US20230293344A1 - Punctal implants with controlled drug delivery features and methods of using same - Google Patents

Punctal implants with controlled drug delivery features and methods of using same Download PDF

Info

Publication number
US20230293344A1
US20230293344A1 US18/158,705 US202318158705A US2023293344A1 US 20230293344 A1 US20230293344 A1 US 20230293344A1 US 202318158705 A US202318158705 A US 202318158705A US 2023293344 A1 US2023293344 A1 US 2023293344A1
Authority
US
United States
Prior art keywords
implant
drug
drugs
eye
agents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/158,705
Inventor
Thomas W. Burns
Douglas Daniel Crimaldi
David Applegate
Kenneth Martin Curry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaukos Corp
Original Assignee
Glaukos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaukos Corp filed Critical Glaukos Corp
Priority to US18/158,705 priority Critical patent/US20230293344A1/en
Publication of US20230293344A1 publication Critical patent/US20230293344A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00772Apparatus for restoration of tear ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • A61K38/13Cyclosporins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir

Definitions

  • This disclosure relates to implantable drug delivery devices structured to provide targeted and/or controlled release of a drug to a desired ocular target tissue and methods of using such devices for the treatment of ocular diseases and disorders.
  • this disclosure relates to devices for insertion into the punctum and for delivery of a therapeutic agent or agents to the eye in a controlled manner.
  • the mammalian eye is a specialized sensory organ capable of light reception and is able to receive visual images.
  • the retina of the eye consists of photoreceptors that are sensitive to various levels of light, interneurons that relay signals from the photoreceptors to the retinal ganglion cells, which transmit the light-induced signals to the brain.
  • the iris is an intraocular membrane that is involved in controlling the amount of light reaching the retina.
  • the iris consists of two layers (arranged from anterior to posterior), the pigmented fibrovascular tissue known as a stroma and pigmented epithelial cells.
  • the stroma connects a sphincter muscle (sphincter pupillae), which contracts the pupil, and a set of dilator muscles (dilator pupillae) which open it.
  • the pigmented epithelial cells block light from passing through the iris and thereby restrict light passage to the pupil.
  • the central portion of the retina is known as the macula.
  • the macula which is responsible for central vision, fine visualization and color differentiation, may be affected by age related macular degeneration (wet or dry), diabetic macular edema, idiopathic choroidal neovascularization, or high myopia macular degeneration, among other pathologies.
  • Aqueous humor is a transparent liquid that fills at least the region between the cornea, at the front of the eye, and the lens and is responsible for producing a pressure within the ocular cavity.
  • Normal intraocular pressure is maintained by drainage of aqueous humor from the anterior chamber by way of a trabecular meshwork which is located in an anterior chamber angle, lying between the iris and the cornea or by way of the “uveoscleral outflow pathway.”
  • the “uveoscleral outflow pathway” is the space or passageway whereby aqueous exits the eye by passing through the ciliary muscle bundles located in the angle of the anterior chamber and into the tissue planes between the choroid and the sclera, which extend posteriorly to the optic nerve.
  • About two percent of people in the United States have glaucoma, which is a group of eye diseases encompassing a broad spectrum of clinical presentations and etiologies but unified by increased intraocular pressure.
  • Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, which can result in blindness if untreated.
  • Increased intraocular pressure is the only risk factor associated with glaucoma that can be treated, thus lowering intraocular pressure is the major treatment goal in all glaucomas, and can be achieved by drug therapy, surgical therapy, or combinations thereof.
  • the implants disclosed herein operate to provide a therapeutic effect in the eye of a subject based, at least in part, on a physical arrangement of drugs within the implant.
  • the implants comprise a punctual plug and the physical arrangement of the drugs within the implant provides advantageous timing of delivery of the drugs.
  • the punctal implants disclosed herein are placed into the punctum and reside at least partially in a lacrimal canaliculus of an eye. Such an approach is useful, in several embodiments, such as when steroid and cyclosporine are combined to treat dry eye.
  • Many current therapies for dry eye employ an initial treatment with steroid eye drops for a first time period (e.g., two weeks). After the initial period cyclosporine eye drops are added to the treatment regimen.
  • a punctal implant can deliver steroid and cyclosporine with appropriate timing to achieve a near constant, zero order administration of drug.
  • Such a dosing profile is generally considered more efficient than bolus delivery, such as occurs with eye drops.
  • the second (or third, etc.) agent results in synergistic effects when combined with the first agent.
  • the second agent reduces one or more side effects associated with the first agent. It is understood, however, that any embodiment of implant disclosed herein may contain only one drug.
  • implants for insertion into a punctum of the eye of a subject comprising an outer shell having a proximal end, a distal end, the outer shell being shaped to define an interior lumen, the outer shell dimensioned for insertion into the punctum of the eye of a subject, at least a first drug positioned within the interior lumen, at least one region of drug release the proximal portion of outer shell, and a distal occlusive member within the inner lumen, the distal occlusive member preventing elution of the first drug from the distal end of the implant.
  • the first drug elutes from the lumen to the tear film of the eye of the subject by passing through the at least one region of drug release.
  • the implant is dimensioned to be implanted with the distal end of the outer shell positioned in the lacrimal duct. In some embodiments, the implant is dimensioned to be implanted with the distal end of the outer shell positioned in the lacrimal sac. In several embodiments, the implant is dimensioned to be implanted with the distal end of the outer shell positioned in the nasolacrimal duct.
  • a punctal implant for insertion into a punctum of the eye of a subject and configured to deliver two or more drugs to the eye of the subject, the implant comprising an outer shell comprising (i) a proximal end comprising at least one region of drug release and a flange, (ii) a closed distal end, and (iii) an interior lumen comprising at least two drugs positioned within the lumen.
  • a punctal implant for insertion into a punctum of the eye of a subject and configured to deliver two or more drugs to the eye of the subject
  • the implant comprising an outer shell comprising (i) a proximal end comprising at least one region of drug release and a flange, (ii) a closed distal end, and (iii) an interior lumen comprising at least two drugs positioned within the lumen, wherein the region of drug release comprises aperture through an annular ring positioned at the proximal-most portion of the interior lumen, wherein said aperture allows elution of the two or more drugs to occur only through the occlusive member, wherein the dimensions of the aperture at least partially defines the elution rate of the two or more drugs, wherein the flange is configured to rest on the surface of the eyelid when the implant is inserted into the punctum, and wherein the first and second drug elute from the lumen to the tear film of the eye of the subject by passing through the at least one
  • the at least one region of drug release comprises at least one aperture.
  • the implant further comprises at least one membrane that occludes the at least one aperture, wherein the membrane is permeable to the at least a first drug, wherein the membrane allows elution of the at least a first drug to occur only through the at least one membrane.
  • the at least one region of drug release comprises a plurality of apertures through the outer shell and positioned randomly or in a patterned array throughout the proximal portion of the implant. As above, at least a portion of the plurality of apertures is occluded by a membrane permeable to the first drug.
  • Some embodiments provided for herein result in elution of drug (or drugs) from the implant with zero-order or pseudo zero-order kinetics.
  • the intraocular target is the posterior chamber of the eye, the anterior chamber of the eye, both the anterior chamber and posterior of the eye, or the macula, the retina, the optic nerve, the ciliary body, and the intraocular vasculature.
  • the drug acts on the intraocular target tissue to generate a therapeutic effect for an extended period.
  • the drug comprises a steroid.
  • the implant contains a total load of steroid ranging from about 10 to about 1000 micrograms, steroid is released from the implant at a rate ranging from about 0.05 to about 10 micrograms per day and/or the steroid acts on the diseased or damaged target tissue at a concentration ranging from about 1 to about 100 nanomolar.
  • the steroid additionally generates side effects associated with accumulation of physiologic fluid, and an optional shunt transports the accumulated fluid from the first location to the remote second location (such as, for example, from the anterior chamber to an existing physiological outflow pathway, such as Schlemm's canal or the naso-lacrimal duct).
  • an optional shunt transports the accumulated fluid from the first location to the remote second location (such as, for example, from the anterior chamber to an existing physiological outflow pathway, such as Schlemm's canal or the naso-lacrimal duct).
  • the at least one region of drug release comprises an occlusive member that is permeable to said two or more drugs, and the occlusive member allows elution of the two or more drugs to occur through the occlusive member.
  • the thickness of the occlusive member at least partially defines the elution rate of the drug (or drugs).
  • having a flange the flange is configured to rest on the surface of the eyelid when the implant is inserted into the punctum.
  • the drug (or drugs) elute from the lumen to the tear film of the eye of the subject by passing through the at least one region of drug release.
  • the occlusive member is an occlusive membrane is dimensioned based on the permeability of said occlusive member to said first drug (and second or more) and the desired relative timing and duration of elution of said first and second drugs.
  • the occlusive member has a thickness of between about 0.0001 and 0.0005 inches.
  • the occlusive member is integrally formed with the outer shell of the implant.
  • the occlusive member further comprises randomly or patterned holes through the occlusive membrane.
  • a first drug is placed in a more proximal position within the interior lumen relative to the position of a second drug.
  • a third drug is included, and in certain such embodiments, the first drug and second drug are positioned adjacent to one another and both the first and second drugs are placed in a more proximal position within the interior lumen relative to the position of the third drug.
  • the drug is formulated as tablets, as a nanodispersion, or a combination thereof.
  • a first drug is formed as a discontinuous first phase and a second drug is formulated as dispersion of solid of liquid particles into which the first drug is dispersed.
  • the outer shell of the implant comprises a bulge in the distal region in order to anchor the implant in the punctum.
  • a first drug elutes from an implant for a period of between 1 and 75 days, and a second drug elutes for a period of time ranging from about 1 to about 24 months after the first drug is eluted.
  • the implants disclosed herein have a length of between about 0.5 and about 2.5 mm. Some embodiments of the implants have a length of about 1.4 to about 1.6 mm. Some embodiments of the implant have a diameter of about 0.2 to about 1.5 mm. Some embodiments of the implant have a diameter of about 0.2 to about 0.6 mm.
  • the first drug may be a steroid.
  • the steroid is selected from the group consisting of loteprednol etabonate, dexamethasone, and triamcinolone acetonide.
  • a second drug is cyclosporine and is optionally formulated as a nanodispersion.
  • the first drug is cyclosporine A.
  • the first drug facilitates tear production.
  • a retention protrusion configured to anchor the implant in an implantation site (e.g., the punctum).
  • Such retention protrusions optionally comprise one or more of bulges, ridges, claws, threads, flexible ribs, rivet-like shapes, flexible barbs, barbed tips, expanding material (such as a hydrogel), and biocompatible adhesives.
  • the expanding material is placed on an exterior surface of the outer shell of the implant and expands after contact with a solvent, such as, for example, intraocular fluid or tear film.
  • FIG. 1 A illustrates a schematic cross section of an implant in accordance with embodiments disclosed herein.
  • FIGS. 1 B- 1 D illustrate additional embodiments of an implant in accordance with embodiments disclosed herein.
  • FIGS. 2 A- 2 D illustrate schematic cross sections of additional embodiments of implants in accordance with embodiment disclosed herein.
  • FIG. 3 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 4 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 5 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 6 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 7 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 8 is a schematic graph showing the elution profile of two therapeutic agents eluted from an implant according to an embodiment disclosed herein.
  • FIG. 9 is a schematic graph showing an alternative elution profile of two therapeutic agents eluted from an additional implant according to an embodiment disclosed herein.
  • FIG. 10 illustrates the anatomy of an eye.
  • FIG. 11 illustrates an embodiment of an implant in which the implant is rechargeable in that an additional, or substitute, drug payload can be added to implant without requiring removal of the implant.
  • FIG. 12 illustrates an embodiment of an implant delivery system comprising a plunger for use with a preloaded drug implant.
  • FIGS. 13 A- 13 C illustrate schematic cross sections of embodiments of inserter tools in accordance with disclosure provided herein.
  • FIGS. 14 A- 14 B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 15 A- 15 B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 16 A- 16 B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 17 A- 17 B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 18 A- 18 B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 19 A- 19 B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • Achieving local ocular administration of a drug may require direct injection or application, but could also include the use of a drug eluting implant, a portion of which, could be positioned in close proximity to the target site of action within the eye or within the chamber of the eye where the target site is located (e.g., anterior chamber, posterior chamber, or both simultaneously).
  • Use of a drug eluting implant could also allow the targeted delivery of a drug to a specific ocular tissue, such as, for example, the macula, the retina, the ciliary body, the optic nerve, or the vascular supply to certain regions of the eye.
  • Use of a drug eluting implant could also provide the opportunity to administer a controlled amount of drug for a desired amount of time, depending on the pathology.
  • implants may serve additional functions once the delivery of the drug is complete. Implants may maintain the patency of a fluid flow passageway within an ocular cavity, they may function as a reservoir for future administration of the same or a different therapeutic agent, or may also function to maintain the patency of a fluid flow pathway or passageway from a first location to a second location, e.g. function as a stent. Conversely, should a drug be required only acutely, an implant may also be made completely biodegradable.
  • the implants are configured specifically for use (e.g., implantation) in the punctum of the eye of a subject (e.g., the upper and/or lower punctum of the upper and/or lower canaliculus, respectively).
  • the puncta function to collect tears that are released onto the surface of the eye by the lacrimal glands.
  • tear production is reduced, blocked, decreased, or otherwise insufficient to maintain an adequate level of moisture on the eye (or eyes). Damage to the corneal surface of the eye can result if the moisture on the eye remains reduced.
  • the puncta convey the tear fluid to the lacrimal sac, which then allows it to drain through the nasolacrimal duct to the inner nose.
  • One treatment for dry eye or similar syndromes is implantation of punctual plugs. Once implanted the plugs function to block the drainage of tear fluid, thereby increasing the retention of tear fluid on the eye.
  • the implant embodiments disclosed herein advantageously allow the supplementation of the physical blockage of tear drainage with the delivery of one or more therapeutic agents to the eye in order to treat one or more aspects of reduced tear production.
  • one or more therapeutic agents are positioned in the implant in order to increase tear production and/or treat a symptom of dry eye, including, but not limited to, reduction in swelling, irritation of the eye and surrounding tissues and/or inflammation.
  • Additional symptoms that are reduced, ameliorated, and in some cases eliminated include stinging or burning of the eye, a sandy or gritty feeling as if something is in the eye, episodes of excess tears following very dry eye periods, a stringy discharge from the eye, pain and redness of the eye, temporary or extended episodes of blurred vision, heavy eyelids, reduced ability to cry, discomfort when wearing contact lenses, decreased tolerance of reading, working on the computer, or any activity that requires sustained visual attention, and eye fatigue.
  • the implants advantageously obviate the need for additional topical agents (e.g., ointments, artificial tears, etc.).
  • the implants are configured (e.g., have a particular drug release profile) to work synergistically with one or more of such agents.
  • the implant is configured to deliver a constant dosage of a therapeutic agent over time to treat a damaged or diseased eye, and a subject with them implants in place can also use artificial tears, for example, to further enhance the efficacy of the agent delivered from the implant.
  • the agents delivered from the implant are used for treatment of another ocular disorder, such as glaucoma, ocular hypertension, and/or elevated intraocular pressure.
  • implants configured for punctual placement allows metered delivery of one or more therapeutic agents; that is, delivery at a constant rate, thereby reducing the peaks and valleys of therapeutic agent concentration as occurs with topical administration (e.g., via eye drop).
  • the dimensions of the implants, their shape, their drug release characteristics, and the like can be configured for use in the punctum.
  • the plugs can be tailored to the punctal dimensions of a particular subject.
  • the plugs can be configured to be removable or, in several embodiments, permanent (e.g., capable of being recharged).
  • the punctal implants comprise at least a first active agent that is loaded, at least in part, preferentially in the proximal region of the implant (e.g., such that the agent is released to the tear film of the subject) with the distal region of the implant positioned within the within the lacrimal ducts.
  • the implant is specifically adapted to prevent unintended release of the active agent (or agents) from the distal portion of the implant.
  • a plug e.g., an impermeable occlusive member
  • a membrane e.g., a membrane with little to no permeability to the active agent/agents
  • a valve e.g., a one-way valve
  • the use of a valve or plug enables flushing of the implant.
  • the plug can be removed and the implant flushed from a proximal to distal direction, allowing the therapeutic agent remaining in the implant to be flushed down the nasolacrimal duct. Thereafter the implant can be reloaded with another dose, another agent, and the like.
  • flushing the implant can be performed when a valve is positioned in the distal region of the implant, the valve being opened by pressure exerted on it from the flushing procedure and preventing backflow of the flushed agent into the implant.
  • an implant and method for treating an eye with latanoprost or other therapeutic agent(s) comprising inserting a distal end of an implant into at least one punctum of the eye and positioning the implant such that the proximal portion of the implant delivers latanoprost or other therapeutic agent(s) to the tear fluid adjacent the eye. In several embodiments, delivery of the latanoprost or other therapeutic agent(s) is inhibited distally of the proximal end.
  • Implants according to the embodiments disclosed herein preferably do not require an osmotic or ionic gradient to release the drug(s), are implanted with a device that minimizes trauma to the healthy tissues of the eye which thereby reduces ocular morbidity, and/or may be used to deliver one or more drugs in a targeted and controlled release fashion to treat multiple ocular pathologies or a single pathology and its symptoms.
  • an osmotic or ionic gradient is used to initiate, control (in whole or in part), or adjust the release of a drug (or drugs) from an implant.
  • osmotic pressure is balanced between the interior portion(s) of the implant and the ocular fluid, resulting in no appreciable gradient (either osmotic or ionic).
  • variable amounts of solute are added to the drug within the device in order to balance the pressures.
  • drug refers generally to one or more drugs that may be administered alone, in combination and/or compounded with one or more pharmaceutically acceptable excipients (e.g. binders, disintegrants, fillers, diluents, lubricants, drug release control polymers or other agents, etc.), auxiliary agents or compounds as may be housed within the implants as described herein.
  • pharmaceutically acceptable excipients e.g. binders, disintegrants, fillers, diluents, lubricants, drug release control polymers or other agents, etc.
  • drug is a broad term that may be used interchangeably with “therapeutic agent” and “pharmaceutical” or “pharmacological agent” and includes not only so-called small molecule drugs, but also macromolecular drugs, and biologics, including but not limited to proteins, nucleic acids, antibodies and the like, regardless of whether such drug is natural, synthetic, or recombinant.
  • Drug may refer to the drug alone or in combination with the excipients described above.
  • “Drug” may also refer to an active drug itself or a prodrug or salt of an active drug.
  • the drug diffuses through the implant itself and into the intraocular environment.
  • the outer material of the implant is permeable or semi-permeable to the drug (or drugs) positioned within an interior lumen, and therefore, at least some portion of the total elution of the drug occurs through the shell itself.
  • the shell of the implant is impermeable to the drug (or drugs) in the interior lumen, and the implant comprises one or more specific regions of drug release.
  • impermeable or “semi permeable”) are used herein to refer to a material being permeable to some degree (or not permeable) to one or more drugs or therapeutic agents and/or ocular fluids.
  • the term “impermeable” does not necessarily mean that there is no elution or transmission of a drug through a material, instead such elution or other transmission is negligible or very slight, e.g. less than about 3% of the total amount, including less than about 2% and less than about 1%.
  • an impermeable outer shell permits no elution of drug through the shell.
  • patient shall be given its ordinary meaning and shall also refer to mammals generally.
  • mammal includes, but is not limited to, humans, dogs, cats, rabbits, rodents, swine, ovine, and primates, among others. Additionally, throughout the specification ranges of values are given along with lists of values for a particular parameter. In these instances, it should be noted that such disclosure includes not only the values listed, but also ranges of values that include whole and fractional values between any two of the listed values.
  • the drug delivery implants disclosed herein are configured to delivery drug to the eye via a topical delivery route.
  • the implant is configured to deliver one or more drugs to anterior region of the eye in a controlled fashion while in other embodiments the implant is configured to deliver one or more drugs to the posterior region of the eye in a controlled fashion.
  • the implant is configured to simultaneously deliver drugs to both the anterior and posterior region of the eye in a controlled fashion.
  • the configuration of the implant is such that drug is released in a targeted fashion to a particular intraocular tissue, for example, the macula or the ciliary body.
  • each of the embodiments described herein may target one or more of these regions and, optionally, reaches the site and achieves a therapeutic effect after being administered topically.
  • drug is released from the implant in a targeted and controlled fashion, based on the design of the various aspects of the implant, preferably for an extended period of time.
  • the implant and associated methods disclosed herein may be used in the treatment of pathologies requiring drug administration to the surface of the eye (e.g., topical), the posterior chamber of the eye, the anterior chamber of the eye, or to specific tissues within the eye.
  • the present disclosure relates to ophthalmic drug delivery implants which, following implantation at an implantation site, such as the punctum, provide controlled release of one or more drugs to a desired target region within the eye, the controlled release optionally being for an extended, period of time.
  • implantation site such as the punctum
  • controlled release optionally being for an extended, period of time.
  • a biocompatible drug delivery ocular implant comprising an outer shell that is shaped to define at least one interior lumen that houses a drug for release into an ocular space.
  • the implant comprises a body 10 having an interior lumen 12 .
  • the shell is formed to have at least two interior lumens.
  • the upper portion of the implant in several embodiments, comprises a flange 14 that extends radially and sits on the surface of the eyelid after the plug is implanted into the punctum. Opposite the flange 14 is a closed end 16 .
  • an open end or open lateral portion may also be used, for example to provide drainage to the naso-lacrimal duct.
  • the implant comprises a radial bulge 18 from a long axis LA of the body in order to provide an anchor within the punctum.
  • the bulge is parallel (or substantially parallel to a short axis SA of the implant).
  • the bulge (or other pattern) need not be uniform.
  • the bulge can comprise a raised ridge (or series of ridges encircling the body).
  • the bulge is similar to threads on a screw.
  • a bulge for example, a ridge, groove, relief, hole, or annular groove, barbs, barbs with holes, screw-like elements, knurled elements, suture, friction or wedge fit, and/or expandable materials.
  • the upper portion of the implant comprises a flange with a diameter configured to ensure reduced, limited, or in some embodiments, no corneal or scleral contact.
  • the flange preferably has a generally flattened lower surface to allow it to rest upon the lower eyelid immediately adjacent to the punctum.
  • FIG. 1 B illustrates a flange 14 that is circular in shape
  • FIG. 1 C illustrates an asymmetrical flange
  • FIG. 1 D illustrates an ovoid flange. Attributes of the flange, such as area, shape, and thickness may be varied as desired such as to aid in positioning of the uppermost end of the implant at the surface of the punctum.
  • the flange may be round, ovoid, or any geometric or asymmetric shape.
  • the flange is asymmetrical to provide reduced, limited, or in some embodiments, no corneal or scleral contact. Illustrations of non-limiting embodiments of an asymmetric flange can also be seen in FIGS. 15 A and 18 A .
  • the implant optionally comprises at least one retention protrusion configured to anchor the implant in an implantation site.
  • these retention features are non-occlusive, for example, they allow tear or other fluid flow through the canaliculus toward the nasolacrimal duct while holding the tissue of the canaliculus away from the implant body.
  • the at least one retention feature optionally comprises a bulge, protuberance, or other change in shape (relative to the long axis of the implant body) that extends axially from the body and that holds the implant in position.
  • the implant further comprises an inner tubular passageway of any size and shape. For example, FIGS.
  • FIGS. 14 A and 14 B illustrate a non-limiting embodiment comprising two retention features extending axially from the body of the implant, each further comprising a straight tubular passageway that passes through the feature.
  • the at least one retention feature optionally comprises a bulge that extends axially from the body of the implant and comprises an inner relief, as illustrated in FIGS. 17 A, 17 B .
  • FIGS. 18 A and 18 B illustrate another embodiment of an implant comprising three retention features, each further comprising an inner relief, and an asymmetric flange.
  • the inner relief can be of any shape and size, advantageously facilitating an optionally greater tear or other fluid flow as compared to retention features comprising a tubular passageway.
  • the relief features may also provide a point through which a securing suture can be fastened to secure the implant into position. Additionally, some such embodiments are used in conjunction with therapeutic agents having a side effect of increased tear production.
  • the retention features optionally comprise an erodible material.
  • the retention protrusions extend from the proximal end of the implant to a position approximately or more than halfway down the (long axis of the) implant towards the distal end.
  • the retention protrusions extend from the proximal end of the implant to less than halfway to the distal end of the implant.
  • the retention protrusion comprises a ring positioned at any point along the body of the implant, as shown, for example, in FIG. 19 A .
  • the ring optionally contains spoke features, occluding some, but not all, fluid flow, as shown, for example, in FIG. 19 B .
  • these retention features and flange shapes may be incorporated into any of the embodiments of FIGS. 1 - 7 .
  • the dimension of the at least one retention feature ranges from about 0.01 mm to about 0.15 mm as measured from the outer surface of the implant body to an edge of retention feature.
  • the thickness of the retention feature ranges from about 0.01 mm to about 0.02 mm, about 0.02 mm to about 0.03 mm, about 0.03 mm to about 0.04 mm, about 0.04 mm to about 0.05 mm, about 0.05 mm to about 0.06 mm, about 0.06 mm to about 0.07 mm, about 0.07 mm to about 0.08 mm, about 0.08 mm to about 0.09 mm, about 0.09 mm to about 0.10 mm, about 0.10 mm to about 0.11 mm, about 0.11 mm to about 0.12 mm, about 0.12 mm to about 0.13 mm, about 0.13 mm to about 0.14 mm, about 0.14 mm to about 0.15 mm, and overlapping ranges therebetween and/or any other dimensions sufficient to secure the implant in the punctum of a particular patient
  • the long axis of the implant is greater than the short axis of the implant.
  • the ratio of the long axis to the short axis ranges from about 1:1 to about 2:1, about 2:1 to about 3:1, about 3:1 to about 4:1, about 4:1 to about 5:1, about 5:1 to about 6:1, about 6:1 to about 7:1, about 7:1 to about 8:1, about 8:1 to about 9:1, about 9:1 to about 10:1, about 10:1 to about 20:1, or ratios between (or greater) than those listed.
  • the punctal implant ranges between about 0.5 and about 2.5 mm long (e.g., from the proximal end to the distal end).
  • the length of the implant in some embodiments, ranges from about 0.5 mm to about 0.7 mm, about 0.7 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.35 mm, about 1.35 mm to about 1.4 mm, about 1.4 mm to about 1.45 mm, about 1.45 mm to about 1.5 mm, about 1.5 mm to about 1.55 mm, about 1.55 mm to about 1.6 mm, about 1.6 mm to about 1.65 mm, about 1.65 mm to about 1.7 mm, about 1.7 mm to about 1.9 mm, about 1.9 mm to about 2.1 mm, about 2.1 mm to about 2.3 mm
  • implants configured for implantation into the punctum have a diameter between about 0.2 mm and 2.0 mm, including about 0.2 mm to about 0.3 mm, about 0.3 mm to about 0.4 mm, about 0.4 mm to about 0.5 mm, about 0.5 mm to about 0.6 mm, about 0.5 mm to about 0.6 mm, about 0.6 mm to about 0.7 mm, about 0.7 mm to about 0.8 mm, about 0.8 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.4 mm, about 1.4 mm to about 1.5 mm, about 1.5 mm to about 1.6 mm, about 1.6 mm to about 1.7 mm, about 1.7 mm to about 1.8 mm, about 1.8 mm to about 1.9 mm, about 1.9 mm to about 2.0 mm and
  • FIGS. 1 - 7 The characteristics of the implant shown in FIG. 1 are carried through FIGS. 1 - 7 , however it shall be appreciated that any of the features of the implants disclosed herein can be used in combination with any other features disclosed herein (unless otherwise expressly noted).
  • all Figures are presently shown with a bulge 18 as a retention feature; the bulge may be replaced with any retention feature such as those disclosed herein.
  • any type of drug arrangement may be used with any type of drug elution element.
  • the two phase drug of FIG. 5 may be included in a device having elution elements between the drug and the exterior such as in FIG. 2 A or 2 C .
  • a region of a first therapeutic drug 20 is shown near the flange and a region of a second therapeutic drug 30 is shown in the lumen 12 .
  • One or both regions of drug may comprise pure drug, or drug plus excipients, or drug within a bioerodible or non-bioerodible matrix, as discussed in more detail below. Additionally, one or both regions may comprise packed powder formulation or pure drug, or tableted formulation or pure drug, or microspheres, nanospheres, liposomes, or the like of pure drug.
  • the drug (or drugs) comprises drug-containing pellets, while in other embodiments, the drug is a liquid, a slurry, micro-pellets (e.g., micro-tablets) or powder.
  • the drug (or drugs) may also be in the form of nanodispersions, depending on the embodiment. Combinations of any of these forms can also be used.
  • one region can be of one form while the other region can be in another form (e.g., the drug of the first region is pure drug and the drug of the second region is drug plus excipient).
  • the drug of the first region is pure drug and the drug of the second region is drug plus excipient.
  • any combinations of form, composition, etc. may be used in any of the drug regions, as is needed to tailor the drug elution to a desired profile.
  • the drug elution is controlled, depending on the embodiment, to allow drug release over a desired time frame.
  • the duration drug release ranges from several months to several years, e.g., about 6 to about 12 months, about 12 to about 18 months, about 18 to about 24 months, about 24 to about 30 months, about 30 to about 36 months, etc.
  • the first therapeutic drug 20 is steroid, such as loteprednol etabonate, dexamethasone, or triamcinolone acetonide (or a combination of any of these); and the second therapeutic drug 30 is cyclosporine.
  • the first therapeutic drug e.g., the steroid(s)
  • the first drug will tend to dissolve first, and thus, may be exhausted first (though in some embodiments the first drug is not exhausted at the time the release of the second drug is initiated).
  • the second drug e.g., cyclosporine
  • the second drug will tend to dissolve at or near the conclusion of the dissolution of the first drug, and thus, will have a more prolonged time course.
  • this “tail-to-nose” overlapping elution results in an advantageously therapeutic elution profile that provides a therapeutic level of the first and second drugs, but reduces the peaks and valleys in drug concentration that can be result from current therapies (such as eye drops).
  • FIG. 8 shows a sample non-limiting schematic of a time course of drug elution that may result from implants configured similar to the embodiment shown in FIG. 1 .
  • Element 130 is the time course of the first drug
  • element 140 is the time course of the second drug. While FIG. 1 depicts one lumen that is exposed to the ocular environment through which drug(s) is released, it shall also be understood that, depending on the embodiment, one, two, or more drug regions may be utilized in a punctal plug delivery device as disclosed herein.
  • the in vivo environment into which several embodiments of the implants disclosed herein are positioned may be comprised of a water-based solution (such as aqueous humor or tear film) or gel (such as vitreous humor).
  • a water-based solution such as aqueous humor or tear film
  • gel such as vitreous humor
  • Water from the surrounding in vivo environment may, in some embodiments, diffuse into one or more of the interior lumens, depending on the embodiment, and begin dissolving a small amount of the tablet or drug-excipient powder. The dissolution process continues until a solution is formed within the lumen that is in osmotic equilibrium with the in vivo environment.
  • osmotic agents such as saccharides or salts are added to the drug to facilitate ingress of water and formation of the isosmotic solution.
  • relatively insoluble drugs for example corticosteroids
  • the isosmotic solution may become saturated with respect to the drug in certain embodiments.
  • saturation can be maintained until the drug supply is almost exhausted.
  • maintaining a saturated condition is particularly advantageous because the elution rate will tend to be essentially constant, according to Fick's Law.
  • the outer shell comprises one or more orifices to allow ocular fluid to contact the drug within the lumen (or lumens) of the implant and result in drug release.
  • a layer or layers of a permeable or semi-permeable material is used to cover the implant (wholly or partially) and the orifice(s) (wholly or partially), thereby allowing control of the rate of drug release from the implant.
  • combinations of one or more orifices, a layer or layers covering the one or more orifices are used to tailor the rate of drug release from the implant.
  • FIG. 2 A shows an embodiment wherein an additional component 40 , representing a semi-permeable membrane or layer is included in the implant and obstructs (wholly or partially) the opening from the lumen of the implant to the ocular space external to the implant.
  • component 40 may comprise a bioerodible or non-bioerodible hydrogel, or a semi-permeable polymer, or a polymeric, metallic, or ceramic screen or filter.
  • the elution rate of the therapeutic drug (or drugs) within the implant is regulated according to the drug's permeability through component 40 .
  • the regulation of permeability can be altered by changing one or more characteristics of the component 40 (e.g., thickness, chemical makeup, porosity, etc.). It shall also be appreciated that elution regulation component 40 (or its equivalents) may be incorporated into any subsequent example, including those shown in any of the additional figure or any embodiment described herein.
  • FIG. 2 B depicts another embodiment of an implant that provides an advantageous drug elution profile.
  • Item 10 is the body of the punctal plug, as discussed above, with a flange that rests in apposition to the surface of the eyelid after the plug is implanted into the punctum.
  • the punctal plug 10 is molded of a soft elastomeric material, such as silicone, polyurethane or a copolymer (such as PurSil®).
  • these materials allow the plug to conform to the punctum of a specific patient, thereby increasing the comfort of the implant over the life of implantation.
  • these materials (or combinations thereof) also facilitate the consistent manufacture of the implants.
  • the size of the implant may optionally vary depending on the patient.
  • silicone (or other similar material) implants are personalized to an individual patient or a segment of possible patients and their anatomical characteristics.
  • the implants are designed as a “one size fits all patients” implant. In alternative embodiments, however other materials disclosed herein may be used to construct the implant (either in whole or in part).
  • the outer shell is not biodegradable, while in others, the shell is optionally biodegradable.
  • the implant is made of a flexible material.
  • a portion of the implant is made from flexible material (e.g., the body) while another portion of the implant is made from rigid or semi-rigid material (e.g., the body or the bulge).
  • the implant comprises one or more flexures (e.g., hinges).
  • the drug delivery implant is pre-flexed, yet flexible enough to be contained within the straight lumen of a delivery device.
  • At least a portion of the implant is made of a material capable of shape memory.
  • a material capable of shape memory may be compressed and, upon release, may expand axially or radially, or both axially and radially, to assume a particular shape.
  • at least a portion of the implant has a preformed shape.
  • at least a portion of the implant is made of a superelastic material.
  • at least a portion of the implant is made up of nitinol.
  • at least a portion of the implant is made of a deformable material.
  • the punctal plug comprise a lumen 103 that is molded with an opening at the bottom of the plug.
  • a thin-walled region (or plurality of regions) 104 extending across the upper end of lumen 103 .
  • the thin-walled regions 104 function to retain solid or dissolved drug housed within plug 10 as shown in FIG. 2 C (e.g., they function as a large scale sieve), while also providing a diffusion path between the drug and the tear film external to plug 10 .
  • region 104 comprises the same material as the rest of plug 10 , or alternatively, comprises a different material (for example, manufactured as an insert molded with the rest of the plug).
  • Region 104 allows diffusion of drug into the tear film according to the drug permeability of the region 104 material, the cross-sectional dimension of region 104 , and the optional addition of holes or fenestrations 102 . Control of drug elution rates is discussed in more detail below. Depending on the embodiment, region 104 ranges in thickness between about 0.0005 inches to about 0.05 inches.
  • region 104 ranges in thickness from about 0.0005 inches to about 0.00075 inches, about 0.00075 inches to about 0.001 inches, about 0.001 inches to about 0.00125 inches, about 0.00125 inches to about 0.0015 inches, about 0.0015 inches to about 0.00175 inches, about 0.00175 inches to about 0.002 inches, about 0.002 inches to about 0.00225 inches, about 0.00225 inches to about 0.0025 inches, about 0.0025 inches to about 0.00275 inches, about 0.00275 inches to about 0.003 inches, about 0.003 inches to about 0.00325 inches, about 0.00325 inches to about 0.0035 inches, about 0.0035 inches to about 0.00375 inches, about 0.00375 inches to about 0.004 inches, about 0.004 inches to about 0.0045 inches, about 0.0045 inches to about 0.005 inches, about 0.005 inches to about 0.006 inches, about 0.006 inches to about 0.006 inches, about 0.006 inches to about 0.007 inches, about 0.007 inches to about 0.008 inches,
  • the holes or fenestrations may be of any shape, including but not limited to square, round, irregular-shaped. In each case, an individual fenestration or hole has a diameter less than that of lumen 103 .
  • the holes or fenestrations are located in any geometrical pattern (or randomly positioned) within region 104 . In those embodiments having more than one region 104 , the holes or fenestrations may be positioned differentially between each region (e.g., patterned positioning in a first region and random positioning in a second region).
  • Holes or fenestrations 102 may be formed during molding of plug 10 , or may be laser machined after molding, such as by ablation, stretching, etching, grinding, molding, femtosecond laser exposure, particle blasting, machining, or other methods.
  • the implant allows for drug elution proximally toward the tear film, as well as distally toward the nasolacrimal duct.
  • the active agent is released into the tear film, the nasolacrimal duct, or both the tear film and the nasolacrimal duct.
  • Distal drug elution is useful, in several embodiments, for intranasal and/or systemic drug delivery.
  • Embodiments comprising holes or fenestrations 102 also optionally comprise at least one non-occlusive retention feature, as discussed above, rendering the implant non-occlusive and comprising a design solution for overall distal drug delivery.
  • a therapeutic agent eluted from either a proximal end or distal end of the implant will ultimately drain distally toward the nasolacrimal duct.
  • agents eluted from a proximal end of the implant results in only proximal drug delivery as delivery of the therapeutic agent is inhibited distally of the proximal end.
  • the implant shown in FIG. 2 C is assembled by first obtaining tablets or powder (or other form) of at least a first and second drug. In reverse order of release from the implant, the drugs are loaded through the open end of lumen 103 shown in FIG. 2 B .
  • FIG. 2 C shows the assembled delivery device, where item 20 is a region of a first therapeutic drug, and item 30 is a region of a second therapeutic drug.
  • one or both regions may comprise pure drug, or drug plus excipients, or drug within a bioerodible or non-bioerodible matrix.
  • One or both regions may comprise packed powder formulation or pure drug, or tableted formulation or pure drug, or microspheres, nanospheres, liposomes, or the like of pure drug.
  • the plug comprises a flowable material that acts as a sealant by filling the remaining space in the lumen 103 .
  • the plug 101 comprises, RTV silicone injected into the open end of lumen 103 .
  • the plug 101 is preformed of silicone elastomer, another polymer (or polymers), or another biocompatible material, and press fit into lumen 103 .
  • plug 101 comprises a thermoplastic material such as PurSil®, which is then thermoformed in place to seal the end of the implant.
  • the drug load is isolated from the plug material with a drug sleeve (e.g., a sleeve body).
  • a drug sleeve e.g., a sleeve body
  • FIG. 2 D shows a cross-sectional view of an implant 1 comprising a drug core 35 and surrounding drug sleeve 45 , according to several embodiments.
  • the sleeve body comprises appropriate shapes, dimensions, and/or materials to regulate, adjust, or otherwise control elution of the therapeutic agent from the drug core.
  • the drug sleeve comprises a material that is substantially impermeable (e.g., less than 50% permeable) to the therapeutic agent so that the rate of migration of the therapeutic agent is primarily (or at least in part) controlled by the exposed surface area of the drug core that is not covered by the drug sleeve.
  • suitable materials for the drug sleeve include, but are not limited to, polypropylene, polyimide, glass, nitinol, polyvinyl alcohol, polyvinyl pyrolidone, collagen, chemically-treated collagen, polyethersulfone (PES), poly(styrene-isobutyl-styrene), polyurethane, ethyl vinyl acetate (EVA), polyetherether ketone (PEEK), Kynar (Polyvinylidene Fluoride; PVDF), Polytetrafluoroethylene (PTFE), Polymethylmethacrylate (PMMA), Pebax, acrylic, polyolefin, polydimethylsiloxane and other silicone elastomers, polypropylene, hydroxyapetite, titanium, gold, silver, platinum, other metals and alloys, ceramics, plastics and mixtures or combinations thereof.
  • the drug sleeve allows for an exchangeable drug core if the therapeutic agent needs to be replenished, replaced, or supplemented by the same or different agent. Accordingly, the implant body can remain implanted in the patient. In some embodiments, the drug sleeve remains in the implant while only the drug core is replaced. In these embodiments, the drug sleeve may be provided, for example, with external protrusions that apply force to the drug sleeve when squeezed and eject the core from the drug sleeve. In some embodiments, the drug sleeve is removed with the drug core.
  • the drug sleeve ranges between about 0.5 and 2.4 mm long (e.g., from the proximal end to the distal end).
  • the length of the drug sleeve in some embodiments, ranges from about 0.5 mm to about 0.7 mm, about 0.7 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.35 mm, about 1.35 mm to about 1.4 mm, about 1.4 mm to about 1.45 mm, about 1.45 mm to about 1.5 mm, about 1.5 mm to about 1.55 mm, about 1.55 mm to about 1.6 mm, about 1.6 mm to about 1.65 mm, about 1.65 mm to about 1.7 mm, about 1.7 mm to about 1.9 mm, about 1.9 mm to about 2.1 mm, about 2.1 mm,
  • drug sleeves have an inner diameter between about 0.2 mm and 1.9 mm, including about 0.2 mm to about 0.3 mm, about 0.3 mm to about 0.4 mm, about 0.4 mm to about 0.5 mm, about 0.5 mm to about 0.6 mm, about 0.5 mm to about 0.6 mm, about 0.6 mm to about 0.7 mm, about 0.7 mm to about 0.8 mm, about 0.8 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.4 mm, about 1.4 mm to about 1.5 mm, about 1.5 mm to about 1.6 mm, about 1.6 mm to about 1.7 mm, about 1.7 mm to about 1.8 mm, about 1.8 mm to about 1.9 mm and any diameters in between or overlapping with these ranges.
  • FIG. 3 shows an embodiment where two drug regions, depicted as 22 and 24 , respectively are loaded in parallel within the punctual plug. In such embodiments, both drug regions 22 and 24 begin eluting at the same time.
  • the elution profiles of 22 and 24 are substantially similar, for example when drug 24 reduces the potential for side effects of administration of drug 22 .
  • the elution profiles of drug 22 and drug 24 are offset.
  • drug 22 and 24 are completely or substantially eluted at such time as a third drug region 30 begins elution. While shown effectively as equal proportions, it shall be appreciated that drug 22 and drug 24 can be placed in the punctal plug in any ratio with respect to one another that produces a desired therapeutic effect.
  • drug 22 may make up about 10%, about 20%, about 25%, about 30% or more of the total amount of drugs 22 and 24 present in the implant.
  • drug 22 may make up about 60%, about 70%, about 80%, about 90% or more of the total amount of drugs 22 and 24 present in the implant. Any combination of drug 22 and 24 can be used, depending on the embodiment.
  • the drugs may be loaded at an angle with respect to one another, in order to control the surface area of the drug that is exposed to tear file at a given time post implantation.
  • an angular gradient could be used to start with a high percentage of release of drug 22 as compared to release of drug 24 , with an inverse elution profile being generated as the drugs are eluted (e.g., as elution of the drugs proceeds, the proportion of drug 22 being released, versus the total, decreases, while the proportion of drug 24 increases.
  • FIG. 4 shows an embodiment in which multiple drug regions 50 , 60 , 70 , and 80 are preformed into tablets (or micropellets) to facilitate control of drug formulation, and to facilitate manufacturing assembly of the punctal plug delivery device.
  • the preformation of the drugs into tablets advantageously enables the placement of the drugs sequentially into the implant with reduced complications during assembly (e.g., mis-ordering of the drugs, damage to the implant, etc.).
  • pre-formation allows the specific tailoring of a drug profile for a particular patient.
  • an option may be to reformulate the drugs within the implant (e.g., drug regions 50 , 80 , 60 , and 70 , or 50 , 50 , 60 , 70 ).
  • This advantageously allows customization of a drug treatment regime for the therapeutic needs of a specific patient.
  • Alternative methods for loading an implant as disclosed herein are provided in U.S. Pat. No. 7,117,870, the entire contents of which are incorporated by reference herein.
  • FIG. 5 shows an arrangement used in several embodiments, wherein drug region 90 comprises a discontinuous first phase which is distributed within drug region 100 , which forms a second phase.
  • drug region 90 may comprise microparticles, nanoparticles, liposomes, or the like, any or all of which may carry a first therapeutic drug.
  • Drug region 100 depending on the embodiment, comprises a dispersion of solid or liquid particles or droplets of a second therapeutic drug dispersed within a hydrogel matrix, or some other semi-permeable polymer matrix.
  • Such embodiments are advantageous in that small and predictable boluses of drug 90 can be intermixed with a second (or more) drug in different phases. This allows a further degree of tailoring the release profiles of the drug or drugs.
  • the second region of drug 100 can complement the first region 90 , for example in providing an environment that improves the stability of drug 90 , which may otherwise be relatively volatile.
  • FIG. 6 shows an additional embodiment of a punctal plug comprising a ring-shaped component 110 comprising an aperture 112 , the aperture being sized in diameter and thickness to regulate elution rate according to Fick's Law of diffusion (discussed in more detail below).
  • the ring-shaped component can be used to further refine and tailor the release of a drug (or drugs) from the implant, while having the implant be “off the shelf”.
  • the implant shell can be one of several stock sizes (e.g., small, medium, large, etc.), each size having a particular size lumen.
  • the ring-shaped component 110 can thus be used to adjust the rate of elution of the drug (or drugs) from the implant by re-sizing the opening of the lumen according to the needs of a particular patient.
  • the ring-shaped component 110 in several embodiments, is made of a material that is generally impermeable to the drug (or drugs) in the lumen. Control of drug release is then calculated by the dimensions of aperture 112 , and any membrane or other controlling material (e.g., component 40 of FIG. 2 ) placed within, or over, the aperture.
  • the ring-shaped component 110 can comprise a material that is semi-permeable material to one or more of the drugs within the lumen of the implant. In such embodiments, the combination of the ring-shaped component 110 , its dimensions, and its interaction with the aperture and/or component 40 work in concert to define the release rates of the drugs from the implant.
  • FIGS. 8 and 9 Such elution profiles are shown in FIGS. 8 and 9 . These profiles can advantageously be modified to meet the needs of a particular patient, not only in terms of the drugs that are administered and at what time, but in what amount compared with one another, so as to reduce (or treat) side effects.
  • FIG. 7 shows an additional component 120 , which is a separator placed between the first drug region 20 and the second drug region 30 .
  • Separator 120 depending on the embodiment, comprises a bioerodible, non-bioerodible; hydrogel; semi-permeable polymer; or a porous element comprising ceramic or metal. Separator 120 serves to create a separation in time between the elution of the drug in region 20 and the drug in region 30 .
  • FIG. 9 depicts a schematic elution profile resulting from an embodiment such as the implant of FIG. 7 .
  • 130 is the time course of drug elution from the first region 20
  • 140 is the time course of elution from the second drug region 30 .
  • the two drug regions may contain the same drug, and the purpose of separator 120 is to create a “drug holiday”, a time interval during which little or no drug is being eluted (compare the elution profile of FIG. 8 with that of FIG. 9 ).
  • the implants according to the embodiments disclosed herein allow a highly flexible approach for drug delivery to the eye as well as the ability to customize the drugs used, release timing and concentration (vis-à-vis other drugs in the implant) and thereby create a personalized overall therapeutic regime.
  • the drug delivery implant may contain one or more drugs which may or may not be compounded with a bioerodible polymer or a bioerodible polymer and at least one additional agent, the release profiles of each can be managed independently, further adding to the flexibility of the overall treatment plant.
  • the drug delivery implant is used to sequentially deliver multiple drugs. Some embodiments elute one or more drugs at a constant rate, with other embodiments release one or more drugs with a zero-order release profile.
  • Still other embodiments yield variable elution profiles. Still other embodiments are designed to stop elution completely or nearly completely for a predetermined period of time (e.g., a “drug holiday”) and later resume elution at the same or a different elution rate or elution concentration. Some such embodiments elute the same therapeutic agent before and after the drug holiday while other embodiments elute different therapeutic agents before and after the drug holiday.
  • a predetermined period of time e.g., a “drug holiday”
  • Some such embodiments elute the same therapeutic agent before and after the drug holiday while other embodiments elute different therapeutic agents before and after the drug holiday.
  • FIG. 10 illustrates the anatomy of an eye, which includes the sclera 11 , which joins the cornea 12 at the limbus 21 , the iris 13 and the anterior chamber 20 between the iris 13 and the cornea 12 .
  • the eye also includes the lens 26 disposed behind the iris 13 , the ciliary body 16 and Schlemm's canal 22 .
  • the eye also includes a uveoscleral outflow pathway, which functions to remove a portion of fluid from the anterior chamber, and a suprachoroidal space positioned between the choroid 28 and the sclera 11 .
  • the eye also includes the posterior region 30 of the eye which includes the macula 32 .
  • the drug delivery implants as described herein function to house a drug and provide drug elution from the implant in a controlled fashion, based on the design of the various components of the implant, for an extended period of time.
  • Various elements of the implant composition, implant physical characteristics, and the composition of the drug work in combination to produce the desired drug release profile.
  • the drug delivery implant may be made from any biological inert and biocompatible materials having desired characteristics. Desirable characteristics, in some embodiments, include permeability to liquid water or water vapor, allowing for an implant to be manufactured, loaded with drug, and sterilized in a dry state, with subsequent rehydration of the drug upon implantation. Also desirable for certain portions of the implant, depending on the embodiment, is use of a material comprising microscopic porosities between polymer chains. These porosities may interconnect, which forms channels of water through the implant material. In several embodiments, the resultant channels are convoluted and thereby form a tortuous path which solubilized drug travels during the elution process.
  • Implant materials advantageously also possess sufficient permeability to a drug such that the implant may be a practical size for implantation.
  • portions of the implant e.g., the membrane material
  • Implant material also ideally possesses sufficient elasticity, flexibility and potential elongation to not only conform to the target anatomy during and after implantation, but also remain unkinked, untorn, unpunctured, and with a patent lumen during and after implantation.
  • implant material would advantageously processable in a practical manner, such as, for example, by molding, extrusion, thermoforming, and the like.
  • implants are manufactured via injection molding.
  • suitable materials for the outer shell include, but are not limited to, polypropylene, polyimide, glass, nitinol, polyvinyl alcohol, polyvinyl pyrolidone, collagen, chemically-treated collagen, polyethersulfone (PES), poly(styrene-isobutyl-styrene), polyurethane, ethyl vinyl acetate (EVA), polyetherether ketone (PEEK), Kynar (Polyvinylidene Fluoride; PVDF), Polytetrafluoroethylene (PTFE), Polymethylmethacrylate (PMMA), Pebax, acrylic, polyolefin, polydimethylsiloxane and other silicone elastomers, polypropylene, hydroxyapetite, titanium, gold, silver, platinum, other metals and alloys, ceramics, plastics and mixtures or combinations thereof.
  • Additional suitable materials used to construct certain embodiments of the implant include, but are not limited to, poly(lactic acid), poly(tyrosine carbonate), polyethylene-vinyl acetate, poly(L-lactic acid), poly(D,L-lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), collagen, heparinized collagen, poly(caprolactone), poly(glycolic acid), and/or other polymer, copolymers, or block co-polymers, polyester urethanes, polyester amides, polyester ureas, polythioesters, thermoplastic polyurethanes, silicone-modified polyether urethanes, poly(carbonate urethane), or polyimide.
  • poly(lactic acid), poly(tyrosine carbonate), polyethylene-vinyl acetate poly(L-lactic acid), poly(D,L-lactic-co-glycolic acid), poly(D,L-lactide
  • Thermoplastic polyurethanes are polymers or copolymers which may comprise aliphatic polyurethanes, aromatic polyurethanes, polyurethane hydrogel-forming materials, hydrophilic polyurethanes (such as those described in U.S. Pat. No. 5,428,123, which is incorporated in its entirety by reference herein), or combinations thereof.
  • Non-limiting examples include elasthane (poly(ether urethane)) such as ElasthaneTM 80A, Lubrizol, TecophilicTM, PellethaneTM, CarbothaneTM, TecothaneTM, TecoplastTM, and EstaneTM.
  • polysiloxane-containing polyurethane elastomers are used, which include CarbosilTM 20 or PursilTM 20 80A, Elast-EonTM, and the like. Hydrophilic and/or hydrophobic materials may be used. Non-limiting examples of such elastomers are provided in U.S. Pat. No. 6,627,724, which is incorporated in its entirety by reference herein.
  • Poly(carbonate urethane) may include BionateTM 80A or similar polymers.
  • such silicone modified polyether urethanes are particularly advantageous based on improved biostability of the polymer imparted by the inclusion of silicone.
  • oxidative stability and thrombo-resistance is also improved as compared to non-modified polyurethanes.
  • the degree of silicone (or other modifier) may be adjusted accordingly.
  • silicone modification reduces the coefficient of friction of the polymer, which reduces trauma during implantation of devices described herein.
  • silicone modification in addition to the other mechanisms described herein, is another variable that can be used to tailor the permeability of the polymer. Further, in some embodiments, silicone modification of a polymer is accomplished through the addition of silicone-containing surface modifying endgroups to the base polymer. In other embodiments, flurorocarbon or polyethylene oxide surface modifying endgroups are added to a based polymer. In several embodiments, one or more biodegradable materials are used to construct all or a portion of the implant, or any other device disclosed herein. Such materials include any suitable material that degrades or erodes over time when placed in the human or animal body, whether due to a particular chemical reaction or enzymatic process or in the absence of such a reaction or process.
  • biodegradable material includes bioerodible materials. Such materials can optionally biodegrade or bioerode at a predictable rate so that the plugs expire after the treatment time is over or are easily flushed out for replacement.
  • the degradation rate of the biodegradable outer shell is another variable (of many) that may be used to tailor the drug elution rate from an implant.
  • the drug may be sensitive to moisture (e.g. liquid water, water vapor, humidity) or where the drug's long term stability may be adversely affected by exposure to moisture
  • a material for the implant or at least a portion of the implant which is water resistant, water impermeable or waterproof such that it presents a significant barrier to the intrusion of liquid water and/or water vapor, especially at or around human body temperature (e.g. about 35-40° C. or 37° C.). This may be accomplished by using a material that is, itself, water resistant, water impermeable or waterproof.
  • materials that are generally considered water impermeable may still allow in enough water to adversely affect the drug within an implant.
  • the water resistance or water impermeability of a material may be increased by any suitable method.
  • Such methods of treatment include providing a coating for a material (including by lamination) or by compounding a material with a component that adds water resistance or increases impermeability.
  • such treatment may be performed on the implant (or portion of the implant) itself, it may be done on the material prior to fabrication (e.g. coating a polymeric tube), or it may be done in the formation of the material itself (e.g. by compounding a resin with a material prior to forming the resin into a tube or sheet).
  • Such treatment may include, without limitation, one or more of the following: coating or laminating the material with a hydrophobic polymer or other material to increase water resistance or impermeability; compounding the material with hydrophobic or other material to increase water resistance or impermeability; compounding or treating the material with a substance that fills microscopic gaps or pores within the material that allow for ingress of water or water vapor; coating and/or compounding the material with a water scavenger or hygroscopic material that can absorb, adsorb or react with water so as to increase the water resistance or impermeability of the material.
  • Inorganic materials include, but are not limited to, metals, metal oxides and other metal compounds (e.g. metal sulfides, metal hydrides), ceramics, and main group materials and their compounds (e.g. carbon (e.g. carbon nanotubes), silicon, silicon oxides).
  • suitable materials include aluminum oxides (e.g. Al 2 O 3 ) and silicon oxides (e.g. SiO 2 ).
  • Inorganic materials may be advantageously coated onto a material (at any stage of manufacture of the material or implant) using techniques such as are known in the art to create extremely thin coatings on a substrate, including by vapor deposition, atomic layer deposition, plasma deposition, and the like.
  • Such techniques can provide for the deposition of very thin coatings (e.g. about 20 nm-40 nm thick, including about 25 nm thick, about 30 nm thick, and about 35 nm thick) on substrates, including polymeric substrates, and can provide a coating on the exterior and/or interior luminal surfaces of small tubing, including that of the size suitable for use in implants disclosed herein.
  • Such coatings can provide excellent resistance to the permeation of water or water vapor while still being at least moderately flexible so as not to undesirably compromise the performance of an implant in which flexibility is desired.
  • the drugs carried by the drug delivery implant may be in any form that can be reasonably retained within the device and results in controlled elution of the resident drug or drugs over a period of time lasting at least several days and in some embodiments up to several weeks, and in certain preferred embodiments, up to several years. Certain embodiments utilize drugs that are readily soluble in ocular fluid, while other embodiments utilize drugs that are partially soluble in ocular fluid.
  • the therapeutic agent may be in any form, including but not limited to a compressed pellet, a solid, a capsule, multiple particles, a liquid, a gel, a suspension, slurry, emulsion, and the like.
  • drug particles are in the form of micro-pellets (e.g., micro-tablets), fine powders, or slurries, each of which has fluid-like properties, allowing for recharging by injection into the inner lumen(s).
  • the implants can be recharged, which in several embodiments, is accomplished with a syringe/needle, through which a therapeutic agent is delivered.
  • micro-tablets are delivered through a needle of about 23 gauge to about 32 gauge, including 23-25 gauge, 25 to 27 gauge, 27-29 gauge, 29-30 gauge, 30-32 gauge, and overlapping ranges thereof.
  • the needle is 23, 24, 25, 26, 27, 28, 29, 30, 31, or 32 gauge.
  • a drug sleeve surrounding a drug core is used to recharge an implant, as shown, for example, in FIG. 11 . As shown in FIG.
  • the drug core and drug sleeve can be removed together by drawing drug core proximally, and then a replacement core within a replacement drug sleeve can be inserted together by advancing the replacement core and sleeve 45 attached to an inserter tool 55 into the lumen or cavity of the implant.
  • implants comprised of hydrogel utilize the drug load inserter with the exchangeable drug core and drug sleeve.
  • one size of a hydrogel plug will fit all patients.
  • FIG. 12 shows the terminal aspect of an inserter tool 215 used to insert an implant into an implant site, the inserter comprising a plunger 220 that can be depressed and a preloaded drug implant 1 held within the terminus of the inserter prior to insertion, according to some embodiments. It is to be understood that the forceps and other insertion tools may be used to place an implant in the punctum and into the lacrimal canaliculus.
  • the distal edge of the inserter tool is parallel with the implant, as illustrated in FIG. 13 A .
  • the inserter tool can optionally have a straight cut tip.
  • the inserter tool contains at least one additional gripping component 225 that guides and supports the implant into the implant site, as shown, for example, in FIG. 13 B .
  • Such a gripper may be movably connected to a handpiece that allows for engagement and disengagement of the gripper.
  • the distal edge of the inserter tool is asymmetric in relation to the implant, as shown in FIG. 13 C .
  • the distal end of the inserter tool 230 may optionally have a beveled or angled cut tip, which can act as a lead-in. Testing has shown beveled cut tip allowed easier entry of the inserter into the punctum over the straight cut tip.
  • the lead-in may also be used as a dilator to pre-dilate the area prior to insertion of an implant.
  • a portion of the insertion tool may be made of clear material, for example, such as an acrylic material, so that the physician can visualize the tissue through the insertion tool and see the punctum.
  • the optionally clear material may also allow viewing of an implant while it is being implanted, and may also confirm that the implant is implanted properly.
  • the clear material may be a magnifying material and/or have a magnifying geometry, such as a spherical lens or angled lens, so that the punctum is more easily visualized.
  • some embodiments may utilize two agents of the same form. In other embodiments, agents in different form may be used.
  • one or more drugs utilize an adjuvant, excipient, or auxiliary compound, for example to enhance stability or tailor the elution profile, that compound or compounds may also be in any form that is compatible with the drug and can be reasonably retained with the implant.
  • treatment of particular pathology with a drug released from the implant may not only treat the pathology, but also induce certain undesirable side effects.
  • embodiments as described herein may include a drug mixed or compounded with a biodegradable material, excipient, or other agent modifying the release characteristics of the drug.
  • biodegradable materials include copolymers of lactic acid and glycolic acid, also known as poly (lactic-co-glycolic acid) or PLGA.
  • PLGA poly (lactic-co-glycolic acid)
  • PLGA poly (lactic-co-glycolic acid)
  • PLGA poly (lactic-co-glycolic acid)
  • the drug positioned within the lumen of the implant is not compounded or mixed with any other compound or material, thereby maximizing the volume of drug that is positioned within the lumen.
  • control of the degradation rate provides a means for control of the delivery rate of the drug contained within the therapeutic agent.
  • Variation of the average molecular weight of the polymer or copolymer chains which make up the PLGA copolymer or other polymer may be used to control the degradation rate of the copolymer, thereby achieving a desired duration or other release profile of therapeutic agent delivery to the eye.
  • rate of biodegradation of the PLGA copolymer may be controlled by varying the ratio of lactic acid to glycolic acid units in a copolymer.
  • Still other embodiments may utilize combinations of varying the average molecular weights of the constituents of the copolymer and varying the ratio of lactic acid to glycolic acid in the copolymer to achieve a desired biodegradation rate.
  • the outer shell of the implant comprises a polymer in some embodiments. Additionally, the shell may further comprise one or more polymeric coatings in various locations on or within the implant.
  • the outer shell and any polymeric coatings are optionally biodegradable.
  • the biodegradable outer shell and biodegradable polymer coating may be any suitable material including, but not limited to, poly(lactic acid), polyethylene-vinyl acetate, poly(lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), collagen, heparinized collagen, poly(caprolactone), poly(glycolic acid), and/or other polymer or copolymer.
  • some embodiments of the implants comprise a release material that is permeable to the drug (or drugs) and allows passage of the drug (or drugs) through the material in a controlled fashion. Control of the release of the drug can further be controlled by coatings in or on the implant (e.g., a coating over the release material that slows the rate of release of a drug).
  • a given combination of drug and release material will yield a characteristic diffusion coefficient D, such that:
  • Elution ⁇ rate [ D ⁇ A ⁇ ( C i - C o ) ] d
  • D diffusion coefficient (cm 2 /sec)
  • A area of the region of drug release material
  • Ci ⁇ Co difference in drug concentration between the inside and outside of the device.
  • d thickness of the region of release material
  • the area and thickness of the region of drug release are variables that determine, in part, the rate of elution of the drug from the implant, and are also variables that can be controlled during the process of manufacturing the implant.
  • the release material could be manufactured to be thin (d is small) or with a large overall area (A is large) or a combination of the two (as dictated by the structural sufficiency of the outer shell). In either case, the end result is that the elution rate of the drug can be increased to compensate for the low solubility of the drug based on the structure and design of the implant.
  • the drug release material can be made thicker, more dense, or more concentrated, thereby adjusting the rate of release of the drug from the implant.
  • additional polymer coatings to either (i) increase the effective thickness (d) of the drug release material or (ii) decrease the overall permeability of the drug release material, resulting in a reduction in drug elution.
  • multiple additional polymer coatings are used. By covering either distinct or overlapping portions of the implant and the drug release material, a controlled pattern of drug release from the implant overall can be achieved.
  • the drug release material also serves a safety function.
  • an implant in accordance with embodiments described herein is capable of delivering a drug at a controlled rate to a target tissue for a period of several (i.e. at least three) months.
  • implants can deliver drugs at a controlled rate to target tissues for about 6 months or longer, including 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, and 24 months, without requiring recharging.
  • the duration of controlled drug release (without recharging of the implant) exceeds 2 years (e.g., 3, 4, 5, or more years). It shall be appreciated that additional time frames including ranges bordering, overlapping or inclusive of two or more of the values listed above are also used in certain embodiments.
  • the total drug load for example the total load of a steroid, delivered to a target tissue over the lifetime of an implant ranges from about 10 to about 1000 ⁇ g. In certain embodiments the total drug load ranges from about 100 to about 900 ⁇ g, from about 200 to about 800 ⁇ g, from about 300 to about 700 ⁇ g, or from about 400 to about 600 ⁇ g. In some embodiments, the total drug load ranges from about 10 to about 300 ⁇ g, from about 10 to about 500 ⁇ g, or about 10 to about 700 ⁇ g.
  • total drug load ranges from about 200 to about 500 ⁇ g, from 400 to about 700 ⁇ g or from about 600 to about 1000 ⁇ g. In still other embodiments, total drug load ranges from about 200 to about 1000 ⁇ g, from about 400 to about 1000 ⁇ g, or from about 700 to about 1000 ⁇ g. In some embodiments total drug load ranges from about 500 to about 700 ⁇ g, about 550 to about 700 ⁇ g, or about 550 to about 650 ⁇ g, including 575, 590, 600, 610, and 625 ⁇ g. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
  • controlled drug delivery is calculated based on the elution rate of the drug from the implant.
  • an elution rate of a drug for example, a steroid, is about 0.05 ⁇ g/day to about 10 ⁇ g/day is achieved. In other embodiments an elution rate of about 0.05 ⁇ g/day to about 5 ⁇ g/day, about 0.05 ⁇ g/day to about 3 ⁇ g/day, or about 0.05 ⁇ g/day to about 2 ⁇ g/day is achieved.
  • an elution rate of about 2 ⁇ g/day to about 5 ⁇ g/day, about 4 ⁇ g/day to about 7 ⁇ g/day, or about 6 ⁇ g/day to about 10 ⁇ g/day is achieved. In other embodiments, an elution rate of about 1 ⁇ g/day to about 4 ⁇ g/day, about 3 ⁇ g/day to about 6 ⁇ g/day, or about 7 ⁇ g/day to about 10 ⁇ g/day is achieved.
  • an elution rate of about 0.05 ⁇ g/day to about 1 ⁇ g/day, including 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 ⁇ g/day is achieved. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
  • the release of drug from an implant may be controlled based on the desired concentration of the drug at target tissues.
  • the desired concentration of a drug for example, a steroid, at the target tissue, ranges from about 1 nM to about 100 nM.
  • the desired concentration of a drug at the site of action ranges from about 10 nM to about 90 nM, from about 20 nM to about 80 nM, from about 30 nM to about 70 nM, or from about 40 nM to about 60 nM.
  • the desired concentration of a drug at the site of action ranges from about 1 nM to about 40 nM, from about 20 nM to about 60 nM, from about 50 nM to about 70 nM, or from about 60 nM to about 90 nM. In yet other embodiments the desired concentration of a drug at the site of action ranges from about 1 nM to about 30 nM, from about 10 nM to about 50 nM, from about 30 nM to about 70 nM, or from about 60 nM to about 100 nM.
  • the desired concentration of a drug at the site of action ranges from about 45 nM to about 55 nM, including 46, 47, 48, 49, 50, 51, 52, 53, and 54 nM. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
  • the drug or drugs employed may take one or more forms.
  • multiple pellets of single or multiple drug(s) are placed within an interior lumen of the implant (see, e.g., FIG. 4 ).
  • the therapeutic agent is formulated as micro-pellets or micro-tablets. Additionally, in some embodiments, micro-tablets allow a greater amount of the therapeutic agent to be used in an implant. This is because, in some embodiments, tabletting achieves a greater density in a pellet than can be achieved by packing a device. Greater amounts of drug in a given volume may also be achieved by decreasing the amount of excipient used as a percentage by weight of the whole tablet, which has been found by the inventors to be possible when creating tablets of a very small size while retaining the integrity of the tablet. In some embodiments, the percentage of active therapeutic (by weight) is about 70% or higher.
  • the therapeutic agent can be combined with excipients or binders that are known in the art.
  • the percentage of therapeutic agent ranges from about 70% to about 95%, from about 75 to 85%, from about 75 to 90%, from about 70 to 75%, from about 75% to about 80% from about 80% to about 85%, from about 85% to about 90%, from about 90% to about 95%, from about 95% to about 99%, from about 99% to about 99.9%, and overlapping ranges thereof.
  • the percentage of therapeutic agent ranges from about 80% to about 85%, including 81, 82, 83, and 84% by weight.
  • micro-tablets provide an advantage with respect to the amount of an agent that can be packed, tamped, or otherwise placed into an implant disclosed herein.
  • the resultant implant comprising micro-tablets thus comprises therapeutic agent at a higher density than can be achieved with non-micro-tablet forms.
  • the density of the micro-pellet form of an agent within an implant ranges from about 0.7 g/cc to about 1.6 g/cc.
  • the density used in an implant ranges from about 0.7 g/cc to about 0.9 g/cc, from about 0.9 g/cc to about 1.1 g/cc, from about 1.1 g/cc to about 1.3 g/cc, from about 1.1 g/cc to about 1.5 g./cc, from about 1.3 g/cc to about 1.5 g/cc, from about 1.5 g/cc to about 1.6 g/cc, and overlapping ranges thereof.
  • densities of therapeutic agent that are greater than 1.6 g/cc are used.
  • micro-tablets with the above properties, or any combination thereof are made using known techniques in the art including tableting, lyophilization, granulation (wet or dry), flaking, direct compression, molding, extrusion, and the like. Moreover, as discussed below, alterations in the above-discussed characteristics can be used to tailor the release profile of the micro-tableted therapeutic agent from an implant.
  • lyophilization of a therapeutic agent is used prior to the micro-pelleting process. In some embodiments, lyophilization improves the stability of the therapeutic agent once incorporated into a micro-tablet. In some embodiments, lyophilization allows for a greater concentration of therapeutic to be obtained prior to micro-pelleting, thereby enhancing the ability to achieve the high percentages of active therapeutic agents that are desirable in some embodiments. For example, many commercially available therapeutic agents useful to treat ocular diseases are developed as first-line agents for other diseases. As such, their original formulation may not be suitable or ideal for micro-pelleting or for administration to an ocular target via an ocular implant such as those disclosed herein.
  • anti-VEGF compounds are supplied as sterile liquid in single use vials meant to be administered intravenously (e.g., bevacizumab).
  • a liquid formulation is less preferred for formation of micro-pellets as compared to a solid, though a liquid therapeutic agent may optionally be used in some embodiments.
  • a liquid therapeutic agent may optionally be used in some embodiments.
  • such liquid formulations may be frozen (e.g., stored at temperatures between ⁇ 20° C. and ⁇ 80° C. for 16 to 24 hours or longer) and then subject to lyophilization until dry. Alternatively, air spraying, crystallization, or other means may optionally be used to dry the therapeutic agent.
  • the lyophilized (or otherwise dried) therapeutic agent is optionally tested for purity.
  • solvents may be added to a liquid (or solid) formulation in order to dissolve and remove (via evaporation) non-therapeutic components (e.g., excipients or inert binding agents).
  • a therapeutic agent is purified by conventional methods (e.g., antibody-based chromatography, HPLC, etc.) prior to lyophilization. In such embodiments, lyophilization often functions to increase the concentration of the therapeutic agent in the recovered purified sample.
  • the dried therapeutic agent (which, for efficiency purposes is optionally dried in bulk) is ground, sieved, macerated, freeze-fractured, or subdivided into known quantities by other means, and then micro-pelleted.
  • the therapeutic agent is fed into a micro-pelleting process.
  • standard techniques e.g., compression, extrusion, molding, or other means
  • more specialized techniques are used.
  • the therapeutic agent is a protein
  • drying and/or tabletization should be completed under conditions (e.g., temperature, acid/base, etc.) that do not adversely affect the biological activity of the therapeutic agent.
  • protein therapeutics are formulated with a stabilizing agent (e.g., mannitol, trehalose, starch, or other poly-hydroxy polymer) to maintain the structure (and therefore activity) of the therapeutic protein.
  • a stabilizing agent e.g., mannitol, trehalose, starch, or other poly-hydroxy polymer
  • the drug or drugs to be administered via the drug delivery implant may be in the form of a nanodispersion.
  • Nanodispersions are particularly advantageous when the drug (or drugs) to be administered is poorly soluble or insoluble in aqueous solutions, which can lead to instability and/or reduced bioavailability.
  • nanodispersion shall be given its ordinary meaning and shall refer to a composition comprising nanoparticles comprising a drug and/or an aqueous vehicle.
  • the aqueous vehicle comprises a water miscible solvent and water.
  • the nanoparticles may comprise a drug, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts, in some embodiments.
  • nanoparticle as used herein shall be given its ordinary meaning and shall also refer to particles having controlled dimensions of the order of nanometers.
  • the nanoparticles in several embodiments, are a polymeric nanoparticle (matrix of polymer entrapping the drug) and/or a polymeric nanovesicle (polymer stabilized nano sized vesicle encapsulating the drug.) and/or a polymeric nanocapsule (polymeric membrane surrounding drug in core) and/or nano sized particles of the drug stabilized by surfactants, and the like the nanoparitcles having mean size less than about 300 nm (e.g., ranging from about 10 nm to about 275 nm, or in the range of about 10 nm to about 200 nm.
  • the water miscible solvent used in the nanodispersion comprises one or more of alcohols, glycols and its derivatives, polyalkylene glycols and its derivatives, glycerol, glycofurol and combinations thereof.
  • additional non-limiting examples include, but are not limited to, alcohols such as ethanol, n-propanol, isopropanol; glycols such as ethylene glycol, propylene glycol, butylene glycol and its derivatives; polyethylene glycols like PEG 400 or PEG 3350; polypropylene glycol and its derivatives such as PPG-10 butanediol, PPG-10 methyl glucose ether, PPG-20 methyl glucose ether, PPG-15 stearyl ether; glycerol; glycofurol and the like and mixtures thereof.
  • the non-aqueous solvent is selected from the group consisting of alcohols, polyethylene glycols and/or mixtures thereof, such as, for example, a mixture of ethanol and PEG (polyethylene glycol).
  • ethanol in which ethanol is used in the nanodispersion, ethanol is present in an amount ranging from about 0.001% w/v to about 5% w/v, more preferably from about 0.05% w/v to about 0.5% w/v and most preferably from about 0.1% w/v to about 0.25% w/v.
  • Polyethylene glycols which are used preferably, include PEG-400 and PEG-3350.
  • PEG-400 is used, depending on the embodiment, in an amount ranging from about 0.01% w/v to about 20.0% w/v, more preferably from about 0.05% w/v to about 5.0% w/v and most preferably from about 1.0% w/v to about 2.5% w/v.
  • PEG-3350 is used, depending on the embodiment, in an amount ranging from about 0.001% w/v to about 10.0% w/v, more preferably from about 0.05% w/v to about 5.0% w/v and most preferably from about 0.1% w/v to about 3% w/v.
  • the nanoparticles comprise one or more polymers.
  • the polymer(s) used in several embodiments are preferably, water soluble.
  • Polyvinylpyrrolidone one such water soluble polymer used in several embodiments, is a tertiary amide polymer having linearly arranged monomer units of 1-vinyl-2-pyrrolidone. It has mean molecular weights ranging from about 10,000 to about 700,000.
  • Other grades of polyvinylpyrrolidone are used in some embodiments, with molecular weights ranging from about 2000 to about 3000, about 7000 to about 11,000, about 28,000 to about 34,000, or about 1,000,000 to about 1,5000,000.
  • polyvinylpyrrolidone use for the polymer have molecular weight in the range from about 1,000 to about 45,000, preferably, from about 4,000 to about 30,000. According several embodiments, the amount of polymer used in the nanodispersion ranges from about 0.001% w/v to about 20% w/v, including preferably about 0.01% w/v to about 5.0% w/v and also about 0.01% w/v to about 1.0% w/v.
  • Polyethylene glycol is used in several embodiments, either in addition or in place of polyvinylpyrrolidone.
  • the amount of polymer used in the nanodispersion ranges from about 0.001% w/v to about 20% w/v, including about 0.01% w/v to about 5.0% w/v, and in some embodiments, about 0.01% w/v to about 1.0% w/v.
  • Surfactants are used in some embodiments of the nanodispersions for drug(s).
  • the surfactants comprise a mixture of fatty acid or its salts and sterol or its derivatives or its salts.
  • fatty acids shall be given its ordinary meaning and shall also include aliphatic (saturated or unsaturated) monocarboxylic acids derived from or contained in esterified form, in an animal or vegetable fat, oil or wax.
  • Non-limiting examples of fatty acids (or its salts) that may be used in in several embodiments include, but are not limited to, fatty acids or its salts having ‘n’ number of carbon atoms wherein ‘n’ ranges from about 4 to about 28.
  • the fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and their salt and combinations thereof.
  • the saturated fatty acid and its salts may be selected from butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, sodium caprylate, sodium laurate, sodium myristate, sodium palmitate and the like and/or mixtures thereof.
  • the unsaturated fatty acid and its salts may be selected from myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, alpha linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, sodium oleate, sodium arachidonate and the like and/or mixtures thereof.
  • sterol or its derivative or its salts that may be used in the nanodispersion or nanoparticles may be acid esters of sterols.
  • Acid salts of cholesterol include, but are not limited to, cholesteryl sulfate, cholesterol acetate, cholesterol chloroacetate, cholesterol benzoate, cholesterol myristate, cholesterol hemisuccinate, cholesterol phosphate, cholesterol phosphate, phosphonate, borate, nitrate, cholesterol cinnamate, cholesterol crotanoate, cholesterol butyrate, cholesterol heptanoate, cholesterol hexanoate, cholesterol octanoate, cholesterol nonanoate, cholesterol decanoate, cholesterol oleate, cholesterol propionate, cholesterol valerate, dicholesteryl carbonate and the like and mixtures thereof.
  • Phytosterols that may be used in the compositions include sitosterol, campesterol, stigmasterol, brassicasterol and its derivatives, salts and mixture thereof.
  • Bile acids include cholic acid, chenodeoxycholic acid, deoxycholic acid, glycocholic acid, taurocholic acid, ursodeoxycholic acid and its derivatives, salts and mixture thereof.
  • the sterols can also be esters of cholesterol including cholesterol hemi-succinate, salts of cholesterol including cholesterol hydrogen sulfate and cholesterol sulfate, ergosterol, esters of ergosterol including ergosterol hemi-succinate, salts of ergosterol including ergosterol hydrogen sulfate and ergosterol sulfate, lanosterol, esters of lanosterol including lanosterol hemi-succinate, salts of lanosterol including lanosterol hydrogen sulfate and lanosterol sulfate.
  • the nanoparticles comprise a surfactant which is a mixture of sterol or its derivatives or its salts and fatty acids or its salts.
  • the nanoparticles comprise of cholesterol ester of polar acids.
  • the surfactant used in the nanodispersion is a mixture of caprylic acid and cholesteryl sulfate.
  • Caprylic acid, also known as octanoic acid may be used in such embodiments in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01% w/v to about 1.0% w/v and most preferably from about 0.01% w/v to about 0.5% w/v.
  • Cholesteryl sulfate is used in certain embodiments in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01% w/v to about 1.0% w/v and most preferably from about 0.01% w/v to about 0.5% w/v.
  • the surfactant used is selected from oleic acid and cholesteryl sulphate and/or mixtures thereof. In some embodiments, the surfactant used is selected from saturated fatty acid and bile acid or bile salt and/or mixtures thereof.
  • Bile salts when used according to some embodiments, are present in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01% w/v to about 1.0% w/v and most preferably from about 0.01% w/v to about 0.75% w/v. Other amounts may be used in conjunction with other embodiments disclosed herein.
  • Nanodispersions can be generated by methods appreciated in the art, such as those methods (and the resulting nanodispersions) disclosed in U.S. Pat. No. 8,778,364, which is incorporated by reference in its entirety herein.
  • one or more of the therapeutic drug regions may comprise drug-cyclodextrin inclusion complexes; liposome encapsulation; micelles based on polymers such as polysaccharide, poly (ethylene glycol)-poly(lactide), methoxy poly(ethylene glycol)-poly(hexyl-lactide), or hydrophobically-modified hydroxypropylcellulose; nanoparticles of amorphous drug formed by antisolvent precipitation and stabilized with surfactant such as poysorbate 80 or polyoxyl 15 hydroxystearate; nanoparticles having a mean size less than 500 nm containing one or more drugs, a polymer, and a surfactant, where the surfactant may include a mixture of fatty acids or its salts and sterol or its derivitatives or its salts; drug co-processed or granulated with excipients such as microcrystalline cellulose, lactose, hydroxypropyl methyl cellulose, or povidone; added polymers such
  • the therapeutic agents utilized with the drug delivery implant may include one or more drugs provided below, either alone or in combination.
  • the drugs utilized may also be the equivalent of, derivatives of, or analogs of one or more of the drugs provided below.
  • the drugs may include but are not limited to pharmaceutical agents including anti-glaucoma medications, ocular agents, antimicrobial agents (e.g., antibiotic, antiviral, antiparasitic, antifungal agents), anti-inflammatory agents (including steroids or non-steroidal anti-inflammatory), biological agents including hormones, enzymes or enzyme-related components, antibodies or antibody-related components, oligonucleotides (including DNA, RNA, short-interfering RNA, antisense oligonucleotides, and the like), DNA/RNA vectors, viruses (either wild type or genetically modified) or viral vectors, peptides, proteins, enzymes, extracellular matrix components, and live cells configured to produce one or more biological components.
  • pharmaceutical agents including anti-glaucoma medications, ocular agents, antimicrobial agents
  • any particular drug is not limited to its primary effect or regulatory body-approved treatment indication or manner of use.
  • Drugs also include compounds or other materials that reduce or treat one or more side effects of another drug or therapeutic agent.
  • the listing of any particular drug within any one therapeutic class below is only representative of one possible use of the drug and is not intended to limit the scope of its use with the ophthalmic implant system.
  • the therapeutic agents may be combined with any number of excipients as is known in the art.
  • excipients including, but not limited to, benzyl alcohol, ethylcellulose, methylcellulose, hydroxymethylcellulose, cetyl alcohol, croscarmellose sodium, dextrans, dextrose, fructose, gelatin, glycerin, monoglycerides, diglycerides, kaolin, calcium chloride, lactose, lactose monohydrate, maltodextrins, polysorbates, pregelatinized starch, calcium stearate, magnesium stearate, silicon dioxide, cornstarch, talc, and the like.
  • the one or more excipients may be included in total amounts as low as about 1%, 5%, or 10% and in other embodiments may be included in total amounts as high as 50%, 70% or 90%.
  • drugs may include various anti-secretory agents; antimitotics and other anti-proliferative agents, including among others, anti-angiogenesis agents such as angiostatin, anecortave acetate, thrombospondin, VEGF receptor tyrosine kinase inhibitors and anti-vascular endothelial growth factor (anti-VEGF) drugs such as ranibizumab (LUCENTIS®) and bevacizumab (AVASTIN®), pegaptanib (MACUGEN®), aflibercept (EYELEA®), sunitinib and sorafenib and any of a variety of known small-molecule and transcription inhibitors having anti-angiogenesis effect; classes of known ophthalmic drugs, including: glaucoma agents, such as adrenergic antagonists, including for example, beta-blocker agents such as atenolol propranolol, metipranolol, betaxolol, carteolol, le
  • drugs may also include anti-inflammatory agents including for example glucocorticoids and corticosteroids such as betamethasone, cortisone, dexamethasone, dexamethasone 21-phosphate, methylprednisolone, prednisolone 21-phosphate, prednisolone acetate, prednisolone, fluroometholone, loteprednol, medrysone, fluocinolone acetonide, triamcinolone acetonide, triamcinolone, triamcinolone acetonide, beclomethasone, budesonide, flunisolide, fluorometholone, fluticasone, hydrocortisone, hydrocortisone acetate, loteprednol, rimexolone and non-steroidal anti-inflammatory agents including, for example, diclofenac, flurbiprofen, ibuprofen, bromfenac, ne
  • Other therapeutic agents may include neuroprotective agents such as lubezole, nimodipine and related compounds, and including blood flow enhancers such as dorzolamide or betaxolol; compounds that promote blood oxygenation such as erythropoeitin; sodium channels blockers; calcium channel blockers such as nilvadipine or lomerizine; glutamate inhibitors such as memantine nitromemantine, riluzole, dextromethorphan or agmatine; acetylcholinsterase inhibitors such as galantamine; hydroxylamines or derivatives thereof, such as the water soluble hydroxylamine derivative OT-440; synaptic modulators such as hydrogen sulfide compounds containing flavonoid glycosides and/or terpenoids, such as Ginkgo biloba ; neurotrophic factors such as glial cell-line derived neutrophic factor, brain derived neurotrophic factor; cytokines of the IL-6 family of proteins such as ciliary
  • Other therapeutic agents include: other beta-blocker agents such as acebutolol, atenolol, bisoprolol, carvedilol, asmolol, labetalol, nadolol, penbutolol, and pindolol; other corticosteroidal and non-steroidal anti-inflammatory agents such aspirin, betamethasone, cortisone, diflunisal, etodolac, fenoprofen, fludrocortisone, flurbiprofen, hydrocortisone, ibuprofen, indomethacine, ketoprofen, meclofenamate, mefenamic acid, meloxicam, methylprednisolone, nabumetone, naproxen, oxaprozin, prednisolone, prioxicam, salsalate, sulindac and tolmetin; COX-2 inhibitors like celecoxib, rofe
  • Valdecoxib other immune-modulating agents such as aldesleukin, adalimumab (HUMIRA®), azathioprine, basiliximab, daclizumab, etanercept (ENBREL®), hydroxychloroquine, infliximab (REMICADE®), leflunomide, methotrexate, mycophenolate mofetil, and sulfasalazine; other anti-histamine agents such as loratadine, desloratadine, cetirizine, diphenhydramine, chlorpheniramine, dexchlorpheniramine, clemastine, cyproheptadine, fexofenadine, hydroxyzine and promethazine; other anti-infective agents such as aminoglycosides such as amikacin and streptomycin; anti-fungal agents such as amphotericin B, caspofungin, clotrimazole, fluconazole

Abstract

Disclosed herein are drug delivery punctal implants and methods of using the implants for the treatment of ocular disorders requiring targeted and controlled administration of a drug to an interior portion of the eye for reduction or prevention of symptoms of the disorder. The physical arrangement of drugs within the punctal plugs disclosed herein results, in several embodiments, in advantageous controlled delivery of one or more drugs to the eye of a patient.

Description

    RELATED CASES
  • This application is a continuation of U.S. patent application Ser. No. 15/762,969, filed on Mar. 23, 2018, which is the U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/US2016/053570, filed on Sep. 23, 2016, which claims the benefit of U.S. Provisional Application No. 62/233,259, filed on Sep. 25, 2015, the entire disclosure of each which is incorporated by reference herein.
  • BACKGROUND Field
  • This disclosure relates to implantable drug delivery devices structured to provide targeted and/or controlled release of a drug to a desired ocular target tissue and methods of using such devices for the treatment of ocular diseases and disorders. In certain embodiments, this disclosure relates to devices for insertion into the punctum and for delivery of a therapeutic agent or agents to the eye in a controlled manner.
  • Description of the Related Art
  • The mammalian eye is a specialized sensory organ capable of light reception and is able to receive visual images. The retina of the eye consists of photoreceptors that are sensitive to various levels of light, interneurons that relay signals from the photoreceptors to the retinal ganglion cells, which transmit the light-induced signals to the brain. The iris is an intraocular membrane that is involved in controlling the amount of light reaching the retina. The iris consists of two layers (arranged from anterior to posterior), the pigmented fibrovascular tissue known as a stroma and pigmented epithelial cells. The stroma connects a sphincter muscle (sphincter pupillae), which contracts the pupil, and a set of dilator muscles (dilator pupillae) which open it. The pigmented epithelial cells block light from passing through the iris and thereby restrict light passage to the pupil.
  • Numerous pathologies can compromise or entirely eliminate an individual's ability to perceive visual images, including trauma to the eye, infection, degeneration, vascular irregularities, and inflammatory problems. The central portion of the retina is known as the macula. The macula, which is responsible for central vision, fine visualization and color differentiation, may be affected by age related macular degeneration (wet or dry), diabetic macular edema, idiopathic choroidal neovascularization, or high myopia macular degeneration, among other pathologies.
  • Other pathologies, such as abnormalities in intraocular pressure, can affect vision as well. Aqueous humor is a transparent liquid that fills at least the region between the cornea, at the front of the eye, and the lens and is responsible for producing a pressure within the ocular cavity. Normal intraocular pressure is maintained by drainage of aqueous humor from the anterior chamber by way of a trabecular meshwork which is located in an anterior chamber angle, lying between the iris and the cornea or by way of the “uveoscleral outflow pathway.” The “uveoscleral outflow pathway” is the space or passageway whereby aqueous exits the eye by passing through the ciliary muscle bundles located in the angle of the anterior chamber and into the tissue planes between the choroid and the sclera, which extend posteriorly to the optic nerve. About two percent of people in the United States have glaucoma, which is a group of eye diseases encompassing a broad spectrum of clinical presentations and etiologies but unified by increased intraocular pressure. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, which can result in blindness if untreated. Increased intraocular pressure is the only risk factor associated with glaucoma that can be treated, thus lowering intraocular pressure is the major treatment goal in all glaucomas, and can be achieved by drug therapy, surgical therapy, or combinations thereof.
  • Many pathologies of the eye progress due to the difficulty in administering therapeutic agents to the eye in sufficient quantities and/or duration necessary to ameliorate symptoms of the pathology. Often, uptake and processing of the drug component of the therapeutic agent occurs prior to the drug reaching an ocular target site. Due to this metabolism, systemic administration may require undesirably high concentrations of the drug to reach therapeutic levels at an ocular target site. This can not only be impractical or expensive, but may also result in a higher incidence of side effects. Topical administration is potentially limited by limited diffusion across the cornea, or dilution of a topically applied drug by tear-action. Even those drugs that cross the cornea may be unacceptably depleted from the eye by the flow of ocular fluids and transfer into the general circulation. Thus, a means for ocular administration of a therapeutic agent in a controlled and targeted fashion would address the limitations of other delivery routes.
  • SUMMARY
  • In several embodiments, the implants disclosed herein operate to provide a therapeutic effect in the eye of a subject based, at least in part, on a physical arrangement of drugs within the implant. In several embodiments, the implants comprise a punctual plug and the physical arrangement of the drugs within the implant provides advantageous timing of delivery of the drugs. The punctal implants disclosed herein are placed into the punctum and reside at least partially in a lacrimal canaliculus of an eye. Such an approach is useful, in several embodiments, such as when steroid and cyclosporine are combined to treat dry eye. Many current therapies for dry eye employ an initial treatment with steroid eye drops for a first time period (e.g., two weeks). After the initial period cyclosporine eye drops are added to the treatment regimen. Thereafter the steroid is then tapered off, ending at day 60 and cyclosporine therapy is continued alone, as long as needed. However, according to one embodiment disclosed herein, a punctal implant can deliver steroid and cyclosporine with appropriate timing to achieve a near constant, zero order administration of drug. Such a dosing profile is generally considered more efficient than bolus delivery, such as occurs with eye drops.
  • In several embodiments employing multiple drugs, the second (or third, etc.) agent results in synergistic effects when combined with the first agent. In other embodiments, the second agent reduces one or more side effects associated with the first agent. It is understood, however, that any embodiment of implant disclosed herein may contain only one drug.
  • As such, several embodiments provide for implants for insertion into a punctum of the eye of a subject, comprising an outer shell having a proximal end, a distal end, the outer shell being shaped to define an interior lumen, the outer shell dimensioned for insertion into the punctum of the eye of a subject, at least a first drug positioned within the interior lumen, at least one region of drug release the proximal portion of outer shell, and a distal occlusive member within the inner lumen, the distal occlusive member preventing elution of the first drug from the distal end of the implant.
  • In several such embodiments, the first drug elutes from the lumen to the tear film of the eye of the subject by passing through the at least one region of drug release. In some embodiments, the implant is dimensioned to be implanted with the distal end of the outer shell positioned in the lacrimal duct. In some embodiments, the implant is dimensioned to be implanted with the distal end of the outer shell positioned in the lacrimal sac. In several embodiments, the implant is dimensioned to be implanted with the distal end of the outer shell positioned in the nasolacrimal duct.
  • In several embodiments, there is also provided a punctal implant for insertion into a punctum of the eye of a subject and configured to deliver two or more drugs to the eye of the subject, the implant comprising an outer shell comprising (i) a proximal end comprising at least one region of drug release and a flange, (ii) a closed distal end, and (iii) an interior lumen comprising at least two drugs positioned within the lumen.
  • In several embodiments, there is also provided a punctal implant for insertion into a punctum of the eye of a subject and configured to deliver two or more drugs to the eye of the subject, the implant comprising an outer shell comprising (i) a proximal end comprising at least one region of drug release and a flange, (ii) a closed distal end, and (iii) an interior lumen comprising at least two drugs positioned within the lumen, wherein the region of drug release comprises aperture through an annular ring positioned at the proximal-most portion of the interior lumen, wherein said aperture allows elution of the two or more drugs to occur only through the occlusive member, wherein the dimensions of the aperture at least partially defines the elution rate of the two or more drugs, wherein the flange is configured to rest on the surface of the eyelid when the implant is inserted into the punctum, and wherein the first and second drug elute from the lumen to the tear film of the eye of the subject by passing through the at least one region of drug release.
  • In several embodiments, the at least one region of drug release comprises at least one aperture. Additionally, in some embodiments, the implant further comprises at least one membrane that occludes the at least one aperture, wherein the membrane is permeable to the at least a first drug, wherein the membrane allows elution of the at least a first drug to occur only through the at least one membrane.
  • In several embodiments, the at least one region of drug release comprises a plurality of apertures through the outer shell and positioned randomly or in a patterned array throughout the proximal portion of the implant. As above, at least a portion of the plurality of apertures is occluded by a membrane permeable to the first drug.
  • Some embodiments provided for herein result in elution of drug (or drugs) from the implant with zero-order or pseudo zero-order kinetics.
  • In some embodiments, the intraocular target is the posterior chamber of the eye, the anterior chamber of the eye, both the anterior chamber and posterior of the eye, or the macula, the retina, the optic nerve, the ciliary body, and the intraocular vasculature.
  • In several embodiments, the drug acts on the intraocular target tissue to generate a therapeutic effect for an extended period. In one embodiment, the drug comprises a steroid. In such embodiments, the implant contains a total load of steroid ranging from about 10 to about 1000 micrograms, steroid is released from the implant at a rate ranging from about 0.05 to about 10 micrograms per day and/or the steroid acts on the diseased or damaged target tissue at a concentration ranging from about 1 to about 100 nanomolar. In some embodiments, the steroid additionally generates side effects associated with accumulation of physiologic fluid, and an optional shunt transports the accumulated fluid from the first location to the remote second location (such as, for example, from the anterior chamber to an existing physiological outflow pathway, such as Schlemm's canal or the naso-lacrimal duct).
  • In several embodiments, the at least one region of drug release comprises an occlusive member that is permeable to said two or more drugs, and the occlusive member allows elution of the two or more drugs to occur through the occlusive member. In several embodiments, the thickness of the occlusive member at least partially defines the elution rate of the drug (or drugs). In several embodiments, having a flange, the flange is configured to rest on the surface of the eyelid when the implant is inserted into the punctum. In several embodiments, the drug (or drugs) elute from the lumen to the tear film of the eye of the subject by passing through the at least one region of drug release.
  • In several embodiments, the occlusive member is an occlusive membrane is dimensioned based on the permeability of said occlusive member to said first drug (and second or more) and the desired relative timing and duration of elution of said first and second drugs. In several embodiments, the occlusive member has a thickness of between about 0.0001 and 0.0005 inches. In certain embodiments, the occlusive member is integrally formed with the outer shell of the implant. In some embodiments, the occlusive member further comprises randomly or patterned holes through the occlusive membrane.
  • In some embodiments, a first drug is placed in a more proximal position within the interior lumen relative to the position of a second drug. In some embodiments, a third drug is included, and in certain such embodiments, the first drug and second drug are positioned adjacent to one another and both the first and second drugs are placed in a more proximal position within the interior lumen relative to the position of the third drug.
  • In several embodiments, the drug (or drugs) is formulated as tablets, as a nanodispersion, or a combination thereof. In some embodiments, a first drug is formed as a discontinuous first phase and a second drug is formulated as dispersion of solid of liquid particles into which the first drug is dispersed.
  • In several embodiments, the outer shell of the implant comprises a bulge in the distal region in order to anchor the implant in the punctum.
  • In several embodiments, a first drug elutes from an implant for a period of between 1 and 75 days, and a second drug elutes for a period of time ranging from about 1 to about 24 months after the first drug is eluted.
  • In several embodiments, the implants disclosed herein have a length of between about 0.5 and about 2.5 mm. Some embodiments of the implants have a length of about 1.4 to about 1.6 mm. Some embodiments of the implant have a diameter of about 0.2 to about 1.5 mm. Some embodiments of the implant have a diameter of about 0.2 to about 0.6 mm.
  • Depending on the embodiment, the first drug may be a steroid. In some such embodiments, the steroid is selected from the group consisting of loteprednol etabonate, dexamethasone, and triamcinolone acetonide. In some embodiments, a second drug is cyclosporine and is optionally formulated as a nanodispersion. In several embodiments, the first drug is cyclosporine A. In several embodiments, the first drug facilitates tear production.
  • Several embodiments optionally comprise a retention protrusion configured to anchor the implant in an implantation site (e.g., the punctum). Such retention protrusions optionally comprise one or more of bulges, ridges, claws, threads, flexible ribs, rivet-like shapes, flexible barbs, barbed tips, expanding material (such as a hydrogel), and biocompatible adhesives. In some embodiments, the expanding material is placed on an exterior surface of the outer shell of the implant and expands after contact with a solvent, such as, for example, intraocular fluid or tear film.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects, and advantages of the present disclosure will now be described with reference to the drawings of embodiments, which embodiments are intended to illustrate and not to limit the disclosure. One of ordinary skill in the art would readily appreciated that the features depicted in the illustrative embodiments are capable of combination in manners that are not explicitly depicted, but are both envisioned and disclosed herein.
  • FIG. 1A illustrates a schematic cross section of an implant in accordance with embodiments disclosed herein.
  • FIGS. 1B-1D illustrate additional embodiments of an implant in accordance with embodiments disclosed herein.
  • FIGS. 2A-2D illustrate schematic cross sections of additional embodiments of implants in accordance with embodiment disclosed herein.
  • FIG. 3 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 4 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 5 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 6 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 7 illustrates a schematic cross section of an additional embodiment of an implant in accordance with disclosure herein.
  • FIG. 8 is a schematic graph showing the elution profile of two therapeutic agents eluted from an implant according to an embodiment disclosed herein.
  • FIG. 9 is a schematic graph showing an alternative elution profile of two therapeutic agents eluted from an additional implant according to an embodiment disclosed herein.
  • FIG. 10 illustrates the anatomy of an eye.
  • FIG. 11 illustrates an embodiment of an implant in which the implant is rechargeable in that an additional, or substitute, drug payload can be added to implant without requiring removal of the implant.
  • FIG. 12 illustrates an embodiment of an implant delivery system comprising a plunger for use with a preloaded drug implant.
  • FIGS. 13A-13C illustrate schematic cross sections of embodiments of inserter tools in accordance with disclosure provided herein.
  • FIGS. 14A-14B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 15A-15B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 16A-16B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 17A-17B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 18A-18B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • FIGS. 19A-19B illustrate schematic cross sections of additional embodiments of implants in accordance with disclosure herein.
  • DETAILED DESCRIPTION
  • Achieving local ocular administration of a drug may require direct injection or application, but could also include the use of a drug eluting implant, a portion of which, could be positioned in close proximity to the target site of action within the eye or within the chamber of the eye where the target site is located (e.g., anterior chamber, posterior chamber, or both simultaneously). Use of a drug eluting implant could also allow the targeted delivery of a drug to a specific ocular tissue, such as, for example, the macula, the retina, the ciliary body, the optic nerve, or the vascular supply to certain regions of the eye. Use of a drug eluting implant could also provide the opportunity to administer a controlled amount of drug for a desired amount of time, depending on the pathology. For instance, some pathologies may require drugs to be released at a constant rate for just a few days, others may require drug release at a constant rate for up to several months, still others may need periodic or varied release rates over time, and even others may require periods of no release (e.g., a “drug holiday”). Further, implants may serve additional functions once the delivery of the drug is complete. Implants may maintain the patency of a fluid flow passageway within an ocular cavity, they may function as a reservoir for future administration of the same or a different therapeutic agent, or may also function to maintain the patency of a fluid flow pathway or passageway from a first location to a second location, e.g. function as a stent. Conversely, should a drug be required only acutely, an implant may also be made completely biodegradable.
  • In several embodiments, the implants are configured specifically for use (e.g., implantation) in the punctum of the eye of a subject (e.g., the upper and/or lower punctum of the upper and/or lower canaliculus, respectively). The puncta function to collect tears that are released onto the surface of the eye by the lacrimal glands. However, in some individuals tear production is reduced, blocked, decreased, or otherwise insufficient to maintain an adequate level of moisture on the eye (or eyes). Damage to the corneal surface of the eye can result if the moisture on the eye remains reduced. When functioning normally (e.g., in a patient with normal tear production), the puncta convey the tear fluid to the lacrimal sac, which then allows it to drain through the nasolacrimal duct to the inner nose. One treatment for dry eye or similar syndromes is implantation of punctual plugs. Once implanted the plugs function to block the drainage of tear fluid, thereby increasing the retention of tear fluid on the eye. However, several of the implant embodiments disclosed herein advantageously allow the supplementation of the physical blockage of tear drainage with the delivery of one or more therapeutic agents to the eye in order to treat one or more aspects of reduced tear production. Thus, in several embodiments, one or more therapeutic agents are positioned in the implant in order to increase tear production and/or treat a symptom of dry eye, including, but not limited to, reduction in swelling, irritation of the eye and surrounding tissues and/or inflammation. Additional symptoms that are reduced, ameliorated, and in some cases eliminated include stinging or burning of the eye, a sandy or gritty feeling as if something is in the eye, episodes of excess tears following very dry eye periods, a stringy discharge from the eye, pain and redness of the eye, temporary or extended episodes of blurred vision, heavy eyelids, reduced ability to cry, discomfort when wearing contact lenses, decreased tolerance of reading, working on the computer, or any activity that requires sustained visual attention, and eye fatigue.
  • In several embodiments, the implants advantageously obviate the need for additional topical agents (e.g., ointments, artificial tears, etc.). In several embodiments, however, the implants are configured (e.g., have a particular drug release profile) to work synergistically with one or more of such agents. For example, in several embodiments, the implant is configured to deliver a constant dosage of a therapeutic agent over time to treat a damaged or diseased eye, and a subject with them implants in place can also use artificial tears, for example, to further enhance the efficacy of the agent delivered from the implant.
  • In several embodiments, the agents delivered from the implant are used for treatment of another ocular disorder, such as glaucoma, ocular hypertension, and/or elevated intraocular pressure.
  • Advantageously, as discussed herein, several embodiments of the implants configured for punctual placement allows metered delivery of one or more therapeutic agents; that is, delivery at a constant rate, thereby reducing the peaks and valleys of therapeutic agent concentration as occurs with topical administration (e.g., via eye drop).
  • Any of the relevant features disclosed herein can be applied to the embodiments configured for use in the punctum. For example, the dimensions of the implants, their shape, their drug release characteristics, and the like can be configured for use in the punctum. In several embodiments, the plugs can be tailored to the punctal dimensions of a particular subject. Moreover, the plugs can be configured to be removable or, in several embodiments, permanent (e.g., capable of being recharged). In several embodiments, the punctal implants comprise at least a first active agent that is loaded, at least in part, preferentially in the proximal region of the implant (e.g., such that the agent is released to the tear film of the subject) with the distal region of the implant positioned within the within the lacrimal ducts. In several such embodiments, the implant is specifically adapted to prevent unintended release of the active agent (or agents) from the distal portion of the implant. In some such embodiments, a plug (e.g., an impermeable occlusive member), a membrane (e.g., a membrane with little to no permeability to the active agent/agents), and/or a valve (e.g., a one-way valve) prevent elution in a distal region of the device.
  • In several embodiments, the use of a valve or plug enables flushing of the implant. For example, if there is a need to replace the therapeutic agent (e.g., with a different agent or a different dose of the same agent) it may be beneficial to substantially remove any remaining agent within the implant. In such instances, the plug can be removed and the implant flushed from a proximal to distal direction, allowing the therapeutic agent remaining in the implant to be flushed down the nasolacrimal duct. Thereafter the implant can be reloaded with another dose, another agent, and the like. Similarly, flushing the implant can be performed when a valve is positioned in the distal region of the implant, the valve being opened by pressure exerted on it from the flushing procedure and preventing backflow of the flushed agent into the implant.
  • In several embodiments, an implant and method for treating an eye with latanoprost or other therapeutic agent(s) is provided, the method comprising inserting a distal end of an implant into at least one punctum of the eye and positioning the implant such that the proximal portion of the implant delivers latanoprost or other therapeutic agent(s) to the tear fluid adjacent the eye. In several embodiments, delivery of the latanoprost or other therapeutic agent(s) is inhibited distally of the proximal end.
  • Implants according to the embodiments disclosed herein preferably do not require an osmotic or ionic gradient to release the drug(s), are implanted with a device that minimizes trauma to the healthy tissues of the eye which thereby reduces ocular morbidity, and/or may be used to deliver one or more drugs in a targeted and controlled release fashion to treat multiple ocular pathologies or a single pathology and its symptoms. However, in certain embodiments, an osmotic or ionic gradient is used to initiate, control (in whole or in part), or adjust the release of a drug (or drugs) from an implant. In some embodiments, osmotic pressure is balanced between the interior portion(s) of the implant and the ocular fluid, resulting in no appreciable gradient (either osmotic or ionic). In such embodiments, variable amounts of solute are added to the drug within the device in order to balance the pressures.
  • As used herein, “drug” refers generally to one or more drugs that may be administered alone, in combination and/or compounded with one or more pharmaceutically acceptable excipients (e.g. binders, disintegrants, fillers, diluents, lubricants, drug release control polymers or other agents, etc.), auxiliary agents or compounds as may be housed within the implants as described herein. The term “drug” is a broad term that may be used interchangeably with “therapeutic agent” and “pharmaceutical” or “pharmacological agent” and includes not only so-called small molecule drugs, but also macromolecular drugs, and biologics, including but not limited to proteins, nucleic acids, antibodies and the like, regardless of whether such drug is natural, synthetic, or recombinant. Drug may refer to the drug alone or in combination with the excipients described above. “Drug” may also refer to an active drug itself or a prodrug or salt of an active drug.
  • In some embodiments, the drug diffuses through the implant itself and into the intraocular environment. In several embodiments, the outer material of the implant is permeable or semi-permeable to the drug (or drugs) positioned within an interior lumen, and therefore, at least some portion of the total elution of the drug occurs through the shell itself. In other embodiments, however, the shell of the implant is impermeable to the drug (or drugs) in the interior lumen, and the implant comprises one or more specific regions of drug release. The term “permeable” and related terms (e.g. “impermeable” or “semi permeable”) are used herein to refer to a material being permeable to some degree (or not permeable) to one or more drugs or therapeutic agents and/or ocular fluids. The term “impermeable” does not necessarily mean that there is no elution or transmission of a drug through a material, instead such elution or other transmission is negligible or very slight, e.g. less than about 3% of the total amount, including less than about 2% and less than about 1%. However, in some embodiments, an impermeable outer shell permits no elution of drug through the shell.
  • As used herein, “patient” shall be given its ordinary meaning and shall also refer to mammals generally. The term “mammal”, in turn, includes, but is not limited to, humans, dogs, cats, rabbits, rodents, swine, ovine, and primates, among others. Additionally, throughout the specification ranges of values are given along with lists of values for a particular parameter. In these instances, it should be noted that such disclosure includes not only the values listed, but also ranges of values that include whole and fractional values between any two of the listed values.
  • In several embodiments, the drug delivery implants disclosed herein are configured to delivery drug to the eye via a topical delivery route. In some embodiments, the implant is configured to deliver one or more drugs to anterior region of the eye in a controlled fashion while in other embodiments the implant is configured to deliver one or more drugs to the posterior region of the eye in a controlled fashion. In still other embodiments, the implant is configured to simultaneously deliver drugs to both the anterior and posterior region of the eye in a controlled fashion. In yet other embodiments, the configuration of the implant is such that drug is released in a targeted fashion to a particular intraocular tissue, for example, the macula or the ciliary body. It will be appreciated that each of the embodiments described herein may target one or more of these regions and, optionally, reaches the site and achieves a therapeutic effect after being administered topically. Following implantation at the desired site within the eye, such as the punctum, drug is released from the implant in a targeted and controlled fashion, based on the design of the various aspects of the implant, preferably for an extended period of time. The implant and associated methods disclosed herein may be used in the treatment of pathologies requiring drug administration to the surface of the eye (e.g., topical), the posterior chamber of the eye, the anterior chamber of the eye, or to specific tissues within the eye.
  • The present disclosure relates to ophthalmic drug delivery implants which, following implantation at an implantation site, such as the punctum, provide controlled release of one or more drugs to a desired target region within the eye, the controlled release optionally being for an extended, period of time. Various embodiments of the implants are shown in the accompanying figures and will be referred to herein.
  • In several embodiments, a biocompatible drug delivery ocular implant is provided that comprises an outer shell that is shaped to define at least one interior lumen that houses a drug for release into an ocular space.
  • As shown in FIG. 1 , which is a cross-section of a punctal plug drug delivery system according to several embodiments, disclosed herein, the implant comprises a body 10 having an interior lumen 12. In several embodiments, the shell is formed to have at least two interior lumens. The upper portion of the implant, in several embodiments, comprises a flange 14 that extends radially and sits on the surface of the eyelid after the plug is implanted into the punctum. Opposite the flange 14 is a closed end 16. However, in some embodiments, an open end (or open lateral portion) may also be used, for example to provide drainage to the naso-lacrimal duct. In several embodiments, the implant comprises a radial bulge 18 from a long axis LA of the body in order to provide an anchor within the punctum. In several embodiments, the bulge is parallel (or substantially parallel to a short axis SA of the implant). In additional embodiments, the bulge (or other pattern) need not be uniform. For example, in several embodiments, the bulge can comprise a raised ridge (or series of ridges encircling the body). In one embodiment, the bulge is similar to threads on a screw. Other surface irregularities may be used in place of, or in combination with a bulge, for example, a ridge, groove, relief, hole, or annular groove, barbs, barbs with holes, screw-like elements, knurled elements, suture, friction or wedge fit, and/or expandable materials.
  • In several embodiments, the upper portion of the implant comprises a flange with a diameter configured to ensure reduced, limited, or in some embodiments, no corneal or scleral contact. The flange preferably has a generally flattened lower surface to allow it to rest upon the lower eyelid immediately adjacent to the punctum. FIG. 1B illustrates a flange 14 that is circular in shape, while FIG. 1C illustrates an asymmetrical flange, and FIG. 1D illustrates an ovoid flange. Attributes of the flange, such as area, shape, and thickness may be varied as desired such as to aid in positioning of the uppermost end of the implant at the surface of the punctum. The flange may be round, ovoid, or any geometric or asymmetric shape. In several embodiments, the flange is asymmetrical to provide reduced, limited, or in some embodiments, no corneal or scleral contact. Illustrations of non-limiting embodiments of an asymmetric flange can also be seen in FIGS. 15A and 18A.
  • Several embodiments optionally comprise at least one retention protrusion configured to anchor the implant in an implantation site. In several embodiments, these retention features are non-occlusive, for example, they allow tear or other fluid flow through the canaliculus toward the nasolacrimal duct while holding the tissue of the canaliculus away from the implant body. In several embodiments, the at least one retention feature optionally comprises a bulge, protuberance, or other change in shape (relative to the long axis of the implant body) that extends axially from the body and that holds the implant in position. In several embodiments, the implant further comprises an inner tubular passageway of any size and shape. For example, FIGS. 14A and 14B illustrate a non-limiting embodiment comprising two retention features extending axially from the body of the implant, each further comprising a straight tubular passageway that passes through the feature. FIGS. 15A and 15B depict an additional embodiment, further comprising an asymmetric flange. FIGS. 16A and 16B illustrates another embodiment of an implant comprising three retention features, each further comprising an elbow-shaped inner tubular passageway. In several embodiments, the at least one retention feature optionally comprises a bulge that extends axially from the body of the implant and comprises an inner relief, as illustrated in FIGS. 17A, 17B. FIGS. 18A and 18B illustrate another embodiment of an implant comprising three retention features, each further comprising an inner relief, and an asymmetric flange. In such embodiments, the inner relief can be of any shape and size, advantageously facilitating an optionally greater tear or other fluid flow as compared to retention features comprising a tubular passageway. In several embodiments, the relief features may also provide a point through which a securing suture can be fastened to secure the implant into position. Additionally, some such embodiments are used in conjunction with therapeutic agents having a side effect of increased tear production. In several embodiments, the retention features optionally comprise an erodible material. In several embodiments, the retention protrusions extend from the proximal end of the implant to a position approximately or more than halfway down the (long axis of the) implant towards the distal end. In some embodiments, the retention protrusions extend from the proximal end of the implant to less than halfway to the distal end of the implant. In some embodiments, the retention protrusion comprises a ring positioned at any point along the body of the implant, as shown, for example, in FIG. 19A. In such embodiments, the ring optionally contains spoke features, occluding some, but not all, fluid flow, as shown, for example, in FIG. 19B. Again, these retention features and flange shapes may be incorporated into any of the embodiments of FIGS. 1-7 .
  • In several embodiments, the dimension of the at least one retention feature ranges from about 0.01 mm to about 0.15 mm as measured from the outer surface of the implant body to an edge of retention feature. The thickness of the retention feature, in some embodiments, ranges from about 0.01 mm to about 0.02 mm, about 0.02 mm to about 0.03 mm, about 0.03 mm to about 0.04 mm, about 0.04 mm to about 0.05 mm, about 0.05 mm to about 0.06 mm, about 0.06 mm to about 0.07 mm, about 0.07 mm to about 0.08 mm, about 0.08 mm to about 0.09 mm, about 0.09 mm to about 0.10 mm, about 0.10 mm to about 0.11 mm, about 0.11 mm to about 0.12 mm, about 0.12 mm to about 0.13 mm, about 0.13 mm to about 0.14 mm, about 0.14 mm to about 0.15 mm, and overlapping ranges therebetween and/or any other dimensions sufficient to secure the implant in the punctum of a particular patient.
  • In several embodiments, the long axis of the implant is greater than the short axis of the implant. In several embodiments, the ratio of the long axis to the short axis ranges from about 1:1 to about 2:1, about 2:1 to about 3:1, about 3:1 to about 4:1, about 4:1 to about 5:1, about 5:1 to about 6:1, about 6:1 to about 7:1, about 7:1 to about 8:1, about 8:1 to about 9:1, about 9:1 to about 10:1, about 10:1 to about 20:1, or ratios between (or greater) than those listed.
  • In several embodiments, the punctal implant ranges between about 0.5 and about 2.5 mm long (e.g., from the proximal end to the distal end). The length of the implant, in some embodiments, ranges from about 0.5 mm to about 0.7 mm, about 0.7 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.35 mm, about 1.35 mm to about 1.4 mm, about 1.4 mm to about 1.45 mm, about 1.45 mm to about 1.5 mm, about 1.5 mm to about 1.55 mm, about 1.55 mm to about 1.6 mm, about 1.6 mm to about 1.65 mm, about 1.65 mm to about 1.7 mm, about 1.7 mm to about 1.9 mm, about 1.9 mm to about 2.1 mm, about 2.1 mm to about 2.3 mm, about 2.3 mm to about 2.5 mm, or lengths in between these ranges. In several embodiments, implants configured for implantation into the punctum have a diameter between about 0.2 mm and 2.0 mm, including about 0.2 mm to about 0.3 mm, about 0.3 mm to about 0.4 mm, about 0.4 mm to about 0.5 mm, about 0.5 mm to about 0.6 mm, about 0.5 mm to about 0.6 mm, about 0.6 mm to about 0.7 mm, about 0.7 mm to about 0.8 mm, about 0.8 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.4 mm, about 1.4 mm to about 1.5 mm, about 1.5 mm to about 1.6 mm, about 1.6 mm to about 1.7 mm, about 1.7 mm to about 1.8 mm, about 1.8 mm to about 1.9 mm, about 1.9 mm to about 2.0 mm and diameters in between these ranges.
  • The characteristics of the implant shown in FIG. 1 are carried through FIGS. 1-7 , however it shall be appreciated that any of the features of the implants disclosed herein can be used in combination with any other features disclosed herein (unless otherwise expressly noted). For example, all Figures are presently shown with a bulge 18 as a retention feature; the bulge may be replaced with any retention feature such as those disclosed herein. Furthermore, any type of drug arrangement may be used with any type of drug elution element. For example, the two phase drug of FIG. 5 may be included in a device having elution elements between the drug and the exterior such as in FIG. 2A or 2C. A region of a first therapeutic drug 20 is shown near the flange and a region of a second therapeutic drug 30 is shown in the lumen 12. One or both regions of drug may comprise pure drug, or drug plus excipients, or drug within a bioerodible or non-bioerodible matrix, as discussed in more detail below. Additionally, one or both regions may comprise packed powder formulation or pure drug, or tableted formulation or pure drug, or microspheres, nanospheres, liposomes, or the like of pure drug. Depending on the embodiment, the drug (or drugs) comprises drug-containing pellets, while in other embodiments, the drug is a liquid, a slurry, micro-pellets (e.g., micro-tablets) or powder. The drug (or drugs) may also be in the form of nanodispersions, depending on the embodiment. Combinations of any of these forms can also be used.
  • In several embodiments, one region can be of one form while the other region can be in another form (e.g., the drug of the first region is pure drug and the drug of the second region is drug plus excipient). Thus, any combinations of form, composition, etc. may be used in any of the drug regions, as is needed to tailor the drug elution to a desired profile.
  • The drug elution is controlled, depending on the embodiment, to allow drug release over a desired time frame. For example, in several embodiments, the duration drug release, depending on the embodiment, ranges from several months to several years, e.g., about 6 to about 12 months, about 12 to about 18 months, about 18 to about 24 months, about 24 to about 30 months, about 30 to about 36 months, etc.
  • As a non-limiting example, in one embodiment, the first therapeutic drug 20 is steroid, such as loteprednol etabonate, dexamethasone, or triamcinolone acetonide (or a combination of any of these); and the second therapeutic drug 30 is cyclosporine. In some embodiments, because of the physical location and volume of the drugs, the first therapeutic drug (e.g., the steroid(s)) will tend to dissolve first, and thus, may be exhausted first (though in some embodiments the first drug is not exhausted at the time the release of the second drug is initiated). In several embodiments, the second drug (e.g., cyclosporine) will tend to dissolve at or near the conclusion of the dissolution of the first drug, and thus, will have a more prolonged time course. In several embodiments, this “tail-to-nose” overlapping elution (or in some embodiments, serial elution) results in an advantageously therapeutic elution profile that provides a therapeutic level of the first and second drugs, but reduces the peaks and valleys in drug concentration that can be result from current therapies (such as eye drops). FIG. 8 shows a sample non-limiting schematic of a time course of drug elution that may result from implants configured similar to the embodiment shown in FIG. 1 . Element 130 is the time course of the first drug, and element 140 is the time course of the second drug. While FIG. 1 depicts one lumen that is exposed to the ocular environment through which drug(s) is released, it shall also be understood that, depending on the embodiment, one, two, or more drug regions may be utilized in a punctal plug delivery device as disclosed herein.
  • The in vivo environment into which several embodiments of the implants disclosed herein are positioned may be comprised of a water-based solution (such as aqueous humor or tear film) or gel (such as vitreous humor). Water from the surrounding in vivo environment may, in some embodiments, diffuse into one or more of the interior lumens, depending on the embodiment, and begin dissolving a small amount of the tablet or drug-excipient powder. The dissolution process continues until a solution is formed within the lumen that is in osmotic equilibrium with the in vivo environment.
  • In additional embodiments, osmotic agents such as saccharides or salts are added to the drug to facilitate ingress of water and formation of the isosmotic solution. With relatively insoluble drugs, for example corticosteroids, the isosmotic solution may become saturated with respect to the drug in certain embodiments. In certain such embodiments, saturation can be maintained until the drug supply is almost exhausted. In several embodiments, maintaining a saturated condition is particularly advantageous because the elution rate will tend to be essentially constant, according to Fick's Law.
  • In some embodiments, the outer shell comprises one or more orifices to allow ocular fluid to contact the drug within the lumen (or lumens) of the implant and result in drug release. In some embodiments, as discussed in more detail below, a layer or layers of a permeable or semi-permeable material is used to cover the implant (wholly or partially) and the orifice(s) (wholly or partially), thereby allowing control of the rate of drug release from the implant. Additionally, in some embodiments, combinations of one or more orifices, a layer or layers covering the one or more orifices are used to tailor the rate of drug release from the implant.
  • FIG. 2A shows an embodiment wherein an additional component 40, representing a semi-permeable membrane or layer is included in the implant and obstructs (wholly or partially) the opening from the lumen of the implant to the ocular space external to the implant. Depending on the embodiment, component 40 may comprise a bioerodible or non-bioerodible hydrogel, or a semi-permeable polymer, or a polymeric, metallic, or ceramic screen or filter. In any of such embodiments, the elution rate of the therapeutic drug (or drugs) within the implant is regulated according to the drug's permeability through component 40. As discussed in more detail below, the regulation of permeability can be altered by changing one or more characteristics of the component 40 (e.g., thickness, chemical makeup, porosity, etc.). It shall also be appreciated that elution regulation component 40 (or its equivalents) may be incorporated into any subsequent example, including those shown in any of the additional figure or any embodiment described herein.
  • FIG. 2B depicts another embodiment of an implant that provides an advantageous drug elution profile. Item 10 is the body of the punctal plug, as discussed above, with a flange that rests in apposition to the surface of the eyelid after the plug is implanted into the punctum. In several embodiments, the punctal plug 10 is molded of a soft elastomeric material, such as silicone, polyurethane or a copolymer (such as PurSil®). In several embodiments, these materials (or combinations) allow the plug to conform to the punctum of a specific patient, thereby increasing the comfort of the implant over the life of implantation. In several embodiments, these materials (or combinations thereof) also facilitate the consistent manufacture of the implants. In several embodiments in which the punctual plug is molded of silicone, the size of the implant may optionally vary depending on the patient. In other words, some embodiments of silicone (or other similar material) implants are personalized to an individual patient or a segment of possible patients and their anatomical characteristics. In some embodiments in which the punctual plug is comprised of hydrogel, the implants are designed as a “one size fits all patients” implant. In alternative embodiments, however other materials disclosed herein may be used to construct the implant (either in whole or in part). In certain embodiments, the outer shell is not biodegradable, while in others, the shell is optionally biodegradable.
  • In some embodiments, the implant is made of a flexible material. In other embodiments, a portion of the implant is made from flexible material (e.g., the body) while another portion of the implant is made from rigid or semi-rigid material (e.g., the body or the bulge). In some embodiments, the implant comprises one or more flexures (e.g., hinges). In some embodiments, the drug delivery implant is pre-flexed, yet flexible enough to be contained within the straight lumen of a delivery device.
  • In other embodiments, at least a portion of the implant (e.g., an internal spine or an anchor) is made of a material capable of shape memory. A material capable of shape memory may be compressed and, upon release, may expand axially or radially, or both axially and radially, to assume a particular shape. In some embodiments, at least a portion of the implant has a preformed shape. In other embodiments, at least a portion of the implant is made of a superelastic material. In some embodiments, at least a portion of the implant is made up of nitinol. In other embodiments, at least a portion of the implant is made of a deformable material.
  • As shown in FIG. 2B, several embodiments of the punctal plug comprise a lumen 103 that is molded with an opening at the bottom of the plug. At the top of the plug is a thin-walled region (or plurality of regions) 104, extending across the upper end of lumen 103. In several embodiments, the thin-walled regions 104 function to retain solid or dissolved drug housed within plug 10 as shown in FIG. 2C (e.g., they function as a large scale sieve), while also providing a diffusion path between the drug and the tear film external to plug 10. Depending on the embodiment, region 104 comprises the same material as the rest of plug 10, or alternatively, comprises a different material (for example, manufactured as an insert molded with the rest of the plug). Region 104 allows diffusion of drug into the tear film according to the drug permeability of the region 104 material, the cross-sectional dimension of region 104, and the optional addition of holes or fenestrations 102. Control of drug elution rates is discussed in more detail below. Depending on the embodiment, region 104 ranges in thickness between about 0.0005 inches to about 0.05 inches. For example, region 104 ranges in thickness from about 0.0005 inches to about 0.00075 inches, about 0.00075 inches to about 0.001 inches, about 0.001 inches to about 0.00125 inches, about 0.00125 inches to about 0.0015 inches, about 0.0015 inches to about 0.00175 inches, about 0.00175 inches to about 0.002 inches, about 0.002 inches to about 0.00225 inches, about 0.00225 inches to about 0.0025 inches, about 0.0025 inches to about 0.00275 inches, about 0.00275 inches to about 0.003 inches, about 0.003 inches to about 0.00325 inches, about 0.00325 inches to about 0.0035 inches, about 0.0035 inches to about 0.00375 inches, about 0.00375 inches to about 0.004 inches, about 0.004 inches to about 0.0045 inches, about 0.0045 inches to about 0.005 inches, about 0.005 inches to about 0.006 inches, about 0.006 inches to about 0.006 inches, about 0.006 inches to about 0.007 inches, about 0.007 inches to about 0.008 inches, about 0.008 inches to about 0.009 inches, about 0.009 inches to about 0.01 inches and any thickness between those listed.
  • In those embodiments comprising holes or fenestrations 102, the holes or fenestrations may be of any shape, including but not limited to square, round, irregular-shaped. In each case, an individual fenestration or hole has a diameter less than that of lumen 103. Depending on the embodiment, the holes or fenestrations are located in any geometrical pattern (or randomly positioned) within region 104. In those embodiments having more than one region 104, the holes or fenestrations may be positioned differentially between each region (e.g., patterned positioning in a first region and random positioning in a second region). Holes or fenestrations 102 may be formed during molding of plug 10, or may be laser machined after molding, such as by ablation, stretching, etching, grinding, molding, femtosecond laser exposure, particle blasting, machining, or other methods.
  • In certain embodiments comprising holes or fenestrations 102, the implant allows for drug elution proximally toward the tear film, as well as distally toward the nasolacrimal duct. In these embodiments, the active agent is released into the tear film, the nasolacrimal duct, or both the tear film and the nasolacrimal duct. Distal drug elution is useful, in several embodiments, for intranasal and/or systemic drug delivery. Embodiments comprising holes or fenestrations 102 also optionally comprise at least one non-occlusive retention feature, as discussed above, rendering the implant non-occlusive and comprising a design solution for overall distal drug delivery. In these non-occlusive embodiments, for example, a therapeutic agent eluted from either a proximal end or distal end of the implant will ultimately drain distally toward the nasolacrimal duct. In contrast, in occlusive embodiments, for example, agents eluted from a proximal end of the implant results in only proximal drug delivery as delivery of the therapeutic agent is inhibited distally of the proximal end.
  • In one embodiment, the implant shown in FIG. 2C, is assembled by first obtaining tablets or powder (or other form) of at least a first and second drug. In reverse order of release from the implant, the drugs are loaded through the open end of lumen 103 shown in FIG. 2B. FIG. 2C shows the assembled delivery device, where item 20 is a region of a first therapeutic drug, and item 30 is a region of a second therapeutic drug. As discussed above, one or both regions may comprise pure drug, or drug plus excipients, or drug within a bioerodible or non-bioerodible matrix. One or both regions may comprise packed powder formulation or pure drug, or tableted formulation or pure drug, or microspheres, nanospheres, liposomes, or the like of pure drug. Upon completion of drug loading into the lumen, the open end of lumen 103 is sealed with a plug 101. Depending on the embodiments, the plug comprises a flowable material that acts as a sealant by filling the remaining space in the lumen 103. For example, in one embodiment, the plug 101 comprises, RTV silicone injected into the open end of lumen 103. In other embodiments, the plug 101 is preformed of silicone elastomer, another polymer (or polymers), or another biocompatible material, and press fit into lumen 103. In still additional embodiments, plug 101 comprises a thermoplastic material such as PurSil®, which is then thermoformed in place to seal the end of the implant.
  • In several embodiments, as shown in FIG. 2D, the drug load is isolated from the plug material with a drug sleeve (e.g., a sleeve body). FIG. 2D shows a cross-sectional view of an implant 1 comprising a drug core 35 and surrounding drug sleeve 45, according to several embodiments. In several such embodiments, the sleeve body comprises appropriate shapes, dimensions, and/or materials to regulate, adjust, or otherwise control elution of the therapeutic agent from the drug core. In several embodiments, the drug sleeve comprises a material that is substantially impermeable (e.g., less than 50% permeable) to the therapeutic agent so that the rate of migration of the therapeutic agent is primarily (or at least in part) controlled by the exposed surface area of the drug core that is not covered by the drug sleeve. Illustrative and non-limiting examples of suitable materials for the drug sleeve include, but are not limited to, polypropylene, polyimide, glass, nitinol, polyvinyl alcohol, polyvinyl pyrolidone, collagen, chemically-treated collagen, polyethersulfone (PES), poly(styrene-isobutyl-styrene), polyurethane, ethyl vinyl acetate (EVA), polyetherether ketone (PEEK), Kynar (Polyvinylidene Fluoride; PVDF), Polytetrafluoroethylene (PTFE), Polymethylmethacrylate (PMMA), Pebax, acrylic, polyolefin, polydimethylsiloxane and other silicone elastomers, polypropylene, hydroxyapetite, titanium, gold, silver, platinum, other metals and alloys, ceramics, plastics and mixtures or combinations thereof.
  • In several such embodiments, the drug sleeve allows for an exchangeable drug core if the therapeutic agent needs to be replenished, replaced, or supplemented by the same or different agent. Accordingly, the implant body can remain implanted in the patient. In some embodiments, the drug sleeve remains in the implant while only the drug core is replaced. In these embodiments, the drug sleeve may be provided, for example, with external protrusions that apply force to the drug sleeve when squeezed and eject the core from the drug sleeve. In some embodiments, the drug sleeve is removed with the drug core.
  • In many embodiments, the drug sleeve ranges between about 0.5 and 2.4 mm long (e.g., from the proximal end to the distal end). The length of the drug sleeve, in some embodiments, ranges from about 0.5 mm to about 0.7 mm, about 0.7 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.35 mm, about 1.35 mm to about 1.4 mm, about 1.4 mm to about 1.45 mm, about 1.45 mm to about 1.5 mm, about 1.5 mm to about 1.55 mm, about 1.55 mm to about 1.6 mm, about 1.6 mm to about 1.65 mm, about 1.65 mm to about 1.7 mm, about 1.7 mm to about 1.9 mm, about 1.9 mm to about 2.1 mm, about 2.1 mm to about 2.3 mm, about 2.3 mm to about 2.5 mm, or lengths in between these ranges. In several embodiments, drug sleeves have an inner diameter between about 0.2 mm and 1.9 mm, including about 0.2 mm to about 0.3 mm, about 0.3 mm to about 0.4 mm, about 0.4 mm to about 0.5 mm, about 0.5 mm to about 0.6 mm, about 0.5 mm to about 0.6 mm, about 0.6 mm to about 0.7 mm, about 0.7 mm to about 0.8 mm, about 0.8 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.4 mm, about 1.4 mm to about 1.5 mm, about 1.5 mm to about 1.6 mm, about 1.6 mm to about 1.7 mm, about 1.7 mm to about 1.8 mm, about 1.8 mm to about 1.9 mm and any diameters in between or overlapping with these ranges.
  • FIG. 3 shows an embodiment where two drug regions, depicted as 22 and 24, respectively are loaded in parallel within the punctual plug. In such embodiments, both drug regions 22 and 24 begin eluting at the same time. In some embodiments, the elution profiles of 22 and 24 are substantially similar, for example when drug 24 reduces the potential for side effects of administration of drug 22. In additional embodiments, the elution profiles of drug 22 and drug 24 are offset. In some embodiments, drug 22 and 24 are completely or substantially eluted at such time as a third drug region 30 begins elution. While shown effectively as equal proportions, it shall be appreciated that drug 22 and drug 24 can be placed in the punctal plug in any ratio with respect to one another that produces a desired therapeutic effect. For example, drug 22 may make up about 10%, about 20%, about 25%, about 30% or more of the total amount of drugs 22 and 24 present in the implant. Alternatively, drug 22 may make up about 60%, about 70%, about 80%, about 90% or more of the total amount of drugs 22 and 24 present in the implant. Any combination of drug 22 and 24 can be used, depending on the embodiment. Moreover, while shown in FIG. 3 as parallel to one another, different physical configurations of drug 22 and 24 are used in other embodiments. For example, the drugs may be loaded at an angle with respect to one another, in order to control the surface area of the drug that is exposed to tear file at a given time post implantation. For example, an angular gradient could be used to start with a high percentage of release of drug 22 as compared to release of drug 24, with an inverse elution profile being generated as the drugs are eluted (e.g., as elution of the drugs proceeds, the proportion of drug 22 being released, versus the total, decreases, while the proportion of drug 24 increases.
  • FIG. 4 shows an embodiment in which multiple drug regions 50, 60, 70, and 80 are preformed into tablets (or micropellets) to facilitate control of drug formulation, and to facilitate manufacturing assembly of the punctal plug delivery device. For example, the preformation of the drugs into tablets (or pellets, or some other solid or semi-solid form) advantageously enables the placement of the drugs sequentially into the implant with reduced complications during assembly (e.g., mis-ordering of the drugs, damage to the implant, etc.). Also, in several embodiments, pre-formation allows the specific tailoring of a drug profile for a particular patient. For example, if a patient had previously had an implant with drug regions 50, 60, 70, and 80, and experienced adverse effects, an option may be to reformulate the drugs within the implant (e.g., drug regions 50, 80, 60, and 70, or 50, 50, 60, 70). This advantageously allows customization of a drug treatment regime for the therapeutic needs of a specific patient. Alternative methods for loading an implant as disclosed herein are provided in U.S. Pat. No. 7,117,870, the entire contents of which are incorporated by reference herein.
  • FIG. 5 shows an arrangement used in several embodiments, wherein drug region 90 comprises a discontinuous first phase which is distributed within drug region 100, which forms a second phase. For example, drug region 90 may comprise microparticles, nanoparticles, liposomes, or the like, any or all of which may carry a first therapeutic drug. Drug region 100, depending on the embodiment, comprises a dispersion of solid or liquid particles or droplets of a second therapeutic drug dispersed within a hydrogel matrix, or some other semi-permeable polymer matrix. Such embodiments, are advantageous in that small and predictable boluses of drug 90 can be intermixed with a second (or more) drug in different phases. This allows a further degree of tailoring the release profiles of the drug or drugs. Moreover, in several embodiments, the second region of drug 100 can complement the first region 90, for example in providing an environment that improves the stability of drug 90, which may otherwise be relatively volatile.
  • FIG. 6 shows an additional embodiment of a punctal plug comprising a ring-shaped component 110 comprising an aperture 112, the aperture being sized in diameter and thickness to regulate elution rate according to Fick's Law of diffusion (discussed in more detail below). Such embodiments are advantageous at least in that the ring-shaped component can be used to further refine and tailor the release of a drug (or drugs) from the implant, while having the implant be “off the shelf”. For example, the implant shell can be one of several stock sizes (e.g., small, medium, large, etc.), each size having a particular size lumen. The ring-shaped component 110 can thus be used to adjust the rate of elution of the drug (or drugs) from the implant by re-sizing the opening of the lumen according to the needs of a particular patient. The ring-shaped component 110, in several embodiments, is made of a material that is generally impermeable to the drug (or drugs) in the lumen. Control of drug release is then calculated by the dimensions of aperture 112, and any membrane or other controlling material (e.g., component 40 of FIG. 2 ) placed within, or over, the aperture. Alternatively, or in combination, the ring-shaped component 110 can comprise a material that is semi-permeable material to one or more of the drugs within the lumen of the implant. In such embodiments, the combination of the ring-shaped component 110, its dimensions, and its interaction with the aperture and/or component 40 work in concert to define the release rates of the drugs from the implant.
  • As discussed above, the various implant embodiments result in characteristic elution profiles. Such elution profiles are shown in FIGS. 8 and 9 . These profiles can advantageously be modified to meet the needs of a particular patient, not only in terms of the drugs that are administered and at what time, but in what amount compared with one another, so as to reduce (or treat) side effects.
  • FIG. 7 shows an additional component 120, which is a separator placed between the first drug region 20 and the second drug region 30. Separator 120, depending on the embodiment, comprises a bioerodible, non-bioerodible; hydrogel; semi-permeable polymer; or a porous element comprising ceramic or metal. Separator 120 serves to create a separation in time between the elution of the drug in region 20 and the drug in region 30. FIG. 9 depicts a schematic elution profile resulting from an embodiment such as the implant of FIG. 7 . In FIG. 9, 130 is the time course of drug elution from the first region 20, and 140 is the time course of elution from the second drug region 30. In some cases, the two drug regions may contain the same drug, and the purpose of separator 120 is to create a “drug holiday”, a time interval during which little or no drug is being eluted (compare the elution profile of FIG. 8 with that of FIG. 9 ).
  • Thus, the implants according to the embodiments disclosed herein allow a highly flexible approach for drug delivery to the eye as well as the ability to customize the drugs used, release timing and concentration (vis-à-vis other drugs in the implant) and thereby create a personalized overall therapeutic regime. Because in certain embodiments, the drug delivery implant may contain one or more drugs which may or may not be compounded with a bioerodible polymer or a bioerodible polymer and at least one additional agent, the release profiles of each can be managed independently, further adding to the flexibility of the overall treatment plant. In still other embodiments, the drug delivery implant is used to sequentially deliver multiple drugs. Some embodiments elute one or more drugs at a constant rate, with other embodiments release one or more drugs with a zero-order release profile. Yet other embodiments yield variable elution profiles. Still other embodiments are designed to stop elution completely or nearly completely for a predetermined period of time (e.g., a “drug holiday”) and later resume elution at the same or a different elution rate or elution concentration. Some such embodiments elute the same therapeutic agent before and after the drug holiday while other embodiments elute different therapeutic agents before and after the drug holiday.
  • FIG. 10 illustrates the anatomy of an eye, which includes the sclera 11, which joins the cornea 12 at the limbus 21, the iris 13 and the anterior chamber 20 between the iris 13 and the cornea 12. The eye also includes the lens 26 disposed behind the iris 13, the ciliary body 16 and Schlemm's canal 22. The eye also includes a uveoscleral outflow pathway, which functions to remove a portion of fluid from the anterior chamber, and a suprachoroidal space positioned between the choroid 28 and the sclera 11. The eye also includes the posterior region 30 of the eye which includes the macula 32.
  • Controlled Drug Release
  • The drug delivery implants as described herein, function to house a drug and provide drug elution from the implant in a controlled fashion, based on the design of the various components of the implant, for an extended period of time. Various elements of the implant composition, implant physical characteristics, and the composition of the drug work in combination to produce the desired drug release profile.
  • As described above the drug delivery implant may be made from any biological inert and biocompatible materials having desired characteristics. Desirable characteristics, in some embodiments, include permeability to liquid water or water vapor, allowing for an implant to be manufactured, loaded with drug, and sterilized in a dry state, with subsequent rehydration of the drug upon implantation. Also desirable for certain portions of the implant, depending on the embodiment, is use of a material comprising microscopic porosities between polymer chains. These porosities may interconnect, which forms channels of water through the implant material. In several embodiments, the resultant channels are convoluted and thereby form a tortuous path which solubilized drug travels during the elution process. Implant materials advantageously also possess sufficient permeability to a drug such that the implant may be a practical size for implantation. Thus, in several embodiments, portions of the implant (e.g., the membrane material) are sufficiently permeable to the drug to be delivered that the implant is dimensioned to reside wholly contained within the eye of a subject. Implant material also ideally possesses sufficient elasticity, flexibility and potential elongation to not only conform to the target anatomy during and after implantation, but also remain unkinked, untorn, unpunctured, and with a patent lumen during and after implantation. In several embodiments, implant material would advantageously processable in a practical manner, such as, for example, by molding, extrusion, thermoforming, and the like. In particular, in some embodiments, implants are manufactured via injection molding.
  • Illustrative, examples of suitable materials for the outer shell include, but are not limited to, polypropylene, polyimide, glass, nitinol, polyvinyl alcohol, polyvinyl pyrolidone, collagen, chemically-treated collagen, polyethersulfone (PES), poly(styrene-isobutyl-styrene), polyurethane, ethyl vinyl acetate (EVA), polyetherether ketone (PEEK), Kynar (Polyvinylidene Fluoride; PVDF), Polytetrafluoroethylene (PTFE), Polymethylmethacrylate (PMMA), Pebax, acrylic, polyolefin, polydimethylsiloxane and other silicone elastomers, polypropylene, hydroxyapetite, titanium, gold, silver, platinum, other metals and alloys, ceramics, plastics and mixtures or combinations thereof. Additional suitable materials used to construct certain embodiments of the implant include, but are not limited to, poly(lactic acid), poly(tyrosine carbonate), polyethylene-vinyl acetate, poly(L-lactic acid), poly(D,L-lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), collagen, heparinized collagen, poly(caprolactone), poly(glycolic acid), and/or other polymer, copolymers, or block co-polymers, polyester urethanes, polyester amides, polyester ureas, polythioesters, thermoplastic polyurethanes, silicone-modified polyether urethanes, poly(carbonate urethane), or polyimide. Thermoplastic polyurethanes are polymers or copolymers which may comprise aliphatic polyurethanes, aromatic polyurethanes, polyurethane hydrogel-forming materials, hydrophilic polyurethanes (such as those described in U.S. Pat. No. 5,428,123, which is incorporated in its entirety by reference herein), or combinations thereof. Non-limiting examples include elasthane (poly(ether urethane)) such as Elasthane™ 80A, Lubrizol, Tecophilic™, Pellethane™, Carbothane™, Tecothane™, Tecoplast™, and Estane™. In some embodiments, polysiloxane-containing polyurethane elastomers are used, which include Carbosil™ 20 or Pursil™ 20 80A, Elast-Eon™, and the like. Hydrophilic and/or hydrophobic materials may be used. Non-limiting examples of such elastomers are provided in U.S. Pat. No. 6,627,724, which is incorporated in its entirety by reference herein. Poly(carbonate urethane) may include Bionate™ 80A or similar polymers. In several embodiments, such silicone modified polyether urethanes are particularly advantageous based on improved biostability of the polymer imparted by the inclusion of silicone. In addition, in some embodiments, oxidative stability and thrombo-resistance is also improved as compared to non-modified polyurethanes. In some embodiments, there is a reduction in angiogenesis, cellular adhesion, inflammation, and/or protein adsorption with silicone-modified polyether urethanes. In other embodiments, should angiogenesis, cellular adhesion or protein adsorption (e.g., for assistance in anchoring an implant) is preferable, the degree of silicone (or other modifier) may be adjusted accordingly. Moreover, in some embodiments, silicone modification reduces the coefficient of friction of the polymer, which reduces trauma during implantation of devices described herein. In some embodiments, silicone modification, in addition to the other mechanisms described herein, is another variable that can be used to tailor the permeability of the polymer. Further, in some embodiments, silicone modification of a polymer is accomplished through the addition of silicone-containing surface modifying endgroups to the base polymer. In other embodiments, flurorocarbon or polyethylene oxide surface modifying endgroups are added to a based polymer. In several embodiments, one or more biodegradable materials are used to construct all or a portion of the implant, or any other device disclosed herein. Such materials include any suitable material that degrades or erodes over time when placed in the human or animal body, whether due to a particular chemical reaction or enzymatic process or in the absence of such a reaction or process. Accordingly, as the term is used herein, biodegradable material includes bioerodible materials. Such materials can optionally biodegrade or bioerode at a predictable rate so that the plugs expire after the treatment time is over or are easily flushed out for replacement. In such biodegradable embodiments, the degradation rate of the biodegradable outer shell is another variable (of many) that may be used to tailor the drug elution rate from an implant.
  • In some embodiments, such as where the drug is sensitive to moisture (e.g. liquid water, water vapor, humidity) or where the drug's long term stability may be adversely affected by exposure to moisture, it may be desirable to utilize a material for the implant or at least a portion of the implant, which is water resistant, water impermeable or waterproof such that it presents a significant barrier to the intrusion of liquid water and/or water vapor, especially at or around human body temperature (e.g. about 35-40° C. or 37° C.). This may be accomplished by using a material that is, itself, water resistant, water impermeable or waterproof.
  • In some circumstances, however, even materials that are generally considered water impermeable may still allow in enough water to adversely affect the drug within an implant. For example, it may be desirable to have 5% by weight of the drug or less water intrusion over the course of a year. In one embodiment of implant, this would equate to a water vapor transmission rate for a material of about 1×10−3 g/m2/day or less. This may be as much as one-tenth of the water transmission rate of some polymers generally considered to be water resistant or water impermeable. Therefore, it may be desirable to increase the water resistance or water impermeability of a material.
  • The water resistance or water impermeability of a material may be increased by any suitable method. Such methods of treatment include providing a coating for a material (including by lamination) or by compounding a material with a component that adds water resistance or increases impermeability. For example, such treatment may be performed on the implant (or portion of the implant) itself, it may be done on the material prior to fabrication (e.g. coating a polymeric tube), or it may be done in the formation of the material itself (e.g. by compounding a resin with a material prior to forming the resin into a tube or sheet). Such treatment may include, without limitation, one or more of the following: coating or laminating the material with a hydrophobic polymer or other material to increase water resistance or impermeability; compounding the material with hydrophobic or other material to increase water resistance or impermeability; compounding or treating the material with a substance that fills microscopic gaps or pores within the material that allow for ingress of water or water vapor; coating and/or compounding the material with a water scavenger or hygroscopic material that can absorb, adsorb or react with water so as to increase the water resistance or impermeability of the material.
  • One type of material that may be employed as a coating to increase water resistance and/or water impermeability is an inorganic material. Inorganic materials include, but are not limited to, metals, metal oxides and other metal compounds (e.g. metal sulfides, metal hydrides), ceramics, and main group materials and their compounds (e.g. carbon (e.g. carbon nanotubes), silicon, silicon oxides). Examples of suitable materials include aluminum oxides (e.g. Al2O3) and silicon oxides (e.g. SiO2). Inorganic materials may be advantageously coated onto a material (at any stage of manufacture of the material or implant) using techniques such as are known in the art to create extremely thin coatings on a substrate, including by vapor deposition, atomic layer deposition, plasma deposition, and the like. Such techniques can provide for the deposition of very thin coatings (e.g. about 20 nm-40 nm thick, including about 25 nm thick, about 30 nm thick, and about 35 nm thick) on substrates, including polymeric substrates, and can provide a coating on the exterior and/or interior luminal surfaces of small tubing, including that of the size suitable for use in implants disclosed herein. Such coatings can provide excellent resistance to the permeation of water or water vapor while still being at least moderately flexible so as not to undesirably compromise the performance of an implant in which flexibility is desired.
  • The drugs carried by the drug delivery implant may be in any form that can be reasonably retained within the device and results in controlled elution of the resident drug or drugs over a period of time lasting at least several days and in some embodiments up to several weeks, and in certain preferred embodiments, up to several years. Certain embodiments utilize drugs that are readily soluble in ocular fluid, while other embodiments utilize drugs that are partially soluble in ocular fluid.
  • For example, the therapeutic agent may be in any form, including but not limited to a compressed pellet, a solid, a capsule, multiple particles, a liquid, a gel, a suspension, slurry, emulsion, and the like. In certain embodiments, drug particles are in the form of micro-pellets (e.g., micro-tablets), fine powders, or slurries, each of which has fluid-like properties, allowing for recharging by injection into the inner lumen(s).
  • As discussed above, in some embodiments, the implants can be recharged, which in several embodiments, is accomplished with a syringe/needle, through which a therapeutic agent is delivered. In some embodiments, micro-tablets are delivered through a needle of about 23 gauge to about 32 gauge, including 23-25 gauge, 25 to 27 gauge, 27-29 gauge, 29-30 gauge, 30-32 gauge, and overlapping ranges thereof. In some embodiments, the needle is 23, 24, 25, 26, 27, 28, 29, 30, 31, or 32 gauge. In some embodiments, as described above, a drug sleeve surrounding a drug core is used to recharge an implant, as shown, for example, in FIG. 11 . As shown in FIG. 11 , for example, the drug core and drug sleeve can be removed together by drawing drug core proximally, and then a replacement core within a replacement drug sleeve can be inserted together by advancing the replacement core and sleeve 45 attached to an inserter tool 55 into the lumen or cavity of the implant. In some embodiments, implants comprised of hydrogel utilize the drug load inserter with the exchangeable drug core and drug sleeve. In some embodiments, one size of a hydrogel plug will fit all patients.
  • In several embodiments, however, recharging of the implant is not performed, in favor of replacing the implant with a new, drug-preloaded implant, based at least in part on the ease of access to the implant site (e.g., the punctum). In these embodiments, an inserter tool is used to insert the implant into the implant site. FIG. 12 shows the terminal aspect of an inserter tool 215 used to insert an implant into an implant site, the inserter comprising a plunger 220 that can be depressed and a preloaded drug implant 1 held within the terminus of the inserter prior to insertion, according to some embodiments. It is to be understood that the forceps and other insertion tools may be used to place an implant in the punctum and into the lacrimal canaliculus. In some embodiments, the distal edge of the inserter tool is parallel with the implant, as illustrated in FIG. 13A. In other words, as illustrated in FIG. 13A, the inserter tool can optionally have a straight cut tip. In some embodiments, the inserter tool contains at least one additional gripping component 225 that guides and supports the implant into the implant site, as shown, for example, in FIG. 13B. Such a gripper may be movably connected to a handpiece that allows for engagement and disengagement of the gripper. In some embodiments, the distal edge of the inserter tool is asymmetric in relation to the implant, as shown in FIG. 13C. In other words, in some embodiments, the distal end of the inserter tool 230 may optionally have a beveled or angled cut tip, which can act as a lead-in. Testing has shown beveled cut tip allowed easier entry of the inserter into the punctum over the straight cut tip. In some embodiments, the lead-in may also be used as a dilator to pre-dilate the area prior to insertion of an implant.
  • In one embodiment, a portion of the insertion tool may be made of clear material, for example, such as an acrylic material, so that the physician can visualize the tissue through the insertion tool and see the punctum. The optionally clear material may also allow viewing of an implant while it is being implanted, and may also confirm that the implant is implanted properly. In another embodiment, the clear material may be a magnifying material and/or have a magnifying geometry, such as a spherical lens or angled lens, so that the punctum is more easily visualized.
  • When more than one drug is desired for treatment of a particular pathology or when a second drug is administered such as to counteract a side effect of the first drug, some embodiments may utilize two agents of the same form. In other embodiments, agents in different form may be used. Likewise, should one or more drugs utilize an adjuvant, excipient, or auxiliary compound, for example to enhance stability or tailor the elution profile, that compound or compounds may also be in any form that is compatible with the drug and can be reasonably retained with the implant.
  • In some embodiments, treatment of particular pathology with a drug released from the implant may not only treat the pathology, but also induce certain undesirable side effects.
  • It will be understood that embodiments as described herein may include a drug mixed or compounded with a biodegradable material, excipient, or other agent modifying the release characteristics of the drug. In several embodiments, such biodegradable materials include copolymers of lactic acid and glycolic acid, also known as poly (lactic-co-glycolic acid) or PLGA. It will be understood by one skilled in the art that although some disclosure herein specifically describes use of PLGA, other suitable biodegradable materials may be substituted for PLGA or used in combination with PLGA in such embodiments. It will also be understood that in certain embodiments as described herein, the drug positioned within the lumen of the implant is not compounded or mixed with any other compound or material, thereby maximizing the volume of drug that is positioned within the lumen.
  • It may be desirable, in some embodiments, to provide for a particular rate of release of drug from a PLGA copolymer, other polymeric material, or other excipient. As the release rate of a drug from a polymer correlates with the degradation rate of that polymer, control of the degradation rate provides a means for control of the delivery rate of the drug contained within the therapeutic agent. Variation of the average molecular weight of the polymer or copolymer chains which make up the PLGA copolymer or other polymer may be used to control the degradation rate of the copolymer, thereby achieving a desired duration or other release profile of therapeutic agent delivery to the eye.
  • In certain other embodiments employing PLGA copolymers, rate of biodegradation of the PLGA copolymer may be controlled by varying the ratio of lactic acid to glycolic acid units in a copolymer.
  • Still other embodiments may utilize combinations of varying the average molecular weights of the constituents of the copolymer and varying the ratio of lactic acid to glycolic acid in the copolymer to achieve a desired biodegradation rate.
  • As described above, the outer shell of the implant comprises a polymer in some embodiments. Additionally, the shell may further comprise one or more polymeric coatings in various locations on or within the implant. The outer shell and any polymeric coatings are optionally biodegradable. The biodegradable outer shell and biodegradable polymer coating may be any suitable material including, but not limited to, poly(lactic acid), polyethylene-vinyl acetate, poly(lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), collagen, heparinized collagen, poly(caprolactone), poly(glycolic acid), and/or other polymer or copolymer.
  • As described above, some embodiments of the implants comprise a release material that is permeable to the drug (or drugs) and allows passage of the drug (or drugs) through the material in a controlled fashion. Control of the release of the drug can further be controlled by coatings in or on the implant (e.g., a coating over the release material that slows the rate of release of a drug).
  • For example, a given combination of drug and release material will yield a characteristic diffusion coefficient D, such that:
  • Elution rate = [ D × A × ( C i - C o ) ] d
    where
    D = diffusion coefficient (cm2/sec)
    A = area of the region of drug release material
    (Ci − Co) = difference in drug concentration between the inside and outside of the device.
    d = thickness of the region of release material
  • Thus, the area and thickness of the region of drug release are variables that determine, in part, the rate of elution of the drug from the implant, and are also variables that can be controlled during the process of manufacturing the implant. In some embodiments using a highly insoluble drug, the release material could be manufactured to be thin (d is small) or with a large overall area (A is large) or a combination of the two (as dictated by the structural sufficiency of the outer shell). In either case, the end result is that the elution rate of the drug can be increased to compensate for the low solubility of the drug based on the structure and design of the implant.
  • In contrast, in some embodiments using a highly soluble drug, the drug release material can be made thicker, more dense, or more concentrated, thereby adjusting the rate of release of the drug from the implant.
  • Additionally, certain embodiments use additional polymer coatings to either (i) increase the effective thickness (d) of the drug release material or (ii) decrease the overall permeability of the drug release material, resulting in a reduction in drug elution. In still other embodiments, multiple additional polymer coatings are used. By covering either distinct or overlapping portions of the implant and the drug release material, a controlled pattern of drug release from the implant overall can be achieved.
  • In several embodiments as described herein, there are no direct through holes or penetrating apertures needed or utilized to specifically facilitate or control drug elution. As such, in those embodiments, there is no direct contact between the drug core (which may be of very high concentration) and the ocular tissue where adjacent to the site where the implant is positioned. In some cases, direct contact of ocular tissue with high concentrations of drug residing within the implant could lead to local cell toxicity and possible local cell death. Thus, in several embodiments, the drug release material also serves a safety function.
  • As described above, duration of drug release is desired over an extended period of time. In some embodiments, an implant in accordance with embodiments described herein is capable of delivering a drug at a controlled rate to a target tissue for a period of several (i.e. at least three) months. In certain embodiments, implants can deliver drugs at a controlled rate to target tissues for about 6 months or longer, including 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, and 24 months, without requiring recharging. In still other embodiments, the duration of controlled drug release (without recharging of the implant) exceeds 2 years (e.g., 3, 4, 5, or more years). It shall be appreciated that additional time frames including ranges bordering, overlapping or inclusive of two or more of the values listed above are also used in certain embodiments.
  • In conjunction with the controlled release of a drug to a target tissue, certain doses of a drug (or drugs) are desirable over time, in certain embodiments. As such, in some embodiments, the total drug load, for example the total load of a steroid, delivered to a target tissue over the lifetime of an implant ranges from about 10 to about 1000 μg. In certain embodiments the total drug load ranges from about 100 to about 900 μg, from about 200 to about 800 μg, from about 300 to about 700 μg, or from about 400 to about 600 μg. In some embodiments, the total drug load ranges from about 10 to about 300 μg, from about 10 to about 500 μg, or about 10 to about 700 μg. In other embodiments, total drug load ranges from about 200 to about 500 μg, from 400 to about 700 μg or from about 600 to about 1000 μg. In still other embodiments, total drug load ranges from about 200 to about 1000 μg, from about 400 to about 1000 μg, or from about 700 to about 1000 μg. In some embodiments total drug load ranges from about 500 to about 700 μg, about 550 to about 700 μg, or about 550 to about 650 μg, including 575, 590, 600, 610, and 625 μg. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
  • Similarly, in other embodiments, controlled drug delivery is calculated based on the elution rate of the drug from the implant. In certain such embodiments, an elution rate of a drug, for example, a steroid, is about 0.05 μg/day to about 10 μg/day is achieved. In other embodiments an elution rate of about 0.05 μg/day to about 5 μg/day, about 0.05 μg/day to about 3 μg/day, or about 0.05 μg/day to about 2 μg/day is achieved. In other embodiment, an elution rate of about 2 μg/day to about 5 μg/day, about 4 μg/day to about 7 μg/day, or about 6 μg/day to about 10 μg/day is achieved. In other embodiments, an elution rate of about 1 μg/day to about 4 μg/day, about 3 μg/day to about 6 μg/day, or about 7 μg/day to about 10 μg/day is achieved. In still other embodiments, an elution rate of about 0.05 μg/day to about 1 μg/day, including 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 μg/day is achieved. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
  • Alternatively, or in addition to one or more of the parameters above, the release of drug from an implant may be controlled based on the desired concentration of the drug at target tissues. In some embodiments, the desired concentration of a drug, for example, a steroid, at the target tissue, ranges from about 1 nM to about 100 nM. In other embodiments the desired concentration of a drug at the site of action ranges from about 10 nM to about 90 nM, from about 20 nM to about 80 nM, from about 30 nM to about 70 nM, or from about 40 nM to about 60 nM. In still other embodiments the desired concentration of a drug at the site of action ranges from about 1 nM to about 40 nM, from about 20 nM to about 60 nM, from about 50 nM to about 70 nM, or from about 60 nM to about 90 nM. In yet other embodiments the desired concentration of a drug at the site of action ranges from about 1 nM to about 30 nM, from about 10 nM to about 50 nM, from about 30 nM to about 70 nM, or from about 60 nM to about 100 nM. In some embodiments, the desired concentration of a drug at the site of action ranges from about 45 nM to about 55 nM, including 46, 47, 48, 49, 50, 51, 52, 53, and 54 nM. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
  • Drugs
  • In some embodiments, as discussed above, the drug or drugs employed may take one or more forms. For example, multiple pellets of single or multiple drug(s) are placed within an interior lumen of the implant (see, e.g., FIG. 4 ).
  • In some embodiments, the therapeutic agent (or agents) is formulated as micro-pellets or micro-tablets. Additionally, in some embodiments, micro-tablets allow a greater amount of the therapeutic agent to be used in an implant. This is because, in some embodiments, tabletting achieves a greater density in a pellet than can be achieved by packing a device. Greater amounts of drug in a given volume may also be achieved by decreasing the amount of excipient used as a percentage by weight of the whole tablet, which has been found by the inventors to be possible when creating tablets of a very small size while retaining the integrity of the tablet. In some embodiments, the percentage of active therapeutic (by weight) is about 70% or higher. As discussed herein, the therapeutic agent can be combined with excipients or binders that are known in the art. In some embodiments, the percentage of therapeutic agent ranges from about 70% to about 95%, from about 75 to 85%, from about 75 to 90%, from about 70 to 75%, from about 75% to about 80% from about 80% to about 85%, from about 85% to about 90%, from about 90% to about 95%, from about 95% to about 99%, from about 99% to about 99.9%, and overlapping ranges thereof. In some embodiments, the percentage of therapeutic agent ranges from about 80% to about 85%, including 81, 82, 83, and 84% by weight.
  • In several embodiments, micro-tablets provide an advantage with respect to the amount of an agent that can be packed, tamped, or otherwise placed into an implant disclosed herein. The resultant implant comprising micro-tablets, in some embodiments, thus comprises therapeutic agent at a higher density than can be achieved with non-micro-tablet forms. For example, in some embodiments, the density of the micro-pellet form of an agent within an implant ranges from about 0.7 g/cc to about 1.6 g/cc. In some embodiments, the density used in an implant ranges from about 0.7 g/cc to about 0.9 g/cc, from about 0.9 g/cc to about 1.1 g/cc, from about 1.1 g/cc to about 1.3 g/cc, from about 1.1 g/cc to about 1.5 g./cc, from about 1.3 g/cc to about 1.5 g/cc, from about 1.5 g/cc to about 1.6 g/cc, and overlapping ranges thereof. In some embodiments, densities of therapeutic agent that are greater than 1.6 g/cc are used.
  • In one embodiment, micro-tablets with the above properties, or any combination thereof, are made using known techniques in the art including tableting, lyophilization, granulation (wet or dry), flaking, direct compression, molding, extrusion, and the like. Moreover, as discussed below, alterations in the above-discussed characteristics can be used to tailor the release profile of the micro-tableted therapeutic agent from an implant.
  • In several embodiments, lyophilization of a therapeutic agent is used prior to the micro-pelleting process. In some embodiments, lyophilization improves the stability of the therapeutic agent once incorporated into a micro-tablet. In some embodiments, lyophilization allows for a greater concentration of therapeutic to be obtained prior to micro-pelleting, thereby enhancing the ability to achieve the high percentages of active therapeutic agents that are desirable in some embodiments. For example, many commercially available therapeutic agents useful to treat ocular diseases are developed as first-line agents for other diseases. As such, their original formulation may not be suitable or ideal for micro-pelleting or for administration to an ocular target via an ocular implant such as those disclosed herein. For example, several anti-VEGF compounds are supplied as sterile liquid in single use vials meant to be administered intravenously (e.g., bevacizumab). As a result, such a liquid formulation is less preferred for formation of micro-pellets as compared to a solid, though a liquid therapeutic agent may optionally be used in some embodiments. To achieve micro-pelleting at high percentages of therapeutic agent, such liquid formulations may be frozen (e.g., stored at temperatures between −20° C. and −80° C. for 16 to 24 hours or longer) and then subject to lyophilization until dry. Alternatively, air spraying, crystallization, or other means may optionally be used to dry the therapeutic agent.
  • Once dry, the lyophilized (or otherwise dried) therapeutic agent is optionally tested for purity. In some embodiments, solvents may be added to a liquid (or solid) formulation in order to dissolve and remove (via evaporation) non-therapeutic components (e.g., excipients or inert binding agents). In some embodiments, a therapeutic agent is purified by conventional methods (e.g., antibody-based chromatography, HPLC, etc.) prior to lyophilization. In such embodiments, lyophilization often functions to increase the concentration of the therapeutic agent in the recovered purified sample.
  • In some embodiments, the dried therapeutic agent (which, for efficiency purposes is optionally dried in bulk) is ground, sieved, macerated, freeze-fractured, or subdivided into known quantities by other means, and then micro-pelleted.
  • After lyophilization and or subdivision, the therapeutic agent is fed into a micro-pelleting process. In some embodiments, standard techniques (e.g., compression, extrusion, molding, or other means) are used. However, in several embodiments employing high percentages of active therapeutic agent, more specialized techniques are used.
  • In several embodiments, the therapeutic agent is a protein, and in such embodiments, drying and/or tabletization should be completed under conditions (e.g., temperature, acid/base, etc.) that do not adversely affect the biological activity of the therapeutic agent. To assist in maintenance of biological activity of micro-pelleted therapeutic agents, in some embodiments, protein therapeutics are formulated with a stabilizing agent (e.g., mannitol, trehalose, starch, or other poly-hydroxy polymer) to maintain the structure (and therefore activity) of the therapeutic protein.
  • As mentioned above, depending on the embodiment, the drug or drugs to be administered via the drug delivery implant may be in the form of a nanodispersion. Nanodispersions are particularly advantageous when the drug (or drugs) to be administered is poorly soluble or insoluble in aqueous solutions, which can lead to instability and/or reduced bioavailability.
  • As used herein, the term “nanodispersion” shall be given its ordinary meaning and shall refer to a composition comprising nanoparticles comprising a drug and/or an aqueous vehicle. In several embodiments, the aqueous vehicle comprises a water miscible solvent and water. In several embodiments, the nanoparticles may comprise a drug, a polymer and a surfactant comprising a mixture of fatty acids or its salts and sterol or its derivatives or its salts, in some embodiments.
  • The term “nanoparticle” as used herein shall be given its ordinary meaning and shall also refer to particles having controlled dimensions of the order of nanometers. For example the nanoparticles, in several embodiments, are a polymeric nanoparticle (matrix of polymer entrapping the drug) and/or a polymeric nanovesicle (polymer stabilized nano sized vesicle encapsulating the drug.) and/or a polymeric nanocapsule (polymeric membrane surrounding drug in core) and/or nano sized particles of the drug stabilized by surfactants, and the like the nanoparitcles having mean size less than about 300 nm (e.g., ranging from about 10 nm to about 275 nm, or in the range of about 10 nm to about 200 nm.
  • In several embodiments, the water miscible solvent used in the nanodispersion comprises one or more of alcohols, glycols and its derivatives, polyalkylene glycols and its derivatives, glycerol, glycofurol and combinations thereof. Additional non-limiting examples include, but are not limited to, alcohols such as ethanol, n-propanol, isopropanol; glycols such as ethylene glycol, propylene glycol, butylene glycol and its derivatives; polyethylene glycols like PEG 400 or PEG 3350; polypropylene glycol and its derivatives such as PPG-10 butanediol, PPG-10 methyl glucose ether, PPG-20 methyl glucose ether, PPG-15 stearyl ether; glycerol; glycofurol and the like and mixtures thereof. In still additional embodiments, the non-aqueous solvent is selected from the group consisting of alcohols, polyethylene glycols and/or mixtures thereof, such as, for example, a mixture of ethanol and PEG (polyethylene glycol). In some embodiments, in which ethanol is used in the nanodispersion, ethanol is present in an amount ranging from about 0.001% w/v to about 5% w/v, more preferably from about 0.05% w/v to about 0.5% w/v and most preferably from about 0.1% w/v to about 0.25% w/v. Polyethylene glycols which are used preferably, include PEG-400 and PEG-3350. PEG-400 is used, depending on the embodiment, in an amount ranging from about 0.01% w/v to about 20.0% w/v, more preferably from about 0.05% w/v to about 5.0% w/v and most preferably from about 1.0% w/v to about 2.5% w/v. PEG-3350 is used, depending on the embodiment, in an amount ranging from about 0.001% w/v to about 10.0% w/v, more preferably from about 0.05% w/v to about 5.0% w/v and most preferably from about 0.1% w/v to about 3% w/v.
  • In some embodiments, the nanoparticles comprise one or more polymers. The polymer(s) used in several embodiments are preferably, water soluble. Polyvinylpyrrolidone, one such water soluble polymer used in several embodiments, is a tertiary amide polymer having linearly arranged monomer units of 1-vinyl-2-pyrrolidone. It has mean molecular weights ranging from about 10,000 to about 700,000. Other grades of polyvinylpyrrolidone are used in some embodiments, with molecular weights ranging from about 2000 to about 3000, about 7000 to about 11,000, about 28,000 to about 34,000, or about 1,000,000 to about 1,5000,000. In still additional embodiments, polyvinylpyrrolidone use for the polymer have molecular weight in the range from about 1,000 to about 45,000, preferably, from about 4,000 to about 30,000. According several embodiments, the amount of polymer used in the nanodispersion ranges from about 0.001% w/v to about 20% w/v, including preferably about 0.01% w/v to about 5.0% w/v and also about 0.01% w/v to about 1.0% w/v.
  • Polyethylene glycol is used in several embodiments, either in addition or in place of polyvinylpyrrolidone. In several embodiments, the amount of polymer used in the nanodispersion ranges from about 0.001% w/v to about 20% w/v, including about 0.01% w/v to about 5.0% w/v, and in some embodiments, about 0.01% w/v to about 1.0% w/v.
  • Surfactants are used in some embodiments of the nanodispersions for drug(s). In several embodiments, the surfactants comprise a mixture of fatty acid or its salts and sterol or its derivatives or its salts.
  • As used herein, the term “fatty acids” shall be given its ordinary meaning and shall also include aliphatic (saturated or unsaturated) monocarboxylic acids derived from or contained in esterified form, in an animal or vegetable fat, oil or wax. Non-limiting examples of fatty acids (or its salts) that may be used in in several embodiments include, but are not limited to, fatty acids or its salts having ‘n’ number of carbon atoms wherein ‘n’ ranges from about 4 to about 28. The fatty acid may be a saturated fatty acid or an unsaturated fatty acid, and their salt and combinations thereof. Depending on the embodiment, the saturated fatty acid and its salts may be selected from butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, sodium caprylate, sodium laurate, sodium myristate, sodium palmitate and the like and/or mixtures thereof. The unsaturated fatty acid and its salts may be selected from myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, alpha linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, sodium oleate, sodium arachidonate and the like and/or mixtures thereof.
  • Additionally, non-limiting examples, of sterol or its derivative or its salts that may be used in the nanodispersion or nanoparticles may be acid esters of sterols. The sterols that may be suitable, but are not limited to, cholesterol, phytosterols, ergosterol, bile acids salts and mixtures thereof. Acid salts of cholesterol that may be used include, but are not limited to, cholesteryl sulfate, cholesterol acetate, cholesterol chloroacetate, cholesterol benzoate, cholesterol myristate, cholesterol hemisuccinate, cholesterol phosphate, cholesterol phosphate, phosphonate, borate, nitrate, cholesterol cinnamate, cholesterol crotanoate, cholesterol butyrate, cholesterol heptanoate, cholesterol hexanoate, cholesterol octanoate, cholesterol nonanoate, cholesterol decanoate, cholesterol oleate, cholesterol propionate, cholesterol valerate, dicholesteryl carbonate and the like and mixtures thereof. Phytosterols that may be used in the compositions include sitosterol, campesterol, stigmasterol, brassicasterol and its derivatives, salts and mixture thereof. For example, Phytosterols marketed by Sigma, U.S.A. containing bsitosterol, campesterol and dihydrobrassicasterol. Bile acids include cholic acid, chenodeoxycholic acid, deoxycholic acid, glycocholic acid, taurocholic acid, ursodeoxycholic acid and its derivatives, salts and mixture thereof. The sterols can also be esters of cholesterol including cholesterol hemi-succinate, salts of cholesterol including cholesterol hydrogen sulfate and cholesterol sulfate, ergosterol, esters of ergosterol including ergosterol hemi-succinate, salts of ergosterol including ergosterol hydrogen sulfate and ergosterol sulfate, lanosterol, esters of lanosterol including lanosterol hemi-succinate, salts of lanosterol including lanosterol hydrogen sulfate and lanosterol sulfate.
  • According to one embodiment, the nanoparticles comprise a surfactant which is a mixture of sterol or its derivatives or its salts and fatty acids or its salts. In an additional embodiment, the nanoparticles comprise of cholesterol ester of polar acids. In still further embodiments, the surfactant used in the nanodispersion is a mixture of caprylic acid and cholesteryl sulfate. Caprylic acid, also known as octanoic acid may be used in such embodiments in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01% w/v to about 1.0% w/v and most preferably from about 0.01% w/v to about 0.5% w/v. Cholesteryl sulfate is used in certain embodiments in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01% w/v to about 1.0% w/v and most preferably from about 0.01% w/v to about 0.5% w/v. In one embodiment, the surfactant used is selected from oleic acid and cholesteryl sulphate and/or mixtures thereof. In some embodiments, the surfactant used is selected from saturated fatty acid and bile acid or bile salt and/or mixtures thereof. Bile salts, when used according to some embodiments, are present in an amount ranging from about 0.001% w/v to about 5.0% w/v, more preferably from about 0.01% w/v to about 1.0% w/v and most preferably from about 0.01% w/v to about 0.75% w/v. Other amounts may be used in conjunction with other embodiments disclosed herein. Nanodispersions can be generated by methods appreciated in the art, such as those methods (and the resulting nanodispersions) disclosed in U.S. Pat. No. 8,778,364, which is incorporated by reference in its entirety herein.
  • In addition, one or more of the therapeutic drug regions may comprise drug-cyclodextrin inclusion complexes; liposome encapsulation; micelles based on polymers such as polysaccharide, poly (ethylene glycol)-poly(lactide), methoxy poly(ethylene glycol)-poly(hexyl-lactide), or hydrophobically-modified hydroxypropylcellulose; nanoparticles of amorphous drug formed by antisolvent precipitation and stabilized with surfactant such as poysorbate 80 or polyoxyl 15 hydroxystearate; nanoparticles having a mean size less than 500 nm containing one or more drugs, a polymer, and a surfactant, where the surfactant may include a mixture of fatty acids or its salts and sterol or its derivitatives or its salts; drug co-processed or granulated with excipients such as microcrystalline cellulose, lactose, hydroxypropyl methyl cellulose, or povidone; added polyethylene glycol chains to the drug, polymer, or surfactant (PEGylation); solid dispersions in polymeric carriers such as hypromellose acetate succinate, copolymers based on dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate, poly(vinylpyrrolidone-vinyl acetate), or lauroyl macrogolglycerides; or microspheres (for example, based on PLGA or chitosan).
  • The therapeutic agents utilized with the drug delivery implant, may include one or more drugs provided below, either alone or in combination. The drugs utilized may also be the equivalent of, derivatives of, or analogs of one or more of the drugs provided below. The drugs may include but are not limited to pharmaceutical agents including anti-glaucoma medications, ocular agents, antimicrobial agents (e.g., antibiotic, antiviral, antiparasitic, antifungal agents), anti-inflammatory agents (including steroids or non-steroidal anti-inflammatory), biological agents including hormones, enzymes or enzyme-related components, antibodies or antibody-related components, oligonucleotides (including DNA, RNA, short-interfering RNA, antisense oligonucleotides, and the like), DNA/RNA vectors, viruses (either wild type or genetically modified) or viral vectors, peptides, proteins, enzymes, extracellular matrix components, and live cells configured to produce one or more biological components. The use of any particular drug is not limited to its primary effect or regulatory body-approved treatment indication or manner of use. Drugs also include compounds or other materials that reduce or treat one or more side effects of another drug or therapeutic agent. As many drugs have more than a single mode of action, the listing of any particular drug within any one therapeutic class below is only representative of one possible use of the drug and is not intended to limit the scope of its use with the ophthalmic implant system.
  • As discussed above, the therapeutic agents may be combined with any number of excipients as is known in the art. In addition to the biodegradable polymeric excipients discussed above, other excipients may be used, including, but not limited to, benzyl alcohol, ethylcellulose, methylcellulose, hydroxymethylcellulose, cetyl alcohol, croscarmellose sodium, dextrans, dextrose, fructose, gelatin, glycerin, monoglycerides, diglycerides, kaolin, calcium chloride, lactose, lactose monohydrate, maltodextrins, polysorbates, pregelatinized starch, calcium stearate, magnesium stearate, silicon dioxide, cornstarch, talc, and the like. The one or more excipients may be included in total amounts as low as about 1%, 5%, or 10% and in other embodiments may be included in total amounts as high as 50%, 70% or 90%.
  • Examples of drugs may include various anti-secretory agents; antimitotics and other anti-proliferative agents, including among others, anti-angiogenesis agents such as angiostatin, anecortave acetate, thrombospondin, VEGF receptor tyrosine kinase inhibitors and anti-vascular endothelial growth factor (anti-VEGF) drugs such as ranibizumab (LUCENTIS®) and bevacizumab (AVASTIN®), pegaptanib (MACUGEN®), aflibercept (EYELEA®), sunitinib and sorafenib and any of a variety of known small-molecule and transcription inhibitors having anti-angiogenesis effect; classes of known ophthalmic drugs, including: glaucoma agents, such as adrenergic antagonists, including for example, beta-blocker agents such as atenolol propranolol, metipranolol, betaxolol, carteolol, levobetaxolol, levobunolol and timolol; adrenergic agonists or sympathomimetic agents such as epinephrine, dipivefrin, clonidine, aparclonidine, and brimonidine; parasympathomimetics or cholingeric agonists such as pilocarpine, carbachol, phospholine iodine, and physostigmine, salicylate, acetylcholine chloride, eserine, diisopropyl fluorophosphate, demecarium bromide); muscarinics; carbonic anhydrase inhibitor agents, including topical and/or systemic agents, for example acetozolamide, brinzolamide, dorzolamide and methazolamide, ethoxzolamide, diamox, and dichlorphenamide; mydriatic-cycloplegic agents such as atropine, cyclopentolate, succinylcholine, homatropine, phenylephrine, scopolamine and tropicamide; prostaglandins such as prostaglandin F2 alpha, antiprostaglandins, prostaglandin precursors, or prostaglandin analog agents such as bimatoprost, latanoprost, travoprost and unoprostone.
  • Other examples of drugs may also include anti-inflammatory agents including for example glucocorticoids and corticosteroids such as betamethasone, cortisone, dexamethasone, dexamethasone 21-phosphate, methylprednisolone, prednisolone 21-phosphate, prednisolone acetate, prednisolone, fluroometholone, loteprednol, medrysone, fluocinolone acetonide, triamcinolone acetonide, triamcinolone, triamcinolone acetonide, beclomethasone, budesonide, flunisolide, fluorometholone, fluticasone, hydrocortisone, hydrocortisone acetate, loteprednol, rimexolone and non-steroidal anti-inflammatory agents including, for example, diclofenac, flurbiprofen, ibuprofen, bromfenac, nepafenac, and ketorolac, salicylate, indomethacin, ibuprofen, naxopren, piroxicam and nabumetone; anti-infective or antimicrobial agents such as antibiotics including, for example, tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, cephalexin, oxytetracycline, chloramphenicol, rifampicin, ciprofloxacin, tobramycin, gentamycin, erythromycin, penicillin, sulfonamides, sulfadiazine, sulfacetamide, sulfamethizole, sulfisoxazole, nitrofurazone, sodium propionate, aminoglycosides such as gentamicin and tobramycin; fluoroquinolones such as ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin; bacitracin, erythromycin, fusidic acid, neomycin, polymyxin B, gramicidin, trimethoprim and sulfacetamide; antifungals such as amphotericin B and miconazole; antivirals such as idoxuridine trifluorothymidine, acyclovir, gancyclovir, interferon; antimicotics; immune-modulating agents such as antiallergenics, including, for example, sodium chromoglycate, antazoline, methapyriline, chlorpheniramine, cetrizine, pyrilamine, prophenpyridamine; anti-histamine agents such as azelastine, emedastine and levocabastine; immunological drugs (such as vaccines, immune stimulants, and/or immunosuppressants); MAST cell stabilizer agents such as cromolyn sodium, ketotifen, lodoxamide, nedocrimil, olopatadine and pemirolastciliary body ablative agents, such as gentimicin and cidofovir; and other ophthalmic agents such as verteporfin, proparacaine, tetracaine, cyclosporine and pilocarpine; inhibitors of cell-surface glycoprotein receptors; decongestants such as phenylephrine, naphazoline, tetrahydrazoline; lipids or hypotensive lipids; dopaminergic agonists and/or antagonists such as quinpirole, fenoldopam, and ibopamine; vasospasm inhibitors; vasodilators; antihypertensive agents; angiotensin converting enzyme (ACE) inhibitors; angiotensin-1 receptor antagonists such as olmesartan; microtubule inhibitors; molecular motor (dynein and/or kinesin) inhibitors; actin cytoskeleton regulatory agents such as cyctchalasin, latrunculin, swinholide A, ethacrynic acid, H-7, and Rho-kinase (ROCK) inhibitors; remodeling inhibitors; modulators of the extracellular matrix such as tert-butylhydro-quinolone and AL-3037A; adenosine receptor agonists and/or antagonists such as N-6-cylclophexyladenosine and (R)-phenylisopropyladenosine; serotonin agonists; hormonal agents such as estrogens, estradiol, progestational hormones, progesterone, insulin, calcitonin, parathyroid hormone, peptide and vasopressin hypothalamus releasing factor; growth factor antagonists or growth factors, including, for example, epidermal growth factor, fibroblast growth factor, platelet derived growth factor or antagonists thereof (such as those disclosed in U.S. Pat. No. 7,759,472 or U.S. patent application Ser. Nos. 12/465,051, 12/564,863, or 12/641,270, each of which is incorporated in its entirety by reference herein), transforming growth factor beta, somatotrapin, fibronectin, connective tissue growth factor, bone morphogenic proteins (BMPs); cytokines such as interleukins, CD44, cochlin, and serum amyloids, such as serum amyloid A.
  • Other therapeutic agents may include neuroprotective agents such as lubezole, nimodipine and related compounds, and including blood flow enhancers such as dorzolamide or betaxolol; compounds that promote blood oxygenation such as erythropoeitin; sodium channels blockers; calcium channel blockers such as nilvadipine or lomerizine; glutamate inhibitors such as memantine nitromemantine, riluzole, dextromethorphan or agmatine; acetylcholinsterase inhibitors such as galantamine; hydroxylamines or derivatives thereof, such as the water soluble hydroxylamine derivative OT-440; synaptic modulators such as hydrogen sulfide compounds containing flavonoid glycosides and/or terpenoids, such as Ginkgo biloba; neurotrophic factors such as glial cell-line derived neutrophic factor, brain derived neurotrophic factor; cytokines of the IL-6 family of proteins such as ciliary neurotrophic factor or leukemia inhibitory factor; compounds or factors that affect nitric oxide levels, such as nitric oxide, nitroglycerin, or nitric oxide synthase inhibitors; cannabinoid receptor agonsists such as WIN55-212-2; free radical scavengers such as methoxypolyethylene glycol thioester (MPDTE) or methoxypolyethlene glycol thiol coupled with EDTA methyl triester (MPSEDE); anti-oxidants such as astaxathin, dithiolethione, vitamin E, or metallocorroles (e.g., iron, manganese or gallium corroles); compounds or factors involved in oxygen homeostasis such as neuroglobin or cytoglobin; inhibitors or factors that impact mitochondrial division or fission, such as Mdivi-1 (a selective inhibitor of dynamin related protein 1 (Drp1)); kinase inhibitors or modulators such as the Rho-kinase inhibitor H-1152 or the tyrosine kinase inhibitor AG1478; compounds or factors that affect integrin function, such as the Beta 1-integrin activating antibody HUTS-21; N-acyl-ethanaolamines and their precursors, N-acyl-ethanolamine phospholipids; stimulators of glucagon-like peptide 1 receptors (e.g., glucagon-like peptide 1); polyphenol containing compounds such as resveratrol; chelating compounds; apoptosis-related protease inhibitors; compounds that reduce new protein synthesis; radiotherapeutic agents; photodynamic therapy agents; gene therapy agents; genetic modulators; auto-immune modulators that prevent damage to nerves or portions of nerves (e.g., demyelination) such as glatimir; myelin inhibitors such as anti-NgR Blocking Protein, NgR(310)ecto-Fc; other immune modulators such as FK506 binding proteins (e.g., FKBP51); and dry eye medications such as cyclosporine, cyclosporine A, delmulcents, and sodium hyaluronate.
  • Other therapeutic agents that may be used include: other beta-blocker agents such as acebutolol, atenolol, bisoprolol, carvedilol, asmolol, labetalol, nadolol, penbutolol, and pindolol; other corticosteroidal and non-steroidal anti-inflammatory agents such aspirin, betamethasone, cortisone, diflunisal, etodolac, fenoprofen, fludrocortisone, flurbiprofen, hydrocortisone, ibuprofen, indomethacine, ketoprofen, meclofenamate, mefenamic acid, meloxicam, methylprednisolone, nabumetone, naproxen, oxaprozin, prednisolone, prioxicam, salsalate, sulindac and tolmetin; COX-2 inhibitors like celecoxib, rofecoxib and. Valdecoxib; other immune-modulating agents such as aldesleukin, adalimumab (HUMIRA®), azathioprine, basiliximab, daclizumab, etanercept (ENBREL®), hydroxychloroquine, infliximab (REMICADE®), leflunomide, methotrexate, mycophenolate mofetil, and sulfasalazine; other anti-histamine agents such as loratadine, desloratadine, cetirizine, diphenhydramine, chlorpheniramine, dexchlorpheniramine, clemastine, cyproheptadine, fexofenadine, hydroxyzine and promethazine; other anti-infective agents such as aminoglycosides such as amikacin and streptomycin; anti-fungal agents such as amphotericin B, caspofungin, clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole, terbinafine and nystatin; anti-malarial agents such as chloroquine, atovaquone, mefloquine, primaquine, quinidine and quinine; anti-mycobacterium agents such as ethambutol, isoniazid, pyrazinamide, rifampin and rifabutin; anti-parasitic agents such as albendazole, mebendazole, thiobendazole, metronidazole, pyrantel, atovaquone, iodoquinaol, ivermectin, paromycin, praziquantel, and trimatrexate; other anti-viral agents, including anti-CMV or anti-herpetic agents such as acyclovir, cidofovir, famciclovir, gangciclovir, valacyclovir, valganciclovir, vidarabine, trifluridine and foscarnet; protease inhibitors such as ritonavir, saquinavir, lopinavir, indinavir, atazanavir, amprenavir and nelfinavir; nucleotide/nucleoside/non-nucleoside reverse transcriptase inhibitors such as abacavir, ddI, 3TC, d4T, ddC, tenofovir and emtricitabine, delavirdine, efavirenz and nevirapine; other anti-viral agents such as interferons, ribavirin and trifluridiene; other anti-bacterial agents, including cabapenems like ertapenem, imipenem and meropenem; cephalosporins such as cefadroxil, cefazolin, cefdinir, cefditoren, cephalexin, cefaclor, cefepime, cefoperazone, cefotaxime, cefotetan, cefoxitin, cefpodoxime, cefprozil, ceftaxidime, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime and loracarbef; other macrolides and ketolides such as azithromycin, clarithromycin, dirithromycin and telithromycin; penicillins (with and without clavulanate) including amoxicillin, ampicillin, pivampicillin, dicloxacillin, nafcillin, oxacillin, piperacillin, and ticarcillin; tetracyclines such as doxycycline, minocycline and tetracycline; other anti-bacterials such as aztreonam, chloramphenicol, clindamycin, linezolid, nitrofurantoin and vancomycin; alpha blocker agents such as doxazosin, prazosin and terazosin; calcium-channel blockers such as amlodipine, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nisoldipine and verapamil; other anti-hypertensive agents such as clonidine, diazoxide, fenoldopan, hydralazine, minoxidil, nitroprus side, phenoxybenzamine, epoprostenol, tolazoline, treprostinil and nitrate-based agents; anti-coagulant agents, including heparins and heparinoids such as heparin, dalteparin, enoxaparin, tinzaparin and fondaparinux; other anti-coagulant agents such as hirudin, aprotinin, argatroban, bivalirudin, desirudin, lepirudin, warfarin and ximelagatran; anti-platelet agents such as abciximab, clopidogrel, dipyridamole, optifibatide, ticlopidine and tirofiban; prostaglandin PDE-5 inhibitors and other prostaglandin agents such as alprostadil, carboprost, sildenafil, tadalafil and vardenafil; thrombin inhibitors; antithrombogenic agents; anti-platelet aggregating agents; thrombolytic agents and/or fibrinolytic agents such as alteplase, anistreplase, reteplase, streptokinase, tenecteplase and urokinase; anti-proliferative agents such as sirolimus, tacrolimus, everolimus, zotarolimus, paclitaxel and mycophenolic acid; hormonal-related agents including levothyroxine, fluoxymestrone, methyltestosterone, nandrolone, oxandrolone, testosterone, estradiol, estrone, estropipate, clomiphene, gonadotropins, hydroxyprogesterone, levonorgestrel, medroxyprogesterone, megestrol, mifepristone, norethindrone, oxytocin, progesterone, raloxifene and tamoxifen; anti-neoplastic agents, including alkylating agents such as carmustine lomustine, melphalan, cisplatin, fluorouracil3, and procarbazine antibiotic-like agents such as bleomycin, daunorubicin, doxorubicin, idarubicin, mitomycin and plicamycin; anti proliferative agents (such as 1,3-cis retinoic acid, 5-fluorouracil, taxol, rapamycin, mitomycin C and cisplatin); antimetabolite agents such as cytarabine, fludarabine, hydroxyurea, mercaptopurine and 5-fluorouracil (5-FU); immune modulating agents such as aldesleukin, imatinib, rituximab and tositumomab; mitotic inhibitors docetaxel, etoposide, vinblastine and vincristine; radioactive agents such as strontium-89; and other anti-neoplastic agents such as irinotecan, topotecan and mitotane.
  • While certain embodiments of the disclosure have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods, systems, and devices described herein may be embodied in a variety of other forms. For example, embodiments of one illustrated or described implant may be combined with embodiments of another illustrated or described shunt. Moreover, the implants described above may be utilized for other purposes. For example, the implants may be used to drain fluid from the anterior chamber to other locations of the eye or outside the eye. Furthermore, various omissions, substitutions and changes in the form of the methods, systems, and devices described herein may be made without departing from the spirit of the disclosure.

Claims (21)

1. (canceled)
2. A punctal implant for insertion into a punctum of the eye of a subject, the implant comprising:
an outer shell comprising:
a first end comprising a plurality of holes or fenestrations,
a closed second end;
an interior lumen extending from the first end to the closed second end; and
a first drug and a second drug within the interior lumen, wherein the first and second drugs are individually shaped into tablets, wherein the tablets are sized and physically arranged within the interior lumen to allow the first drug to be closer to the region of drug release and initially elute prior to an initial elution of the second drug, and
wherein the first drug and the second drug elute from the lumen by passing through the plurality of holes or fenestrations.
3. The implant of claim 2, further comprising at least one retention feature configured to anchor the implant in the punctum.
4. The implant of claim 3, wherein the at least one retention feature is non-occlusive.
5. The implant of claim 2, further comprising an asymmetrical flange having a length extending in a first direction that exceeds a width extending in a second direction.
6. The implant of claim 5, wherein the asymmetrical flange is configured to rest on the surface of the eyelid when the implant is inserted into the punctum.
7. The implant of claim 2, wherein the first drug is shaped into a first tablet and the second drug is shaped into a second tablet, the first tablet positioned atop the second tablet.
8. The implant of claim 2, wherein each of the plurality of holes or fenestrations have a diameter that is less than a diameter of the lumen.
9. The implant of claim 2, wherein the outer shell comprises a radial bulge in a distal region in order to anchor the implant in the punctum.
10. The implant of claim 9, wherein a width of the radial bulge gradually increases to a maximum width and gradually decreases from the maximum width.
11. The implant of claim 2, wherein the outer shell has an outer diameter that gradually increases to a maximum outer diameter in a distal region and wherein the outer diameter gradually decreases between the maximum outer diameter and the closed second end.
12. A punctal implant for insertion into a punctum of the eye of a subject, the implant comprising:
an outer shell comprising:
a first end comprising a plurality of holes or fenestrations; and
an interior lumen extending from the first end to a second end; and
a first tablet comprising a first drug and a second tablet comprising a second drug positioned within the interior lumen, the first tablet positioned atop the second tablet, and
wherein the first and second drug elute from the lumen by passing through the plurality of holes or fenestrations.
13. The implant of claim 12, further comprising at least one retention feature configured to anchor the implant in the punctum.
14. The implant of claim 13, wherein the at least one retention feature is non-occlusive.
15. The implant of claim 12, further comprising an asymmetrical flange having a length extending in a first direction that exceeds a width extending in a second direction.
16. The implant of claim 15, wherein the asymmetrical flange is configured to rest on the surface of the eyelid when the implant is inserted into the punctum.
17. The implant of claim 12, wherein each of the plurality of holes or fenestrations have a diameter that is less than a diameter of the lumen.
18. The implant of claim 12, wherein the second end is a closed second end.
19. The implant of claim 12, wherein the outer shell comprises a radial bulge in a distal region in order to anchor the implant in the punctum.
20. The implant of claim 19, wherein a width of the radial bulge gradually increases to a maximum width and gradually decreases from the maximum width.
21. The implant of claim 20, wherein the outer shell has an outer diameter that gradually increases to a maximum outer diameter in a distal region and wherein the outer diameter gradually decreases between the maximum outer diameter and the closed second end.
US18/158,705 2015-09-25 2023-01-24 Punctal implants with controlled drug delivery features and methods of using same Pending US20230293344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/158,705 US20230293344A1 (en) 2015-09-25 2023-01-24 Punctal implants with controlled drug delivery features and methods of using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562233259P 2015-09-25 2015-09-25
PCT/US2016/053570 WO2017053885A1 (en) 2015-09-25 2016-09-23 Punctal implants with controlled drug delivery features and methods of using same
US201815762969A 2018-03-23 2018-03-23
US18/158,705 US20230293344A1 (en) 2015-09-25 2023-01-24 Punctal implants with controlled drug delivery features and methods of using same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/762,969 Continuation US11564833B2 (en) 2015-09-25 2016-09-23 Punctal implants with controlled drug delivery features and methods of using same
PCT/US2016/053570 Continuation WO2017053885A1 (en) 2015-09-25 2016-09-23 Punctal implants with controlled drug delivery features and methods of using same

Publications (1)

Publication Number Publication Date
US20230293344A1 true US20230293344A1 (en) 2023-09-21

Family

ID=57184782

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/762,969 Active 2037-09-24 US11564833B2 (en) 2015-09-25 2016-09-23 Punctal implants with controlled drug delivery features and methods of using same
US18/158,705 Pending US20230293344A1 (en) 2015-09-25 2023-01-24 Punctal implants with controlled drug delivery features and methods of using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/762,969 Active 2037-09-24 US11564833B2 (en) 2015-09-25 2016-09-23 Punctal implants with controlled drug delivery features and methods of using same

Country Status (2)

Country Link
US (2) US11564833B2 (en)
WO (1) WO2017053885A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
JP6465490B2 (en) 2012-03-26 2019-02-06 グローコス コーポレーション Implant delivery device
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
AU2015266850B2 (en) 2014-05-29 2019-12-05 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
WO2016154066A2 (en) 2015-03-20 2016-09-29 Glaukos Corporation Gonioscopic devices
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
WO2017053885A1 (en) 2015-09-25 2017-03-30 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
AU2017252294B2 (en) 2016-04-20 2021-12-02 Dose Medical Corporation Bioresorbable ocular drug delivery device
US10674906B2 (en) 2017-02-24 2020-06-09 Glaukos Corporation Gonioscopes
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
CN113893085A (en) 2017-10-06 2022-01-07 格劳科斯公司 Systems and methods for delivering multiple ocular implants
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
CN110711075A (en) * 2018-07-11 2020-01-21 吴坚 Lacrimal duct embolism
US11207267B2 (en) 2019-10-02 2021-12-28 Segal Innovations LLC Bio-adhesive dissolving compounds and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334137A (en) * 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US20090104248A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. -Qpdi Lacrimal implants and related methods
US20090306608A1 (en) * 2008-05-07 2009-12-10 Zhigang Li Ophthalmic devices for the controlled release of active agents
US20120059338A1 (en) * 2010-09-08 2012-03-08 Beeley Nathan R F Punctal plug containing drug formulation
US20120078362A1 (en) * 2009-05-18 2012-03-29 Dose Medical Corporation Drug eluting ocular implant

Family Cites Families (596)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US663670A (en) 1900-07-30 1900-12-11 Marion W Wiswall Apparel dusting-cap.
US3416530A (en) 1966-03-02 1968-12-17 Richard A. Ness Eyeball medication dispensing tablet
US3710795A (en) 1970-09-29 1973-01-16 Alza Corp Drug-delivery device with stretched, rate-controlling membrane
US4034756A (en) 1971-01-13 1977-07-12 Alza Corporation Osmotically driven fluid dispenser
US4450150A (en) 1973-05-17 1984-05-22 Arthur D. Little, Inc. Biodegradable, implantable drug delivery depots, and method for preparing and using the same
JPS5323011B2 (en) 1973-09-12 1978-07-12
US3961628A (en) 1974-04-10 1976-06-08 Alza Corporation Ocular drug dispensing system
US3949750A (en) 1974-10-07 1976-04-13 Freeman Jerre M Punctum plug and method for treating keratoconjunctivitis sicca (dry eye) and other ophthalmic aliments using same
US4096238A (en) 1974-12-23 1978-06-20 Alza Corporation Method for administering drug to the gastrointestinal tract
US4207890A (en) 1977-01-04 1980-06-17 Mcneilab, Inc. Drug-dispensing device and method
US4113088A (en) 1977-06-06 1978-09-12 Binkhorst Richard D Sterile package
US4328803B1 (en) 1980-10-20 1994-01-11 Opthalmic Systems, Inc. Opthalmological procedures
DK90883A (en) 1982-03-18 1983-09-19 Merck & Co Inc CONTAINER FOR OSMOTIC RELEASE OF A SUBSTANCE OR MIXTURE
US4521210A (en) 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4955881A (en) 1985-08-16 1990-09-11 Alza Corporation Ruminant dispensing device
US4883864A (en) 1985-09-06 1989-11-28 Minnesota Mining And Manufacturing Company Modified collagen compound and method of preparation
GB8603099D0 (en) 1986-02-07 1986-03-12 Blass K G Gastrointestinal module
US4743248A (en) 1986-08-11 1988-05-10 Alza Corporation Dosage form for delivering acid sensitive beneficial agent
US4863457A (en) 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4736836A (en) 1987-02-02 1988-04-12 Alongi Salvatore A Intraocular lens package
US4846793A (en) 1987-03-18 1989-07-11 Endocon, Inc. Injector for implanting multiple pellet medicaments
US4997652A (en) 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
US4853224A (en) 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
CA1334168C (en) 1988-04-26 1995-01-31 Louis M. De Santis Antiglaucoma compositions containing combinations of .alpha.-2 agonists and .beta. blockers
US5202128A (en) 1989-01-06 1993-04-13 F. H. Faulding & Co. Limited Sustained release pharmaceutical composition
FR2644058B1 (en) 1989-03-10 1994-06-03 France Chirurgie Instr MEATIC PLUG FOR LACRYMAL PATHOLOGY
US5098443A (en) 1989-03-23 1992-03-24 University Of Miami Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents
US5164188A (en) 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5324280A (en) 1990-04-02 1994-06-28 Alza Corporation Osmotic dosage system for delivering a formulation comprising liquid carrier and drug
US5017381A (en) * 1990-05-02 1991-05-21 Alza Corporation Multi-unit pulsatile delivery system
US5128145A (en) 1990-06-13 1992-07-07 Alza Corporation Dosage form for Parkinson's disease, spasticity and muscle spasms
US5378475A (en) 1991-02-21 1995-01-03 University Of Kentucky Research Foundation Sustained release drug delivery devices
US6007511A (en) 1991-05-08 1999-12-28 Prywes; Arnold S. Shunt valve and therapeutic delivery system for treatment of glaucoma and methods and apparatus for its installation
CA2071137A1 (en) 1991-07-10 1993-01-11 Clarence C. Lee Composition and method for revitalizing scar tissue
DK0601055T3 (en) 1991-08-16 2000-10-02 Joseph C Salamone Drug coated refractory ocular anterior chamber implant
US5464450A (en) 1991-10-04 1995-11-07 Scimed Lifesystems Inc. Biodegradable drug delivery vascular stent
US5318780A (en) 1991-10-30 1994-06-07 Mediventures Inc. Medical uses of in situ formed gels
IL100112A (en) 1991-11-21 1996-01-31 Yeda Res & Dev Microdelivery device for enhanced drug administration to the eye
US5384333A (en) 1992-03-17 1995-01-24 University Of Miami Biodegradable injectable drug delivery polymer
AU4282793A (en) 1992-04-10 1993-11-18 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University A microneedle for injection of ocular blood vessels
US5428123A (en) 1992-04-24 1995-06-27 The Polymer Technology Group Copolymers and non-porous, semi-permeable membrane thereof and its use for permeating molecules of predetermined molecular weight range
WO1993024121A1 (en) 1992-05-22 1993-12-09 Senju Pharmaceutical Co., Ltd. Remedy for glaucoma
US5629008A (en) 1992-06-02 1997-05-13 C.R. Bard, Inc. Method and device for long-term delivery of drugs
US5767079A (en) 1992-07-08 1998-06-16 Celtrix Pharmaceuticals, Inc. Method of treating ophthalmic disorders using TGF -β
WO1994002081A1 (en) 1992-07-16 1994-02-03 Wong Vernon G Eye implant suitable for relief of glaucoma
US5709854A (en) 1993-04-30 1998-01-20 Massachusetts Institute Of Technology Tissue formation by injecting a cell-polymeric solution that gels in vivo
DK0797988T3 (en) 1993-07-19 2009-05-11 Univ British Columbia Anti-angiogenic compositions and methods for their use
US20030203976A1 (en) 1993-07-19 2003-10-30 William L. Hunter Anti-angiogenic compositions and methods of use
US5731294A (en) 1993-07-27 1998-03-24 Hybridon, Inc. Inhibition of neovasularization using VEGF-specific oligonucleotides
US5443505A (en) 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5500465A (en) 1994-03-10 1996-03-19 Board Of Trustees Operating Michigan State University Biodegradable multi-component polymeric materials based on unmodified starch-like polysaccharides
US5516522A (en) 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US6551618B2 (en) 1994-03-15 2003-04-22 University Of Birmingham Compositions and methods for delivery of agents for neuronal regeneration and survival
GB9405304D0 (en) 1994-03-16 1994-04-27 Scherer Ltd R P Delivery systems for hydrophobic drugs
JPH09511507A (en) 1994-04-04 1997-11-18 フリーマン,ウイリアム・アール Use of phosphonyl methoxyalkyl nucleosides to treat elevated intraocular pressure
US5466233A (en) 1994-04-25 1995-11-14 Escalon Ophthalmics, Inc. Tack for intraocular drug delivery and method for inserting and removing same
AU2467395A (en) 1994-05-04 1995-11-29 Board Of Trustees Of The University Of Arkansas, The Novel ophthalmologic uses of protein c
US5599534A (en) 1994-08-09 1997-02-04 University Of Nebraska Reversible gel-forming composition for sustained delivery of bio-affecting substances, and method of use
US5665114A (en) 1994-08-12 1997-09-09 Meadox Medicals, Inc. Tubular expanded polytetrafluoroethylene implantable prostheses
SE9402816D0 (en) 1994-08-24 1994-08-24 Pharmacia Ab Method and meams for drug administration
GB9417399D0 (en) 1994-08-30 1994-10-19 Scherer Corp R P Ocular treatment device
CA2179304C (en) 1994-10-17 2008-02-05 Keiji Igaki Stent for liberating drug
US6063116A (en) 1994-10-26 2000-05-16 Medarex, Inc. Modulation of cell proliferation and wound healing
US6063396A (en) 1994-10-26 2000-05-16 Houston Biotechnology Incorporated Methods and compositions for the modulation of cell proliferation and wound healing
US5602143A (en) 1994-12-08 1997-02-11 Allergan Method for reducing intraocular pressure in the mammalian eye by administration of guanylate cyclase inhibitors
US6228873B1 (en) 1994-12-09 2001-05-08 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US5725493A (en) 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5891084A (en) 1994-12-27 1999-04-06 Lee; Vincent W. Multiple chamber catheter delivery system
WO1996020742A1 (en) 1995-01-06 1996-07-11 Wong Vernon G Improve eye implant for relief of glaucoma
AU723047B2 (en) 1995-02-10 2000-08-17 University Of Toronto Innovations Foundation, The Deprenyl compounds for treatment of glaucoma
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US5869079A (en) 1995-06-02 1999-02-09 Oculex Pharmaceuticals, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US6369116B1 (en) 1995-06-02 2002-04-09 Oculex Pharmaceuticals, Inc. Composition and method for treating glaucoma
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5773019A (en) 1995-09-27 1998-06-30 The University Of Kentucky Research Foundation Implantable controlled release device to deliver drugs directly to an internal portion of the body
US5547993A (en) 1995-10-24 1996-08-20 Mitsubishi Chemical Corporation Therapeutic agent for glaucoma
AU1201297A (en) 1995-12-21 1997-07-17 Pharmacia & Upjohn Ab Ophthalmic treatment
US5798380A (en) 1996-02-21 1998-08-25 Wisconsin Alumni Research Foundation Cytoskeletal active agents for glaucoma therapy
US6299895B1 (en) 1997-03-24 2001-10-09 Neurotech S.A. Device and method for treating ophthalmic diseases
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US6120460A (en) 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
AUPO251096A0 (en) 1996-09-23 1996-10-17 Cardiac Crc Nominees Pty Limited Polysiloxane-containing polyurethane elastomeric compositions
US5925342A (en) 1996-11-13 1999-07-20 Allergan Method for reducing intraocular pressure in the mammalian eye by administration of potassium channel blockers
US20020111603A1 (en) 1996-12-02 2002-08-15 Societe De Conseils De Recherches Et D'application Device for local administration of solid or semi-solid formulations and delayed-release formulations for proposal parental administration and preparation process
GB9700390D0 (en) 1997-01-10 1997-02-26 Biocompatibles Ltd Device for use in the eye
FR2759577B1 (en) 1997-02-17 1999-08-06 Corneal Ind DEEP SCLERECTOMY IMPLANT
US5893837A (en) 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US6059812A (en) 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US6306426B1 (en) 1997-08-11 2001-10-23 Allergan Sales, Inc. Implant device with a retinoid for improved biocompatibility
US5902598A (en) 1997-08-28 1999-05-11 Control Delivery Systems, Inc. Sustained release drug delivery devices
US6004302A (en) 1997-08-28 1999-12-21 Brierley; Lawrence A. Cannula
US6274138B1 (en) 1997-09-03 2001-08-14 Incyte Genomics, Inc. Human mitochondrial malate dehydrogenase
US7985415B2 (en) 1997-09-10 2011-07-26 Rutgers, The State University Of New Jersey Medical devices employing novel polymers
US20020164374A1 (en) 1997-10-29 2002-11-07 John Jackson Polymeric systems for drug delivery and uses thereof
US6159458A (en) 1997-11-04 2000-12-12 Insite Vision Sustained release ophthalmic compositions containing water soluble medicaments
US6203513B1 (en) 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
US8313454B2 (en) 1997-11-20 2012-11-20 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US6682500B2 (en) 1998-01-29 2004-01-27 David Soltanpour Synthetic muscle based diaphragm pump apparatuses
US6589198B1 (en) 1998-01-29 2003-07-08 David Soltanpour Implantable micro-pump assembly
US7780623B2 (en) 1998-01-29 2010-08-24 Soltanpour David P Implantable pump apparatuses
US6290684B1 (en) * 1998-03-02 2001-09-18 Herrick Family Limited Partnership Punctum plug having a collapsible expanded section and distal tip extending substantially perpendicular thereto and method of inserting same
US6196993B1 (en) * 1998-04-20 2001-03-06 Eyelab Group, Llc Ophthalmic insert and method for sustained release of medication to the eye
WO1999055321A1 (en) 1998-04-24 1999-11-04 Mitokor Compounds and methods for treating mitochondria-associated diseases
US5997498A (en) 1998-05-07 1999-12-07 Johns Hopkins University Inline air humidifier, a system for humidifying air and methods related thereto
TW586944B (en) 1998-05-29 2004-05-11 Sumitomo Pharma Controlled release agent having a multi-layer structure
US6231853B1 (en) 1998-06-01 2001-05-15 Incyte Pharmaceuticals, Inc. Human glutathione peroxidase-6
US6503231B1 (en) 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US6378526B1 (en) 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
KR100274842B1 (en) 1998-10-01 2001-03-02 김효근 Sustained-release Drug Release System of Retinoic Acid Using Microspheres
US6454787B1 (en) 1998-12-11 2002-09-24 C. R. Bard, Inc. Collagen hemostatic foam
US6348042B1 (en) 1999-02-02 2002-02-19 W. Lee Warren, Jr. Bioactive shunt
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6477410B1 (en) 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
AU767526B2 (en) 1999-04-26 2003-11-13 Gmp Vision Solutions, Inc. Trabeculotomy device and method for treating glaucoma
US20050119601A9 (en) 1999-04-26 2005-06-02 Lynch Mary G. Shunt device and method for treating glaucoma
US6558342B1 (en) 1999-06-02 2003-05-06 Optonol Ltd. Flow control device, introducer and method of implanting
US6306120B1 (en) 1999-06-07 2001-10-23 Ben Gee Tan Applicator and method for delivery of mitomycin to eye tissues during glaucoma filtering surgery
US20080277007A1 (en) 1999-06-28 2008-11-13 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8550119B2 (en) 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7601270B1 (en) 1999-06-28 2009-10-13 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
AU6517900A (en) 1999-08-03 2001-02-19 Smith & Nephew, Inc. Controlled release implantable devices
EP1206254A1 (en) 1999-08-06 2002-05-22 The Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
US7033603B2 (en) 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
ATE283013T1 (en) 1999-10-21 2004-12-15 Alcon Inc MEDICATION DELIVERY DEVICE
CA2383572C (en) 1999-10-21 2007-12-11 Alcon Universal Ltd. Sub-tenon drug delivery
US7943162B2 (en) 1999-10-21 2011-05-17 Alcon, Inc. Drug delivery device
US6416777B1 (en) 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6436091B1 (en) 1999-11-16 2002-08-20 Microsolutions, Inc. Methods and implantable devices and systems for long term delivery of a pharmaceutical agent
ATE303757T1 (en) 1999-12-10 2005-09-15 Iscience Corp TREATMENT OF EYE DISEASES
NZ519632A (en) 1999-12-16 2004-03-26 Alza Corp Dosage forms that include a barrier layer containing a material that allows the layer to remain intact during laser formation of the orifice(s)
RU2262331C2 (en) 2000-01-12 2005-10-20 Бектон, Дикинсон Энд Компани Shunt, implant, system and method for reducing intraocular pressure and method for producing corneal implants
US20050119737A1 (en) 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
US6660870B1 (en) 2000-03-17 2003-12-09 Alcon, Inc. 2-acylaminobenzimidazole derivatives for treating glaucoma
US20070031473A1 (en) 2005-08-05 2007-02-08 Peyman Gholam A Drug delivery system and method
US6998137B2 (en) 2000-04-07 2006-02-14 Macromed, Inc. Proteins deposited onto sparingly soluble biocompatible particles for controlled protein release into a biological environment from a polymer matrix
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US20040111050A1 (en) 2000-04-14 2004-06-10 Gregory Smedley Implantable ocular pump to reduce intraocular pressure
US20050277864A1 (en) 2000-04-14 2005-12-15 David Haffner Injectable gel implant for glaucoma treatment
US20050049578A1 (en) 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US20020143284A1 (en) 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment
US20030060752A1 (en) 2000-04-14 2003-03-27 Olav Bergheim Glaucoma device and methods thereof
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US20040175410A1 (en) 2000-04-26 2004-09-09 Control Delivery Systems, Inc. Sustained release device and method for ocular delivery of carbonic anhydrase inhibitors
US20040115268A1 (en) 2000-04-26 2004-06-17 Control Delivery Systems, Inc. Systemic delivery of antiviral agents
US6375972B1 (en) 2000-04-26 2002-04-23 Control Delivery Systems, Inc. Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
US20040208910A1 (en) 2000-04-26 2004-10-21 Control Delivery Systems, Inc. Sustained release device and method for ocular delivery of adrenergic agents
CA2408323C (en) 2000-05-08 2012-06-12 The University Of British Columbia Drug delivery systems for photodynamic therapy
AU2001263324A1 (en) 2000-05-19 2001-12-03 Michael S. Berlin Laser delivery system and method of use for the eye
WO2001097727A1 (en) 2000-06-19 2001-12-27 Glaukos Corporation Stented trabecular shunt and methods thereof
KR100355563B1 (en) 2000-06-23 2002-10-11 주식회사 바이오메드랩 Biodegradable porous polymer scaffolds by using effervescent mixture for tissue engineering and their preparation methods
US6692759B1 (en) 2000-06-28 2004-02-17 The Regents Of The University Of California Methods for preparing and using implantable substance delivery devices
US6726918B1 (en) 2000-07-05 2004-04-27 Oculex Pharmaceuticals, Inc. Methods for treating inflammation-mediated conditions of the eye
EP3167872B1 (en) 2000-07-05 2020-10-14 Allergan, Inc. Methods for treating inflammation-mediated conditions of the eye
US6629992B2 (en) 2000-08-04 2003-10-07 Advanced Cardiovascular Systems, Inc. Sheath for self-expanding stent
AU2001281304B2 (en) 2000-08-15 2006-05-25 Surmodics, Inc. Medicament incorporation matrix
US6730056B1 (en) 2000-09-21 2004-05-04 Motorola, Inc. Eye implant for treating glaucoma and method for manufacturing same
AU2001261262A1 (en) 2000-11-01 2002-05-15 Glaukos Corporation Glaucoma treatment device
ES2250504T3 (en) 2000-11-29 2006-04-16 Allergan Inc. PREVENTION OF REJECTION OF GRAFT IN THE EYE.
EP1621219A3 (en) 2000-11-29 2006-03-22 Allergan, Inc. Intraocular implants for preventing transplant rejection in the eye
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
WO2002056863A2 (en) 2000-12-29 2002-07-25 Bausch & Lomb Incorporated Sustained release drug delivery devices
WO2002053129A1 (en) 2001-01-03 2002-07-11 Bausch & Lomb Incorporated Sustained release drug delivery devices with prefabricated permeable plugs
DE60130928T2 (en) 2001-01-03 2008-07-17 Bausch & Lomb Inc. DEVICE FOR DELAYED ACTIVE INGREDIENT RELIEF WITH COATED MEDICATION CORE
US6756058B2 (en) 2001-01-03 2004-06-29 Bausch & Lomb Incorporated Sustained release drug delivery devices with multiple agents
JP4657577B2 (en) 2001-01-09 2011-03-23 マイクロチップス・インコーポレーテッド Flexible microchip device for ocular and other applications
JP2004520900A (en) 2001-01-26 2004-07-15 ボシュ・アンド・ロム・インコーポレイテッド Improved manufacturing method of sustained release drug delivery device
US6758837B2 (en) 2001-02-08 2004-07-06 Pharmacia Ab Liquid delivery device and method of use thereof
US6571125B2 (en) 2001-02-12 2003-05-27 Medtronic, Inc. Drug delivery device
US8060211B2 (en) 2001-02-13 2011-11-15 Second Sight Medical Products, Inc. Method of reducing retinal stress caused by an implantable retinal electrode array
US7181287B2 (en) 2001-02-13 2007-02-20 Second Sight Medical Products, Inc. Implantable drug delivery device
US6989007B2 (en) 2001-02-21 2006-01-24 Solx, Inc. Devices and techniques for treating glaucoma
US20040018238A1 (en) 2001-02-26 2004-01-29 Shukla Atul J Biodegradable vehicles and delivery systems of biolgically active substances
US20050278014A9 (en) 2001-03-07 2005-12-15 Wolfgang Daum Stent and method for drug delivery from stents
US6713081B2 (en) 2001-03-15 2004-03-30 The United States Of America As Represented By The Department Of Health And Human Services Ocular therapeutic agent delivery devices and methods for making and using such devices
US20020133168A1 (en) 2001-03-16 2002-09-19 Smedley Gregory T. Applicator and methods for placing a trabecular shunt for glaucoma treatment
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US7488303B1 (en) 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
US6666841B2 (en) 2001-05-02 2003-12-23 Glaukos Corporation Bifurcatable trabecular shunt for glaucoma treatment
EP1418868B1 (en) 2001-04-07 2008-03-26 Glaukos Corporation Glaucoma stent for glaucoma treatment
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
US20040022853A1 (en) 2001-04-26 2004-02-05 Control Delivery Systems, Inc. Polymer-based, sustained release drug delivery system
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
US6533769B2 (en) 2001-05-03 2003-03-18 Holmen Joergen Method for use in cataract surgery
AU2002305400A1 (en) 2001-05-03 2002-11-18 Glaukos Corporation Medical device and methods of use for glaucoma treatment
JP2004536631A (en) 2001-05-03 2004-12-09 マサチューセッツ・アイ・アンド・イア・インファーマリー Implantable drug delivery device and use thereof
US20020176844A1 (en) 2001-05-11 2002-11-28 Ng Steven Y. Bioerodible polyorthoesters containing hydrogen bonding groups
EP1404297B1 (en) 2001-06-12 2011-04-27 The Johns Hopkins University School Of Medicine Reservoir device for intraocular drug delivery
US20030010638A1 (en) 2001-06-15 2003-01-16 Hansford Derek J. Nanopump devices and methods
US7592016B2 (en) 2001-06-28 2009-09-22 Regents Of The University Of California Methods for preparing and using implantable substance delivery devices
AU2002319606B2 (en) 2001-07-23 2006-09-14 Alcon, Inc. Ophthalmic drug delivery device
EP1409065B1 (en) 2001-07-23 2007-01-17 Alcon, Inc. Ophthalmic drug delivery device
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US7749528B2 (en) 2001-08-29 2010-07-06 Ricardo Azevedo Pontes De Carvalho Implantable and sealable medical device for unidirectional delivery of therapeutic agents to tissues
RU2311892C2 (en) 2001-08-29 2007-12-10 КАРВАЛХО Рикардо А. П. ДЕ Implantable sealable system for one-way delivery of therapeutic preparations to tissues
IN2014DN10834A (en) 2001-09-17 2015-09-04 Psivida Inc
US20030060873A1 (en) 2001-09-19 2003-03-27 Nanomedical Technologies, Inc. Metallic structures incorporating bioactive materials and methods for creating the same
WO2003026733A2 (en) 2001-09-28 2003-04-03 Biovalve Technologies, Inc. Microneedle with membrane
FR2830766B1 (en) 2001-10-12 2004-03-12 Optis France Sa DEVICE   OF   ISSUE   OF   DRUGS   THROUGH   IONTOPHORESIS   TRANSPALPEBRALE
US20030097151A1 (en) 2001-10-25 2003-05-22 Smedley Gregory T. Apparatus and mitochondrial treatment for glaucoma
US8425892B2 (en) 2001-10-29 2013-04-23 Columbia Laboratories, Inc. Extended, controlled-release pharmaceutical compositions using charged polymers
US20030119000A1 (en) 2001-11-05 2003-06-26 Jon Polansky Methods to screen and treat individuals with glaucoma or the propensity to develop glaucoma
US20080039769A1 (en) 2001-11-07 2008-02-14 Minu Llc Method of medical treatment using controlled heat delivery
US7163543B2 (en) 2001-11-08 2007-01-16 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US6802829B2 (en) 2001-11-16 2004-10-12 Infinite Vision, Llc Spray device
JP4217624B2 (en) 2001-11-22 2009-02-04 アントン ヘフリガー,エーデュアルト Apparatus and method for performing ophthalmic surgery
US7348055B2 (en) 2001-12-21 2008-03-25 Surmodics, Inc. Reagent and method for providing coatings on surfaces
US20060034929A1 (en) 2001-12-27 2006-02-16 Brubaker Michael J Sustained release drug delivery devices with prefabricated permeable plugs
CA2473355C (en) 2002-01-18 2012-01-03 Michael E. Snyder Sustained release ophthalmological device and method of making and using the same
JP2003210513A (en) 2002-01-23 2003-07-29 Nidek Co Ltd Ophthalmic treatment equipment
US6939298B2 (en) 2002-02-28 2005-09-06 Gmp Vision Solutions, Inc Device and method for monitoring aqueous flow within the eye
WO2003074735A1 (en) 2002-03-01 2003-09-12 Flammer, Josef Diagnostic method for glaucoma
US20060200113A1 (en) 2002-03-07 2006-09-07 David Haffner Liquid jet for glaucoma treatment
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US20060100408A1 (en) 2002-03-11 2006-05-11 Powell P M Method for forming contact lenses comprising therapeutic agents
MXPA04008903A (en) 2002-03-11 2004-11-26 Alcon Inc Implantable drug delivery system.
TW200304385A (en) 2002-03-13 2003-10-01 Novartis Ag Materials containing multiple layers of vesicles
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20030229303A1 (en) 2002-03-22 2003-12-11 Haffner David S. Expandable glaucoma implant and methods of use
JP4026745B2 (en) 2002-03-26 2007-12-26 財団法人大阪産業振興機構 Medical system and manufacturing method thereof
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US20040147870A1 (en) 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
US20030195438A1 (en) 2002-04-12 2003-10-16 Petillo Phillip J. Method and apparatus to treat glaucoma
US20040024345A1 (en) 2002-04-19 2004-02-05 Morteza Gharib Glaucoma implant with valveless flow bias
AU2003217531A1 (en) 2002-05-02 2003-11-17 Massachusetts Eye And Ear Infirmary Ocular drug delivery systems and use thereof
US8871241B2 (en) 2002-05-07 2014-10-28 Psivida Us, Inc. Injectable sustained release delivery devices
WO2003103549A1 (en) 2002-06-05 2003-12-18 University Of Florida Ophthalmic drug delivery system
US8273366B2 (en) 2002-06-05 2012-09-25 University Of Florida Research Foundation, Incorporated Ophthalmic drug delivery system
US6945952B2 (en) 2002-06-25 2005-09-20 Theraject, Inc. Solid solution perforator for drug delivery and other applications
CN100355455C (en) 2002-07-15 2007-12-19 爱尔康公司 Non-polymeric lipophilic pharmaceutical implant compositions for intraocular use
US20040013702A1 (en) 2002-07-16 2004-01-22 Glover Eugene G. Implantable devices for the controlled release of cytotoxic agents
CN100591372C (en) 2002-07-19 2010-02-24 耶鲁大学 Uveoscleral drainage device
ATE419027T1 (en) 2002-08-08 2009-01-15 Glaukos Corp IMPLANTABLE EYE PUMP TO REDUCE INTRA EYE PRESSURE
US7192412B1 (en) 2002-09-14 2007-03-20 Glaukos Corporation Targeted stent placement and multi-stent therapy
EP1539066B1 (en) 2002-09-17 2012-11-07 Iscience Surgical Corporation Apparatus surgical bypass of aqueous humor
US20050261641A1 (en) 2002-09-26 2005-11-24 Warchol Mark P Method for ophthalmic administration of medicament
US7615010B1 (en) 2002-10-03 2009-11-10 Integrated Sensing Systems, Inc. System for monitoring the physiologic parameters of patients with congestive heart failure
US20040154946A1 (en) 2002-11-06 2004-08-12 Kenneth Solovay Storage apparatus for surgical implant device
WO2004043435A2 (en) 2002-11-13 2004-05-27 Control Delivery Systems, Inc. Systemic delivery of antiviral agents
CN101336887A (en) 2002-12-04 2009-01-07 参天制药株式会社 Drug delivery system using subconjunctival depot
US7531191B2 (en) 2002-12-17 2009-05-12 Massachusetts Institute Of Technology Stimuli-responsive systems for controlled drug delivery
US20050048099A1 (en) 2003-01-09 2005-03-03 Allergan, Inc. Ocular implant made by a double extrusion process
US20040137059A1 (en) 2003-01-09 2004-07-15 Thierry Nivaggioli Biodegradable ocular implant
US20040216749A1 (en) 2003-01-23 2004-11-04 Hosheng Tu Vasomodulation during glaucoma surgery
ES2338420T3 (en) 2003-01-24 2010-05-07 Psivida Us Inc. DEVICE AND PROCEDURE FOR SUSTAINED RELEASE FOR THE OCULAR ADMINISTRATION OF INHIBITORS OF CARBONIC ANHYDRATION.
US7794437B2 (en) 2003-01-24 2010-09-14 Doheny Retina Institute Reservoirs with subretinal cannula for subretinal drug delivery
US6969514B2 (en) 2003-02-05 2005-11-29 Soll David B Method for treating elevated intraocular pressure, including glaucoma
US8012115B2 (en) 2003-02-18 2011-09-06 S.K. Pharmaceuticals, Inc. Optic nerve implants
WO2004073551A2 (en) 2003-02-18 2004-09-02 Massachusetts Eye And Ear Infirmary Transscleral drug delivery device and related methods
MXPA05008675A (en) 2003-02-18 2006-03-02 Hampar Karageozian Methods and devices for draining fluids and lowering intraocular pressure.
US20040163652A1 (en) 2003-02-25 2004-08-26 Colin Watson Condom with restriction band
USD490152S1 (en) 2003-02-28 2004-05-18 Glaukos Corporation Surgical handpiece
WO2005105197A2 (en) 2003-02-28 2005-11-10 Gmp Vision Solutions, Inc. Indwelling shunt device and methods for treating glaucoma
US7483750B2 (en) 2003-03-21 2009-01-27 Second Sight Medical Products, Inc. Transretinal implant and method of implantation
US9216106B2 (en) 2003-04-09 2015-12-22 Directcontact Llc Device and method for the delivery of drugs for the treatment of posterior segment disease
US20050208102A1 (en) 2003-04-09 2005-09-22 Schultz Clyde L Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases
US8404269B2 (en) 2003-04-11 2013-03-26 Michael Snyder Sustained release implantable eye device
CA2524271C (en) 2003-05-02 2012-09-04 Surmodics, Inc. Controlled release bioactive agent delivery device
US8545463B2 (en) 2003-05-20 2013-10-01 Optimyst Systems Inc. Ophthalmic fluid reservoir assembly for use with an ophthalmic fluid delivery device
ZA200508654B (en) 2003-07-10 2007-01-31 Alcon Inc Ophthalmic drug delivery device
US7083802B2 (en) 2003-07-31 2006-08-01 Advanced Ocular Systems Limited Treatment of ocular disease
JP4869930B2 (en) 2003-08-26 2012-02-08 ヴィスタ サイエンティフィック エルエルシー Ophthalmic drug supply device
ES2388138T3 (en) 2003-08-27 2012-10-09 Ophthotech Corporation Combination therapy for the treatment of ocular neovascular disorders
US20050055075A1 (en) 2003-09-08 2005-03-10 Leonard Pinchuk Methods for the manufacture of porous prostheses
AU2004274026A1 (en) 2003-09-18 2005-03-31 Macusight, Inc. Transscleral delivery
US20050181018A1 (en) 2003-09-19 2005-08-18 Peyman Gholam A. Ocular drug delivery
WO2005044236A1 (en) 2003-10-27 2005-05-19 Control Delivery Systems, Inc. Suspension delivery system for the sustained and controlled local release of pharmaceuticals
WO2005048875A2 (en) 2003-11-14 2005-06-02 Medical Instill Technologies, Inc. Delivery device and method of delivery
CA2536188A1 (en) 2003-11-20 2005-06-09 Angiotech International Ag Electrical devices and anti-scarring agents
US20110112352A1 (en) 2003-12-05 2011-05-12 Pilla Arthur A Apparatus and method for electromagnetic treatment
US20050137538A1 (en) 2003-12-22 2005-06-23 Bausch & Lomb Incorporated Drug delivery device
US7976520B2 (en) 2004-01-12 2011-07-12 Nulens Ltd. Eye wall anchored fixtures
KR20060130648A (en) 2004-01-12 2006-12-19 아이싸이언스 인터벤셔날 코포레이션 Injector for viscous materials
US9933079B2 (en) 2004-01-29 2018-04-03 Angiodynamics, Inc. Stacked membrane for pressure actuated valve
US20050250788A1 (en) 2004-01-30 2005-11-10 Hosheng Tu Aqueous outflow enhancement with vasodilated aqueous cavity
US20060004422A1 (en) 2004-03-11 2006-01-05 Dirk De Ridder Electrical stimulation system and method for stimulating tissue in the brain to treat a neurological condition
US7513893B2 (en) 2004-03-12 2009-04-07 Abraham Ebbie Soroudi Device and method for treatment of eyelid diseases
WO2005092260A1 (en) 2004-03-26 2005-10-06 Molteno Ophthalmic Ltd Ophthalmic implant for treating glaucoma
US7654985B2 (en) 2004-03-30 2010-02-02 Given Imaging Ltd. Controlled detachment of intra-luminal medical device
US20060083772A1 (en) 2004-04-06 2006-04-20 Dewitt David M Coating compositions for bioactive agents
US20050232972A1 (en) 2004-04-15 2005-10-20 Steven Odrich Drug delivery via punctal plug
US20100173866A1 (en) 2004-04-29 2010-07-08 Iscience Interventional Corporation Apparatus and method for ocular treatment
US20080058704A1 (en) 2004-04-29 2008-03-06 Michael Hee Apparatus and Method for Ocular Treatment
CA2564806A1 (en) 2004-04-29 2005-11-17 Iscience Surgical Corporation Apparatus and method for surgical enhancement of aqueous humor drainage
US8722097B2 (en) 2004-04-30 2014-05-13 Allergan, Inc. Oil-in-water method for making polymeric implants containing a hypotensive lipid
AU2005240078A1 (en) 2004-04-30 2005-11-17 Allergan, Inc. Retinoid-containing sustained release intraocular drug delivery systems and related methods of manufacturing
US8685435B2 (en) 2004-04-30 2014-04-01 Allergan, Inc. Extended release biodegradable ocular implants
US20050244472A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Intraocular drug delivery systems containing excipients with reduced toxicity and related methods
US8147865B2 (en) 2004-04-30 2012-04-03 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US8455656B2 (en) 2004-04-30 2013-06-04 Allergan, Inc. Kinase inhibitors
US8425929B2 (en) 2004-04-30 2013-04-23 Allergan, Inc. Sustained release intraocular implants and methods for preventing retinal dysfunction
US7799336B2 (en) 2004-04-30 2010-09-21 Allergan, Inc. Hypotensive lipid-containing biodegradable intraocular implants and related methods
US20070059336A1 (en) 2004-04-30 2007-03-15 Allergan, Inc. Anti-angiogenic sustained release intraocular implants and related methods
US20050244500A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Intravitreal implants in conjuction with photodynamic therapy to improve vision
US20050244458A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and methods for treating ocular neuropathies
US8673341B2 (en) 2004-04-30 2014-03-18 Allergan, Inc. Intraocular pressure reduction with intracameral bimatoprost implants
US20050244465A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Drug delivery systems and methods for treatment of an eye
US8119154B2 (en) 2004-04-30 2012-02-21 Allergan, Inc. Sustained release intraocular implants and related methods
BRPI0510485A (en) 2004-04-30 2007-11-13 Allergan Inc biodegradable intravitreal tyrosine kinase inhibitor implants
US20070212395A1 (en) 2006-03-08 2007-09-13 Allergan, Inc. Ocular therapy using sirtuin-activating agents
KR20080018980A (en) 2004-04-30 2008-02-29 아이게이트 파르마 에스아에스 Irritation-reducing ocular ionthophoretic device
US20050244461A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Controlled release drug delivery systems and methods for treatment of an eye
US20050244469A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Extended therapeutic effect ocular implant treatments
US7771742B2 (en) 2004-04-30 2010-08-10 Allergan, Inc. Sustained release intraocular implants containing tyrosine kinase inhibitors and related methods
US8128954B2 (en) 2004-06-07 2012-03-06 California Institute Of Technology Biodegradable drug-polymer delivery system
EP1604697A1 (en) 2004-06-09 2005-12-14 J.A.C.C. GmbH Implantable device
US20060024350A1 (en) 2004-06-24 2006-02-02 Varner Signe E Biodegradable ocular devices, methods and systems
US20060110428A1 (en) 2004-07-02 2006-05-25 Eugene Dejuan Methods and devices for the treatment of ocular conditions
AU2005269988B2 (en) 2004-07-02 2012-02-02 Mati Therapeutics Inc. Treatment medium delivery device and methods for delivery
JP2008505978A (en) 2004-07-12 2008-02-28 アラーガン、インコーポレイテッド Ophthalmic composition and eye disease treatment method
US7117870B2 (en) * 2004-07-26 2006-10-10 Clarity Corporation Lacrimal insert having reservoir with controlled release of medication and method of manufacturing the same
US20060020253A1 (en) * 2004-07-26 2006-01-26 Prescott Anthony D Implantable device having reservoir with controlled release of medication and method of manufacturing the same
US20060021623A1 (en) 2004-07-30 2006-02-02 Miller Joan W Methods and compositions for treating ocular glaucoma
US20060032507A1 (en) 2004-08-11 2006-02-16 Hosheng Tu Contrast-enhanced ocular imaging
US7402156B2 (en) 2004-09-01 2008-07-22 Alcon, Inc. Counter pressure device for ophthalmic drug delivery
US20060084952A1 (en) 2004-09-03 2006-04-20 Pallikaris Ioannis G Device for the irradiation of the ciliary body of the eye
WO2006031532A2 (en) 2004-09-10 2006-03-23 Surmodics, Inc. Methods, devices, and coatings for controlled active agent release
US20080020018A1 (en) 2004-09-27 2008-01-24 Joey Moodley Combination Products
US20060067978A1 (en) 2004-09-29 2006-03-30 Bausch & Lomb Incorporated Process for preparing poly(vinyl alcohol) drug delivery devices
US20080038316A1 (en) 2004-10-01 2008-02-14 Wong Vernon G Conveniently implantable sustained release drug compositions
CA2582374A1 (en) 2004-10-04 2006-04-20 Qlt Usa, Inc. Ocular delivery of polymeric delivery formulations
GB0422525D0 (en) 2004-10-11 2004-11-10 Luebcke Peter Dermatological compositions and methods
US7226435B2 (en) 2004-10-14 2007-06-05 Alcon, Inc. Drug delivery device
US8246949B2 (en) 2004-10-27 2012-08-21 Aciont, Inc. Methods and devices for sustained in-vivo release of an active agent
US7958840B2 (en) 2004-10-27 2011-06-14 Surmodics, Inc. Method and apparatus for coating of substrates
US20080095822A1 (en) 2004-11-16 2008-04-24 Universite De Liege Active Substance Delivery System Comprising A Hydrogel Atrix And Microcarriers
US20060173397A1 (en) 2004-11-23 2006-08-03 Hosheng Tu Ophthalmology implants and methods of manufacture
CN100553588C (en) 2004-11-23 2009-10-28 小爱德华·K·王 Control eye and the medical treatment device that encloses tissue temperature near the eyes and treat ophthalmic
WO2006057859A1 (en) 2004-11-24 2006-06-01 Therakine Corporation An implant for intraocular drug delivery
US7837644B2 (en) 2004-12-03 2010-11-23 Innfocus, Llc Glaucoma implant device
US20070118065A1 (en) 2004-12-03 2007-05-24 Leonard Pinchuk Glaucoma Implant Device
WO2006068898A1 (en) 2004-12-22 2006-06-29 Bausch & Lomb Incorporated Reusable drug delivery device
KR20070101865A (en) 2004-12-22 2007-10-17 알콘, 인코퍼레이티드 Device for ophthalmic drug delivery
JP2008529606A (en) 2005-02-04 2008-08-07 オーバーン ユニバーシティ Contact drug delivery system
US8663639B2 (en) 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
KR101387456B1 (en) 2005-02-09 2014-04-21 산텐 세이야꾸 가부시키가이샤 Liquid formulations for treatment of diseases or conditions
KR20070121754A (en) 2005-03-21 2007-12-27 마커사이트, 인코포레이티드 Drug delivery systems for treatment of diseases or conditions
WO2006110487A1 (en) 2005-04-08 2006-10-19 Surmodics, Inc. Sustained release implants for subretinal delivery
US8039445B2 (en) 2005-04-18 2011-10-18 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and devices for delivering a therapeutic product to the ocular sphere of a subject
US7931909B2 (en) 2005-05-10 2011-04-26 Allergan, Inc. Ocular therapy using alpha-2 adrenergic receptor compounds having enhanced anterior clearance rates
US20060258994A1 (en) 2005-05-12 2006-11-16 Avery Robert L Implantable delivery device for administering pharmacological agents to an internal portion of a body
US20060276738A1 (en) * 2005-06-06 2006-12-07 Becker Bruce B Lacrimal drainage bypass device and method
US20060292222A1 (en) 2005-06-21 2006-12-28 Matthew Jonasse Drug delivery device having zero or near zero-order release kinetics
US20070021653A1 (en) 2005-06-27 2007-01-25 Lars-Olof Hattenbach Device for the injection of drugs into microvessels
AU2006270221B2 (en) 2005-07-15 2012-01-19 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US20100068141A1 (en) 2005-07-27 2010-03-18 University Of Florida Use of heat shock to treat ocular disease
US8663673B2 (en) 2005-07-29 2014-03-04 Surmodics, Inc. Devices, articles, coatings, and methods for controlled active agent release or hemocompatibility
US20070038174A1 (en) 2005-08-09 2007-02-15 Hopkins Mark A Ophthalmic injector system
US7261529B2 (en) 2005-09-07 2007-08-28 Southwest Research Institute Apparatus for preparing biodegradable microparticle formulations containing pharmaceutically active agents
US20070212397A1 (en) 2005-09-15 2007-09-13 Roth Daniel B Pharmaceutical delivery device and method for providing ocular treatment
DE602006005826D1 (en) 2005-09-21 2009-04-30 Univ Aston CHRONOTHERAPEUTIC OKULAR DELIVERY SYSTEM FROM A COMBINATION OF PROSTAGELINES AND A BETABOLE LOCK FOR THE TREATMENT OF PRIMARY GLAUCOMA
CN101309709A (en) 2005-09-21 2008-11-19 苏尔莫迪克斯公司 Coatings and articles including natural biodegradable polysaccharides
US20080167600A1 (en) 2005-09-26 2008-07-10 Peyman Gholam A Device for delivery of an agent to the eye and other sites
US20070197957A1 (en) 2005-10-03 2007-08-23 Hunter William L Implantable sensors, implantable pumps and anti-scarring drug combinations
US8168584B2 (en) 2005-10-08 2012-05-01 Potentia Pharmaceuticals, Inc. Methods of treating age-related macular degeneration by compstatin and analogs thereof
KR101430760B1 (en) 2005-10-18 2014-08-19 알러간, 인코포레이티드 Ocular therapy using glucocorticoid derivatives selectively penetrating posterior segment tissues
US20090082321A1 (en) 2007-09-21 2009-03-26 Allergan, Inc. Steroid containing drug delivery systems
TW200733993A (en) 2005-11-03 2007-09-16 Reseal Internat Ltd Partnership Continuously sealing one way valve assembly and fluid delivery system and formulations for use therein
US8099162B2 (en) 2005-11-29 2012-01-17 Eyegate Pharma, S.A.S. Ocular iontophoresis device
US20080177220A1 (en) 2006-01-06 2008-07-24 The Curators Of The University Of Missouri Ultrasound-Mediated Transcleral Drug Delivery
AU2007204617A1 (en) 2006-01-12 2007-07-19 Massachusetts Institute Of Technology Biodegradable elastomers
EP3632385A1 (en) 2006-01-17 2020-04-08 Novartis AG Glaucoma treatment device
US9084662B2 (en) 2006-01-17 2015-07-21 Transcend Medical, Inc. Drug delivery treatment device
US20070202186A1 (en) 2006-02-22 2007-08-30 Iscience Interventional Corporation Apparatus and formulations for suprachoroidal drug delivery
EP1998829B1 (en) 2006-03-14 2011-02-09 University Of Southern California Mems device for delivery of therapeutic agents
KR20110038144A (en) 2006-03-31 2011-04-13 큐엘티 플러그 딜리버리, 인코포레이티드 Drug delivery methods, structures, and compositions for nasolacrimal system
WO2007127305A2 (en) 2006-04-26 2007-11-08 Eastern Virginia Medical School Systems and methods for monitoring and controlling internal pressure of an eye or body part
US20070293807A1 (en) 2006-05-01 2007-12-20 Lynch Mary G Dual drainage pathway shunt device and method for treating glaucoma
US8197435B2 (en) 2006-05-02 2012-06-12 Emory University Methods and devices for drug delivery to ocular tissue using microneedle
JP4829345B2 (en) 2006-05-04 2011-12-07 カフマン、ハーバート Methods, devices, and systems for administering therapeutic agents to the eye
US20070260203A1 (en) 2006-05-04 2007-11-08 Allergan, Inc. Vasoactive agent intraocular implant
US20070270750A1 (en) 2006-05-17 2007-11-22 Alcon, Inc. Drug delivery device
US20070270768A1 (en) 2006-05-17 2007-11-22 Bruno Dacquay Mechanical Linkage Mechanism For Ophthalmic Injection Device
US7674243B2 (en) 2006-05-17 2010-03-09 Alcon Inc. Ophthalmic injection device using piezoelectric array
US7815603B2 (en) 2006-05-17 2010-10-19 Alcon Research, Ltd. Ophthalmic injection method
US7811252B2 (en) 2006-05-17 2010-10-12 Alcon Research, Ltd. Dosage control device
US20070268340A1 (en) 2006-05-17 2007-11-22 Bruno Dacquay Ophthalmic Injection System and Method Using Piezoelectric Array
US7887521B2 (en) 2006-05-17 2011-02-15 Alcon Research, Ltd. Ophthalmic injection system
US7862540B2 (en) 2006-05-17 2011-01-04 Alcon Research, Ltd. Ophthalmic injection device using shape memory alloy
WO2007146342A2 (en) 2006-06-12 2007-12-21 Ivivi Technologies, Inc. Electromagnetism for prophylaxis and opthalmic tissue repair
US20070293873A1 (en) 2006-06-19 2007-12-20 Allergan, Inc. Apparatus and methods for implanting particulate ocular implants
US7458953B2 (en) 2006-06-20 2008-12-02 Gholam A. Peyman Ocular drainage device
US20080045911A1 (en) 2006-06-21 2008-02-21 Borgia Maureen J Punctal plugs for the delivery of active agents
US9474645B2 (en) 2006-06-21 2016-10-25 Johnson & Johnson Vision Care, Inc. Punctal plugs for the delivery of active agents
US20070298073A1 (en) 2006-06-23 2007-12-27 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US8802128B2 (en) 2006-06-23 2014-08-12 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
EP2043572B1 (en) 2006-06-30 2014-12-31 Aquesys Inc. Apparatus for relieving pressure in an organ
CA2657380A1 (en) 2006-07-20 2008-01-24 Neurosystec Corporation Devices, systems and methods for ophthalmic drug delivery
US9248121B2 (en) 2006-08-21 2016-02-02 Abbott Laboratories Medical devices for controlled drug release
US20080086101A1 (en) 2006-08-25 2008-04-10 David Freilich Ophthalmic insert
MX2009002235A (en) 2006-08-30 2009-03-13 Jagotec Ag Controlled release solid oral dosage formulations comprising nisoldipine.
EP2059282A4 (en) 2006-09-06 2014-04-09 Innfocus Inc Apparatus, methods and devices for treatment of ocular disorders
WO2008039749A2 (en) 2006-09-25 2008-04-03 Surmodics, Inc. Multi-layered coatings and methods for controlling elution of active agents
US20080097379A1 (en) 2006-09-26 2008-04-24 Alcon Manufacturing, Ltd. Ophthalmic injection method
US20080125712A1 (en) 2006-09-26 2008-05-29 Alcon Manufacturing, Ltd. Ophthalmic injection system
US20080097390A1 (en) 2006-09-27 2008-04-24 Alcon Manufacturing, Ltd. Spring actuated delivery system
WO2008060360A2 (en) 2006-09-28 2008-05-22 Surmodics, Inc. Implantable medical device with apertures for delivery of bioactive agents
US20080089923A1 (en) 2006-09-29 2008-04-17 Burkstrand Michael J Biodegradable ocular implants and methods for treating ocular conditions
CL2007002851A1 (en) 2006-10-05 2008-01-18 M S Panacea Biotec Ltd Injectable composition comprising micro or nanodegradable bio-particles including an active agent, a biodegradable polymer, an agent for intensifying the pharmaceutically acceptable viscosity and excipient; and preparation procedures
US20100069842A1 (en) 2006-10-16 2010-03-18 Alcon Research, Ltd. Ceramic Chamber With Integrated Temperature Control Device For Ophthalmic Medical Device
US7620147B2 (en) 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US20080281292A1 (en) 2006-10-16 2008-11-13 Hickingbotham Dyson W Retractable Injection Port
US9022970B2 (en) 2006-10-16 2015-05-05 Alcon Research, Ltd. Ophthalmic injection device including dosage control device
US7496174B2 (en) 2006-10-16 2009-02-24 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US8039010B2 (en) 2006-11-03 2011-10-18 Allergan, Inc. Sustained release intraocular drug delivery systems comprising a water soluble therapeutic agent and a release modifier
US7494487B2 (en) 2006-11-03 2009-02-24 Mobius Therapeutics, Llc Apparatus and method for application of a pharmaceutical to the tympanic membrane for photodynamic laser myringotomy
US20080114076A1 (en) 2006-11-09 2008-05-15 Alcon Manufacturing Ltd. Punctal plug comprising a water-insoluble polymeric matrix
US8506515B2 (en) 2006-11-10 2013-08-13 Glaukos Corporation Uveoscleral shunt and methods for implanting same
WO2008060575A2 (en) 2006-11-13 2008-05-22 Auburn University Drug delivery system and method
US8143410B2 (en) 2006-11-16 2012-03-27 Allergan, Inc. Kinase inhibitors
WO2008064111A2 (en) 2006-11-17 2008-05-29 Boston Scientific Limited Radiopaque medical devices
EP2091482A2 (en) 2006-12-01 2009-08-26 Allergan, Inc. Method for determining optimum intraocular locations for drug delivery systems
US8969415B2 (en) 2006-12-01 2015-03-03 Allergan, Inc. Intraocular drug delivery systems
US8617143B2 (en) 2006-12-07 2013-12-31 The Regents Of The University Of California Therapeutic agent delivery systems and devices
US20080140024A1 (en) 2006-12-08 2008-06-12 Yoseph Yaacobi Drug delivery device
US20080145405A1 (en) 2006-12-15 2008-06-19 Kunzler Jay F Drug delivery devices
US20080147021A1 (en) 2006-12-15 2008-06-19 Jani Dharmendra M Drug delivery devices
WO2008076544A2 (en) 2006-12-18 2008-06-26 Alcon Research, Ltd. Devices and methods for ophthalmic drug delivery
US20080181928A1 (en) 2006-12-22 2008-07-31 Miv Therapeutics, Inc. Coatings for implantable medical devices for liposome delivery
JP2010514517A (en) 2006-12-26 2010-05-06 キューエルティー プラグ デリバリー,インク. Drug delivery implants for the suppression of visual defects
DE102007004906A1 (en) 2007-01-25 2008-07-31 Universität Rostock eye implant
UY30883A1 (en) 2007-01-31 2008-05-31 Alcon Res PUNCTURAL PLUGS AND METHODS OF RELEASE OF THERAPEUTIC AGENTS
ES2438041T3 (en) 2007-02-08 2014-01-15 Arnaldo Goncalves Device for intraocular administration of a substance, for example a medicine, in a human or animal eye by means of a hypodermic needle
JP4799444B2 (en) 2007-02-26 2011-10-26 パナソニック株式会社 Simulation system
TW200840554A (en) 2007-02-28 2008-10-16 Alcon Inc Coated medical implants and lenses
US7561085B2 (en) 2007-03-21 2009-07-14 Honeywell International Inc. Systems and methods for improving data converters
WO2008124009A2 (en) 2007-04-02 2008-10-16 The Cleveland Clinic Foundation Treating glaucoma
US8071119B2 (en) 2007-05-14 2011-12-06 Sustained Nano Systems Llc Controlled release implantable dispensing device and method
US20090148498A1 (en) 2007-05-14 2009-06-11 Sustained Nano Systems Llc Controlled release implantable dispensing device and method
US20080286338A1 (en) 2007-05-15 2008-11-20 Boston Foundation For Sight Drug delivery system with scleral lens
US8231892B2 (en) 2007-05-24 2012-07-31 Allergan, Inc. Biodegradable drug delivery system
WO2008154502A1 (en) 2007-06-07 2008-12-18 Yale University Uveoscleral drainage device
US8492334B2 (en) 2007-06-21 2013-07-23 Yale University Sustained intraocular delivery of drugs from biodegradable polymeric microparticles
US9492278B2 (en) 2007-07-10 2016-11-15 Warsaw Orthopedic, Inc. Delivery system
WO2009012406A1 (en) 2007-07-17 2009-01-22 Transcend Medical, Inc. Ocular implant with hydrogel expansion capabilities reference to priority document
US20090036827A1 (en) 2007-07-31 2009-02-05 Karl Cazzini Juxtascleral Drug Delivery and Ocular Implant System
US8366652B2 (en) 2007-08-17 2013-02-05 The Invention Science Fund I, Llc Systems, devices, and methods including infection-fighting and monitoring shunts
WO2009029958A2 (en) 2007-08-30 2009-03-05 Sunstorm Research Corporation Implantable delivery device
US8075909B2 (en) 2007-09-04 2011-12-13 University Of Florida Research Foundation, Incorporated Contact lens based bioactive agent delivery system
CA2698580C (en) 2007-09-07 2016-10-11 Qlt Plug Delivery, Inc. Lacrimal implant detection
KR101996336B1 (en) * 2007-09-07 2019-07-04 마티 테라퓨틱스 인코포레이티드 Drug cores for sustained release of therapeutic agents
US7740604B2 (en) 2007-09-24 2010-06-22 Ivantis, Inc. Ocular implants for placement in schlemm's canal
US8480638B2 (en) 2007-10-04 2013-07-09 Aciont, Inc. Intraocular iontophoretic device and associated methods
US8109920B2 (en) 2007-10-31 2012-02-07 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
GB0722484D0 (en) 2007-11-15 2007-12-27 Ucl Business Plc Solid compositions
US20090130017A1 (en) 2007-11-19 2009-05-21 Searete Llc Targeted short-lived drug delivery
US20090143752A1 (en) 2007-12-03 2009-06-04 Higuchi John W Passive intraocular drug delivery devices and associated methods
US20100310622A1 (en) 2007-12-17 2010-12-09 University Of Florida Research Foundation, Inc. Dry eye treatment by puncta plugs
EP2666510B1 (en) 2007-12-20 2017-10-18 University Of Southern California Apparatus for controlled delivery of therapeutic agents
US20090162417A1 (en) 2007-12-21 2009-06-25 Cook Incorporated Drug eluting ocular conformer
US20110207987A1 (en) 2009-11-02 2011-08-25 Salutaris Medical Devices, Inc. Methods And Devices For Delivering Appropriate Minimally-Invasive Extraocular Radiation
KR101634983B1 (en) 2008-01-07 2016-07-01 살루타리스 메디컬 디바이스즈, 인코퍼레이티드 Methods and devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye
US20090177182A1 (en) 2008-01-09 2009-07-09 Hickingbotham Dyson W Glass Drug Chamber For Automated Ophthalmic Injection Device
WO2009092067A2 (en) 2008-01-18 2009-07-23 Neurosystec Corporation Valveless impedance pump drug delivery systems
WO2009097468A2 (en) 2008-01-29 2009-08-06 Kliman Gilbert H Drug delivery devices, kits and methods therefor
CN102014816B (en) 2008-02-18 2015-04-15 马缇医疗股份有限公司 Lacrimal implants and related methods
WO2009151678A1 (en) 2008-03-11 2009-12-17 Massachusetts Institute Of Technology Stimuli-responsive surfaces
TNSN08110A1 (en) 2008-03-11 2009-07-14 Rekik Raouf Dr Drug delivery to the anterior and posterior segment of the eye from drops
US8951545B2 (en) 2008-03-28 2015-02-10 Surmodics, Inc. Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery
US8496954B2 (en) 2008-04-18 2013-07-30 Surmodics, Inc. Coating systems for the controlled delivery of hydrophilic bioactive agents
CN103394142B (en) 2008-05-08 2015-08-19 迷你泵有限责任公司 Implantable drug delivery devices with for filling equipment and the method for this device
US8231609B2 (en) 2008-05-08 2012-07-31 Minipumps, Llc Drug-delivery pumps and methods of manufacture
CN104353150A (en) 2008-05-08 2015-02-18 迷你泵有限责任公司 Implantable pums and cannulas therefor
CN105251007A (en) * 2008-05-09 2016-01-20 马缇医疗股份有限公司 Sustained release delivery of active agents to treat glaucoma and ocular hypertension
US9095404B2 (en) 2008-05-12 2015-08-04 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
US8702995B2 (en) 2008-05-27 2014-04-22 Dober Chemical Corp. Controlled release of microbiocides
US8894602B2 (en) * 2010-09-17 2014-11-25 Johnson & Johnson Vision Care, Inc. Punctal plugs with directional release
TW201006453A (en) 2008-07-08 2010-02-16 Qlt Plug Delivery Inc Lacrimal implant body including comforting agent
EP2344095A1 (en) 2008-09-26 2011-07-20 The Cleveland Clinic Foundation Apparatus and method for delivering a therapeutic agent to ocular tissue
US7678078B1 (en) 2008-10-21 2010-03-16 KMG Pharma LLC Intravitreal injection device, system and method
US8221353B2 (en) 2008-10-21 2012-07-17 KMG Pharma, Inc Intravitreal injection device and system
US20110125090A1 (en) 2008-11-13 2011-05-26 Peyman Gholam A Ophthalmic drug delivery system and method
US20100119519A1 (en) 2008-11-13 2010-05-13 Peyman Gholam A Ophthalmic drug delivery system and method
CN102271732B (en) 2008-11-14 2014-12-31 得克萨斯大学体系董事会 Nanochanneled device and related methods
US9095506B2 (en) 2008-11-17 2015-08-04 Allergan, Inc. Biodegradable alpha-2 agonist polymeric implants and therapeutic uses thereof
WO2010062394A2 (en) 2008-11-26 2010-06-03 Surmodics, Inc. Implantable ocular drug delivery device and methods
AU2009322146B2 (en) 2008-12-05 2015-05-28 Alcon Inc. Methods and apparatus for delivering ocular implants into the eye
WO2010068281A2 (en) 2008-12-11 2010-06-17 Massachusetts Institute Of Technology Contact lens drug delivery device
US20100152676A1 (en) 2008-12-16 2010-06-17 Alcon Research, Ltd. Drug Loading Through Plunger
US8070290B2 (en) 2008-12-17 2011-12-06 Glaukos Corporation Gonioscope for improved viewing
US20120257167A1 (en) 2008-12-17 2012-10-11 Glaukos Corporation Gonioscope for improved viewing
US20100158980A1 (en) 2008-12-18 2010-06-24 Casey Kopczynski Drug delivery devices for delivery of therapeutic agents
US20100160870A1 (en) 2008-12-18 2010-06-24 Alcon Research, Ltd. Two Piece Housing For Drug Loading
WO2010071844A1 (en) 2008-12-19 2010-06-24 Qlt Plug Delivery, Inc Substance delivering punctum implants and methods
WO2010078428A1 (en) 2008-12-30 2010-07-08 Optimyst Systems, Inc. Ophthalmic fluid delivery system
US20100174272A1 (en) 2009-01-02 2010-07-08 Weiner Alan L In-situ refillable ophthalmic implant
JP5524983B2 (en) 2009-01-28 2014-06-18 トランセンド・メディカル・インコーポレイテッド Implant system
PL2391419T3 (en) 2009-01-29 2019-12-31 Forsight Vision4, Inc. Posterior segment drug delivery
US9282891B2 (en) 2009-01-30 2016-03-15 Sundaraja Sitaram Iyengar Monitoring intra ocular pressure using pattern and color changes
JP5969212B2 (en) 2009-02-10 2016-08-17 シヴィダ・ユーエス・インコーポレイテッドPsivida Us,Inc. Ophthalmic trocar assembly
US20100204325A1 (en) 2009-02-11 2010-08-12 Allergan, Inc. Valproic acid drug delivery systems and intraocular therapeutic uses thereof
US9101475B2 (en) 2009-02-12 2015-08-11 Warsaw Orthopedic, Inc. Segmented delivery system
WO2010093945A2 (en) 2009-02-13 2010-08-19 Glaukos Corporation Uveoscleral drug delivery implant and methods for implanting the same
WO2010096449A2 (en) 2009-02-17 2010-08-26 Pharmanova, Inc. Implantable drug delivery devices
CN105997339B (en) 2009-02-23 2018-09-04 马缇医疗股份有限公司 Lacrimal implants
US20100225061A1 (en) 2009-03-09 2010-09-09 Bath David L System and method for gaming with an engagable projectile
WO2010105093A2 (en) 2009-03-12 2010-09-16 Delpor, Inc. Implantable device for long-term delivery of drugs
US20100233241A1 (en) 2009-03-13 2010-09-16 Vista Scientific Llc Ophthalmic drug delivery system and applications
WO2010111232A2 (en) 2009-03-23 2010-09-30 Micell Technologies, Inc. Drug delivery medical device
US20100247606A1 (en) 2009-03-25 2010-09-30 Allergan, Inc. Intraocular sustained release drug delivery systems and methods for treating ocular conditions
TWI495459B (en) 2009-03-31 2015-08-11 Johnson & Johnson Vision Care Punctal plugs
US8337393B2 (en) 2009-04-03 2012-12-25 Transcend Medical, Inc. Ocular implant delivery systems and methods
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
ES2921527T3 (en) 2009-06-03 2022-08-29 Forsight Vision5 Inc Anterior segment drug delivery
CA2765541A1 (en) 2009-06-19 2010-12-23 Sun Pharma Advanced Research Company Ltd. Nanodispersion of a drug and process for its preparation
EP2456509A1 (en) 2009-07-22 2012-05-30 Advanced Ophthalmic Pharma Ltd. Device for applying an ophthalmic medicament mist
CN102573813B (en) 2009-08-18 2013-11-06 国立大学法人东北大学 Sustained drug delivery system
US8808257B2 (en) * 2009-08-31 2014-08-19 Johnson & Johnson Vision Care, Inc. Methods and apparatus for pulsatile release of medicaments from a punctal plug
MX2012002596A (en) 2009-09-03 2012-07-03 Allergan Inc Compounds as tyrosine kinase modulators.
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
EP2490617A1 (en) 2009-10-22 2012-08-29 On Demand Therapeutics, Inc. Visual indication of rupture of drug reservoir
ES2603057T3 (en) 2009-10-30 2017-02-23 Aton Pharma, Inc. Ocular drug delivery devices
DE102009052552A1 (en) 2009-11-10 2011-05-26 Fluoron Gmbh syringe
JP2013512045A (en) 2009-11-27 2013-04-11 キュー エル ティー インク. Lacrimal implant including split and insertable drug core
WO2011075481A1 (en) 2009-12-16 2011-06-23 Allergan, Inc. Intracameral devices for sustained delivery
USD645489S1 (en) 2009-12-16 2011-09-20 Glaukos Corporation Gonioscopic system including an optical element attachment
USD645490S1 (en) 2009-12-16 2011-09-20 Glaukos Corporation Gonioscopic system including an optical element attachment
US8177747B2 (en) 2009-12-22 2012-05-15 Alcon Research, Ltd. Method and apparatus for drug delivery
US20110238036A1 (en) 2009-12-23 2011-09-29 Psivida Us, Inc. Sustained release delivery devices
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
KR102126007B1 (en) 2010-01-22 2020-06-24 알러간, 인코포레이티드 Intracameral sustained release therapeutic agent implants
US10166142B2 (en) 2010-01-29 2019-01-01 Forsight Vision4, Inc. Small molecule delivery with implantable therapeutic device
EP2533737B1 (en) 2010-02-08 2014-01-08 On Demand Therapeutics, Inc. Low-permeability, laser-activated drug delivery device
US8889193B2 (en) 2010-02-25 2014-11-18 The Johns Hopkins University Sustained delivery of therapeutic agents to an eye compartment
US20130071349A1 (en) 2010-03-02 2013-03-21 Allergan, Inc. Biodegradable polymers for lowering intraocular pressure
GB201003731D0 (en) 2010-03-05 2010-04-21 Univ Strathclyde Immediate/delayed drug delivery
US9320647B2 (en) 2010-03-31 2016-04-26 Ocuject, Llc Device and method for intraocular drug delivery
US9408746B2 (en) 2010-03-31 2016-08-09 Ocuject, Llc Device and method for intraocular drug delivery
WO2011123180A1 (en) 2010-04-03 2011-10-06 Praful Doshi Medical devices including medicaments and methods of making and using same
JP2013523821A (en) 2010-04-06 2013-06-17 アラーガン、インコーポレイテッド Sustained release reservoir implant for intra-anterior drug delivery
US20110251568A1 (en) * 2010-04-08 2011-10-13 Beeley Nathan R F Punctal plugs for controlled release of therapeutic agents
WO2011146483A1 (en) 2010-05-17 2011-11-24 Aerie Pharmaceuticals, Inc. Drug delivery devices for delivery of ocular therapeutic agents
US8444589B2 (en) 2010-06-09 2013-05-21 Transcend Medical, Inc. Ocular implant with fluid outflow pathways having microporous membranes
KR101180032B1 (en) 2010-07-12 2012-09-05 인싸이토(주) Method for manufacturing Hollow Microneedle with Controlled External Appearance Characteristics
WO2012012017A1 (en) 2010-07-20 2012-01-26 Alcon Research, Ltd. Closed loop glaucoma drug delivery system
EP3861969A1 (en) 2010-08-05 2021-08-11 ForSight Vision4, Inc. Injector apparatus for drug delivery
US8235053B2 (en) 2010-09-08 2012-08-07 Alcon Research, Ltd. Implantable punctal plug
US8864703B2 (en) 2010-10-05 2014-10-21 Alcon Research, Ltd. Drug introduction and placement system
US9022967B2 (en) 2010-10-08 2015-05-05 Sinopsys Surgical, Inc. Implant device, tool, and methods relating to treatment of paranasal sinuses
US9370444B2 (en) 2010-10-12 2016-06-21 Emmett T. Cunningham, JR. Subconjunctival conformer device and uses thereof
US8915877B2 (en) 2010-10-12 2014-12-23 Emmett T. Cunningham, JR. Glaucoma drainage device and uses thereof
US20120100187A1 (en) 2010-10-26 2012-04-26 Surmodics, Inc. Coatings and methods for controlled elution of hydrophilic active agents
US9668915B2 (en) 2010-11-24 2017-06-06 Dose Medical Corporation Drug eluting ocular implant
EP2651957B1 (en) 2010-12-16 2015-02-18 Allergan, Inc. Phosphorous derivatives as chemokine receptor modulators
WO2012088306A2 (en) 2010-12-22 2012-06-28 Psivida Us, Inc. Two-piece injectable drug delivery device with heat-cured seal
WO2012103124A2 (en) 2011-01-24 2012-08-02 Emd Millipore Corporation Accelerated mixed gas integrity testing of porous materials
JP2012198134A (en) 2011-03-22 2012-10-18 Chugoku Electric Power Co Inc:The Fault point locating device and program
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
US20130004651A1 (en) 2011-07-01 2013-01-03 Patty Fu-Giles Sustained drug release from body implants using nanoparticle-embedded polymeric coating materials
US20130018360A1 (en) 2011-07-13 2013-01-17 Marissa Dockendorf Method for delivering ophthalmic drugs
US8486031B2 (en) 2011-07-29 2013-07-16 Allan J. Bogdan Eye treatment apparatus
CA2846384C (en) * 2011-08-29 2020-12-15 Qlt Inc. Sustained release delivery of active agents to treat glaucoma and ocular hypertension
WO2013040238A2 (en) 2011-09-13 2013-03-21 Vista Scientific Llc Sustained release ocular drug delivery devices and methods of manufacture
EP3659495B1 (en) 2011-09-13 2022-12-14 Dose Medical Corporation Intraocular physiological sensor
RU2740680C2 (en) 2011-09-14 2021-01-19 Форсайт Вижн5, Инк. Eye inserter device and methods
US10226417B2 (en) 2011-09-16 2019-03-12 Peter Jarrett Drug delivery systems and applications
US8771220B2 (en) 2011-12-07 2014-07-08 Alcon Research, Ltd. Glaucoma active pressure regulation shunt
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
US8579848B2 (en) 2011-12-09 2013-11-12 Alcon Research, Ltd. Active drainage systems with pressure-driven valves and electronically-driven pump
US8945214B2 (en) 2011-12-19 2015-02-03 Allergan, Inc. Intravitreal applicator
US9241829B2 (en) 2011-12-20 2016-01-26 Abbott Medical Optics Inc. Implantable intraocular drug delivery apparatus, system and method
US8808256B2 (en) 2012-01-16 2014-08-19 Johnson & Johnson Vision Care, Inc. Eye drug delivery system
EP2811952A1 (en) 2012-02-07 2014-12-17 On Demand Therapeutics, Inc. Drug delivery devices and methods of use thereof
JP6465490B2 (en) 2012-03-26 2019-02-06 グローコス コーポレーション Implant delivery device
US9504603B2 (en) 2012-04-02 2016-11-29 Ocuject, Llc Intraocular delivery devices and methods therefor
CN109602691A (en) 2013-02-15 2019-04-12 阿勒根公司 Sustained drug delivery implantation material
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
CN105188666A (en) 2013-04-01 2015-12-23 阿勒根公司 Microsphere drug delivery system for sustained intraocular release
CA2830555A1 (en) 2013-10-18 2015-04-18 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
DK3062775T3 (en) 2013-10-31 2018-03-12 Allergan Inc PROSTAMID-CONTAINING INTRAOCULAR IMPLANTS AND PROCEDURES FOR USE THEREOF
EP3068371A1 (en) 2013-11-15 2016-09-21 Glaukos Corporation Ocular implants configured to store and release stable drug formulations
AU2015266850B2 (en) 2014-05-29 2019-12-05 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
WO2016042163A2 (en) 2014-09-19 2016-03-24 Medterials, Inc. Ophthalmic drug compositions
WO2016154066A2 (en) 2015-03-20 2016-09-29 Glaukos Corporation Gonioscopic devices
US20180280194A1 (en) 2015-05-20 2018-10-04 Glaukos Corporation Therapeutic drug compositions and implants for delivery of same
NZ737997A (en) 2015-06-03 2019-03-29 Aquesys Inc Ab externo intraocular shunt placement
EP3324905A1 (en) 2015-07-22 2018-05-30 Glaukos Corporation Ocular implants for reduction of intraocular pressure
WO2017040855A1 (en) 2015-09-02 2017-03-09 Dose Medical Corporation Drug delivery implants as intraocular drug depots and methods of using same
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
WO2017053885A1 (en) 2015-09-25 2017-03-30 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
KR20170058811A (en) 2015-11-19 2017-05-29 글라우코스 코포레이션 Delivery device systems and implants for treating glaucoma
AU2017252294B2 (en) 2016-04-20 2021-12-02 Dose Medical Corporation Bioresorbable ocular drug delivery device
US10674906B2 (en) 2017-02-24 2020-06-09 Glaukos Corporation Gonioscopes
USD833008S1 (en) 2017-02-27 2018-11-06 Glaukos Corporation Gonioscope
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
WO2019068026A1 (en) 2017-09-29 2019-04-04 Glaukos Corporation Intraocular physiological sensor
CN113893085A (en) 2017-10-06 2022-01-07 格劳科斯公司 Systems and methods for delivering multiple ocular implants
USD846738S1 (en) 2017-10-27 2019-04-23 Glaukos Corporation Implant delivery apparatus
US20220119350A1 (en) 2019-02-22 2022-04-21 Glaukos Corporation Compounds for the treatment of ocular disease

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334137A (en) * 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US20090104248A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. -Qpdi Lacrimal implants and related methods
US20090306608A1 (en) * 2008-05-07 2009-12-10 Zhigang Li Ophthalmic devices for the controlled release of active agents
US20120078362A1 (en) * 2009-05-18 2012-03-29 Dose Medical Corporation Drug eluting ocular implant
US20120059338A1 (en) * 2010-09-08 2012-03-08 Beeley Nathan R F Punctal plug containing drug formulation

Also Published As

Publication number Publication date
US11564833B2 (en) 2023-01-31
US20190083307A1 (en) 2019-03-21
WO2017053885A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
US20230293344A1 (en) Punctal implants with controlled drug delivery features and methods of using same
US20230157868A1 (en) Implants with controlled drug delivery features and methods of using same
US20210298948A1 (en) Drug eluting ocular implant with internal plug
US20210015662A1 (en) Drug eluting ocular implant
AU2022201392A1 (en) Bioresorbable ocular drug delivery device
AU2020201236A1 (en) Implants with controlled drug delivery features and methods of using same
US11925578B2 (en) Drug delivery implants with bi-directional delivery capacity
US20180280194A1 (en) Therapeutic drug compositions and implants for delivery of same
US20240074897A1 (en) Punctal implants, insertion systems and methods of using the same

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION