US20230211814A1 - Coupler for a rail vehicle and a rail vehicle with a coupler - Google Patents

Coupler for a rail vehicle and a rail vehicle with a coupler Download PDF

Info

Publication number
US20230211814A1
US20230211814A1 US18/008,885 US202118008885A US2023211814A1 US 20230211814 A1 US20230211814 A1 US 20230211814A1 US 202118008885 A US202118008885 A US 202118008885A US 2023211814 A1 US2023211814 A1 US 2023211814A1
Authority
US
United States
Prior art keywords
coupler
deflector plate
joint
rear portion
front surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/008,885
Inventor
Jacek SKOWRONEK
Martin Holm
Tomasz CZERWINSKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dellner Couplers AB
Original Assignee
Dellner Couplers AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP20211248.8A external-priority patent/EP3922531B1/en
Priority claimed from EP20211246.2A external-priority patent/EP4008602B1/en
Application filed by Dellner Couplers AB filed Critical Dellner Couplers AB
Assigned to DELLNER COUPLERS AB reassignment DELLNER COUPLERS AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Czerwinski, Tomasz, SKOWRONEK, Jacek, HOLM, MARTIN
Publication of US20230211814A1 publication Critical patent/US20230211814A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G7/00Details or accessories
    • B61G7/08Adjustable coupling heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G7/00Details or accessories
    • B61G7/14Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G9/00Draw-gear
    • B61G9/04Draw-gear combined with buffing appliances

Definitions

  • the invention pertains to a coupler for a rail vehicle.
  • the invention also pertains to a rail vehicle with a coupler.
  • Such coupler comprises:
  • One coupler of this type may be attached to an end of a first rail vehicle and a second coupler of this type may be attached to an end of a further rail vehicle that is arranged neighboring the first rail vehicle.
  • the rail vehicles may further have bumpers attached to them.
  • One problem associated with such configuration is seen when a rail vehicle with the first coupler attached to it in a pivoted position has travelled in the direction of the further rail vehicle with the second coupler attached to it in a pivoted position and has crashed into that further rail vehicle (as shown in FIG. 2 A ) with such force that the energy absorbers were not able to absorb all the crash energy (as shown in FIG. 2 B ).
  • the forward end of the first coupler may hit the forward end of the second coupler, which may cause damage to one or both couplers while the vehicles continue to move towards each other and it may limit the energy absorbing efficiency of the energy absorbers during the end phase of the crash (which may even lead to damage of other vehicle elements).
  • the problem to be solved is to provide a coupler that does not disrupt operation of elements of the train that absorb crash energy during a crash scenario.
  • the basic idea of the invention is to provide a coupler deflecting device which is arranged and designed to deflect the coupler in a pivoted position when it comes into contact with another coupler.
  • Such a coupler deflecting device an be a deflector plate arranged on a deflector plate holder at the forward end of the rear portion, said deflector plate having a front surface that is substantially vertical and inclined at an acute angle with respect to the longitudinal axis of the rear portion. The deflector plate deflects the coupler in a pivoted position when it comes into contact with another coupler.
  • the front surface of the deflector plate is curved such that the inclination angle increases in a direction away from the longitudinal axis of the rear portion.
  • the curvature allows a controlled deflection of the deflector plates when brought into contact with each other.
  • the front surface of the deflector plate comprises a top portion that is located above the rear joint portion.
  • the front surface of the deflector plate comprises a bottom portion that is located below the rear joint portion.
  • the front surface of the deflector plate comprises a side portion that is located aside the rear joint portion.
  • the front surface of the deflector plate comprises a combination of at least two of: a front portion, a side portion and a bottom portion.
  • the front surface of the deflector plate is smooth. This facilitates for the front surfaces of two couplers, when in contact, to slide along each other.
  • the deflector plate holder may be mounted on the rear portion.
  • the deflector plate holder is mounted on the forward end of the rear portion.
  • the deflector plate holder and the rear portion are two different parts. This has the advantage that the deflector plate holder might be replaced by a new deflector plate holder if it was impaired by a collision with a mating coupler. The same applies to the deflector plate which in a preferred embodiment might be replaceable together with the holder. A complete reparation or replacement of the whole coupler is not necessary when the damage is limited to these parts.
  • the deflector plate holder and the rear portion might be detachably (e.g. by screws) or permanently (e.g. by welding) connected to each other. In an alternatively embodiment the holder might be a part of the rear portion, preferably forming a single piece with the rear portion.
  • the deflector plate holder is mounted on the joint, preferably on a rear joint portion that is non-pivotably arranged on the rear portion.
  • the deflector plate holder can be permanently fixed to the joint.
  • the deflector plate holder can be releasably fixed to the joint and/or releasably fixed to the rear portion.
  • the deflector plate holder can have sliding rails that cooperate with sliding rails on the rear portion that allow the deflector plate holder to be slid onto the rear portion.
  • the invention further pertains to a rail vehicle having a coupler according to the invention attached to said rail vehicle.
  • FIGS. 1 to 6 H which only shows exemplary embodiments of the invention.
  • FIG. 1 shows a schematic perspective view of a coupler according to the prior art
  • FIGS. 2 A- 2 B show a first coupler according to the prior art arranged next to a second coupler according to the prior art during a possible crash scenario
  • FIG. 3 shows a schematic perspective view of a first coupler according to the invention
  • FIG. 4 A shows a schematic perspective view of a first coupler according to the invention arranged next to a second coupler according to the invention in a first operational state
  • FIG. 4 B shows a schematic perspective view of a first coupler according to the invention arranged next to a second coupler according to the invention in a second operational state;
  • FIG. 4 C shows a schematic perspective view of a first coupler according to the prior art arranged next to a second coupler according to the prior art in a third operational state
  • FIG. 4 D shows a schematic perspective view of a first coupler according to the prior art arranged next to a second coupler according to the prior art in a fourth operational state
  • FIG. 5 shows a schematic perspective view of one embodiment of a deflector plate of a coupler according to the invention.
  • FIGS. 6 A- 6 H show schematically, in a front view, various possible shapes of the front surface of the deflector plate.
  • FIG. 1 shows a schematic perspective view of a coupler 1 according to the prior art and FIGS. 2 A- 2 B show a first coupler arranged next to a second coupler during a possible crash scenario.
  • the couplers 1 are for a rail vehicle.
  • the first coupler 1 will be attached to an end of one rail vehicle.
  • the second coupler 1 will be attached to an end of a further rail vehicle that is arranged neighboring the first rail vehicle.
  • the rail vehicles may further have bumpers attached to them.
  • the couplers 1 each comprise:
  • FIG. 3 shows a schematic perspective view of a coupler according to the invention and FIGS. 4 A- 4 D show a first coupler according to the invention arranged next to a second coupler according to the invention in various operational states.
  • the couplers 1 are for a rail vehicle.
  • the first coupler 1 will be attached to an end of a rail vehicle.
  • the second coupler 1 will be attached to an end of a further rail vehicle that is arranged neighboring the one car.
  • the couplers 1 each comprise
  • the couplers 1 according to the invention further each comprise a deflector plate 11 , as shown in details in one embodiment in FIG. 5 .
  • the deflector plate 11 has a front surface 13 that is arranged in front of the forward end 7 of the rear portion 6 .
  • the deflector plate 11 can be fixed (e.g. welded) to the rear portion 6 or attached to the rear portion 6 in a removable manner (e.g. by screws).
  • the front surface 13 is substantially vertical and inclined at an acute angle ⁇ with respect to the longitudinal axis A of the rear portion.
  • the front surface 13 may be curved such that the inclination angle ⁇ increases in a direction away from the longitudinal axis A.
  • the deflector plate 11 is arranged on a deflector plate holder 12 to which the front surface 13 is fixed.
  • the holder 12 may be fixed to a rear joint portion 14 that is non-pivotably arranged at the forward end of the rear portion 6 .
  • the deflector plate 11 is shaped such as not to be an obstacle to the pivotal movement of the front portion 2 with respect to the rear portion 6 .
  • FIGS. 6 A- 6 H show schematically, in a front view, various possible shapes of the front surface 13 of the deflector plate 11 .
  • the front surface 13 may include a top portion 15 that is located above the rear joint portion 14 .
  • the front surface 13 may include a bottom portion 16 that is located below the rear joint portion 14 .
  • the front surface 13 may include a top portion 15 that is located above the rear joint portion 14 and a side portion 17 that is located aside the rear joint portion 14 .
  • the front surface 13 may include a top portion 15 that is located above the rear joint portion 14 and a side portion 17 that is located aside the rear joint portion 14 and a bottom portion 16 that is located below the rear joint portion 14 .
  • FIGS. 6 A- 6 D Further variants are also possible including a combination of features shown in FIGS. 6 A- 6 D , such as shown in FIGS. 6 E, 6 F, 6 G, 6 H or others.
  • the front surface 13 of the deflector plate 11 may be smooth so as to facilitate for the front surfaces of two couplers, when in contact, to slide along each other.
  • the length L of the front surface 13 is preferably such that, as a result of sliding the deflector plates 11 along each other as shown in FIGS. 4 C , the rear portion 6 of the coupler pivots to such an extent that further movement of one coupler towards another coupler is possible without the couplers interfering with each other, as shown in FIG. 4 D .
  • FIG. 4 A shows the couplers 1 in a first operational state. This could be the state, where a rail vehicle with the first coupler attached to it is parked next to a further rail vehicle with the second coupler attached to it.
  • FIG. 4 B shows the couplers 1 in a second operational state. This could be the state, where a rail vehicle with the first coupler attached to it has travelled in the direction of the further rail vehicle with the second coupler attached to it and crashes into the further rail vehicle such that the bumpers absorb some energy of the crash and the deflector plates 11 of the first coupler and the second coupler come into contact with each other.
  • FIG. 4 C shows the couplers 1 in a third operational state, which may follow the second operational case in case not all energy of the crash was absorbed by the bumpers and the first vehicle continues to travel in the direction of the second vehicle.
  • the deflector plates 11 of the first coupler and the second coupler are still in contact with each other and in sliding motion with respect to each other, such that they move sidewards and the rear portions 6 of the couplers pivot about their respective pivot anchors 9 .
  • FIG. 4 D shows the couplers 1 in a fourth operational state, which may follow the third operational case in case the remaining energy of the crash has been still not absorbed and the vehicles continue motion, while the couplers continue to move sidewards, the deflector plates slide along each other until they get out of contact, such that the vehicles may still continue their movement while the couplers are pivoted to such an extend that the continuing movement of the vehicles (at least to some extend) does not cause interference between the couplers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

A coupler for coupling a railway vehicle to another railway vehicle, comprising a mounting arm for mounting the coupler to a railway vehicle, a coupling arm, and a joint, wherein the mounting arm and the coupling arm are connected to each other via the joint in such a way that the mounting arm and the coupling arm are movable relative to each other and the coupling arm can be brought into a pivoted position. The coupler further comprises a coupler deflecting device to deflect the coupler in a pivoted position when it comes into contact with another coupler.

Description

  • The invention pertains to a coupler for a rail vehicle. The invention also pertains to a rail vehicle with a coupler.
  • Such coupler comprises:
      • a front portion having a forward end and a rear end, and a coupler head arranged on the forward end of the front portion;
      • a rear portion having a forward end and a rear end and extending along a longitudinal axis from the rear end to the forward end;
      • a pivot anchor arranged on a rear end of the rear portion, the pivot anchor being configured to be attached to a car of a rail vehicle;
      • a joint for connecting a rear end of the front portion to the forward end of the rear portion, the joint being configured to allow the front portion to pivot in relation to the rear portion about an pivot axis that is perpendicular to the longitudinal axis from an operational position in which the forward portion and the rear portion are aligned so that the forward portion extends in a forward direction from the rear portion, to a pivoted position in which the forward portion is pivoted about the pivot axis so that the forward portion extends at an angle from the rear portion.
  • One coupler of this type may be attached to an end of a first rail vehicle and a second coupler of this type may be attached to an end of a further rail vehicle that is arranged neighboring the first rail vehicle. The rail vehicles may further have bumpers attached to them. One problem associated with such configuration is seen when a rail vehicle with the first coupler attached to it in a pivoted position has travelled in the direction of the further rail vehicle with the second coupler attached to it in a pivoted position and has crashed into that further rail vehicle (as shown in FIG. 2A) with such force that the energy absorbers were not able to absorb all the crash energy (as shown in FIG. 2B). In such situation, the forward end of the first coupler may hit the forward end of the second coupler, which may cause damage to one or both couplers while the vehicles continue to move towards each other and it may limit the energy absorbing efficiency of the energy absorbers during the end phase of the crash (which may even lead to damage of other vehicle elements).
  • The problem to be solved is to provide a coupler that does not disrupt operation of elements of the train that absorb crash energy during a crash scenario.
  • This problem is solved by the coupler according to claim 1 and the rail vehicle according to claim 11. Preferred embodiments are provided in the subordinate claims and the description that follows hereafter.
  • The basic idea of the invention is to provide a coupler deflecting device which is arranged and designed to deflect the coupler in a pivoted position when it comes into contact with another coupler.
  • Such a coupler deflecting device an be a deflector plate arranged on a deflector plate holder at the forward end of the rear portion, said deflector plate having a front surface that is substantially vertical and inclined at an acute angle with respect to the longitudinal axis of the rear portion. The deflector plate deflects the coupler in a pivoted position when it comes into contact with another coupler.
  • In a preferred embodiment, the front surface of the deflector plate is curved such that the inclination angle increases in a direction away from the longitudinal axis of the rear portion. The curvature allows a controlled deflection of the deflector plates when brought into contact with each other.
  • In a preferred embodiment, the front surface of the deflector plate comprises a top portion that is located above the rear joint portion.
  • In a preferred embodiment, the front surface of the deflector plate comprises a bottom portion that is located below the rear joint portion.
  • In a preferred embodiment, the front surface of the deflector plate comprises a side portion that is located aside the rear joint portion.
  • In a preferred embodiment, the front surface of the deflector plate comprises a combination of at least two of: a front portion, a side portion and a bottom portion.
  • In a preferred embodiment, the front surface of the deflector plate is smooth. This facilitates for the front surfaces of two couplers, when in contact, to slide along each other.
  • The deflector plate holder may be mounted on the rear portion. Preferably, the deflector plate holder is mounted on the forward end of the rear portion. Preferably, the deflector plate holder and the rear portion are two different parts. This has the advantage that the deflector plate holder might be replaced by a new deflector plate holder if it was impaired by a collision with a mating coupler. The same applies to the deflector plate which in a preferred embodiment might be replaceable together with the holder. A complete reparation or replacement of the whole coupler is not necessary when the damage is limited to these parts. The deflector plate holder and the rear portion might be detachably (e.g. by screws) or permanently (e.g. by welding) connected to each other. In an alternatively embodiment the holder might be a part of the rear portion, preferably forming a single piece with the rear portion.
  • In a preferred embodiment, the deflector plate holder is mounted on the joint, preferably on a rear joint portion that is non-pivotably arranged on the rear portion. The deflector plate holder can be permanently fixed to the joint. In an alternative embodiment the deflector plate holder can be releasably fixed to the joint and/or releasably fixed to the rear portion. The deflector plate holder can have sliding rails that cooperate with sliding rails on the rear portion that allow the deflector plate holder to be slid onto the rear portion.
  • The invention further pertains to a rail vehicle having a coupler according to the invention attached to said rail vehicle.
  • Hereinafter, the invention is explained with reference to FIGS. 1 to 6H which only shows exemplary embodiments of the invention.
  • FIG. 1 shows a schematic perspective view of a coupler according to the prior art;
  • FIGS. 2A-2B show a first coupler according to the prior art arranged next to a second coupler according to the prior art during a possible crash scenario;
  • FIG. 3 shows a schematic perspective view of a first coupler according to the invention;
  • FIG. 4A shows a schematic perspective view of a first coupler according to the invention arranged next to a second coupler according to the invention in a first operational state;
  • FIG. 4B shows a schematic perspective view of a first coupler according to the invention arranged next to a second coupler according to the invention in a second operational state;
  • FIG. 4C shows a schematic perspective view of a first coupler according to the prior art arranged next to a second coupler according to the prior art in a third operational state;
  • FIG. 4D shows a schematic perspective view of a first coupler according to the prior art arranged next to a second coupler according to the prior art in a fourth operational state and
  • FIG. 5 shows a schematic perspective view of one embodiment of a deflector plate of a coupler according to the invention.
  • FIGS. 6A-6H show schematically, in a front view, various possible shapes of the front surface of the deflector plate.
  • FIG. 1 shows a schematic perspective view of a coupler 1 according to the prior art and FIGS. 2A-2B show a first coupler arranged next to a second coupler during a possible crash scenario. The couplers 1 are for a rail vehicle. The first coupler 1 will be attached to an end of one rail vehicle. The second coupler 1 will be attached to an end of a further rail vehicle that is arranged neighboring the first rail vehicle. The rail vehicles may further have bumpers attached to them.
  • The couplers 1 each comprise:
      • a front portion 2 having a forward end 3 and a rear end 4, and a coupler head 5 arranged on the forward end 3 of the front portion 2;
      • a rear portion 6 having a forward end 7 and a rear end 8 and extending along a longitudinal axis A from the rear end 8 to the forward end 7, and
      • a pivot anchor 9 arranged on a rear end 8 of the rear portion 6, the pivot anchor 9 being configured to be attached to a car of a rail vehicle,
      • a joint 10 for connecting a rear end 4 of the front portion 2 to the forward end 7 of the rear portion 6, the joint 10 being configured to allow the front portion 2 to pivot in relation to the rear portion 6 about a pivot axis B (that is perpendicular to the longitudinal axis A in the vertical plane) from an operational position in which the forward portion 2 and the rear portion 6 are aligned so that the forward portion 2 extends in a forward direction from the rear portion 6, to a pivoted position in which the forward portion 2 is pivoted about the pivot axis B so that the forward portion 2 extends at an angle from the rear portion 6.
  • FIG. 3 shows a schematic perspective view of a coupler according to the invention and FIGS. 4A-4D show a first coupler according to the invention arranged next to a second coupler according to the invention in various operational states. The couplers 1 are for a rail vehicle. The first coupler 1 will be attached to an end of a rail vehicle. The second coupler 1 will be attached to an end of a further rail vehicle that is arranged neighboring the one car.
  • The couplers 1 each comprise
      • front portion 2 having a forward end 3 and a rear end 4, and a coupler head 5 arranged on the forward end 3 of the front portion 2;
      • a rear portion 6 having a forward end 7 and a rear end 8 and extending along a longitudinal axis A from the rear end 8 to the forward end 7, and
      • a pivot anchor 9 arranged on a rear end 8 of the rear portion 6, the pivot anchor 9 being configured to be attached to a car of a rail vehicle,
      • a joint 10 for connecting a rear end 4 of the front portion 2 to the forward end 7 of the rear portion 6, the joint 10 being configured to allow the front portion 2 to pivot in relation to the rear portion 6 about a pivot axis B (that is perpendicular to the longitudinal axis A A in the vertical plane) from an operational position in which the forward portion 2 and the rear portion 6 are aligned so that the forward portion 2 extends in a forward direction from the rear portion 6 (not shown), to a pivoted position in which the forward portion 2 is pivoted about the pivot axis B so that the forward portion 2 extends at an angle from the rear portion 6 (as shown in the figures).
  • The couplers 1 according to the invention further each comprise a deflector plate 11, as shown in details in one embodiment in FIG. 5 .
  • The deflector plate 11 has a front surface 13 that is arranged in front of the forward end 7 of the rear portion 6.
  • The deflector plate 11 can be fixed (e.g. welded) to the rear portion 6 or attached to the rear portion 6 in a removable manner (e.g. by screws).
  • The front surface 13 is substantially vertical and inclined at an acute angle α with respect to the longitudinal axis A of the rear portion. The front surface 13 may be curved such that the inclination angle α increases in a direction away from the longitudinal axis A.
  • The deflector plate 11 is arranged on a deflector plate holder 12 to which the front surface 13 is fixed. The holder 12 may be fixed to a rear joint portion 14 that is non-pivotably arranged at the forward end of the rear portion 6.
  • The deflector plate 11 is shaped such as not to be an obstacle to the pivotal movement of the front portion 2 with respect to the rear portion 6.
  • FIGS. 6A-6H show schematically, in a front view, various possible shapes of the front surface 13 of the deflector plate 11.
  • In one embodiment, shown in FIG. 6A, the front surface 13 may include a top portion 15 that is located above the rear joint portion 14.
  • In another embodiment, shown in FIG. 6B, the front surface 13 may include a bottom portion 16 that is located below the rear joint portion 14.
  • In another embodiment, shown in FIGS. 5 and 6C, the front surface 13 may include a top portion 15 that is located above the rear joint portion 14 and a side portion 17 that is located aside the rear joint portion 14.
  • In another embodiment, shown in FIG. 6D, the front surface 13 may include a top portion 15 that is located above the rear joint portion 14 and a side portion 17 that is located aside the rear joint portion 14 and a bottom portion 16 that is located below the rear joint portion 14.
  • Further variants are also possible including a combination of features shown in FIGS. 6A-6D, such as shown in FIGS. 6E, 6F, 6G, 6H or others.
  • The front surface 13 of the deflector plate 11 may be smooth so as to facilitate for the front surfaces of two couplers, when in contact, to slide along each other.
  • The length L of the front surface 13 is preferably such that, as a result of sliding the deflector plates 11 along each other as shown in FIGS. 4C, the rear portion 6 of the coupler pivots to such an extent that further movement of one coupler towards another coupler is possible without the couplers interfering with each other, as shown in FIG. 4D.
  • FIG. 4A shows the couplers 1 in a first operational state. This could be the state, where a rail vehicle with the first coupler attached to it is parked next to a further rail vehicle with the second coupler attached to it.
  • FIG. 4B shows the couplers 1 in a second operational state. This could be the state, where a rail vehicle with the first coupler attached to it has travelled in the direction of the further rail vehicle with the second coupler attached to it and crashes into the further rail vehicle such that the bumpers absorb some energy of the crash and the deflector plates 11 of the first coupler and the second coupler come into contact with each other.
  • FIG. 4C shows the couplers 1 in a third operational state, which may follow the second operational case in case not all energy of the crash was absorbed by the bumpers and the first vehicle continues to travel in the direction of the second vehicle. In that case, the deflector plates 11 of the first coupler and the second coupler are still in contact with each other and in sliding motion with respect to each other, such that they move sidewards and the rear portions 6 of the couplers pivot about their respective pivot anchors 9.
  • FIG. 4D shows the couplers 1 in a fourth operational state, which may follow the third operational case in case the remaining energy of the crash has been still not absorbed and the vehicles continue motion, while the couplers continue to move sidewards, the deflector plates slide along each other until they get out of contact, such that the vehicles may still continue their movement while the couplers are pivoted to such an extend that the continuing movement of the vehicles (at least to some extend) does not cause interference between the couplers.
  • Consequently, during a crash scenario, as compared with the scenario shown in FIGS. 2A-2B, the operation of elements of the train that absorb crash energy is not disrupted by the couplers, because the couplers move sidewards and allow continued operation of the crash energy absorbing elements. Moreover, the damage to the couplers according to the invention, as compared with the scenario shown in FIGS. 2A-2B, is avoided or at least reduced.

Claims (17)

1.-12. (canceled)
13. A coupler for coupling a railway vehicle to another railway vehicle, comprising:
a mounting arm for mounting the coupler to a railway vehicle;
a coupling arm; and
a joint;
wherein the mounting arm and the coupling arm are connected to each other via the joint in such a way that the mounting arm and the coupling arm are movable relative to each other and the coupling arm can be brought into a pivoted position; and
wherein the coupler further comprises a coupler deflecting device arranged to deflect the coupler in a pivoted position when it comes into contact with another coupler.
14. The coupler of claim 13, further comprising:
a front portion having a forward end and a rear end, and a coupler head arranged on the forward end of the front portion;
a rear portion having a forward end and a rear end and extending along a longitudinal axis (A) from the rear end to the forward end;
a pivot anchor arranged on a rear end of the rear portion, the pivot anchor being configured to be attached to a car of a rail vehicle;
a joint for connecting a rear end of the front portion to the forward end of the rear portion, the joint being configured to allow the front portion to pivot in relation to the rear portion about a pivot axis (B) that is perpendicular to the longitudinal axis (A) from an operational position in which the forward portion and the rear portion are aligned so that the forward portion extends in a forward direction from the rear portion, to a pivoted position in which the forward portion is pivoted about the pivot axis (B) so that the forward portion extends at an angle from the rear portion;
and wherein:
a deflector plate is arranged on a deflector plate holder at the forward end of the rear portion, said deflector plate having a front surface that is substantially vertical and inclined at an acute angle (α) with respect to the longitudinal axis (A) of the rear portion.
15. The coupler according to claim 14, wherein the front surface of the deflector plate is curved such that the inclination angle (α) increases in a direction away from the longitudinal axis (A) of the rear portion.
16. The coupler according to claim 14, wherein the front surface of the deflector plate comprises a top portion that is located above a rear joint portion.
17. The coupler according to claim 16, wherein the front surface of the deflector plate comprises a side portion that is located aside the rear joint portion,
18. The coupler according to claim 14, wherein the front surface of the deflector plate comprises a bottom portion that is located below a rear joint portion.
19. The coupler according to claim 18, wherein the front surface of the deflector plate comprises a side portion that is located aside the rear joint portion.
20. The coupler according to claim 17, wherein the front surface of the deflector plate comprises a bottom portion that is located below the rear joint portion.
21. The coupler according to claim 20, wherein the front surface of the deflector plate is smooth.
22. The coupler according to claim 14, wherein the deflector plate holder is mounted on the rear portion.
23. The coupler according to claim 14, wherein the deflector plate holder is mounted on the joint at a rear joint portion that is non-pivotably arranged on the rear portion.
24. The coupler according to claim 14, wherein the deflector plate is fixed to the rear portion.
25. The coupler according to claim 14, wherein the deflector plate is removably attached to the rear portion.
26. A rail vehicle comprising:
a coupler that couples the railway vehicle to another railway vehicle, comprising:
a mounting arm for mounting the coupler to the railway vehicle;
a coupling arm; and
a joint;
wherein the mounting arm and the coupling arm are connected to each other via the joint in such a way that the mounting arm and the coupling arm are movable relative to each other and the coupling arm can be brought into a pivoted position; and
wherein the coupler further comprises a coupler deflecting device which is arranged to deflect the coupler in a pivoted position when it comes into contact with another coupler.
27. The rail vehicle of claim 26, further comprising:
the coupler having:
a front portion having a forward end and a rear end, and a coupler head arranged on the forward end of the front portion;
a rear portion having a forward end and a rear end and extending along a longitudinal axis (A) from the rear end to the forward end;
a pivot anchor arranged on a rear end of the rear portion,
the pivot anchor being configured to be attached to a car of the rail vehicle.
28. The rail vehicle of claim 27, further comprising:
the coupler having:
a joint for connecting a rear end of the front portion to the forward end of the rear portion, the joint being configured to allow the front portion to pivot in relation to the rear portion about an pivot axis (B) that is perpendicular to the longitudinal axis (A) from an operational position in which the forward portion and the rear portion are aligned so that the forward portion extends in a forward direction from the rear portion, to a pivoted position in which the forward portion is pivoted about the pivot axis (B) so that the forward portion extends at an angle from the rear portion;
and wherein:
a deflector plate is arranged on a deflector plate holder at the forward end of the rear portion, said deflector plate having a front surface that is substantially vertical and inclined at an acute angle (α) with respect to the longitudinal axis (A) of the rear portion.
US18/008,885 2020-06-08 2021-06-07 Coupler for a rail vehicle and a rail vehicle with a coupler Pending US20230211814A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP20178784.3 2020-06-08
EP20178784 2020-06-08
EP20211248.8 2020-12-02
EP20211246.2 2020-12-02
EP20211248.8A EP3922531B1 (en) 2020-06-08 2020-12-02 Coupler for a rail vehicle and rail vehicle with a coupler
EP20211246.2A EP4008602B1 (en) 2020-12-02 2020-12-02 Coupler for a rail vehicle and a rail vehicle with a coupler
PCT/EP2021/065186 WO2021249954A1 (en) 2020-06-08 2021-06-07 Coupler for a rail vehicle and a rail vehicle with a coupler

Publications (1)

Publication Number Publication Date
US20230211814A1 true US20230211814A1 (en) 2023-07-06

Family

ID=78846984

Family Applications (2)

Application Number Title Priority Date Filing Date
US18/008,890 Pending US20230211815A1 (en) 2020-06-08 2021-06-07 Coupler for a rail vehicle and rail vehicle with a coupler
US18/008,885 Pending US20230211814A1 (en) 2020-06-08 2021-06-07 Coupler for a rail vehicle and a rail vehicle with a coupler

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US18/008,890 Pending US20230211815A1 (en) 2020-06-08 2021-06-07 Coupler for a rail vehicle and rail vehicle with a coupler

Country Status (3)

Country Link
US (2) US20230211815A1 (en)
CN (2) CN115697811A (en)
WO (2) WO2021249954A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299406B1 (en) 2022-06-30 2024-07-03 Dellner Couplers AB Endpiece for a coupling rod, draft gear for a coupling rod, coupler for a multi-car vehicle and method for building a draft gear or coupler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287954A (en) * 1940-03-15 1942-06-30 Buckeye Steel Castings Co Locomotive pilot coupler structure
CH376956A (en) * 1960-02-19 1964-04-30 Inventio Ag Coupling for railroad cars
DE502007001729D1 (en) * 2007-04-25 2009-11-26 Voith Patent Gmbh Automatic articulated coupling
CN210391159U (en) * 2019-09-09 2020-04-24 中车青岛四方车辆研究所有限公司 Folding coupler and vehicle

Also Published As

Publication number Publication date
WO2021249954A1 (en) 2021-12-16
CN115697811A (en) 2023-02-03
CN115697812A (en) 2023-02-03
WO2021249956A1 (en) 2021-12-16
US20230211815A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
JP3184538B2 (en) Railway vehicle with shock absorbing device
EP2790993B1 (en) Assembly of parts suitable to be used as part of a connecting device for connecting a first car of a multi-car vehicle with a second car of said vehicle
CN109070908B (en) Rail vehicle, in particular a locomotive
US20230211814A1 (en) Coupler for a rail vehicle and a rail vehicle with a coupler
JP2015512354A (en) Automobile chassis including means for absorbing front impact
US20070125739A1 (en) Railway vehicle and a clamping arrangement for the fixation of a towing arrangement in such vehicles
CN101932487B (en) Form the car head unit comprising at least one energy-absorbing member of vehicle frontal
RU2642205C2 (en) Railway vehicle with snowplow
JP4136081B2 (en) Railcar drainage device
KR101530010B1 (en) Rotatable align railway system and rotatalble align method for train
EP4008602A1 (en) Coupler for a rail vehicle and rail vehicle with a coupler
JP2016049936A (en) Snow removal device, vehicle, and track-based traffic system
RU2302957C2 (en) Device to prevent collision of railway cars
ES2344286B1 (en) RAILWAY VEHICLE.
US9027484B2 (en) Front-arrangement for a vehicle, in particular for a rail vehicle, comprising a screen cleaning device
US6435102B1 (en) Front section of a railway car
US6202564B1 (en) Double end derail
JP2003137094A (en) Life guard plate support structure of rolling stock
CN1323004C (en) Support structure of obstacle eliminating plate of stock
EP3922531B1 (en) Coupler for a rail vehicle and rail vehicle with a coupler
CN215329337U (en) Expansion joint vibration and noise reduction structure and track beam
CN111845829B (en) Anticreeper for rail vehicle collision
JPS6228027B2 (en)
CN110654408B (en) Bogie and tramcar with same
CN209584951U (en) Snow-removing device, rail vehicle and Rail Transit System

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELLNER COUPLERS AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SKOWRONEK, JACEK;HOLM, MARTIN;CZERWINSKI, TOMASZ;SIGNING DATES FROM 20221209 TO 20221222;REEL/FRAME:062898/0510

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION