US20230265208A1 - Antibodies against the muc1-c/extracellular domain (muc1-c/ecd) - Google Patents

Antibodies against the muc1-c/extracellular domain (muc1-c/ecd) Download PDF

Info

Publication number
US20230265208A1
US20230265208A1 US18/005,562 US202118005562A US2023265208A1 US 20230265208 A1 US20230265208 A1 US 20230265208A1 US 202118005562 A US202118005562 A US 202118005562A US 2023265208 A1 US2023265208 A1 US 2023265208A1
Authority
US
United States
Prior art keywords
antibody
cell
cancer
muc1
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/005,562
Other languages
English (en)
Inventor
Surender Kharbanda
Donald W. Kufe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xyone Therapeutics Inc
Dana Farber Cancer Institute Inc
Original Assignee
Xyone Therapeutics Inc
Dana Farber Cancer Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xyone Therapeutics Inc, Dana Farber Cancer Institute Inc filed Critical Xyone Therapeutics Inc
Priority to US18/005,562 priority Critical patent/US20230265208A1/en
Assigned to DANA-FARBER CANCER INSTITUTE, INC. reassignment DANA-FARBER CANCER INSTITUTE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUFE, DONALD
Assigned to XYONE THERAPEUTICS, INC. reassignment XYONE THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENUS ONCOLOGY, LLC
Assigned to GENUS ONCOLOGY, LLC reassignment GENUS ONCOLOGY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KHARBANDA, SURENDER
Publication of US20230265208A1 publication Critical patent/US20230265208A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3092Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present disclosure relates generally to the fields of medicine, oncology and immunotherapeutics. More particularly, it concerns the development of immunoreagents for use in detecting and treating MUC1-positive cancers.
  • Mucins are extensively O-glycosylated proteins that are predominantly expressed by epithelial cells.
  • the secreted and membrane-bound mucins form a physical barrier that protects the apical borders of epithelial cells from damage induced by toxins, microorganisms and other forms of stress that occur at the interface with the external environment.
  • the transmembrane mucin 1 can also signal to the interior of the cell through its cytoplasmic domain.
  • MUC1 has no sequence similarity with other membrane-bound mucins, except for the presence of a sea urchin sperm protein-enterokinase-agrin (SEA) domain (Duraisamy et al., 2006). In that regard, MUC1 is translated as a single polypeptide and then undergoes autocleavage at the SEA domain (Macao et al., 2006).
  • SEA sea urchin sperm protein-enterokinase-agrin
  • MUC1 has been studied extensively by the inventors and others for its role in cancer. As discussed above, human MUC1 is heterodimeric glycoprotein, translated as a single polypeptide and cleaved into N- and C-terminal subunits (MUC1-N and MUC1-C) in the endoplasmic reticulum (Lipponberg et al., 1992; Macao et al., 2006; Levitin et al., 2005).
  • MUC1 Aberrant overexpression of MUC1, as found in most human carcinomas (Kufe et al., 1984), confers anchorage-independent growth and tumorigenicity (Li et al., 2003a; Huang et al., 2003; Schroeder et al., 2004; Huang et al., 2005). Other studies have demonstrated that overexpression of MUC1 confers resistance to apoptosis induced by oxidative stress and genotoxic anti-cancer agents (Yin and Kufe, 2003; Ren et al., 2004; Raina et al., 2004; Yin et al., 2004; Raina et al., 2006; Yin et al., 2007).
  • the family of tethered and secreted mucins functions in providing a protective barrier of the epithelial cell surface. With damage to the epithelial layer, the tight junctions between neighboring cells are disrupted, and polarity is lost as the cells initiate a heregulin-induced repair program (Vermeer et al., 2003). MUC1-N is shed from the cell surface (Abe and Kufe, 1989), leaving MUC1-C to function as a transducer of environmental stress signals to the interior of the cell.
  • MUC1-C forms cell surface complexes with members of the ErbB receptor family, and MUC1-C is targeted to the nucleus in the response to heregulin stimulation (Li et al., 2001; Li et al., 2003c).
  • MUC1-C also functions in integrating the ErbB receptor and Wnt signaling pathways through direct interactions between the MUC1 cytoplasmic domain (CD) and members of the catenin family (Huang et al., 2005; Li et al., 2003c; Yamamoto et al., 1997; Li et al., 1998; Li et al., 2001; Li and Kufe, 2001).
  • MUC1-CD is phosphorylated by glycogen synthase kinase 3p, c-Src, protein kinase CS, and c-Abl (Raina et al., 2006; Li et al., 1998; Li et al., 2001; Ren et al., 2002). Inhibiting any of the foregoing interactions represents a potential point of therapeutic intervention for MUC1-related cancers.
  • an antibody or fragment that binds selectively to MUC1-C extracellular domain defined by SEQ ID NO: 1, wherein said antibody comprises a variable heavy chain comprising CDR1, CDR2 and CDR3 regions of SEQ ID NOS: 3, 4, and 5, or 6, 7 and 8, and a variable light chain comprising CDR1, CDR2 and CDR3 regions comprising SEQ ID NOS: 9, 10 and 11, or 12, 13 and 14, respectively.
  • the antibody or fragment thereof may comprise variable heavy chain having 80% or more homology to SEQ ID NO: 15, 17, or 19, and a variable light chain having 80% or more homology to SEQ ID NO: 16, 18, or 20/25/26, respectively, or may comprise a variable heavy chain encoded by a nucleic acid having 70% or more homology to SEQ ID NO: 21, 23, or 27, and a variable light chain encoded by a nucleic acid having 70% or more homology to SEQ ID NO: 22, 24 or 28/29/30, respectively.
  • the antibody may be a single chain antibody, a single domain antibody, a bispecific antibody or a chimeric antibody.
  • the antibody fragment may a Fab fragment.
  • the antibody or fragment thereof may be a recombinant antibody or fragment thereof having specificity for the MUC1-C/ECD and a distinct cancer cell surface antigen.
  • the antibody may be murine antibody, an IgG, a humanized antibody, or a humanized IgG antibody.
  • the antibody or fragment thereof may further comprise a label.
  • the label may be a peptide tag, an enzyme, a magnetic particle, a chromophore, a fluorescent molecule, a chemiluminescent molecule, or a dye.
  • the antibody or fragment thereof may further comprise an antitumor drug linked thereto, such as where antitumor drug is linked to said antibody or fragment thereof through a photolabile linker, or said antitumor drug is linked to said antibody or fragment thereof through an enzymatically cleaved linker.
  • the antitumor drug may be a toxin, a radioisotope, a cytokine or an enzyme.
  • the heavy and light chains may have 85%, 90%, 95% or 99% homology to SEQ ID NO: 15, 17, or 19, and SEQ ID NO: 16, 18, or 20/25/26, respectively, or may be encoded by nucleic acids having 85%, 90%, 95% or 99% homology to SEQ ID NO: 21, 23, or 27, and SEQ ID NO: 22, 24 or 28/29/30, respectively.
  • the antibody or fragment thereof may be conjugated to a nanoparticle or a liposome.
  • the antibody or fragment thereof may induce of cell death comprises antibody-dependent cell cytotoxicity or complement-mediated cytoxicity.
  • Also provided is a method of treating cancer comprising contacting a MUC1-positive cancer cell in a subject with the antibody or fragment thereof that binds selectively to MUC1-C extracellular domain (MUC1-C/ECD) defined by SEQ ID NO: 1, wherein said antibody comprises a variable heavy chain comprising CDR1, CDR2 and CDR3 regions of SEQ ID NOS: 3, 4, and 5, or 6, 7 and 8, and a variable light chain comprising CDR1, CDR2 and CDR3 regions comprising SEQ ID NOS: 9, 10 and 11, or 12, 13 and 14, respectively.
  • MUC1-C/ECD MUC1-C extracellular domain
  • the antibody or fragment thereof may comprise variable heavy chain having 80% or more homology to SEQ ID NO: 15, 17, or 19, and a variable light chain having 80% or more homology to SEQ ID NO: 16, 18, or 20/25/26, respectively, or may comprise a variable heavy chain encoded by a nucleic acid having 70% or more homology to SEQ ID NO: 21, 23, or 27, and a variable light chain encoded by a nucleic acid having 70% or more homology to SEQ ID NO: 22, 24 or 28/29/30, respectively.
  • the antibody may be a single chain antibody, a single domain antibody, a bispecific antibody or a chimeric antibody.
  • the antibody fragment may a Fab fragment.
  • the antibody or fragment thereof may be a recombinant antibody or fragment thereof having specificity for the MUC1-C/ECD and a distinct cancer cell surface antigen.
  • the antibody may be murine antibody, an IgG, a humanized antibody, or a humanized IgG antibody.
  • the antibody or fragment thereof may further comprise a label.
  • the label may be a peptide tag, an enzyme, a magnetic particle, a chromophore, a fluorescent molecule, a chemiluminescent molecule, or a dye.
  • the antibody or fragment thereof may further comprise an antitumor drug linked thereto, such as where antitumor drug is linked to said antibody or fragment thereof through a photolabile linker, or said antitumor drug is linked to said antibody or fragment thereof through an enzymatically cleaved linker.
  • the antitumor drug may be a toxin, a radioisotope, a cytokine or an enzyme.
  • the heavy and light chains may have 85%, 90%, 95% or 99% homology to to SEQ ID NO: 15, 17, or 19, and SEQ ID NO: 16, 18, or 20/25/26, respectively, or may be encoded by nucleic acids having 85%, 90%, 95% or 99% homology to SEQ ID NO: 21, 23, or 27, and SEQ ID NO: 22, 24 or 28/29/30, respectively.
  • the antibody or fragment thereof may be conjugated to a nanoparticle or a liposome.
  • the antibody or fragment thereof may induce of cell death comprises antibody-dependent cell cytotoxicity or complement-mediated cytoxicity.
  • the MUC1-positive cancer cell may a solid tumor cell, such as a lung cancer cell, brain cancer cell, head & neck cancer cell, breast cancer cell, skin cancer cell, liver cancer cell (such as hepatocellular carcinoma), pancreatic cancer cell, stomach cancer cell, colon cancer cell, rectal cancer cell, uterine cancer cell, cervical cancer cell, ovarian cancer cell, testicular cancer cell, skin cancer cell, or esophageal cancer cell.
  • the MUC1-positive cancer cell may be a leukemia or myeloma, such as acute myeloid leukemia, chronic myelogenous leukemia or multiple myeloma.
  • the MUC1-positive cancer cell may be a metastatic cancer cell, a multiply drug resistant cancer cell or a recurrent cancer cell.
  • the method may further comprise contacting said MUC1-positive cancer cell with a second anti-cancer agent or treatment, such as chemotherapy, radiotherapy, immunotherapy, hormonal therapy, or toxin therapy.
  • a second anti-cancer agent or treatment such as chemotherapy, radiotherapy, immunotherapy, hormonal therapy, or toxin therapy.
  • the second anti-cancer agent or treatment may inhibit an intracellular MUC1 function.
  • the second anti-cancer agent or treatment may be given at the same time as said first agent or given before and/or after said first agent.
  • a method of treating a cancer involving human papilloma virus, such as cervical cancer, or involving H. pylori , such as gastric cancer comprising administering to a subject an antibody or fragment thereof that binds selectively to MUC1-C extracellular domain (MUC1-C/ECD) defined by SEQ ID NO: 1 as defined herein.
  • MUC1-C/ECD MUC1-C extracellular domain
  • a method of treating an inflammatory condition comprising administering to a subject an antibody or fragment thereof that binds selectively to MUC1-C extracellular domain (MUC1-C/ECD) defined by SEQ ID NO: 1 as defined herein.
  • MUC1-C/ECD MUC1-C extracellular domain
  • Such inflammatory conditions include acute and chronic inflammatory conditions, such as colitis, IBD, and IPF.
  • Inflammatory conditions would also include bacterial, viral, fungal and parasitic infections, such as SARS-Cov-2, human papilloma virus, and H. pylori.
  • MUC1-positive cancer may be a solid tumor cancer, such as a lung cancer, brain cancer, head & neck cancer, breast cancer, skin cancer, liver cancer, pancreatic cancer, stomach cancer, colon cancer, rectal cancer, uterine cancer, cervical cancer, ovarian cancer, testicular cancer, skin cancer, or esophageal cancer.
  • the MUC1-positive cancer may be a leukemia or myeloma, such as acute myeloid leukemia, chronic myelogenous leukemia or multiple myeloma.
  • the MUC-1 positive cancer may be hepatocellular carcinoma or cervical cancer caused by human papilloma virus.
  • the method may further comprise administering to said subject an anti-cancer agent or treatment, such as chemotherapy, radiotherapy, immunotherapy, hormonal therapy, or toxin therapy, including an antibody or fragment thereof that binds selectively to MUC1-C extracellular domain (MUC1-C/ECD) defined by SEQ ID NO: 1 as defined herein.
  • the MUC1-positive cancer may be is a metastatic cancer, a multiply drug resistant cancer or a recurrent cancer.
  • the cell-containing sample may be a solid tissue sample, such as a biopsy, or a fluid sample, such as urine, semen, sputum, saliva, nipple aspirate, or blood.
  • a pharmaceutical formulation comprising an antibody or fragment thereof that binds selectively to MUC1-C extracellular domain (MUC1-C/ECD) defined by SEQ ID NO: 1 as defined herein and a pharmaceutically acceptable carrier, buffer or diluent.
  • the pharmaceutical formulation may be further defined as vaccine formulation, optionally further comprising an adjuvant, or an immunohistochemistry reagent or a radioimaging agent.
  • the formulation may further comprise an additional therapeutic agent.
  • a fusion protein comprising (i) a first single chain antibody that binds selectively to MUC1-C/extracellular domain (ECD) defined by SEQ ID NO:1, wherein said antibody comprises a variable heavy chain comprising CDR1, CDR2 and CDR3 regions of SEQ ID NOS: 3, 4, and 5, or 6, 7 and 8, and a variable light chain comprising CDR1, CDR2 and CDR3 regions comprising SEQ ID NOS: 9, 10 and 11, or 12, 13 and 14, respectively; and (ii) a second single chain antibody that binds to a T or B cell.
  • ECD MUC1-C/extracellular domain
  • the second single chain antibody may bind to CD3, CD16, PD1, PD-L1, CD33, Her-2, EGFR, CTLA-4, OX40, Fc ⁇ RI (CD64), Fc ⁇ RIIIa (CD16A), Fc ⁇ RI (CD89), CD163, CD68, CD89 Mab.
  • the fusion protein may further comprise a label or a therapeutic moiety.
  • the heavy and light chains may have 85%, 90%, 95% or 99% homology to SEQ ID NO: 15, 17, or 19, and SEQ ID NO: 16, 18, or 20/25/26, respectively, or encoded by nucleic acids having 85%, 90%, 95% or 99% homology to SEQ ID NO: 21, 23, or 27, and SEQ ID NO: 22, 24 or 28/29/30, respectively.
  • a chimeric antigen receptor comprising (i) an ectodomain comprising single chain antibody variable region that binds selectively to MUC1-C/extracellular domain (MUC1-C/ECD) defined by SEQ ID NO:1, wherein said antibody comprises a variable heavy chain comprising CDR1, CDR2 and CDR3 regions of SEQ ID NOS: 3, 4, and 5, or 6, 7 and 8, and a variable light chain comprising CDR1, CDR2 and CDR3 regions comprising SEQ ID NOS: 9, 10 and 11, or 12, 13 and 14, respectively, with a flexible hinge attached at the C-terminus of said single chain antibody variable region; (ii) a transmembrane domain; and (iii) an endodomain, wherein said endodomain comprises a signal transduction function when said single-chain antibody variable region is engaged with MUC1.
  • MUC1-C/ECD MUC1-C/ECD
  • the transmembrane and endodomains may be derived from the same molecule.
  • the endodomain amy comprise a CD3-zeta domain or a high affinity Fc ⁇ RI.
  • the flexible hinge may be from CD8a or Ig.
  • the heavy and light chains may have 85%, 90%, 95% or 99% homology to SEQ ID NO: 15, 17, or 19, and SEQ ID NO: 16, 18, or 20/25/26, respectively, or may have 85%, 90%, 95% or 99% homology to SEQ ID NO: 21, 23, or 27, and SEQ ID NO: 22, 24 or 28/29/30, respectively.
  • the transmembrane and endodomains may be derived from the same molecule.
  • the endodomain may comprise a CD3-zeta domain or a high affinity Fc ⁇ RI.
  • the flexible hinge may be from CD8a or Ig.
  • FIGS. 1 A-D Antibody sequences.
  • FIG. 1 A GO-701m sequences.
  • FIG. 1 B GO-702m sequences.
  • FIG. 1 C GO-702h amino acid sequences.
  • FIG. 1 D GO-702h nucleic acid sequences.
  • FIG. 2 Affinity measurement of chimeric antibody and humanized antibody. Real-time responses were shown with curves. Fitting of Biacore experimental data to 1:1 interaction model was shown in black.
  • the antigen concentrations used for the top panel were 3.125 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, respectively.
  • the antigen concentrations used for the bottom panel were 1.875 nM, 3.75 nM, 7.5 nM, 15 nM, 30 nM, 60 nM respectively.
  • FIG. 3 SDS-PAGE results of selected antibody under non-reducing conditions.
  • Lane M (marker); Lane 1 (VH1+VL3); Lane 3 (VH1+VL4); Lane 5 (VH2+VL3); Lane 7 (VH5+VL1); Lane 9 (VH5+VL2); Lane 11 (VH5+VL3); Lane 13 (VH5+VH4).
  • Non-reducing conditions Lane 2 (VH1+VL3); Lane 4 (VH1+VL4); Lane 6 (VH2+VL3); Lane 8 (VH5+VL1); Lane 10 (VH5+VL2); Lane 12 (VH5+VL3); Lane 14 (VH5+VH4); Lane 15 (mouse IgG).
  • FIG. 4 Affinity measurement of Chimeric IgG and humanized IgGs. Real-time responses were shown with colored curves. Fitting of Biacore experimental data to 1:1 interaction model was shown in black. The antigen concentrations were 1.875 nM, 3.75 nM, 7.5 nM, 15 nM, 30 nM, 60 nM, respectively.
  • FIG. 5 Affinity comparison of Chimeric IgG and humanized IgGs by flow cytometry. Antibodies were incubated with HCT116/MUC1 cells and followed by incubation with secondary antibodies. Binding was analyzed by flow cytometry.
  • FIG. 6 Concentration dependent binding of mAbs to HCT116/MUC1. Wild-type and afucosylated (AF) forms of both GO-702m and GO-702m/hFc chimera that contains Fc from human IgG1 were incubated with the cells at different concentrations (as shown above) followed by incubation with anti-hIgG-Biotin+Streptavidin-PE or anti-mouse IgGk-FITC as secondary reagents. Binding efficiency was indicated as mean fluorescence Intensity (MFI) in a concentration dependent manner.
  • MFI mean fluorescence Intensity
  • FIG. 7 Unstained cells used as negative control for FIG. 6 .
  • FIGS. 8 A-B GO-702m targets the alpha-4 helix.
  • FIG. 8 A The aa sequences of the 58-aa human MUC1-C(SEQ ID NO: 2), cynomolgus monkey (SEQ ID NO: 38), and mouse (SEQ ID NO: 39) Muc1-C extracellular domains. The ⁇ 3 and ⁇ 4 helices are highlighted. Localization of the mAb GO-702m epitope to the ⁇ 4 helix, as shown by NMR spectroscopy of the p62/p58 heterodimer (Macao et al., 2006). ( FIG.
  • mAb GO-702m The indicated concentrations of mAb GO-702m were incubated with HCT116/vector or HCT116/MUC1 cells. Mean fluorescence intensity (MFI) was determined by flow cytometry. Binding of mAb GO-702m (middle bar in each column set) by ELISA to WT p58/p62 heterodimer and the S33A, R34G, Y35A, N36A mutant proteins for alpha-4 helix OR D19E/V20A/T22A mutant proteins for alpha-3 helix. mAb CD1 (right bar in each column set) was used as a control. MAb 3D1 (left bar in each column set) was used as a control for alpha-3-positive binding. The results are expressed as percentage control binding as compared with that obtained with the WT protein (>3.0 OD units).
  • FIG. 9 Binding of GO-702mFc chimeric mAbs to HCT116/MUC1. Wild-type chimera (GO-702m/hFc) and afucosylated form of the same that contains Fc from human IgG1 were incubated with the cells followed by incubation with anti-hIgG-Biotin +Streptavidin-PE or anti-mouse IgGk-FITC as secondary reagents. Binding efficiency was indicated as mean fluorescence Intensity (MFI).
  • MFI mean fluorescence Intensity
  • FIGS. 10 A-B Concentration dependent binding of GO-702h to mouse Fc receptor (FcRIV).
  • FIG. 10 A Wild-type and afucosylated (AF) forms of GO-702h were incubated with the cells at different concentrations (as shown above) followed by incubation with anti-human IgG-FITC as secondary reagents. Binding efficiency was indicated as mean fluorescence Intensity (MFI) in a concentration dependent manner.
  • MFI mean fluorescence Intensity
  • FIG. 11 Blood chemistry analysis of MUC1.Tg mice treated with the MAb (GO-702m-AF). Five mg/kg MAb afucosylated GO-702m was injected i.p in MUC1.Tg mice bearing MC-38/MUC1 tumors. Complete blood chemistry was performed to evaluate any toxicity of afucosylated GO-702m antibody.
  • FIG. 12 Hematology analysis of MUCT1-Tg mice treated with MAb (GO-702m-AF). Five mg/kg MAb afucosylated GO-702m was injected i.p in MUC1.Tg mice bearing MC-38/MUC1 tumors. Complete hematology analysis was performed to evaluate any toxicity of afucosylated GO-702m antibody.
  • FIG. 13 Binding of GO-702m, GO-702h and GO-701m antibodies to HCT116-MUC1 cells.
  • Antibody binding to HCT116 cells over-expressed with human MUC1 was analyzed by flow cytometry. Five ⁇ g of indicated anti-MUC1 antibody or isotype control was incubated with the cells for 60 minutes on ice.
  • FITC-conjugated goat F(ab′) 2 anti-mouse or anti-human immunoglobulin (depending on the primary antibody) was used as the secondary reagent.
  • Antibody binding to the cell surface was analyzed using FACS Canto II.
  • FIG. 14 Binding of wild-type and afucosylated GO-702h with HCT116/MUC1 cells. Antibody binding to HCT116 cells over-expressed with human MUC1 was analyzed by flow cytometry. GO-702h wild-type, GO-702h afucosylated or as negative control CD1 anti-MUC1 antibodies were incubated with the cells for 60 minutes on ice. FITC-conjugated goat F(ab′)2 anti-human immunoglobulin was used as the secondary reagent. Antibody binding to the cell surface was analyzed using FACS Canto II.
  • FIG. 15 Flow Cytometry of GO-702m with HCT116+MUC-1. Antibody binding to HCT116 cells with no MUC1 (Black) and HCT116 cells over-expressed with human MUC1 (grey) was analyzed by flow cytometry. GO-702m anti-MUC1 antibody was incubated with the cells for 60 minutes on ice. FITC-conjugated goat F(ab′) 2 anti-mouse immunoglobulin was used as the secondary reagent. Antibody binding to the cell surface was analyzed using FACS Canto II.
  • FIG. 16 Flow Cytometry of GO-702m in ZR-75-1 cells. Antibody binding to ZR-75-1 breast cancer cell line. GO-702m anti-MUC1 antibody (grey) or as negative control MUC1 CD1 antibody (black) was incubated with the cells for 60 minutes on ice. FITC-conjugated goat F(ab′) 2 anti-mouse immunoglobulin was used as the secondary reagent. Antibody binding to the cell surface was analyzed using FACS Canto II.
  • FIG. 17 Flow Cytometry of GO-702m in MCF-7/CshRNA vs MCF-7/MUC1shRNA.
  • Antibody binding to MCF-7/MUC1shRNA (black) or MCF-7/CshRNA (grey) cells was analyzed by flow cytometry.
  • GO-702m anti-MUC1 antibody was incubated with the cells for 60 minutes on ice.
  • FITC-conjugated goat F(ab′) 2 anti-mouse immunoglobulin was used as the secondary reagent.
  • Antibody binding to the cell surface was analyzed using FACS Canto II.
  • FIG. 18 Flow Cytometry of GO-702m in H-1975 NSCLC cells. Antibody binding to H-1975 NSCLC cell line. GO-702m anti-MUC1 antibody (grey) or IgG as negative control (black) was incubated with the cells for 60 minutes on ice. FITC-conjugated goat F(ab′) 2 anti-mouse immunoglobulin was used as the secondary reagent. Antibody binding to the cell surface was analyzed using FACS Canto II.
  • FIG. 19 Flow Cytometry of GO-702m in MDA-MB-468 CshRNA/MUC1shRNA. Antibody binding to MDA-MB-468/MUCshRNA (right side grey peak) or MDA-MB-468/CshRNA (left said grey peak) cells was analyzed by flow cytometry. IgG used as negative control (left side black peak). GO-702m anti-MUC1 antibody was incubated with the cells for 60 minutes on ice. FITC-conjugated goat F(ab′) 2 anti-mouse immunoglobulin was used as the secondary reagent. Antibody binding to the cell surface was analyzed using FACS Canto II.
  • FIG. 20 ADCC Activity of GO-702m (circles) and GO-702m-AF (HCT-MUC1; squares). HCT116/MUC1 cells in a 96-well plate was incubated with Jurkat cells (in which antibody binding to FcRIV is linked to NFAT-mediated luciferase expression) as the effector cells at the E:T ratio of 20:1 for 6 hrs in the presence of indicated antibodies starting from 1 ⁇ g/ml with 3-fold serial dlution. Luciferase activity was measured using luciferin as the substrate and plotted against concentration using Microsoft Excel.
  • FIG. 21 ADCC Activity of GO-702m-IgG2a on BT549.
  • BT549 cells in a 96-well plate was incubated with Jurkat cells (in which antibody binding to FcRIV is linked to NFAT-mediated luciferase expression) as the effector cells at the E:T ratio of 20:1 for 6 hrs in the presence of indicated antibodies starting from 1 ⁇ g/ml with 3-fold serial dlution.
  • FIG. 22 Efficacy of afucosylated GO-702m in MUC1.Tg mice with MC-38/MUC1 tumors.
  • MC-38 overexpressing MUC1 cells were injected into MUC1.Tg mice. After 10-12 days, the mice were randomized into 2 different groups.
  • Group 1 vehicle control;
  • group 2 afucosylated GO-702m antibody 5 mg/kg once a week ⁇ 3 weeks IP. Tumor measurements were taken every other day.
  • Diamonds vehicle control group (curve shown as mean tumors for the group) and Circles: afucosylated GO-702m (curves shown for individual mouse). There was no significant change in the body weights. Efficacy is shown up to 84 days.
  • FIG. 23 ADCC in vitro studies with hGO702-AF antibody in comparison with hGO-702 in HCT116/MUC1 colon carcinoma cells.
  • HCT116/MUC1 cells in a 96-well plate was incubated with Jurkat cells (in which antibody binding to FcRIV is linked to NFAT-mediated luciferase expression) as the effector cells at the E:T ratio of 20:1 for 6 hrs in the presence of indicated antibodies starting from 1 ⁇ g/ml with 3-fold serial dlution. Luciferase activity was measured using luciferin as the substrate and plotted against concentration.
  • FIG. 24 ADCC in vivo studies with hGO702-AF antibody in comparison with hGO-702.
  • Six- to eight-week-old C57BL/6 mice were injected subcutaneously in the flank with 5 ⁇ 10 5 MC38/MUC1, mouse colon carcinoma cells expressing human MUC1 (MC38/MUC1) in 100 ⁇ l of DMEM culture medium.
  • Mice were randomized into two treatment groups (6 mice for hGO-702-WT group and 7 mice for hGO-702 afucosylated (AF) group).
  • mice When the mean tumor volume reached 70-130 mm 3 , mice were treated with 5 mg/kg of afucosylated humanized GO-702 (hGO-702-AF) or wild-type humanized GO-702 (hGO-702-WT) once a week for 3 weeks TP. Tumor measurements and body weights were recorded every other day. Mice were sacrificed when tumors reached>2,000 mm 3 as calculated by the following formula: (width) 2 X length/2. The results are expressed as tumor volumes (mean ⁇ SEM) against days of treatment.
  • the inventors have generated antibodies against a 58 amino acid non-shed portion of the external domain of the MUC1-C protein. These antibodies have ben demonstrated to bind selectively to this portion of MUC1-C, and as such, present an opportunity to block the activity of MUC1 following cleavage of the N-terminal region. They also can be used to deliver therapeutic payloads to MUC1-expressing cancer cells even following the cleavage of the N-terminal MUC1 domain.
  • MUC1 is a mucin-type glycoprotein that is expressed on the apical borders of normal secretory epithelial cells (Kufe et al., 1984). MUC1 forms a heterodimer following synthesis as a single polypeptide and cleavage of the precursor into two subunits in the endoplasmic reticulum (Lipponberg et al., 1992). The cleavage may be mediated by an autocatalytic process (Levitan et al., 2005).
  • MUC1 N-terminal (MUC1 N-ter, MUC1-N) subunit contains variable numbers of 20 amino acid tandem repeats that are imperfect with highly conserved variations and are modified by O-linked glycans (Gendler et al., 1988; Siddiqui et al., 1988).
  • MUC1-N is tethered to the cell surface by dimerization with the ⁇ 23 kDa C-terminal subunit (MUC1 C-ter, MUC1-C), which includes a 72-amino acid cytoplasmic domain (MUC1-C/CD), a 28 amino acid transmembrane domain (MUC1-C/TMD), a 58 amino acid extracellular domain (MUC1-C/ECD) followed by a 62 amino acid region the dimerizes together to form a SEA domain (Merlo et al., 1989). It is the 58 amino acid portion of the MUC1-C/ECD (italics) plays a major role in binding to the antibodies of the present disclosure.
  • the human MUC1-C sequence is shown below:
  • MUC1-C is targeted to endosomes by clathrin-mediated endocytosis (Kinlough et al., 2004).
  • MUC1-C is targeted to the nucleus (Baldus et al., 2004; Huang et al., 2003; Li et al., 2003a; Li et al., 2003b; Li et al., 2003c; Wei et al., 2005; Wen et al., 2003) and mitochondria (Ren et al., 2004).
  • MUC1-C interacts with members of the ErbB receptor family (Li et al., 2001b; Li et al., 2003c; Schroeder et al., 2001) and with the Wnt effector, ⁇ -catenin (Yamamoto et al., 1997).
  • the epidermal growth factor receptor and c-Src phosphorylate the MUC1 cytoplasmic domain (MUC1-CD) on Y-46 and thereby increase binding of MUC1 and ⁇ -catenin (Li et al., 2001a; Li et al., 2001b).
  • MUC1 and ⁇ -catenin are also regulated by glycogen synthase kinase 3 ⁇ and protein kinase C ⁇ (Li et al., 1998; Ren et al., 2002).
  • MUC1 colocalizes with ⁇ -catenin in the nucleus (Baldus et al., 2004; Li et al., 2003a; Li et al., 2003c; Wen et al., 2003) and coactivates transcription of Wnt target genes (Huang et al., 2003).
  • Other studies have shown that MUC1 also binds directly to p53 and regulates transcription of p53 target genes (Wei et al., 2005).
  • MUC1-C overexpression of MUC1-C is sufficient to induce anchorage-independent growth and tumorigenicity (Huang et al., 2003; Li et al., 2003b; Ren et al., 2002; Schroeder et al., 2004).
  • the term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations that include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies. The modifier “monoclonal” is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies useful in the present disclosure may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495 (1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Pat. No. 4,816,567) after single cell sorting of an antigen specific B cell, an antigen specific plasmablast responding to an infection or immunization, or capture of linked heavy and light chains from single cells in a bulk sorted antigen specific collection.
  • the “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.
  • an “isolated antibody” is one that has been separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
  • the antibody is purified: (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most particularly more than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator; or (3) to homogeneity by SDS-PAGE under reducing or non-reducing conditions using Coomassie blue or silver stain.
  • Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.
  • the basic four-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains.
  • An IgM antibody consists of 5 basic heterotetramer units along with an additional polypeptide called J chain, and therefore contain 10 antigen binding sites, while secreted IgA antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain.
  • the 4-chain unit is generally about 150,000 daltons.
  • Each L chain is linked to an H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype.
  • Each H and L chain also has regularly spaced intrachain disulfide bridges.
  • Each H chain has at the N-terminus, a variable region (V H ) followed by three constant domains (C H ) for each of the alpha and gamma chains and four C H domains for mu and isotypes.
  • Each L chain has at the N-terminus, a variable region (V L ) followed by a constant domain (C L ) at its other end.
  • the V L is aligned with the V H and the C L is aligned with the first constant domain of the heavy chain (C H1 ).
  • Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable regions.
  • the pairing of a V H and V L together forms a single antigen-binding site.
  • immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated alpha, delta, epsilon, gamma and mu, respectively.
  • gamma and alpha classes are further divided into subclasses on the basis of relatively minor differences in C H sequence and function, humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.
  • variable refers to the fact that certain segments of the V domains differ extensively in sequence among antibodies.
  • the V domain mediates antigen binding and defines specificity of a particular antibody for its particular antigen.
  • variability is not evenly distributed across the 110-amino acid span of the variable regions.
  • the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called “hypervariable regions” that are each 9-12 amino acids long.
  • FRs framework regions
  • hypervariable regions that are each 9-12 amino acids long.
  • the variable regions of native heavy and light chains each comprise four FRs, largely adopting a beta-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the beta-sheet structure.
  • the hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)).
  • the constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP), and antibody-dependent complement deposition (ADCD).
  • hypervariable region when used herein refers to the amino acid residues of an antibody that are responsible for antigen binding.
  • the hypervariable region generally comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g., around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the V L , and around about 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the V H when numbered in accordance with the Kabat numbering system; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md.
  • CDR complementarity determining region
  • residues from a “hypervariable loop” e.g., residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the V L , and 26-32 (H1), 52-56 (H2) and 95-101 (H3) in the V H when numbered in accordance with the Chothia numbering system; Chothia and Lesk, J. Mol. Biol.
  • residues from a “hypervariable loop”/CDR e.g., residues 27-38 (L1), 56-65 (L2) and 105-120 (L3) in the V L , and 27-38 (H1), 56-65 (H2) and 105-120 (H3) in the V H when numbered in accordance with the IMGT numbering system; Lefranc, M. P. et al. Nucl. Acids Res. 27:209-212 (1999), Ruiz, M. et al. Nucl. Acids Res. 28:219-221 (2000)).
  • the antibody has symmetrical insertions at one or more of the following points 28, 36 (L1), 63, 74-75 (L2) and 123 (L3) in the V L , and 28, 36 (H1), 63, 74-75 (H2) and 123 (H3) in the V sub H when numbered in accordance with AHo; Honneger, A. and Plunkthun, A. J. Mol. Biol. 309:657-670 (2001).
  • germline nucleic acid residue is meant the nucleic acid residue that naturally occurs in a germline gene encoding a constant or variable region.
  • “Germline gene” is the DNA found in a germ cell (i.e., a cell destined to become an egg or in the sperm).
  • a “germline mutation” refers to a heritable change in a particular DNA that has occurred in a germ cell or the zygote at the single-cell stage, and when transmitted to offspring, such a mutation is incorporated in every cell of the body.
  • a germline mutation is in contrast to a somatic mutation which is acquired in a single body cell.
  • nucleotides in a germline DNA sequence encoding for a variable region are mutated (i.e., a somatic mutation) and replaced with a different nucleotide.
  • Antibodies to the MUC1-C/ECD may be produced by standard methods as are well known in the art (see, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; U.S. Pat. No. 4,196,265).
  • the methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies.
  • the first step for both these methods is immunization of an appropriate host or identification of subjects who are immune due to prior natural infection.
  • a given composition for immunization may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen to a carrier.
  • Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers.
  • Means for conjugating a polypeptide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimide and bis-biazotized benzidine.
  • the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants.
  • Exemplary and preferred adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis ), incomplete Freund's adjuvants and aluminum hydroxide adjuvant.
  • the amount of immunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization.
  • a variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal).
  • the production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster injection, also may be given. The process of boosting and titering is repeated until a suitable titer is achieved.
  • the immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate MAbs.
  • somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens or lymph nodes, or from circulating blood. The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized or human or human/mouse chimeric cells.
  • B lymphocytes B lymphocytes
  • Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render then incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).
  • any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, pp. 65-66, 1986; Campbell, pp. 75-83, 1984).
  • the immunized animal is a mouse
  • P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.
  • NS-1 myeloma cell line also termed P3-NS-1-Ag4-1
  • Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.
  • additional fusion partner lines for use with human B cells including KR12 (ATCC CRL-8658; K6H6/B5 (ATCC CRL-1823 SHM-D33 (ATCC CRL-1668) and HMMA2.5 (Posner et al., 1987).
  • KR12 ATCC CRL-8658
  • K6H6/B5 ATCC CRL-1823 SHM-D33
  • HMMA2.5 Hesner et al., 1987.
  • the antibodies in this disclosure were generated using the SP2/0/mIL-6 cell line, an IL-6 secreting derivative of the SP2/0 line.
  • Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 proportion, though the proportion may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes.
  • Fusion methods using Sendai virus have been described by Kohler and Milstein (1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, by Gefter et al. (1977).
  • PEG polyethylene glycol
  • the use of electrically induced fusion methods also is appropriate (Goding, pp. 71-74, 1986).
  • Fusion procedures usually produce viable hybrids at low frequencies, about 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 8 . However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, infused cells (particularly the infused myeloma cells that would normally continue to divide indefinitely) by culturing in a selective medium.
  • the selective medium is generally one that contains an agent that blocks the de novo synthesis of nucleotides in the tissue culture media.
  • Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis.
  • the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium).
  • HAT medium a source of nucleotides
  • azaserine is used, the media is supplemented with hypoxanthine.
  • Ouabain is added if the B cell source is an Epstein Barr virus (EBV) transformed human B cell line, in order to eliminate EBV transformed lines that have not fused to the myeloma.
  • EBV Epstein Barr virus
  • the preferred selection medium is HAT or HAT with ouabain. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium.
  • the myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive.
  • HPRT hypoxanthine phosphoribosyl transferase
  • the B cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells.
  • EBV-transformed B cells When the source of B cells used for fusion is a line of EBV-transformed B cells, as here, ouabain is also used for drug selection of hybrids as EBV-transformed B cells are susceptible to drug killing, whereas the myeloma partner used is chosen to be ouabain resistant.
  • Culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity.
  • the assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays dot immunobinding assays, and the like.
  • the selected hybridomas are then serially diluted or single cell sorted by flow cytometric sorting and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to provide mAbs.
  • the cell lines may be exploited for MAb production in two basic ways.
  • a sample of the hybridoma can be injected (often into the peritoneal cavity) into an animal (e.g., a mouse).
  • the animals are primed with a hydrocarbon, especially oils such as pristane (tetramethylpentadecane) prior to injection.
  • pristane tetramethylpentadecane
  • the injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid.
  • the body fluids of the animal such as serum or ascites fluid, can then be tapped to provide MAbs in high concentration.
  • the individual cell lines could also be cultured in vitro, where the MAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations.
  • human hybridoma cells lines can be used in vitro to produce immunoglobulins in cell supernatant.
  • the cell lines can be adapted for growth in serum-free medium to optimize the ability to recover human monoclonal immunoglobulins of high purity.
  • MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as FPLC or affinity chromatography.
  • Fragments of the monoclonal antibodies of the disclosure can be obtained from the purified monoclonal antibodies by methods which include digestion with enzymes, such as pepsin or papain, and/or by cleavage of disulfide bonds by chemical reduction.
  • monoclonal antibody fragments encompassed by the present disclosure can be synthesized using an automated peptide synthesizer.
  • RNA can be isolated from the hybridoma line and the antibody genes obtained by RT-PCR and cloned into an immunoglobulin expression vector.
  • combinatorial immunoglobulin phagemid libraries are prepared from RNA isolated from the cell lines and phagemids expressing appropriate antibodies are selected by panning using viral antigens.
  • Antibodies according to the present disclosure may be defined, in the first instance, by their binding specificity, i.e., the epitope to which the antibody binds.
  • epitope refers to a site on an antigen to which B and/or T cells respond.
  • B-cell epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein, Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents
  • An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation.
  • the major part of the epitope is found in MIUC1-C/ECD, in particular: SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGA G (SEQ ID NO: 2).
  • MAP Modification-Assisted Profiling
  • SAP Antigen Structure-based Antibody Profiling
  • mAbs monoclonal antibodies
  • Each category may reflect a unique epitope either distinctly different from or partially overlapping with epitope represented by another category.
  • This technology allows rapid filtering of genetically identical antibodies, such that characterization can be focused on genetically distinct antibodies.
  • MAP may be used to sort the antibodies of the disclosure into groups of antibodies binding different epitopes.
  • the present disclosure includes antibodies that may bind to the same epitope, or a portion of the epitope. Likewise, the present disclosure also includes antibodies that compete for binding to a target or a fragment thereof with any of the specific exemplary antibodies described herein.
  • One can easily determine whether an antibody binds to the same epitope as, or competes for binding with, a reference antibody by using routine methods known in the art For example, to determine if a test antibody binds to the same epitope as a reference, the reference antibody is allowed to bind to target under saturating conditions. Next, the ability of a test antibody to bind to the target molecule is assessed.
  • test antibody If the test antibody is able to bind to the target molecule following saturation binding with the reference antibody, it can be concluded that the test antibody binds to a different epitope than the reference antibody. On the other hand, if the test antibody is not able to bind to the target molecule following saturation binding with the reference antibody, then the test antibody may bind to the same epitope as the epitope bound by the reference antibody.
  • the above-described binding methodology is performed in two orientations: In a first orientation, the reference antibody is allowed to bind to the MUC1 antigen under saturating conditions followed by assessment of binding of the test antibody to the MUC1 molecule. In a second orientation, the test antibody is allowed to bind to the MUC1 antigen molecule under saturating conditions followed by assessment of binding of the reference antibody to the MUC1 molecule. If, in both orientations, only the first (saturating) antibody is capable of binding to the MUC1, then it is concluded that the test antibody and the reference antibody compete for binding to the MUC1.
  • an antibody that competes for binding with a reference antibody may not necessarily bind to the identical epitope as the reference antibody but may sterically block binding of the reference antibody by binding an overlapping or adjacent epitope;
  • Two antibodies bind to the same or overlapping epitope if each competitively inhibits (blocks) binding of the other to the antigen. That is, a 1-, 5-, 10-20- or 100-fold excess of one antibody inhibits binding of the other by at least. 50% but preferably 75%, 90% or even 99% as measured in a competitive binding assay (see, e.g., Junghans et al., Cancer Res. 1990 50:1495 ⁇ 1502).
  • two antibodies have the same epitope if essentially all amino acid mutations in the antigen that reduce or eliminate binding of one antibody reduce or eliminate binding of the other
  • Two antibodies have overlapping epitopes if some amino acid mutations that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.
  • Additional routine experimentation e.g. peptide mutation and binding analyses
  • peptide mutation and binding analyses can then be carried out to confirm whether the observed lack of binding of the test antibody is in fact due to binding to the same epitope as the reference antibody or if steric blocking (or another phenomenon) is responsible for the lack of observed binding.
  • steric blocking or another phenomenon
  • Structural studies with EM or crystallography also can demonstrate whether or not two antibodies that compete for binding recognize the same epitope.
  • the antibody is an Immunoglobulin G (IgG) antibody isotype. Representing approximately 75% of serum immunoglobulins in humans, IgG is the most abundant antibody isotype found in the circulation. IgG molecules are synthesized and secreted by plasma B cells. There are four IgG subclasses (IgG1, 2, 3, and 4) in humans, named in order of their abundance in serum (IgG1 being the most abundant). The range from having high to no affinity for the Fc receptor.
  • IgG Immunoglobulin G
  • IgG is the main antibody isotype found in blood and extracellular fluid allowing it to control infection of body tissues. By binding many kinds of pathogens-representing viruses, bacteria, and fungi-IgG protects the body from infection. It does this via several immune mechanisms: IgG-mediated binding of pathogens causes their immobilization and binding together via agglutination; IgG coating of pathogen surfaces (known as opsonization) allows their recognition and ingestion by phagocytic immune cells; IgG activates the classical pathway of the complement system, a cascade of immune protein production that results in pathogen elimination; IgG also binds and neutralizes toxins.
  • IgG also plays an important role in antibody-dependent cell-mediated cytotoxicity (ADCC) and intracellular antibody-mediated proteolysis, in which it binds to TRIM21 (the receptor with greatest affinity to IgG in humans) in order to direct marked virions to the proteasome in the cytosol.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • IgG is also associated with Type II and Type III Hypersensitivity.
  • IgG antibodies are generated following class switching and maturation of the antibody response and thus participate predominantly in the secondary immune response.
  • IgG is secreted as a monomer that is small in size allowing it to easily perfuse tissues. It is the only isotype that has receptors to facilitate passage through the human placenta.
  • IgG is a high percentage of IgG, especially bovine colostrum. In individuals with prior immunity to a pathogen, IgG appears about 24-48 hours after antigenic stimulation.
  • the antibodies may be defined by their variable sequences that determine their binding specificity. Examples are provided below:
  • amino sequences may vary from those set out above in that (a) the variable regions may be segregated away from the constant domains of the light chains, (b) the amino acids may vary from those set out above while not drastically affecting the chemical properties of the residues thereby (so-called conservative substitutions), (c) the amino acids may vary from those set out above by a given percentage, e.g., 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% homology.
  • a given percentage e.g., 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% homology.
  • the nucleic acids encoding the antibodies may (a) be segregated away from the constant domains of the light chains, (b) vary from those set out above while not changing the residues coded thereby, (c) may vary from those set out above by a given percentage, e.g., 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% homology, or (d) vary from those set out above by virtue of the ability to hybridize under high stringency conditions, as exemplified by low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C.
  • the hydropathic index of amino acids may be considered.
  • the importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
  • hydrophilicity values have been assigned to amino acid residues: basic amino acids: arginine (+3.0), lysine (+3.0), and histidine ( ⁇ 0.5); acidic amino acids: aspartate (+3.0 ⁇ 1), glutamate (+3.0 ⁇ 1), asparagine (+0.2), and glutamine (+0.2); hydrophilic, nonionic amino acids: serine (+0.3), asparagine (+0.2), glutamine (+0.2), and threonine ( ⁇ 0.4), sulfur containing amino acids: cysteine ( ⁇ 1.0) and methionine ( ⁇ 1.3); hydrophobic, nonaromatic amino acids: valine ( ⁇ 1.5), leucine ( ⁇ 1.8), isoleucine ( ⁇ 1.8), proline ( ⁇ 0.5 ⁇ 1), alanine ( ⁇ 0.5), and glycine (0); hydrophobic, aromatic amino acids: tryptophan ( ⁇ 3.4), phenylalanine ( ⁇ 2.5), and tyrosine ( ⁇ 2.3).
  • an amino acid can be substituted for another having a similar hydrophilicity and produce a biologically or immunologically modified protein.
  • substitution of amino acids whose hydrophilicity values are within +2 is preferred, those that are within +1 are particularly preferred, and those within +0.5 are even more particularly preferred.
  • amino acid substitutions generally are based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like.
  • Exemplary substitutions that take into consideration the various foregoing characteristics are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.
  • Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wis.), using default parameters.
  • This program embodies several alignment schemes described in the following references: Dayhoff, M. O. (1978) A model of evolutionary change in proteins-Matrices for detecting distant relationships. In Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington D.C. Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogeny pp. 626-645 Methods in Enzymology vol.
  • optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) Add. APL. Math 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by inspection.
  • BLAST and BLAST 2.0 are described in Altschul et al. (1977) Nucl. Acids Res. 25:3389-3402 and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively.
  • BLAST and BLAST 2.0 can be used, for example, with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides of the disclosure.
  • Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. The rearranged nature of an antibody sequence and the variable length of each gene requires multiple rounds of BLAST searches for a single antibody sequence.
  • IgBLAST (world-wide-web at ncbi.nlm.nih.gov/igblast/) identifies matches to the germline V, D and J genes, details at rearrangement junctions, the delineation of Ig V domain framework regions and complementarity determining regions.
  • IgBLAST can analyze nucleotide or protein sequences and can process sequences in batches and allows searches against the germline gene databases and other sequence databases simultaneously to minimize the chance of missing possibly the best matching germline V gene.
  • cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always ⁇ 0). Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.
  • a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.
  • the “percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences.
  • the percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residues occur in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.
  • an antibody is as a “derivative” of any of the below-described antibodies and their antigen-binding fragments.
  • the term “derivative” refers to an antibody or antigen-binding fragment thereof that immunospecifically binds to an antigen but which comprises, one, two, three, four, five or more amino acid substitutions, additions, deletions or modifications relative to a “parental” (or wild-type) molecule.
  • Such amino acid substitutions or additions may introduce naturally occurring (i.e., DNA-encoded) or non-naturally occurring amino acid residues.
  • derivative encompasses, for example, as variants having altered CH1, hinge, CH2, CH3 or CH4 regions, so as to form, for example, antibodies, etc., having variant Fc regions that exhibit enhanced or impaired effector or binding characteristics.
  • derivative additionally encompasses non-amino acid modifications, for example, amino acids that may be glycosylated (e.g., have altered mannose, 2-N-acetylglucosamine, galactose, fucose, glucose, sialic acid, 5-N-acetylneuraminic acid, 5-glycolneuraminic acid, etc.
  • the altered carbohydrate modifications modulate one or more of the following: solubilization of the antibody, facilitation of subcellular transport and secretion of the antibody, promotion of antibody assembly, conformational integrity, and antibody-mediated effector function.
  • the altered carbohydrate modifications enhance antibody mediated effector function relative to the antibody lacking the carbohydrate modification.
  • Carbohydrate modifications that lead to altered antibody mediated effector function are well known in the art (for example, see Shields, R. L. et al. (2002), J.
  • a derivative antibody or antibody fragment can be generated with an engineered sequence or glycosylation state to confer preferred levels of activity in antibody dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP), or antibody-dependent complement deposition (ADCD) functions as measured by bead-based or cell-based assays or in vivo studies in animal models.
  • ADCC antibody dependent cellular cytotoxicity
  • ADCP antibody-dependent cellular phagocytosis
  • ADNP antibody-dependent neutrophil phagocytosis
  • ADCD antibody-dependent complement deposition
  • a derivative antibody or antibody fragment may be modified by chemical modifications using techniques known to those of skill in the art, including, but not limited to, specific chemical cleavage, acetylation, formulation, metabolic synthesis of tunicamycin, etc.
  • an antibody derivative will possess a similar or identical function as the parental antibody. In another embodiment, an antibody derivative will exhibit an altered activity relative to the parental antibody. For example, a derivative antibody (or fragment thereof) can bind to its epitope more tightly or be more resistant to proteolysis than the parental antibody.
  • IgM antibodies may be converted to IgG antibodies. The following is a general discussion of relevant techniques for antibody engineering.
  • Hybridomas may be cultured, then cells lysed, and total RNA extracted. Random hexamers may be used with RT to generate cDNA copies of RNA, and then PCR performed using a multiplex mixture of PCR primers expected to amplify all human variable gene sequences. PCR product can be cloned into pGEM-T Easy vector, then sequenced by automated DNA sequencing using standard vector primers. Assay of binding and neutralization may be performed using antibodies collected from hybridoma supernatants and purified by FPLC, using Protein G columns.
  • Recombinant full-length IgG antibodies can be generated by subcloning heavy and light chain Fv DNAs from the cloning vector into a Lonza pConIgG1 or pConK2 plasmid vector, transfected into 293 Freestyle cells or Lonza CHO cells, and collected and purified from the CHO cell supernatant.
  • Lonza has developed a generic method using pooled transfectants grown in CDACF medium, for the rapid production of small quantities (up to 50 g) of antibodies in CHO cells. Although slightly slower than a true transient system, the advantages include a higher product concentration and use of the same host and process as the production cell line.
  • pCon VectorsTM are an easy way to re-express whole antibodies.
  • the constant region vectors are a set of vectors offering a range of immunoglobulin constant region vectors cloned into the pEE vectors. These vectors offer easy construction of full-length antibodies with human constant regions and the convenience of the GS SystemTM
  • Antibody molecules will comprise fragments (such as F(ab′), F(ab′) 2 ) that are produced, for example, by the proteolytic cleavage of the mAbs, or single-chain immunoglobulins producible, for example, via recombinant means. Such antibody derivatives are monovalent. In one embodiment, such fragments can be combined with one another, or with other antibody fragments or receptor ligands to form “chimeric” binding molecules. Significantly, such chimeric molecules may contain substituents capable of binding to different epitopes of the same molecule.
  • Humanized antibodies produced in non-human hosts in order to attenuate any immune reaction when used in human therapy.
  • Such humanized antibodies may be studied in an in vitro or an in vivo context.
  • Humanized antibodies may be produced, for example by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (i.e., chimeric antibodies).
  • Humanized chimeric antibodies are provided by Morrison (1985); also incorporated herein by reference. “Humanized” antibodies can alternatively be produced by CDR or CEA substitution. Jones et al. (1986); Verhoeyen et al. (1988); Beidler et al. (1988); all of which are incorporated herein by reference.
  • the antibody is a derivative of the disclosed antibodies, e.g., an antibody comprising the CDR sequences identical to those in the disclosed antibodies (e.g., a chimeric, humanized or CDR-grafted antibody).
  • the antibody is a fully human recombinant antibody.
  • Fc modification The present disclosure also contemplates isotype modification.
  • isotype modification By modifying the Fc region to have a different isotype, different functionalities can be achieved. For example, changing to IgG 1 can increase antibody dependent cell cytotoxicity, switching to class A can improve tissue distribution, and switching to class M can improve valency.
  • binding polypeptide of particular interest may be one that binds to C1q and displays complement dependent cytotoxicity.
  • Polypeptides with pre-existing C1q binding activity, optionally further having the ability to mediate CDC may be modified such that one or both of these activities are enhanced.
  • Amino acid modifications that alter C1q and/or modify its complement dependent cytotoxicity function are described, for example, in WO/0042072, which is hereby incorporated by reference.
  • effector functions are responsible for activating or diminishing a biological activity (e.g., in a subject). Examples of effector functions include, but are not limited to: C1q binding; complement dependent cytotoxicity (CDC); Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor; BCR), etc.
  • Such effector functions may require the Fc region to be combined with a binding domain (e.g., an antibody variable domain) and can be assessed using various assays (e.g., Fc binding assays, ADCC assays, CDC assays, etc.).
  • a binding domain e.g., an antibody variable domain
  • assays e.g., Fc binding assays, ADCC assays, CDC assays, etc.
  • a variant Fc region of an antibody with improved C1q binding and improved Fc ⁇ RIII binding e.g., having both improved ADCC activity and improved CDC activity.
  • a variant Fc region can be engineered with reduced CDC activity and/or reduced ADCC activity.
  • only one of these activities may be increased, and, optionally, also the other activity reduced (e.g., to generate an Fc region variant with improved ADCC activity, but reduced CDC activity and vice versa).
  • FcRn binding Fc mutations can also be introduced and engineered to alter their interaction with the neonatal Fc receptor (FcRn) and improve their pharmacokinetic properties.
  • FcRn neonatal Fc receptor
  • a collection of human Fc variants with improved binding to the FcRn have been described (Shields et al., (2001). High resolution mapping of the binding site on human IgG1 for Fc ⁇ RI, Fc ⁇ RII, Fc ⁇ RIII, and FcRn and design of IgG1 variants with improved binding to the Fc ⁇ R, (J. Biol. Chem. 276:6591-6604).
  • amino acid modifications may be generated through techniques including alanine scanning mutagenesis, random mutagenesis and screening to assess the binding to the neonatal Fc receptor (FcRn) and/or the in vivo behavior.
  • Computational strategies followed by mutagenesis may also be used to select one of amino acid mutations to mutate.
  • the present disclosure therefore provides a variant of an antigen binding protein with optimized binding to FcRn.
  • the said variant of an antigen binding protein comprises at least one amino acid modification in the Fc region of said antigen binding protein, wherein said modification is selected from the group consisting of 226, 227, 228, 230, 231, 233, 234, 239, 241, 243, 246, 250, 252, 256, 259, 264, 265, 267, 269, 270, 276, 284, 285, 288, 289, 290, 291, 292, 294, 297, 298, 299, 301, 302, 303, 305, 307, 308, 309, 311, 315, 317, 320, 322, 325, 327, 330, 332, 334, 335, 338, 340, 342, 343, 345, 347, 350, 352, 354, 355, 356, 359, 360, 361, 362, 369, 370, 371, 375, 378, 380, 382, 384, 3
  • Derivatized antibodies may be used to alter the half-lives (e.g., serum half-lives) of parental antibodies in a mammal, particularly a human. Such alterations may result in a half-life of greater than 15 days, preferably greater than 20 days, greater than 25 days, greater than 30 days, greater than 35 days, greater than 40 days, greater than 45 days, greater than 2 months, greater than 3 months, greater than 4 months, or greater than 5 months.
  • half-lives e.g., serum half-lives
  • Such alterations may result in a half-life of greater than 15 days, preferably greater than 20 days, greater than 25 days, greater than 30 days, greater than 35 days, greater than 40 days, greater than 45 days, greater than 2 months, greater than 3 months, greater than 4 months, or greater than 5 months.
  • the increased half-lives of the antibodies of the present disclosure or fragments thereof in a mammal, preferably a human, results in a higher serum titer of said antibodies or antibody fragments in the mammal, and thus reduces the frequency of the administration of said antibodies or antibody fragments and/or reduces the concentration of said antibodies or antibody fragments to be administered.
  • Antibodies or fragments thereof having increased in vivo half-lives can be generated by techniques known to those of skill in the art. For example, antibodies or fragments thereof with increased in vivo half-lives can be generated by modifying (e.g., substituting, deleting or adding) amino acid residues identified as involved in the interaction between the Fc domain and the FcRn receptor.
  • a particular embodiment of the present disclosure is an isolated monoclonal antibody, or antigen binding fragment thereof, containing a substantially homogeneous glycan without sialic acid, galactose, or fucose.
  • the monoclonal antibody comprises a heavy chain variable region and a light chain variable region, both of which may be attached to heavy chain or light chain constant regions respectively.
  • the aforementioned substantially homogeneous glycan may be covalently attached to the heavy chain constant region.
  • Another embodiment of the present disclosure comprises a mAb with a novel Fc glycosylation pattern.
  • the isolated monoclonal antibody, or antigen binding fragment thereof is present in a substantially homogenous composition represented by the GNGN or G1/G2 glycoform.
  • Fc glycosylation plays a significant role in anti-viral and anti-cancer properties of therapeutic mAbs.
  • the disclosure is in line with a recent study that shows increased anti-lentivirus cell-mediated viral inhibition of a fucose free anti-HIV mAb in vitro.
  • This embodiment of the present disclosure with homogenous glycans lacking a core fucose showed increased protection against specific viruses by a factor greater than two-fold. Elimination of core fucose dramatically improves the ADCC activity of mAbs mediated by natural killer (NK) cells but appears to have the opposite effect on the ADCC activity of polymorphonuclear cells (PMNs).
  • NK natural killer
  • the isolated monoclonal antibody, or antigen binding fragment thereof, comprising a substantially homogenous composition represented by the GNGN or G1/G2 glycoform exhibits increased binding affinity for Fc gamma RI and Fc gamma RIII compared to the same antibody without the substantially homogeneous GNGN glycoform and with GO, G1F, G2F, GNF, GNGNF or GNGNFX containing glycoforms.
  • the antibody dissociates from Fc gamma RI with a Kd of 1 ⁇ 10 ⁇ 8 M or less and from Fc gamma RIII with a Kd of 1 ⁇ 10 ⁇ 7 M or less.
  • N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • 0-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
  • the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain peptide sequences are asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline.
  • the glycosylation pattern may be altered, for example, by deleting one or more glycosylation site(s) found in the polypeptide, and/or adding one or more glycosylation site(s) that are not present in the polypeptide.
  • Addition of glycosylation sites to the Fc region of an antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites).
  • An exemplary glycosylation variant has an amino acid substitution of residue Asn 297 of the heavy chain.
  • the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original polypeptide (for 0-linked glycosylation sites). Additionally, a change of Asn 297 to Ala can remove one of the glycosylation sites.
  • the antibody is expressed in cells that express beta (1,4)-N-acetylglucosaminyltransferase III (GnT III), such that GnT III adds G1cNAc to the IL-23p19 antibody.
  • GnT III beta (1,4)-N-acetylglucosaminyltransferase III
  • Methods for producing antibodies in such a fashion are provided in WO/9954342, WO/03011878, patent publication 20030003097A1, and Umana et al., Nature Biotechnology, 17:176-180, February 1999.
  • Cell lines can be altered to enhance or reduce or eliminate certain post-translational modifications, such as glycosylation, using genome editing technology such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR).
  • CRISPR technology can be used to eliminate genes encoding glycosylating enzymes in 293 or CHO cells used to express recombinant monoclonal antibodies.
  • hydrophilic residues such as aspartic acid, glutamic acid, and serine contribute significantly more favorably to protein solubility than other hydrophilic residues, such as asparagine, glutamine, threonine, lysine, and arginine.
  • Antibodies can be engineered for enhanced biophysical properties.
  • Differential Scanning Calorimetry (DSC) measures the heat capacity, C p , of a molecule (the heat required to warm it, per degree) as a function of temperature.
  • DSC Differential Scanning Calorimetry
  • C p the heat capacity of a molecule (the heat required to warm it, per degree) as a function of temperature.
  • DSC data for mAbs is particularly interesting because it sometimes resolves the unfolding of individual domains within the mAb structure, producing up to three peaks in the thermogram (from unfolding of the Fab, CH2, and CH3 domains). Typically unfolding of the Fab domain produces the strongest peak.
  • the DSC profiles and relative stability of the Fc portion show characteristic differences for the human IgG 1 , IgG 2 , IgG 3 , and IgG 4 subclasses (Garber and Demarest, Biochem. Biophys. Res. Commun. 355, 751-757, 2007).
  • CD circular dichroism
  • Far-UV CD spectra will be measured for antibodies in the range of 200 to 260 nm at increments of 0.5 nm. The final spectra can be determined as averages of 20 accumulations. Residue ellipticity values can be calculated after background subtraction.
  • DLS dynamic light scattering
  • DLS measurements of a sample can show whether the particles aggregate over time or with temperature variation by determining whether the hydrodynamic radius of the particle increases. If particles aggregate, one can see a larger population of particles with a larger radius. Stability depending on temperature can be analyzed by controlling the temperature in situ.
  • Capillary electrophoresis (CE) techniques include proven methodologies for determining features of antibody stability. One can use an iCE approach to resolve antibody protein charge variants due to deamidation, C-terminal lysines, sialylation, oxidation, glycosylation, and any other change to the protein that can result in a change in pI of the protein.
  • Each of the expressed antibody proteins can be evaluated by high throughput, free solution isoelectric focusing (IEF) in a capillary column (cIEF), using a Protein Simple Maurice instrument.
  • IEF free solution isoelectric focusing
  • cIEF capillary column
  • Whole-column UV absorption detection can be performed every 30 seconds for real time monitoring of molecules focusing at the isoelectric points (pIs).
  • This approach combines the high resolution of traditional gel IEF with the advantages of quantitation and automation found in column-based separations while eliminating the need for a mobilization step.
  • the technique yields reproducible, quantitative analysis of identity, purity, and heterogeneity profiles for the expressed antibodies.
  • the results identify charge heterogeneity and molecular sizing on the antibodies, with both absorbance and native fluorescence detection modes and with sensitivity of detection down to 0.7 ⁇ g/mL.
  • Solubility One can determine the intrinsic solubility score of antibody sequences.
  • the intrinsic solubility scores can be calculated using CamSol Intrinsic (Sormanni et al., J Mol Biol 427, 478-490, 2015).
  • the amino acid sequences for residues 95-102 (Kabat numbering) in HCDR3 of each antibody fragment such as a scFv can be evaluated via the online program to calculate the solubility scores.
  • autoreactivity Generally, it is thought that autoreactive clones should be eliminated during ontogeny by negative selection, however it has become clear that many human naturally occurring antibodies with autoreactive properties persist in adult mature repertoires, and the autoreactivity may enhance the antiviral function of many antibodies to pathogens. It has been noted that HCDR3 loops in antibodies during early B cell development are often rich in positive charge and exhibit autoreactive patterns (Wardemann et al., Science 301, 1374-1377, 2003).
  • autoreactivity also can be surveyed using assessment of binding to tissues in tissue arrays.
  • Human Likeness B cell repertoire deep sequencing of human B cells from blood donors is being performed on a wide scale in many recent studies. Sequence information about a significant portion of the human antibody repertoire facilitates statistical assessment of antibody sequence features common in healthy humans. With knowledge about the antibody sequence features in a human recombined antibody variable gene reference database, the position specific degree of “Human Likeness” (HL) of an antibody sequence can be estimated. HL has been shown to be useful for the development of antibodies in clinical use, like therapeutic antibodies or antibodies as vaccines. The goal is to increase the human likeness of antibodies to reduce potential adverse effects and anti-antibody immune responses that will lead to significantly decreased efficacy of the antibody drug or can induce serious health implications.
  • rHL Relative Human Likeness
  • Modified antibodies may be made by any technique known to those of skill in the art, including expression through standard molecular biological techniques, or the chemical synthesis of polypeptides. Methods for recombinant expression are addressed elsewhere in this document.
  • Nucleic acids according to the present disclosure will encode antibodies, optionally linked to other protein sequences.
  • a nucleic acid encoding a MUC1-C antibody refers to a nucleic acid molecule that has been isolated free of total cellular nucleic acid.
  • the disclosure concerns antibodies that are encoded by any of the sequences set forth herein.
  • DNA segments of the present disclosure include those encoding biologically functional equivalent proteins and peptides of the sequences described above. Such sequences may arise as a consequence of codon redundancy and amino acid functional equivalency that are known to occur naturally within nucleic acid sequences and the proteins thus encoded.
  • functionally equivalent proteins or peptides may be created via the application of recombinant DNA technology, in which changes in the protein structure may be engineered, based on considerations of the properties of the amino acids being exchanged. Changes designed by man may be introduced through the application of site-directed mutagenesis techniques or may be introduced randomly and screened later for the desired function, as described below.
  • expression vectors are employed to express a MUC1-C ligand trap in order to produce and isolate the polypeptide expressed therefrom.
  • the expression vectors are used in gene therapy. Expression requires that appropriate signals be provided in the vectors, and which include various regulatory elements, such as enhancers/promoters from both viral and mammalian sources that drive expression of the genes of interest in host cells. Elements designed to optimize messenger RNA stability and translatability in host cells also are defined. The conditions for the use of a number of dominant drug selection markers for establishing permanent, stable cell clones expressing the products are also provided, as is an element that links expression of the drug selection markers to expression of the polypeptide.
  • expression construct is meant to include any type of genetic construct containing a nucleic acid coding for a gene product in which part or all of the nucleic acid encoding sequence is capable of being transcribed.
  • the transcript may be translated into a protein, but it need not be.
  • expression includes both transcription of a gene and translation of mRNA into a gene product. In other embodiments, expression only includes transcription of the nucleic acid encoding a gene of interest.
  • vector is used to refer to a carrier nucleic acid molecule into which a nucleic acid sequence can be inserted for introduction into a cell where it can be replicated.
  • a nucleic acid sequence can be “exogenous,” which means that it is foreign to the cell into which the vector is being introduced or that the sequence is homologous to a sequence in the cell but in a position within the host cell nucleic acid in which the sequence is ordinarily not found.
  • Vectors include plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs).
  • plasmids include plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs).
  • YACs artificial chromosomes
  • expression vector refers to a vector containing a nucleic acid sequence coding for at least part of a gene product capable of being transcribed. In some cases, RNA molecules are then translated into a protein, polypeptide, or peptide. In other cases, these sequences are not translated, for example, in the production of antisense molecules or ribozymes.
  • Expression vectors can contain a variety of “control sequences,” which refer to nucleic acid sequences necessary for the transcription and possibly translation of an operably linked coding sequence in a particular host organism. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well and are described infra.
  • a “promoter” is a control sequence that is a region of a nucleic acid sequence at which initiation and rate of transcription are controlled. It may contain genetic elements at which regulatory proteins and molecules may bind such as RNA polymerase and other transcription factors.
  • the phrases “operatively positioned,” “operatively linked,” “under control,” and “under transcriptional control” mean that a promoter is in a correct functional location and/or orientation in relation to a nucleic acid sequence to control transcriptional initiation and/or expression of that sequence.
  • a promoter may or may not be used in conjunction with an “enhancer,” which refers to a cis-acting regulatory sequence involved in the transcriptional activation of a nucleic acid sequence.
  • a promoter may be one naturally associated with a gene or sequence, as may be obtained by isolating the 5′ non-coding sequences located upstream of the coding segment and/or exon. Such a promoter can be referred to as “endogenous.”
  • an enhancer may be one naturally associated with a nucleic acid sequence, located either downstream or upstream of that sequence.
  • certain advantages will be gained by positioning the coding nucleic acid segment under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with a nucleic acid sequence in its natural environment.
  • a recombinant or heterologous enhancer refers also to an enhancer not normally associated with a nucleic acid sequence in its natural environment.
  • Such promoters or enhancers may include promoters or enhancers of other genes, and promoters or enhancers isolated from any other prokaryotic, viral, or eukaryotic cell, and promoters or enhancers not “naturally-occurring,” i.e., containing different elements of different transcriptional regulatory regions, and/or mutations that alter expression.
  • sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including PCRTM, in connection with the compositions disclosed herein (see U.S. Pat. Nos. 4,683,202, 5,928,906, each incorporated herein by reference).
  • control sequences that direct transcription and/or expression of sequences within non-nuclear organelles such as mitochondria, chloroplasts, and the like, can be employed as well.
  • promoter and/or enhancer that effectively directs the expression of the DNA segment in the cell type, organelle, and organism chosen for expression.
  • Those of skill in the art of molecular biology generally know the use of promoters, enhancers, and cell type combinations for protein expression, for example, see Sambrook et al. (1989), incorporated herein by reference.
  • the promoters employed may be constitutive, tissue-specific, inducible, and/or useful under the appropriate conditions to direct high-level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins and/or peptides.
  • the promoter may be heterologous or endogenous.
  • Table 3 lists several elements/promoters that may be employed, in the context of the present disclosure, to regulate the expression of a gene. This list is not intended to be exhaustive of all the possible elements involved in the promotion of expression but, merely, to be exemplary thereof.
  • Table 4 provides examples of inducible elements, which are regions of a nucleic acid sequence that can be activated in response to a specific stimulus. P GP -2 4 ,T 1 ,M
  • Such regions include the human LIMK2 gene (Nomoto et al. 1999), the somatostatin receptor 2 gene (Kraus et al., 1998), murine epididymal retinoic acid-binding gene (Lareyre et al., 1999), human CD4 (Zhao-Emonet et al., 1998), mouse alpha2 (XI) collagen (Tsumaki, et al., 1998), D1A dopamine receptor gene (Lee, et al., 1997), insulin-like growth factor II (Wu et al., 1997), human platelet endothelial cell adhesion molecule-1 (Almendro et al., 1996).
  • Tumor specific promoters also will find use in the present disclosure. Some such promoters are set forth in Table 5.
  • Exogenous translational control signals include the ATG initiation codon or adjacent sequences.
  • Exogenous translational control signals including the ATG initiation codon, may need to be provided.
  • One of ordinary skill in the art would readily be capable of determining this and providing the necessary signals. It is well known that the initiation codon must be “in-frame” with the reading frame of the desired coding sequence to ensure translation of the entire insert.
  • the exogenous translational control signals and initiation codons can be either natural or synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements.
  • IRES elements are used to create multigene, or polycistronic, messages.
  • IRES elements are able to bypass the ribosome scanning model of 5′-methylated Cap dependent translation and begin translation at internal sites (Pelletier and Sonenberg, 1988).
  • IRES elements from two members of the picornavirus family polio and encephalomyocarditis have been described (Pelletier and Sonenberg, 1988), as well an IRES from a mammalian message (Macejak and Sarnow, 1991).
  • IRES elements can be linked to heterologous open reading frames. Multiple open reading frames can be transcribed together, each separated by an IRES, creating polycistronic messages.
  • each open reading frame is accessible to ribosomes for efficient translation.
  • Multiple genes can be efficiently expressed using a single promoter/enhancer to transcribe a single message (see U.S. Pat. Nos. 5,925,565 and 5,935,819, herein incorporated by reference).
  • Vectors can include a multiple cloning site (MCS), which is a nucleic acid region that contains multiple restriction enzyme sites, any of which can be used in conjunction with standard recombinant technology to digest the vector.
  • MCS multiple cloning site
  • Restriction enzyme digestion refers to catalytic cleavage of a nucleic acid molecule with an enzyme that functions only at specific locations in a nucleic acid molecule. Many of these restriction enzymes are commercially available. Use of such enzymes is widely understood by those of skill in the art.
  • a vector is linearized or fragmented using a restriction enzyme that cuts within the MCS to enable exogenous sequences to be ligated to the vector.
  • “Ligation” refers to the process of forming phosphodiester bonds between two nucleic acid fragments, which may or may not be contiguous with each other. Techniques involving restriction enzymes and ligation reactions are well known to those of skill in the art of recombinant technology.
  • RNA molecules will undergo RNA splicing to remove introns from the primary transcripts.
  • Vectors containing genomic eukaryotic sequences may require donor and/or acceptor splicing sites to ensure proper processing of the transcript for protein expression (see Chandler et al., 1997, herein incorporated by reference).
  • the vectors or constructs of the present disclosure will generally comprise at least one termination signal.
  • a “termination signal” or “terminator” is comprised of the DNA sequences involved in specific termination of an RNA transcript by an RNA polymerase. Thus, in certain embodiments a termination signal that ends the production of an RNA transcript is contemplated. A terminator may be necessary in vivo to achieve desirable message levels.
  • the terminator region may also comprise specific DNA sequences that permit site-specific cleavage of the new transcript so as to expose a polyadenylation site.
  • RNA molecules modified with this polyA tail appear to more stable and are translated more efficiently.
  • terminator comprises a signal for the cleavage of the RNA, and it is more preferred that the terminator signal promotes polyadenylation of the message.
  • the terminator and/or polyadenylation site elements can serve to enhance message levels and/or to minimize read through from the cassette into other sequences.
  • Terminators contemplated for use in the disclosure include any known terminator of transcription described herein or known to one of ordinary skill in the art, including but not limited to, for example, the termination sequences of genes, such as for example the bovine growth hormone terminator or viral termination sequences, such as for example the SV40 terminator.
  • the termination signal may be a lack of transcribable or translatable sequence, such as due to a sequence truncation.
  • polyadenylation signal In expression, particularly eukaryotic expression, one will typically include a polyadenylation signal to effect proper polyadenylation of the transcript.
  • the nature of the polyadenylation signal is not believed to be crucial to the successful practice of the disclosure, and/or any such sequence may be employed.
  • Preferred embodiments include the SV40 polyadenylation signal and/or the bovine growth hormone polyadenylation signal, convenient and/or known to function well in various target cells. Polyadenylation may increase the stability of the transcript or may facilitate cytoplasmic transport.
  • a vector in a host cell may contain one or more origins of replication sites (often termed “ori”), which is a specific nucleic acid sequence at which replication is initiated.
  • ori origins of replication sites
  • ARS autonomously replicating sequence
  • cells containing a nucleic acid construct of the present disclosure may be identified in vitro or in vivo by including a marker in the expression vector.
  • markers would confer an identifiable change to the cell permitting easy identification of cells containing the expression vector.
  • a selectable marker is one that confers a property that allows for selection.
  • a positive selectable marker is one in which the presence of the marker allows for its selection, while a negative selectable marker is one in which its presence prevents its selection.
  • An example of a positive selectable marker is a drug resistance marker.
  • a drug selection marker aids in the cloning and identification of transformants
  • genes that confer resistance to neomycin, puromycin, hygromycin, DIFR, GPT, zeocin and histidinol are useful selectable markers.
  • markers conferring a phenotype that allows for the discrimination of transformants based on the implementation of conditions other types of markers including screenable markers such as GFP, whose basis is colorimetric analysis, are also contemplated.
  • screenable enzymes such as herpes simplex virus thymidine kinase (tk) or chloramphenicol acetyltransferase (CAT) may be utilized.
  • viral vectors have led to the development and application of a number of different viral vector systems (Robbins et al., 1998).
  • Viral systems are currently being developed for use as vectors for ex vivo and in vivo gene transfer.
  • adenovirus, herpes-simplex virus, retrovirus and adeno-associated virus vectors are being evaluated currently for treatment of diseases such as cancer, cystic fibrosis, Gaucher disease, renal disease and arthritis (Robbins and Ghivizzani, 1998; Imai et al., 1998; U.S. Pat. No. 5,670,488).
  • the various viral vectors described below present specific advantages and disadvantages, depending on the particular gene-therapeutic application.
  • an adenoviral expression vector is contemplated for the delivery of expression constructs.
  • “Adenovirus expression vector” is meant to include those constructs containing adenovirus sequences sufficient to (a) support packaging of the construct and (b) to ultimately express a tissue or cell-specific construct that has been cloned therein.
  • Adenoviruses comprise linear, double-stranded DNA, with a genome ranging from 30 to 35 kb in size (Reddy et al., 1998; Morrison et al., 1997; Chillon et al., 1999).
  • An adenovirus expression vector according to the present disclosure comprises a genetically engineered form of the adenovirus. Advantages of adenoviral gene transfer include the ability to infect a wide variety of cell types, including non-dividing cells, a mid-sized genome, ease of manipulation, high infectivity and the ability to be grown to high titers (Wilson, 1996).
  • adenoviral infection of host cells does not result in chromosomal integration because adenoviral DNA can replicate in an episomal manner, without potential genotoxicity associated with other viral vectors.
  • Adenoviruses also are structurally stable (Marienfeld et al., 1999) and no genome rearrangement has been detected after extensive amplification (Parks et al., 1997; Bett et al., 1993).
  • Salient features of the adenovirus genome are an early region (E1, E2, E3 and E4 genes), an intermediate region (pIX gene, Iva2 gene), a late region (L1, L2, L3, L4 and L5 genes), a major late promoter (MLP), inverted-terminal-repeats (ITRs) and a ⁇ sequence (Zheng, et al., 1999; Robbins et al., 1998; Graham and Prevec, 1995).
  • the early genes E1, E2, E3 and E4 are expressed from the virus after infection and encode polypeptides that regulate viral gene expression, cellular gene expression, viral replication, and inhibition of cellular apoptosis.
  • the MLP is activated, resulting in the expression of the late (L) genes, encoding polypeptides required for adenovirus encapsidation.
  • the intermediate region encodes components of the adenoviral capsid.
  • Adenoviral inverted terminal repeats ITRs; 100-200 bp in length
  • ITRs are cis elements, and function as origins of replication and are necessary for viral DNA replication.
  • the Y sequence is required for the packaging of the adenoviral genome.
  • E1 ⁇ the E1 gene
  • E2 ⁇ the E2 gene
  • E3 and E4 promoters a therapeutic gene or genes can be inserted recombinantly in place of the E1 gene, wherein expression of the therapeutic gene(s) is driven by the E1 promoter or a heterologous promoter.
  • the E1 ⁇ , replication-deficient virus is then proliferated in a “helper” cell line that provides the E1 polypeptides in trans (e.g., the human embryonic kidney cell line 293).
  • the present disclosure it may be convenient to introduce the transforming construct at the position from which the E1-coding sequences have been removed.
  • the position of insertion of the construct within the adenovirus sequences is not critical to the disclosure.
  • the E3 region, portions of the E4 region or both may be deleted, wherein a heterologous nucleic acid sequence under the control of a promoter operable in eukaryotic cells is inserted into the adenovirus genome for use in gene transfer (U.S. Pat. Nos. 5,670,488; 5,932,210, each specifically incorporated herein by reference).
  • adenovirus-based vectors offer several unique advantages over other vector systems, they often are limited by vector immunogenicity, size constraints for insertion of recombinant genes and low levels of replication.
  • the preparation of a recombinant adenovirus vector deleted of all open reading frames, comprising a full-length dystrophin gene and the terminal repeats required for replication offers some potentially promising advantages to the above mentioned adenoviral shortcomings.
  • the vector was grown to high titer with a helper virus in 293 cells and was capable of efficiently transducing dystrophin in mdx mice, in myotubes in vitro and muscle fibers in vivo. Helper-dependent viral vectors are discussed below.
  • a major concern in using adenoviral vectors is the generation of a replication-competent virus during vector production in a packaging cell line or during gene therapy treatment of an individual.
  • the generation of a replication-competent virus could pose serious threat of an unintended viral infection and pathological consequences for the patient.
  • Armentano et al. (1990) describe the preparation of a replication-defective adenovirus vector, claimed to eliminate the potential for the inadvertent generation of a replication-competent adenovirus (U.S. Pat. No. 5,824,544, specifically incorporated herein by reference).
  • the replication-defective adenovirus method comprises a deleted E1 region and a relocated protein IX gene, wherein the vector expresses a heterologous, mammalian gene.
  • the adenovirus may be of any of the 42 different known serotypes and/or subgroups A-F.
  • Adenovirus type 5 of subgroup C is the preferred starting material in order to obtain the conditional replication-defective adenovirus vector for use in the present disclosure. This is because adenovirus type 5 is a human adenovirus about which a great deal of biochemical and genetic information is known, and it has historically been used for most constructions employing adenovirus as a vector.
  • the typical vector according to the present disclosure is replication defective and will not have an adenovirus E1 region.
  • Adenovirus growth and manipulation is known to those of skill in the art and exhibits broad host range in vitro and in vivo (U.S. Pat. Nos. 5,670,488; 5,932,210; 5,824,544).
  • This group of viruses can be obtained in high titers, e.g., 10 9 to 10 11 plaque-forming units per ml, and they are highly infective.
  • the life cycle of adenovirus does not require integration into the host cell genome.
  • the foreign genes delivered by adenovirus vectors are episomal and, therefore, have low genotoxicity to host cells.
  • adenoviral gene delivery-based gene therapies are being developed for liver diseases (Han et al., 1999), psychiatric diseases (Lesch, 1999), neurological diseases (Smith, 1998; Hermens and Verhaagen, 1998), coronary diseases (Feldman et al., 1996), muscular diseases (Petrof, 1998), gastrointestinal diseases (Wu, 1998) and various cancers such as colorectal (Fujiwara and Tanaka, 1998; Dorai et al., 1999), pancreatic, bladder (Irie et al., 1999), head and neck (Blackwell et al., 1999), breast (Stewart et al., 1999), lung (Batra et al., 1999) and ovarian (Vanderkwaak et al., 1999).
  • Retroviral Vectors are RNA viruses comprising an RNA genome.
  • the genomic RNA is reverse transcribed into a DNA intermediate which is integrated into the chromosomal DNA of infected cells.
  • This integrated DNA intermediate is referred to as a provirus.
  • retroviruses can stably infect dividing cells with a gene of interest (e.g., a therapeutic gene) by integrating into the host DNA, without expressing immunogenic viral proteins. Theoretically, the integrated retroviral vector will be maintained for the life of the infected host cell, expressing the gene of interest.
  • the retroviral genome and the proviral DNA have three genes: gag, pol, and env, which are flanked by two long terminal repeat (LTR) sequences.
  • the gag gene encodes the internal structural (matrix, capsid, and nucleocapsid) proteins; the pol gene encodes the RNA-directed DNA polymerase (reverse transcriptase) and the env gene encodes viral envelope glycoproteins.
  • the 5′ and 3′ LTRs serve to promote transcription and polyadenylation of the virion RNAs.
  • the LTR contains all other cis-acting sequences necessary for viral replication.
  • a recombinant retrovirus of the present disclosure may be genetically modified in such a way that some of the structural, infectious genes of the native virus have been removed and replaced instead with a nucleic acid sequence to be delivered to a target cell (U.S. Pat. Nos. 5,858,744; 5,739,018, each incorporated herein by reference).
  • the virus injects its nucleic acid into the cell and the retrovirus genetic material can integrate into the host cell genome.
  • the transferred retrovirus genetic material is then transcribed and translated into proteins within the host cell.
  • the generation of a replication-competent retrovirus during vector production or during therapy is a major concern.
  • Retroviral vectors suitable for use in the present disclosure are generally defective retroviral vectors that are capable of infecting the target cell, reverse transcribing their RNA genomes, and integrating the reverse transcribed DNA into the target cell genome, but are incapable of replicating within the target cell to produce infectious retroviral particles (e.g., the retroviral genome transferred into the target cell is defective in gag, the gene encoding virion structural proteins, and/or in pol, the gene encoding reverse transcriptase).
  • transcription of the provirus and assembly into infectious virus occurs in the presence of an appropriate helper virus or in a cell line containing appropriate sequences enabling encapsidation without coincident production of a contaminating helper virus.
  • retroviruses The growth and maintenance of retroviruses is known in the art (U.S. Pat. Nos. 5,955,331; 5,888,502, each specifically incorporated herein by reference). Nolan et al. describe the production of stable high titre, helper-free retrovirus comprising a heterologous gene (U.S. Pat. No. 5,830,725, specifically incorporated herein by reference).
  • retroviral vector gene delivery Currently, the majority of all clinical trials for vector-mediated gene delivery use murine leukemia virus (MLV)-based retroviral vector gene delivery (Robbins et al., 1998; Miller et al., 1993). Disadvantages of retroviral gene delivery include a requirement for ongoing cell division for stable infection and a coding capacity that prevents the delivery of large genes.
  • MLV murine leukemia virus
  • HIV lentivirus
  • SIV simian immunodeficiency virus
  • EIAV equine infectious-anemia virus
  • retroviral vectors for gene therapy applications
  • HIV-based vectors have been used to infect non-dividing cells such as neurons (Miyatake et al., 1999), islets (Leibowitz et al., 1999) and muscle cells (Johnston et al., 1999).
  • genes via retroviruses are currently being assessed for the treatment of various disorders such as inflammatory disease (Moldawer et al., 1999), AIDS (Amado and Chen, 1999; Engel and Kohn, 1999), cancer (Clay et al., 1999), cerebrovascular disease (Weihl et al., 1999) and hemophilia (Kay, 1998).
  • Herpes viral Vectors Herpes simplex virus (HSV) type I and type II contain a double-stranded, linear DNA genome of approximately 150 kb, encoding 70-80 genes. Wild type HSV are able to infect cells lytically and to establish latency in certain cell types (e.g., neurons).
  • HSV Herpes simplex virus
  • HSV Similar to adenovirus, HSV also can infect a variety of cell types including muscle (Yeung et al., 1999), ear (Derby et al., 1999), eye (Kaufman et al., 1999), tumors (Yoon et al., 1999; Howard et al., 1999), lung (Kohut et al., 1998), neuronal (Garrido et al., 1999; Lachmann and Efstathiou, 1999), liver (Miytake et al., 1999; Kooby et al., 1999) and pancreatic islets (Rabinovitch et al., 1999).
  • HSV viral genes are transcribed by cellular RNA polymerase II and are temporally regulated, resulting in the transcription and subsequent synthesis of gene products in roughly three discernable phases or kinetic classes. These phases of genes are referred to as the Immediate Early (IE) or a genes, Early (E) or 3 genes and Late (L) or ⁇ genes. Immediately following the arrival of the genome of a virus in the nucleus of a newly infected cell, the IE genes are transcribed. The efficient expression of these genes does not require prior viral protein synthesis. The products of IE genes are required to activate transcription and regulate the remainder of the viral genome.
  • IE Immediate Early
  • E Early
  • L Late
  • HSV For use in therapeutic gene delivery, HSV must be rendered replication defective. Protocols for generating replication-defective HSV helper virus-free cell lines have been described (U.S. Pat. Nos. 5,879,934; 5,851,826, each specifically incorporated herein by reference in its entirety).
  • One IE protein, ICP4 also known as ⁇ 4 or Vmw175, is absolutely required for both virus infectivity and the transition from IE to later transcription.
  • ICP4 has typically been the target of HSV genetic studies.
  • viruses deleted of ICP4 Phenotypic studies of HSV viruses deleted of ICP4 indicate that such viruses will be potentially useful for gene transfer purposes (Krisky et al., 1998a).
  • One property of viruses deleted for ICP4 that makes them desirable for gene transfer is that they only express the five other IE genes: ICP0, ICP6, ICP27, ICP22 and ICP47 (DeLuca et al., 1985), without the expression of viral genes encoding proteins that direct viral DNA synthesis, as well as the structural proteins of the virus. This property is desirable for minimizing possible deleterious effects on host cell metabolism or an immune response following gene transfer.
  • Further deletion of IE genes ICP22 and ICP27, in addition to ICP4, substantially improve reduction of HSV cytotoxicity and prevented early and late viral gene expression (Krisky et al., 1998b).
  • HSV HSV in gene transfer
  • diseases such as Parkinson's (Yamada et al., 1999), retinoblastoma (Hayashi et al., 1999), intracerebral and intradermal tumors (Moriuchi et al., 1998), B-cell malignancies (Suzuki et al., 1998), ovarian cancer (Wang et al., 1998) and Duchenne muscular dystrophy (Huard et al., 1997).
  • Adeno-associated virus a member of the parvovirus family, is a human virus that is increasingly being used for gene delivery therapeutics.
  • AAV has several advantageous features not found in other viral systems. First, AAV can infect a wide range of host cells, including non-dividing cells. Second, AAV can infect cells from different species. Third, AAV has not been associated with any human or animal disease and does not appear to alter the biological properties of the host cell upon integration. For example, it is estimated that 80-85% of the human population has been exposed to AAV. Finally, AAV is stable at a wide range of physical and chemical conditions which lends itself to production, storage and transportation requirements.
  • the AAV genome is a linear, single-stranded DNA molecule containing 4681 nucleotides.
  • the AAV genome generally comprises an internal non-repeating genome flanked on each end by inverted terminal repeats (ITRs) of approximately 145 bp in length.
  • ITRs inverted terminal repeats
  • the ITRs have multiple functions, including origins of DNA replication, and as packaging signals for the viral genome.
  • the internal non-repeated portion of the genome includes two large open reading frames, known as the AAV replication (rep) and capsid (cap) genes.
  • the rep and cap genes code for viral proteins that allow the virus to replicate and package the viral genome into a virion.
  • a family of at least four viral proteins is expressed from the AAV rep region, Rep 78, Rep 68, Rep 52, and Rep 40, named according to their apparent molecular weight.
  • the AAV cap region encodes at least three proteins, VP1, VP2, and VP3.
  • AAV is a helper-dependent virus requiring co-infection with a helper virus (e.g., adenovirus, herpesvirus or vaccinia) in order to form AAV virions.
  • a helper virus e.g., adenovirus, herpesvirus or vaccinia
  • AAV establishes a latent state in which the viral genome inserts into a host cell chromosome, but infectious virions are not produced.
  • Subsequent infection by a helper virus “rescues” the integrated genome, allowing it to replicate and package its genome into infectious AAV virions.
  • the helper virus must be of the same species as the host cell (e.g., human AAV will replicate in canine cells co-infected with a canine adenovirus).
  • AAV has been engineered to deliver genes of interest by deleting the internal non-repeating portion of the AAV genome and inserting a heterologous gene between the ITRs.
  • the heterologous gene may be functionally linked to a heterologous promoter (constitutive, cell-specific, or inducible) capable of driving gene expression in target cells.
  • a suitable producer cell line is transfected with a rAAV vector containing a heterologous gene.
  • the producer cell is concurrently transfected with a second plasmid harboring the AAV rep and cap genes under the control of their respective endogenous promoters or heterologous promoters.
  • the producer cell is infected with a helper virus.
  • the heterologous gene is replicated and packaged as though it were a wild-type AAV genome.
  • target cells are infected with the resulting rAAV virions, the heterologous gene enters and is expressed in the target cells. Because the target cells lack the rep and cap genes and the adenovirus helper genes, the rAAV cannot further replicate, package or form wild-type AAV.
  • helper virus presents a number of problems.
  • the contaminating infectious adenovirus can be inactivated by heat treatment (56° C. for 1 hour). Heat treatment, however, results in approximately a 50% drop in the titer of functional rAAV virions.
  • Second, varying amounts of adenovirus proteins are present in these preparations. For example, approximately 50% or greater of the total protein obtained in such rAAV virion preparations is free adenovirus fiber protein. If not completely removed, these adenovirus proteins have the potential of eliciting an immune response from the patient.
  • helper virus particles in rAAV virion producing cells diverts large amounts of host cellular resources away from rAAV virion production, potentially resulting in lower rAAV virion yields.
  • Lentiviral Vectors are complex retroviruses, which, in addition to the common retroviral genes gag, pol, and env, contain other genes with regulatory or structural function. The higher complexity enables the virus to modulate its life cycle, as in the course of latent infection.
  • Some examples of lentivirus include the Human Immunodeficiency Viruses: HIV-1, HIV-2 and the Simian Immunodeficiency Virus: SIV.
  • Lentiviral vectors have been generated by multiply attenuating the HIV virulence genes, for example, the genes env, vif; vpr, vpu and nef are deleted making the vector biologically safe.
  • Recombinant lentiviral vectors are capable of infecting non-dividing cells and can be used for both in vivo and ex vivo gene transfer and expression of nucleic acid sequences.
  • the lentiviral genome and the proviral DNA have the three genes found in retroviruses: gag, pol and env, which are flanked by two long terminal repeat (LTR) sequences.
  • the gag gene encodes the internal structural (matrix, capsid and nucleocapsid) proteins;
  • the pol gene encodes the RNA-directed DNA polymerase (reverse transcriptase), a protease and an integrase; and the env gene encodes viral envelope glycoproteins.
  • the 5′ and 3′ LTR's serve to promote transcription and polyadenylation of the virion RNA's.
  • the LTR contains all other cis-acting sequences necessary for viral replication.
  • Lentiviruses have additional genes including vif; vpr, tat, rev, vpu, nef and vpx.
  • Adjacent to the 5′ LTR are sequences necessary for reverse transcription of the genome (the tRNA primer binding site) and for efficient encapsidation of viral RNA into particles (the Psi site). If the sequences necessary for encapsidation (or packaging of retroviral RNA into infectious virions) are missing from the viral genome, the cis defect prevents encapsidation of genomic RNA. However, the resulting mutant remains capable of directing the synthesis of all virion proteins.
  • Lentiviral vectors are known in the art, see Naldini et al., (1996); Zufferey et al., (1997); U.S. Pat. Nos. 6,013,516; and 5,994,136.
  • the vectors are plasmid-based or virus-based, and are configured to carry the essential sequences for incorporating foreign nucleic acid, for selection and for transfer of the nucleic acid into a host cell.
  • the gag, pol and env genes of the vectors of interest also are known in the art. Thus, the relevant genes are cloned into the selected vector and then used to transform the target cell of interest.
  • Recombinant lentivirus capable of infecting a non-dividing cell wherein a suitable host cell is transfected with two or more vectors carrying the packaging functions, namely gag, pol and env, as well as rev and tat is described in U.S. Pat. No. 5,994,136, incorporated herein by reference.
  • This describes a first vector that can provide a nucleic acid encoding a viral gag and a pol gene and another vector that can provide a nucleic acid encoding a viral env to produce a packaging cell.
  • Introducing a vector providing a heterologous gene, such as the STAT-1 ⁇ gene in this disclosure, into that packaging cell yields a producer cell which releases infectious viral particles carrying the foreign gene of interest.
  • the env preferably is an amphotropic envelope protein which allows transduction of cells of human and other species.
  • a sequence (including a regulatory region) of interest into the viral vector, along with another gene which encodes the ligand for a receptor on a specific target cell, for example, the vector is now target-specific.
  • the vector providing the viral env nucleic acid sequence is associated operably with regulatory sequences, e.g., a promoter or enhancer.
  • the regulatory sequence can be any eukaryotic promoter or enhancer, including for example, the Moloney murine leukemia virus promoter-enhancer element, the human cytomegalovirus enhancer or the vaccinia P7.5 promoter. In some cases, such as the Moloney murine leukemia virus promoter-enhancer element, the promoter-enhancer elements are located within or adjacent to the LTR sequences.
  • the heterologous or foreign nucleic acid sequence is linked operably to a regulatory nucleic acid sequence.
  • the heterologous sequence is linked to a promoter, resulting in a chimeric gene.
  • the heterologous nucleic acid sequence may also be under control of either the viral LTR promoter-enhancer signals or of an internal promoter and retained signals within the retroviral LTR can still bring about efficient expression of the transgene.
  • Marker genes may be utilized to assay for the presence of the vector, and thus, to confirm infection and integration. The presence of a marker gene ensures the selection and growth of only those host cells which express the inserts.
  • Typical selection genes encode proteins that confer resistance to antibiotics and other toxic substances, e.g., histidinol, puromycin, hygromycin, neomycin, methotrexate, etc., and cell surface markers.
  • the vectors are introduced via transfection or infection into the packaging cell line.
  • the packaging cell line produces viral particles that contain the vector genome. Methods for transfection or infection are well known by those of skill in the art. After cotransfection of the packaging vectors and the transfer vector to the packaging cell line, the recombinant virus is recovered from the culture media and titered by standard methods used by those of skill in the art.
  • the packaging constructs can be introduced into human cell lines by calcium phosphate transfection, lipofection or electroporation, generally together with a dominant selectable marker, such as neo, DHFR, Gln synthetase or ADA, followed by selection in the presence of the appropriate drug and isolation of clones.
  • the selectable marker gene can be linked physically to the packaging genes in the construct.
  • Lentiviral transfer vectors Naldini et al. (1996) have been used to infect human cells growth-arrested in vitro and to transduce neurons after direct injection into the brain of adult rats.
  • the vector was efficient at transferring marker genes in vivo into the neurons and long term expression in the absence of detectable pathology was achieved.
  • Animals analyzed ten months after a single injection of the vector showed no decrease in the average level of transgene expression and no sign of tissue pathology or immune reaction (Blomer et al., 1997).
  • one may graft or transplant cells infected with the recombinant lentivirus ex vivo, or infect cells in vivo.
  • viral vectors for gene delivery.
  • Other viral vectors such as poxvirus; e.g., vaccinia virus (Gnant et al., 1999; Gnant et al., 1999), alpha virus; e.g., Sindbis virus, Semliki forest virus (Lundstrom, 1999), reovirus (Coffey et al., 1998) and influenza A virus (Neumann et al., 1999) are contemplated for use in the present disclosure and may be selected according to the requisite properties of the target system.
  • poxvirus e.g., vaccinia virus (Gnant et al., 1999; Gnant et al., 1999), alpha virus; e.g., Sindbis virus, Semliki forest virus (Lundstrom, 1999), reovirus (Coffey et al., 1998) and influenza A virus (Neumann et al., 1999) are contemplated for use in the present disclosure and may be selected according to the requisite properties of
  • vaccinia viral vectors are contemplated for use in the present disclosure.
  • Vaccinia virus is a particularly useful eukaryotic viral vector system for expressing heterologous genes. For example, when recombinant vaccinia virus is properly engineered, the proteins are synthesized, processed and transported to the plasma membrane.
  • Vaccinia viruses as gene delivery vectors have recently been demonstrated to transfer genes to human tumor cells, e.g., EMAP-II (Gnant et al., 1999), inner ear (Derby et al., 1999), glioma cells, e.g., p53 (Timiryasova et al., 1999) and various mammalian cells, e.g., P450 (U.S. Pat. No. 5,506,138).
  • EMAP-II Gnant et al., 1999
  • inner ear Deby et al., 1999
  • glioma cells e.g., p53 (Timiryasova et al., 1999)
  • various mammalian cells e.g., P450 (U.S. Pat. No. 5,506,138).
  • the preparation, growth and manipulation of vaccinia viruses are described in U.S. Pat. Nos. 5,849,304 and 5,506,138 (each specifically
  • Sindbis viral vectors are contemplated for use in gene delivery.
  • Sindbis virus is a species of the alphavirus genus (Garoff and Li, 1998) which includes such important pathogens as Venezuelan, Western and Eastern equine encephalitis viruses (Sawai et al., 1999; Mastrangelo et al., 1999).
  • Sindbis virus infects a variety of avian, mammalian, reptilian, and amphibian cells.
  • the genome of Sindbis virus consists of a single molecule of single-stranded RNA, 11,703 nucleotides in length.
  • the genomic RNA is infectious, is capped at the 5′ terminus and polyadenylated at the 3′ terminus and serves as mRNA.
  • Translation of a vaccinia virus 26S mRNA produces a polyprotein that is cleaved co- and post-translationally by a combination of viral and presumably host-encoded proteases to give the three virus structural proteins, a capsid protein (C) and the two envelope glycoproteins (E1 and PE2, precursors of the virion E2).
  • Sindbis virus Three features suggest that it would be a useful vector for the expression of heterologous genes. First, its wide host range, both in nature and in the laboratory. Second, gene expression occurs in the cytoplasm of the host cell and is rapid and efficient. Third, temperature-sensitive mutations in RNA synthesis are available that may be used to modulate the expression of heterologous coding sequences by simply shifting cultures to the non-permissive temperature at various time after infection. The growth and maintenance of Sindbis virus is known in the art (U.S. Pat. No. 5,217,879, specifically incorporated herein by reference).
  • Chimeric Viral Vectors Chimeric or hybrid viral vectors are being developed for use in therapeutic gene delivery and are contemplated for use in the present disclosure. Chimeric poxviral/retroviral vectors (Holzer et al., 1999), adenoviral/retroviral vectors (Feng et al., 1997; Bilbao et al., 1997; Caplen et al., 1999) and adenoviral/adeno-associated viral vectors (Fisher et al., 1996; U.S. Pat. No. 5,871,982) have been described.
  • Wilson et al. provide a chimeric vector construct which comprises a portion of an adenovirus, AAV 5′ and 3′ ITR sequences and a selected transgene, described below (U.S. Pat. No. 5,871,983, specifically incorporate herein by reference).
  • the adenovirus/AAV chimeric virus uses adenovirus nucleic acid sequences as a shuttle to deliver a recombinant AAV/transgene genome to a target cell.
  • the adenovirus nucleic acid sequences employed in the hybrid vector can range from a minimum sequence amount, which requires the use of a helper virus to produce the hybrid virus particle, to only selected deletions of adenovirus genes, which deleted gene products can be supplied in the hybrid viral production process by a selected packaging cell.
  • the adenovirus nucleic acid sequences employed in the pAdA shuttle vector are adenovirus genomic sequences from which all viral genes are deleted and which contain only those adenovirus sequences required for packaging adenoviral genomic DNA into a preformed capsid head. More specifically, the adenovirus sequences employed are the cis-acting 5′ and 3′ inverted terminal repeat (ITR) sequences of an adenovirus (which function as origins of replication) and the native 5′ packaging/enhancer domain, that contains sequences necessary for packaging linear Ad genomes and enhancer elements for the E1 promoter.
  • ITR inverted terminal repeat
  • the adenovirus sequences may be modified to contain desired deletions, substitutions, or mutations, provided that the desired function is not eliminated.
  • the AAV sequences useful in the above chimeric vector are the viral sequences from which the rep and cap polypeptide encoding sequences are deleted. More specifically, the AAV sequences employed are the cis-acting 5′ and 3′ inverted terminal repeat (ITR) sequences. These chimeras are characterized by high titer transgene delivery to a host cell and the ability to stably integrate the transgene into the host cell chromosome (U.S. Pat. No. 5,871,983, specifically incorporate herein by reference). In the hybrid vector construct, the AAV sequences are flanked by the selected adenovirus sequences discussed above. The 5′ and 3′ AAV ITR sequences themselves flank a selected transgene sequence and associated regulatory elements, described below.
  • ITR inverted terminal repeat
  • the sequence formed by the transgene and flanking 5′ and 3′ AAV sequences may be inserted at any deletion site in the adenovirus sequences of the vector.
  • the AAV sequences are desirably inserted at the site of the deleted E1a/E1b genes of the adenovirus.
  • the AAV sequences may be inserted at an E3 deletion, E2a deletion, and so on. If only the adenovirus 5′ ITR/packaging sequences and 3′ ITR sequences are used in the hybrid virus, the AAV sequences are inserted between them.
  • the transgene sequence of the vector and recombinant virus can be a gene, a nucleic acid sequence or reverse transcript thereof, heterologous to the adenovirus sequence, which encodes a protein, polypeptide or peptide fragment of interest.
  • the transgene is operatively linked to regulatory components in a manner which permits transgene transcription.
  • the composition of the transgene sequence will depend upon the use to which the resulting hybrid vector will be put.
  • one type of transgene sequence includes a therapeutic gene which expresses a desired gene product in a host cell.
  • These therapeutic genes or nucleic acid sequences typically encode products for administration and expression in a patient in vivo or ex vivo to replace or correct an inherited or non-inherited genetic defect or treat an epigenetic disorder or disease.
  • a nucleic acid e.g., DNA
  • Such methods include, but are not limited to, direct delivery of DNA such as by injection (U.S. Pat. Nos.
  • a nucleic acid may be delivered to an organelle, a cell, a tissue or an organism via one or more injections (i.e., a needle injection), such as, for example, either subcutaneously, intradermally, intramuscularly, intravenously or intraperitoneally.
  • injections i.e., a needle injection
  • Methods of injection of vaccines are well known to those of ordinary skill in the art (e.g., injection of a composition comprising a saline solution).
  • Further embodiments of the present disclosure include the introduction of a nucleic acid by direct microinjection. Direct microinjection has been used to introduce nucleic acid constructs into Xenopus oocytes (Harland and Weintraub, 1985).
  • Electroporation In certain embodiments of the present disclosure, a nucleic acid is introduced into an organelle, a cell, a tissue or an organism via electroporation. Electroporation involves the exposure of a suspension of cells and DNA to a high-voltage electric discharge. In some variants of this method, certain cell wall-degrading enzymes, such as pectin-degrading enzymes, are employed to render the target recipient cells more susceptible to transformation by electroporation than untreated cells (U.S. Pat. No. 5,384,253, incorporated herein by reference). Alternatively, recipient cells can be made more susceptible to transformation by mechanical wounding.
  • Mouse pre-B lymphocytes have been transfected with human x-immunoglobulin genes (Potter et al., 1984), and rat hepatocytes have been transfected with the chloramphenicol acetyltransferase gene (Tur-Kaspa et al., 1986) in this manner.
  • friable tissues such as a suspension culture of cells or embryogenic callus or alternatively one may transform immature embryos or other organized tissue directly.
  • pectolyases pectolyases
  • mechanically wounding in a controlled manner.
  • pectolyases pectolyases
  • One also may employ protoplasts for electroporation transformation of plant cells (Bates, 1994; Lazzeri, 1995).
  • protoplasts for electroporation transformation of plant cells
  • the generation of transgenic soybean plants by electroporation of cotyledon-derived protoplasts is described by Dhir and Widholm in International Patent Application No. WO 92/17598, incorporated herein by reference.
  • Other examples of species for which protoplast transformation has been described include barley (Lazerri, 1995), sorghum (Battraw et al., 1991), maize (Bhattacharjee et al., 1997), wheat (He et al., 1994) and tomato (Tsukada, 1989).
  • a nucleic acid is introduced to the cells using calcium phosphate precipitation.
  • Human KB cells have been transfected with adenovirus 5 DNA (Graham and Van Der Eb, 1973) using this technique.
  • mouse L(A9), mouse C127, CHO, CV-1, BHK, NIH3T3 and HeLa cells were transfected with a neomycin marker gene (Chen and Okayama, 1987), and rat hepatocytes were transfected with a variety of marker genes (Rippe et al., 1990).
  • DEAE-Dextran In another embodiment, a nucleic acid is delivered into a cell using DEAE-dextran followed by polyethylene glycol. In this manner, reporter plasmids were introduced into mouse myeloma and erythroleukemia cells (Gopal, 1985).
  • Additional embodiments of the present disclosure include the introduction of a nucleic acid by direct sonic loading.
  • LTK - fibroblasts have been transfected with the thymidine kinase gene by sonication loading (Fechheimer et al., 1987).
  • a nucleic acid may be entrapped in a lipid complex such as, for example, a liposome.
  • Liposomes are vesicular structures characterized by a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh and Bachhawat, 1991). Also contemplated is an nucleic acid complexed with Lipofectamine (Gibco BRL) or Superfect (Qiagen).
  • Liposome-mediated nucleic acid delivery and expression of foreign DNA in vitro has been very successful (Nicolau and Sene, 1982; Fraley et al., 1979; Nicolau et al., 1987).
  • the feasibility of liposome-mediated delivery and expression of foreign DNA in cultured chick embryo, HeLa and hepatoma cells has also been demonstrated (Wong et al., 1980).
  • a liposome may be complexed with a hemagglutinating virus (HVJ). This has been shown to facilitate fusion with the cell membrane and promote cell entry of liposome-encapsulated DNA (Kaneda et al., 1989).
  • a liposome may be complexed or employed in conjunction with nuclear non-histone chromosomal proteins (HMG-1) (Kato et al., 1991).
  • HMG-1 nuclear non-histone chromosomal proteins
  • a liposome may be complexed or employed in conjunction with both HVJ and HMG-1.
  • a delivery vehicle may comprise a ligand and a liposome.
  • a nucleic acid may be delivered to a target cell via receptor-mediated delivery vehicles. These take advantage of the selective uptake of macromolecules by receptor-mediated endocytosis that will be occurring in a target cell. In view of the cell type-specific distribution of various receptors, this delivery method adds another degree of specificity to the present disclosure.
  • Certain receptor-mediated gene targeting vehicles comprise a cell receptor-specific ligand and a nucleic acid-binding agent. Others comprise a cell receptor-specific ligand to which the nucleic acid to be delivered has been operatively attached.
  • Several ligands have been used for receptor-mediated gene transfer (Wu and Wu, 1987; Wagner et al., 1990; Perales et al., 1994; Myers, EPO 0273085), which establishes the operability of the technique. Specific delivery in the context of another mammalian cell type has been described (Wu and Wu, 1993; incorporated herein by reference).
  • a ligand will be chosen to correspond to a receptor specifically expressed on the target cell population.
  • a nucleic acid delivery vehicle component of a cell-specific nucleic acid targeting vehicle may comprise a specific binding ligand in combination with a liposome.
  • the nucleic acid(s) to be delivered are housed within the liposome and the specific binding ligand is functionally incorporated into the liposome membrane.
  • the liposome will thus specifically bind to the receptor(s) of a target cell and deliver the contents to a cell.
  • Such systems have been shown to be functional using systems in which, for example, epidermal growth factor (EGF) is used in the receptor-mediated delivery of a nucleic acid to cells that exhibit upregulation of the EGF receptor.
  • EGF epidermal growth factor
  • the nucleic acid delivery vehicle component of a targeted delivery vehicle may be a liposome itself, which will preferably comprise one or more lipids or glycoproteins that direct cell-specific binding.
  • lipids or glycoproteins that direct cell-specific binding.
  • lactosyl-ceramide, a galactose-terminal asialganglioside have been incorporated into liposomes and observed an increase in the uptake of the insulin gene by hepatocytes (Nicolau et al., 1987). It is contemplated that the tissue-specific transforming constructs of the present disclosure can be specifically delivered into a target cell in a similar manner.
  • Prokaryote- and/or eukaryote-based systems can be employed for use with the present disclosure to produce nucleic acid sequences, or their cognate polypeptides, proteins and peptides. Many such systems are commercially and widely available.
  • the insect cell/baculovirus system can produce a high level of protein expression of a heterologous nucleic acid segment, such as described in U.S. Pat. Nos. 5,871,986 and 4,879,236, both herein incorporated by reference, and which can be bought, for example, under the name MaxBac® 2.0 from Invitrogen® and BacPackTM Baculovirus Expression System From Clontech®.
  • expression systems include Stratagene®'s Complete ControlTM Inducible Mammalian Expression System, which involves a synthetic ecdysone-inducible receptor, or its pET Expression System, an E. coli expression system.
  • an inducible expression system is available from Invitrogen*, which carries the T-RexTM (tetracycline-regulated expression) System, an inducible mammalian expression system that uses the full-length CMV promoter.
  • Invitrogen® also provides a yeast expression system called the Pichia methanolica Expression System, which is designed for high-level production of recombinant proteins in the methylotrophic yeast Pichia methanolica .
  • a vector such as an expression construct, to produce a nucleic acid sequence or its cognate polypeptide, protein, or peptide.
  • Primary mammalian cell cultures may be prepared in various ways. In order for the cells to be kept viable while in vitro and in contact with the expression construct, it is necessary to ensure that the cells maintain contact with the correct ratio of oxygen and carbon dioxide and nutrients but are protected from microbial contamination. Cell culture techniques are well documented.
  • One embodiment of the foregoing involves the use of gene transfer to immortalize cells for the production of proteins.
  • the gene for the protein of interest may be transferred as described above into appropriate host cells followed by culture of cells under the appropriate conditions.
  • the gene for virtually any polypeptide may be employed in this manner.
  • the generation of recombinant expression vectors, and the elements included therein, are discussed above.
  • the protein to be produced may be an endogenous protein normally synthesized by the cell in question.
  • Examples of useful mammalian host cell lines are Vero and HeLa cells and cell lines of Chinese hamster ovary, W138, BHK, COS-7, 293, HepG2, NIH3T3, RIN and MDCK cells.
  • a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and process the gene product in the manner desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein.
  • Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed.
  • a number of selection systems may be used including, but not limited to, HSV thymidine kinase, hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase genes, in tk-, hgprt- or aprt-cells, respectively.
  • anti-metabolite resistance can be used as the basis of selection for dhfr, that confers resistance to; gpt, that confers resistance to mycophenolic acid; neo, that confers resistance to the aminoglycoside G418; and hygro, that confers resistance to hygromycin.
  • the antibodies of the present disclosure may be purified.
  • purified is intended to refer to a composition, isolatable from other components, wherein the protein is purified to any degree relative to its naturally obtainable state.
  • a purified protein therefore also refers to a protein, free from the environment in which it may naturally occur.
  • substantially purified this designation will refer to a composition in which the protein or peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition.
  • Protein purification techniques are well known to those of skill in the art. These techniques involve, at one level, the crude fractionation of the cellular milieu to polypeptide and non-polypeptide fractions. Having separated the polypeptide from other proteins, the polypeptide of interest may be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly suited to the preparation of a pure peptide are ion-exchange chromatography, exclusion chromatography; polyacrylamide gel electrophoresis; isoelectric focusing.
  • protein purification include, precipitation with ammonium sulfate, PEG, antibodies and the like or by heat denaturation, followed by centrifugation; gel filtration, reverse phase, hydroxylapatite and affinity chromatography; and combinations of such and other techniques.
  • polypeptide In purifying an antibody of the present disclosure, it may be desirable to express the polypeptide in a prokaryotic or eukaryotic expression system and extract the protein using denaturing conditions.
  • the polypeptide may be purified from other cellular components using an affinity column, which binds to a tagged portion of the polypeptide.
  • affinity column which binds to a tagged portion of the polypeptide.
  • antibodies are fractionated utilizing agents (i.e., protein A) that bind the Fc portion of the antibody.
  • agents i.e., protein A
  • antigens may be used to simultaneously purify and select appropriate antibodies.
  • Such methods often utilize the selection agent bound to a support, such as a column, filter or bead.
  • the antibodies are bound to a support, contaminants removed (e.g., washed away), and the antibodies released by applying conditions (salt, heat, etc.).
  • a Single Chain Variable Fragment is a fusion of the variable regions of the heavy and light chains of immunoglobulins, linked together with a short (usually serine, glycine) linker.
  • This chimeric molecule also known as a single domain antibody, retains the specificity of the original immunoglobulin, despite removal of the constant regions and the introduction of a linker peptide. This modification usually leaves the specificity unaltered.
  • These molecules were created historically to facilitate phage display where it is highly convenient to express the antigen binding domain as a single peptide.
  • scFv can be created directly from subcloned heavy and light chains derived from a hybridoma.
  • Single domain or single chain variable fragments lack the constant Fc region found in complete antibody molecules, and thus, the common binding sites (e.g., protein A/G) used to purify antibodies (single chain antibodies include the Fc region). These fragments can often be purified/immobilized using Protein L since Protein L interacts with the variable region of kappa light chains.
  • Flexible linkers generally are comprised of helix- and turn-promoting amino acid residues such as alaine, serine and glycine. However, other residues can function as well.
  • Tang et al. (1996) used phage display as a means of rapidly selecting tailored linkers for single-chain antibodies (scFvs) from protein linker libraries.
  • scFvs single-chain antibodies
  • a random linker library was constructed in which the genes for the heavy and light chain variable domains were linked by a segment encoding an 18-amino acid polypeptide of variable composition.
  • the scFv repertoire (approx. 5 ⁇ 10 6 different members) was displayed on filamentous phage and subjected to affinity selection with hapten. The population of selected variants exhibited significant increases in binding activity but retained considerable sequence diversity.
  • the recombinant antibodies of the present disclosure may also involve sequences or moieties that permit dimerization or multimerization of the receptors.
  • sequences include those derived from IgA, which permit formation of multimers in conjunction with the J-chain.
  • Another multimerization domain is the Gal4 dimerization domain.
  • the chains may be modified with agents such as biotin/avidin, which permit the combination of two antibodies.
  • a single-chain antibody can be created by joining receptor light and heavy chains using a non-peptide linker or chemical unit.
  • the light and heavy chains will be produced in distinct cells, purified, and subsequently linked together in an appropriate fashion (i.e., the N-terminus of the heavy chain being attached to the C-terminus of the light chain via an appropriate chemical bridge).
  • Cross-linking reagents are used to form molecular bridges that tie functional groups of two different molecules, e.g., a stabilizing and coagulating agent.
  • a stabilizing and coagulating agent e.g., a stabilizing and coagulating agent.
  • dimers or multimers of the same analog or heteromeric complexes comprised of different analogs can be created.
  • hetero-bifunctional cross-linkers can be used that eliminate unwanted homopolymer formation.
  • An exemplary hetero-bifunctional cross-linker contains two reactive groups: one reacting with primary amine group (e.g., N-hydroxy succinimide) and the other reacting with a thiol group (e.g., pyridyl disulfide, maleimides, halogens, etc.).
  • primary amine group e.g., N-hydroxy succinimide
  • a thiol group e.g., pyridyl disulfide, maleimides, halogens, etc.
  • the cross-linker may react with the lysine residue(s) of one protein (e.g., the selected antibody or fragment) and through the thiol reactive group, the cross-linker, already tied up to the first protein, reacts with the cysteine residue (free sulfhydryl group) of the other protein (e.g., the selective agent).
  • cross-linker having reasonable stability in blood will be employed.
  • Numerous types of disulfide-bond containing linkers are known that can be successfully employed to conjugate targeting and therapeutic/preventative agents. Linkers that contain a disulfide bond that is sterically hindered may prove to give greater stability in vivo, preventing release of the targeting peptide prior to reaching the site of action. These linkers are thus one group of linking agents.
  • SMPT cross-linking reagent
  • Another cross-linking reagent is SMPT, which is a bifunctional cross-linker containing a disulfide bond that is “sterically hindered” by an adjacent benzene ring and methyl groups. It is believed that steric hindrance of the disulfide bond serves a function of protecting the bond from attack by thiolate anions such as glutathione which can be present in tissues and blood, and thereby help in preventing decoupling of the conjugate prior to the delivery of the attached agent to the target site.
  • thiolate anions such as glutathione which can be present in tissues and blood
  • the SMPT cross-linking reagent lends the ability to cross-link functional groups such as the SH of cysteine or primary amines (e.g., the epsilon amino group of lysine).
  • Another possible type of cross-linker includes the hetero-bifunctional photoreactive phenylazides containing a cleavable disulfide bond such as sulfosuccinimidyl-2-(p-azido salicylamido) ethyl-1,3′-dithiopropionate.
  • the N-hydroxy-succinimidyl group reacts with primary amino groups and the phenylazide (upon photolysis) reacts non-selectively with any amino acid residue.
  • non-hindered linkers also can be employed in accordance herewith.
  • Other useful cross-linkers include SATA, SPDP and 2-iminothiolane (Wawrzynczak & Thorpe, 1987). The use of such cross-linkers is well understood in the art. Another embodiment involves the use of flexible linkers.
  • U.S. Pat. No. 4,680,3308 describes bifunctional linkers useful for producing conjugates of ligands with amine-containing polymers and/or proteins, especially for forming antibody conjugates with chelators, drugs, enzymes, detectable labels and the like.
  • U.S. Pat. Nos. 5,141,648 and 5,563,250 disclose cleavable conjugates containing a labile bond that is cleavable under a variety of mild conditions.
  • This linker is particularly useful in that the agent of interest may be bonded directly to the linker, with cleavage resulting in release of the active agent.
  • Particular uses include adding a free amino or free sulfhydryl group to a protein, such as an antibody, or a drug.
  • U.S. Pat. No. 5,856,456 provides peptide linkers for use in connecting polypeptide constituents to make fusion proteins, e.g., single chain antibodies.
  • the linker is up to about 50 amino acids in length, contains at least one occurrence of a charged amino acid (preferably arginine or lysine) followed by a proline, and is characterized by greater stability and reduced aggregation.
  • U.S. Pat. No. 5,880,270 discloses aminooxy-containing linkers useful in a variety of immunodiagnostic and separative techniques.
  • T cell receptors also known as chimeric T cell receptors, chimeric immunoreceptors, chimeric antigen receptors (CARs)
  • CARs chimeric antigen receptors
  • these receptors are used to graft the specificity of a monoclonal antibody onto a T cell, with transfer of their coding sequence facilitated by retroviral vectors. In this way, a large number of cancer-specific T cells can be generated for adoptive cell transfer. Phase I clinical studies of this approach show efficacy.
  • scFv single-chain variable fragments
  • scFv single-chain variable fragments
  • An example of such a construct is 14g2a-Zeta, which is a fusion of a scFv derived from hybridoma 14g2a (which recognizes disialoganglioside GD2).
  • T cells express this molecule (usually achieved by oncoretroviral vector transduction), they recognize and kill target cells that express GD2 (e.g., neuroblastoma cells).
  • GD2 e.g., neuroblastoma cells
  • investigators have redirected the specificity of T cells using a chimeric immunoreceptor specific for the B-lineage molecule, CD19.
  • variable portions of an immunoglobulin heavy and light chain are fused by a flexible linker to form a scFv.
  • This scFv is preceded by a signal peptide to direct the nascent protein to the endoplasmic reticulum and subsequent surface expression (this is cleaved).
  • a flexible spacer allows to the scFv to orient in different directions to enable antigen binding.
  • the transmembrane domain is a typical hydrophobic alpha helix usually derived from the original molecule of the signalling endodomain which protrudes into the cell and transmits the desired signal.
  • Type I proteins are in fact two protein domains linked by a transmembrane alpha helix in between.
  • Ectodomain A signal peptide directs the nascent protein into the endoplasmic reticulum. This is essential if the receptor is to be glycosylated and anchored in the cell membrane. Any eukaryotic signal peptide sequence usually works fine. Generally, the signal peptide natively attached to the amino-terminal most component is used (e.g., in a scFv with orientation light chain-linker-heavy chain, the native signal of the light-chain is used
  • the antigen recognition domain is usually an scFv.
  • An antigen recognition domain from native T-cell receptor (TCR) alpha and beta single chains have been described, as have simple ectodomains (e.g., CD4 ectodomain to recognize HIV infected cells) and more exotic recognition components such as a linked cytokine (which leads to recognition of cells bearing the cytokine receptor).
  • TCR T-cell receptor
  • a spacer region links the antigen binding domain to the transmembrane domain. It should be flexible enough to allow the antigen binding domain to orient in different directions to facilitate antigen recognition.
  • the simplest form is the hinge region from IgG1. Alternatives include the CH2CH3 region of immunoglobulin and portions of CD3. For most scFv based constructs, the IgG1 hinge suffices. However the best spacer often has to be determined empirically.
  • the transmembrane domain is a hydrophobic alpha helix that spans the membrane. Generally, the transmembrane domain from the most membrane proximal component of the endodomain is used. Interestingly, using the CD3-zeta transmembrane domain may result in incorporation of the artificial TCR into the native TCR a factor that is dependent on the presence of the native CD3-zeta transmembrane charged aspartic acid residue. Different transmembrane domains result in different receptor stability. The CD28 transmembrane domain results in a brightly expressed, stable receptor.
  • Endodomain This is the “business-end” of the receptor. After antigen recognition, receptors cluster and a signal is transmitted to the cell.
  • the most commonly used endodomain component is CD3-zeta which contains 3 ITAMs. This transmits an activation signal to the T cell after antigen is bound.
  • CD3-zeta may not provide a fully competent activation signal and additional co-stimulatory signaling is needed.
  • chimeric CD28 and OX40 can be used with CD3-Zeta to transmit a proliferative/survival signal, or all three can be used together.
  • First-generation CARs typically had the intracellular domain from the CD3-chain, which is the primary transmitter of signals from endogenous TCRs.
  • “Second-generation” CARs add intracellular signaling domains from various costimulatory protein receptors (e.g., CD28, 41BB, ICOS) to the cytoplasmic tail of the CAR to provide additional signals to the T cell.
  • costimulatory protein receptors e.g., CD28, 41BB, ICOS
  • Preclinical studies have indicated that the second generation of CAR designs improves the antitumor activity of T cells.
  • “third-generation” CARs combine multiple signaling domains, such as CD3z-CD28-41BB or CD3z-CD28-OX40, to further augment potency.
  • T cells expressing chimeric antigen receptors Adoptive transfer of T cells expressing chimeric antigen receptors is a promising anti-cancer therapeutic as CAR-modified T cells can be engineered to target virtually any tumor associated antigen. There is great potential for this approach to improve patient-specific cancer therapy in a profound way. Following the collection of a patient's T cells, the cells are genetically engineered to express CARs specifically directed towards antigens on the patient's tumor cells, then infused back into the patient. Although adoptive transfer of CAR-modified T-cells is a unique and promising cancer therapeutic, there are significant safety concerns. Clinical trials of this therapy have revealed potential toxic effects of these CARs when healthy tissues express the same target antigens as the tumor cells, leading to outcomes similar to graft-versus-host disease (GVHD).
  • GVHD graft-versus-host disease
  • a potential solution to this problem is engineering a suicide gene into the modified T cells.
  • administration of a prodrug designed to activate the suicide gene during GVHD triggers apoptosis in the suicide gene-activated CAR T cells.
  • This method has been used safely and effectively in hematopoietic stem cell transplantation (HSCT).
  • HSCT hematopoietic stem cell transplantation
  • Adoption of suicide gene therapy to the clinical application of CAR-modified T cell adoptive cell transfer has potential to alleviate GVHD while improving overall anti-tumor efficacy.
  • Antibody Drug Conjugates or ADCs are a new class of highly potent biopharmaceutical drugs designed as a targeted therapy for the treatment of people with cancer.
  • ADCs are complex molecules composed of an antibody (a whole mAb or an antibody fragment such as a single-chain variable fragment, or scFv) linked, via a stable chemical linker with labile bonds, to a biological active cytotoxic (anticancer) payload or drug.
  • Antibody Drug Conjugates are examples of bioconjugates and immunoconjugates.
  • antibody-drug conjugates allow sensitive discrimination between healthy and diseased tissue. This means that, in contrast to traditional chemotherapeutic agents, antibody-drug conjugates target and attack the cancer cell so that healthy cells are less severely affected.
  • an anticancer drug e.g., a cell toxin or cytotoxin
  • an antibody that specifically targets a certain tumor marker e.g., a protein that, ideally, is only to be found in or on tumor cells; in this case MUC1.
  • a certain tumor marker e.g., a protein that, ideally, is only to be found in or on tumor cells; in this case MUC1.
  • Antibodies track these proteins down in the body and attach themselves to the surface of cancer cells.
  • the biochemical reaction between the antibody and the target protein (antigen) triggers a signal in the tumor cell, which then absorbs or internalizes the antibody together with the cytotoxin.
  • the cytotoxic drug is released and kills the cancer. Due to this targeting, ideally the drug has lower side effects and gives a wider therapeutic window than other chemotherapeutic agents.
  • a stable link between the antibody and cytotoxic (anti-cancer) agent is a crucial aspect of an ADC.
  • Linkers are based on chemical motifs including disulfides, hydrazones or peptides (cleavable), or thioethers (noncleavable) and control the distribution and delivery of the cytotoxic agent to the target cell. Cleavable and noncleavable types of linkers have been proven to be safe in preclinical and clinical trials.
  • Brentuximab vedotin includes an enzyme-sensitive cleavable linker that delivers the potent and highly toxic antimicrotubule agent Monomethyl auristatin E or MMAE, a synthetic antineoplastic agent, to human specific CD30-positive malignant cells.
  • MMAE which inhibits cell division by blocking the polymerization of tubulin, cannot be used as a single-agent chemotherapeutic drug.
  • cAC10 a cell membrane protein of the tumor necrosis factor or TNF receptor
  • Trastuzumab emtansine is a combination of the microtubule-formation inhibitor mertansine (DM-1), a derivative of the Maytansine, and antibody trastuzumab (Herceptin®/Genentech/Roche) attached by a stable, non-cleavable linker.
  • DM-1 microtubule-formation inhibitor mertansine
  • Maytansine a derivative of the Maytansine
  • trastuzumab Herceptin®/Genentech/Roche
  • linker cleavable or noncleavable
  • linker cleavable or noncleavable
  • cleavable linker keeps the drug within the cell.
  • the entire antibody, linker and cytotoxic (anti-cancer) agent enter the targeted cancer cell where the antibody is degraded to the level of an amino acid.
  • cleavable linkers are catalyzed by enzymes in the cancer cell where it releases the cytotoxic agent.
  • the cytotoxic payload delivered via a cleavable linker can escape from the targeted cell and, in a process called “bystander killing,” attack neighboring cancer cells.
  • cleavable linker Another type of cleavable linker, currently in development, adds an extra molecule between the cytotoxic drug and the cleavage site. This linker technology allows researchers to create ADCs with more flexibility without worrying about changing cleavage kinetics. researchers are also developing a new method of peptide cleavage based on Edman degradation, a method of sequencing amino acids in a peptide. Future direction in the development of ADCs also include the development of site-specific conjugation (TDCs) to further improve stability and therapeutic index and a emitting immunoconjugates and antibody-conjugated nanoparticles.
  • TDCs site-specific conjugation
  • Bi-specific T-cell engagers are a class of artificial bispecific monoclonal antibodies that are investigated for the use as anti-cancer drugs. They direct a host's immune system, more specifically the T cells' cytotoxic activity, against cancer cells. BiTE is a registered trademark of Micromet AG.
  • BiTEs are fusion proteins consisting of two single-chain variable fragments (scFvs) of different antibodies, or amino acid sequences from four different genes, on a single peptide chain of about 55 kilodaltons.
  • scFvs single-chain variable fragments
  • One of the scFvs binds to T cells via the CD3 receptor, and the other to a tumor cell via a tumor specific molecule, in this case MUC1.
  • BiTEs form a link between T cells and tumor cells. This causes T cells to exert cytotoxic activity on tumor cells by producing proteins like perforin and granzymes, independently of the presence of MHC I or co-stimulatory molecules. These proteins enter tumor cells and initiate the cell's apoptosis. This action mimics physiological processes observed during T cell attacks against tumor cells.
  • BiTEs that were in clinical trials as of July 2010 include Blinatumomab (MT103) for the treatment of non-Hodgkin's lymphoma and acute lymphoblastic leukemia, directed towards CD19, a surface molecule expressed on B cells; and MT110 for the treatment of gastrointestinal and lung cancers, directed towards the EpCAM antigen.
  • MT103 Blinatumomab
  • MT110 for the treatment of non-Hodgkin's lymphoma and acute lymphoblastic leukemia, directed towards CD19, a surface molecule expressed on B cells
  • MT110 for the treatment of gastrointestinal and lung cancers, directed towards the EpCAM antigen.
  • melanoma with MCSP specific BiTEs
  • acute myeloid leukemia with CD33 specific BiTEs
  • BiTEs biologic response modifiers
  • MCSP specific BiTEs with MCSP specific BiTEs
  • CD33 specific BiTEs with CD33 specific BiTEs
  • Another avenue for novel anti-cancer therapies is re-engineering some of the currently used conventional antibodies like trastuzumab (targeting HER2/neu), cetuximab and panitumumab (both targeting the EGF receptor), using the BiTE approach.
  • BiTEs against CD66e and EphA2 are being developed as well.
  • Therapeutic antibodies have been used for the treatment of malignancies in different ways such as antibody-drug conjugate (ADC), induction of antibody-dependent cell-mediated cytotoxicity (ADCC).
  • ADC antibody-drug conjugate
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • the antibody-dependent cell-mediated cytotoxicity (ADCC) is a mechanism of cell-mediated immune defense whereby an effector cell of the immune system actively lyses a target cell, whose membrane-surface antigens have been bound by specific antibodies.
  • ADCC has been identified as one of the critical mechanisms underlying the clinical efficacy of therapeutic anticancer antibodies. It is a key effector mechanism by which therapeutic antibodies directed against cell surface targets on cancer cells exert their clinical effect. The process is mediated through the binding of IgG to Fc receptors on the effector cells of the immune system, including natural killer (NK) cells, monocytes, macrophages, and eosinophils. Fc of IgG binds to FCRI, FcRII and predominantly FcRIIIa
  • the Fc region of IgG possesses a conserved glycosylation site at Asn-297 in each of the C H 2 domains.
  • the N-linked oligosaccharides expressed at this site have a significant effect on the effector functions of IgG.
  • ADCC antibody-dependent cellular cytotoxicity
  • FcRIIIa FcR receptor IIIa
  • the development of cancer referred to as carcinogenesis
  • carcinogenesis can be modeled and characterized in a number of ways.
  • An association between the development of cancer and inflammation has long-been appreciated.
  • the inflammatory response is involved in the host defense against microbial infection, and also drives tissue repair and regeneration.
  • Considerable evidence points to a connection between inflammation and a risk of developing cancer, i.e., chronic inflammation can lead to dysplasia.
  • Cancer cells to which the methods of the present disclosure can be applied include generally any cell that expresses MUC1, and more particularly, that overexpresses MUC1.
  • An appropriate cancer cell can be a breast cancer, lung cancer, colon cancer, pancreatic cancer, renal cancer, stomach cancer, liver cancer, bone cancer, hematological cancer (e.g., leukemia or lymphoma), neural tissue cancer, melanoma, ovarian cancer, testicular cancer, prostate cancer, cervical cancer, vaginal cancer, or bladder cancer cell.
  • the methods of the disclosure can be applied to a wide range of species, e.g., humans, non-human primates (e.g., monkeys, baboons, or chimpanzees), horses, cattle, pigs, sheep, goats, dogs, cats, rabbits, guinea pigs, gerbils, hamsters, rats, and mice.
  • Cancers may also be recurrent, metastatic and/or multi-drug resistant, and the methods of the present disclosure may be particularly applied to such cancers so as to render them resectable, to prolong or re-induce remission, to inhibit angiogenesis, to prevent or limit metastasis, and/or to treat multi-drug resistant cancers. At a cellular level, this may translate into killing cancer cells, inhibiting cancer cell growth, or otherwise reversing or reducing the malignant phenotype of tumor cells.
  • Sepsis is a serious medical condition characterized by a whole-body inflammatory state caused by infection.
  • sepsis has been used interchangeably with septicaemia and septicemia (“blood poisoning”).
  • blood poisoning septicaemia and septicemia
  • SIRS systemic inflammatory response syndrome
  • the immunological response that causes sepsis is a systemic inflammatory response causing widespread activation of inflammation and coagulation pathways. This may progress to dysfunction of the circulatory system and, even under optimal treatment, may result in the multiple organ dysfunction syndrome and eventually death.
  • Sepsis is considered present if infection is highly suspected or proven and two or more of the following systemic inflammatory response syndrome (SIRS) criteria are met:
  • hyperventilation >20 breaths per minute or, on blood gas, a P a CO 2 less than 32 mm Hg
  • the therapy of sepsis rests on antibiotics, surgical drainage of infected fluid collections, fluid replacement and appropriate support for organ dysfunction. This may include hemodialysis in kidney failure, mechanical ventilation in pulmonary dysfunction, transfusion of blood products, and drug and fluid therapy for circulatory failure. Ensuring adequate nutrition, if necessary by parenteral nutrition, is important during prolonged illness.
  • drotrecogin alfa activate protein C, one of the coagulation factors
  • a patient must have severe sepsis or septic shock with an APACHE II score of 25 or greater and a low risk of bleeding.
  • Low dose hydrocortisone treatment has shown promise for septic shock patients with relative adrenal insufficiency as defined by ACTH stimulation testing.
  • Standard treatment of infants with suspected sepsis consists of supportive care, maintaining fluid status with intravenous fluids, and the combination of a ⁇ -lactam antibiotic (such as ampicillin) with an aminoglycoside such as gentamicin.
  • a ⁇ -lactam antibiotic such as ampicillin
  • an aminoglycoside such as gentamicin
  • Trauma can also be described as both unplanned, such as an accident, or planned, in the case of surgery. Both can be characterized by mild to severe tissue damage, blood loss and/or shock, and both may lead to subsequent infection, including sepsis.
  • the present invention provides to treatment of trauma, including both pre-treatment (in the case of a medical procedure) and treatment after trauma injury as occurred.
  • Surgery uses operative manual and instrumental techniques on a patient to investigate and/or treat a pathological condition such as disease or injury, to help improve bodily function or appearance, or sometimes for some other reason.
  • a pathological condition such as disease or injury
  • the present invention can address trauma resulting from surgeries, as defined further below.
  • a procedure is considered surgical when it involves cutting of a patient's tissues or closure of a previously sustained wound.
  • Other procedures that do not necessarily fall under this rubric such as angioplasty or endoscopy, may be considered surgery if they involve common surgical procedure or settings, such as use of a sterile environment, anesthesia, antiseptic conditions, typical surgical instruments, and suturing or stapling. All forms of surgery are considered invasive procedures; so-called noninvasive surgery usually refers to an excision that does not penetrate the structure being addressed (e.g., laser ablation of the cornea) or to a radiosurgical procedure (e.g., irradiation of a tumor). Surgery can last from minutes to hours.
  • Surgical procedures are commonly categorized by urgency, type of procedure, body system involved, degree of invasiveness, and special instrumentation.
  • Elective surgery is done to correct a non-life-threatening condition, and is carried out at the patient's request, subject to the surgeon's and the surgical facility's availability.
  • Emergency surgery is surgery which must be done quickly to save life, limb, or functional capacity. Exploratory surgery is performed to aid or confirm a diagnosis.
  • Therapeutic surgery treats a previously diagnosed condition.
  • Amputation involves cutting off a body part, usually a limb or digit.
  • Replantation involves reattaching a severed body part.
  • Reconstructive surgery involves reconstruction of an injured, mutilated, or deformed part of the body.
  • Cosmetic surgery is done to improve the appearance of an otherwise normal structure.
  • Excision is the cutting out of an organ, tissue, or other body part from the patient.
  • Transplant surgery is the replacement of an organ or body part by insertion of another from different human (or animal) into the patient. Removing an organ or body part from a live human or animal for use in transplant is also a type of surgery.
  • organ system or structure When surgery is performed on one organ system or structure, it may be classed by the organ, organ system or tissue involved. Examples include cardiac surgery (performed on the heart), gastrointestinal surgery (performed within the digestive tract and its accessory organs), and orthopedic surgery (performed on bones and/or muscles).
  • Minimally invasive surgery involves smaller outer incision(s) to insert miniaturized instruments within a body cavity or structure, as in laparoscopic surgery or angioplasty.
  • an open surgical procedure requires a large incision to access the area of interest.
  • Laser surgery involves use of a laser for cutting tissue instead of a scalpel or similar surgical instruments.
  • Microsurgery involves the use of an operating microscope for the surgeon to see small structures.
  • Robotic surgery makes use of a surgical robot, such as Da Vinci or Zeus surgical systems, to control the instrumentation under the direction of the surgeon.
  • Traumatic Hemorrhage Traumatic Hemorrhage accounts for much of the wide ranging international impact of injury, causing a large proportion of deaths and creating great morbidity in the injured. Despite differences in pre-hospital care, the acute management of traumatic hemorrhage is similar around the world and follows well accepted published guidelines. A critically injured patient's care occurs as four, often overlapping segments: the resuscitative, operative, and critical care phases. The diagnosis and control of bleeding should be a high priority during all of the phases of trauma care and is especially important in the patient who is in hemorrhagic shock.
  • Acute pancreatitis is rapidly-onset inflammation of the pancreas. Depending on its severity, it can have severe complications and high mortality despite treatment. While mild cases are often successfully treated with conservative measures or laparoscopy, severe cases require invasive surgery (often more than one intervention) to contain the disease process.
  • ARDS Acute respiratory distress syndrome
  • RDS respiratory distress syndrome
  • IRDS adult respiratory distress syndrome
  • ARDS is a severe lung disease caused by a variety of direct and indirect insults. It is characterized by inflammation of the lung parenchyma leading to impaired gas exchange with concomitant systemic release of inflammatory mediators causing inflammation, hypoxemia and frequently resulting in multiple organ failure. This condition is life threatening and often lethal, usually requiring mechanical ventilation and admission to an intensive care unit. A less severe form is called acute lung injury (ALI).
  • ALI acute lung injury
  • ARDS can occur within 24 to 48 hours of an injury or attack of acute illness. In such a case the patient usually presents with shortness of breath, tachypnea, and symptoms related to the underlying cause, i.e., shock. Long term illnesses can also trigger it, such as malaria. The ARDS may then occur sometime after the onset of a particularly acute case of the infection.
  • An arterial blood gas analysis and chest X-ray allow formal diagnosis by inference using the aforementioned criteria. Although severe hypoxemia is generally included, the appropriate threshold defining abnormal PaO 2 has never been systematically studied. Any cardiogenic cause of pulmonary edema should be excluded. This can be done by placing a pulmonary artery catheter for measuring the pulmonary artery wedge pressure. However, this is not necessary and is now rarely done as abundant evidence has emerged demonstrating that the use of pulmonary artery catheters does not lead to improved patient outcomes in critical illness including ARDS. Plain chest X-rays are sufficient to document bilateral alveolar infiltrates in the majority of cases. While CT scanning leads to more accurate images of the pulmonary parenchyma in ARDS, its has little utility in the clinical management of patients with ARDS, and remains largely a research tool.
  • Acute respiratory distress syndrome is usually treated with mechanical ventilation in the Intensive Care Unit. Ventilation is usually delivered through oro-tracheal intubation, or tracheostomy whenever prolonged ventilation (>2 weeks) is deemed inevitable.
  • the possibilities of non-invasive ventilation are limited to the very early period of the disease or, better, to prevention in individuals at risk for the development of the disease (atypical pneumonias, pulmonary contusion, major surgery patients). Treatment of the underlying cause is imperative, as it tends to maintain the ARDS picture.
  • Appropriate antibiotic therapy must be administered as soon as microbiological culture results are available. Empirical therapy may be appropriate if local microbiological surveillance is efficient.
  • Reperfusion injury refers to damage to tissue caused when blood supply returns to the tissue after a period of ischemia.
  • the absence of oxygen and nutrients from blood creates a condition in which the restoration of circulation results in inflammation and oxidative damage through the induction of oxidative stress rather than restoration of normal function.
  • the damage of reperfusion injury is due in part to the inflammatory response of damaged tissues.
  • White blood cells carried to the area by the newly returning blood release a host of inflammatory factors such as interleukins as well as free radicals in response to tissue damage.
  • the restored blood flow reintroduces oxygen within cells that damages cellular proteins, DNA, and the plasma membrane. Damage to the cell's membrane may in turn cause the release of more free radicals.
  • Such reactive species may also act indirectly in redox signaling to turn on apoptosis.
  • Leukocytes may also build up in small capillaries, obstructing them and leading to more ischemia.
  • Reperfusion injury plays a part in the brain's ischemic cascade, which is involved in stroke and brain trauma. Repeated bouts of ischemia and reperfusion injury also are thought to be a factor leading to the formation and failure to heal of chronic wounds such as pressure sores and diabetic foot ulcers. Continuous pressure limits blood supply and causes ischemia, and the inflammation occurs during reperfusion. As this process is repeated, it eventually damages tissue enough to cause a wound.
  • hypoxanthine In prolonged ischemia (60 min or more), hypoxanthine is formed as breakdown product of ATP metabolism.
  • the enzyme xanthine dehydrogenase is converted to xanthine oxidase as a result of the higher availability of oxygen. This oxidation results in molecular oxygen being converted into highly reactive superoxide and hydroxyl radicals.
  • Xanthine oxidase also produces uric acid, which may act as both a prooxidant and as a scavenger of reactive species such as peroxinitrite.
  • Excessive nitric oxide produced during reperfusion reacts with superoxide to produce the potent reactive species peroxynitrite.
  • Such radicals and reactive oxygen species attack cell membrane lipids, proteins, and glycosaminoglycans, causing further damage. They may also initiate specific biological processes by redox signaling.
  • Cardiovascular disease refers to the class of diseases that involve the heart or blood vessels (arteries and veins). While the term technically refers to any disease that affects the cardiovascular system, it is usually used to refer to those related to atherosclerosis (arterial disease). These conditions have similar causes, mechanisms, and treatments. Treatment of cardiovascular disease depends on the specific form of the disease in each patient, but effective treatment always includes preventive lifestyle changes discussed above. Medications, such as blood pressure reducing medications, aspirin and the statin cholesterol-lowering drugs may be helpful. In some circumstances, surgery or angioplasty may be warranted to reopen, repair, or replace damaged blood vessels
  • biomarkers are thought to offer a more detailed risk of cardiovascular disease. However, the clinical value of these biomarkers is questionable.
  • biomarkers which may reflect a higher risk of cardiovascular disease include:
  • the present invention contemplates the treatment of a variety of autoimmune and/or inflammatory disease states such as spondyloarthropathy, ankylosing spondylitis, psoriatic arthritis, reactive arthritis, enteropathic arthritis, ulcerative colitis, Crohn's disease, irritable bowel disease, inflammatory bowel disease, rheumatoid arthritis, juvenile rheumatoid arthritis, familial Mediterranean fever, amyotrophic lateral sclerosis, Sjogren's syndrome, early arthritis, viral arthritis, multiple sclerosis, idiopathic pulmonary fibrosis or psoriasis.
  • spondyloarthropathy ankylosing spondylitis
  • psoriatic arthritis reactive arthritis
  • enteropathic arthritis ulcerative colitis
  • Crohn's disease irritable bowel disease
  • inflammatory bowel disease rheumatoid arthritis
  • juvenile rheumatoid arthritis familial Mediterranean fever
  • amyotrophic lateral sclerosis S
  • cancer therapy including chemotherapy, radiation, and cytokines
  • chemotherapy are associated with toxicity, sometimes severe, in the cancer patient.
  • the present invention seeks to reduce this toxicity using the pharmaceutical compositions of the present invention, thereby reducing or alleviating discomfort on the part of the patient, as well as permitting higher doses of the therapy.
  • a burn may be an injury caused by heat, cold, electricity, chemicals, friction or radiation.
  • First-degree burns are usually limited to redness (erythema), a white plaque, and minor pain at the site of injury. These burns usually extend only into the epidermis.
  • Second-degree burns additionally fill with clear fluid, have superficial blistering of the skin, and can involve more or less pain depending on the level of nerve involvement. Second-degree burns involve the superficial (papillary) dermis and may also involve the deep (reticular) dermis layer.
  • Third-degree burns additionally have charring of the skin, and produce hard, leather-like eschars.
  • An eschar is a scab that has separated from the unaffected part of the body.
  • a newer classification of “Superficial Thickness,” “Partial Thickness” (which is divided into superficial and deep categories) and “Full Thickness” relates more precisely to the epidermis, dermis and subcutaneous layers of skin and is used to guide treatment and predict outcome.
  • Chemical burns are usually caused by chemical compounds, such as sodium hydroxide (lye), silver nitrate, and more serious compounds (such as sulfuric acid). Most chemicals (but not all) that can cause moderate to severe chemical burns are strong acids or bases. Nitric acid, as an oxidizer, is possibly one of the worst burn-causing chemicals. Hydrofluoric acid can eat down to the bone and its burns are often not immediately evident. Most chemicals that can cause moderate to severe chemical burns are called caustic.
  • Burns are assessed in terms of total body surface area (TBSA), which is the percentage affected by partial thickness or full thickness burns (superficial thickness burns are not counted). The rule of nines is used as a quick and useful way to estimate the affected TBSA.
  • the first step in managing a person with a burn is to stop the burning process. With dry powder burns, the powder should be brushed off first. With other burns, the affected area should be rinsed with a large amount of clean water to remove foreign bodies and help stop the burning process. Cold water should never be applied to any person with extensive burns, as it may severely compromise the burn victim's temperature status. At this stage of management, it is also critical to assess the airway status. If the patient was involved in a fire, then it must be assumed that he or she has sustained inhalation injury until proven otherwise, and treatment should be managed accordingly.
  • Another category of inflammatory disease is that of infections, including viral, bacterial, fungal and pathogen.
  • infectious diseases in which MUC1 has been shown to play a role are SARS-CoV-2, human papilloma virus and H. pylori infections.
  • compositions comprising anti-MUC1-C antibodies.
  • pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
  • carrier refers to a diluent, excipient, or vehicle with which the therapeutic is administered.
  • Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, saline, dextrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol and the like.
  • compositions can be formulated as neutral or salt forms.
  • Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
  • the antibodies of the present disclosure may include classic pharmaceutical preparations. Administration of these compositions according to the present disclosure will be via any common route so long as the target tissue is available via that route. This includes oral, nasal, buccal, rectal, vaginal or topical. Alternatively, administration may be by intradermal, subcutaneous, intramuscular, intraperitoneal or intravenous injection. Such compositions would normally be administered as pharmaceutically acceptable compositions, described supra. Of particular interest is direct intratumoral administration, perfusion of a tumor, or administration local or regional to a tumor, for example, in the local or regional vasculature or lymphatic system, or in a resected tumor bed.
  • the active compounds may also be administered parenterally or intraperitoneally.
  • Solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • anti-MUC1-C antibodies described herein could be used similarly in conjunction with chemo- or radiotherapeutic intervention, or other treatments. It also may prove effective, in particular, to combine anti-MUC1-C/ECD antibodies with other therapies that target different aspects of MUC1 function, such as peptides and small molecules that target the MUC1 cytoplasmic domain.
  • compositions of the present disclosure To kill cells, inhibit cell growth, inhibit metastasis, inhibit angiogenesis or otherwise reverse or reduce the malignant phenotype of tumor cells, using the methods and compositions of the present disclosure, one would generally contact a “target” cell with an anti-MUC1-C antibody according to the present disclosure and at least one other agent. These compositions would be provided in a combined amount effective to kill or inhibit proliferation of the cell. This process may involve contacting the cells with the anti-MUC1-C antibody according to the present disclosure and the other agent(s) or factor(s) at the same time.
  • This may be achieved by contacting the cell with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes the anti-MUC1-C antibody according to the present disclosure and the other includes the other agent.
  • the anti-MUC1-C antibody therapy may precede or follow the other agent treatment by intervals ranging from minutes to weeks.
  • the other agent and the anti-MUC1 antibody are applied separately to the cell, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and expression construct would still be able to exert an advantageously combined effect on the cell.
  • an anti-MUC1-C antibody according to the present disclosure therapy is “A” and the other therapy is “B”, as exemplified below:
  • both agents are delivered to a cell in a combined amount effective to kill the cell.
  • Agents or factors suitable for cancer therapy include any chemical compound or treatment method that induces DNA damage when applied to a cell. Such agents and factors include radiation and waves that induce DNA damage such as, irradiation, microwaves, electronic emissions, and the like.
  • a variety of chemical compounds, also described as “chemotherapeutic” or “genotoxic agents,” may be used. This may be achieved by irradiating the localized tumor site; alternatively, the tumor cells may be contacted with the agent by administering to the subject a therapeutically effective amount of a pharmaceutical composition.
  • SERMs selective estrogen receptor antagonists
  • Tamoxifen 4-hydroxy Tamoxifen (Afimoxfene)
  • Falsodex Raloxifene
  • Bazedoxifene Raloxifene
  • Clomifene Femarelle
  • Lasofoxifene Ormeloxifene
  • Toremifene Toremifene
  • Chemotherapeutic agents contemplated to be of use include, e.g., camptothecin, actinomycin-D, mitomycin C.
  • the disclosure also encompasses the use of a combination of one or more DNA damaging agents, whether radiation-based or actual compounds, such as the use of X-rays with cisplatin or the use of cisplatin with etoposide.
  • the agent may be prepared and used as a combined therapeutic composition, or kit, by combining it with a MUC1 peptide, as described above.
  • Heat shock protein 90 is a regulatory protein found in many eukaryotic cells. HSP90 inhibitors have been shown to be useful in the treatment of cancer. Such inhibitors include Geldanamycin, 17-(Allylamino)-17-demethoxygeldanamycin, PU-H71 and Rifabutin.
  • Agents that directly cross-link DNA or form adducts are also envisaged. Agents such as cisplatin, and other DNA alkylating agents may be used. Cisplatin has been widely used to treat cancer, with efficacious doses used in clinical applications of 20 mg/m 2 for 5 days every three weeks for a total of three courses. Cisplatin is not absorbed orally and must therefore be delivered via injection intravenously, subcutaneously, intratumorally or intraperitoneally.
  • Agents that damage DNA also include compounds that interfere with DNA replication, mitosis and chromosomal segregation.
  • chemotherapeutic compounds include adriamycin, also known as doxorubicin, etoposide, verapamil, podophyllotoxin, and the like. Widely used in a clinical setting for the treatment of neoplasms, these compounds are administered through bolus injections intravenously at doses ranging from 25-75 mg/m 2 at 21 day intervals for doxorubicin, to 35-50 mg/m 2 for etoposide intravenously or double the intravenous dose orally.
  • Microtubule inhibitors such as taxanes, also are contemplated. These molecules are diterpenes produced by the plants of the genus Taxus , and include paclitaxel and docetaxel.
  • Epidermal growth factor receptor inhibitors such as Iressa, mTOR, the mammalian target of rapamycin, also known as FK506-binding protein 12-rapamycin associated protein 1 (FRAP1) is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. Rapamycin and analogs thereof (“rapalogs”) are therefore contemplated for use in cancer therapy in accordance with the present disclosure.
  • TNF- ⁇ tumor necrosis factor-alpha
  • TNF- ⁇ tumor necrosis factor-alpha
  • cytokine involved in systemic inflammation
  • cytokines that stimulate the acute phase reaction.
  • the primary role of TNF is in the regulation of immune cells. TNF is also able to induce apoptotic cell death, to induce inflammation, and to inhibit tumorigenesis and viral replication.
  • nucleic acid precursors and subunits also lead to DNA damage.
  • nucleic acid precursors have been developed.
  • agents that have undergone extensive testing and are readily available are particularly useful.
  • agents such as 5-fluorouracil (5-FU) are preferentially used by neoplastic tissue, making this agent particularly useful for targeting to neoplastic cells.
  • 5-FU is applicable in a wide range of carriers, including topical, however intravenous administration with doses ranging from 3 to 15 mg/kg/day being commonly used.
  • Dosage ranges for x-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 weeks), to single doses of 2000 to 6000 roentgens.
  • Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.
  • immunotherapy hormone therapy, toxin therapy and surgery can be used.
  • targeted therapies such as Avastin, Erbitux, Gleevec, Herceptin and Rituxan.
  • One particularly advantageous approach to combination therapy is to select a second agent that targets MUC1.
  • methods of inhibiting a MUC1-positive tumor cell in a subject comprising administering to said subject a MUC1 peptide of at least 4 consecutive MUC1 residues and no more than 20 consecutive MUC1 residues and comprising the sequence CQC, wherein the amino-terminal cysteine of CQC is covered on its NH 2 -terminus by at least one amino acid residue that need not correspond to the native MUC-1 transmembrane sequence.
  • the peptide may comprise at least 5 consecutive MUC1 residues, at least 6 consecutive MUC1 residues, at least 7 consecutive MUC1 residues, at least 8 consecutive MUC1 residues and the sequence may more specifically comprise CQCR (SEQ ID NO: 31), CQCRR (SEQ ID NO: 32), CQCRRR (SEQ ID NO: 33), CQCRRRR (SEQ ID NO: 34), CQCRRK (SEQ ID NO: 35), CQCRRKN (SEQ ID NO: 36), or RRRRRRRRRCQCRRKN (SEQ ID NO: 37).
  • the peptide may contain no more than 10 consecutive residues, 11 consecutive residues, 12 consecutive residues, 13 consecutive residues, 14 consecutive residues, 15 consecutive residues, 16 consecutive residues, 17 consecutive residues, 18 consecutive residues or 19 consecutive residues of MUC1.
  • the peptide may be fused to a cell delivery domain, such as poly-D-R, poly-D-P or poly-D-K.
  • the peptide may comprise all L amino acids, all D amino acids, or a mix of L and D amino acids. See U.S. Pat. No. 8,524,669.
  • methods of inhibiting a MUC1-positive cancer cell comprising contacting the cell with a MUC1 peptide of at least 4 consecutive MUC1 residues and no more than 20 consecutive MUC1 residues and comprising the sequence CQC, wherein (i) the amino-terminal cysteine of CQC is covered on its NH 2 -terminus by at least one amino acid residue that need not correspond to the native MUC1 transmembrane sequence; and (ii) the peptide comprises 3-5 consecutive positively-charged amino acid residues in addition to those positively-charged amino acid residues corresponding to native MUC1 residues.
  • the MUC1-positive cell may be a solid tumor cell, such as a lung cancer cell, a brain cancer cell, a head & neck cancer cell, a breast cancer cell, a skin cancer cell, a liver cancer cell, a pancreatic cancer cell, a stomach cancer cell, a colon cancer cell, a rectal cancer cell, a uterine cancer cell, a cervical cancer cell, an ovarian cancer cell, a testicular cancer cell, a skin cancer cell or a esophageal cancer cell.
  • the MUC1-positive cell may be a leukemia or myeloma cell, such as acute myeloid leukemia, chronic myelogenous leukemia or multiple myeloma.
  • the peptide may be a stapled peptide, a cyclized peptide, a peptidomimetic or peptoid.
  • the method may further comprise contacting the cell with a second anti-cancer agent, such as where the second anti-cancer agent is contacted prior to the peptide, after the peptide or at the same time as the peptide.
  • Inhibiting may comprise inhibiting cancer cell growth, cancer cell proliferation or inducing cancer cell death, such as by apoptosis.
  • Another technology advanced by the inventors involves methods of inhibiting inflammatory signaling in a cell comprising contacting said cell with a flavone having the structure of:
  • Antibodies may be linked to at least one agent to form an antibody conjugate.
  • it is conventional to link or covalently bind or complex at least one desired molecule or moiety.
  • a molecule or moiety may be, but is not limited to, at least one effector or reporter molecule.
  • Effector molecules comprise molecules having a desired activity, e.g., immunosuppression/anti-inflammation. Non-limiting examples of such molecules are set out above.
  • Such molecules are optionally attached via cleavable linkers designed to allow the molecules to be released at or near the target site.
  • reporter molecule is defined as any moiety which may be detected using an assay.
  • reporter molecules which have been conjugated to antibodies include enzymes, radiolabels, haptens, fluorescent labels, phosphorescent molecules, chemiluminescent molecules, chromophores, photoaffinity molecules, colored particles or ligands, such as biotin.
  • Antibody conjugates are generally preferred for use as diagnostic agents.
  • Antibody diagnostics generally fall within two classes, those for use in in vitro diagnostics, such as in a variety of immunoassays, and those for use in vivo diagnostic protocols, generally known as “antibody-directed imaging.”
  • Many appropriate imaging agents are known in the art, as are methods for their attachment to antibodies (see, for e.g., U.S. Pat. Nos. 5,021,236, 4,938,948, and 4,472,509).
  • the imaging moieties used can be paramagnetic ions, radioactive isotopes, fluorochromes, NMR-detectable substances, and X-ray imaging agents.
  • paramagnetic ions such as chromium (III), manganese (II), iron (III), iron (II), cobalt (II), nickel (II), copper (II), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), vanadium (II), terbium (III), dysprosium (III), holmium (III) and/or erbium (III), with gadolinium being particularly preferred.
  • Ions useful in other contexts, such as X-ray imaging include but are not limited to lanthanum (III), gold (III), lead (II), and especially bismuth (III).
  • radioactive isotopes for therapeutic and/or diagnostic application, one might mention astatine 211 , 14 carbon, 5 ′ chromium, 36 chlorine, 57 cobalt, 58 cobalt, copper 67 , 152 Eu, gallium 67 , 3 hydrogen, iodine 123 , iodine 125 , iodine 131 , indium 111 , 59 iron, 32 phosphorus, rhenium 186 , rhenium 181 , 75 selenium, 35 sulphur, technicium 99m and/or yttrium 90 .
  • Radioactively labeled monoclonal antibodies may be produced according to well-known methods in the art. For instance, monoclonal antibodies can be iodinated by contact with sodium and/or potassium iodide and a chemical oxidizing agent such as sodium hypochlorite, or an enzymatic oxidizing agent, such as lactoperoxidase.
  • Monoclonal antibodies may be labeled with technetium 99m by ligand exchange process, for example, by reducing pertechnate with stannous solution, chelating the reduced technetium onto a Sephadex column and applying the antibody to this column.
  • direct labeling techniques may be used, e.g., by incubating pertechnate, a reducing agent such as SNCl 2 , a buffer solution such as sodium-potassium phthalate solution, and the antibody.
  • Intermediary functional groups are often used to bind radioisotopes to antibody and exist as metallic ions are diethylenetriaminepentaacetic acid (DTPA) or ethylene diaminetetracetic acid (EDTA).
  • DTPA diethylenetriaminepentaacetic acid
  • EDTA ethylene diaminetetracetic acid
  • fluorescent labels contemplated for use as conjugates include Alexa 350, Alexa 430, AMCA, BODIPY 630/650, BODIPY 650/665, BODIPY-FL, BODIPY-R6G, BODIPY-TMR, BODIPY-TRX, Cascade Blue, Cy3, Cy5,6-FAM, Fluorescein Isothiocyanate, HEX, 6-JOE, Oregon Green 488, Oregon Green 500, Oregon Green 514, Pacific Blue, REG, Rhodamine Green, Rhodamine Red, Renographin, ROX, TAMRA, TET, Tetramethylrhodamine, and/or Texas Red.
  • antibody conjugates contemplated are those intended primarily for use in vitro, where the antibody is linked to a secondary binding ligand and/or to an enzyme (an enzyme tag) that will generate a colored product upon contact with a chromogenic substrate.
  • suitable enzymes include urease, alkaline phosphatase, (horseradish) hydrogen peroxidase or glucose oxidase.
  • Preferred secondary binding ligands are biotin and avidin and streptavidin compounds. The use of such labels is well known to those of skill in the art and are described, for example, in U.S. Pat. Nos. 3,817,837, 3,850,752, 3,939,350, 3,996,345, 4,277,437, 4,275,149 and 4,366,241.
  • hapten-based affinity labels react with amino acids in the antigen binding site, thereby destroying this site and blocking specific antigen reaction. However, this may not be advantageous since it results in loss of antigen binding by the antibody conjugate.
  • Molecules containing azido groups may also be used to form covalent bonds to proteins through reactive nitrene intermediates that are generated by low intensity ultraviolet light (Potter and Haley, 1983).
  • 2- and 8-azido analogues of purine nucleotides have been used as site-directed photoprobes to identify nucleotide binding proteins in crude cell extracts (Owens & Haley, 1987; Atherton et al., 1985).
  • the 2- and 8-azido nucleotides have also been used to map nucleotide binding domains of purified proteins (Khatoon et al., 1989; King et al., 1989; Dholakia et al., 1989) and may be used as antibody binding agents.
  • Some attachment methods involve the use of a metal chelate complex employing, for example, an organic chelating agent such as diethylenetriaminepentaacetic acid anhydride (DTPA); ethylenetriaminetetraacetic acid; N-chloro-p-toluenesulfonamide; and/or tetrachloro-3 ⁇ -6 ⁇ -diphenylglycouril-3 attached to the antibody (U.S. Pat. Nos. 4,472,509 and 4,938,948).
  • DTPA diethylenetriaminepentaacetic acid anhydride
  • ethylenetriaminetetraacetic acid N-chloro-p-toluenesulfonamide
  • tetrachloro-3 ⁇ -6 ⁇ -diphenylglycouril-3 attached to the antibody
  • Monoclonal antibodies may also be reacted with an enzyme in the presence of a coupling agent such as glutaraldehyde or periodate.
  • Conjugates with fluorescein markers are prepared in the presence of these coupling agents or by reaction with an isothiocyanate.
  • imaging of breast tumors is achieved using monoclonal antibodies and the detectable imaging moieties are bound to the antibody using linkers such as methyl-p-hydroxybenzimidate or N-succinimidyl-3-(4-hydroxyphenyl)propionate.
  • derivatization of immunoglobulins by selectively introducing sulfhydryl groups in the Fc region of an immunoglobulin, using reaction conditions that do not alter the antibody combining site are contemplated.
  • Antibody conjugates produced according to this methodology are disclosed to exhibit improved longevity, specificity and sensitivity (U.S. Pat. No. 5,196,066, incorporated herein by reference).
  • Site-specific attachment of effector or reporter molecules, wherein the reporter or effector molecule is conjugated to a carbohydrate residue in the Fc region have also been disclosed in the literature (O'Shannessy et al., 1987). This approach has been reported to produce diagnostically and therapeutically promising antibodies which are currently in clinical evaluation.
  • immunodetection methods for binding, purifying, removing, quantifying and otherwise generally detecting MUC1 and its associated antigens.
  • Some immunodetection methods include enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunoradiometric assay, fluoroimmunoassay, chemiluminescent assay, bioluminescent assay, and Western blot to mention a few.
  • ELISA enzyme linked immunosorbent assay
  • RIA radioimmunoassay
  • immunoradiometric assay immunoradiometric assay
  • fluoroimmunoassay chemiluminescent assay
  • bioluminescent assay bioluminescent assay
  • Western blot to mention a few.
  • a competitive assay for the detection and quantitation of MUC1-C antibodies also is provided.
  • the immunobinding methods include obtaining a sample and contacting the sample with a first antibody in accordance with embodiments discussed herein, as the case may be, under conditions effective to allow the formation of immunocomplexes.
  • the chosen biological sample with the antibody under effective conditions and for a period of time sufficient to allow the formation of immune complexes is generally a matter of simply adding the antibody composition to the sample and incubating the mixture for a period of time long enough for the antibodies to form immune complexes with, i.e., to bind to MUC1 present.
  • the sample-antibody composition such as a tissue section, ELISA plate, dot blot or Western blot, will generally be washed to remove any non-specifically bound antibody species, allowing only those antibodies specifically bound within the primary immune complexes to be detected.
  • the antibody employed in the detection may itself be linked to a detectable label, wherein one would then simply detect this label, thereby allowing the amount of the primary immune complexes in the composition to be determined.
  • the first antibody that becomes bound within the primary immune complexes may be detected by means of a second binding ligand that has binding affinity for the antibody.
  • the second binding ligand may be linked to a detectable label.
  • the second binding ligand is itself often an antibody, which may thus be termed a “secondary” antibody.
  • the primary immune complexes are contacted with the labeled, secondary binding ligand, or antibody, under effective conditions and for a period of time sufficient to allow the formation of secondary immune complexes.
  • the secondary immune complexes are then generally washed to remove any non-specifically bound labeled secondary antibodies or ligands, and the remaining label in the secondary immune complexes is then detected.
  • Further methods include the detection of primary immune complexes by a two step approach.
  • a second binding ligand such as an antibody that has binding affinity for the antibody, is used to form secondary immune complexes, as described above.
  • the secondary immune complexes are contacted with a third binding ligand or antibody that has binding affinity for the second antibody, again under effective conditions and for a period of time sufficient to allow the formation of immune complexes (tertiary immune complexes).
  • the third ligand or antibody is linked to a detectable label, allowing detection of the tertiary immune complexes thus formed. This system may provide for signal amplification if this is desired.
  • One method of immunodetection uses two different antibodies.
  • a first biotinylated antibody is used to detect the target antigen, and a second antibody is then used to detect the biotin attached to the complexed biotin.
  • the sample to be tested is first incubated in a solution containing the first step antibody. If the target antigen is present, some of the antibody binds to the antigen to form a biotinylated antibody/antigen complex.
  • the antibody/antigen complex is then amplified by incubation in successive solutions of streptavidin (or avidin), biotinylated DNA, and/or complementary biotinylated DNA, with each step adding additional biotin sites to the antibody/antigen complex.
  • the amplification steps are repeated until a suitable level of amplification is achieved, at which point the sample is incubated in a solution containing the second step antibody against biotin.
  • This second step antibody is labeled, as for example with an enzyme that can be used to detect the presence of the antibody/antigen complex by histoenzymology using a chromogen substrate.
  • a conjugate can be produced which is macroscopically visible.
  • PCR Polymerase Chain Reaction
  • the PCR method is similar to the Cantor method up to the incubation with biotinylated DNA, however, instead of using multiple rounds of streptavidin and biotinylated DNA incubation, the DNA/biotin/streptavidin/antibody complex is washed out with a low pH or high salt buffer that releases the antibody. The resulting wash solution is then used to carry out a PCR reaction with suitable primers with appropriate controls.
  • the enormous amplification capability and specificity of PCR can be utilized to detect a single antigen molecule.
  • Immunoassays in their most simple sense, are binding assays. Certain preferred immunoassays are the various types of enzyme linked immunosorbent assays (ELISAs) and radioimmunoassays (RIA) known in the art. Immunohistochemical detection using tissue sections is also particularly useful. However, it will be readily appreciated that detection is not limited to such techniques, and western blotting, dot blotting, FACS analyses, and the like may also be used.
  • the antibodies of the disclosure are immobilized onto a selected surface exhibiting protein affinity, such as a well in a polystyrene microtiter plate. Then, a test composition suspected of containing the MUC1 is added to the wells. After binding and washing to remove non-specifically bound immune complexes, the bound antigen may be detected. Detection may be achieved by the addition of another anti-MUC1-C antibody that is linked to a detectable label.
  • ELISA is a simple “sandwich ELISA.” Detection may also be achieved by the addition of a second anti-MUC1-C antibody, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label.
  • the samples suspected of containing the MUC1 antigen are immobilized onto the well surface and then contacted with anti-MUC1-C antibody. After binding and washing to remove non-specifically bound immune complexes, the bound anti-MUC1-C antibodies are detected. Where the initial anti-MUC1-C antibodies are linked to a detectable label, the immune complexes may be detected directly. Again, the immune complexes may be detected using a second antibody that has binding affinity for the first anti-MUC1-C antibody, with the second antibody being linked to a detectable label.
  • ELISAs have certain features in common, such as coating, incubating and binding, washing to remove non-specifically bound species, and detecting the bound immune complexes. These are described below.
  • a plate with either antigen or antibody In coating a plate with either antigen or antibody, one will generally incubate the wells of the plate with a solution of the antigen or antibody, either overnight or for a specified period of hours. The wells of the plate will then be washed to remove incompletely adsorbed material. Any remaining available surfaces of the wells are then “coated” with a nonspecific protein that is antigenically neutral with regard to the test antisera. These include bovine serum albumin (BSA), casein or solutions of milk powder.
  • BSA bovine serum albumin
  • the coating allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.
  • a secondary or tertiary detection means rather than a direct procedure.
  • the immobilizing surface is contacted with the biological sample to be tested under conditions effective to allow immune complex (antigen/antibody) formation. Detection of the immune complex then requires a labeled secondary binding ligand or antibody, and a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or a third binding ligand.
  • Under conditions effective to allow immune complex (antigen/antibody) formation means that the conditions preferably include diluting the antigens and/or antibodies with solutions such as BSA, bovine gamma globulin (BGG) or phosphate buffered saline (PBS)/Tween. These added agents also tend to assist in the reduction of nonspecific background.
  • suitable conditions also mean that the incubation is at a temperature or for a period of time sufficient to allow effective binding. Incubation steps are typically from about 1 to 2 to 4 hours or so, at temperatures preferably on the order of 25° C. to 27° C., or may be overnight at about 4° C. or so.
  • the contacted surface is washed so as to remove non-complexed material.
  • a preferred washing procedure includes washing with a solution such as PBS/Tween, or borate buffer. Following the formation of specific immune complexes between the test sample and the originally bound material, and subsequent washing, the occurrence of even minute amounts of immune complexes may be determined.
  • the second or third antibody will have an associated label to allow detection.
  • this will be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate.
  • a urease, glucose oxidase, alkaline phosphatase or hydrogen peroxidase-conjugated antibody for a period of time and under conditions that favor the development of further immune complex formation (e.g., incubation for 2 hours at room temperature in a PBS-containing solution such as PBS-Tween).
  • the amount of label is quantified, e.g., by incubation with a chromogenic substrate such as urea, or bromocresol purple, or 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulfonic acid (ABTS), or H 2 O 2 , in the case of peroxidase as the enzyme label. Quantification is then achieved by measuring the degree of color generated, e.g., using a visible spectra spectrophotometer.
  • a chromogenic substrate such as urea, or bromocresol purple, or 2,2′-azino-di-(3-ethyl-benzthiazoline-6-sulfonic acid (ABTS), or H 2 O 2 , in the case of peroxidase as the enzyme label.
  • Quantification is then achieved by measuring the degree of color generated, e.g., using a visible spectra spectrophotometer.
  • the Western blot is an analytical technique used to detect specific proteins in a given sample of tissue homogenate or extract. It uses gel electrophoresis to separate native or denatured proteins by the length of the polypeptide (denaturing conditions) or by the 3-D structure of the protein (native/non-denaturing conditions). The proteins are then transferred to a membrane (typically nitrocellulose or PVDF), where they are probed (detected) using antibodies specific to the target protein.
  • a membrane typically nitrocellulose or PVDF
  • Samples may be taken from whole tissue or from cell culture. In most cases, solid tissues are first broken down mechanically using a blender (for larger sample volumes), using a homogenizer (smaller volumes), or by sonication. Cells may also be broken open by one of the above mechanical methods. However, it should be noted that bacteria, virus or environmental samples can be the source of protein and thus Western blotting is not restricted to cellular studies only. Assorted detergents, salts, and buffers may be employed to encourage lysis of cells and to solubilize proteins. Protease and phosphatase inhibitors are often added to prevent the digestion of the sample by its own enzymes. Tissue preparation is often done at cold temperatures to avoid protein denaturing.
  • the proteins of the sample are separated using gel electrophoresis. Separation of proteins may be by isoelectric point (pI), molecular weight, electric charge, or a combination of these factors. The nature of the separation depends on the treatment of the sample and the nature of the gel. This is a very useful way to determine a protein. It is also possible to use a two-dimensional (2-D) gel which spreads the proteins from a single sample out in two dimensions. Proteins are separated according to isoelectric point (pH at which they have neutral net charge) in the first dimension, and according to their molecular weight in the second dimension.
  • isoelectric point pH at which they have neutral net charge
  • the proteins In order to make the proteins accessible to antibody detection, they are moved from within the gel onto a membrane made of nitrocellulose or polyvinylidene difluoride (PVDF).
  • PVDF polyvinylidene difluoride
  • the membrane is placed on top of the gel, and a stack of filter papers placed on top of that. The entire stack is placed in a buffer solution which moves up the paper by capillary action, bringing the proteins with it.
  • Another method for transferring the proteins is called electroblotting and uses an electric current to pull proteins from the gel into the PVDF or nitrocellulose membrane.
  • the proteins move from within the gel onto the membrane while maintaining the organization they had within the gel. As a result of this blotting process, the proteins are exposed on a thin surface layer for detection (see below).
  • Both varieties of membrane are chosen for their non-specific protein binding properties (i.e., binds all proteins equally well). Protein binding is based upon hydrophobic interactions, as well as charged interactions between the membrane and protein. Nitrocellulose membranes are cheaper than PVDF, but are far more fragile and do not stand up well to repeated probings. The uniformity and overall effectiveness of transfer of protein from the gel to the membrane can be checked by staining the membrane with Coomassie Brilliant Blue or Ponceau S dyes. Once transferred, proteins are detected using labeled primary antibodies, or unlabeled primary antibodies followed by indirect detection using labeled protein A or secondary labeled antibodies binding to the Fc region of the primary antibodies.
  • the antibodies may also be used in conjunction with both fresh-frozen and/or formalin-fixed, paraffin-embedded tissue blocks prepared for study by immunohistochemistry (IHC).
  • IHC immunohistochemistry
  • frozen-sections may be prepared by rehydrating 50 ng of frozen “pulverized” tissue at room temperature in phosphate buffered saline (PBS) in small plastic capsules; pelleting the particles by centrifugation; resuspending them in a viscous embedding medium (OCT); inverting the capsule and/or pelleting again by centrifugation; snap-freezing in ⁇ 70° C. isopentane; cutting the plastic capsule and/or removing the frozen cylinder of tissue; securing the tissue cylinder on a cryostat microtome chuck; and/or cutting 25-50 serial sections from the capsule.
  • whole frozen tissue samples may be used for serial section cuttings.
  • Permanent-sections may be prepared by a similar method involving rehydration of the 50 mg sample in a plastic microfuge tube; pelleting; resuspending in 10% formalin for 4 hours fixation; washing/pelleting; resuspending in warm 2.5% agar; pelleting; cooling in ice water to harden the agar; removing the tissue/agar block from the tube; infiltrating and/or embedding the block in paraffin; and/or cutting up to 50 serial permanent sections. Again, whole tissue samples may be substituted.
  • immunodetection kits for use with the immunodetection methods described above.
  • the immunodetection kits will thus comprise, in suitable container means, a first antibody that binds to MUC1 antigen, and optionally an immunodetection reagent.
  • the MUC1-C antibody may be pre-bound to a solid support, such as a column matrix and/or well of a microtitre plate.
  • the immunodetection reagents of the kit may take any one of a variety of forms, including those detectable labels that are associated with or linked to the given antibody. Detectable labels that are associated with or attached to a secondary binding ligand are also contemplated. Exemplary secondary ligands are those secondary antibodies that have binding affinity for the first antibody.
  • suitable immunodetection reagents for use in the present kits include the two-component reagent that comprises a secondary antibody that has binding affinity for the first antibody, along with a third antibody that has binding affinity for the second antibody, the third antibody being linked to a detectable label.
  • a number of exemplary labels are known in the art and all such labels may be employed in connection with embodiments discussed herein.
  • kits may further comprise a suitably aliquoted composition of the MUC1 antigen, whether labeled or unlabeled, as may be used to prepare a standard curve for a detection assay.
  • the kits may contain antibody-label conjugates either in fully conjugated form, in the form of intermediates, or as separate moieties to be conjugated by the user of the kit.
  • the components of the kits may be packaged either in aqueous media or in lyophilized form.
  • the container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which the antibody may be placed, or preferably, suitably aliquoted.
  • the kits will also include a means for containing the antibody, antigen, and any other reagent containers in close confinement for commercial sale.
  • Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.
  • SOP standard operating procedure
  • RACE rapid amplification of cDNA ends
  • pTT5 expression vector and HEK293-6E cell prepared by GenScript; 37° C. CO 2 incubator (Thermo Scientific, Model. 3951); Biological safety cabinet (Thermo Scientific, Model. 1384); Orbital shaker (Thermo Scientific, Model. 416); Polyethylenimine (Polysciences, Cat. No. 23966); FreeStyle 293 medium (lifetechnologies, Cat. No. 12338-018); TN1 (Organotechnie, Cat. No. 19553); 125-ml shake flask (Corning, Cat. No. 430421); 500-ml shake flask (Corning, Cat. No. 421145); Protein-A resin (GenScript, Cat. No.
  • Binding buffer 0.15 M NaCl, 20 mM Na 2 HPO 4 , pH 7.0; Elution buffer: 0.1 M Glycine-HCl, pH 3.2; Neutralization buffer: 1 M Tris-HCl, pH 9.0; Biacore T200 (GE Healthcare); Series S Sensor Chip CM5 (GE Healthcare, Cat. No.: BR-1005-30); HBS-EP: 10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.005% Tween 20, pH 7.4; Capture antibody: Anti-human Fc gamma specific antibody (Jackson ImmunoResearch Cat. No.
  • Antibody humanization by CDR grafting selection of acceptor frameworks.
  • the variable domain sequences of parental antibody were searched in the database of human germlines using NCBI Ig-Blast. Five diverse human acceptors (i.e., human variable domains with high homology to the parental antibody) for each heavy chain and light chain were chosen. The CDRs of human acceptors were replaced with their mouse counterparts, resulting in the humanized variable domain sequences.
  • the humanized variable domains of light chains were named VL1, VL2, VL3, VL4 and VL5.
  • the humanized variable domains of heavy chains were named VH1, VH2, VH3, VH4 and VHS.
  • the sequences of humanized light chains are shown in Appendix I.
  • Binding confirmation of chimeric antibody The affinity of antibody binding to Ag MUC1-ECD was determined using a Surface Plasmon Resonance (SPR) biosensor, Biacore T200 (GE Healthcare). Antibody was immobilized on the sensor chip through Fc capture method. Antigen MUC1-ECD was used as the analyte. The data of dissociation (kd) and association (ka) rate constants were obtained using Biacore T200 evaluation software. The apparent equilibrium dissociation constants (KD) were calculated from the ratio of kd over ka.
  • SPR Surface Plasmon Resonance
  • Biacore T200 GE Healthcare
  • Affinity ranking of humanized antibodies Anti-human Fc gamma specific antibody was immobilized onto the sensor chip using amine coupling method. Twenty-five humanized antibodies secreted to the culture medium plus the parental antibody were injected and captured by anti-human Fc antibody via Fc (capture phase) individually. After equilibration, Ag MUC1-ECD was injected for 200 seconds (association phase) followed by the injection of running buffer for 600s (dissociation phase). Responses of reference flow cell (flow cell 1) were subtracted from those of humanized antibodies flow cells during each cycle. The surface was regenerated before the injection of other humanized antibodies. The process was repeated until all antibodies are analyzed.
  • the off-rates of humanized antibodies were obtained from fitting the experimental data locally to 1:1 interaction model using the Biacore T200 evaluation software.
  • the antibodies were ranked by their dissociation rate constants (off-rates, kd).
  • the binders that interact with Ag MUC1-ECD with similar affinity to parental antibody were selected.
  • the top 7 binders were selected to express in HEK293 cell culture.
  • the recombinant IgGs secreted to the medium were purified using protein A affinity chromatography.
  • the affinities of purified antibodies binding to MUC1-ECD were determined using a Surface Plasmon Resonance (SPR) biosensor, Biacore T200.
  • SPR Surface Plasmon Resonance
  • Antibodies were immobilized on the sensor chip through an amine coupling method.
  • Antigen MUC1-ECD was used as the analyte.
  • the rate of dissociation (kd) and association (ka) rate constants were obtained using Biacore T200 evaluation software.
  • the equilibrium constants (KD) were calculated from the ratio of kd or ka.
  • HCT116/MUC1 cells a human colon cancer cell line engineered to express MUC1
  • the purified antibodies were subject to FACs titration.
  • HCT116/MUC1 cells were cultured and harvested by centrifugation. About 2.5 ⁇ 10 5 cells per well were washed with PBS twice and incubated in 200 ⁇ l of serial dilutions of antibodies for 30 min at 4° C. After washing with PBS., secondary antibody (3 ⁇ g Goat anti-Human IgG(H+L) I Fluor 647) was added to the cells and incubated for 30 min at 4° C. After washing with PBS, cells were analyzed for binding (EC 50 ) by using FACS Calibur (BD Bioscience, San Jose, Calif.) and Flowjo software.
  • FACS Calibur BD Bioscience, San Jose, Calif.
  • Binding data of each antibody was processed and fitted to 1:1 interaction model using Biacore T200 evaluation software. All experimental data could be well fitted to the model ( FIG. 4 ). As listed in Table 7, seven humanized antibodies retain comparable antigen-binding affinities to the parent chimeric antibody.
  • compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the disclosure. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the disclosure as defined by the appended claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Food Science & Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US18/005,562 2020-07-16 2021-07-15 Antibodies against the muc1-c/extracellular domain (muc1-c/ecd) Pending US20230265208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/005,562 US20230265208A1 (en) 2020-07-16 2021-07-15 Antibodies against the muc1-c/extracellular domain (muc1-c/ecd)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063052599P 2020-07-16 2020-07-16
PCT/US2021/070881 WO2022016190A1 (en) 2020-07-16 2021-07-15 Antibodies against the muc1-c/extracellular domain (muc1-c/ecd)
US18/005,562 US20230265208A1 (en) 2020-07-16 2021-07-15 Antibodies against the muc1-c/extracellular domain (muc1-c/ecd)

Publications (1)

Publication Number Publication Date
US20230265208A1 true US20230265208A1 (en) 2023-08-24

Family

ID=79554266

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/005,562 Pending US20230265208A1 (en) 2020-07-16 2021-07-15 Antibodies against the muc1-c/extracellular domain (muc1-c/ecd)

Country Status (11)

Country Link
US (1) US20230265208A1 (es)
EP (1) EP4182354A1 (es)
JP (1) JP2023534959A (es)
KR (1) KR20230116767A (es)
CN (1) CN117693530A (es)
AU (1) AU2021310499A1 (es)
BR (1) BR112023000728A2 (es)
CA (1) CA3186181A1 (es)
IL (1) IL299903A (es)
MX (1) MX2023000784A (es)
WO (1) WO2022016190A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024183635A1 (en) * 2023-03-03 2024-09-12 Beigene, Ltd. Muc1 and cd16a antibodies and methods of use
WO2024183637A1 (en) * 2023-03-03 2024-09-12 Beigene Switzerland Gmbh Muc1 antibodies and methods of use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1791868B1 (en) * 2004-07-01 2011-02-23 Novo Nordisk A/S Antibodies binding to receptors kir2dl1, -2, 3 but not kir2ds4 and their therapeutic use
EP2337801A4 (en) * 2008-10-06 2012-07-25 Minerva Biotechnologies Corp MUC1 ANTIBODIES *
EP3099719B1 (en) * 2014-01-29 2020-04-01 Dana-Farber Cancer Institute, Inc. Antibodies against the muc1-c/extracellular domain (muc1-c/ecd)

Also Published As

Publication number Publication date
EP4182354A1 (en) 2023-05-24
AU2021310499A1 (en) 2023-03-09
BR112023000728A2 (pt) 2023-03-21
JP2023534959A (ja) 2023-08-15
MX2023000784A (es) 2023-04-18
CA3186181A1 (en) 2022-01-20
IL299903A (en) 2023-03-01
KR20230116767A (ko) 2023-08-04
CN117693530A (zh) 2024-03-12
WO2022016190A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US11136410B2 (en) Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD)
US10617773B2 (en) Antibodies against the MUC1-C/extracellular domain (MUC1-C/ECD)
JP2017505625A5 (es)
US20230265208A1 (en) Antibodies against the muc1-c/extracellular domain (muc1-c/ecd)
EP3065775B1 (en) Vh4 antibodies against gray matter neuron and astrocyte
US20230382982A1 (en) Mutations that drive vh4 antibody autoreactivity
US20230181714A1 (en) Human monoclonal antibodies to venezuelan equine encephalitis virus and uses therefor
US20230063625A1 (en) Human antibodies to rift valley fever virus
US20240287160A1 (en) Antibody cocktail for treatment of ebolavirus infections
US12037384B2 (en) Human monoclonal antibodies against yellow fever virus and uses therefor
US20240262930A1 (en) Multi-specific antibody constructs against the muc1-c/extracellular domain (muc1-c/ed)
WO2023187407A1 (en) Human monoclonal antibodies binding to sars-cov-2 and methods of use thereof
AU2020273365A1 (en) Human antibodies to Ross River virus and methods of use therefor
WO2024015760A2 (en) Human monoclonal antibodies to omicron variant of severe acute respiratory syndrome coronavirus 2 (sars-cov- 2)

Legal Events

Date Code Title Description
AS Assignment

Owner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUFE, DONALD;REEL/FRAME:062370/0704

Effective date: 20230113

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

AS Assignment

Owner name: XYONE THERAPEUTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENUS ONCOLOGY, LLC;REEL/FRAME:062909/0801

Effective date: 20220330

Owner name: GENUS ONCOLOGY, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KHARBANDA, SURENDER;REEL/FRAME:062909/0133

Effective date: 20220317

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION