US20230258672A1 - Automated Analysis Device - Google Patents
Automated Analysis Device Download PDFInfo
- Publication number
- US20230258672A1 US20230258672A1 US18/136,406 US202318136406A US2023258672A1 US 20230258672 A1 US20230258672 A1 US 20230258672A1 US 202318136406 A US202318136406 A US 202318136406A US 2023258672 A1 US2023258672 A1 US 2023258672A1
- Authority
- US
- United States
- Prior art keywords
- analysis
- specimen
- units
- automated
- cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 363
- 238000000034 method Methods 0.000 claims abstract description 92
- 239000000872 buffer Substances 0.000 claims abstract description 36
- 238000012742 biochemical analysis Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 18
- 238000005259 measurement Methods 0.000 description 8
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00603—Reinspection of samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/0092—Scheduling
- G01N35/0095—Scheduling introducing urgent samples with priority, e.g. Short Turn Around Time Samples [STATS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/02—Blood transfusion apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00178—Special arrangements of analysers
- G01N2035/00326—Analysers with modular structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
- G01N2035/00742—Type of codes
- G01N2035/00752—Type of codes bar codes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
- G01N2035/00821—Identification of carriers, materials or components in automatic analysers nature of coded information
- G01N2035/00831—Identification of carriers, materials or components in automatic analysers nature of coded information identification of the sample, e.g. patient identity, place of sampling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0401—Sample carriers, cuvettes or reaction vessels
- G01N2035/0412—Block or rack elements with a single row of samples
- G01N2035/0415—Block or rack elements with a single row of samples moving in two dimensions in a horizontal plane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/046—General conveyor features
- G01N2035/0462—Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0474—Details of actuating means for conveyors or pipettes
- G01N2035/0475—Details of actuating means for conveyors or pipettes electric, e.g. stepper motor, solenoid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0474—Details of actuating means for conveyors or pipettes
- G01N2035/0491—Position sensing, encoding; closed-loop control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N37/00—Details not covered by any other group of this subclass
Definitions
- the present invention relates to an automated analysis device that quantitatively and qualitatively analyzes biological specimens (hereinafter referred to as specimens) such as blood and urine, and particularly relates to an automated analysis device including a conveyance device that conveys a specimen container to the analysis device.
- specimens biological specimens
- conveyance device that conveys a specimen container to the analysis device.
- Patent Literature 1 discloses an example of a simple and low-cost specimen conveyance device whose scale does not increase even when a belt line is bypassed or extended.
- Patent Literature 1 discloses a technique in which primary specimens are separately dispensed into different usage analysis devices, that is, a specimen rack C 1 using an analyzer as a destination and a specimen rack C 2 using a different analyzer as a destination, a rack merging device merges the specimen rack C 1 and the specimen rack C 2 on a main conveyance line, and a rack branching device allocates the specimen rack C 1 and the specimen rack C 2 that are conveyed on the main conveyance line to an analysis device conveyance line D 1 or an analysis device conveyance line D 2 .
- the analysis device conveyance line D 1 and the analysis device conveyance line D 2 are provided respectively in the usage analysis devices.
- An automated analysis device that automatically performs quantitative and qualitative analyses on specimens such as blood and urine is mainly and widely used in a university hospital and a clinical examination center where a large number of patient specimens need to be processed in a short time.
- Various automated analysis devices of a large size, a medium size, and a small size have been developed according to process capacities.
- specimen containers containing specimens are conveyed to a plurality of analysis units via conveyance lines (conveyance devices) in a state in which the specimen containers are held in holders which are referred to as specimen racks, so that the analysis device automatically performs analyses until an output of the analysis device with a laboratory technician simply placing the racks into a specimen rack intake.
- conveyance lines conveyed to a plurality of analysis units via conveyance lines (conveyance devices) in a state in which the specimen containers are held in holders which are referred to as specimen racks
- connected analysis units are used for many applications. Examples include a biochemical analysis device that measures blood cholesterol and the like, an immune analysis device that measures infectious diseases and the like, and an analysis device in which a plurality of different analysis units are connected.
- an analysis device performs in parallel a plurality of analysis steps in a pipeline process manner so as to improve a process capacity. That is, a constant analysis cycle is repeatedly performed.
- a mechanism is controlled by a time chart method in which the same operations are repeated at a predetermined time.
- analyses are performed by controlling the mechanism based on a time chart defined by analysis cycles that are different from each other, and analysis processes are performed in parallel to each other in different time cycles.
- a conveyance line is connected to the analysis units.
- operation of another analysis unit would be hindered. That is, control needs to be performed to not hinder the operation of the other analysis unit while maintaining certain synchronization between the analysis unit and the conveyance line.
- a mechanism that prevents a process capacity from being lowered by controlling a buffered number is also studied.
- the number of specimens that arrives during day time varies in a large number of specimen processes of specimen measurements for in-hospital patients in the morning, specimen measurements for outpatients from around noon, and specimen measurements for sparsely arrived emergency patients after evening. Since emergency degrees, examination items, and the like required at each time are different, control by a simple setting is not applicable in actual operation.
- An object of the invention is to provide an automated analysis device capable of conveying specimen containers to a plurality of analysis units without separately providing dedicated conveyance lines or affecting operation of the analysis units.
- An automated analysis device that analyzes specimens includes a plurality of analysis units that analyze the specimens, a specimen container buffer portion that holds a plurality of specimen containers holding the specimens, a conveyance device that delivers the specimen containers held in the specimen container buffer portion to the analysis units, and a control portion that, when the specimen containers are delivered to the plurality of analysis units, outputs synchronization signals to all of the plurality of analysis units at different timings regardless of whether there is an input of a delivery request from the analysis units during one operation cycle of the conveyance device.
- the analysis units deliver the specimen containers starting from the synchronization signals when a delivery request of the specimen containers is output.
- specimen containers can be conveyed to a plurality of analysis units without separately providing dedicated conveyance lines or affecting operation of the analysis units.
- FIG. 1 is a diagram showing an automated analysis device according to an embodiment of the invention.
- FIG. 2 is a diagram schematically showing a specimen rack and a specimen container used in the automated analysis device according to the embodiment of the invention.
- FIG. 3 is a diagram showing a relationship of analysis cycles between a sampler portion and analysis units in the automated analysis device according to the embodiment of the invention.
- FIG. 4 is a diagram schematically showing the sampler portion used in the automated analysis device according to the embodiment of the invention.
- FIG. 5 is a diagram showing an example of time charts of control applied in an automated analysis device in the related art.
- FIG. 6 is a diagram showing an example of time charts of control applied in the automated analysis device according to the embodiment of the invention.
- FIG. 7 is a diagram showing an example of time charts of control applied in the automated analysis device according to the embodiment of the invention.
- FIG. 8 is a diagram showing an automated analysis device according to another embodiment of the invention.
- FIG. 9 is a diagram showing an example of time charts of control applied in the automated analysis device according to the other embodiment of the invention.
- FIG. 10 is a diagram showing an example of time charts of control applied in the automated analysis device according to the other embodiment of the invention.
- FIGS. 1 to 9 Automated analysis devices according to embodiments of the invention will be described with reference to FIGS. 1 to 9 .
- FIG. 1 is a block diagram of the automated analysis device according to the invention.
- FIG. 2 is a diagram showing a specimen rack and a specimen container.
- FIG. 3 is a diagram showing a relationship of analysis cycles between a sampler portion and analysis units.
- FIG. 4 is a diagram schematically showing a sampler portion.
- an automated analysis device 100 that analyzes specimens includes a sampler portion 1 that places and collects a specimen rack 5 , an analysis unit 2 to one side of the sampler portion 1 , and an analysis unit 3 to the other side of the sampler portion 1 .
- the automated analysis device 100 is assumed to be an automated analysis device including a conveyance device that conveys the specimen rack 5 on which five specimen containers 7 are mounted as shown in FIG. 2 .
- the sampler portion 1 is a unit that places the specimen rack 5 into the automated analysis device 100 , and delivers and conveys the specimen rack 5 held in a buffer portion 10 to the analysis units 2 and 3 .
- the sampler portion 1 is operated at a cycle 90 as shown in FIG. 3 .
- the cycle 90 is the same as a cycle 92 of the analysis unit 2 having a short analysis cycle instead of a cycle 93 of the analysis unit 3 having a long analysis cycle.
- the sampler portion 1 includes the buffer portion 10 , a storage portion 11 , an intake portion 12 , an emergency rack intake 13 , a conveyance portion 14 , a specimen barcode reader 15 , an emergency rack detection sensor 16 , a specimen determination sensor 17 , and a control portion 50 .
- the specimen rack 5 provided in the intake portion 12 is conveyed to the buffer portion 10 by the conveyance portion 14 .
- the specimen determination sensor 17 is provided in an intermediate portion of the conveyance portion 14 to recognize the specimen containers 7 on the specimen rack 5 . If it is determined that the specimen containers 7 are present, the specimen barcode reader 15 reads specimen barcodes 8 attached to the specimen containers 7 and recognizes identification information of specimens. A patient is specified according to the identification information in an actual system.
- the emergency rack intake 13 is a portion for providing one specimen rack 5 that holds the specimen containers 7 containing specimens which require an urgent measurement.
- the emergency rack detection sensor 16 reads a specimen rack barcode 6 in which emergency information is recorded so as to recognize the specimen rack 5 , the specimen rack 5 overtakes the specimen racks 5 provided in the intake portion 12 and is conveyed to the analysis units 2 and 3 via the buffer portion 10 .
- the buffer portion 10 has a rotor structure having a circular trajectory and has slots that hold, radically on a concentric circle, a plurality of specimen racks 5 on which a plurality of specimen containers 7 are placed on an outer circumference. Any one of the specimen racks 5 is conveyed into or out from a requested destination by rotating the slots by the motor. With such a structure, it is not always necessary to sequentially process the specimen racks 5 that are placed first. That is, if one specimen rack 5 has a high priority, the specimen rack 5 would be processed first.
- the conveyance portion 14 is connected to one point on the radial circumference of the buffer portion 10 , and conveys the specimen racks 5 into or out of the radial circumference.
- the circumference is connected with a draw-in line 21 to the analysis unit 2 at a position of +90 degrees on the circumference from the position where the conveyance portion 14 is connected and a draw-in line 31 to the analysis unit 3 at a position of ⁇ 90 degrees on the circumference from the position where the conveyance portion 14 is connected, and the specimen racks 5 are conveyed into or out of the analysis units 2 and 3 (delivery process).
- the draw-in line 21 and the draw-in line 31 will be described later.
- the specimen racks 5 that have completed dispensing in the analysis units 2 and 3 separately can wait in the buffer portion 10 , wait for an output of a measurement result, and perform a process such as an automated re-inspection as needed.
- the process is completed, the specimen racks 5 are conveyed to the storage portion 11 via the conveyance portion 14 .
- a control computer 4 is connected to the analysis units 2 and 3 and the sampler portion 1 via network lines 40 . Each unit is operated via a user interface such as a display device 4 a and an input device 4 b.
- the specimen racks 5 on which the specimen containers 7 are placed are provided in the intake portion 12 .
- the specimen racks 5 are drawn into the buffer portion 10 .
- the specimen racks 5 are conveyed to the analysis unit 2 via the draw-in line 21 or conveyed to the analysis unit 3 via the draw-in line 31 .
- specimens are suctioned by an analysis unit specimen dispensing probe 22 or an analysis unit specimen dispensing probe 32 . Thereafter, the specimens react with a reagent in a reaction vessel. A detector measures a characteristic of the reaction liquid to perform qualitative and quantitative analyses on the specimens.
- the specimen racks 5 in which the specimens have been suctioned are returned to the buffer portion 10 by being conveyed through the draw-in lines 21 and 31 in a reverse direction, and are finally collected to the storage portion 11 .
- the control computer 4 performs control relating to the analyses.
- the control portion 50 provided in the sampler portion 1 performs a detailed part of the delivery process in which the specimen racks 5 are conveyed into or out the plurality of analysis units 2 and 3 . Detailed control content will be described later.
- the analysis unit 2 is for a biochemical examination and the analysis unit 3 is for an immune examination, whose examination purposes and process capacities (analysis cycles: analysis process capacities per unit time) are different.
- the analysis unit 2 is set to 450 tests/1 hour (8.0 seconds/1 cycle), and the analysis unit 3 is set to 120 tests/1 hour (30.0 seconds/1 cycle).
- the analysis units 2 and 3 do not have the same analysis cycles 92 and 93 of specimens, and the analysis cycles 92 and 93 of other analysis units 2 and 3 are not common multiples of the analysis units 2 and 3 having shortest analysis cycles 92 and 93 .
- the number of analyses scheduled to be performed up to a period that is a common multiple of the analysis cycles 92 and 93 of the plurality of analysis units 2 and 3 is 3% or more of the number of analyses per unit time required by the analysis units 2 and 3 , it is determined to be of a high level. It should be noted that the specific number as described above is not always necessary, and it is needless to say that the number can be set according to the capacities required by the device.
- the analysis unit 2 for a biochemical examination and the analysis unit 3 for an immune examination may have known configurations.
- the analysis units may be of the same type.
- examination items and process capacities may be the same.
- the purposes (examination items) and the process capacities are different, even if the purposes and the process capacities are the same, a process capacity of each analysis unit is maintained to a maximum degree.
- FIG. 5 is a diagram showing an example of time charts of control in an automated analysis device in the related art.
- FIGS. 6 and 7 are diagrams showing examples of time charts of control in the automated analysis device according to the present embodiment.
- the analysis unit 2 is used for a biochemical analysis and the analysis unit 3 is used for an immune analysis. It is assumed that the analysis units measure different examination items.
- the analysis units 2 and 3 When the analysis units 2 and 3 are connected, generally the analysis units 2 and 3 do not have the same process capacity, but one of the analysis units 2 and 3 has a high process capacity and the other one has a low process capacity.
- the analysis unit 3 having a low process capacity affects a process capacity of a system.
- a ratio varies depending on the number of requests for one specimen.
- the number of items requested for the specimen varies depending on the specimen and there is no uniform definition.
- the analysis units 2 and 3 When the analysis units 2 and 3 are connected, the analysis units 2 and 3 are connected via the buffer portion 10 . Accordingly, a delivery process between the specimen rack 5 and one of the analysis units 2 and 3 cannot be performed when a delivery process between the specimen rack 5 and the other one of the analysis units 2 and 3 is performed.
- the analysis unit 3 may have an empty cycle and the process capacity may be lowered.
- the control portion 50 provided in the sampler portion 1 outputs, to all of the plurality of analysis units 2 and 3 , synchronization signals 90 s 1 , 90 s 2 , 90 s 3 , 90 s 4 , 90 s 5 , and 90 s 6 whose output timings are spaced by one of the number of the connected analysis units 2 and 3 in one operation cycle when delivery processes 90 t 1 , 90 t 4 , 90 t 5 , and 90 t 6 of the specimen racks 5 to the plurality of analysis units 2 and 3 are performed.
- the control portion 50 first outputs the synchronization signal 90 s 1 to the analysis unit 2 when the delivery process is performed to the analysis unit 2 .
- the analysis unit 2 receives an input of the synchronization signal 90 s 1 and performs the delivery process 90 t 1 of the specimen racks 5 between the buffer portion 10 of the sampler portion 1 and the analysis unit 2 .
- the control portion 50 outputs the synchronization signal 90 s 2 to the analysis unit 3 immediately after the delivery process 90 t 1 of the specimen racks 5 .
- the analysis unit 3 ignores the synchronization signal 90 s 2 .
- the control portion 50 first outputs the synchronization signal 90 s 3 to the analysis unit 2 .
- the analysis unit 2 ignores the synchronization signal 90 s 3 .
- the control portion 50 outputs the synchronization signal 90 s 4 to the analysis unit 3 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to the analysis unit 2 .
- the analysis unit 3 receives an input of the synchronization signal 90 s 4 and performs the delivery process 90 t 4 of the specimen racks 5 between the buffer portion 10 of the sampler portion 1 and the analysis unit 3 .
- the control portion 50 When the delivery processes interfere with each other in one operation cycle, that is, when the control portion 50 repeatedly input a delivery request in the same analysis cycle, the control portion 50 first outputs the synchronization signal 90 s 5 to the analysis unit 2 as shown in FIG. 7 .
- the analysis unit 2 receives an input of the synchronization signal 90 s 5 and performs the delivery process 90 t 5 of the specimen racks 5 between the buffer portion 10 of the sampler portion 1 and the analysis unit 2 .
- the control portion 50 outputs the synchronization signal 90 s 6 to the analysis unit 3 immediately after the delivery process 90 t 5 of the specimen racks 5 .
- the analysis unit 3 receives an input of the synchronization signal 90 s 6 and performs the delivery process 90 t 6 of the specimen racks 5 between the buffer portion 10 of the sampler portion 1 and the analysis unit 3 .
- the control portion 50 when an assumed delivery request of the specimen racks 5 from the analysis unit 3 whose analysis cycle is not the same as the analysis cycle of the sampler portion 1 overlaps a break in the analysis cycle, the control portion 50 outputs a synchronization signal 90 s 7 a in an analysis cycle that is one analysis cycle before the assumed delivery process and performs a delivery process 90 t 7 a .
- the control portion 50 outputs a synchronization signal 90 s 7 b and performs a delivery process 90 t 7 b in an analysis cycle that is one analysis cycle later than the assumed delivery process.
- the number of analysis units to be connected is not limited to two.
- three analysis units may be set at an interval of 90 degrees as shown in FIG. 8 , which will be described later.
- the number of analysis units to be connected may be three or more.
- FIG. 8 is a block diagram showing another automated analysis device according to the invention.
- an automated analysis device 100 A includes a sampler portion 1 A that places and collects the specimen racks 5 provided in the automated analysis device 100 shown in FIG. 1 , the analysis unit 2 to a right side of the sampler portion 1 A, the analysis unit 3 to a left side of the sampler portion 1 A, and an analysis unit 9 to an opposite side of the sampler portion 1 A and between the analysis unit 2 and the analysis unit 3 .
- the analysis unit 9 is also an analysis unit for a biochemical examination or an immune analysis.
- a process capacity of the analysis unit 9 is, for example, 90 tests/1 hour (40.0 seconds/1 cycle).
- the analysis unit 9 includes a draw-in line 91 and is used in a delivery process of the specimen racks 5 between a buffer portion 10 A and the analysis unit 9 .
- the automated analysis device 100 A is the same as the automated analysis device 100 shown in FIG. 1 in that a plurality of analysis units 2 , 3 , and 9 do not have the same analysis cycles 92 , 93 , and 99 of specimens (see FIG. 9 ) for all analysis units 2 , 3 , and 9 , the sampler portion 1 A is operated in the same cycle as the analysis unit 2 having a shortest analysis cycle, and the like.
- the control computer 4 performs all processes including analyses in the automated analysis device 100 A shown in FIG. 8 , and a control portion 50 A performs a detailed part of a delivery process in which the specimen racks 5 are conveyed into or out the plurality of analysis units 2 , 3 , and 9 .
- FIGS. 9 and 10 are diagrams showing examples of time charts of control by the control portion 50 A.
- the control portion 50 A outputs, to all of the plurality of analysis units 2 , 3 , and 9 , synchronization signals 90 s 8 , 90 s 9 , 90 s 10 , 90 s 11 , 90 s 12 , 90 s 13 , 90 s 14 , 90 s 15 , 90 s 16 , 90 s 17 , 90 s 18 , and 90 s 19 whose output timings are spaced when the control portion 50 A performs delivery processes 90 t 8 , 90 t 12 , 90 t 16 , 90 t 17 , and 90 t 19 of the specimen racks 5 to the plurality of analysis units 2 , 3 , and 9 .
- control portion 50 A when the control portion 50 A performs the delivery process to the analysis unit 2 only, the control portion 50 A first outputs the synchronization signal 90 s 8 to the analysis unit 2 as shown in FIG. 9 .
- the analysis unit 2 receives an input of the synchronization signal 90 s 8 and performs the delivery process 90 t 8 of the specimen racks 5 between the buffer portion 10 A of the sampler portion 1 A and the analysis unit 2 .
- control portion 50 A outputs the synchronization signal 90 s 9 to the analysis unit 3 immediately after the delivery process 90 t 8 of the specimen rack 5 as shown in FIG. 9 .
- the analysis unit 3 ignores the synchronization signal 90 s 9 .
- the control portion 50 A outputs the synchronization signal 90 s 10 to the analysis unit 9 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to the analysis unit 3 . However, since there is no delivery request for the specimen racks, the analysis unit 9 ignores the synchronization signal 90 s 10 .
- the control portion 50 A first outputs the synchronization signal 90 s 11 to the analysis unit 2 as shown in FIG. 9 . However, since there is no delivery request for the specimen racks, the analysis unit 2 ignores the synchronization signal 90 s 11 .
- control portion 50 A outputs the synchronization signal 90 s 12 to the analysis unit 3 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to the analysis unit 2 as shown in FIG. 9 .
- the analysis unit 3 receives an input of the synchronization signal 90 s 12 and performs the delivery process 90 t 12 of the specimen racks 5 between the buffer portion 10 A of the sampler portion 1 A and the analysis unit 3 .
- the control portion 50 A outputs the synchronization signal 90 s 13 to the analysis unit 9 at a timing when the delivery process 90 t 12 is completed. However, since there is no delivery request for the specimen racks, the analysis unit 9 ignores the synchronization signal 90 s 13 .
- the control portion 50 A first outputs the synchronization signal 90 s 14 to the analysis unit 2 as shown in FIG. 9 .
- the analysis unit 2 ignores the synchronization signal 90 s 14 .
- control portion 50 A outputs the synchronization signal 90 s 15 to the analysis unit 3 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to the analysis unit 2 as shown in FIG. 9 . However, since there is no delivery request for the specimen racks, the analysis unit 3 ignores the synchronization signal 90 s 15 .
- control portion 50 A outputs the synchronization signal 90 s 16 to the analysis unit 9 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to the analysis unit 3 .
- the analysis unit 9 receives an input of the synchronization signal 90 s 16 and performs the delivery process 90 t 16 of the specimen racks 5 between the buffer portion 10 A of the sampler portion 1 A and the analysis unit 9 .
- the control portion 50 A When the delivery processes interfere with each other in one operation cycle, that is, when the control portion 50 A repeatedly inputs a delivery request in the same analysis cycle from the analysis units 2 and 9 , the control portion 50 A first outputs the synchronization signal 90 s 17 to the analysis unit 2 as shown in FIG. 10 .
- the analysis unit 2 receives an input of the synchronization signal 90 s 17 and performs the delivery process 90 t 17 of the specimen racks 5 between the buffer portion 10 A of the sampler portion 1 A and the analysis unit 2 .
- control portion 50 A outputs the synchronization signal 90 s 18 to the analysis unit 3 immediately after the delivery process 90 t 17 of the specimen racks 5 as shown in FIG. 10 .
- the analysis unit 3 ignores the synchronization signal 90 s 18 .
- the control portion 50 A outputs the synchronization signal 90 s 19 to the analysis unit 9 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to the analysis unit 3 .
- the analysis unit 9 receives an input of the synchronization signal 90 s 19 and performs the delivery process 90 t 19 of the specimen racks 5 between the buffer portion 10 A of the sampler portion 1 A and the analysis unit 9 .
- the automated analysis devices 100 and 100 A include a plurality of analysis units 2 , 3 , and 9 that analyze specimens, the buffer portion 10 and 10 A that hold a plurality of specimen racks 5 on which the specimen containers 7 holding specimens are placed, the sampler portion 1 and 1 A that convey the specimen racks 5 held in the buffer portion 10 and 10 A to the analysis units 2 , 3 , and 9 , and the control portion 50 and 50 A that output synchronization signals, at different timings, to all of the plurality of analysis units 2 , 3 , and 9 when the specimen racks 5 are delivered to the plurality of analysis units 2 , 3 , and 9 .
- the analysis units 2 , 3 , and 9 perform delivery processes of the specimen racks 5 starting from the synchronization signals.
- Such a process is particularly suitable for medium and small automated analysis devices in which a plurality of ( 2 or 3 ) analysis units having different process capacities are connected to one buffer portion.
- a synchronization signal can be controlled to be output with reference to the analysis unit 2 that is assumed to have a highest delivery request of the specimen racks 5 so as to perform a delivery process, and the process capacity of the entire system can be more easily maintained to a maximum degree.
- control portion 50 and 50 A can more reliably perform the delivery process of the specimen racks 5 without stopping operation of an analysis unit by spacing output timings of the synchronization signals output to the plurality of analysis units 2 , 3 , and 9 by one of the number of the connected analysis units 2 , 3 , and 9 .
- control portion 50 and 50 A first output a synchronization signal to the analysis unit 2 having the shortest analysis cycle 92 , and sequentially output synchronization signals to the other analysis unit 3 and 9 other than the analysis unit 2 having the shortest analysis cycle 92 immediately after a period required for the delivery process of the specimen racks 5 , so that the specimen racks 5 can be first delivered to the analysis unit 2 with no spare time and the delivery process of the specimen racks 5 can be performed stably.
- the plurality of analysis units 2 , 3 , and 9 ignore the synchronization signals, so that a load of the system can be reduced without operation corresponding to an unnecessary synchronization signal.
- the plurality of analysis units 2 , 3 , and 9 do not have the same analysis cycles 92 , 93 , and 99 of specimens, or the analysis cycles 92 , 93 , and 99 of specimens are not the same for all of the analysis units 2 , 3 , and 9 , and the analysis cycles 92 , 93 , and 99 of other analysis units 2 , 3 , and 9 are common multiples of the analysis units 2 , 3 , and 9 having shortest analysis cycles 92 , 93 , and 99 .
- the analysis cycles 92 , 93 , and 99 of specimens are not all the same for all analysis units 2 , 3 , and 9 , and the number of analyses scheduled to be performed up to a period that is a common multiple of the analysis cycles 92 , 93 , and 99 of the plurality of the analysis units 2 , 3 , and 9 is 3% or more the number of analyses per unit time required by the analysis units 2 , 3 , and 9 .
- the delivery process of the specimen racks 5 or an analysis process can be performed without stopping operation of an analysis unit.
- the buffer portion 10 and 10 A have a rotor structure and the specimen racks 5 are held radically on a concentric circle, so that any one of the specimen racks 5 can be delivered in random order to the plurality of the analysis units 2 , 3 , and 9 without using a complicated structure.
- the plurality of analysis units 2 , 3 , and 9 are arranged to the sampler portion 1 and 1 A at an interval of 90 degrees so that the plurality of analysis units 2 , 3 , and 9 can be arranged without interference.
- the embodiments described above describe a case in which the specimen racks 5 holding a plurality of specimen containers 7 are delivered as shown in FIG. 2 .
- the invention may be applied to an automated analysis device including a conveyance device that delivers a specimen holder holding one specimen container 7 .
- control portion 50 and 50 A are provided in the sampler portion 1 and 1 A, the control portion 50 and 50 A may be mounted in the control computer 4 .
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
This automated analysis device is provided with a plurality of analysis units for analyzing a specimen, a buffer portion which holds a plurality of specimen racks on which are placed specimen containers holding the specimen, a sampler portion which conveys the specimen racks held in the buffer portion to the analysis units, and a control portion which, when performing a process to deliver the specimen racks to the plurality of analysis units, outputs synchronization signals to all the plurality of analysis units, wherein the analysis unit performs a delivery process starting from the synchronization signal, and the analysis unit performs a delivery process starting from the synchronization signal.
Description
- This application is a Continuation of U.S. patent application Ser. No. 16/646,410, filed Mar. 11, 2020, which is a 371 of International Application No. PCT/JP2018/040044, filed Oct. 29, 2018, which claims priority to Japanese Patent Application No. 2017-241191, filed Dec. 15, 2017, the disclosures of all of which are expressly incorporated by reference herein.
- The present invention relates to an automated analysis device that quantitatively and qualitatively analyzes biological specimens (hereinafter referred to as specimens) such as blood and urine, and particularly relates to an automated analysis device including a conveyance device that conveys a specimen container to the analysis device.
-
Patent Literature 1 discloses an example of a simple and low-cost specimen conveyance device whose scale does not increase even when a belt line is bypassed or extended.Patent Literature 1 discloses a technique in which primary specimens are separately dispensed into different usage analysis devices, that is, a specimen rack C1 using an analyzer as a destination and a specimen rack C2 using a different analyzer as a destination, a rack merging device merges the specimen rack C1 and the specimen rack C2 on a main conveyance line, and a rack branching device allocates the specimen rack C1 and the specimen rack C2 that are conveyed on the main conveyance line to an analysis device conveyance line D1 or an analysis device conveyance line D2. The analysis device conveyance line D1 and the analysis device conveyance line D2 are provided respectively in the usage analysis devices. -
- PTL 1: JP-A-7-167866
- An automated analysis device that automatically performs quantitative and qualitative analyses on specimens such as blood and urine is mainly and widely used in a university hospital and a clinical examination center where a large number of patient specimens need to be processed in a short time. Various automated analysis devices of a large size, a medium size, and a small size have been developed according to process capacities.
- In particular, in a case of a large analysis device that analyzes a large number of specimens, specimen containers containing specimens are conveyed to a plurality of analysis units via conveyance lines (conveyance devices) in a state in which the specimen containers are held in holders which are referred to as specimen racks, so that the analysis device automatically performs analyses until an output of the analysis device with a laboratory technician simply placing the racks into a specimen rack intake.
- In recent years, connected analysis units are used for many applications. Examples include a biochemical analysis device that measures blood cholesterol and the like, an immune analysis device that measures infectious diseases and the like, and an analysis device in which a plurality of different analysis units are connected.
- This accordingly leads to a flow in which not only a large number of specimens are measured, but also various types of items are measured. Since the automated analysis device can be integrated, a connection form by a conveyance line, which was mainly used in a large size in the related art, can also be used in medium and small automated analysis devices and widely used in a medium hospital or the like.
- In general, an analysis device performs in parallel a plurality of analysis steps in a pipeline process manner so as to improve a process capacity. That is, a constant analysis cycle is repeatedly performed.
- Therefore, a mechanism is controlled by a time chart method in which the same operations are repeated at a predetermined time.
- However, since the biochemical analysis device and the immune analysis device as described above have different analysis steps, analyses are performed by controlling the mechanism based on a time chart defined by analysis cycles that are different from each other, and analysis processes are performed in parallel to each other in different time cycles.
- When analysis units having different analysis cycles are connected and operated as an integrated system, a difference of the analysis cycles needs to be absorbed.
- Here, a conveyance line is connected to the analysis units. When one analysis unit is preferentially operated, operation of another analysis unit would be hindered. That is, control needs to be performed to not hinder the operation of the other analysis unit while maintaining certain synchronization between the analysis unit and the conveyance line.
- As a solution, it is common practice to provide a dedicated conveyance line for an analysis unit and use the dedicated conveyance line as a buffer for interference between process capacities. However, providing such a dedicated conveyance line requires a complicated mechanism, which may increase production costs and a difficulty of adjusting the mechanism, and may reduce a measurement speed of patient specimens that require an urgent measurement.
- A mechanism that prevents a process capacity from being lowered by controlling a buffered number is also studied. However, in normal operation of a hospital, the number of specimens that arrives during day time varies in a large number of specimen processes of specimen measurements for in-hospital patients in the morning, specimen measurements for outpatients from around noon, and specimen measurements for sparsely arrived emergency patients after evening. Since emergency degrees, examination items, and the like required at each time are different, control by a simple setting is not applicable in actual operation.
- Therefore, although it would be good if a specimen can be conveyed to another analysis unit when one analysis unit is busy, this cannot be easily achieved. This is because the analysis unit that was busy may be no longer busy when the specimen is conveyed to the other analysis unit that was not busy.
- An object of the invention is to provide an automated analysis device capable of conveying specimen containers to a plurality of analysis units without separately providing dedicated conveyance lines or affecting operation of the analysis units.
- Although the invention includes a plurality of solutions to the problems described above, one example of the solutions is described. An automated analysis device that analyzes specimens includes a plurality of analysis units that analyze the specimens, a specimen container buffer portion that holds a plurality of specimen containers holding the specimens, a conveyance device that delivers the specimen containers held in the specimen container buffer portion to the analysis units, and a control portion that, when the specimen containers are delivered to the plurality of analysis units, outputs synchronization signals to all of the plurality of analysis units at different timings regardless of whether there is an input of a delivery request from the analysis units during one operation cycle of the conveyance device. The analysis units deliver the specimen containers starting from the synchronization signals when a delivery request of the specimen containers is output.
- According to the invention, specimen containers can be conveyed to a plurality of analysis units without separately providing dedicated conveyance lines or affecting operation of the analysis units. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
-
FIG. 1 is a diagram showing an automated analysis device according to an embodiment of the invention. -
FIG. 2 is a diagram schematically showing a specimen rack and a specimen container used in the automated analysis device according to the embodiment of the invention. -
FIG. 3 is a diagram showing a relationship of analysis cycles between a sampler portion and analysis units in the automated analysis device according to the embodiment of the invention. -
FIG. 4 is a diagram schematically showing the sampler portion used in the automated analysis device according to the embodiment of the invention. -
FIG. 5 is a diagram showing an example of time charts of control applied in an automated analysis device in the related art. -
FIG. 6 is a diagram showing an example of time charts of control applied in the automated analysis device according to the embodiment of the invention. -
FIG. 7 is a diagram showing an example of time charts of control applied in the automated analysis device according to the embodiment of the invention. -
FIG. 8 is a diagram showing an automated analysis device according to another embodiment of the invention. -
FIG. 9 is a diagram showing an example of time charts of control applied in the automated analysis device according to the other embodiment of the invention. -
FIG. 10 is a diagram showing an example of time charts of control applied in the automated analysis device according to the other embodiment of the invention. - Automated analysis devices according to embodiments of the invention will be described with reference to
FIGS. 1 to 9 . - First, an automated analysis device will be schematically described with reference to
FIGS. 1 to 4 .FIG. 1 is a block diagram of the automated analysis device according to the invention.FIG. 2 is a diagram showing a specimen rack and a specimen container.FIG. 3 is a diagram showing a relationship of analysis cycles between a sampler portion and analysis units.FIG. 4 is a diagram schematically showing a sampler portion. - As shown in
FIG. 1 , anautomated analysis device 100 that analyzes specimens includes asampler portion 1 that places and collects aspecimen rack 5, ananalysis unit 2 to one side of thesampler portion 1, and ananalysis unit 3 to the other side of thesampler portion 1. - The
automated analysis device 100 according to the present embodiment is assumed to be an automated analysis device including a conveyance device that conveys thespecimen rack 5 on which fivespecimen containers 7 are mounted as shown inFIG. 2 . - The
sampler portion 1 is a unit that places thespecimen rack 5 into theautomated analysis device 100, and delivers and conveys thespecimen rack 5 held in abuffer portion 10 to theanalysis units sampler portion 1 is operated at acycle 90 as shown inFIG. 3 . Among a plurality ofanalysis units sampler portion 1, thecycle 90 is the same as acycle 92 of theanalysis unit 2 having a short analysis cycle instead of acycle 93 of theanalysis unit 3 having a long analysis cycle. - Next, the
sampler portion 1 will be described in detail with reference toFIG. 4 . - As shown in
FIG. 4 , thesampler portion 1 includes thebuffer portion 10, astorage portion 11, anintake portion 12, anemergency rack intake 13, aconveyance portion 14, aspecimen barcode reader 15, an emergencyrack detection sensor 16, aspecimen determination sensor 17, and acontrol portion 50. - In the
sampler portion 1, thespecimen rack 5 provided in theintake portion 12 is conveyed to thebuffer portion 10 by theconveyance portion 14. Thespecimen determination sensor 17 is provided in an intermediate portion of theconveyance portion 14 to recognize thespecimen containers 7 on thespecimen rack 5. If it is determined that thespecimen containers 7 are present, thespecimen barcode reader 15 readsspecimen barcodes 8 attached to thespecimen containers 7 and recognizes identification information of specimens. A patient is specified according to the identification information in an actual system. - The
emergency rack intake 13 is a portion for providing onespecimen rack 5 that holds thespecimen containers 7 containing specimens which require an urgent measurement. In a case where an urgent measurement needs to be performed, when thespecimen rack 5 is provided in theemergency rack intake 13, the emergencyrack detection sensor 16 reads aspecimen rack barcode 6 in which emergency information is recorded so as to recognize thespecimen rack 5, thespecimen rack 5 overtakes the specimen racks 5 provided in theintake portion 12 and is conveyed to theanalysis units buffer portion 10. - The
buffer portion 10 has a rotor structure having a circular trajectory and has slots that hold, radically on a concentric circle, a plurality ofspecimen racks 5 on which a plurality ofspecimen containers 7 are placed on an outer circumference. Any one of the specimen racks 5 is conveyed into or out from a requested destination by rotating the slots by the motor. With such a structure, it is not always necessary to sequentially process the specimen racks 5 that are placed first. That is, if onespecimen rack 5 has a high priority, thespecimen rack 5 would be processed first. - The
conveyance portion 14 is connected to one point on the radial circumference of thebuffer portion 10, and conveys the specimen racks 5 into or out of the radial circumference. When the point is at a position of 0 degree on the circumference, the circumference is connected with a draw-inline 21 to theanalysis unit 2 at a position of +90 degrees on the circumference from the position where theconveyance portion 14 is connected and a draw-inline 31 to theanalysis unit 3 at a position of −90 degrees on the circumference from the position where theconveyance portion 14 is connected, and the specimen racks 5 are conveyed into or out of theanalysis units 2 and 3 (delivery process). The draw-inline 21 and the draw-inline 31 will be described later. - The specimen racks 5 that have completed dispensing in the
analysis units buffer portion 10, wait for an output of a measurement result, and perform a process such as an automated re-inspection as needed. When the process is completed, the specimen racks 5 are conveyed to thestorage portion 11 via theconveyance portion 14. - A
control computer 4 is connected to theanalysis units sampler portion 1 via network lines 40. Each unit is operated via a user interface such as adisplay device 4 a and aninput device 4 b. - Generally, the specimen racks 5 on which the
specimen containers 7 are placed are provided in theintake portion 12. When an analysis is started, the specimen racks 5 are drawn into thebuffer portion 10. According to a requested item, the specimen racks 5 are conveyed to theanalysis unit 2 via the draw-inline 21 or conveyed to theanalysis unit 3 via the draw-inline 31. - Thereafter, specimens are suctioned by an analysis unit
specimen dispensing probe 22 or an analysis unitspecimen dispensing probe 32. Thereafter, the specimens react with a reagent in a reaction vessel. A detector measures a characteristic of the reaction liquid to perform qualitative and quantitative analyses on the specimens. The specimen racks 5 in which the specimens have been suctioned are returned to thebuffer portion 10 by being conveyed through the draw-inlines storage portion 11. - The
control computer 4 performs control relating to the analyses. In the invention, thecontrol portion 50 provided in thesampler portion 1 performs a detailed part of the delivery process in which the specimen racks 5 are conveyed into or out the plurality ofanalysis units - Returning to
FIG. 1 , theanalysis unit 2 is for a biochemical examination and theanalysis unit 3 is for an immune examination, whose examination purposes and process capacities (analysis cycles: analysis process capacities per unit time) are different. In the present embodiment, for example, theanalysis unit 2 is set to 450 tests/1 hour (8.0 seconds/1 cycle), and theanalysis unit 3 is set to 120 tests/1 hour (30.0 seconds/1 cycle). - In this manner, the
analysis units other analysis units analysis units analysis units analysis units - The
analysis unit 2 for a biochemical examination and theanalysis unit 3 for an immune examination may have known configurations. - Although a case of different examination purposes and process capacities of the plurality of
analysis units - Hereinafter, control in the
control portion 50 will be described with reference toFIGS. 5 to 7 .FIG. 5 is a diagram showing an example of time charts of control in an automated analysis device in the related art.FIGS. 6 and 7 are diagrams showing examples of time charts of control in the automated analysis device according to the present embodiment. - As described above, the
analysis unit 2 is used for a biochemical analysis and theanalysis unit 3 is used for an immune analysis. It is assumed that the analysis units measure different examination items. When theanalysis units analysis units analysis units - When the
analysis units analysis unit 3 having a low process capacity affects a process capacity of a system. A ratio varies depending on the number of requests for one specimen. The number of items requested for the specimen varies depending on the specimen and there is no uniform definition. - When the
analysis units analysis units buffer portion 10. Accordingly, a delivery process between thespecimen rack 5 and one of theanalysis units specimen rack 5 and the other one of theanalysis units - As a result, as shown in
FIG. 5 , even when theanalysis unit 3 normally performs an analysis process, thespecimen rack 5 is not delivered to theanalysis unit 3 due to theanalysis unit 2. Accordingly, theanalysis unit 3 may have an empty cycle and the process capacity may be lowered. - As shown in
FIGS. 6 and 7 , thecontrol portion 50 provided in thesampler portion 1 outputs, to all of the plurality ofanalysis units s s s s s s 6 whose output timings are spaced by one of the number of the connectedanalysis units t 1, 90t 4, 90t 5, and 90t 6 of the specimen racks 5 to the plurality ofanalysis units - More specifically, in a case in which the delivery processes do not interfere with each other in one operation cycle, that is, a delivery request is not repeatedly input in the same analysis cycle, as shown in
FIG. 6 , thecontrol portion 50 first outputs thesynchronization signal 90s 1 to theanalysis unit 2 when the delivery process is performed to theanalysis unit 2. Theanalysis unit 2 receives an input of thesynchronization signal 90s 1 and performs the delivery process 90t 1 of the specimen racks 5 between thebuffer portion 10 of thesampler portion 1 and theanalysis unit 2. - Next, as shown in
FIG. 6 , thecontrol portion 50 outputs thesynchronization signal 90s 2 to theanalysis unit 3 immediately after the delivery process 90t 1 of the specimen racks 5. However, since there is no delivery request for specimen racks, theanalysis unit 3 ignores thesynchronization signal 90s 2. - Similarly, when the delivery process is performed only to the
analysis unit 3, as shown inFIG. 6 , thecontrol portion 50 first outputs thesynchronization signal 90s 3 to theanalysis unit 2. However, since there is no delivery request for specimen racks, theanalysis unit 2 ignores thesynchronization signal 90s 3. - Next, as shown in
FIG. 6 , thecontrol portion 50 outputs thesynchronization signal 90s 4 to theanalysis unit 3 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to theanalysis unit 2. Theanalysis unit 3 receives an input of thesynchronization signal 90s 4 and performs the delivery process 90t 4 of the specimen racks 5 between thebuffer portion 10 of thesampler portion 1 and theanalysis unit 3. - When the delivery processes interfere with each other in one operation cycle, that is, when the
control portion 50 repeatedly input a delivery request in the same analysis cycle, thecontrol portion 50 first outputs thesynchronization signal 90s 5 to theanalysis unit 2 as shown inFIG. 7 . Theanalysis unit 2 receives an input of thesynchronization signal 90s 5 and performs the delivery process 90t 5 of the specimen racks 5 between thebuffer portion 10 of thesampler portion 1 and theanalysis unit 2. - As shown in
FIG. 7 , thecontrol portion 50 outputs thesynchronization signal 90s 6 to theanalysis unit 3 immediately after the delivery process 90t 5 of the specimen racks 5. Theanalysis unit 3 receives an input of thesynchronization signal 90s 6 and performs the delivery process 90t 6 of the specimen racks 5 between thebuffer portion 10 of thesampler portion 1 and theanalysis unit 3. - As shown in
FIG. 7 , when an assumed delivery request of the specimen racks 5 from theanalysis unit 3 whose analysis cycle is not the same as the analysis cycle of thesampler portion 1 overlaps a break in the analysis cycle, thecontrol portion 50 outputs asynchronization signal 90 s 7 a in an analysis cycle that is one analysis cycle before the assumed delivery process and performs a delivery process 90 t 7 a. When the delivery process cannot be performed in the analysis cycle that is one analysis cycle before the assumed delivery process, thecontrol portion 50 outputs asynchronization signal 90 s 7 b and performs a delivery process 90 t 7 b in an analysis cycle that is one analysis cycle later than the assumed delivery process. - Although it is assumed in
FIG. 1 that two analysis units are connected, other angles may be used as long as the two analysis units are connected at different phases. The number of analysis units to be connected is not limited to two. For example, three analysis units may be set at an interval of 90 degrees as shown inFIG. 8 , which will be described later. The number of analysis units to be connected may be three or more. - Hereinafter, a case in which three
analysis units FIGS. 8 to 10 .FIG. 8 is a block diagram showing another automated analysis device according to the invention. - As shown in
FIG. 8 , anautomated analysis device 100A includes asampler portion 1A that places and collects the specimen racks 5 provided in theautomated analysis device 100 shown inFIG. 1 , theanalysis unit 2 to a right side of thesampler portion 1A, theanalysis unit 3 to a left side of thesampler portion 1A, and ananalysis unit 9 to an opposite side of thesampler portion 1A and between theanalysis unit 2 and theanalysis unit 3. - Similar to the
analysis units analysis unit 9 is also an analysis unit for a biochemical examination or an immune analysis. A process capacity of theanalysis unit 9 is, for example, 90 tests/1 hour (40.0 seconds/1 cycle). Theanalysis unit 9 includes a draw-inline 91 and is used in a delivery process of the specimen racks 5 between abuffer portion 10A and theanalysis unit 9. - The
automated analysis device 100A is the same as theautomated analysis device 100 shown inFIG. 1 in that a plurality ofanalysis units FIG. 9 ) for allanalysis units sampler portion 1A is operated in the same cycle as theanalysis unit 2 having a shortest analysis cycle, and the like. - The
control computer 4 performs all processes including analyses in theautomated analysis device 100A shown inFIG. 8 , and acontrol portion 50A performs a detailed part of a delivery process in which the specimen racks 5 are conveyed into or out the plurality ofanalysis units - Next, the delivery process of the specimen racks 5 in the
control portion 50A will be described with reference toFIGS. 9 and 10 .FIGS. 9 and 10 are diagrams showing examples of time charts of control by thecontrol portion 50A. - In a case in which three
analysis units FIG. 8 are connected, thecontrol portion 50A outputs, to all of the plurality ofanalysis units s s s s s s s s s s s 18, and 90 s 19 whose output timings are spaced when thecontrol portion 50A performs delivery processes 90t 8, 90t 12, 90t 16, 90t 17, and 90t 19 of the specimen racks 5 to the plurality ofanalysis units - More specifically, when the
control portion 50A performs the delivery process to theanalysis unit 2 only, thecontrol portion 50A first outputs thesynchronization signal 90s 8 to theanalysis unit 2 as shown inFIG. 9 . Theanalysis unit 2 receives an input of thesynchronization signal 90s 8 and performs the delivery process 90t 8 of the specimen racks 5 between thebuffer portion 10A of thesampler portion 1A and theanalysis unit 2. - Next, the
control portion 50A outputs thesynchronization signal 90s 9 to theanalysis unit 3 immediately after the delivery process 90t 8 of thespecimen rack 5 as shown inFIG. 9 . However, since there is no delivery request for specimen racks, theanalysis unit 3 ignores thesynchronization signal 90s 9. - The
control portion 50A outputs thesynchronization signal 90 s 10 to theanalysis unit 9 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to theanalysis unit 3. However, since there is no delivery request for the specimen racks, theanalysis unit 9 ignores thesynchronization signal 90s 10. - Similarly, when the delivery process is performed to the
analysis unit 3 only, thecontrol portion 50A first outputs thesynchronization signal 90 s 11 to theanalysis unit 2 as shown inFIG. 9 . However, since there is no delivery request for the specimen racks, theanalysis unit 2 ignores thesynchronization signal 90s 11. - Next, the
control portion 50A outputs thesynchronization signal 90 s 12 to theanalysis unit 3 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to theanalysis unit 2 as shown inFIG. 9 . Theanalysis unit 3 receives an input of thesynchronization signal 90 s 12 and performs the delivery process 90t 12 of the specimen racks 5 between thebuffer portion 10A of thesampler portion 1A and theanalysis unit 3. - The
control portion 50A outputs thesynchronization signal 90 s 13 to theanalysis unit 9 at a timing when the delivery process 90t 12 is completed. However, since there is no delivery request for the specimen racks, theanalysis unit 9 ignores thesynchronization signal 90s 13. - Similarly, when the delivery process is performed to the
analysis unit 9 only, thecontrol portion 50A first outputs thesynchronization signal 90 s 14 to theanalysis unit 2 as shown inFIG. 9 . However, since there is no delivery request for the specimen racks, theanalysis unit 2 ignores thesynchronization signal 90s 14. - Next, the
control portion 50A outputs thesynchronization signal 90 s 15 to theanalysis unit 3 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to theanalysis unit 2 as shown inFIG. 9 . However, since there is no delivery request for the specimen racks, theanalysis unit 3 ignores thesynchronization signal 90s 15. - Then, the
control portion 50A outputs thesynchronization signal 90 s 16 to theanalysis unit 9 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to theanalysis unit 3. Theanalysis unit 9 receives an input of thesynchronization signal 90 s 16 and performs the delivery process 90t 16 of the specimen racks 5 between thebuffer portion 10A of thesampler portion 1A and theanalysis unit 9. - When the delivery processes interfere with each other in one operation cycle, that is, when the
control portion 50A repeatedly inputs a delivery request in the same analysis cycle from theanalysis units control portion 50A first outputs thesynchronization signal 90 s 17 to theanalysis unit 2 as shown inFIG. 10 . Theanalysis unit 2 receives an input of thesynchronization signal 90 s 17 and performs the delivery process 90t 17 of the specimen racks 5 between thebuffer portion 10A of thesampler portion 1A and theanalysis unit 2. - Next, the
control portion 50A outputs thesynchronization signal 90 s 18 to theanalysis unit 3 immediately after the delivery process 90t 17 of the specimen racks 5 as shown inFIG. 10 . However, since there is no delivery request for the specimen racks, theanalysis unit 3 ignores thesynchronization signal 90 s 18. - Then, as shown in
FIG. 10 , thecontrol portion 50A outputs thesynchronization signal 90 s 19 to theanalysis unit 9 immediately after a period assumed to be required for the delivery process of the specimen racks 5 to theanalysis unit 3. Theanalysis unit 9 receives an input of thesynchronization signal 90 s 19 and performs the delivery process 90t 19 of the specimen racks 5 between thebuffer portion 10A of thesampler portion 1A and theanalysis unit 9. - Next, effects of the present embodiment will be described.
- The
automated analysis devices analysis units buffer portion specimen racks 5 on which thespecimen containers 7 holding specimens are placed, thesampler portion buffer portion analysis units control portion analysis units analysis units analysis units - This controls delivery operation of the specimen racks 5 to be performed by operation following synchronization signals issued by the
sampler portion specimen racks 5 are performed in theoperation cycle 90 of thesampler portion - Such a process is particularly suitable for medium and small automated analysis devices in which a plurality of (2 or 3) analysis units having different process capacities are connected to one buffer portion.
- Since the
sampler portion same cycle 90 as theanalysis unit 2 having theshortest analysis cycle 92 among the plurality ofanalysis units analysis unit 2 that is assumed to have a highest delivery request of the specimen racks 5 so as to perform a delivery process, and the process capacity of the entire system can be more easily maintained to a maximum degree. - In one operation cycle, the
control portion analysis units analysis units - In one operation cycle, the
control portion analysis unit 2 having theshortest analysis cycle 92, and sequentially output synchronization signals to theother analysis unit analysis unit 2 having theshortest analysis cycle 92 immediately after a period required for the delivery process of the specimen racks 5, so that the specimen racks 5 can be first delivered to theanalysis unit 2 with no spare time and the delivery process of the specimen racks 5 can be performed stably. - In a case in which the synchronization signals are received when there is no request for the delivery process of the specimen racks 5, the plurality of
analysis units - The plurality of
analysis units analysis units other analysis units analysis units analysis units analysis units analysis units - The
buffer portion analysis units - The plurality of
analysis units sampler portion analysis units - The invention is not limited to the embodiments described above, and may include various modifications and applications. The embodiments described above have been described in detail for easy understanding of the invention, and are not necessarily limited to those including all the configurations described above.
- For example, the embodiments described above describe a case in which the specimen racks 5 holding a plurality of
specimen containers 7 are delivered as shown inFIG. 2 . Alternatively, the invention may be applied to an automated analysis device including a conveyance device that delivers a specimen holder holding onespecimen container 7. - Although the
control portion sampler portion control portion control computer 4. -
- 1, 1A: sampler portion (conveyance device)
- 2, 3, 9: analysis unit
- 4: control computer
- 4 a: display device
- 4 b: input device
- 5: specimen rack
- 6: specimen rack barcode
- 7: specimen container
- 8: specimen barcode
- 10, 10A: buffer portion (specimen container buffer portion)
- 11: storage portion
- 12: intake portion
- 13: emergency rack intake
- 14: conveyance portion
- 15: specimen barcode reader
- 16: emergency rack detection sensor
- 17: specimen determination sensor
- 21, 31, 91: draw-in line
- 22, 32: analysis unit specimen dispensing probe
- 40: network line
- 50, 50A: control portion
- 90: operation cycle of
sampler portion 1 - 92: operation cycle of
analysis unit 2 - 93: operation cycle of
analysis unit 3 - 99: operation cycle of
analysis unit 9 - 90
t 1, 90t 4, 90t 5, 90t 6, 90 t 7 a, 90 t 7 b, 90t 8, 90t 12, 90t 16, 90t 17, 90 t 19: delivery process - 90
s s s s s 7 a, 90s 7 b, 90s s s s - 90
s s s s s s s s - 100, 100A: automated analysis device
Claims (12)
1. An automated analysis device that analyzes specimens, the automated analysis device comprising:
a plurality of analysis units that analyze the specimens;
a specimen container buffer portion that is provided in the automated analysis device and holds a plurality of specimen containers holding the specimens;
a conveyance device that is provided in the automated analysis device and delivers the specimen containers held in the specimen container buffer portion to the analysis units; and
a control portion that outputs synchronization signals to all of the plurality of analysis units at different timings when the specimen containers are delivered to the plurality of analysis units; wherein
the analysis units deliver the specimen containers starting from the synchronization signals;
the conveyance device is operated in a same cycle as an analysis unit having a shortest analysis cycle among the plurality of analysis units, which are separately connected to the conveyance device; and
the control portion outputs the synchronization signals to all of the plurality of analysis units at the different timings in one operation cycle of the conveyance device.
2. The automated analysis device according to claim 1 , wherein the control portion shifts output timings of the synchronization signals output to the plurality of analysis units by an amount equal to 1/a number of connected analysis units in the one operation cycle of the conveyance device.
3. The automated analysis device according to claim 1 , wherein the control portion first outputs the synchronization signals to the analysis unit having the shortest analysis cycle, and sequentially outputs the synchronization signals to another analysis unit other than the analysis unit having the shortest analysis cycle immediately after a period required in a delivery process of the specimen containers in the one operation cycle of the conveyance device.
4. The automated analysis device according to claim 2 , wherein the plurality of analysis units ignore the synchronization signals in a case in which the synchronization signals are input when there is no delivery request for the specimen containers.
5. The automated analysis device according to claim 3 , wherein the plurality of analysis units ignore the synchronization signals in a case in which the synchronization signals are input when there is no delivery request for the specimen containers.
6. The automated analysis device according to claim 1 , wherein not all of the plurality of analysis units have a same analysis cycle of the specimens.
7. The automated analysis device according to claim 1 , wherein not all of the analysis units have a same analysis cycle of the specimens, and an analysis cycle of another analysis unit is not a common multiple of the analysis unit having the shortest analysis cycle.
8. The automated analysis device according to claim 1 , wherein not all of the analysis units have a same analysis cycle of the specimens, and a number of analyses scheduled to be performed up to a period that is a common multiple of analysis cycles of the plurality of the analysis units is 3% or more of a number of analyses per unit time required of the analysis units.
9. The automated analysis device according to claim 1 , wherein the specimen container buffer portion has a rotor structure, and the specimen containers are held radially on a concentric circle.
10. The automated analysis device according to claim 8 , wherein the plurality of analysis units are arranged relative to the conveyance device at an interval of 90 degrees.
11. The automated analysis device according to claim 1 , wherein the control portion and the specimen container buffer portion are provided in the conveyance device.
12. The automated analysis device according to claim 1 , wherein the analysis units include a first unit that performs a biochemical analysis and a second unit that performs an immune analysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/136,406 US20230258672A1 (en) | 2017-12-15 | 2023-04-19 | Automated Analysis Device |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017241191 | 2017-12-15 | ||
JP2017-241191 | 2017-12-15 | ||
PCT/JP2018/040044 WO2019116751A1 (en) | 2017-12-15 | 2018-10-29 | Automated analysis device |
US202016646410A | 2020-03-11 | 2020-03-11 | |
US18/136,406 US20230258672A1 (en) | 2017-12-15 | 2023-04-19 | Automated Analysis Device |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/646,410 Continuation US11662357B2 (en) | 2017-12-15 | 2018-10-29 | Automated analysis device |
PCT/JP2018/040044 Continuation WO2019116751A1 (en) | 2017-12-15 | 2018-10-29 | Automated analysis device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230258672A1 true US20230258672A1 (en) | 2023-08-17 |
Family
ID=66819084
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/646,410 Active US11662357B2 (en) | 2017-12-15 | 2018-10-29 | Automated analysis device |
US18/136,406 Pending US20230258672A1 (en) | 2017-12-15 | 2023-04-19 | Automated Analysis Device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/646,410 Active US11662357B2 (en) | 2017-12-15 | 2018-10-29 | Automated analysis device |
Country Status (5)
Country | Link |
---|---|
US (2) | US11662357B2 (en) |
EP (2) | EP3726224B1 (en) |
JP (4) | JP6943977B2 (en) |
CN (2) | CN113267640B (en) |
WO (1) | WO2019116751A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113219191B (en) * | 2020-01-21 | 2023-11-17 | 深圳迎凯生物科技有限公司 | Analysis device |
CN113687090A (en) * | 2021-08-24 | 2021-11-23 | 长春赛诺迈德医学技术有限责任公司 | Assembly line interface module and full-automatic analyzer |
WO2024166845A1 (en) * | 2023-02-06 | 2024-08-15 | 株式会社日立ハイテク | Container storage device, container dispensing method, and analysis system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4965049A (en) * | 1986-07-11 | 1990-10-23 | Beckman Instruments, Inc. | Modular analyzer system |
US20040186360A1 (en) * | 2003-03-19 | 2004-09-23 | Hiroyuki Suzuki | Automatic analyzer |
US20080056944A1 (en) * | 2006-08-31 | 2008-03-06 | Kazuhiro Nakamura | Automated analyzer |
US7842237B1 (en) * | 2000-01-12 | 2010-11-30 | Hitachi, Ltd. | Automatic analyzer and rack transfer device |
US20120107793A1 (en) * | 2010-10-28 | 2012-05-03 | Hiroo Tatsutani | Sample processing system and method of processing sample |
US20120179405A1 (en) * | 2009-09-30 | 2012-07-12 | Hitachi High-Technologies Corporation | Sample preprocessing and conveying system |
US20140342465A1 (en) * | 2013-05-15 | 2014-11-20 | Roche Diagnostics Operations, Inc. | Laboratory automated system with common sample buffer module |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2867174B2 (en) * | 1990-09-25 | 1999-03-08 | 東亜医用電子株式会社 | Sampler for multiple samples |
JP2829244B2 (en) | 1994-09-19 | 1998-11-25 | 株式会社日立製作所 | Sample transport device for clinical test |
JP3317851B2 (en) * | 1996-07-05 | 2002-08-26 | 株式会社日立製作所 | Multi-item automatic analyzer |
JP3031335B2 (en) * | 1998-07-07 | 2000-04-10 | 株式会社日立製作所 | Sample rack transport method and automatic analyzer |
JP3470048B2 (en) * | 1998-09-11 | 2003-11-25 | アロカ株式会社 | Sample transport system and sample transport method |
US6588625B2 (en) * | 2001-04-24 | 2003-07-08 | Abbott Laboratories | Sample handling system |
JP4734796B2 (en) * | 2001-08-06 | 2011-07-27 | 株式会社日立製作所 | Sample analysis system |
CN101156059B (en) * | 2005-04-01 | 2011-06-08 | 3M创新有限公司 | Multiplex fluorescence detection device having fiber bundle for connecting multiple optical modules to public detector |
JP2007309743A (en) | 2006-05-17 | 2007-11-29 | Olympus Corp | Multi-unit analyzer and its rack conveyance control method |
JP4906431B2 (en) | 2006-08-04 | 2012-03-28 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
JP2008209338A (en) * | 2007-02-28 | 2008-09-11 | Hitachi High-Technologies Corp | Automatic analyzer |
JP2008281453A (en) * | 2007-05-11 | 2008-11-20 | Hitachi High-Technologies Corp | Automatic analysis system |
JP5170737B2 (en) * | 2007-09-20 | 2013-03-27 | シスメックス株式会社 | Sample analyzer |
JP5496581B2 (en) * | 2009-08-31 | 2014-05-21 | シスメックス株式会社 | Sample processing equipment |
EP2485059B1 (en) * | 2009-09-30 | 2018-11-21 | Hitachi High-Technologies Corporation | Automated specimen processing system |
EP2530472B1 (en) * | 2010-01-28 | 2021-11-17 | Hitachi High-Tech Corporation | Automatic analyzing system |
JP5432816B2 (en) * | 2010-05-14 | 2014-03-05 | 株式会社日立ハイテクノロジーズ | Automatic analysis system and device management server |
CN103748472B (en) * | 2011-09-05 | 2016-08-17 | 株式会社日立高新技术 | Automatic analysing apparatus |
JP6525863B2 (en) * | 2012-04-02 | 2019-06-05 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. | Virtual sample queue |
JP2014062760A (en) * | 2012-09-20 | 2014-04-10 | Abbott Japan Co Ltd | Specimen automatic conveyance system performing allocation of specimen between plural analyzers capable of simultaneously measuring multi-item, and method thereof |
JP5651721B2 (en) * | 2013-02-06 | 2015-01-14 | シスメックス株式会社 | Analytical apparatus and sample measurement method |
CN104111341B (en) * | 2013-04-16 | 2017-10-17 | 深圳迈瑞生物医疗电子股份有限公司 | Automatic analysing apparatus and its analysis method and analysis system |
EP3267201B1 (en) * | 2015-03-05 | 2022-04-27 | Hitachi High-Tech Corporation | Automatic analysis device |
CN107152953B (en) * | 2017-04-01 | 2019-12-10 | 深圳市东邦生物医疗技术有限公司 | Liquid level detection method and device suitable for sample adding of glycosylated hemoglobin |
-
2018
- 2018-10-29 EP EP18888159.3A patent/EP3726224B1/en active Active
- 2018-10-29 US US16/646,410 patent/US11662357B2/en active Active
- 2018-10-29 CN CN202110719495.3A patent/CN113267640B/en active Active
- 2018-10-29 CN CN201880067848.2A patent/CN111279198B/en active Active
- 2018-10-29 JP JP2019558955A patent/JP6943977B2/en active Active
- 2018-10-29 EP EP24154595.3A patent/EP4354148A3/en active Pending
- 2018-10-29 WO PCT/JP2018/040044 patent/WO2019116751A1/en unknown
-
2021
- 2021-09-09 JP JP2021146674A patent/JP7181976B2/en active Active
-
2022
- 2022-11-18 JP JP2022184786A patent/JP7359927B2/en active Active
-
2023
- 2023-04-19 US US18/136,406 patent/US20230258672A1/en active Pending
- 2023-09-27 JP JP2023166039A patent/JP2023171858A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4965049A (en) * | 1986-07-11 | 1990-10-23 | Beckman Instruments, Inc. | Modular analyzer system |
US7842237B1 (en) * | 2000-01-12 | 2010-11-30 | Hitachi, Ltd. | Automatic analyzer and rack transfer device |
US20040186360A1 (en) * | 2003-03-19 | 2004-09-23 | Hiroyuki Suzuki | Automatic analyzer |
US20080056944A1 (en) * | 2006-08-31 | 2008-03-06 | Kazuhiro Nakamura | Automated analyzer |
US20120179405A1 (en) * | 2009-09-30 | 2012-07-12 | Hitachi High-Technologies Corporation | Sample preprocessing and conveying system |
US20120107793A1 (en) * | 2010-10-28 | 2012-05-03 | Hiroo Tatsutani | Sample processing system and method of processing sample |
US20140342465A1 (en) * | 2013-05-15 | 2014-11-20 | Roche Diagnostics Operations, Inc. | Laboratory automated system with common sample buffer module |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019116751A1 (en) | 2020-10-22 |
WO2019116751A1 (en) | 2019-06-20 |
EP3726224A1 (en) | 2020-10-21 |
CN113267640B (en) | 2024-07-02 |
EP3726224B1 (en) | 2024-02-28 |
CN111279198A (en) | 2020-06-12 |
JP6943977B2 (en) | 2021-10-06 |
CN111279198B (en) | 2021-07-06 |
JP7359927B2 (en) | 2023-10-11 |
US20200271678A1 (en) | 2020-08-27 |
US11662357B2 (en) | 2023-05-30 |
CN113267640A (en) | 2021-08-17 |
JP2021193387A (en) | 2021-12-23 |
JP2023171858A (en) | 2023-12-05 |
JP2023018035A (en) | 2023-02-07 |
EP4354148A2 (en) | 2024-04-17 |
JP7181976B2 (en) | 2022-12-01 |
EP4354148A3 (en) | 2024-06-26 |
EP3726224A4 (en) | 2021-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230258672A1 (en) | Automated Analysis Device | |
US10145858B2 (en) | Automatic analyzing apparatus | |
JP5851659B2 (en) | Automatic analyzer | |
US11268971B2 (en) | Automated analyzer | |
JP2008281453A (en) | Automatic analysis system | |
JP2008209338A (en) | Automatic analyzer | |
JP3990943B2 (en) | Automatic analysis system | |
JP2013122402A (en) | Analyzing device for specimen inspection | |
JP7010768B2 (en) | Automatic analyzer and sample transfer method | |
CN116643058A (en) | Disk analyzer, emergency sample injection scheduling method and computer readable storage medium | |
CN114545003A (en) | Sample analyzer, sample analyzer control method, sample analysis system, and storage medium | |
CN117849361A (en) | Sample analyzer and sample scheduling method for sample analyzer | |
JP2009294230A (en) | Automatic analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |