • the mounting portion 181 b further includes several second convex points 184 b protruding toward the lower end surface of the vaporization core 141 b .
  • Burrs may be easily generated in a manufacturing process of the mounting portion 181 b in a shape of a circular ring-shape sheet, and as a result, contact between the mounting portion 181 b and the lower end surface of the vaporization core 141 b may be not stable enough.
  • the mounting portion can be in better contact with the second electrode 1414 b on the lower end surface of the vaporization core 141 b , and the consistency is better.
  • a quantity of the second convex points 184 b ranges from two to three, and the second convex points are uniformly distributed in a circumferential direction of the mounting portion 181 b.
  • the first electrode claw 17 b and the second electrode claw 18 b implement quick electrical contact and conduction between components, which is more convenient and quick in operations when compared with an implementation of lead welding in the related art, so that automated assembly of products can be implemented more easily.
  • FIG. 16 to FIG. 19 show a vaporizer 1 c in some embodiments of the present invention.
  • the vaporizer 1 c may include a bottom base 11 c , a vent tube 12 c , a housing 13 c , a vaporization assembly 14 c , a first electrode column 15 c , a second electrode column 16 c , a liquid injection device 17 c , and a bottom shell 18 c .
  • the vent tube 12 c is longitudinally embedded in an upper portion of the bottom base 11 c and defines a columnar vaporization cavity 120 c .
  • the housing 13 c is longitudinally sleeved on the upper portion of the bottom base 11 c and surrounds the vent tube 12 c , and an annular liquid storage cavity 130 c is defined between an inner wall surface of the housing 13 c and an outer wall surface of the vent tube 12 c .
  • a liquid inlet hole 122 c communicating the liquid storage cavity 130 c with the vaporization cavity 120 c may be further formed on the vent tube 12 c .
  • the vaporization assembly 14 c may be in a shape of a cylinder and is longitudinally arranged in the vaporization cavity 120 c , and a middle portion of the vaporization assembly 14 c may form a longitudinally run-through airflow channel 140 c .
  • the first electrode column 15 c and the second electrode column 16 c run through the bottom base 11 c respectively and are electrically connected to the vaporization assembly 14 c respectively, to electrically connect a positive electrode and a negative electrode of a battery device to the vaporization assembly 14 c respectively.
  • the liquid injection device 17 c runs through the bottom base 11 c , communicates the liquid storage cavity 130 with the outside, and is configured to inject a liquid aerosol-generation substrate into the liquid storage cavity 130 .
  • the bottom shell 18 c is made of a magnetophilic material, sleeved on a bottom portion of the bottom base 11 c , and clamped with the housing 13 c .
  • the bottom shell 18 c can be further adsorbed to a magnet on the battery device, to implement detachable connection between the vaporizer 1 c and the battery device.
  • the bottom base 11 c may be in a shape of a racetrack and may include a hard lower base body 111 c and a soft upper base body 112 c sleeved on an upper portion of the lower base body 111 c and mutually embedded with the lower base body 111 c .
  • the lower base body 111 c may be integrally formed by using hard plastics
  • the upper base body 112 c may be integrally formed by using silicone.
  • a top portion of the hard lower base body 111 c may recess to form a cylindrical accommodating cavity 1110 c configured for longitudinally embedding the vent tube 12 c , and an air inlet hole 1112 c running through to a bottom surface of the lower base body 111 c is formed at a middle portion of a bottom wall of the accommodating cavity 1110 c .
  • a first mounting hole 1113 c and a second mounting hole 1114 c running through to the bottom surface of the lower base body 111 c may be further included on the bottom wall of the accommodating cavity 1110 c , which are provided for embedding lower ends of the first electrode column 15 c and the second electrode column 16 c respectively.
  • the first mounting hole 1113 c and the second mounting hole 1114 c are distributed on a major axis of the lower base body 111 c and are located on two opposite sides of the air inlet hole 1112 c.
  • the upper base body 112 c may include a first sealing portion 1121 c surrounding the vent tube 12 c , a second sealing portion 1122 c surrounding a periphery of the lower base body 111 c , and a third sealing portion 1123 c surrounding the liquid injection device 17 c .
  • the first sealing portion 1121 c is configured to prevent the liquid substrate from leaking from a joint between the bottom base 11 c and the vent tube 12 c
  • the second sealing portion 1122 c is configured to prevent the liquid substrate from leaking from a joint between the bottom base 11 c and the inner wall surface of the housing 13 c
  • the third sealing portion 1123 c is configured to prevent the liquid substrate from leaking from a joint between the bottom base 11 c and an outer wall surface of the liquid injection device 17 c.
  • the vent tube 12 c may include a first tube section 121 c longitudinally inserted in a top portion of the bottom base 11 c , a second tube section 123 c axially connected to an upper end of the first tube section 121 c , and a third tube section 125 c axially connected to an upper end of the second tube section 123 c .
  • both the first tube section 121 c and the second tube section 123 c may be in a shape of a cylinder, and the first tube section and the second tube section may have the same diameter and may be integrally formed; and a block ring 124 c may be arranged between inner wall surfaces of the first tube section 121 c and the second tube section 123 c .
  • the third tube section 125 c may be integrally connected in the housing 13 c , a lower end of the third tube section is inserted in the upper end of the second tube section 123 c , and the third tube section and the second tube section are sealed by using a sealing ring 126 c .
  • the first tube section 121 c defines the vaporization cavity 120 c , and there may be a plurality of liquid inlet holes 122 c uniformly formed on a circumferential direction of a side wall of the first tube section 121 c .
  • a block ring 1231 c extending toward a central axis may be arranged at a position close to the first tube section 121 c on the inner wall surface of the second tube section 123 c , which is configured to provide axial resistance force for the vaporization assembly 14 c.
  • the housing 13 c may be made of a transparent material, and appearance thereof is approximately in a shape of a parabola.
  • a lower end of the housing 13 c includes a racetrack-shaped opening, and the opening is sleeved on the bottom base 11 c .
  • An upper end of the housing 13 c includes a flat suction nozzle portion, an opening 132 c is provided on the suction nozzle portion, and the opening 132 c is in communication with the third tube section 125 c of the vent tube 12 c.
  • the vaporization assembly 14 c may include a longitudinally arranged cylindrical vaporization core 141 c , a first sealing ring 142 c arranged on an upper end of the vaporization core 141 c , and a second sealing ring 143 c arranged on a lower end of the vaporization core 141 c .
  • the first sealing ring 142 c is configured to seal a gap between the upper end of the vaporization core 141 c and the upper end of the first tube section 121 c .
  • the second sealing ring 143 c is configured to seal a gap between the lower end of the vaporization core 141 c and a lower end of the first tube section 121 c .
  • a middle portion of an outer wall surface of the vaporization core 141 c may directly face the liquid inlet hole 122 c .
  • a middle portion of the vaporization core 141 c forms a longitudinally run-through central through hole 1410 c.
  • the vaporization core 141 c may include a cylindrical porous body 1411 c , a first heating element 1412 c and a second heating element 1415 c arranged on an inner wall surface of the porous body 1411 c , an electrical connection portion 1416 c arranged on an upper end surface of the porous body 1411 c and electrically connected to upper ends of the first heating element 1412 c and the second heating element 1415 c , a first electrode 1413 c arranged on a lower end surface of the porous body 1411 c and electrically connected to a lower end of the first heating element 1412 c , and a second electrode 1414 c arranged on the lower end surface of the porous body 1411 c and electrically connected to a lower end of the second heating element 1415 c .
  • the porous body 1411 c is not limited to a shape of a cylinder, and may be in a shape of another cylinder such as
  • the porous body 1411 c may be made of a porous ceramic.
  • the first heating element 1412 c and the second heating element 1415 c may be a heating circuit and may be formed on the inner wall surface of the porous body 1411 b in a manner of printing or coating heating film slurry (for example, silver slurry or copper slurry) on an inner surface of a green body of the porous body 1411 c and then sintering the slurry.
  • heating film slurry for example, silver slurry or copper slurry
  • the first electrode 1413 c , the second electrode 1414 c , and the electrical connection portion 1416 c may be formed in a manner of printing or coating conductive film slurry such as silver slurry on a green body of a porous body and then sintering the slurry. It may be understood that, in some embodiments, the first heating element 1412 c , the second heating element 1415 c , the first electrode 1413 c , the second electrode 1414 c , and the electrical connection portion 1416 c may also be formed by processing a heating metal sheet.
  • the first electrode 1413 c and the second electrode 1414 c may be in a shape of a fan, and there is a gap between the first electrode and the second electrode.
  • a groove 1417 c is provided on the lower end surface of the porous body 1411 c corresponding to the gap between the first electrode 1413 c and the second electrode 1414 c , and in some embodiments, the electrical connection portion 1416 c may be in a shape of a circular ring.
  • a lower end portion of the porous body 1411 c includes a relatively great diameter, which on one hand may be in better contact with the first electrode column 15 c and the second electrode column 16 c , and is also provided to open the groove 1417 c more easily to segment the first electrode 1413 c and the second electrode 1414 c .
  • the first electrode column 15 c and the second electrode column 16 c may be an elastic ejector pin.
  • the first heating element 1412 c may include several first heating bars distributed in a longitudinal direction of the inner wall surface of the porous body 1411 c at intervals and in parallel, and the first heating bars form first heating circuits distributed at intervals and in parallel, where upper ends of the first heating bars are connected to the electrical connection portion 1416 c , and lower ends of the first heating bars are connected to the first electrode 1413 c ; and the width of each heating bar ranges from 0.1 mm to 0.6 mm, and the thickness thereof ranges from 0.02 mm to 0.2 mm.
  • the second heating element 1415 c may include several second heating bars distributed in the longitudinal direction of the inner wall surface of the porous body 1411 c at intervals and in parallel, and the second heating bars form second heating circuits distributed at intervals and in parallel, where upper ends of the second heating circuits are connected to the electrical connection portion 1416 c , and lower ends of the second heating circuits are connected to the second electrode 1414 c.
  • resistivities of the first heating element 1412 c and the second heating element 1415 c are greater than resistivities of the first electrode 1413 c , the second electrode 1414 c , and the electrical connection portion 1416 c .
  • the resistivity of the former is more than 20 times of that of the latter.
  • the first heating element 1412 c and the second heating element 1415 c may be made of a material such as nickel-chromium alloy, iron-chromium-aluminum alloy, or silver-palladium alloy, which may be formed in a manner of silk-screening or printing heating element slurry on an inner surface of the green body of the porous body and then sintering the slurry. It may be understood that, circuits of the first heating element 1412 c and the second heating element 1415 c are not limited to those shown in the figure, and may be other suitable patterns.
  • the second sealing ring 143 c may include a first via 1431 c , a second via 1432 c , and two protruding ribs 1433 c .
  • a connecting line of the first via 1431 c and the second via 1432 c is perpendicular to and intersects a connecting line of the two protruding ribs 1433 c . In this way, when the second sealing ring 143 c matches the lower end of the porous body 1411 c , the first via 1431 c and the second via 1432 c directly face the first electrode 1413 c and the second electrode 1414 c respectively.
  • the first via 1431 c and the second via 1432 c are respectively provided for upper ends of the first electrode column 15 c and the second electrode column 16 c to run through, so that the upper ends of the first electrode column 15 c and the second electrode column 16 c are in electrical contact and conducted with the first electrode 1413 c and the second electrode 1414 c respectively.
  • the first electrode column 15 c and the second electrode column 16 c are respectively conducted with a positive electrode and a negative electrode of a battery device
  • a current flowing out of the positive electrode of the battery device flows back to the negative electrode of the battery device after flowing through the first electrode column 15 c , the first electrode 1413 c , the first heating element 1412 c , the electrical connection portion 1416 c , the second heating element 1415 c , the second electrode 1414 c , and the second electrode column 16 c sequentially, to implement a process that the first heating element 1412 c and the second heating element 1415 c generate heat.
  • FIG. 21 shows a vaporization main body 10 d in some embodiments of the present invention.
  • the vaporization main body 10 d may be an alternative of the vaporization main body 10 b and may include a bottom base 11 d , a vent tube 12 d , a housing 13 d , a vaporization assembly 14 d , an electrode column 15 d , and an insulating sealing ring 16 d that are coaxially assembled.
  • Structures of the bottom base 11 d , the vent tube 12 d , the housing 13 d , the electrode column 15 d , and the insulating sealing ring 16 d may be the same as those of the bottom base 11 b , the vent tube 12 b , the housing 13 b , the electrode column 15 b , and the insulating sealing ring 16 b of the vaporization main body 10 b respectively, and details are not described herein again. Differences between the two structures mainly lie in that: (1) The first electrode claw 17 b and the second electrode claw 18 b in the vaporization main body 10 b are omitted in the vaporization main body 10 d . (2) The vaporization assembly 14 d is different from the vaporization assembly 14 b.
  • the vaporization assembly 14 d may include a longitudinally arranged cylindrical vaporization core 141 d , a first sealing ring 142 d sleeved on an upper end of the vaporization core 141 d , and a second sealing ring 143 d sleeved on a lower end of the vaporization core 141 d .
  • a structure of the vaporization core 141 d is the same as that of the vaporization core 141 b of the vaporization assembly 14 b and may include a cylindrical porous body 1411 d , a heating element 1412 d arranged on an inner wall surface of the porous body 1411 d , a first electrode 1413 d arranged on an upper end surface of the porous body 1411 d and electrically connected to an upper end of the heating element 1412 d , and a second electrode 1414 d arranged on a lower end surface of the porous body 1411 d and electrically connected to a lower end of the heating element 1412 d .
  • the first sealing ring 142 d is conductive, namely, has both sealing and conductive functions, and may be made of conductive silicone.
  • the second sealing ring 143 d is a composite sealing ring, where an inner ring part is conductive to be electrically connected to the electrode column 15 d ; and an outer ring part is not conductive to electrically insulate the conductive inner ring part from the conductive bottom base 11 d.
  • the first electrode 1413 d is electrically connected to the vent tube 12 d through the first sealing ring 142 d
  • the second electrode 1414 d is electrically connected to the electrode column 15 d through the conductive inner ring part of the second sealing ring 143 d .
  • no electrode claw extends into the airflow channel, so that interference to airflows in the airflow channel during a flowing process is reduced, and flowing of the airflows becomes smoother.
  • manufacturing costs can be reduced, assembly steps can be reduced, and the product stability can be improved.
  • the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise.
  • the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.

Landscapes

  • Catching Or Destruction (AREA)
  • Gasket Seals (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

A vaporization assembly includes: a cylindrical vaporization core having a first end and a second end opposite the first end; and at least one sealing ring tightly attached to the first end and/or the second end. A vent structure is arranged on the at least one sealing ring. In an embodiment, the vent structure includes a vent groove formed on a surface attached to the first end and/or the second end of the sealing ring.

Description

    CROSS-REFERENCE TO PRIOR APPLICATION
  • This application is a continuation of International Patent Application No. PCT/CN2020/142480, filed on Dec. 31, 2020. The entire disclosure is hereby incorporated by reference herein.
  • FIELD
  • The present invention relates to the field of vaporization, and in particular, to an electronic vaporization device, a vaporizer, and a vaporization assembly.
  • BACKGROUND
  • In the related art, an electronic vaporization device configured to inhale aerosols generally uses a porous ceramic to manufacture a vaporization core, and a lead of the porous ceramic vaporization core generally needs to run through the porous ceramic, leading to an internal structure change of the porous ceramic and cracking. In addition, when wiring is performed for energizing an electrode of the lead, a circuit wiring length is relatively long, increasing manufacturing difficulty and production costs of the electronic vaporization device.
  • SUMMARY
  • In an embodiment, the present invention provides a vaporization assembly, comprising: a cylindrical vaporization core comprising a first end and a second end opposite the first end; and at least one sealing ring tightly attached to the first end and/or the second end, wherein a vent structure is arranged on the sealing ring.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Subject matter of the present disclosure will be described in even greater detail below based on the exemplary figures. All features described and/or illustrated herein can be used alone or combined in different combinations. The features and advantages of various embodiments will become apparent by reading the following detailed description with reference to the attached drawings, which illustrate the following:
  • FIG. 1 is a three-dimensional schematic structural diagram of an electronic vaporization device according to some embodiments of the present invention.
  • FIG. 2 is a three-dimensional schematic exploded structural view of the electronic vaporization device shown in FIG. 1 .
  • FIG. 3 is a schematic longitudinal cross-sectional structural view of a vaporizer of the electronic vaporization device shown in FIG. 2 .
  • FIG. 4 is a three-dimensional schematic exploded structural view of the vaporizer shown in FIG. 2 .
  • FIG. 5 is a schematic longitudinal cross-sectional structural view of the vaporizer shown in FIG. 2 in a disassembled state.
  • FIG. 6 is a three-dimensional schematic exploded structural view of a vaporization main body shown in FIG. 4 .
  • FIG. 7 is a schematic longitudinal cross-sectional structural view of the vaporization main body shown in FIG. 4 in a disassembled state.
  • FIG. 8 is a three-dimensional schematic exploded structural view of a vaporization core shown in FIG. 6 .
  • FIG. 9 is a partial three-dimensional schematic structural diagram of a vaporization main body according to some other embodiments of the present invention.
  • FIG. 10 is a schematic longitudinal cross-sectional structural view of a vaporization main body shown in FIG. 9 .
  • FIG. 11 is a schematic longitudinal cross-sectional structural view of the vaporization main body shown in FIG. 9 in a disassembled state.
  • FIG. 12 is a schematic longitudinal cross-sectional structural view of a vaporization main body according to still some embodiments of the present invention.
  • FIG. 13 is a three-dimensional schematic exploded structural view of the vaporization main body shown in FIG. 12 .
  • FIG. 14 is a schematic longitudinal cross-sectional structural view of the vaporization main body shown in FIG. 12 in a disassembled state.
  • FIG. 15 is a three-dimensional schematic exploded structural view of a vaporization core shown in FIG. 12 .
  • FIG. 16 is a three-dimensional schematic structural diagram of a vaporizer according to further some embodiments of the present invention.
  • FIG. 17 is a schematic longitudinal cross-sectional structural view of the vaporizer shown in FIG. 16 .
  • FIG. 18 is a three-dimensional schematic exploded structural view of the vaporizer shown in FIG. 16 .
  • FIG. 19 is a schematic longitudinal cross-sectional structural view of the vaporizer shown in FIG. 16 in a disassembled state.
  • FIG. 20 is a three-dimensional schematic exploded structural view of a vaporization core shown in FIG. 18 .
  • FIG. 21 is a schematic longitudinal cross-sectional structural view of a vaporization main body according to still some embodiments of the present invention.
  • DETAILED DESCRIPTION
  • In an embodiment, the present invention provides an improved electronic vaporization device, a vaporizer, and a vaporization assembly.
  • In an embodiment, the present invention provides a vaporization assembly, including a cylindrical vaporization core, the vaporization core including a first end and a second end opposite to the first end; and the vaporization assembly further including a sealing ring tightly attached to the first end and/or the second end, where a vent structure is arranged on the sealing ring.
  • In some embodiments, the vent structure includes a vent groove formed on a surface attached to the first end and/or the second end of the sealing ring.
  • In some embodiments, the vent groove is distributed on the surface in a shape of a labyrinth.
  • In some embodiments, the sealing ring includes a cylindrical first sealing portion and an annular second sealing portion connected to an upper end edge of the first sealing portion, the first sealing portion is sleeved on a side wall surface of the first end and/or the second end, and the second sealing portion covers an end surface of the first end and/or the second end.
  • In some embodiments, the vent groove continuously runs through inner wall surfaces of the first sealing portion and the second sealing portion.
  • In some embodiments, the vent groove includes capillary force.
  • In some embodiments, the vaporization assembly includes a first sealing ring and a second sealing ring, the first sealing ring and the second sealing ring are tightly attached to the first end and the second end respectively, and inner wall surfaces of the first sealing ring and the second sealing ring are both provided with the vent groove.
  • A vaporizer is provided, including the vaporization assembly according to any one of the foregoing, a liquid storage cavity in fluid connection to a periphery of the vaporization core, and an airflow channel running through a middle portion of the vaporization core, where the airflow channel is in air communication with the liquid storage cavity through the vent structure.
  • In some embodiments, the vaporizer includes a vent tube, the vent tube defines a columnar vaporization cavity, the vaporization core and the sealing ring are axially arranged in the vaporization cavity, and the sealing ring implements liquid sealing between an end portion corresponding to the vaporization core and an inner wall surface of the vaporization cavity.
  • In some embodiments, a liquid inlet hole communicating the liquid storage cavity with an outer side wall of the vaporization core is further formed on the vent tube.
  • In some embodiments, the vaporizer further includes a housing arranged on a periphery of the vent tube, where the liquid storage cavity is defined between an inner wall surface of the housing and an outer wall surface of the vent tube.
  • In some embodiments, the vent tube is conductive, and the vaporizer further includes an electrode claw electrically connecting the vent tube to the end portion of the vaporization core.
  • In some embodiments, the electrode claw includes a mounting portion and at least one elastic conductive arm connected to the mounting portion, the mounting portion is mounted on one of the vent tube and the end portion of the vaporization core, and the at least one elastic conductive arm elastically abuts against the other of the vent tube and the end portion of the vaporization core.
  • In some embodiments, the vaporizer further includes a conductive bottom base, where the vent tube is longitudinally mounted on a top portion of the bottom base and is electrically connected to the bottom base.
  • In some embodiments, the mounting portion is in a shape of a cylinder.
  • In some embodiments, the mounting portion includes a fracture.
  • In some embodiments, the mounting portion is in a shape of an annular sheet and is sandwiched between the sealing ring and an end surface of the vaporization core.
  • In some embodiments, the vaporization core includes a cylindrical porous body, a heating element arranged on an inner surface of the porous body, and a first electrode and a second electrode connected to the heating element respectively.
  • In some embodiments, the first electrode and the second electrode are respectively arranged on two end portions of the inner surface of the porous body.
  • In some embodiments, the first electrode and the second electrode are distributed on an end surface of the porous body in a mutual insulation manner.
  • In some embodiments, the vaporization assembly is arranged vertically, and the vent structure is only arranged on a sealing ring at an upper end.
  • In some embodiments, the vaporization assembly is arranged vertically, and the vent structure is only arranged on a sealing ring at a lower end.
  • In some embodiments, the vaporization assembly is arranged vertically, and the thickness of a material of a sealing ring at a lower end is greater than the thickness of a material of a sealing ring at an upper end.
  • An electronic vaporization device is provided, including the vaporizer according to any one of the foregoing and a battery device mechanically and electrically connected to the vaporizer.
  • Beneficial Effects:
  • Beneficial effects of the present invention are as follows: a vent structure is arranged on a sealing ring to achieve vapor-liquid equilibrium, which has characteristics such as a simple structure and convenient operation.
  • To describe the present invention more clearly, the present invention is further described below with reference to the accompanying drawings.
  • It should be understood that, the terms such as “front”, “rear”, “left”, “right”, “upper”, “lower”, “first”, and “second” are used only for ease of describing the technical solutions of the present invention, rather than indicating or implying that the mentioned apparatus or component must have a particular difference. Therefore, such terms should not be construed as a limitation to the present invention. It should be noted that, when a component is considered to be “connected to” another component, the component may be directly connected to the another component, or an intervening component may be present. Unless otherwise defined, meanings of all technical and scientific terms used in this specification are the same as that usually understood by a person skilled in the technical field to which the present invention belongs. In this specification, terms used in this specification of the present invention are only intended to describe objectives of the specific embodiments, but are not intended to limit the present invention.
  • FIG. 1 and FIG. 2 show an electronic vaporization device according to some embodiments of the present invention. The electronic vaporization device may be provided for a user to inhale aerosols and may include a vaporizer 1 and a battery device 2 cooperating with the vaporizer 1. The vaporizer 1 may be configured to store and heat and vaporize a liquid aerosol-generation substrate such as liquid medicine, and output aerosols. The battery device 2 may be configured to supply power to the vaporizer 1. In some embodiments, the vaporizer 1 and the battery device 2 may be both in a shape of a cylinder and are mechanically and electrically connected to each other in an axial direction. In some embodiments, the vaporizer 1 and the battery device 2 are detachably connected to each other in a threaded connection manner. It may be understood that, the vaporizer 1 and the battery device 2 are not limited to being connected through threads, and may also be detachably connected to each other in a magnetic attraction manner. Further, it may be understood that, the vaporizer 1 and the battery device 2 are not limited to a shape of a cylinder, and may alternatively be in a shape of a column whose cross section is in a shape of an ellipse, a racetrack, or an irregular shape.
  • As shown in FIG. 3 to FIG. 5 , in some embodiments, the vaporizer 1 may include a cylindrical vaporization main body 10 located at a lower portion and a suction nozzle component 20 axially connected to an upper end of the vaporization main body 10. The vaporization main body 10 is configured to store and heat and vaporize the liquid aerosol-generation substrate, and the suction nozzle component 20 is configured to block the liquid aerosol-generation substrate in the vaporization main body 10 and output the aerosols. In some embodiments, the suction nozzle component 20 is embedded in the upper end of the vaporization main body 10 in a tight fitting manner, which is conducive to inject the liquid aerosol-generation substrate into the vaporization main body 10. The suction nozzle component 20 may be detachably connected to the upper end of the vaporization main body 10. In this case, the liquid aerosol-generation substrate may be added repeatedly, thereby prolonging a service life of the vaporizer 1. For some disposable vaporizers 1, connection between the suction nozzle component 20 and the vaporization main body 10 may be non-detachable. That is, once the suction nozzle component and the vaporization main body are connected, the two components are locked and cannot be separated without destroying an existing structure. In addition, even for a vaporizer that can be used repeatedly, the suction nozzle component and the vaporization main body may be integrally formed by adding a liquid injector, such as a vaporizer 1 c shown in FIG. 16 .
  • Referring to FIG. 6 and FIG. 7 , in some embodiments, the vaporization main body 10 may include a bottom base 11, a vent tube 12, a housing 13, a vaporization assembly 14, an electrode column 15, an insulating sealing ring 16, a first electrode claw 17, and a second electrode claw 18 that are assembled coaxially.
  • In some embodiments, the bottom base 11 may be in a shape of a cylinder and conductive. In some embodiments, the vent tube 12 may also be conductive, is longitudinally embedded in an upper portion of the bottom base 11, and is electrically connected to the bottom base 11. The vent tube 12 defines a columnar vaporization cavity 120. In some embodiments, the housing 13 may be in a shape of a cylinder, is longitudinally sleeved on the upper portion of the bottom base 11, and surrounds the vent tube 12. An annular liquid storage cavity 130 is defined between an inner wall surface of the housing 13 and an outer wall surface of the vent tube 12. A liquid inlet hole 122 communicating the liquid storage cavity 130 with the vaporization cavity 120 may be further formed on the vent tube 12. In some embodiments, the vaporization assembly 14 may be in a shape of a cylinder and is longitudinally arranged in the vaporization cavity 120. A middle portion of the vaporization assembly 14 may form a longitudinally run-through airflow channel 140. The electrode column 15 longitudinally runs through a lower portion of the bottom base 11 and is electrically insulated from the bottom base 11. Specifically, the lower portion of the bottom base 11 is longitudinally provided with an insulating sealing ring 16, and the electrode column 15 further runs through the insulating sealing ring 16, to implement insulating and sealing connection to the bottom base 11. One end of the first electrode claw 17 is fixed to an inner wall of the vent tube 12 and is electrically connected to the vent tube 12, and the other end is in elastic contact with an upper end of the vaporization assembly 14, so as to electrically connect the upper end of the vaporization assembly 14 to the vent tube 12. One end of the second electrode claw 18 is fixed to the electrode column 15 and is electrically connected to the electrode column 15, and the other end is in elastic contact with a lower end of the vaporization assembly 14, so as to electrically connect the lower end of the vaporization assembly 14 to the electrode column 15.
  • In some embodiments, the electrode column 15 is configured to be electrically connected to a positive electrode of the battery device 2, and the bottom base 11 is configured to be electrically connected to a negative electrode of the battery device 2, to form an electrical loop. Therefore, after flowing out of the positive electrode of the battery device 2, a current can flow through the electrode column 15 and the second electrode claw 18 sequentially and reach the lower end of the vaporization assembly 14; and after running through the vaporization assembly 14 and causing the vaporization assembly 14 to generate heat, the current reaches the upper end of the vaporization assembly 14, and then flows back to the negative electrode of the battery device 2 after flowing through the first electrode claw 17, the vent tube 12, and the bottom base 11 sequentially. It may be understood that, in some embodiments, the electrode column 15 and the bottom base 11 may alternatively be electrically connected to the negative electrode and the positive electrode of the battery device 2 respectively. In this case, a flowing direction of the current is opposite to the foregoing flowing direction.
  • Still referring to FIG. 6 and FIG. 7 , in some embodiments, the bottom base 11 may be integrally formed by using a metal material and may include a circular base 111, a first mounting tube 112 longitudinally arranged on an upper surface of the base 111, and a second mounting tube 113 longitudinally arranged on a bottom surface of the base 111. A middle portion of the base 111 is provided with a longitudinally run-through through hole 1110, and the through hole 1110 communicates the first mounting tube 112 with the second mounting tube 113. An outer wall surface of the second mounting tube 113 forms a threaded structure 1131 matching threads on an upper end of the battery device 2, and a mounting ring 1132 matching the insulating sealing ring 16 is formed on an inner wall surface.
  • In some embodiments, the vent tube 12 may be integrally formed by using a metal material and may include a first tube section 121, a second tube section 123 axially connected to an upper end of the first tube section 121, and a third tube section 125 axially connected to a lower end of the first tube section 121, where inner diameters and outer diameters of the third tube section 125, the first tube section 121, and the second tube section 123 are sequentially decreased. The first tube section 121 defines the vaporization cavity 120, and there may be a plurality of liquid inlet holes 122 uniformly formed on a circumferential direction of a side wall of the first tube section 121. A block ring 1231 extending toward a central axis may be arranged at a position close to the first tube section 121 on an inner wall surface of the second tube section 123, which is configured to provide axial resistance force for the first electrode claw 17. An end surface of the block ring 1231 close to the first electrode claw 17 may be a flat surface perpendicular to the central axis of the second tube section 123, and an end surface away from the first electrode claw 17 may be a conical surface in a shape of a horn. An outer diameter of the third tube section 125 matches an inner diameter of the first mounting tube 112, so that the third tube section 125 is longitudinally embedded in the first mounting tube 112 and tightly fits the first mounting tube 112. The height of the third tube section 125 is equal to the height of the first mounting tube 112. In some embodiments, to facilitate to embed the third tube section 125 in the first mounting tube 112, a guide portion 1251 is further formed on an outer wall surface of the third tube section 125 close to a lower end thereof through inward retraction, and an outer diameter of the guide portion 125 is less than that of the first mounting tube 112.
  • In some embodiments, the housing 13 may be made of a transparent material, and an inner diameter thereof matches the outer diameter of the first mounting tube 112, so that the housing 13 can be axially sleeved on the first mounting tube 112 through a lower end and tightly fits the first mounting tube 112. An upper end surface of the housing 13 may be slightly lower than an upper end surface of the second tube section 123, to better match the suction nozzle component 20. The liquid storage cavity 130 is defined between the inner wall surface of the housing 13 and the inner wall surfaces of the first tube section 121 and the second tube section 123, and an annular liquid injection opening 132 is formed between an upper end of the housing 13 and an upper end of the second tube section 123.
  • In some embodiments, the vaporization assembly 14 may include a longitudinally arranged cylindrical vaporization core 141, a first sealing ring 142 sleeved on an upper end of the vaporization core 141, and a second sealing ring 143 sleeved on a lower end of the vaporization core 141.
  • The first sealing ring 142 may include an L-shaped cross section configured to seal a gap between the upper end of the vaporization core 141 and the upper end of the first tube section 121. In some embodiments, the first sealing ring 142 may include a cylindrical first sealing portion 1421 and an annular second sealing portion 1423 connected to an upper end edge of the first sealing portion 1421, where the first sealing portion 1421 is sleeved on an outer wall surface of the upper end of the vaporization core 141, and the second sealing portion 1423 covers an upper end surface of the vaporization core 141. An inner diameter of the second sealing portion 1423 is preferentially greater than a pore size of the vaporization core 141, so that the first electrode claw 17 may not be blocked by the second sealing portion 1423 when matching the vaporization core 141.
  • The second sealing ring 143 may also include an L-shaped cross section configured to seal a gap between the lower end of the vaporization core 141 and the third tube section 125. In some embodiments, the second sealing ring 143 may include a cylindrical third sealing portion 1431 and an annular fourth sealing portion 1433 connected to a lower end edge of the third sealing portion 1431, where the third sealing portion 1431 is sleeved on an outer wall surface of the lower end of the vaporization core 141, and the fourth sealing portion 1433 covers a lower end surface of the vaporization core 141. A middle portion of the outer wall surface of the vaporization core 141 may directly face the liquid inlet hole 122. A middle portion of the vaporization core 141 forms a longitudinally run-through central through hole 1410. An inner diameter of the fourth sealing portion 1433 is preferentially greater than the pore size of the vaporization core 141, so that the second electrode claw 18 may not be blocked by the fourth sealing portion 1433 when matching the vaporization core 141.
  • In some embodiments, a first vent groove 1420 in a shape of a labyrinth is formed on an inner wall surface of the first sealing ring 142, and the first vent groove 1420 runs through inner wall surfaces of the first sealing portion 1421 and the second sealing portion 1423. A size of the first vent groove 1420 may be designed to be small enough to include capillary force in a use state, so as to communicate the liquid storage cavity 130 with an airflow channel in the vent tube 12 when the liquid storage cavity 130 is under a relatively great negative pressure, thereby achieving vapor-liquid equilibrium and preventing dry heating. In some embodiments, a second vent groove 1430 in a shape of a labyrinth may also be provided on an inner wall surface of the second sealing ring 143, and the second vent groove 1430 runs through inner wall surfaces of the third sealing portion 1431 and the fourth sealing portion 1433 and has a same function as the first vent groove 1420. In some embodiments, the first sealing ring 142 and the second sealing ring 143 have a same structure and may be compatible, thereby facilitating automated mounting and reducing mold making costs for a sealing ring.
  • It may be understood that, a vent structure may be arranged on any one of the first sealing ring 142 or the second sealing ring 143, which have advantages and disadvantages respectively. When the vent structure is only arranged on the first sealing ring 142, namely, the first vent groove 1420 of the first sealing ring 142, if liquid leakage occurs, some leaked liquid may flow downward from the upper end of the vaporization core 141 and is vaporized again after being absorbed by the vaporization core 141. When the vent structure is only arranged on the second sealing ring 143, although the possible leaked liquid easily leaks into the bottom base 11, an airflow direction in the airflow channel is flowing upward from the bottom, so that air supplement through the second sealing ring 143 is smoother. In some embodiments, the thickness of sealing silicone, namely, a distance between a surface in contact with the vaporization core 141 of the second sealing ring 143 and a surface in contact with the vent tube 12, at a lower end of the second sealing ring 143 is relatively large, so that the second sealing ring can better seal the lower end of the vaporization core 141 through interference fitting, thereby preventing liquid leakage. When comparison is performed, the thickness of the sealing silicon of the second sealing ring is compared with the thickness of a corresponding part of the first sealing ring 142.
  • Referring to FIG. 8 , in some embodiments, the vaporization core 141 may include a cylindrical porous body 1411, a heating element 1412 arranged on an inner wall surface of the porous body 1411, a first electrode 1413 arranged at an upper end of the inner wall surface of the porous body 1411 and electrically connected to an upper end of the heating element 1412, and a second electrode 1414 arranged at a lower end of the inner wall surface of the porous body 1411 and electrically connected to a lower end of the heating element 1412. In some embodiments, the porous body 1411 may be a porous ceramic and may be a small-size porous body 1411. In some embodiments, a length of the small-size porous body 1411 may range from 0.8 cm to 1.2 cm, and an inner diameter thereof may range from 0.18 cm to 0.22 cm.
  • In some embodiments, the heating element 1412 may be made of a material such as a nickel-chromium alloy, an iron-chromium-aluminum alloy, or a silver-palladium alloy, and is first printed or coated on an inner surface of a green body of the porous body 1411 and then formed on the inner wall surface of the porous body 1411 in a sintering manner. The heating element may include two long flat and clip-shaped heating circuits B arranged in parallel in an axial direction of the porous body 1411 and a connection circuit C connecting the two heating circuits in series, where a length direction of each of the two heating circuits B extending in a circumferential direction of the inner wall surface of the porous body 1411, so that the entire heating element is C-shaped. The heating element 1412 may further include an upper end circuit D and a lower end circuit A connected to an upper end and a lower end respectively, which are electrically connected to the first electrode 1413 and the second electrode 1414 respectively.
  • The first electrode 1413 and/or the second electrode 1414 may be made of a material such as silver or copper, and specifically, may be formed on the inner wall surface of the cylindrical porous body 1411 by coating/printing and sintering silver slurry or copper slurry. In addition, the first electrode and/or the second electrode are/is at least partially connected to the heating element 1412. In some embodiments, the first electrode 1413 and/or the second electrode 1414 may be C-shaped. Generally, slurry of the heating element 1412 is first printed on the green body of the porous body 1411, and slurry of the electrode is then printed or coated, and then the slurry is sintered together. In some embodiments, the width of a notch of the first electrode 1413 may be less than the width of a conductive portion 173, so that the first electrode claw 17 is in electrical contact with all conductive portions 173; and the width of a notch of the second electrode 1414 may be less than the width of a conductive portion 183, so that the second electrode claw 18 is in electrical contact with all conductive portions 183. It may be understood that, in some embodiments, the heating element 1412 may also be made of a metal heating sheet, and the porous body 1411 is also not limited to a porous ceramic material and may be made of any other suitable porous body material. It may be understood that, the first electrode 1413 and/or the second electrode 1414 are/is not limited to being distributed on an end portion of the inner wall surface of the porous body 1411 in a shape of C, and may also distributed on an entire circumferential direction of the end portion of the inner wall surface of the porous body 1411, namely, may be annular.
  • Arrangement of the first electrode 1413 and/or the second electrode 1414 does not require opening holes and introducing leads in the porous body 1411, so that an internal structure of the porous body 1411 is more complete, controllable, and reliable, and the product consistency is therefore well ensured. In addition, use of leads may be avoided, thereby reducing the manufacturing difficulty and production costs, which is more apparent for the small-size porous body 1411.
  • In some embodiments, by arranging the first electrode 1413 and the second electrode 1414 at two ends of the inner wall surface of the small-size porous body 1411 respectively may also have various benefits. An area of an inner wall of the small-size porous body 1411 is quite small, if two electrodes are arranged at one end, areas of the two electrodes are excessive small and are not conducive to establish stable electrical connection with an electrode connector, and a problem of short circuit may easily occur. By arranging the first electrode 1413 and the second electrode 1414 at two ends, deployment of the first electrode 1413 and the second electrode 1414 may be facilitated, and areas of the first electrode 1413 and the second electrode 1414 may be greater, thereby facilitating to establish stable electrical connection with the electrode connector.
  • Still referring to FIG. 6 and FIG. 7 , in some embodiments, the electrode column 15 includes a central hole 150 extending upward from a lower end surface, an air outlet hole 152 formed on a side wall of a top portion, and a clamping groove 154 formed on a side wall surface, where the air outlet hole 152 is in communication with the central hole 150 for air intaking. The clamping groove 154 is configured to be clamped with the insulating sealing ring 16. An outer wall surface of the insulating sealing ring 16 forms a clamping groove 160 configured to be clamped with the mounting ring 1132 of the bottom base 11.
  • In some embodiments, the first electrode claw 17 may be made of a material such as phosphor copper or 316 stainless steel, and a gold plated coating may be arranged on a surface of the first electrode claw. Preferably, the first electrode claw 17 is made of a phosphor copper material, and an impedance of the phosphor copper material is relatively small. The first electrode claw 17 may include a mounting portion 171 embedded in the inner wall surface of the second tube section 123, three extension portions 172 connected to the mounting portion 171, and three conductive portions 173 connected to the three extension portions 172 respectively. Each extension portion 172 and a corresponding conductive portion 173 form an elastic conductive arm of the first electrode claw 17. It may be understood that, a quantity of elastic conductive arms of the first electrode claw 17 is not limited to three and may be one or more than one, and when the first electrode claw includes a plurality of elastic conductive arms, electrical connection may be more reliable and assembly may be more convenient.
  • In some embodiments, the mounting portion 171 may be in a shape of a cylinder and includes a longitudinal fracture 1710 running through two side edges, where existence of the fracture 1710 causes deformation during mounting, thereby ensuring that the mounting portion 171 is better fixed to the inner wall surface of the second tube section 123. Specifically, a horn-shaped guide surface 1210 is arranged at a junction of the second tube section 123 and the first tube section 121. In a process that the first electrode claw 17 is axially inserted into the second tube section 123, the guide surface 1210 applies a radially inward component force to the mounting portion 171 of the first electrode claw 17, so that the fracture 1710 of the mounting portion 171 is closed, an outer diameter is reduced, and the first electrode claw can be inserted into the second tube section 123. After the first electrode claw is mounted in place, the mounting portion 171 provides a reaction force to the inner wall surface of the second tube section 123, so that the mounting portion can be firmly fixed to the second tube section 123. It may be understood that, in some embodiments, the mounting portion 171 may also be integrated together with the second tube section 123. In some embodiments, the mounting portion 171 may also be axially embedded in an upper end of the central through hole 1410 of the vaporization core 141 and elastically abuts against and fixed to the first electrode 1413, so that the elastic conductive arm extends out to be in elastic contact with the vent tube 12.
  • In some embodiments, the extension portion 172 may be in a shape of a bar and includes good elasticity, which first bends and extends by a certain distance from the mounting portion 171 toward a central axis of the mounting portion 171 and then extends in a direction parallel to the central axis of the mounting portion 171 and away from the mounting portion 171, to provide space for bending of the conductive portion 173 in a direction away from the central axis of the mounting portion 171 and provide a good elastic characteristic. Preferably, there are two or more than two extension portions 172, to ensure more reliable electrical connection; and when there are a plurality of extension portions 172, a best situation is that the extension portions are uniformly distributed at a lower side edge of the mounting portion 171 and extend downward. Specifically, the extension portion 172 first obliquely extends by a certain distance from the mounting portion 171 toward the central axis of the mounting portion 171, and then extends out in a direction parallel to the central axis and away from the mounting portion 171. One conductive portion 173 is arranged at a tail end of each extension portion 172, and is configured to be in elastic contact with the first electrode 1413 of the vaporization core 141. In some embodiments, the conductive portion 173 may be in a shape of a spoon. Specifically, the conductive portion 173 first obliquely extends toward a direction away from the central axis of the mounting portion 171, and then bends and obliquely extends toward a direction of the central axis. An inclined surface of the spoon-shaped structure leans inward and plays a role of guiding, and a bottom portion of the spoon-shaped structure is in arc transition, so that the spoon-shaped structure can be in better contact with the first electrode 1413 of the vaporization core 141 and may not scratch the first electrode 1413 during assembly. A vertical distance between a bottom portion of the conductive portion 173 and the central axis is slightly greater than a radius of a position of the central through hole 1410 of the vaporization core 141 at the first electrode 1413. Therefore, when the conductive portion 173 is axially inserted into the central through hole 1410, because the conductive portion 173 includes an inclined surface leaning inward, a reaction force applied by the vaporization core 141 to the conductive portion 173 includes a component force toward the direction of the central axis, so that the extension portion 171 is elastically deformed toward the direction of the central axis, and the conductive portion 173 can be inserted in this case. After the conductive portion 173 is inserted into the central through hole 1410, the elasticity of the extension portion 171 maintains close contact between the conductive portion 173 and the first electrode 1413.
  • In some embodiments, the second electrode claw 18 may be made of a material such as phosphor copper or 316 stainless steel, and a gold plated coating may be arranged on a surface of the second electrode claw. Preferably, the second electrode claw 18 is made of a phosphor copper material, and an impedance of the phosphor copper material is relatively small. The second electrode claw 18 may include a mounting portion 181 sleeved on an upper portion of the electrode column 15, an extension portion 182 connected to the mounting portion 181, and a conductive portion 183 connected to the extension portion 182. In some embodiments, the mounting portion 181 may be in a shape of a cylinder and includes a longitudinal fracture 1810 running through two side edges, where existence of the fracture 1810 causes deformation during mounting, thereby ensuring that the mounting portion 181 is better fixed to the upper portion of the electrode column 15. It may be understood that, in some embodiments, the mounting portion 181 may also be integrated with the electrode column 15. In some embodiments, the extension portion 182 may be in a shape of a bar and includes good elasticity. Preferably, there are two or more than two extension portions 182, to ensure more reliable electrical connection; and when there are a plurality of extension portions 181, a best situation is that the extension portions are uniformly distributed at a lower side edge of the mounting portion 181 and extend downward. One conductive portion 183 is arranged at a tail end of each extension portion 182, and is configured to be in elastic contact with the second electrode 1414 of the vaporization core 141. In some embodiments, the conductive portion 183 may be in shape of a spoon. An inclined surface of the spoon-shaped structure leans inward and plays a role of guiding, and a bottom portion of the spoon-shaped structure is in arc transition, so that the spoon-shaped structure can be in better contact with the second electrode 1414 of the vaporization core 141 and may not scratch the second electrode 1414 during assembly. In some embodiments, the second electrode claw 18 and the first electrode claw 17 may have a same structure and may be compatible. In this way, the assembly difficulty and costs may be reduced.
  • During assembly of the vaporization main body 10, the following steps may be used:
      • (1) The bottom base 11, the electrode column 15, the insulating sealing ring 16, and the second electrode claw 18 are provided, the electrode column 15 is mounted in the second mounting tube 113 of the bottom base 11 through the insulating sealing ring 16, and the second electrode claw 18 is then sleeved on a top portion of the electrode column 15, to form a bottom base combination body. In this case, the conductive portion 183 of the second electrode claw 18 extends upward.
      • (2) The vent tube 12 and the first electrode claw 17 shown in the figure are provided, and the first electrode claw 17 is embedded in the second tube section 123 of the vent tube 12, where the conductive portion 173 of the first electrode claw 17 extends downward.
      • (3) The vaporization core 141, the first sealing ring 142, and the second sealing ring 143 are provided, and the first sealing ring 142 and the second sealing ring 143 are respectively sleeved on the upper and lower ends of the vaporization core 141 to form the vaporization assembly 14.
      • (4) The vaporization assembly 14 is inserted in the vent tube 12 from bottom to top, and the first electrode 1413 of the vaporization core 141 is in electrical contact with the conductive portion 173 of the first electrode claw 17, so that electrical connection between the first electrode 1413 of the vaporization core 141 and the vent tube 12 is implemented, and a vent tube combination body is formed.
      • (5) The vent tube combination body is inserted in the first mounting tube 112 on a top portion of the bottom base combination body, to implement tight fitting and electrical connection between the vent tube 12 and the bottom base 11, and the conductive portion 183 of the second electrode claw 18 is in contact and conducted with the second electrode 1414 of the vaporization core 141.
      • (6) The housing 13 is provided, and the housing 13 is sleeved on the outside of the first mounting tube 112, to implement assembly of the vaporization main body 10.
  • In the foregoing assembly steps of the vaporization main body 10, the first electrode claw 17 and the second electrode claw 18 implement quick electrical contact and conduction between components, which is more convenient and quick in operations when compared with an implementation of lead welding in the related art, so that automated assembly of products can be implemented more easily. It may be understood that, the serial numbers before the steps are only provided for ease of statement, and do not represent a sequence of the steps. For example, during specific assembly, the vent tube combination body may be first constructed, and the bottom base combination body is then constructed.
  • Still referring to FIG. 4 and FIG. 5 , in some embodiments, the suction nozzle component 20 may include an annular block portion 21 and a flat suction nozzle portion 22 connected to the annular block portion 21, where the annular block portion 21 is configured to be embedded in the annular liquid injection opening 132 at the upper end of the vaporization main body 10. A middle portion of the suction nozzle portion 22 is provided with a longitudinal air guide hole 220, and the air guide hole 220 is configured to be in communication with the upper end of the second tube section 123 of the vent tube 12, to output a mixture of aerosols and air.
  • During assembly of the vaporizer 1, the liquid aerosol-generation substrate is first injected in the liquid storage cavity 130 of the vaporization main body 10 through the liquid injection opening 132, the suction nozzle component 20 is then inserted in the liquid injection opening 132 to seal the liquid storage cavity 130 after the liquid storage cavity is filled, and the air guide hole 220 of the suction nozzle component 20 is in communication with the vent tube 12. In this case, the liquid aerosol-generation substrate reaches a periphery of the vaporization core 141 through the liquid inlet hole 122, and the porous body 1411 of the vaporization core 141 absorbs the liquid aerosol-generation substrate through capillary force to the inner surface so as to be in contact with the heating element 1412. During use, the vaporization assembly 1 is mounted onto the battery device 2. When a user inhales through the suction nozzle portion 22, as shown by arrows X in FIG. 3 , external air enters through the central hole 150 of the electrode column 15, enters the central through hole 1410 of the vaporization core 141 after flowing through the through hole 1110 of the bottom base 11, and is then outputted through the air guide hole 220 of the suction nozzle component 20. Meanwhile, an air switch in the battery device 2 is conducted, to drive the battery device 2 to supply power to the vaporizer 1. The heating element 1412 of the vaporization core 141 generates heat after being energized, to heat and vaporize the liquid aerosol-generation substrate on the inner surface of the porous body 1411 to form aerosols, and the aerosols are carried out by an airflow after the aerosols are mixed in the air flowing through the central through hole 1410.
  • FIG. 9 to FIG. 11 show a vaporization main body 10 a in some embodiments of the present invention, a housing is omitted in the figures, and the vaporization main body 10 a may be used as an alternative of the vaporization main body 10. As shown in the figure, in some embodiments, the vaporization main body 10 a may include a bottom base 11 a, a vent tube 12 a, a vaporization assembly 14 a, an electrode column 15 a, an insulating sealing ring 16 a, a first electrode claw 17 a, and a second electrode claw 18 a that are assembled coaxially. In some embodiments, the bottom base 11 a may be in a shape of a cylinder and conductive. In some embodiments, the vent tube 12 a may also be conductive, is longitudinally embedded in an upper portion of the bottom base 11 a, and is electrically connected to the bottom base 11 a. The vent tube 12 a defines a columnar vaporization cavity 120 a. A liquid inlet hole 122 a communicating a liquid storage cavity with the vaporization cavity 120 a may be further formed on the vent tube 12 a. In some embodiments, the vaporization assembly 14 a may be in a shape of a cylinder and is longitudinally arranged in the vaporization cavity 120 a. A middle portion of the vaporization assembly 14 a may form a longitudinally run-through airflow channel 140 a. The electrode column 15 a longitudinally runs through a lower portion of the bottom base 11 a and is electrically insulated from the bottom base 11 a. Specifically, the lower portion of the bottom base 11 a is longitudinally provided with an insulating sealing ring 16 a, and the electrode column 15 a further runs through the insulating sealing ring 16 a, to implement insulating and sealing connection to the bottom base 11 a. One end of the first electrode claw 17 a is fixed to an inner wall of the vent tube 12 a and is electrically connected to the vent tube 12 a, and the other end is in elastic contact with an upper end of the vaporization assembly 14 a, so as to electrically connect the upper end of the vaporization assembly 14 a to the vent tube 12 a. One end of the second electrode claw 18 a is fixed to the electrode column 15 a and is electrically connected to the electrode column 15 a, and the other end is in elastic contact with a lower end of the vaporization assembly 14 a, so as to electrically connect the lower end of the vaporization assembly 14 a to the electrode column 15 a.
  • In some embodiments, the electrode column 15 a is configured to be electrically connected to a positive electrode of a battery device 2 a, and the bottom base 11 a is configured to be electrically connected to a negative electrode of the battery device 2 a, to form an electrical loop. Therefore, after flowing out of the positive electrode of the battery device 2 a, a current can flow through the electrode column 15 a and the second electrode claw 18 a sequentially and reach the lower end of the vaporization assembly 14 a; and after running through the vaporization assembly 14 a and causing the vaporization assembly 14 a to generate heat, the current reaches the upper end of the vaporization assembly 14 a, and then flows back to the negative electrode of the battery device 2 a after flowing through the first electrode claw 17 a, the vent tube 12 a, and the bottom base 11 a sequentially. It may be understood that, in some embodiments, the electrode column 15 a and the bottom base 11 a may alternatively be electrically connected to the negative electrode and the positive electrode of the battery device 2 a respectively. In this case, a flowing direction of the current is opposite to the foregoing flowing direction.
  • In some embodiments, the bottom base 11 a may be integrally formed by using a metal material and may include a circular base 111 a and a second mounting tube 113 a longitudinally arranged on a bottom surface of the base 111 a. A middle portion of the base 111 a is provided with a longitudinally run-through through hole 1110 a, and the through hole 1110 a communicates a first tube section 121 a of the vent tube 12 a with the second mounting tube 113 a. A mounting ring 1132 a matching the insulating sealing ring 16 a is formed on an inner wall surface of the second mounting tube 113 a. An air inlet hole 1130 a is further formed on a side wall of the second mounting tube 113 a.
  • In some embodiments, the vent tube 12 a may include a first tube section 121 a integrally formed with the bottom base 11 a and a second tube section 123 a axially embedded in an upper end of the first tube section 121 a and electrically connected to the first tube section 121 a. The first tube section 121 a defines the vaporization cavity 120 a, and there may be a plurality of liquid inlet holes 122 a uniformly formed on a circumferential direction of a side wall of the first tube section 121 a. A block ring 1231 a may be arranged at a position close to the first tube section 121 a on an inner wall surface of the second tube section 123 a, which is configured to provide axial resistance force for the first electrode claw 17 a.
  • In some embodiments, the vaporization assembly 14 a may include a longitudinally arranged cylindrical vaporization core 141 a, a first sealing ring 142 a sleeved on an upper end of the vaporization core 141 a, and a second sealing ring 143 a sleeved on a lower end of the vaporization core 141 a. The first sealing ring 142 a may include an L-shaped cross section configured to seal gaps between the upper end of the vaporization core 141 a with the first tube section 121 a and the second tube section 123 a. The second sealing ring 143 a may also include an L-shaped cross section configured to seal a gap between the lower end of the vaporization core 141 a and the bottom base 11 a. A middle portion of the outer wall surface of the vaporization core 141 a may directly face the liquid inlet hole 122 a. In some embodiments, the first sealing ring 142 a and the second sealing ring 143 a may have a same structure.
  • In some embodiments, a first vent groove 1420 a in a shape of a labyrinth is formed on an inner wall surface of the first sealing ring 142 a. A size of the first vent groove 1420 a may be designed to be small enough to include capillary force in a use state, so as to communicate the liquid storage cavity with an airflow channel in the vent tube 12 a when the liquid storage cavity is under a relatively great negative pressure, thereby achieving vapor-liquid equilibrium and preventing dry heating. In some embodiments, a second vent groove 1430 a in a shape of a labyrinth may also be provided on an inner wall surface of the second sealing ring 143 a, which has a same function as the first vent groove 1420 a. It may be understood that, a vent groove may be arranged on any one of the first sealing ring 142 a or the second sealing ring 143 a. In some embodiments, the first sealing ring 142 a and the second sealing ring 143 a may have a same structure and may be compatible.
  • Still referring to FIG. 11 , in some embodiments, the vaporization core 141 a may include a cylindrical porous body 1411 a, a heating element 1412 a arranged on an inner wall surface of the porous body 1411 a, a first electrode 1413 a arranged at an upper end of the inner wall surface of the porous body 1411 a and electrically connected to an upper end of the heating element 1412 a, and a second electrode 1414 a arranged at a lower end of the inner wall surface of the porous body 1411 a and electrically connected to a lower end of the heating element 1412 a. In some embodiments, a structure of the vaporization core 141 a may be the same as a structure of the vaporization core 141, which may be compatible.
  • In some embodiments, the electrode column 15 a includes a central hole 150 a extending downward from an upper end surface. In some embodiments, the electrode column 15 a may include a bottom wall 155 a to block the central hole 150 a, so that the central hole 150 a can accommodate leaked liquid and prevent the leaked liquid from leaking to the outside. In some embodiments, an upper end of an inner wall surface of the central hole 150 a is further provided with a block ring 156 a to block the second electrode claw 18 a. An outer wall surface of the insulating sealing ring 16 a forms a clamping groove 160 a configured to be clamped with the mounting ring 1132 a of the bottom base 11 a.
  • In some embodiments, the first electrode claw 17 a may be made of an elastic metal material, and may include a mounting portion 171 a embedded in the inner wall surface of the second tube section 123 a, an extension portion 172 a connected to the mounting portion 171 a, and a conductive portion 173 a connected to the extension portion 172 a. In some embodiments, the mounting portion 171 a may be in a shape of a cylinder and include a longitudinal fracture 1710 a running through upper and lower side edges, where existence of the fracture 1710 a causes the mounting portion 171 a to match an error of an inner diameter size of the second tube section 123 a, thereby improving the applicability. In some embodiments, the extension portion 172 a may be in a shape of a bar, and preferably, there may be three or more than three extension portions. The three or more than three extension portions 171 a are uniformly connected to a lower side edge of the mounting portion 171 a and extend downward. One conductive portion 173 a is arranged at a tail end of each extension portion 172 a, and is configured to be in elastic contact with the first electrode 1413 a of the vaporization core 141 a, so as to implement conduction and improve the assembly efficiency. In some embodiments, the first electrode claw 17 a and the first connector 17 may have a same structure, which may be compatible.
  • In some embodiments, the second electrode claw 18 a may have a same structure as the first electrode claw 17 a, which may also be made of an elastic metal material and include a mounting portion 181 a embedded in the central hole 150 a of the electrode column 15 a, an extension portion 182 a connected to the mounting portion 181 a, and a conductive portion 183 a connected to the extension portion 182 a. In some embodiments, the mounting portion 181 a may be in a shape of a cylinder and include a longitudinal fracture 1810 a running through upper and lower side edges, where existence of the fracture 1810 a causes the mounting portion 181 a to match an error of a size of the central hole 150 a of the electrode column 15 a, thereby improving the applicability. In some embodiments, the extension portion 182 a may be in a shape of a bar, and preferably, there may be three or more than three extension portions. The three or more than three extension portions 181 a are uniformly connected to a lower side edge of the mounting portion 181 a and extend downward. One conductive portion 183 a is arranged at a tail end of each extension portion 182 a, and is configured to be in elastic contact with the second electrode 1414 a of the vaporization core 141 a, so as to implement conduction and improve the assembly efficiency. In some embodiments, the second electrode claw 18 a and the second connector 18 may have a same structure, which may be compatible.
  • During assembly of the vaporization main body 10 a, the following steps may be used:
      • (1) The bottom base 11 a including the first tube section 121 a of the vent tube 12 a, the electrode column 15 a, the insulating sealing ring 16 a, and the second electrode claw 18 a are provided, the electrode column 15 a is mounted in the second mounting tube 113 a of the bottom base 11 a through the insulating sealing ring 16 a, and the second electrode claw 18 a is then embedded in a top portion of the electrode column 15 a, to form a bottom base combination body. In this case, the conductive portion 183 a of the second electrode claw 18 a extends upward.
      • (2) The vaporization core 141 a, the first sealing ring 142 a, and the second sealing ring 143 a are provided, and the first sealing ring 142 a and the second sealing ring 143 a are respectively sleeved on the upper and lower ends of the vaporization core 141 a to form the vaporization assembly 14 a.
      • (3) The vaporization assembly 14 a is inserted in the first tube section 121 a of the vent tube 12 a from bottom to top, and the conductive portion 183 a of the second electrode claw 18 a is in contact and conducted with the second electrode 1414 a of the vaporization core 141 a, so that electrical connection between the second electrode 1414 a of the vaporization core 141 a and electrode column 15 a is implemented.
      • (4) The second tube section 123 a of the vent tube 12 a and the first electrode claw 17 a are provided, and the first electrode claw 17 a is embedded in the second tube section 123 a of the vent tube 12 a, where the conductive portion 173 a of the first electrode claw 17 a extends downward, to form a second tube section combination body.
      • (5) The second tube section combination body is embedded in a top portion of the first tube section 121 a, and the first electrode 1413 a of the vaporization core 141 a is in electrical contact with the conductive portion 173 a of the first electrode claw 17 a, so that electrical connection between the first electrode 1413 a of the vaporization core 141 a and the vent tube 12 a is implemented.
  • In the foregoing assembly steps of the vaporization main body 10 a, the first electrode claw 17 a and the second electrode claw 18 a implement electrical contact and conduction between components, which is more convenient and quick in operations when compared with an implementation of lead welding in the related art, so that automated assembly of products can be implemented more easily.
  • FIG. 12 to FIG. 14 show a vaporization main body 10 b in some embodiments of the present invention, where the vaporization main body 10 b may be used as an alternative of the vaporization main body 10, and has same appearance as the vaporization main body 10. As shown in the figure, in some embodiments, the vaporization main body 10 b may include a bottom base 11 b, a vent tube 12 b, a housing 13 b, a vaporization assembly 14 b, an electrode column 15 b, an insulating sealing ring 16 b, a first electrode claw 17 b, and a second electrode claw 18 b that are assembled coaxially.
  • In some embodiments, the bottom base 11 b may be in a shape of a cylinder and conductive. In some embodiments, the vent tube 12 b may also be conductive, is longitudinally embedded in an upper portion of the bottom base 11 b, and is electrically connected to the bottom base 11 b. The vent tube 12 b defines a columnar vaporization cavity 120 b. In some embodiments, the housing 13 b may be in a shape of a cylinder, is longitudinally sleeved on the upper portion of the bottom base 11 b, and surrounds the vent tube 12 b. An annular liquid storage cavity 130 b is defined between an inner wall surface of the housing 13 b and an outer wall surface of the vent tube 12 b. A liquid inlet hole 122 b communicating the liquid storage cavity 130 b with the vaporization cavity 120 b may be further formed on the vent tube 12 b. In some embodiments, the vaporization assembly 14 b may be in a shape of a cylinder and is longitudinally arranged in the vaporization cavity 120 b. A middle portion of the vaporization assembly 14 b may form a longitudinally run-through central through hole 1410 b. The electrode column 15 b longitudinally runs through a lower portion of the bottom base 11 b and is electrically insulated from the bottom base 11 b. Specifically, the lower portion of the bottom base 11 b is longitudinally provided with an insulating sealing ring 16 b, and the electrode column 15 b further runs through the insulating sealing ring 16 b, to implement insulating and sealing connection to the bottom base 11 b. One end of the first electrode claw 17 b is fixed to an upper end of the vaporization assembly 14 a and is electrically connected to the upper end of the vaporization assembly 14 b, and the other end is in elastic contact with an inner wall of the vent tube 12 b, so as to electrically connect the upper end of the vaporization assembly 14 b to the vent tube 12 b. One end of the second electrode claw 18 b is fixed to a lower end of the vaporization assembly 14 b and is electrically connected to the lower end of the vaporization assembly 14 b, and the other end is in elastic contact with the electrode column 15 b, so as to electrically connect the lower end of the vaporization assembly 14 b to the electrode column 15 b.
  • In some embodiments, the electrode column 15 b is configured to be electrically connected to a positive electrode of a battery device 2 b, and the bottom base 11 b is configured to be electrically connected to a negative electrode of the battery device 2 b, to form an electrical loop. Therefore, after flowing out of the positive electrode of the battery device 2 b, a current can flow through the electrode column 15 b and the second electrode claw 18 b sequentially and reach the lower end of the vaporization assembly 14 b; and after running through the vaporization assembly 14 b and causing the vaporization assembly 14 b to generate heat, the current reaches the upper end of the vaporization assembly 14 b, and then flows back to the negative electrode of the battery device 2 b after flowing through the first electrode claw 17 b, the vent tube 12 b, and the bottom base 11 b sequentially. It may be understood that, in some embodiments, the electrode column 15 b and the bottom base 11 b may alternatively be electrically connected to the negative electrode and the positive electrode of the battery device 2 b respectively. In this case, a flowing direction of the current is opposite to the foregoing flowing direction.
  • Still referring to FIG. 13 and FIG. 14 , in some embodiments, the bottom base 11 b may be integrally formed by using a metal material and may include a circular base 111 b, a first mounting tube 112 b longitudinally arranged on an upper surface of the base 111 b, and a second mounting tube 113 b longitudinally arranged on a bottom surface of the base 111 b. A middle portion of the base 111 b is provided with a longitudinally run-through through hole 1110 b, and the through hole 1110 b communicates the first mounting tube 112 b with the second mounting tube 113 b. An outer wall surface of the second mounting tube 113 b forms a threaded structure 1131 b matching threads on an upper end of the battery device 2 b, and a mounting ring 1132 b matching the insulating sealing ring 16 b is formed on an inner wall surface. In some embodiments, the bottom base 11 b and the bottom base 11 may have a same structure and may be compatible.
  • In some embodiments, the vent tube 12 b may be integrally formed by using a metal material and may include a first tube section 121 b, a second tube section 123 b axially connected to an upper end of the first tube section 121 b, and a third tube section 125 b axially connected to a lower end of the first tube section 121 b, where inner diameters and outer diameters of the third tube section 125 b, the first tube section 121 b, and the second tube section 123 b are sequentially decreased. The first tube section 121 b defines the vaporization cavity 120 b, and there may be a plurality of liquid inlet holes 122 b uniformly formed on a circumferential direction of a side wall of the first tube section 121 b. An outer diameter of the third tube section 125 b matches an inner diameter of the first mounting tube 112 b, so that the third tube section 125 b is longitudinally embedded in the first mounting tube 112 b and tightly fits the first mounting tube 112 b. The height of the third tube section 125 b is equal to the height of the first mounting tube 112 b. In some embodiments, to facilitate to embed the third tube section 125 b in the first mounting tube 112 b, a guide portion 1251 b is further formed on an outer wall surface of the third tube section 125 b close to a lower end thereof through inward retraction, and an outer diameter of the guide portion 125 b is less than that of the first mounting tube 112 b. In some embodiments, a horn-shaped guide surface 1210 b leaning outward may be arranged on an inner wall surface of a junction of the first tube section 121 b and the second tube section 123 b, which is configured to match the conductive portion 173 b of the first electrode claw 17 b, thereby facilitating smooth connection between the conductive portion 173 b and the vent tube 12 b, and facilitating quick assembly.
  • In some embodiments, the housing 13 b may be made of a transparent material, and an inner diameter thereof matches the outer diameter of the first mounting tube 112 b, so that the housing 13 b can be axially sleeved on the first mounting tube 112 b through a lower end and tightly fits the first mounting tube 112 b. An upper end surface of the housing 13 b may be slightly lower than an upper end surface of the second tube section 123 b, to better match the suction nozzle component 20. The liquid storage cavity 130 b is defined between the inner wall surface of the housing 13 b and the inner wall surfaces of the first tube section 121 b and the second tube section 123 b, and an annular liquid injection opening 132 b is formed between an upper end of the housing 13 b and an upper end of the second tube section 123 b.
  • In some embodiments, the vaporization assembly 14 b may include a longitudinally arranged cylindrical vaporization core 141 b, a first sealing ring 142 b sleeved on an upper end of the vaporization core 141 b, and a second sealing ring 143 b sleeved on a lower end of the vaporization core 141 b. The first sealing ring 142 b may include an L-shaped cross section configured to seal a gap between the upper end of the vaporization core 141 b and the upper end of the first tube section 121 b. The second sealing ring 143 b may also include an L-shaped cross section configured to seal a gap between the lower end of the vaporization core 141 b and the third tube section 125 b. A middle portion of the outer wall surface of the vaporization core 141 b may directly face the liquid inlet hole 122 b. A middle portion of the vaporization core 141 b forms a longitudinally run-through central through hole 1410 b.
  • Referring to FIG. 15 , in some embodiments, the vaporization core 141 b may include a cylindrical porous body 1411 b, a heating element 1412 b arranged on an inner wall surface of the porous body 1411 b, a first electrode 1413 b arranged at an upper end of the porous body 1411 b and electrically connected to an upper end of the heating element 1412 b, and a second electrode 1414 b arranged at a lower end of the porous body 1411 b and electrically connected to a lower end of the heating element 1412 b. In some embodiments, the heating element 1412 b may be formed on an inner wall surface of the porous body 1411 b in a manner of silk-screening, printing, or coating heating film slurry on an inner surface of a green body of the porous body 1411 b and then sintering the slurry to form a heating circuit. In some embodiments, the heating element may be spirally distributed on the inner wall surface of the porous body 1411 b along a longitudinal direction of the porous body 1411 b.
  • In some embodiments, the first electrode 1413 b and/or the second electrode 1414 b may be formed on a surface of the cylindrical porous body 1411 b by coating and sintering silver slurry, and at least partially connected to the heating element 1412 b. In some embodiments, the first electrode 1413 b includes a cylindrical first electrode portion M and a circular ring-shaped second electrode portion N connected to an upper end edge of the first electrode portion M. The first electrode portion M is formed at an upper end of the inner wall surface of the porous body 1411 b and is connected to the upper end of the heating element 1412 b. The second electrode portion N is formed on an upper end surface of the heating element 1412 b and is connected to the first electrode claw 17 b. In some embodiments, the second electrode 1414 b includes a cylindrical third electrode portion P and a circular ring-shaped fourth electrode portion Q connected to a lower end edge of the third electrode portion P. The third electrode portion P is formed at a lower end of the inner wall surface of the porous body 1411 b and is connected to the lower end of the heating element 1412 b. The fourth electrode portion Q is formed on a lower end surface of the heating element 1412 b and is connected to the second electrode claw 18 b. In some embodiments, the first electrode 1413 b may not be provided with the first electrode portion M, and the second electrode 1414 b may not be provided with the third electrode portion P. That is, the first electrode 1413 b and the second electrode 1414 b are only arranged on an end surface of the porous body 1411 b. In this way, a structure of an electrode becomes very simple, and a printing or coating forming process becomes simpler, thereby providing great convenience for the diversity of electrical connection. For example, a vaporization main body 1 d shown in FIG. 21 implements electrical connection through conductive silicone.
  • Still referring to FIG. 13 and FIG. 14 , in some embodiments, the electrode column 15 b includes a central hole 150 b extending upward from a lower end surface, an air outlet hole 152 b formed on a side wall of a middle portion, and a clamping groove 154 b formed on a side wall surface, where the air outlet hole 152 b is in communication with the central hole 150 b for air intaking. The clamping groove 154 b is configured to be clamped with the insulating sealing ring 16 b. An outer wall surface of the insulating sealing ring 16 b forms a clamping groove 160 b configured to be clamped with the mounting ring 1132 b of the bottom base 11 b. Preferably, an upper end of the electrode column 15 b runs through the through hole 1110 b of the bottom base 11 b, and extends to a position near the lower end of the vaporization core 141 b, so as to be in contact and conducted with the second electrode claw 18 b arranged at the lower end of the vaporization core 141 b.
  • In some embodiments, the first electrode claw 17 b may be made of a material such as phosphor copper or 316 stainless steel, and a gold plated coating may be arranged on a surface of the first electrode claw. Preferably, the first electrode claw 17 b is made of a phosphor copper material, and an impedance of the phosphor copper material is relatively small. The first electrode claw 17 b may include a mounting portion 171 b sandwiched between an upper end surface of the vaporization core 141 b and the first sealing ring 142 b, an extension portion 172 b connected to the mounting portion 171 b, and a conductive portion 173 b connected to the extension portion 172 b. Each extension portion 172 b and a corresponding conductive portion 173 b form an elastic conductive arm of the first electrode claw 17 b. It may be understood that, a quantity of elastic conductive arms of the first electrode claw 17 b is not limited to three and may be one or more than one, and when the first electrode claw includes a plurality of elastic conductive arms, electrical connection may be more reliable and assembly may be more convenient.
  • In some embodiments, the mounting portion 171 b may be in a shape of a circular ring-shaped sheet, and is in electrical contact with the second electrode portion N of the first electrode 1413 b. In some embodiments, the extension portion 172 b may be in a shape of a bar and includes good elasticity. Preferably, there are two or more than two extension portions 172 b, to ensure more reliable electrical connection; and when there are a plurality of extension portions 172 b, a best situation is that the extension portions are uniformly distributed at an inner ring of the mounting portion 171 b and extend upward. One conductive portion 173 b is arranged at a tail end of each extension portion 172 b, and is configured to be in elastic contact with the vent tube 12 b. In some embodiments, the conductive portion 173 b may be in shape of a spoon. An inclined surface of the spoon-shaped structure leans inward and plays a role of guiding, and a bottom portion of the spoon-shaped structure is in arc transition, so that the spoon-shaped structure can be in better contact and conducted with the vent tube 12 b. In some embodiments, the mounting portion 171 b further includes several first convex points 174 b protruding toward the upper end surface of the vaporization core 141 b. Burrs may be easily generated in a manufacturing process of the mounting portion 171 b in a shape of a circular ring-shape sheet, and as a result, contact between the mounting portion 171 b and the upper end surface of the vaporization core 141 b may be not stable enough. By adding the first convex points 174 b, the mounting portion can be in better contact with the first electrode 1413 b on the upper end surface of the vaporization core 141 b, and the consistency is better. Preferably, a quantity of the first convex points 174 b ranges from two to three, and the first convex points are uniformly distributed in a circumferential direction of the mounting portion 171 b.
  • In some embodiments, the second electrode claw 18 b may be made of a material such as phosphor copper or 316 stainless steel, and a gold plated coating may be arranged on a surface of the second electrode claw. Preferably, the second electrode claw 18 b is made of a phosphor copper material, and an impedance of the phosphor copper material is relatively small. The second electrode claw 18 b may include a mounting portion 181 b sandwiched between a lower end surface of the vaporization core 141 b and the second sealing ring 143 b, an extension portion 182 b connected to the mounting portion 181 b, and a conductive portion 183 b connected to the extension portion 182 b. Each extension portion 182 b and a corresponding conductive portion 183 b form an elastic conductive arm of the second electrode claw 18 b. It may be understood that, a quantity of elastic conductive arms of the second electrode claw 18 b is not limited to three and may be one or more than one, and when the second electrode claw includes a plurality of elastic conductive arms, electrical connection may be more reliable and assembly may be more convenient.
  • In some embodiments, the mounting portion 181 b may be in a shape of a circular ring-shaped sheet, and is in electrical contact with the fourth electrode portion Q of the second electrode 1414 b. In some embodiments, the extension portion 182 b may be in a shape of a bar and includes good elasticity. Preferably, there are two or more than two extension portions 182 b, to ensure more reliable electrical connection; and when there are a plurality of extension portions 182 b, a best situation is that the extension portions are uniformly distributed at an inner ring of the mounting portion 181 b and extend downward. One conductive portion 183 b is arranged at a tail end of each extension portion 182 b, and is configured to be in elastic contact with the upper end of the electrode column 15 b. In some embodiments, the conductive portion 183 b may be in shape of a spoon. An inclined surface of the spoon-shaped structure leans outward and plays a role of guiding, and a bottom portion of the spoon-shaped structure is in arc transition, so that the spoon-shaped structure can be in better contact and conducted with a side wall surface of the upper end of the electrode column 15 b. In some embodiments, the mounting portion 181 b further includes several second convex points 184 b protruding toward the lower end surface of the vaporization core 141 b. Burrs may be easily generated in a manufacturing process of the mounting portion 181 b in a shape of a circular ring-shape sheet, and as a result, contact between the mounting portion 181 b and the lower end surface of the vaporization core 141 b may be not stable enough. By adding the second convex points 184 b, the mounting portion can be in better contact with the second electrode 1414 b on the lower end surface of the vaporization core 141 b, and the consistency is better. Preferably, a quantity of the second convex points 184 b ranges from two to three, and the second convex points are uniformly distributed in a circumferential direction of the mounting portion 181 b.
  • During assembly of the vaporization main body 10 b, the following steps may be used:
      • (1) The bottom base 11 b, the electrode column 15 b, and the insulating sealing ring 16 b are provided, and the electrode column 15 b is mounted into the second mounting tube 113 b of the bottom base 11 b through the insulating sealing ring 16 b to form a bottom base combination body.
      • (2) The vaporization core 141 b, the first sealing ring 142 b, the second sealing ring 143 b, the first electrode claw 17 b, and the second electrode claw 18 b are provided; the first electrode claw 17 b is arranged on the upper end surface of the vaporization core 141 b, and the first sealing ring 142 b is then sleeved on the upper end of the vaporization core 141 b, so that the mounting portion 171 b of the first electrode claw 17 b is sandwiched between the upper end surface of the vaporization core 141 b and the first sealing ring 142 b, and the conductive portion 173 b of the first electrode claw 17 b extends upward from the inner ring of the first sealing ring 142 b; and the second electrode claw 18 b is arranged on the lower end surface of the vaporization core 141 b, and the second sealing ring 143 b is then sleeved on the lower end of the vaporization core 141 b, so that the mounting portion 181 b of the second electrode claw 18 b is sandwiched between the lower end surface of the vaporization core 141 b and the second sealing ring 143 b, and the conductive portion 183 b of the second electrode claw 18 b extends downward from the inner ring of the second sealing ring 143 b. Therefore, a vaporization core combination body is formed.
      • (3) The vent tube 12 b is provided, and the vaporization core combination body is inserted in the first tube section 121 b and the third tube section 125 b of the vent tube 12 b, where the conductive portion 173 b of the first electrode claw 17 b is in contact and conducted with a junction of the first tube section 121 b and the second tube section 123 b, to implement electrical connection between the upper end of the vaporization core 141 b and the vent tube 12 b. Therefore, a vent tube combination body is formed.
      • (4) The vent tube combination body is inserted in the first mounting tube 112 b on a top portion of the bottom base combination body, to implement tight fitting and electrical connection between the vent tube 12 b and the bottom base 11 b, and the conductive portion 183 b of the second electrode claw 18 b is in contact and conducted with the side wall surface of the upper end of the electrode column 15 b.
      • (5) The housing 13 b is provided, and the housing 13 b is sleeved on the outside of the first mounting tube 112 b, to implement assembly of the vaporization main body 10 b.
  • In the foregoing assembly steps of the vaporization main body 10 b, the first electrode claw 17 b and the second electrode claw 18 b implement quick electrical contact and conduction between components, which is more convenient and quick in operations when compared with an implementation of lead welding in the related art, so that automated assembly of products can be implemented more easily.
  • FIG. 16 to FIG. 19 show a vaporizer 1 c in some embodiments of the present invention. The vaporizer 1 c may include a bottom base 11 c, a vent tube 12 c, a housing 13 c, a vaporization assembly 14 c, a first electrode column 15 c, a second electrode column 16 c, a liquid injection device 17 c, and a bottom shell 18 c. The vent tube 12 c is longitudinally embedded in an upper portion of the bottom base 11 c and defines a columnar vaporization cavity 120 c. The housing 13 c is longitudinally sleeved on the upper portion of the bottom base 11 c and surrounds the vent tube 12 c, and an annular liquid storage cavity 130 c is defined between an inner wall surface of the housing 13 c and an outer wall surface of the vent tube 12 c. A liquid inlet hole 122 c communicating the liquid storage cavity 130 c with the vaporization cavity 120 c may be further formed on the vent tube 12 c. In some embodiments, the vaporization assembly 14 c may be in a shape of a cylinder and is longitudinally arranged in the vaporization cavity 120 c, and a middle portion of the vaporization assembly 14 c may form a longitudinally run-through airflow channel 140 c. The first electrode column 15 c and the second electrode column 16 c run through the bottom base 11 c respectively and are electrically connected to the vaporization assembly 14 c respectively, to electrically connect a positive electrode and a negative electrode of a battery device to the vaporization assembly 14 c respectively. The liquid injection device 17 c runs through the bottom base 11 c, communicates the liquid storage cavity 130 with the outside, and is configured to inject a liquid aerosol-generation substrate into the liquid storage cavity 130. Preferably, the bottom shell 18 c is made of a magnetophilic material, sleeved on a bottom portion of the bottom base 11 c, and clamped with the housing 13 c. The bottom shell 18 c can be further adsorbed to a magnet on the battery device, to implement detachable connection between the vaporizer 1 c and the battery device.
  • In some embodiments, the bottom base 11 c may be in a shape of a racetrack and may include a hard lower base body 111 c and a soft upper base body 112 c sleeved on an upper portion of the lower base body 111 c and mutually embedded with the lower base body 111 c. In some embodiments, the lower base body 111 c may be integrally formed by using hard plastics, and the upper base body 112 c may be integrally formed by using silicone.
  • In some embodiments, a top portion of the hard lower base body 111 c may recess to form a cylindrical accommodating cavity 1110 c configured for longitudinally embedding the vent tube 12 c, and an air inlet hole 1112 c running through to a bottom surface of the lower base body 111 c is formed at a middle portion of a bottom wall of the accommodating cavity 1110 c. A first mounting hole 1113 c and a second mounting hole 1114 c running through to the bottom surface of the lower base body 111 c may be further included on the bottom wall of the accommodating cavity 1110 c, which are provided for embedding lower ends of the first electrode column 15 c and the second electrode column 16 c respectively. The first mounting hole 1113 c and the second mounting hole 1114 c are distributed on a major axis of the lower base body 111 c and are located on two opposite sides of the air inlet hole 1112 c.
  • In some embodiments, the upper base body 112 c may include a first sealing portion 1121 c surrounding the vent tube 12 c, a second sealing portion 1122 c surrounding a periphery of the lower base body 111 c, and a third sealing portion 1123 c surrounding the liquid injection device 17 c. The first sealing portion 1121 c is configured to prevent the liquid substrate from leaking from a joint between the bottom base 11 c and the vent tube 12 c, the second sealing portion 1122 c is configured to prevent the liquid substrate from leaking from a joint between the bottom base 11 c and the inner wall surface of the housing 13 c, and the third sealing portion 1123 c is configured to prevent the liquid substrate from leaking from a joint between the bottom base 11 c and an outer wall surface of the liquid injection device 17 c.
  • In some embodiments, the vent tube 12 c may include a first tube section 121 c longitudinally inserted in a top portion of the bottom base 11 c, a second tube section 123 c axially connected to an upper end of the first tube section 121 c, and a third tube section 125 c axially connected to an upper end of the second tube section 123 c. In some embodiments, both the first tube section 121 c and the second tube section 123 c may be in a shape of a cylinder, and the first tube section and the second tube section may have the same diameter and may be integrally formed; and a block ring 124 c may be arranged between inner wall surfaces of the first tube section 121 c and the second tube section 123 c. The third tube section 125 c may be integrally connected in the housing 13 c, a lower end of the third tube section is inserted in the upper end of the second tube section 123 c, and the third tube section and the second tube section are sealed by using a sealing ring 126 c. The first tube section 121 c defines the vaporization cavity 120 c, and there may be a plurality of liquid inlet holes 122 c uniformly formed on a circumferential direction of a side wall of the first tube section 121 c. A block ring 1231 c extending toward a central axis may be arranged at a position close to the first tube section 121 c on the inner wall surface of the second tube section 123 c, which is configured to provide axial resistance force for the vaporization assembly 14 c.
  • In some embodiments, the housing 13 c may be made of a transparent material, and appearance thereof is approximately in a shape of a parabola. A lower end of the housing 13 c includes a racetrack-shaped opening, and the opening is sleeved on the bottom base 11 c. An upper end of the housing 13 c includes a flat suction nozzle portion, an opening 132 c is provided on the suction nozzle portion, and the opening 132 c is in communication with the third tube section 125 c of the vent tube 12 c.
  • In some embodiments, the vaporization assembly 14 c may include a longitudinally arranged cylindrical vaporization core 141 c, a first sealing ring 142 c arranged on an upper end of the vaporization core 141 c, and a second sealing ring 143 c arranged on a lower end of the vaporization core 141 c. The first sealing ring 142 c is configured to seal a gap between the upper end of the vaporization core 141 c and the upper end of the first tube section 121 c. The second sealing ring 143 c is configured to seal a gap between the lower end of the vaporization core 141 c and a lower end of the first tube section 121 c. A middle portion of an outer wall surface of the vaporization core 141 c may directly face the liquid inlet hole 122 c. A middle portion of the vaporization core 141 c forms a longitudinally run-through central through hole 1410 c.
  • Referring to FIG. 20 , in some embodiments, the vaporization core 141 c may include a cylindrical porous body 1411 c, a first heating element 1412 c and a second heating element 1415 c arranged on an inner wall surface of the porous body 1411 c, an electrical connection portion 1416 c arranged on an upper end surface of the porous body 1411 c and electrically connected to upper ends of the first heating element 1412 c and the second heating element 1415 c, a first electrode 1413 c arranged on a lower end surface of the porous body 1411 c and electrically connected to a lower end of the first heating element 1412 c, and a second electrode 1414 c arranged on the lower end surface of the porous body 1411 c and electrically connected to a lower end of the second heating element 1415 c. It may be understood that, the porous body 1411 c is not limited to a shape of a cylinder, and may be in a shape of another cylinder such as a square cylinder or an elliptical cylinder.
  • In some embodiments, the porous body 1411 c may be made of a porous ceramic. In some embodiments, the first heating element 1412 c and the second heating element 1415 c may be a heating circuit and may be formed on the inner wall surface of the porous body 1411 b in a manner of printing or coating heating film slurry (for example, silver slurry or copper slurry) on an inner surface of a green body of the porous body 1411 c and then sintering the slurry. In some embodiments, the first electrode 1413 c, the second electrode 1414 c, and the electrical connection portion 1416 c may be formed in a manner of printing or coating conductive film slurry such as silver slurry on a green body of a porous body and then sintering the slurry. It may be understood that, in some embodiments, the first heating element 1412 c, the second heating element 1415 c, the first electrode 1413 c, the second electrode 1414 c, and the electrical connection portion 1416 c may also be formed by processing a heating metal sheet. In some embodiments, the first electrode 1413 c and the second electrode 1414 c may be in a shape of a fan, and there is a gap between the first electrode and the second electrode. A groove 1417 c is provided on the lower end surface of the porous body 1411 c corresponding to the gap between the first electrode 1413 c and the second electrode 1414 c, and in some embodiments, the electrical connection portion 1416 c may be in a shape of a circular ring. In some embodiments, a lower end portion of the porous body 1411 c includes a relatively great diameter, which on one hand may be in better contact with the first electrode column 15 c and the second electrode column 16 c, and is also provided to open the groove 1417 c more easily to segment the first electrode 1413 c and the second electrode 1414 c. In some embodiments, the first electrode column 15 c and the second electrode column 16 c may be an elastic ejector pin.
  • In some embodiments, the first heating element 1412 c may include several first heating bars distributed in a longitudinal direction of the inner wall surface of the porous body 1411 c at intervals and in parallel, and the first heating bars form first heating circuits distributed at intervals and in parallel, where upper ends of the first heating bars are connected to the electrical connection portion 1416 c, and lower ends of the first heating bars are connected to the first electrode 1413 c; and the width of each heating bar ranges from 0.1 mm to 0.6 mm, and the thickness thereof ranges from 0.02 mm to 0.2 mm. In some embodiments, the second heating element 1415 c may include several second heating bars distributed in the longitudinal direction of the inner wall surface of the porous body 1411 c at intervals and in parallel, and the second heating bars form second heating circuits distributed at intervals and in parallel, where upper ends of the second heating circuits are connected to the electrical connection portion 1416 c, and lower ends of the second heating circuits are connected to the second electrode 1414 c.
  • In some embodiments, resistivities of the first heating element 1412 c and the second heating element 1415 c are greater than resistivities of the first electrode 1413 c, the second electrode 1414 c, and the electrical connection portion 1416 c. Preferably, the resistivity of the former is more than 20 times of that of the latter. In some embodiments, the first heating element 1412 c and the second heating element 1415 c may be made of a material such as nickel-chromium alloy, iron-chromium-aluminum alloy, or silver-palladium alloy, which may be formed in a manner of silk-screening or printing heating element slurry on an inner surface of the green body of the porous body and then sintering the slurry. It may be understood that, circuits of the first heating element 1412 c and the second heating element 1415 c are not limited to those shown in the figure, and may be other suitable patterns.
  • In some embodiments, the second sealing ring 143 c may include a first via 1431 c, a second via 1432 c, and two protruding ribs 1433 c. Preferably, a connecting line of the first via 1431 c and the second via 1432 c is perpendicular to and intersects a connecting line of the two protruding ribs 1433 c. In this way, when the second sealing ring 143 c matches the lower end of the porous body 1411 c, the first via 1431 c and the second via 1432 c directly face the first electrode 1413 c and the second electrode 1414 c respectively. The first via 1431 c and the second via 1432 c are respectively provided for upper ends of the first electrode column 15 c and the second electrode column 16 c to run through, so that the upper ends of the first electrode column 15 c and the second electrode column 16 c are in electrical contact and conducted with the first electrode 1413 c and the second electrode 1414 c respectively. Based on this, when the first electrode column 15 c and the second electrode column 16 c are respectively conducted with a positive electrode and a negative electrode of a battery device, a current flowing out of the positive electrode of the battery device flows back to the negative electrode of the battery device after flowing through the first electrode column 15 c, the first electrode 1413 c, the first heating element 1412 c, the electrical connection portion 1416 c, the second heating element 1415 c, the second electrode 1414 c, and the second electrode column 16 c sequentially, to implement a process that the first heating element 1412 c and the second heating element 1415 c generate heat. When compared with a conduction process with the assistance of components such as a bottom base and a vent tube in the related art, in an electrical loop of this heating process, selection of materials of the bottom base and the vent tube is more flexible and the components may be made of non-metal materials, so that costs of the entire vaporizer 1 c may be significantly reduced. In addition, automated production of the vaporizer 1 c becomes more convenient.
  • FIG. 21 shows a vaporization main body 10 d in some embodiments of the present invention. The vaporization main body 10 d may be an alternative of the vaporization main body 10 b and may include a bottom base 11 d, a vent tube 12 d, a housing 13 d, a vaporization assembly 14 d, an electrode column 15 d, and an insulating sealing ring 16 d that are coaxially assembled. Structures of the bottom base 11 d, the vent tube 12 d, the housing 13 d, the electrode column 15 d, and the insulating sealing ring 16 d may be the same as those of the bottom base 11 b, the vent tube 12 b, the housing 13 b, the electrode column 15 b, and the insulating sealing ring 16 b of the vaporization main body 10 b respectively, and details are not described herein again. Differences between the two structures mainly lie in that: (1) The first electrode claw 17 b and the second electrode claw 18 b in the vaporization main body 10 b are omitted in the vaporization main body 10 d. (2) The vaporization assembly 14 d is different from the vaporization assembly 14 b.
  • The vaporization assembly 14 d may include a longitudinally arranged cylindrical vaporization core 141 d, a first sealing ring 142 d sleeved on an upper end of the vaporization core 141 d, and a second sealing ring 143 d sleeved on a lower end of the vaporization core 141 d. A structure of the vaporization core 141 d is the same as that of the vaporization core 141 b of the vaporization assembly 14 b and may include a cylindrical porous body 1411 d, a heating element 1412 d arranged on an inner wall surface of the porous body 1411 d, a first electrode 1413 d arranged on an upper end surface of the porous body 1411 d and electrically connected to an upper end of the heating element 1412 d, and a second electrode 1414 d arranged on a lower end surface of the porous body 1411 d and electrically connected to a lower end of the heating element 1412 d. Main differences between the two structures lie in that: (1) The first sealing ring 142 d is conductive, namely, has both sealing and conductive functions, and may be made of conductive silicone. (2) The second sealing ring 143 d is a composite sealing ring, where an inner ring part is conductive to be electrically connected to the electrode column 15 d; and an outer ring part is not conductive to electrically insulate the conductive inner ring part from the conductive bottom base 11 d.
  • Based on the structure differences, in the vaporization main body 10 d, the first electrode 1413 d is electrically connected to the vent tube 12 d through the first sealing ring 142 d, and the second electrode 1414 d is electrically connected to the electrode column 15 d through the conductive inner ring part of the second sealing ring 143 d. Compared with the vaporization main body 10 b, no electrode claw extends into the airflow channel, so that interference to airflows in the airflow channel during a flowing process is reduced, and flowing of the airflows becomes smoother. In addition, after the first electrode claw 17 b and the second electrode claw 18 b are omitted, manufacturing costs can be reduced, assembly steps can be reduced, and the product stability can be improved.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. It will be understood that changes and modifications may be made by those of ordinary skill within the scope of the following claims. In particular, the present invention covers further embodiments with any combination of features from different embodiments described above and below. Additionally, statements made herein characterizing the invention refer to an embodiment of the invention and not necessarily all embodiments.
  • The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.

Claims (23)

What is claimed is:
1. A vaporization assembly, comprising:
a cylindrical vaporization core comprising a first end and a second end opposite the first end; and
at least one sealing ring tightly attached to the first end and/or the second end,
wherein a vent structure is arranged on the sealing ring.
2. The vaporization assembly of claim 1, wherein the vent structure comprises a vent groove formed on a surface attached to the first end and/or the second end of the at least one sealing ring.
3. The vaporization assembly of claim 2, wherein the vent groove is distributed on the surface in a shape of a labyrinth.
4. The vaporization assembly of claim 1, wherein the at least one sealing ring comprises a cylindrical first sealing portion and an annular second sealing portion connected to an upper end edge of the first sealing portion,
wherein the first sealing portion is sleeved on a side wall surface of the first end and/or the second end, and
wherein the second sealing portion covers an end surface of the first end and/or the second end.
5. The vaporization assembly of claim 4, wherein the vent groove continuously runs through inner wall surfaces of the first sealing portion and the second sealing portion.
6. The vaporization assembly of claim 2, wherein the vent groove is configured to provide capillary force.
7. The vaporization assembly of claim 2, wherein the at least one sealing ring comprises a first sealing ring and a second sealing ring, the first sealing ring and the second sealing ring being tightly attached to the first end and the second end, respectively, and
wherein inner wall surfaces of the first sealing ring and the second sealing ring are both provided with the vent groove.
8. A vaporizer, comprising:
the vaporization assembly of claim 1;
a liquid storage cavity in fluid connection to a periphery of the vaporization core; and
an airflow channel running through a middle portion of the vaporization core,
wherein the airflow channel is in air communication with the liquid storage cavity through the vent structure.
9. The vaporizer of claim 8, further comprising:
a vent tube defining a columnar vaporization cavity,
wherein the vaporization core and the at least one sealing ring are axially arranged in the vaporization cavity, and
wherein the at least one sealing ring is configured to provide liquid sealing between an end portion corresponding to the vaporization core and an inner wall surface of the vaporization cavity.
10. The vaporizer of claim 9, wherein a liquid inlet hole communicating the liquid storage cavity with a middle portion of an outer side wall of the vaporization core is formed on the vent tube.
11. The vaporizer of claim 9, further comprising:
a housing arranged on a periphery of the vent tube,
wherein the liquid storage cavity is defined between an inner wall surface of the housing and an outer wall surface of the vent tube.
12. The vaporizer of claim 9, wherein the vent tube is conductive, and
wherein the vaporizer further comprises an electrode claw electrically connecting the vent tube to the end portion of the vaporization core.
13. The vaporizer of claim 12, wherein the electrode claw comprises a mounting portion and at least one elastic conductive arm connected to the mounting portion,
wherein the mounting portion is mounted on one of the vent tube and the end portion of the vaporization core, and
wherein the at least one elastic conductive arm elastically abuts against an other of the vent tube and the end portion of the vaporization core.
14. The vaporizer of claim 13, further comprising:
a conductive bottom base,
wherein the vent tube is longitudinally mounted on a top portion of the bottom base and is electrically connected to the bottom base.
15. The vaporizer of claim 13, wherein the mounting portion is in a shape of a cylinder and comprises a fracture.
16. The vaporizer of claim 13, wherein the mounting portion is in a shape of an annular sheet and is sandwiched between the at least one sealing ring and an end surface of the vaporization core.
17. The vaporizer of claim 16, wherein the vaporization core comprises a cylindrical porous body, a heating element arranged on an inner surface of the porous body, and a first electrode and a second electrode connected to the heating element, respectively.
18. The vaporizer of claim 17, wherein the first electrode and the second electrode are respectively arranged on two end portions of the inner surface of the porous body.
19. The vaporizer of claim 17, wherein the first electrode and the second electrode are distributed on an end surface of the porous body in a mutual insulation manner.
20. The vaporizer of claim 8, wherein the vaporization assembly is arranged vertically, and the vent structure is only arranged on a sealing ring of the at least one sealing ring at an upper end.
21. The vaporizer of claim 8, wherein the vaporization assembly is arranged vertically, and
wherein the vent structure is only arranged on a sealing ring of the at least one sealing ring at a lower end.
22. The vaporizer of claim 8, wherein the vaporization assembly is arranged vertically, and
wherein the thickness of a material of a sealing ring of the at least one sealing ring at a lower end is greater than a thickness of a material of a sealing ring of the at least one sealing ring at an upper end.
23. An electronic vaporization device, comprising:
the vaporizer of claim 1; and
a battery device mechanically and electrically connected to the vaporizer.
US18/343,422 2020-12-31 2023-06-28 Electronic vaporization device, vaporizer, and vaporization assembly Pending US20230329346A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142480 WO2022141557A1 (en) 2020-12-31 2020-12-31 Electronic atomization device and atomizer thereof, and atomization assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142480 Continuation WO2022141557A1 (en) 2020-12-31 2020-12-31 Electronic atomization device and atomizer thereof, and atomization assembly

Publications (1)

Publication Number Publication Date
US20230329346A1 true US20230329346A1 (en) 2023-10-19

Family

ID=82260012

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/343,422 Pending US20230329346A1 (en) 2020-12-31 2023-06-28 Electronic vaporization device, vaporizer, and vaporization assembly

Country Status (3)

Country Link
US (1) US20230329346A1 (en)
CA (1) CA3203877A1 (en)
WO (1) WO2022141557A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050738A1 (en) * 2022-09-07 2024-03-14 深圳沃德韦科技有限公司 Electronic atomization device and atomizer thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780560B2 (en) * 2006-10-27 2010-08-24 Veyance Technologies, Inc. Power transmission belt
WO2016106512A1 (en) * 2014-12-29 2016-07-07 惠州市吉瑞科技有限公司 Atomizing component and electronic cigarette
CN105795522B (en) * 2016-04-08 2018-10-26 深圳瀚星翔科技有限公司 Electronic smoke atomizer
CN106037009B (en) * 2016-05-27 2018-10-26 深圳瀚星翔科技有限公司 Electrical steam device
CN110403246B (en) * 2019-06-17 2022-08-30 深圳麦克韦尔科技有限公司 Electronic atomization device and atomizer thereof
CN110250576B (en) * 2019-06-17 2023-01-06 深圳麦克韦尔科技有限公司 Electronic atomization device and atomizer thereof
CN110250577B (en) * 2019-06-17 2022-08-16 深圳麦克韦尔科技有限公司 Electronic atomization device and atomizer thereof
CN211458849U (en) * 2019-06-26 2020-09-11 深圳麦克韦尔科技有限公司 Atomizer and electronic atomization device
CN210869872U (en) * 2019-08-27 2020-06-30 广州市奇雾科技文化发展有限公司 Electronic atomizer with atomized liquid leakage-proof function
CN211379632U (en) * 2019-10-18 2020-09-01 深圳麦克韦尔科技有限公司 Electronic atomization device and atomizer thereof

Also Published As

Publication number Publication date
CA3203877A1 (en) 2022-07-07
WO2022141557A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US11083229B2 (en) Unitary heating element and heater assemblies, cartridges, and e-vapor devices including a unitary heating element
CN107635418B (en) Power supply unit for electronic cigarette device and electronic cigarette device including the same
US20230329346A1 (en) Electronic vaporization device, vaporizer, and vaporization assembly
EP4129095A1 (en) Heating device and electronic atomization device
US20240206542A1 (en) Heating element and heater assemblies, cartridges, and e-vapor devices including a heating element
WO2023179257A1 (en) Atomizer for transverse liquid guide
WO2024046133A1 (en) Electromagnetic coil, atomization structure, atomizer, and electronic atomization device
WO2023019797A1 (en) Electronic atomization device
WO2022141566A1 (en) Electronic atomization device, and atomizer, atomization assembly and atomization core thereof
WO2022141556A1 (en) Electronic atomizing device and atomizer and atomizing core thereof
EP4236621A2 (en) Heating element and heater assemblies, cartridges, and e-vapor devices including a heating element
CN114680389A (en) Electronic atomization device and atomizer and atomization core thereof
WO2022141547A1 (en) Electronic atomization device and atomizer
WO2022141558A1 (en) Electronic atomization device and atomizer thereof
WO2022141555A1 (en) Electronic atomization device, and atomizer and atomization core therefor
CN113892687A (en) Plug-in type connecting mechanism and aerosol generating device
US20240074502A1 (en) Electronic vaporization device and vaporizer thereof
US20240074503A1 (en) Electronic vaporization device and vaporizer thereof
US20240074508A1 (en) Electronic vaporization device and vaporizer thereof
CN218527685U (en) Disposable electronic atomization device
CN217906323U (en) Atomization assembly, atomizer and electronic atomization device
CN219939717U (en) Atomizer and electronic atomization device
CN218551327U (en) Electronic atomization device and atomizer thereof
CN221011992U (en) Electronic atomizing device
CN215603187U (en) Atomization device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHENZHEN SMOORE TECHNOLOGY LIMITED, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OU, GUOLIANG;ZHOU, APING;WEI, YISONG;AND OTHERS;REEL/FRAME:064100/0648

Effective date: 20230523

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION