US20230235953A1 - Beverage cooler - Google Patents

Beverage cooler Download PDF

Info

Publication number
US20230235953A1
US20230235953A1 US18/190,644 US202318190644A US2023235953A1 US 20230235953 A1 US20230235953 A1 US 20230235953A1 US 202318190644 A US202318190644 A US 202318190644A US 2023235953 A1 US2023235953 A1 US 2023235953A1
Authority
US
United States
Prior art keywords
beverage
temperature
beverage container
cooler
indicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/190,644
Inventor
Emad Jafa
Eleonor Dorin Stoenescu
Thomas Henry Hellier
James Simon Oliver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pepsico Inc
Original Assignee
Pepsico Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pepsico Inc filed Critical Pepsico Inc
Priority to US18/190,644 priority Critical patent/US20230235953A1/en
Publication of US20230235953A1 publication Critical patent/US20230235953A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • F25D31/007Bottles or cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/005Charging, supporting, and discharging the articles to be cooled using containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D27/00Lighting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/805Cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/10Refrigerator top-coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D27/00Lighting arrangements
    • F25D27/005Lighting arrangements combined with control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/16Sensors measuring the temperature of products

Definitions

  • the described embodiments generally relate to beverage coolers.
  • embodiments relate to rapid beverage coolers.
  • Some beverages are preferably served cold and, therefore, consumers may utilize a beverage cooler to chill and/or maintain the drink at a low temperature until it is ready to be consumed.
  • Chilled beverages may be used by athletes in sports related applications to help regulate body temperature as well as hydration level.
  • Beverage coolers come in many forms, and utilize a number of mechanisms for reducing the temperature of the beverage to be consumed. For example, some beverage coolers use ice as a means for chilling beverages. Some ice-based beverage coolers may require ice to be placed directly in contact with the beverage to be cooled. Other ice-based beverage coolers may require ice to be placed around a container in which the beverage is stored (e.g. a bottle or can). Others beverage coolers may use powered cooling systems, such as refrigeration systems or thermoelectric cooling, to cool the beverages.
  • Some embodiments of the present invention provide beverage coolers for cooling bottle beverages. They may rapidly cooler bottle beverages using a refrigeration system, and may include a means for indicating to a user when the bottles have been chilled to a desirable temperature.
  • embodiments include beverage coolers for cooling bottled beverages, where the beverage cooler includes a first chamber that a user may access via a cooler door, a second chamber beneath the first chamber, and a beverage container tray located between and separating the first chamber from the second chamber.
  • the beverage container tray may include beverage container openings configured to receive a bottle to be chilled.
  • a seal may be located within each beverage container opening in order to fill the space between the beverage container opening and a bottle placed in the beverage container opening.
  • Each beverage container opening may include a visual indicator, where the visual indicator is configured to display information about the temperature of a bottle placed in the beverage container opening.
  • Embodiments also include beverage coolers for cooling bottled beverages, where the beverage cooler includes a cooling chamber having an opening, and a beverage container tray that is placed across and seals the opening of the cooling chamber.
  • the beverage container tray may include beverage container openings configured to receive a bottle to be chilled.
  • a door may be located within each beverage container opening, where the door is configured to open when a bottle is inserted into the beverage container opening.
  • a seal may be located within each beverage container opening in order to fill the space between the beverage container opening and a bottle placed in the beverage container opening.
  • Each beverage container opening may include a visual indicator, where the visual indicator is configured to display information about the temperature of a bottle placed in the beverage container opening.
  • Embodiments also include beverage coolers for cooling bottled beverages, where the beverage cooler includes a cooling chamber having an opening, and a cooler door that is placed across and seals the opening of the cooling chamber. A user may access the cooling chamber by opening the cooler door.
  • the cooler may include beverage container receptacles configured to receive a bottle to be chilled.
  • Each beverage container receptacle may include a visual indicator, where the visual indicator is configured to display information about the temperature of a bottle placed in the beverage container opening.
  • FIG. 1 is a perspective view of a beverage cooler according to some embodiments.
  • FIG. 2 is a perspective view of a beverage cooler of FIG. 1 in an open position according to some embodiments.
  • FIG. 3 is a partial sectional view of a beverage cooler according to some embodiments.
  • FIG. 4 is a partial sectional view of a beverage cooler according to some embodiments.
  • FIG. 5 is a partial perspective view of a beverage cooler according to some embodiments.
  • FIG. 6 is a partial perspective view of a beverage cooler according to some embodiments.
  • FIG. 7 A is a partial perspective view of a beverage cooler according to some embodiments.
  • FIG. 7 B is a partial perspective view of a beverage cooler and a beverage container according to some embodiments.
  • Some traditional beverage coolers utilize ice as the primary mechanism for chilling beverages that are to be consumed.
  • These beverage coolers may include, for example, a thermally insulated housing filled with ice into which a liquid may be poured or a packaged beverage may be placed.
  • the ice for these beverage coolers may be difficult to procure and replenish, in particular if the beverage cooler and ice maker are not at the same location.
  • using ice as the primary cooling method may limit a user's control over the temperature of the beverage as well as the rate at which the beverage is cooled.
  • Some beverage coolers that use ice to cool beverages require the ice to be placed directly in contact with the liquid. Although this may chill the beverage, the concentration of the beverage will vary as the ice melts, thereby diluting the drink. This dilution may be less than desirable in drinks that have specific ratios of ingredients, such as sports drinks.
  • a container such as a bottle
  • some beverage coolers may require ice to be placed around the container. Although this method may not dilute the beverage, the ice may melt as it comes into contact with the relatively warm surface of the container, making the surface of the container wet. This may require a consumer to wipe off the bottle before drinking the beverage, which may adversely affect the consumer's experience.
  • Some beverage coolers do not use ice as the primary cooling mechanism, but rather use powered cooling systems, such as refrigeration systems or thermoelectric cooling systems.
  • powered cooling systems such as refrigeration systems or thermoelectric cooling systems.
  • some existing powered beverage coolers may not cool beverages rapidly or efficiently enough to be useful in applications that demand a continuous high volume of chilled beverages, such as at sporting events.
  • some existing beverage coolers may not have the ability to cool beverages as quickly as they are warmed by ambient conditions after being removed from the beverage cooler.
  • some existing beverage coolers may not have the ability to cool the volume of beverages necessary to match or exceed their rate of consumption. This may be particularly true in sports related applications, where athletes may consume large quantities of drinks in a short amount of time.
  • condensation may form on the exterior surface of the beverage container once it has been chilled, which may require a consumer to wipe off the bottle before drinking the beverage. As with the ice-based coolers, this may adversely affect a consumer's experience.
  • Some beverage coolers powered or unpowered, may not display the temperature of the beverage being chilled, which may result in the beverage being removed and consumed at a warmer than desirable temperature. Similarly, the beverage may be left in the cooler longer than necessary after it has reached a desirable temperature, wasting energy or resources and occupying cooler space that could otherwise be utilized by another beverage.
  • Some embodiments may provide an efficient system for rapidly cooling beverages in bottles without the use of ice.
  • Some of these beverage coolers may include a cooling chamber into which one or more bottles may be inserted to be chilled.
  • the beverage cooler may include a refrigeration system with an evaporator and a fan in the cooling chamber, where the evaporator removes heat from the cooling chamber, and the fan circulates chilled air around the bottles and through the evaporator in the cooling chamber.
  • the bottles to be chilled may be inserted into the cooling chamber through openings in the cooling chamber. Each opening may have a respective door that minimizes air loss when a bottle is not disposed in the opening, and may have a respective seal that minimizes air loss when a bottle is disposed in the opening.
  • Each seal may wipe condensation off the exterior surface the bottle as the bottle is removed from the opening, such that a user may receive from the beverage cooler a relatively dry, chilled bottle.
  • One or more openings, and in some embodiments, each opening may have a respective display, such as, for example, a series of lights that use color or light intensity, for example, to indicate the temperature of the bottle disposed in the opening, or to indicate whether or not the bottle has been chilled to a desirable temperature.
  • Some embodiments may allow a user to select a desired beverage temperature and/or a rate of cooling of the beverages using an automatic control system.
  • a beverage cooler 10 may include a cooler housing 100 , a beverage container tray 200 , and a cooling system 300 .
  • Cooler housing 100 may be configured to receive and store a plurality of beverage containers 400 , such as bottles 400 , and to lower and/or maintain the temperature of the beverage containers 400 .
  • Beverage containers 400 may comprise bottles, squeeze bottles, cans, and other beverage containers for providing beverages to a consumer. Throughout the disclosure, components may be referred to with reference to a bottle but it will be appreciated that other beverage containers may be used.
  • cooler housing 100 is configured to rapidly lower the temperature of one or more beverage containers 400 such that a continuous high demand for chilled beverages at a desired temperature may be fulfilled.
  • Cooler housing 100 may include an exterior surface 110 defining the shape of beverage cooler 10 , and an interior surface 120 defining an interior space 122 .
  • cooler housing 100 comprises a rectangular cuboid shape. In some embodiments, cooler housing 100 may comprise other shapes, including, for example, cubical, tubular, cylindrical, spherical, or frustoconical, and may or may not be symmetrical about any axis.
  • cooler housing 100 may be made of metal, plastic, or a composite material, and combinations thereof.
  • cooler housing 100 , or a portion of cooler housing 100 may include a thermally insulating material to reduce the exchange of heat between interior space 122 and the ambient conditions surrounding beverage cooler 10 .
  • a layer of air may be sealed between the exterior surface 110 and the interior surface 120 to act as a thermal insulator.
  • Cooler housing 100 may include wheels 160 , such as casters, which allow beverage cooler 10 to be rolled.
  • beverage cooler 10 may include four wheels 160 disposed on a bottom 116 of cooler housing 100 .
  • Beverage container tray 200 may be disposed within cooler housing 100 .
  • beverage container tray 200 may be a substantially planar member, and may have a top surface 210 and a bottom surface 220 . As shown in FIGS. 1 and 2 , for example, beverage container tray 200 may be oriented such that it is substantially perpendicular to one or more sides 114 of cooler housing 100 . However, beverage container tray 200 may be disposed at a non-perpendicular angle relative to sides 114 . Beverage container tray 200 may be disposed such that it divides at least a portion of interior space 122 into two parts, thereby forming a first chamber 170 and a second chamber 180 . In some embodiments, second chamber 180 is disposed beneath or adjacent to first chamber 170 .
  • first chamber 170 and second chamber 180 may be equal in volume. In some embodiments, first chamber 170 may have a greater volume than second chamber 180 . In some embodiments, second chamber 180 may have a greater volume than first chamber 170 .
  • Beverage container tray 200 may include a thermally insulating material to reduce the exchange of heat between first and second chambers 170 , 180 .
  • Beverage container tray 200 may include a plurality of beverage container openings 230 , which extend through beverage container tray 200 from top surface 210 to bottom surface 220 . Each beverage container opening 230 may be configured to receive one of the beverage containers 400 , such as a squeeze bottle 400 .
  • beverage container openings 230 may have a perimeter 232 that is circular in shape, and may have a diameter of at least 2 inches.
  • beverage container tray 200 may include twenty-four beverage container openings 230 , which are arranged in a grid pattern defining rows and columns of openings 230 .
  • beverage container tray 200 may include any number of beverage container openings 230 in any arrangement.
  • a beverage container shelf 270 may be disposed within cooler housing 100 , and may have a support surface 272 configured to support one or more beverage containers 400 .
  • beverage container shelf 270 may be disposed beneath beverage container tray 200 in second chamber 180 such that a bottom end 420 of one or more beverage containers 400 disposed in beverage container openings 230 may be supported by support surface 272 .
  • the distance between bottom surface 220 of beverage container tray 200 and support surface 272 may be less than the distance between a top end 410 and bottom end 420 of beverage container 400 , such that the bottom end 420 of beverage container 400 may be disposed in second chamber 180 , while the top end 410 of beverage container 400 may be disposed in first chamber 170 .
  • This arrangement may facilitate user access to the beverage container 400 .
  • the distance between bottom surface 220 of beverage container tray 200 and support surface 272 may be at least half of the distance between top end 410 and bottom end 420 of beverage container 400 .
  • the position of beverage container shelf 270 may be adjustable relative to beverage container tray 200 , such that beverage cooler 10 may cool beverage containers of various heights.
  • a first door 130 may be disposed in a top surface 112 of cooler housing 100 such that a user may access interior space 122 of cooler housing 100 through first door 130 .
  • at least a portion of first door 130 may be made of a transparent material (e.g., glass or plastic), such that a user may see into interior space 122 of cooler housing 100 without opening first door 130 .
  • first door 130 may include a transparent glass or plastic panel.
  • a user may access first chamber 170 though first door 130 . With first door 130 in an open position, a user may insert a beverage container 400 to be chilled into one of beverage container openings 230 , or may remove a chilled beverage container 400 from one of the beverage container openings 230 .
  • Beverage container tray 200 may include a plurality of beverage container doors 240 that are coupled to beverage container tray 200 and disposed at each of beverage container openings 230 .
  • each beverage container door 240 may comprise two adjacent door flaps 242 hingedly connected to beverage container tray 200 and configured, together, to completely cover a respective beverage container opening 230 .
  • each beverage container door 240 may comprise a single door flap 242 configured to completely cover a respective beverage container opening 230 .
  • Beverage container doors 240 may be hingedly coupled to bottom surface 220 and may include one or more biasing mechanisms 246 , which bias the doors in a closed position (i.e. covering a respective beverage container opening 230 ). When in a closed position, beverage container doors 240 may form a seal with beverage container tray 200 , thereby restricting air from passing through the beverage container openings 230 when a beverage container 400 is not disposed in the beverage container opening 230 .
  • a seam 244 may be formed where the two door flaps 242 meet in a closed position. Seam 244 may include a seal that restricts air from passing through seam 244 .
  • one or more door flaps 242 may be substantially flat such that when the door flaps 242 are in a closed position when no beverage container is disposed in the corresponding beverage container opening 230 , a substantially flat surface is provided.
  • biasing mechanisms 246 comprise torsional springs.
  • Beverage container doors 240 may include a thermally insulating material to reduce the exchange of heat between first and second chambers 170 , 180 when the beverage container doors 240 are in a closed position. Beverage container doors 240 may have an open position where beverage container doors 240 do not form a seal with beverage container tray 200 and do not cover a respective beverage container opening 230 .
  • beverage container door 240 when a user inserts a beverage container 400 into a beverage container opening 230 , the bottom end 420 of the beverage container 400 may press against the respective beverage container door 240 , overcoming the biasing force provided by biasing mechanism 246 , and thereby causing beverage container door 240 to move from a closed position to an open position without direct contact from the user. Then, when a user removes a beverage container 400 from a beverage container opening 230 , the biasing force provided by biasing mechanism 246 causes the beverage container door 240 to automatically move from an open position to a closed position.
  • beverage container door 240 including door flaps 242 may be made of plastic, hard rubber, or other suitable rigid or semi-rigid material.
  • beverage container tray 200 may include a plurality of beverage container seals 250 that are coupled to beverage container tray 200 and disposed at one or more of beverage container openings 230 .
  • seals 250 may be configured to fill the space between beverage container tray 200 and an exterior surface 430 of the beverage container 400 , thereby preventing air from passing through the beverage container opening 230 when a beverage container 400 is disposed in the beverage container opening 230 .
  • seals 250 may be made of silicon, rubber, or another flexible material.
  • condensation may form on the exterior surface 430 of a beverage container 400 when the beverage container 400 is being chilled in beverage cooler 10 .
  • Beverage container seals 250 may be configured to remove condensation from the beverage container 400 when the beverage container 400 is being removed from beverage cooler 10 .
  • Beverage container seal 250 may be flush with the exterior surface 430 of the beverage container 400 , and therefore, when the beverage container 400 is removed from beverage container opening 230 , seal 250 will wipe along exterior surface 430 of the beverage container 400 , thereby collecting and removing accumulated condensation from exterior surface 430 .
  • beverage container tray 200 may include one or more visual indicators 260 , which are configured to display information about beverage containers 400 disposed in beverage container tray 200 .
  • there may be one visual indicator 260 for each beverage container opening 230 and each visual indicator 260 may be configured to display information relating to the temperature of a beverage container 400 disposed in the respective beverage container opening 230 .
  • a visual indicator 260 may be associated with a row or column of beverage containers 400 to display information relating to the temperature of the beverage containers disposed in the respective row or column.
  • visual indicators 260 may be a plurality of lights (e.g., LEDs) disposed along perimeter 232 of each respective beverage container opening 230 .
  • visual indicators 260 may be a single light, a multi-colored light, or an electronic display. In some embodiments, visual indicators 260 may be disposed within first chamber 170 . In some embodiments, visual indicators 260 may be disposed outside of first chamber 170 , and may be, for example, coupled to exterior surface 110 .
  • visual indicator 260 may be disposed within beverage container opening 230 .
  • the lights may illuminate the beverage container opening 230 , seal 250 , and/or beverage container door 240 .
  • FIG. 7 B for example, if a beverage container 400 is disposed within the beverage container opening 230 , the lights may illuminate the exterior surface 430 of beverage container 400 , beverage container opening 230 , and/or seal 250 .
  • Visual indicators 260 may be electronically coupled to an indicator controller 262 , which may control visual indicators 260 based on the temperature, or estimated temperature of the beverage containers 400 disposed in beverage container openings 230 .
  • each beverage container opening 230 may include a temperature sensor 264 that measures the temperature of the exterior surface 430 of a beverage container 400 disposed in the beverage container opening 230 .
  • Indicator controller 262 may be electronically coupled to a temperature sensor 264 and may receive input from temperature sensor 264 .
  • each beverage container opening 230 may include a beverage container sensor 268 that senses when a beverage container 400 is inserted into the beverage container opening 230 .
  • Indicator controller 262 may be electronically coupled to beverage container sensor 268 and may receive input from beverage container sensor 268 .
  • Indicator controller 262 may estimate the temperature of the beverage container 400 based on the amount of time that the beverage container 400 has been disposed in the beverage container opening 230 , which may be measured from the time when beverage container sensor 268 first senses a beverage container 400 .
  • visual indicator 260 may be a plurality of multi-colored LEDs configured to display certain colors corresponding to the measured temperature or estimated temperature of a beverage container 400 . For example, if the measured temperature or estimated temperature of a beverage container 400 is warmer than a desired temperature, red lights may be illuminated by indicator controller 262 , suggesting that a particular beverage container is not ready for consumption. If the measured temperature or estimated temperature of a beverage container 400 is equal to or colder than the desired temperature, blue lights may be illuminated by indicator controller 262 . Similarly, visual indicator 260 may be a plurality of single-colored LEDs configured to turn on or off based on the measured temperature or estimated temperature of a beverage container 400 .
  • visual indicator 260 may be a plurality of LEDs configured to vary in light intensity based on the measured temperature or estimated temperature of a beverage container 400 . For example, if the measured temperature or estimated temperature of a beverage container 400 is warmer than a desired temperature, the lights may be dimly illuminated. If the measured temperature or estimated temperature of a beverage container 400 is equal to or colder than the desired temperature, the lights may be brightly illuminated or may flash on and off to indicate that cooling is complete.
  • the desired temperature may be user-defined.
  • beverage cooler 10 may include a cooling system 300 , which may be, for example, a refrigeration system having an evaporator 310 , a compressor 320 , a condenser 330 , and an expansion valve 340 , interconnected with pipes 360 and containing a refrigerant.
  • a cooling system 300 may be, for example, a refrigeration system having an evaporator 310 , a compressor 320 , a condenser 330 , and an expansion valve 340 , interconnected with pipes 360 and containing a refrigerant.
  • Evaporator 310 may be disposed in second chamber 180 , and may comprise a coil used to absorb heat from the air in second chamber 180 .
  • a circulation fan 312 may be disposed in second chamber 180 to circulate air within second chamber 180 , such that air is drawn over evaporator 310 , cooled, and then moved to cool the beverage containers 400 disposed in second chamber 180 .
  • a circulation divider 314 may be disposed in second chamber 180 .
  • second chamber 180 may have a generally rectangular cuboid shape.
  • Circulation divider 314 may extend between two opposing sides 114 of cooler housing 100 , while leaving circulation spaces 318 between circulation divider 314 and interior surface 120 on the two remaining sides 114 .
  • air displaced by circulation fan 312 may travel in a loop within second chamber 180 .
  • air may be drawn by circulation fan 312 through evaporator 310 . Then, the air may reach a side 114 , where it is forced downward through circulation space 318 and beneath circulation divider 314 .
  • beverage cooler may cool beverage containers 400 more quickly than they are warmed by the ambient conditions.
  • beverage container doors 240 may be oriented parallel to the direction of airflow in the second chamber 180 when in an open position, such that air may more easily flow past doors 240 when opened.
  • circulation divider 314 may also be used to support beverage containers 400 in a manner similar to beverage container shelf 270 , where the bottom end 420 of a beverage container 400 may rest upon a top surface 316 of circulation divider 314 .
  • circulation divider 314 may be made of metal, and may be conductively coupled to evaporator 310 . In embodiments where beverage containers 400 rest upon top surface 316 of circulation divider 314 , beverage containers 400 may be cooled by conduction.
  • interior space 122 may include a floor 192 , which may be disposed to divide interior space 122 , forming a mechanical chamber 190 adjacent to one or both of the first and second chambers 170 , 180 .
  • the floor may include a thermally insulating material to reduce the exchange of heat between first and/or second chambers 170 , 180 and the mechanical chamber 190 .
  • Compressor 320 may be disposed in the mechanical chamber 190 , along with the condenser 330 , a condenser fan 332 , and expansion valve 340 .
  • compressor 320 may be electrically powered and may use grid power.
  • compressor 320 may be electrically powered and receive power from batteries, which may be stored in mechanical chamber 190 .
  • compressor 320 may be powered by gasoline or another petroleum based fuel.
  • Condenser 330 may be disposed in mechanical chamber 190 and may comprise a coil used expel to the environment heat absorbed by evaporator 310 .
  • a vent 150 may be disposed in a side 114 of cooler housing 100 , whereby heat from condenser 330 may pass from mechanical chamber 190 to the ambient surroundings.
  • condenser 330 may be disposed outside of cooler housing 100 , and may be, for example, attached to a side 114 of cooler housing 100 .
  • a condenser fan 332 may be disposed proximal to condenser 330 , and may force air through the condenser 330 such that heat is more rapidly dissipated from the condenser 330 .
  • the condenser fan 332 may be disposed in the mechanical chamber 190 . In some embodiments, the condenser fan 332 may be disposed adjacent to vent 150 . In some embodiments, no condenser fan 332 may be used, and air may naturally pass over condenser 330 in order to dissipate heat from condenser 330 . Expansion valve 340 may be disposed in mechanical chamber 190 and may regulate the amount of refrigerant flowing through pipes 360 into evaporator 310 .
  • cooling system 300 may also include a cooling controller 350 that may be used to automatically control the cooling system 300 .
  • the cooling controller 350 may include a user interface 352 whereby a user may turn cooling system 300 on or off, set a desired temperature of one or both of chambers 170 , 180 , or set a rate at which to cool the beverage containers 400 .
  • User interface 352 may include a means for receiving user input (e.g., electromechanical buttons), a means for communicating with a user (e.g., a visual display), and/or a combined means for receiving input and communicating with a user (e.g., a touch screen display).
  • User interface 352 may include a combination of buttons, visual displays, and/or touch screens.
  • User interface may be disposed in side 114 of cooler housing 100 .
  • user interface may be remotely connected to cooling system 300 , such that user interface is not fixed to beverage cooler 10 .
  • User interface 352 may be interconnected to cooling system 300 by a wired or wireless connection.
  • a user may control cooling system 300 using an application on a mobile communications device (e.g., a smartphone).
  • cooling controller 350 may be used to automatically vary the rate at which cooling system 300 cools one or both of chambers 170 , 180 and/or beverage containers 400 .
  • cooling system 300 may operate to rapidly cool one or both of chambers 170 , 180 and/or beverage containers 400 from an ambient temperature to a chilled temperature within a given amount of time. For example, during this initial stage of cooling, cooling system 300 may reduce the temperature of beverage containers 400 from approximately 70-110 degrees Fahrenheit to less than approximately 30-50 degrees Fahrenheit in less than approximately 30-90 minutes. In some embodiments, cooling system 300 may reduce the temperature of beverage containers 400 from approximately 90 degrees Fahrenheit to less than approximately 40 degrees Fahrenheit in less than approximately 60 minutes.
  • Cooling system 300 may produce chilled air within one or both of cooling chambers 170 , 180 that is approximately ⁇ 20-20 degrees Fahrenheit. In some embodiments, cooling system 300 may produce chilled air within one or both of cooling chambers 170 , 180 that is approximately ⁇ 5 degrees Fahrenheit. Then, after the initial stage of cooling is complete, cooling system 300 may automatically decrease the rate at which one or both of chambers 170 , 180 and/or beverage containers 400 are cooled, or may maintain a particular temperature of one or both of the chambers 170 , 180 and/or beverage containers 400 . Cooling controller 350 may receive input from one or more temperature sensors 264 , and may vary the rate of cooling, the stage of cooling, or may turn on or off cooling system 300 based on the input received from temperature sensor 264 .
  • cooling system 300 may maintain the temperature of beverage containers 400 at a user-defined temperature. In some embodiments, cooling system 300 may maintain the temperature of beverage containers 400 at approximately 20-40 degrees Fahrenheit. In some embodiments, cooling system 300 may maintain the temperature of beverage containers 400 at approximately 32 degrees Fahrenheit.
  • a second door 140 may be disposed on a side 114 of cooler housing 100 , whereby a user may access interior space 122 of cooler housing 100 through second door 140 .
  • a user may access only mechanical chamber 190 using second door 140 .
  • a user may access one or more of first, second, or mechanical chambers 170 , 180 , 190 using second door 140 .

Abstract

Beverage coolers for storing and cooling bottled beverages. A beverage cooler may include a cooling chamber cooled by a refrigeration system, and openings in the cooling chamber for receiving bottled beverages to be chilled. The openings may have doors and/or seals to minimize heat exchange between the cooling chamber and the environment with or without bottles disposed in the openings. Each of the openings may have a visual indicator, such as a plurality of LEDs, configured to indicate the temperature of the bottle disposed in the opening.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. application Ser. No. 16/054,596, filed Aug. 3, 2018, which application claims priority to U.S. Provisional Application No. 62/697,276, filed Jul. 12, 2018, each of which applications are incorporated herein by reference in their entireties.
  • FIELD
  • The described embodiments generally relate to beverage coolers. In particular, embodiments relate to rapid beverage coolers.
  • BACKGROUND
  • Some beverages are preferably served cold and, therefore, consumers may utilize a beverage cooler to chill and/or maintain the drink at a low temperature until it is ready to be consumed. Chilled beverages may be used by athletes in sports related applications to help regulate body temperature as well as hydration level. Beverage coolers come in many forms, and utilize a number of mechanisms for reducing the temperature of the beverage to be consumed. For example, some beverage coolers use ice as a means for chilling beverages. Some ice-based beverage coolers may require ice to be placed directly in contact with the beverage to be cooled. Other ice-based beverage coolers may require ice to be placed around a container in which the beverage is stored (e.g. a bottle or can). Others beverage coolers may use powered cooling systems, such as refrigeration systems or thermoelectric cooling, to cool the beverages.
  • BRIEF SUMMARY OF THE INVENTION
  • Some embodiments of the present invention provide beverage coolers for cooling bottle beverages. They may rapidly cooler bottle beverages using a refrigeration system, and may include a means for indicating to a user when the bottles have been chilled to a desirable temperature.
  • For example, embodiments include beverage coolers for cooling bottled beverages, where the beverage cooler includes a first chamber that a user may access via a cooler door, a second chamber beneath the first chamber, and a beverage container tray located between and separating the first chamber from the second chamber. The beverage container tray may include beverage container openings configured to receive a bottle to be chilled. A seal may be located within each beverage container opening in order to fill the space between the beverage container opening and a bottle placed in the beverage container opening. Each beverage container opening may include a visual indicator, where the visual indicator is configured to display information about the temperature of a bottle placed in the beverage container opening.
  • Embodiments also include beverage coolers for cooling bottled beverages, where the beverage cooler includes a cooling chamber having an opening, and a beverage container tray that is placed across and seals the opening of the cooling chamber. The beverage container tray may include beverage container openings configured to receive a bottle to be chilled. A door may be located within each beverage container opening, where the door is configured to open when a bottle is inserted into the beverage container opening. A seal may be located within each beverage container opening in order to fill the space between the beverage container opening and a bottle placed in the beverage container opening. Each beverage container opening may include a visual indicator, where the visual indicator is configured to display information about the temperature of a bottle placed in the beverage container opening.
  • Embodiments also include beverage coolers for cooling bottled beverages, where the beverage cooler includes a cooling chamber having an opening, and a cooler door that is placed across and seals the opening of the cooling chamber. A user may access the cooling chamber by opening the cooler door. The cooler may include beverage container receptacles configured to receive a bottle to be chilled. Each beverage container receptacle may include a visual indicator, where the visual indicator is configured to display information about the temperature of a bottle placed in the beverage container opening.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The accompanying drawings, which are incorporated herein and form part of the specification, illustrate embodiments of the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the relevant art(s) to make and use the invention.
  • FIG. 1 is a perspective view of a beverage cooler according to some embodiments.
  • FIG. 2 is a perspective view of a beverage cooler of FIG. 1 in an open position according to some embodiments.
  • FIG. 3 is a partial sectional view of a beverage cooler according to some embodiments.
  • FIG. 4 is a partial sectional view of a beverage cooler according to some embodiments.
  • FIG. 5 is a partial perspective view of a beverage cooler according to some embodiments.
  • FIG. 6 is a partial perspective view of a beverage cooler according to some embodiments.
  • FIG. 7A is a partial perspective view of a beverage cooler according to some embodiments.
  • FIG. 7B is a partial perspective view of a beverage cooler and a beverage container according to some embodiments.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention(s) will now be described in detail with reference to embodiments thereof as illustrated in the accompanying drawings. References to “one embodiment”, “an embodiment”, “an exemplary embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiments, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • Some traditional beverage coolers utilize ice as the primary mechanism for chilling beverages that are to be consumed. These beverage coolers may include, for example, a thermally insulated housing filled with ice into which a liquid may be poured or a packaged beverage may be placed. However, the ice for these beverage coolers may be difficult to procure and replenish, in particular if the beverage cooler and ice maker are not at the same location. Further, using ice as the primary cooling method may limit a user's control over the temperature of the beverage as well as the rate at which the beverage is cooled.
  • Some beverage coolers that use ice to cool beverages require the ice to be placed directly in contact with the liquid. Although this may chill the beverage, the concentration of the beverage will vary as the ice melts, thereby diluting the drink. This dilution may be less than desirable in drinks that have specific ratios of ingredients, such as sports drinks. If the beverage to be cooled is stored in a container, such as a bottle, some beverage coolers may require ice to be placed around the container. Although this method may not dilute the beverage, the ice may melt as it comes into contact with the relatively warm surface of the container, making the surface of the container wet. This may require a consumer to wipe off the bottle before drinking the beverage, which may adversely affect the consumer's experience.
  • Some beverage coolers do not use ice as the primary cooling mechanism, but rather use powered cooling systems, such as refrigeration systems or thermoelectric cooling systems. However, some existing powered beverage coolers may not cool beverages rapidly or efficiently enough to be useful in applications that demand a continuous high volume of chilled beverages, such as at sporting events. For example, some existing beverage coolers may not have the ability to cool beverages as quickly as they are warmed by ambient conditions after being removed from the beverage cooler. Similarly, some existing beverage coolers may not have the ability to cool the volume of beverages necessary to match or exceed their rate of consumption. This may be particularly true in sports related applications, where athletes may consume large quantities of drinks in a short amount of time.
  • In some powered beverage coolers, condensation may form on the exterior surface of the beverage container once it has been chilled, which may require a consumer to wipe off the bottle before drinking the beverage. As with the ice-based coolers, this may adversely affect a consumer's experience.
  • Some beverage coolers, powered or unpowered, may not display the temperature of the beverage being chilled, which may result in the beverage being removed and consumed at a warmer than desirable temperature. Similarly, the beverage may be left in the cooler longer than necessary after it has reached a desirable temperature, wasting energy or resources and occupying cooler space that could otherwise be utilized by another beverage.
  • As described herein, some embodiments may provide an efficient system for rapidly cooling beverages in bottles without the use of ice. Some of these beverage coolers may include a cooling chamber into which one or more bottles may be inserted to be chilled. The beverage cooler may include a refrigeration system with an evaporator and a fan in the cooling chamber, where the evaporator removes heat from the cooling chamber, and the fan circulates chilled air around the bottles and through the evaporator in the cooling chamber. The bottles to be chilled may be inserted into the cooling chamber through openings in the cooling chamber. Each opening may have a respective door that minimizes air loss when a bottle is not disposed in the opening, and may have a respective seal that minimizes air loss when a bottle is disposed in the opening. Each seal may wipe condensation off the exterior surface the bottle as the bottle is removed from the opening, such that a user may receive from the beverage cooler a relatively dry, chilled bottle. One or more openings, and in some embodiments, each opening, may have a respective display, such as, for example, a series of lights that use color or light intensity, for example, to indicate the temperature of the bottle disposed in the opening, or to indicate whether or not the bottle has been chilled to a desirable temperature. Some embodiments may allow a user to select a desired beverage temperature and/or a rate of cooling of the beverages using an automatic control system.
  • Embodiments will now be described in more detail with reference to the figures. With reference to FIGS. 1-3 , a beverage cooler 10 may include a cooler housing 100, a beverage container tray 200, and a cooling system 300.
  • Cooler housing 100 may be configured to receive and store a plurality of beverage containers 400, such as bottles 400, and to lower and/or maintain the temperature of the beverage containers 400. Beverage containers 400 may comprise bottles, squeeze bottles, cans, and other beverage containers for providing beverages to a consumer. Throughout the disclosure, components may be referred to with reference to a bottle but it will be appreciated that other beverage containers may be used. In some embodiments, cooler housing 100 is configured to rapidly lower the temperature of one or more beverage containers 400 such that a continuous high demand for chilled beverages at a desired temperature may be fulfilled. Cooler housing 100 may include an exterior surface 110 defining the shape of beverage cooler 10, and an interior surface 120 defining an interior space 122. In some embodiments, cooler housing 100 comprises a rectangular cuboid shape. In some embodiments, cooler housing 100 may comprise other shapes, including, for example, cubical, tubular, cylindrical, spherical, or frustoconical, and may or may not be symmetrical about any axis.
  • In some embodiments, cooler housing 100 may be made of metal, plastic, or a composite material, and combinations thereof. In some embodiments, cooler housing 100, or a portion of cooler housing 100, may include a thermally insulating material to reduce the exchange of heat between interior space 122 and the ambient conditions surrounding beverage cooler 10. In some embodiments, a layer of air may be sealed between the exterior surface 110 and the interior surface 120 to act as a thermal insulator.
  • Cooler housing 100 may include wheels 160, such as casters, which allow beverage cooler 10 to be rolled. In some embodiments, beverage cooler 10 may include four wheels 160 disposed on a bottom 116 of cooler housing 100.
  • Beverage container tray 200 may be disposed within cooler housing 100. In some embodiments, beverage container tray 200 may be a substantially planar member, and may have a top surface 210 and a bottom surface 220. As shown in FIGS. 1 and 2 , for example, beverage container tray 200 may be oriented such that it is substantially perpendicular to one or more sides 114 of cooler housing 100. However, beverage container tray 200 may be disposed at a non-perpendicular angle relative to sides 114. Beverage container tray 200 may be disposed such that it divides at least a portion of interior space 122 into two parts, thereby forming a first chamber 170 and a second chamber 180. In some embodiments, second chamber 180 is disposed beneath or adjacent to first chamber 170. In some embodiments, first chamber 170 and second chamber 180 may be equal in volume. In some embodiments, first chamber 170 may have a greater volume than second chamber 180. In some embodiments, second chamber 180 may have a greater volume than first chamber 170. Beverage container tray 200 may include a thermally insulating material to reduce the exchange of heat between first and second chambers 170, 180.
  • Beverage container tray 200 may include a plurality of beverage container openings 230, which extend through beverage container tray 200 from top surface 210 to bottom surface 220. Each beverage container opening 230 may be configured to receive one of the beverage containers 400, such as a squeeze bottle 400. In some embodiments, beverage container openings 230 may have a perimeter 232 that is circular in shape, and may have a diameter of at least 2 inches. As shown in FIG. 2 , beverage container tray 200 may include twenty-four beverage container openings 230, which are arranged in a grid pattern defining rows and columns of openings 230. However, beverage container tray 200 may include any number of beverage container openings 230 in any arrangement.
  • As shown in FIGS. 3 and 5 , for example, a beverage container shelf 270 may be disposed within cooler housing 100, and may have a support surface 272 configured to support one or more beverage containers 400. In some embodiments, beverage container shelf 270 may be disposed beneath beverage container tray 200 in second chamber 180 such that a bottom end 420 of one or more beverage containers 400 disposed in beverage container openings 230 may be supported by support surface 272. In some embodiments, the distance between bottom surface 220 of beverage container tray 200 and support surface 272 may be less than the distance between a top end 410 and bottom end 420 of beverage container 400, such that the bottom end 420 of beverage container 400 may be disposed in second chamber 180, while the top end 410 of beverage container 400 may be disposed in first chamber 170. This arrangement may facilitate user access to the beverage container 400. In some embodiments, the distance between bottom surface 220 of beverage container tray 200 and support surface 272 may be at least half of the distance between top end 410 and bottom end 420 of beverage container 400.
  • In some embodiments, the position of beverage container shelf 270 may be adjustable relative to beverage container tray 200, such that beverage cooler 10 may cool beverage containers of various heights.
  • As shown in FIGS. 1 and 2 , a first door 130 may be disposed in a top surface 112 of cooler housing 100 such that a user may access interior space 122 of cooler housing 100 through first door 130. In some embodiments, at least a portion of first door 130 may be made of a transparent material (e.g., glass or plastic), such that a user may see into interior space 122 of cooler housing 100 without opening first door 130. For example, first door 130 may include a transparent glass or plastic panel. In some embodiments, a user may access first chamber 170 though first door 130. With first door 130 in an open position, a user may insert a beverage container 400 to be chilled into one of beverage container openings 230, or may remove a chilled beverage container 400 from one of the beverage container openings 230.
  • Beverage container tray 200 may include a plurality of beverage container doors 240 that are coupled to beverage container tray 200 and disposed at each of beverage container openings 230. As shown in FIG. 4 , each beverage container door 240 may comprise two adjacent door flaps 242 hingedly connected to beverage container tray 200 and configured, together, to completely cover a respective beverage container opening 230. However, in some embodiments, each beverage container door 240 may comprise a single door flap 242 configured to completely cover a respective beverage container opening 230.
  • Beverage container doors 240 may be hingedly coupled to bottom surface 220 and may include one or more biasing mechanisms 246, which bias the doors in a closed position (i.e. covering a respective beverage container opening 230). When in a closed position, beverage container doors 240 may form a seal with beverage container tray 200, thereby restricting air from passing through the beverage container openings 230 when a beverage container 400 is not disposed in the beverage container opening 230. In an embodiment including two adjacent door flaps 242, a seam 244 may be formed where the two door flaps 242 meet in a closed position. Seam 244 may include a seal that restricts air from passing through seam 244. In some embodiments, one or more door flaps 242 may be substantially flat such that when the door flaps 242 are in a closed position when no beverage container is disposed in the corresponding beverage container opening 230, a substantially flat surface is provided. In one embodiment, biasing mechanisms 246 comprise torsional springs. Beverage container doors 240 may include a thermally insulating material to reduce the exchange of heat between first and second chambers 170, 180 when the beverage container doors 240 are in a closed position. Beverage container doors 240 may have an open position where beverage container doors 240 do not form a seal with beverage container tray 200 and do not cover a respective beverage container opening 230.
  • In some embodiments, when a user inserts a beverage container 400 into a beverage container opening 230, the bottom end 420 of the beverage container 400 may press against the respective beverage container door 240, overcoming the biasing force provided by biasing mechanism 246, and thereby causing beverage container door 240 to move from a closed position to an open position without direct contact from the user. Then, when a user removes a beverage container 400 from a beverage container opening 230, the biasing force provided by biasing mechanism 246 causes the beverage container door 240 to automatically move from an open position to a closed position. In some embodiments, beverage container door 240, including door flaps 242 may be made of plastic, hard rubber, or other suitable rigid or semi-rigid material.
  • In some embodiments, beverage container tray 200 may include a plurality of beverage container seals 250 that are coupled to beverage container tray 200 and disposed at one or more of beverage container openings 230. In some embodiments, when a beverage container 400 is disposed in a beverage container opening 230, seals 250 may be configured to fill the space between beverage container tray 200 and an exterior surface 430 of the beverage container 400, thereby preventing air from passing through the beverage container opening 230 when a beverage container 400 is disposed in the beverage container opening 230. In some embodiments, seals 250 may be made of silicon, rubber, or another flexible material.
  • In some situations, condensation may form on the exterior surface 430 of a beverage container 400 when the beverage container 400 is being chilled in beverage cooler 10. Beverage container seals 250 may be configured to remove condensation from the beverage container 400 when the beverage container 400 is being removed from beverage cooler 10. Beverage container seal 250 may be flush with the exterior surface 430 of the beverage container 400, and therefore, when the beverage container 400 is removed from beverage container opening 230, seal 250 will wipe along exterior surface 430 of the beverage container 400, thereby collecting and removing accumulated condensation from exterior surface 430.
  • As shown in FIG. 6 , beverage container tray 200 may include one or more visual indicators 260, which are configured to display information about beverage containers 400 disposed in beverage container tray 200. In some embodiments, there may be one visual indicator 260 for each beverage container opening 230, and each visual indicator 260 may be configured to display information relating to the temperature of a beverage container 400 disposed in the respective beverage container opening 230. In some embodiments, a visual indicator 260 may be associated with a row or column of beverage containers 400 to display information relating to the temperature of the beverage containers disposed in the respective row or column. In some embodiments, visual indicators 260 may be a plurality of lights (e.g., LEDs) disposed along perimeter 232 of each respective beverage container opening 230. In some embodiments, visual indicators 260 may be a single light, a multi-colored light, or an electronic display. In some embodiments, visual indicators 260 may be disposed within first chamber 170. In some embodiments, visual indicators 260 may be disposed outside of first chamber 170, and may be, for example, coupled to exterior surface 110.
  • In embodiments where visual indicator 260 comprises a plurality of lights, visual indicator 260 may be disposed within beverage container opening 230. As shown in FIG. 7A, for example, if a beverage container 400 is not disposed within the beverage container opening 230, the lights may illuminate the beverage container opening 230, seal 250, and/or beverage container door 240. As shown in FIG. 7B, for example, if a beverage container 400 is disposed within the beverage container opening 230, the lights may illuminate the exterior surface 430 of beverage container 400, beverage container opening 230, and/or seal 250.
  • Visual indicators 260 may be electronically coupled to an indicator controller 262, which may control visual indicators 260 based on the temperature, or estimated temperature of the beverage containers 400 disposed in beverage container openings 230. In some embodiments, each beverage container opening 230 may include a temperature sensor 264 that measures the temperature of the exterior surface 430 of a beverage container 400 disposed in the beverage container opening 230. Indicator controller 262 may be electronically coupled to a temperature sensor 264 and may receive input from temperature sensor 264. In some embodiments, each beverage container opening 230 may include a beverage container sensor 268 that senses when a beverage container 400 is inserted into the beverage container opening 230. Indicator controller 262 may be electronically coupled to beverage container sensor 268 and may receive input from beverage container sensor 268. Indicator controller 262 may estimate the temperature of the beverage container 400 based on the amount of time that the beverage container 400 has been disposed in the beverage container opening 230, which may be measured from the time when beverage container sensor 268 first senses a beverage container 400.
  • In some embodiments, visual indicator 260 may be a plurality of multi-colored LEDs configured to display certain colors corresponding to the measured temperature or estimated temperature of a beverage container 400. For example, if the measured temperature or estimated temperature of a beverage container 400 is warmer than a desired temperature, red lights may be illuminated by indicator controller 262, suggesting that a particular beverage container is not ready for consumption. If the measured temperature or estimated temperature of a beverage container 400 is equal to or colder than the desired temperature, blue lights may be illuminated by indicator controller 262. Similarly, visual indicator 260 may be a plurality of single-colored LEDs configured to turn on or off based on the measured temperature or estimated temperature of a beverage container 400. For example, if the measured temperature or estimated temperature of a beverage container 400 is warmer than a desired temperature, no lights may be illuminated. If the measured temperature or estimated temperature of a beverage container 400 is equal to or colder than the desired temperature, the lights may be illuminated by indicator controller 262 to indicate that cooling is complete. In some embodiments, visual indicator 260 may be a plurality of LEDs configured to vary in light intensity based on the measured temperature or estimated temperature of a beverage container 400. For example, if the measured temperature or estimated temperature of a beverage container 400 is warmer than a desired temperature, the lights may be dimly illuminated. If the measured temperature or estimated temperature of a beverage container 400 is equal to or colder than the desired temperature, the lights may be brightly illuminated or may flash on and off to indicate that cooling is complete. In some embodiments, the desired temperature may be user-defined.
  • As shown in FIG. 3 , beverage cooler 10 may include a cooling system 300, which may be, for example, a refrigeration system having an evaporator 310, a compressor 320, a condenser 330, and an expansion valve 340, interconnected with pipes 360 and containing a refrigerant.
  • Evaporator 310 may be disposed in second chamber 180, and may comprise a coil used to absorb heat from the air in second chamber 180. In some embodiments, a circulation fan 312 may be disposed in second chamber 180 to circulate air within second chamber 180, such that air is drawn over evaporator 310, cooled, and then moved to cool the beverage containers 400 disposed in second chamber 180.
  • In some embodiments, a circulation divider 314 may be disposed in second chamber 180. In some embodiments, second chamber 180 may have a generally rectangular cuboid shape. Circulation divider 314 may extend between two opposing sides 114 of cooler housing 100, while leaving circulation spaces 318 between circulation divider 314 and interior surface 120 on the two remaining sides 114. In this configuration, air displaced by circulation fan 312 may travel in a loop within second chamber 180. As shown in FIG. 3 , air may be drawn by circulation fan 312 through evaporator 310. Then, the air may reach a side 114, where it is forced downward through circulation space 318 and beneath circulation divider 314. Then, when the air reaches an opposing side 114, it may be forced upward through the opposing circulation space 318, where it travels above circulation divider 314, through beverage containers 400, and back to fan 312 completing the loop. This configuration may allow a greater volume of air to come into contact with evaporator 310, which may help rapidly cool beverage containers 400. In some embodiments, beverage cooler may cool beverage containers 400 more quickly than they are warmed by the ambient conditions.
  • In some embodiments, beverage container doors 240 may be oriented parallel to the direction of airflow in the second chamber 180 when in an open position, such that air may more easily flow past doors 240 when opened.
  • In some embodiments, circulation divider 314 may also be used to support beverage containers 400 in a manner similar to beverage container shelf 270, where the bottom end 420 of a beverage container 400 may rest upon a top surface 316 of circulation divider 314. In some embodiments, circulation divider 314 may be made of metal, and may be conductively coupled to evaporator 310. In embodiments where beverage containers 400 rest upon top surface 316 of circulation divider 314, beverage containers 400 may be cooled by conduction.
  • In some embodiments, interior space 122 may include a floor 192, which may be disposed to divide interior space 122, forming a mechanical chamber 190 adjacent to one or both of the first and second chambers 170, 180. The floor may include a thermally insulating material to reduce the exchange of heat between first and/or second chambers 170, 180 and the mechanical chamber 190.
  • Compressor 320 may be disposed in the mechanical chamber 190, along with the condenser 330, a condenser fan 332, and expansion valve 340. In some embodiments compressor 320 may be electrically powered and may use grid power. In some embodiments, compressor 320 may be electrically powered and receive power from batteries, which may be stored in mechanical chamber 190. In some embodiments, compressor 320 may be powered by gasoline or another petroleum based fuel.
  • Condenser 330 may be disposed in mechanical chamber 190 and may comprise a coil used expel to the environment heat absorbed by evaporator 310. In some embodiments, a vent 150 may be disposed in a side 114 of cooler housing 100, whereby heat from condenser 330 may pass from mechanical chamber 190 to the ambient surroundings. In some embodiments, condenser 330 may be disposed outside of cooler housing 100, and may be, for example, attached to a side 114 of cooler housing 100. In some embodiments, a condenser fan 332 may be disposed proximal to condenser 330, and may force air through the condenser 330 such that heat is more rapidly dissipated from the condenser 330. In some embodiments, the condenser fan 332 may be disposed in the mechanical chamber 190. In some embodiments, the condenser fan 332 may be disposed adjacent to vent 150. In some embodiments, no condenser fan 332 may be used, and air may naturally pass over condenser 330 in order to dissipate heat from condenser 330. Expansion valve 340 may be disposed in mechanical chamber 190 and may regulate the amount of refrigerant flowing through pipes 360 into evaporator 310.
  • As shown in FIG. 1 , in some embodiments, cooling system 300 may also include a cooling controller 350 that may be used to automatically control the cooling system 300. The cooling controller 350, may include a user interface 352 whereby a user may turn cooling system 300 on or off, set a desired temperature of one or both of chambers 170, 180, or set a rate at which to cool the beverage containers 400. User interface 352 may include a means for receiving user input (e.g., electromechanical buttons), a means for communicating with a user (e.g., a visual display), and/or a combined means for receiving input and communicating with a user (e.g., a touch screen display). User interface 352 may include a combination of buttons, visual displays, and/or touch screens. User interface may be disposed in side 114 of cooler housing 100. In some embodiments, user interface may be remotely connected to cooling system 300, such that user interface is not fixed to beverage cooler 10. User interface 352 may be interconnected to cooling system 300 by a wired or wireless connection. In some embodiments, a user may control cooling system 300 using an application on a mobile communications device (e.g., a smartphone).
  • In some embodiments, cooling controller 350 may be used to automatically vary the rate at which cooling system 300 cools one or both of chambers 170, 180 and/or beverage containers 400. When cooling system 300 is first initiated, for example, cooling system 300 may operate to rapidly cool one or both of chambers 170, 180 and/or beverage containers 400 from an ambient temperature to a chilled temperature within a given amount of time. For example, during this initial stage of cooling, cooling system 300 may reduce the temperature of beverage containers 400 from approximately 70-110 degrees Fahrenheit to less than approximately 30-50 degrees Fahrenheit in less than approximately 30-90 minutes. In some embodiments, cooling system 300 may reduce the temperature of beverage containers 400 from approximately 90 degrees Fahrenheit to less than approximately 40 degrees Fahrenheit in less than approximately 60 minutes. Cooling system 300 may produce chilled air within one or both of cooling chambers 170, 180 that is approximately −20-20 degrees Fahrenheit. In some embodiments, cooling system 300 may produce chilled air within one or both of cooling chambers 170, 180 that is approximately −5 degrees Fahrenheit. Then, after the initial stage of cooling is complete, cooling system 300 may automatically decrease the rate at which one or both of chambers 170, 180 and/or beverage containers 400 are cooled, or may maintain a particular temperature of one or both of the chambers 170, 180 and/or beverage containers 400. Cooling controller 350 may receive input from one or more temperature sensors 264, and may vary the rate of cooling, the stage of cooling, or may turn on or off cooling system 300 based on the input received from temperature sensor 264. In some embodiments, cooling system 300 may maintain the temperature of beverage containers 400 at a user-defined temperature. In some embodiments, cooling system 300 may maintain the temperature of beverage containers 400 at approximately 20-40 degrees Fahrenheit. In some embodiments, cooling system 300 may maintain the temperature of beverage containers 400 at approximately 32 degrees Fahrenheit.
  • In some embodiments, a second door 140 may be disposed on a side 114 of cooler housing 100, whereby a user may access interior space 122 of cooler housing 100 through second door 140. In some embodiments, a user may access only mechanical chamber 190 using second door 140. In some embodiments, a user may access one or more of first, second, or mechanical chambers 170, 180, 190 using second door 140.
  • It is to be appreciated that the Detailed Description section, and not the Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present invention(s) as contemplated by the inventor(s), and thus, are not intended to limit the present invention(s) and the appended claims in any way.
  • The foregoing description of the specific embodiments will so fully reveal the general nature of the invention(s) that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention(s). Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
  • The breadth and scope of the present invention(s) should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims (21)

1.-20. (canceled)
21. A beverage cooler, comprising:
a housing defining an interior space, wherein the housing is configured to store a beverage container;
a cooling system configured to cool the beverage container within the housing;
a tray arranged within the housing, wherein the tray defines an opening configured to receive the beverage container;
a temperature sensor configured to measure a temperature of the beverage container received by the opening; and
a controller in communication with the temperature sensor and an indicator, wherein the controller is configured to operate the indicator based on the temperature measured by the temperature sensor.
22. The beverage cooler of claim 21, wherein the indicator is arranged on the tray.
23. The beverage cooler of claim 21, wherein the indicator is arranged on an exterior surface of the housing.
24. The beverage cooler of claim 21, wherein the controller is configured to cause the indicator to provide an indication when the temperature measured by the temperature sensor is at a predetermined temperature.
25. The beverage cooler of claim 21, wherein the indicator comprises a visual indicator.
26. The beverage cooler of claim 25, wherein the indicator is configured to provide a first illumination when the temperature is at or below a predetermined temperature, and wherein the indicator is configured to provide a second illumination when the temperature is above the predetermined temperature, wherein the first illumination is different than the second illumination.
27. The beverage cooler of claim 26, wherein the first illumination comprises a first color and wherein the second illumination comprises a second color.
28. The beverage cooler of claim 26, wherein the first illumination comprises a first intensity and wherein the second illumination comprises a second intensity.
29. The beverage cooler of claim 21, further comprising a beverage container sensor configured to detect a presence of the beverage container within the opening.
30. The beverage cooler of claim 21, further comprising operating the cooling system via a mobile electronic device in wireless communication with the beverage cooler.
31. The beverage cooler of claim 21, further comprising operating the cooling system based on the temperature measured by the temperature sensor.
32. The beverage cooler of claim 31, further comprising operating the cooling system in a first mode when the temperature measured by the temperature sensor is above a predetermined temperature, and operating the cooling system in a second mode when the temperature measured by the temperature sensor is at or below the predetermined temperature.
33. A method of cooling a beverage by a beverage cooler, the method comprising:
arranging a beverage container within an opening defined by a tray, wherein the tray is arranged within an interior space of the beverage cooler;
cooling the beverage container by a cooling system of the beverage cooler;
measuring a temperature of the beverage container by a temperature sensor; and
providing an indication, by an indicator of the beverage cooler, based on the measured temperature of the beverage container, wherein the indicator is in communication with the temperature sensor and a controller of the beverage cooler.
34. The method of claim 33, wherein the indication comprises a visual indication.
35. The method of claim 33, further comprising providing a first illumination by the indicator when the temperature is at or below a predetermined temperature, and providing a second illumination by the indicator when the temperature is above the predetermined temperature, wherein the first illumination is different than the second illumination.
36. The method of claim 35, wherein the first illumination comprises a first color and wherein the second illumination comprises a second color.
37. The method of claim 35, wherein the first illumination comprises a first intensity and wherein the second illumination comprises a second intensity.
38. The method of claim 33, further comprising controlling operation of the cooling system by a mobile electronic device in wireless communication with the beverage cooler.
39. The method of claim 33, further comprising operating the cooling system based on the temperature measured by the temperature sensor.
40. The method of claim 33, further comprising:
operating the cooling system in a first mode when the temperature measured by the temperature sensor is above a predetermined temperature, and
operating the cooling system in a second mode when the temperature measured by the temperature sensor is at or below the predetermined temperature.
US18/190,644 2018-07-12 2023-03-27 Beverage cooler Pending US20230235953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/190,644 US20230235953A1 (en) 2018-07-12 2023-03-27 Beverage cooler

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862697276P 2018-07-12 2018-07-12
US16/054,596 US11614279B2 (en) 2018-07-12 2018-08-03 Beverage cooler
US18/190,644 US20230235953A1 (en) 2018-07-12 2023-03-27 Beverage cooler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/054,596 Continuation US11614279B2 (en) 2018-07-12 2018-08-03 Beverage cooler

Publications (1)

Publication Number Publication Date
US20230235953A1 true US20230235953A1 (en) 2023-07-27

Family

ID=69140114

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/054,596 Active US11614279B2 (en) 2018-07-12 2018-08-03 Beverage cooler
US18/190,644 Pending US20230235953A1 (en) 2018-07-12 2023-03-27 Beverage cooler

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/054,596 Active US11614279B2 (en) 2018-07-12 2018-08-03 Beverage cooler

Country Status (8)

Country Link
US (2) US11614279B2 (en)
EP (1) EP3820332A4 (en)
JP (1) JP2021530663A (en)
CN (1) CN112512380B (en)
AU (1) AU2019302533A1 (en)
CA (1) CA3105377A1 (en)
MX (1) MX2021000318A (en)
WO (1) WO2020014242A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614279B2 (en) 2018-07-12 2023-03-28 Pepsico, Inc. Beverage cooler
EP4089351A1 (en) * 2021-05-11 2022-11-16 BEEZER Technologies GmbH Beverage cooler

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2024648A (en) * 1935-12-17 Refrigerating portable receptacle
US2230862A (en) * 1941-02-04 Cooler apparatus
US1383453A (en) * 1921-02-04 1921-07-05 Dougan Bruce Receptacle for bottles and the like
US1652600A (en) * 1926-05-27 1927-12-13 Floyd J Beers Bottled-beverage cooler
US1865349A (en) * 1928-02-01 1932-06-28 Wright Leonard Kay Refrigerating apparatus
US1979323A (en) * 1932-11-16 1934-11-06 Emil Jurgs Liquid dispensing and cooling device
US2029263A (en) * 1933-11-18 1936-01-28 Gen Motors Corp Refrigerating apparatus
US2010927A (en) * 1934-03-26 1935-08-13 Gen Motors Corp Refrigerating apparatus
US2061427A (en) * 1935-08-16 1936-11-17 Gen Motors Corp Refrigerating apparatus
US2241023A (en) * 1938-07-15 1941-05-06 Westinghouse Electric & Mfg Co Dry bottle cooler
US2204804A (en) * 1938-08-13 1940-06-18 Westinghouse Electric & Mfg Co Bottle cooler
US2226395A (en) * 1938-09-28 1940-12-24 Westinghouse Electric & Mfg Co Refrigerating apparatus
US2245234A (en) * 1938-10-19 1941-06-10 Westinghouse Electric & Mfg Co Cooler for bottled beverages
US2250557A (en) * 1938-11-05 1941-07-29 Westinghouse Electric & Mfg Co Cooler for bottled beverages
US2200502A (en) * 1938-12-24 1940-05-14 Auburn Automobile Company Refrigerator
US2572508A (en) * 1940-03-18 1951-10-23 Muffly Glenn Ice maker and bottle cooler
US2275323A (en) * 1940-05-29 1942-03-03 Gen Motors Corp Refrigerating apparatus
US2327649A (en) * 1941-03-12 1943-08-24 Gen Motors Corp Refrigerating apparatus
US2417123A (en) * 1944-05-31 1947-03-11 Nash Kelvinator Corp Forced air bottle cooler
US2422350A (en) * 1944-08-05 1947-06-17 Eshcol S Gross Refrigerator port for dispensing container and closure therefor
US2401613A (en) * 1944-09-29 1946-06-04 Philco Corp Refrigeration
US2538780A (en) * 1945-02-22 1951-01-23 Frederick E Hazard Refrigerating device for package goods
US2506717A (en) * 1945-09-07 1950-05-09 Joe E Romero Bottle dispensing cabinet
US2470551A (en) * 1946-09-13 1949-05-17 Gen Motors Corp Liquid cooler, including agitator motor and heat removing device therefor
US2610100A (en) * 1947-12-26 1952-09-09 Vendorlator Mfg Company Coin controlled vending machine
US2642328A (en) * 1950-05-26 1953-06-16 Westinghouse Electric Corp Dispenser for cylindrical articles
US3500649A (en) * 1968-05-10 1970-03-17 Charles Feldman Wine storage chest
US4006606A (en) * 1975-06-02 1977-02-08 Joyce Underdue Freezing pot
US4531381A (en) * 1984-09-06 1985-07-30 Toro Henry D Cooler assembly
JPH06511544A (en) * 1986-10-23 1994-12-22 プロヴェスト フィリップ ブレイク Cooling system
US4790141A (en) * 1987-12-14 1988-12-13 Industrial Gas And Supply Company Apparatus and process for quick freezing of blood plasma
ES2097152T3 (en) * 1989-08-22 1997-04-01 Allan John Cassell REFRIGERATOR DEVICE.
US5159818A (en) * 1990-08-10 1992-11-03 Hideo Asada Apparatus for preparing a semi-frozen confection
US5482373A (en) * 1994-03-16 1996-01-09 Cool-Drink, Inc. Thermochromatic indicator for beverage containers
US5678925A (en) * 1995-10-16 1997-10-21 Garmaise; Ian Temperature sensing and indicating beverage mug
US5706957A (en) * 1996-03-18 1998-01-13 Rtc Industries, Inc. Gravity feed track system
US5839287A (en) * 1997-03-07 1998-11-24 White Consolidated Industries, Inc. Selectable refrigerator or freezer compartment
US7276675B2 (en) * 1997-04-07 2007-10-02 Patented Medical Solutions, Llc Medical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
US5924303A (en) 1998-03-09 1999-07-20 California Innovations Inc. Insulated soft-sided portable case having externally accessible receptacle
US6082114A (en) * 1998-04-09 2000-07-04 Leonoff; Christopher A. Device for heating and cooling a beverage
IES990847A2 (en) 1998-10-12 2000-06-28 Tineke Charlotte Kouwenberg A drawer and a trolley containing the drawer
US6158227A (en) * 1998-10-29 2000-12-12 Seeley; Eric E Monitoring system for beverage chilling
GB2354061B (en) 1999-09-13 2001-08-08 Ian David Wood Cold-storage appliance
US6532749B2 (en) * 1999-09-22 2003-03-18 The Coca-Cola Company Stirling-based heating and cooling device
US6851276B2 (en) * 2000-10-10 2005-02-08 John Granville Perrins Storage device for drink containers
US6651824B2 (en) * 2001-08-17 2003-11-25 Dart Industries Inc. Filter pitcher with ice hopper
US7118005B2 (en) * 2002-02-06 2006-10-10 J John Shimazaki Individual bottle coolers
US20030219061A1 (en) * 2002-05-23 2003-11-27 Seeger Mark E. Liquid vessel with time approximation
DE10261366A1 (en) * 2002-12-30 2004-07-08 BSH Bosch und Siemens Hausgeräte GmbH Auxiliary cooling device
US20040140304A1 (en) * 2003-01-22 2004-07-22 Leyendecker Kurt Philip Baby bottle chiller/warmer and method of use
US6945069B2 (en) * 2003-01-24 2005-09-20 Lg Electronics Inc. Quick cooling device
US6703590B1 (en) * 2003-02-05 2004-03-09 Insta-Mix, Inc. Bottle warmer for disposable baby bottle
KR100593362B1 (en) * 2003-12-05 2006-06-28 엘지전자 주식회사 A showcase
US6799434B1 (en) * 2003-12-12 2004-10-05 Edgar Hobbs, Jr. Portable cooler
US20060026971A1 (en) * 2004-07-06 2006-02-09 Richard Sharpe Systems and methods for determining and monitoring wine temperature
US7913925B2 (en) * 2004-07-23 2011-03-29 Ranco Incorporated Of Delaware Color changing thermostatic controller
KR20060081938A (en) * 2005-01-11 2006-07-14 삼성전자주식회사 Refrigerator
US20060248918A1 (en) 2005-01-31 2006-11-09 Robertson James D Cooler with container pockets and cold plate
US20060263267A1 (en) * 2005-05-17 2006-11-23 Witz Lori L In-field saline solution warming graduate
FR2893166B1 (en) * 2005-11-08 2007-12-21 Philippe Leonetti DISTRIBUTOR OF FOOD PRODUCTS, IN PARTICULAR BEVERAGES.
FI20060503A0 (en) * 2006-05-22 2006-05-22 Barfix Oy Licensed device
US20080067187A1 (en) * 2006-09-01 2008-03-20 The Coca-Cola Company Under the Counter Beverage Cooler
CN101196360B (en) * 2006-12-04 2011-01-26 海尔集团公司 Cold storage container with homogeneous refrigerating temperature
EP1930674A1 (en) * 2006-12-07 2008-06-11 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Method and device for cooling products
US20080225510A1 (en) * 2007-02-16 2008-09-18 Loud Technologies Inc Speaker assembly
US20080245085A1 (en) * 2007-04-04 2008-10-09 Sikander Jaffer Cooling apparatus with evaporator
KR101052782B1 (en) * 2007-04-06 2011-07-29 삼성전자주식회사 Refrigerator and its control method
US20090044549A1 (en) * 2007-08-15 2009-02-19 Sundhar Shaam P Tabletop Quick Cooling Device
NL2001054C2 (en) * 2007-12-04 2009-06-08 Heineken Supply Chain Bv Cooler and method for cooling beverage containers such as bottles and cans.
GB0810694D0 (en) * 2008-06-12 2008-07-16 Diageo Great Britain Ltd Refrigeration apparatus
US8334780B1 (en) * 2008-08-04 2012-12-18 Mendoza Jr Saul Beverage sleeve with temperature gauge
US8087822B2 (en) * 2009-03-03 2012-01-03 Wei-Lun Peng Liquid container capable of self-generating power and showing temprature
US8161769B2 (en) * 2009-04-07 2012-04-24 Lauchnor John C Refrigerated chest for rapidly quenching beverages and visually identifying when such beverages reach target temperature
US20110225981A1 (en) * 2010-03-18 2011-09-22 Sg Beverage Solutions, Inc. Compact thermoelectric merchandiser cooler
US8756940B2 (en) * 2010-12-23 2014-06-24 Intelligent Cellars Inc. Compartmented temperature and humidity controlled modular housing for the storage and preservation of wine bottles
DE202011000856U1 (en) 2011-04-13 2011-08-10 Flextronics Automotive Gmbh & Co.Kg Display device for the refrigerator temperature
CN102259728A (en) * 2011-06-21 2011-11-30 崔玮 Ice bucket
US20140001142A1 (en) * 2012-06-27 2014-01-02 Chris Wu Nursing bottle with temperature indicator
US9903644B2 (en) * 2013-01-15 2018-02-27 Buz Box, LLC Method and apparatus for cooling a fluid beverage below a beverage's freezing point
US9845988B2 (en) * 2014-02-18 2017-12-19 Supercooler Technologies, Inc. Rapid spinning liquid immersion beverage supercooler
US20140305151A1 (en) 2013-04-16 2014-10-16 Nottingham Spirk Design Associates, Inc. Beverage dispenser
JP6068306B2 (en) * 2013-09-19 2017-01-25 株式会社ニフコ Cup holder
US10329061B2 (en) * 2013-11-07 2019-06-25 Thermos L.L.C. System and methods for managing a container or its contents
KR101526754B1 (en) * 2013-12-19 2015-06-05 현대자동차주식회사 Cup holder for vehicle
US20160023585A1 (en) * 2014-07-28 2016-01-28 Ford Global Technologies, Llc Cup holder with automatic heating/cooling mechanism
US10386117B2 (en) 2015-01-15 2019-08-20 Pepsico, Inc. Quick-chill beverage cooler with post-chill storage chamber
KR101941708B1 (en) * 2015-07-16 2019-01-24 천성욱 Liquor or beverage cooling storage device
US20170045289A1 (en) * 2015-08-12 2017-02-16 Gentherm Gmbh Temperature controlled receiving and/or holding device for articles such as beverage containers and method for its operation
US20170176096A1 (en) * 2015-12-18 2017-06-22 Grad Aps Apparatus for and methods of rapidly chilling a beverage
CN205890648U (en) * 2016-07-19 2017-01-18 宜兰汽车配件制造(平湖)有限公司 Automobile -used thalposis light -emitting cup holds in palm device
WO2018031210A1 (en) 2016-08-08 2018-02-15 Novical, LLC Fluid cooler / heater
US11614279B2 (en) 2018-07-12 2023-03-28 Pepsico, Inc. Beverage cooler

Also Published As

Publication number Publication date
MX2021000318A (en) 2021-03-25
EP3820332A1 (en) 2021-05-19
JP2021530663A (en) 2021-11-11
WO2020014242A1 (en) 2020-01-16
CA3105377A1 (en) 2020-01-16
AU2019302533A1 (en) 2021-01-21
CN112512380A (en) 2021-03-16
EP3820332A4 (en) 2022-03-30
CN112512380B (en) 2024-03-08
US20200018542A1 (en) 2020-01-16
US11614279B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
US20230235953A1 (en) Beverage cooler
US8516849B2 (en) Cooler and method for cooling beverage containers such as bottles and cans
US8800814B2 (en) Fluid pouch dispensing container, cooler and support
US6269653B1 (en) Portable device for refrigerating beverages
US20150128619A1 (en) Cooling Device for Beverages
US20240027123A1 (en) Method and System for Cooler Conversion to a Refrigerator
KR20190109103A (en) Device For Cooling Beverage
JP3807958B2 (en) Dispenser for soft drinks such as beer
US11209210B2 (en) Beverage containers and coolants therefore
US20090158751A1 (en) Thermoelectric container cooler
US6311499B1 (en) Dual-temperature refrigerating device for freezing beverage containers
JP3101714U (en) Freezing PET bottle beverage and its vending machine.
JP3600807B2 (en) Dispenser for soft drinks such as beer
KR200305763Y1 (en) Cooling vessel
KR200251824Y1 (en) Cold-storage container
KR200456604Y1 (en) Cooler for beverage
KR100555216B1 (en) draught beer selling apparatus
ES2600505T3 (en) Desktop fast cooling device for cans or bottles
KR200245484Y1 (en) Table for beverage
CN200996767Y (en) Direct-cooling ice atomizer
US20140305151A1 (en) Beverage dispenser
GB2434432A (en) Refrigeration unit for packaged beverages
KR20240010342A (en) Cooling Apparatus of Beverage Container
KR20220131593A (en) portable beer cooler
KR20010035220A (en) generalpurpose cooling device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED