US20230190368A1 - Apparatus and methods for renal denervation ablation - Google Patents

Apparatus and methods for renal denervation ablation Download PDF

Info

Publication number
US20230190368A1
US20230190368A1 US18/170,348 US202318170348A US2023190368A1 US 20230190368 A1 US20230190368 A1 US 20230190368A1 US 202318170348 A US202318170348 A US 202318170348A US 2023190368 A1 US2023190368 A1 US 2023190368A1
Authority
US
United States
Prior art keywords
catheter
electrode
opening
electrodes
lumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/170,348
Inventor
Gary Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Priority to US18/170,348 priority Critical patent/US20230190368A1/en
Publication of US20230190368A1 publication Critical patent/US20230190368A1/en
Assigned to FARAPULSE, INC. reassignment FARAPULSE, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: IOWA APPROACH, INC.
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FARAPULSE, INC.
Assigned to IOWA APPROACH, INC. reassignment IOWA APPROACH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLL, LLC, LONG, GARY
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00613Irreversible electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1266Generators therefor with DC current output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/128Generators therefor generating two or more frequencies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe

Definitions

  • This application is in the general field of therapeutic electrical energy delivery, and it pertains more specifically to electrical energy delivery in the context of ablation of nerves in the vascular or vessel walls of renal arteries or renal denervation, a therapeutic procedure that can lead to reduced hypertension in patients with high blood pressure.
  • the ablation energy can be in the form of high voltage DC pulses that generate irreversible electroporation of cell membranes and destroy tissue locally for therapeutic purposes, or it can be applied as RF energy that generates thermal energy.
  • the applied electric field at the membrane exceeds a threshold value, typically dependent on cell size, the electroporation is irreversible and the pores remain open, permitting exchange of material across the membrane and leading to apoptosis or cell death. Subsequently, the surrounding tissue heals in a natural process.
  • an apparatus includes a flexible catheter shaft and at least one electrode pair.
  • the flexible catheter shaft has an electrically insulating expandable member coupled thereto such that the expandable member surrounds a portion of the catheter shaft.
  • the portion of the catheter shaft defines a lumen, and a surface of the catheter shaft defines a first opening and a second opening.
  • the first opening and the second opening are each in fluid communication with the lumen.
  • the expandable member is disposed between the first opening and the second opening to establish a pathway through the expandable member via the lumen.
  • the electrode pair includes a first electrode and a second electrode. The first electrode is coupled to the catheter shaft between the first opening and the expandable member. The second electrode is coupled to the catheter shaft between the second opening and the expandable member.
  • a method includes using the catheter device and systems for the selective and rapid application of DC voltage to produce electroporation ablation for renal denervation.
  • an irreversible electroporation system includes a DC voltage/signal generator and a controller for triggering voltage pulses to be applied to a selected multiplicity or a subset of electrodes.
  • the catheter device has a set of electrodes for ablation or delivery of voltage pulses, and an expandable member (e.g., an inflatable balloon) disposed between a pair of electrodes. When the expandable member is moved to an expanded configuration (e.g., the balloon is inflated), the electrodes are positioned in the central region of the vessel lumen, away from the vessel wall.
  • the catheter has openings from the exterior surface into an internal lumen that runs along a path approximately parallel to the longitudinal axis of the balloon, and with a lumen length that extends beyond either electrode of the electrode pair.
  • the internal lumen provides an internal path in the device for blood flow through the renal vessel.
  • the internal blood path also provides a shunt path for electric current to flow through when the electrodes on either end of the balloon are polarized.
  • This shunt path for electric current also serves to reduce electric field intensities in corner regions between the balloon and the vessel wall, suppressing or eliminating local or regional hot spots where large current density values can drive local thermal heating of vascular tissue, resulting in a safer and more effective ablation device.
  • the intense electric field near or in the internal vessel wall is reduced and/or eliminated, reducing the likelihood of vessel wall perforation.
  • the electric field magnitude in the vessel wall can remain large enough to generate irreversible electroporation of the renal nerve endings therein.
  • the catheter device has a set of electrodes for ablation or delivery of voltage pulses, at least one member of which is recessed from the outer surface such that when inserted in a vascular structure, it cannot directly contact the inner vascular wall.
  • the recessed electrode contacts blood in the vessel, with blood forming a portion of the electrical path between anode and cathode electrodes, and with the vascular wall also forming a portion of the electrical path between anode and cathode electrodes.
  • all of the electrodes on the catheter are recessed so that there is no direct physical contact between any of the electrodes and the vascular wall. Thus, the intense electric field near the electrode surface is removed from the wall, reducing or eliminating the likelihood of vessel wall perforation.
  • At least one pair of anode and cathode electrodes are set in a recessed void in the catheter, and separated from each other by an insulator.
  • the catheter can have a multiplicity of such pairs of anode and cathode electrodes recessed in the catheter, so as to be able to ablate a longer region or length of arterial wall more conveniently.
  • the voltage pulses can have pulse widths in the range of nanoseconds to hundreds of microseconds. In some embodiments, there could be a multiplicity of such voltage pulses applied through the electrodes, with an interval between pulses that can for illustrative purposes be in the range of nanoseconds to hundreds of microseconds.
  • the generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or multiphasic forms and with either constant or progressively changing amplitudes.
  • FIG. 1 illustrates the placement of a catheter device according to an embodiment in the renal arteries for the purpose of renal denervation.
  • FIG. 2 is a schematic illustration of a catheter assembly according to an embodiment showing an expandable member on a catheter shaft with electrodes disposed on the shaft near the ends of the expandable member, and showing openings in the catheter shaft into an internal device lumen that provides a blood path for blood flow.
  • FIG. 3 is a side view of a catheter assembly according to an embodiment showing the catheter shaft, expandable member, and electrodes.
  • FIG. 4 is a schematic cutaway view of a catheter assembly according to an embodiment in a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter, and showing the distal portion of the catheter with expanded member inside a blood vessel with a vessel wall and a blood pool in the annular space between the catheter and the vessel wall, together with blood path through the catheter.
  • FIG. 5 illustrates a finite element analysis-derived spatial intensity plot of electric voltage or potential within a three dimensional geometry including the catheter assembly of FIG. 4 with expanded member and a blood path when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 6 depicts a finite element analysis-derived spatial quiver plot of current density within a finite element geometry similar to that of FIG. 4 , but without a blood path through the catheter, when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 7 depicts a finite element analysis-derived spatial quiver plot of current density within the finite element geometry of FIG. 4 including a blood path through the catheter, when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 8 illustrates a finite element analysis-derived spatial intensity plot of electric field within a three dimensional geometry including a catheter of the present invention with expanded member and a blood path, when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 9 A is an illustration of a balloon catheter according to an embodiment in a renal vessel and showing a line segment along the inner vessel wall along which electric field intensity values can be plotted.
  • FIG. 9 B is a graph plotting the variation of electric field intensity along the line segment of FIG. 9 A .
  • FIG. 10 is an illustration of a catheter embodiment showing a recessed void in the exterior surface of the catheter wherein electrodes are disposed.
  • FIG. 11 is a schematic cross-sectional view of a catheter embodiment in a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter.
  • FIG. 12 is a schematic cross-sectional view of the catheter shown in FIG. 11 disposed inside a blood vessel with a vessel wall.
  • FIG. 13 illustrates the three dimensional geometry of a catheter embodiment with recessed electrodes, the catheter placed within a blood vessel with a vessel wall and a blood pool in the annular space of the blood vessel.
  • FIG. 14 illustrates a finite element analysis-derived spatial intensity plot of electric voltage within a catheter according to an embodiment.
  • FIG. 15 depicts a finite element analysis-derived spatial intensity plot of electric field within a catheter according to an embodiment when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 16 shows a line plot of electric field intensity along a line perpendicular to the longitudinal axis of the catheter and passing along a transverse edge of one of the recessed catheter electrodes.
  • FIG. 17 shows a catheter device according to an embodiment with a multiplicity of anode-cathode electrode sets disposed along a distal length of device.
  • FIG. 18 schematically represents an irreversible electroporation system that together with a catheter device disclosed herein provides a therapeutic system for renal denervation ablation.
  • FIG. 19 is a schematic illustration of a waveform generated by the irreversible electroporation system that can be used with a catheter device disclosed herein, showing a balanced square wave.
  • FIG. 20 is a schematic illustration of a waveform generated by the irreversible electroporation system that can be used with a catheter device disclosed herein, showing a balanced biphasic square wave.
  • FIG. 21 is a schematic illustration of a waveform generated by the irreversible electroporation system that can be used with a catheter device disclosed herein, showing a progressive balanced biphasic square wave.
  • the irreversible electroporation system described herein includes a DC voltage pulse/signal generator and a controller capable of being configured to apply voltages to a selected multiplicity of electrodes.
  • the catheter has an inflatable balloon or similar expandable member disposed in its distal portion such that the catheter shaft passes through the balloon.
  • the catheter has at least one anode-cathode pair of electrodes that are disposed on either end of the expandable member or inflatable balloon in the distal region of the catheter. With the balloon inflated, the electrodes are positioned in the central region of the vessel lumen and away from the vessel wall.
  • the catheter has openings from the exterior surface into an internal lumen that runs along a path approximately parallel to the longitudinal axis of the catheter/balloon, and with a lumen length that extends beyond either electrode of the electrode pair.
  • the internal lumen provides an internal path for blood flow in the device starting from a location proximal to the proximal electrode and ending at a location distal to the distal electrode, thus shunting blood flowing through the renal vessel.
  • the balloon when the balloon is inflated and blocks most of the vessel lumen, blood can still flow from one end of the balloon to the other through the internal blood path in the catheter. Thus, vessel occlusion of blood flow does not occur.
  • the internal blood path also provides a shunt path for electric current to flow through when the electrodes on either end of the balloon are polarized by an applied potential difference.
  • This shunt path for electric current also serves to reduce electric field intensities in corner regions between the balloon and the vessel wall, suppressing or eliminating local or regional hot spots where large current density values can drive local thermal heating of vascular tissue, thereby resulting in an overall safer and more effective ablation device.
  • the intense electric field and associated large current density near or in the internal vascular wall is eliminated, reducing the likelihood of vessel wall perforation.
  • the voltage pulses can have pulse widths in the range of nanoseconds to hundreds of microseconds. In some embodiments, there could be a multiplicity of such voltage pulses applied through the electrodes, with an interval between pulses that can for illustrative purposes be in the range of nanoseconds to hundreds of microseconds.
  • the generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or multiphasic forms and with either constant or progressively changing amplitudes.
  • the balloons and/or expandable members described herein can be constructed from any suitable material.
  • the balloon is made of a material that is electrically an insulator such as for example polyurethane.
  • an apparatus in some embodiments, includes a flexible catheter shaft and at least one electrode pair.
  • the flexible catheter shaft has an electrically insulating expandable member coupled thereto such that the expandable member surrounds a portion of the catheter shaft.
  • the portion of the catheter shaft defines a lumen, and a surface of the catheter shaft defines a first opening and a second opening.
  • the first opening and the second opening are each in fluid communication with the lumen.
  • the expandable member is disposed between the first opening and the second opening to establish a pathway through the expandable member via the lumen.
  • the electrode pair includes a first electrode and a second electrode.
  • the first electrode is coupled to the catheter shaft between the first opening and the expandable member.
  • the second electrode is coupled to the catheter shaft between the second opening and the expandable member.
  • a method includes inserting a catheter device comprising a flexible catheter shaft and at least one electrode pair into a renal artery.
  • the flexible catheter shaft has an electrically insulating expandable member coupled thereto such that the expandable member surrounds a portion of the catheter shaft.
  • the expandable member is expanded until in expanded form it abuts the arterial vessel wall around its circumference, thereby positioning the catheter device so that it becomes well-centered within the vessel lumen.
  • the portion of the catheter shaft surrounded by the expandable member defines a lumen, and a surface of the catheter shaft defines a first opening and a second opening each in fluid communication with the lumen.
  • the first and second openings in the catheter shaft surface and the lumen together provide a path for blood flow to continue in the arterial vessel, even when the expanded member occludes longitudinal blood flow in the circumferential portions of the vessel cross section.
  • a voltage pulse for tissue ablation is applied between the electrodes of the electrode pair, ablating the nerve endings in the renal arterial wall.
  • the expandable member is relaxed or returned to unexpanded form, and the catheter device is inserted further into the renal arterial vessel for ablation at a subsequent location, and so on.
  • the iterative steps of inserting and positioning the catheter device and applying ablation are continued as needed until the user decides that a sufficient degree of ablation has been applied.
  • FIG. 1 An anatomical pathway and context for use of the catheter device according to an embodiment in a renal denervation ablation procedure is illustrated in FIG. 1 , illustrating the placement of a catheter device in the renal arteries for this purpose.
  • FIG. 1 depicts a left (patient left) kidney 135 and a right kidney 134 together with left renal artery 132 and right renal artery 131 .
  • Any of the catheter devices shown and described herein can be inserted into the vascular anatomy via, for example, femoral access and the distal portion 137 of the catheter is shown disposed within right renal artery 131 .
  • Ablation pulses are applied at such a location or at a multiplicity of similar locations in the renal artery to destroy renal nerve endings in the vessel wall of the renal artery.
  • FIG. 2 A catheter assembly according to an embodiment is illustrated in FIG. 2 in schematic form showing an expanded member (for purposes of non-limiting example, one form of the expanded member can be an inflated catheter balloon) on a catheter shaft with electrodes disposed on the shaft near the ends of the balloon.
  • the distal portion of the catheter 346 has an inflatable balloon 348 disposed between proximal electrode 350 and distal electrode 351 located on either side (forward or backward along the device longitudinal axis) of the balloon.
  • the electrodes are disposed with conducting surfaces exposed to the blood flow.
  • the electrodes could be, for example, in the form of ring electrodes mounted on the catheter shaft and attached by an etching and gluing process, or swaged or crimped in place, or otherwise mounted by any of a range of processes known to those skilled in the art.
  • an internal lumen for blood flow is present in the device between internal lumen end sections 356 and 357 .
  • the catheter shaft has openings 353 and 354 respectively proximal to electrode 350 and electrode 351 so that blood flowing in the renal vessel can flow into the catheter internal lumen at one opening and out of the internal catheter lumen back into the renal vessel at the other opening, thus providing a shunt path for blood flow even when the balloon is inflated and is occluding most of the vessel cross section.
  • the blood path also offers advantages in terms of distribution of electric field when a voltage difference is applied between the electrodes for pulsed high voltage delivery.
  • the distal tip of the catheter can be rounded gently or tapered and rounded so as to present a smooth, blunt distal tip profile.
  • a catheter device 400 is shown in a more detailed illustration (not to scale) in FIG. 3 .
  • the distal portion of the catheter shaft 401 has an inner lumen 403 that runs from the proximal catheter end (not shown) to the distal portion, for delivery of pressurized air or fluid (such as, for example, saline) that may be utilized to inflate the balloon.
  • the lumen 403 starts from a cut plane or section AI and runs up to approximately the proximal end of the balloon (denoted by section C 1 ), where it expands to fill a larger eccentric annular space within the catheter with openings (indicated by the small dotted ellipses such as 415 and 416 ) on the shaft that open into the balloon.
  • the catheter has a shorter inner lumen 409 providing a blood path, with ends indicated by the reference characters 406 and 407 .
  • This inner lumen has proximal and distal openings 353 and 354 , respectively, to the exterior lateral surface of the catheter, so that blood (which has a flow direction in the renal vessel from proximal to distal along the catheter when the catheter is inserted into the renal vessel as indicated in FIG. 1 ) can enter at one opening (for example, 353 ), flow inside the inner lumen 409 and exit through the other opening (for example, 354 ).
  • electrodes in the form of rings 350 and 351 are indicated as mounted on the catheter shaft near proximal and distal ends respectively of the balloon 348 .
  • the electrodes 350 , 351 can have any suitable size and/or shape.
  • the electrodes 450 , 451 can be a ring-shaped electrode having a width in the range 1 mm-6 mm, and a diameter in the range of about 1 mm to about 6 mm.
  • the nearest edge-to-edge separation between electrodes can be in the range from about 3 mm to about 25 mm.
  • segmental pieces AI-B 1 , B 1 -C 1 , CI-D 1 , and DI-E 1 with distinct and suitably mating lumen structures can comprise polymeric material, be extruded separately and joined by processes such as heat bonding that are well known to those skilled in the art.
  • Various polymeric materials can be used in the construction; for example, the balloon can be made of thin polyurethane with suitable stretchability (or compliance) for inflation.
  • the catheter shaft can comprise polymers such as Teflon, polyurethane, Nylon, PEEK (Poly Ester Ester Ketone) or polyethylene that are utilized frequently in the medical device industry and known to one skilled in the art.
  • the balloon 348 (and any of the balloons or expanded members described herein) can have a length in the range 3 mm-25 mm and an inflated diameter in the range 2 mm-6 mm. It is to be noted that in alternate embodiments, the inflatable balloon 348 (and any of the balloons or expanded members described herein) can instead be in the form of an expandable member, whether in the form of an expanded structure with a mesh-based unfolding structure, or a variety of other forms known to those skilled in the art. In the latter case the expandable member can have an expanded diameter in the range of about 2 mm to about 6 mm and a length in the range 3 mm-25 mm.
  • the catheter shaft can also include metallic mesh or braid constructions in the wall for torque transmission and suitable rigidity.
  • the electrodes can include metals such as Platinum Iridium alloy, stainless steel, silver or other biocompatible metals that are known in the medical device industry as suitable electrode materials, and may be affixed to the catheter by an etching and gluing process, swaging, crimping or other processes known to one skilled in the art.
  • the electrodes have leads attached to the inner or non-exposed side that run back to the catheter handle for connection to an appropriate electrical connector (not shown in FIG. 3 ).
  • the diameter of the catheter can be in the approximate range 0.8 mm-4 mm. While the materials and methods mentioned here are for illustrative purposes, it should be appreciated that those skilled in the art can conceive of the use of a variety of other materials and construction methods.
  • FIG. 4 A schematic cutaway view of a catheter 13 according to an embodiment is shown in FIG. 4 in a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter, and showing the distal portion of the catheter with inflated balloon inside a blood vessel with a vessel wall and a blood pool in the annular space between the catheter and the vessel wall, together with blood path through the catheter.
  • the distal portion of the catheter 13 has a balloon 11 disposed on it, said balloon being inflated within a renal vessel with a thin vascular wall 12 .
  • the balloon includes an electrical insulator, for example in the form of a mechanically compliant polymer such as polyurethane. Electrodes 15 on either end of the balloon can be polarized with an electrical voltage or potential difference.
  • Flowing blood pool 19 is present in the renal vessel, enters the inner catheter lumen through opening 14 in the catheter wall and exits the inner lumen through opening 141 .
  • either of the electrodes 15 can serve as anode, with the other member of the pair then taking on the role of cathode.
  • Electrical leads (not shown) passing through a hollow lumen in the catheter connect to the respective electrodes for voltage delivery.
  • the electrical leads are provided with suitable high dielectric strength insulation utilizing a suitable material such as for example Teflon.
  • the material and thickness of the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 500 Volts in the electrical conductor of the lead without dielectric discharge or breakdown.
  • the geometry shown can be used in a computational model with appropriate physical parameters (such as electrical conductivities) assigned to blood, tissue, metal and insulator to compute the electric potential and field in the spatial region around the catheter when a voltage or potential difference is applied between the electrodes.
  • appropriate physical parameters such as electrical conductivities assigned to blood, tissue, metal and insulator to compute the electric potential and field in the spatial region around the catheter when a voltage or potential difference is applied between the electrodes.
  • FIG. 5 Such a simulation result is shown in FIG. 5 in the form of a shaded intensity plot for the electric potential, when the proximal electrode 15 has a high potential (500 Volts) and the distal electrode 151 is assigned a low potential (ground or zero voltage).
  • FIG. 5 also indicates the catheter shaft 13 , openings 14 and 141 in the catheter for access to the blood path, the balloon 11 and the vessel wall 10 .
  • the indicated contours 160 , 152 , 153 , and 162 (marked by dashed contour lines in FIG.
  • FIG. 6 A finite element analysis-derived spatial quiver plot of current density within a finite element geometry similar to that of FIG. 4 but without a blood path through the catheter is depicted in FIG. 6 .
  • the arrows in the quiver plot indicate the local direction of the current density vector and the arrow length indicates the magnitude of local current density when a defined electric potential difference is applied between the electrodes of the catheter, with electrode 15 at a high potential and electrode 151 at a low potential.
  • the catheter shaft is indicated as 13 and the vessel wall 12 is also labeled in the FIG. along with the balloon 11 .
  • the current density exits electrode 15 and enters electrode 151 with the potential difference applied between the electrodes. It can be noted that there is a significant magnitude of current density 17 at or near the vessel wall, determined from the simulation to correspond to an electric field intensity or magnitude of over 1260 Volts/cm.
  • FIG. 7 depicts a finite element analysis-derived spatial quiver plot of current density within the finite element geometry of FIG. 4 including a blood path through the catheter, again with the arrows in the quiver plot indicating the local direction of the current density vector and the arrow length indicating magnitude of local current density when a defined electric potential difference is applied between the electrodes of the catheter, with electrode 15 at a high potential and electrode 151 at a low potential.
  • the catheter shaft is indicated as 13 and the vessel wall 12 is also labeled in the FIG. along with the balloon 11 .
  • the current density exits electrode 15 and enters electrode 151 with the potential difference applied between the electrodes. It can be noted that the magnitude of current density 23 at or near the vessel wall is now very small.
  • FIG. 8 illustrates a finite element analysis-derived spatial intensity plot of electric field within a three dimensional geometry including a catheter according to an embodiment with an inflated balloon and a blood path, the catheter placed within a blood vessel with a vessel wall and a blood pool in the annular space between the catheter and the vessel wall (i.e., the same configuration as is shown in FIG. 7 ).
  • FIG. 8 shows a shaded intensity plot when a defined electric potential difference is applied between the electrodes of the catheter, with electrode 15 at a high potential and electrode 151 at a low potential.
  • the catheter shaft is indicated as 13 and the vessel wall 12 is also labeled in FIG. 8 along with the balloon 11 .
  • the shaded area represents the region where the electric field intensity is approximately 500 V/cm, suitable for the irreversible electroporation of renal nerve endings in the vessel wall, and it can be seen as indicated by 41 that the vessel wall has an appropriate electric field intensity for ablation.
  • Regions with very high intensity electric fields have been effectively moved away from the interior of the vessel wall.
  • a similar catheter device without a blood path generates electric field intensities of over 1260 Volts/cm at the vessel wall.
  • FIG. 9 A shows a portion of the balloon catheter with balloon 11 and electrode 151 disposed in a vessel with arterial walls 12 .
  • a longitudinal line 145 of length 1 cm centered at the point of contact 144 of the balloon with the wall (and with the line 145 disposed at the inner surface of the vessel wall) is used as a line along which electric field intensity is plotted in FIG. 9 B .
  • the peak value 146 of electric field intensity along the line 145 of FIG. 9 A substantially drops from a value of approximately 1200 V/cm to a value 147 of 500 V/cm within about 1 mm.
  • the catheter has at least one anode-cathode pair of electrodes that are recessed from the exterior surface of the distal region of the catheter.
  • the electrodes With the electrodes positioned away in a radially inward manner from the diameter profile of the cross section of the catheter, the electric field generated due to an applied potential difference between the electrodes is not excessively large at the arterial wall, thus preserving the wall itself.
  • the nerve cells in the nerves present in the vascular wall are in the presence of an electric field large enough to generate irreversible electroporation and subsequent cell necrosis.
  • the recessed electrodes contact blood in the vessel, with blood thus forming a portion of the electrical path between anode and cathode electrodes.
  • the vascular wall also forms a portion of the electrical path between anode and cathode electrodes.
  • all the electrodes on the catheter are recessed so that there is no direct physical contact between any of the electrodes and the vascular wall.
  • the intense electric field near the electrode surface is removed from the wall, reducing or eliminating the likelihood of vessel wall perforation while the electric field is still large enough to generate irreversible electroporation of the renal nerve endings therein.
  • a pair of anode and cathode electrodes are set in a recessed void in the catheter, and separated from each other by an insulator.
  • the voltage pulses can for exemplary purposes have pulse widths in the range of tens to hundreds of microseconds. In some embodiments there could be a multiplicity of such voltage pulses applied through the electrodes, with an interval between pulses that can for illustrative purposes be in the range of tens to hundreds of microseconds.
  • the generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or multiphasic forms and with either constant or progressively changing amplitudes.
  • FIG. 10 A catheter according to an embodiment having a recessed void in the exterior surface of the catheter, wherein recessed electrodes are disposed therein for applying electrical voltages for ablation purposes, is shown in FIG. 10 .
  • the distal portion 511 of the catheter body has a recessed void 512 where electrodes are located, with anode and cathode electrodes on diametrically opposite sides of the catheter's central longitudinal axis.
  • the distal tip of the catheter can be rounded gently or tapered and rounded (not shown in FIG. 10 ) so as to present a smooth, blunt distal tip profile.
  • FIG. 11 shows a schematic cross-sectional view of a catheter 511 in a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter.
  • the catheter body 511 has a recess or void 512 , within which are located metallic or electrically conducting electrodes 21 disposed on either side of an electrical insulator 522 .
  • the catheter body can be made of Teflon, polyurethane, Nylon, PEEK (Polyether Ether Ketone), polyethylene or any of a range of polymers commonly used in the medical device industry to build catheter devices and known to those skilled in the art.
  • the diameter of the catheter can be in the approximate range 0.8 mm-4 mm.
  • the void or recess can have a length dimension in the range 0.5 mm-5 mm and a width dimension in the range 0.2 mm-2 mm at the exterior catheter surface, while having a recess or depth dimension in the approximate range 0.5 mm-1.5 mm measured radially inward from the surface.
  • the ratio of recess depth to catheter diameter can be in the range 0.1 to 0.45.
  • the metallic electrodes can comprise biocompatible materials such as platinum iridium, stainless steel, silver or a range of other conductors familiar to one skilled in the art.
  • the void can be fabricated by machining, drilling, punching or molding.
  • the insulator between the electrodes can comprise materials such as Teflon or polyurethane that are known to have a high dielectric strength.
  • the electrodes and insulator between the electrodes can be positioned by etching the catheter and held in place by a suitable gluing process.
  • FIG. 11 shows a rectangular geometry for the electrodes and flat surfaces for the recess walls
  • more general shapes could be used in other embodiments.
  • ellipsoidal electrodes disposed in a recess with either flat or curved walls, approximately spherical or ellipsoidal recess walls, and so on can be used in some embodiments.
  • approximately rectangular parallelepiped electrodes are disposed in the catheter, with edges and corners rounded to result in gently curving forms in order to reduce or eliminate areas of high curvature, which can result in further reductions in electric field intensity distributions.
  • FIG. 12 illustrates a schematic cutaway view of a catheter according to an embodiment along a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter, and showing the catheter inside a blood vessel with a vessel wall 531 and a blood pool 532 disposed in the annular space between the catheter and the vessel wall, together providing a geometry for finite element analysis.
  • the recess or void 512 in the catheter body, and the electrically conducting electrodes 521 within the void are indicated along with the electrical insulator 522 disposed between the electrodes 521 .
  • either of the electrodes 521 can serve as anode, with the other member of the pair then taking on the role of cathode.
  • the electrical leads passing through a hollow lumen in the catheter connect to the respective electrodes for voltage delivery.
  • the electrical leads are provided with suitable high dielectric strength insulation utilizing a suitable material such as for example Teflon; the material and thickness of the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 500 Volts in the electrical conductor of the lead without dielectric discharge or breakdown. In an alternate embodiment, the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 2000 Volts in the electrical conductor of the lead without dielectric discharge or breakdown.
  • FIG. 13 The three dimensional geometry of the catheter with the recessed electrodes within a blood vessel filled with blood is further illustrated in FIG. 13 , where the inner cylinder represents the catheter shaft 511 within a blood vessel illustrated by vessel wall 531 and with blood 532 disposed in the annular space between the catheter shaft and the vessel wall.
  • the electrodes 512 and insulator 522 between the electrodes are indicated within the catheter body.
  • This geometry can be used in a computational model with appropriate physical parameters (such as electrical conductivities) assigned to blood, tissue, metal and insulator to compute the electric potential and field in the spatial region around the catheter when a voltage or potential difference is applied between the electrodes.
  • FIG. 14 Such a simulation result is shown in FIG. 14 in a longitudinal section view in the form of a contour plot for the electric potential, when the top electrode 521 in the FIG. is assigned a high potential and the bottom electrode is assigned a low potential.
  • the high and low potentials were set at 500 Volts and zero respectively.
  • the electric potential was directly solved for in the computational model, and its negative gradient (the electric field vector) was evaluated.
  • contours 590 , 591 and 592 correspond to isopotential lines at 500 Volts, 400 Volts and 300 Volts respectively.
  • the magnitude of the electric field, or the electric field intensity is displayed in FIG. 15 in a longitudinal section view, also in the form of a contour plot.
  • This plot shows electric field intensity contours 561 , 562 and 563 at magnitudes of 2000 Volts/cm, 1000 Volts/cm and 500 Volts/cm respectively. It can be seen that there are high intensity electric fields 561 (approximately 2000 Volts/cm) near corners of the recess at the catheter surface, whereas outside the catheter, and in regions 531 in the arterial vessel wall, the electric field intensity 563 is significantly lower (approximately 500 Volts/cm). Thus, the very high electric field regions have been effectively moved away from the vessel wall. The electric field distribution with the same potential difference of 500 Volts between the electrodes is further clarified in FIG.
  • FIG. 16 which provides a line plot of electric field intensity along a line perpendicular to the catheter's longitudinal axis and along one of the transverse edges of the electrodes.
  • the plot therein shows the line plot along line 620 , with the top portion of the FIG. (above the peaks in the plot) representing a rotated version of a portion of the contour plot of FIG. 15 .
  • electrodes 521 are visible along with arterial wall 531 (now running in the vertical direction in the top portion of FIG. 16 ).
  • contour 571 corresponding to an electric field magnitude of approximately 14,000 Volts/cm).
  • Contours 572 and 573 correspond to electric field magnitudes of approximately 8,600 Volts/cm and 2,900 Volts/cm respectively. Proceeding along line 620 from left to right in the FIG., the graphical plot in the lower portion of FIG. 16 shows that the electric field intensities 624 and 622 at the arterial wall are substantially reduced (they have an approximate value of 500 Volts/cm, a safe level in tissue) in comparison with the peak value 625 that occurs near inner corners of the electrode. In particular, the electric field in the tissue wall of the vessel is large enough to generate irreversible electroporation therein without being large enough to cause a thermal hot spot.
  • FIG. 17 An embodiment of the catheter device according to an embodiment with two pairs of anode-cathode ablation electrodes in the distal portion of the device is illustrated in FIG. 17 , which shows the distal portion 746 of the catheter device within a renal artery 745 . While two pairs or sets of electrodes are shown in this illustration, in other embodiments, any number of electrodes can be disposed in the device without limitation.
  • FIG. 17 shows a distal electrode set 748 with electrodes 752 and 753 separated by an electrically insulating region 755 . Also shown is a proximal electrode set 749 . Electrical leads 758 and 759 connect to electrodes 752 and 753 respectively while electrical leads 761 and 762 connect to respective electrodes of electrode set 749 .
  • the electrical leads are provided with suitable high dielectric strength insulation utilizing a suitable material such as for example Teflon; the material and thickness of the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 500 Volts in the electrical conductor of the lead without dielectric discharge or breakdown. In an alternate embodiment the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 2000 Volts in the electrical conductor of the lead without dielectric discharge or breakdown.
  • FIG. 18 A schematic representation of an irreversible electroporation system is depicted in FIG. 18 , and together with the catheter device disclosed herein it provides a complete therapeutic system for renal denervation ablation.
  • a DC voltage/signal generator 73 is driven or triggered by a controller unit 71 that interfaces with a computer device 74 by means of a two-way communication link 79 .
  • the controller can perform channel selection and routing functions for applying DC voltages to appropriate electrodes that have been selected by a user or by the computer 74 , and apply the voltages via a multiplicity of leads (shown collectively as 80 ) to a catheter device 72 .
  • the controller can also record and display impedance data from at least a pair of the electrodes of the catheter device 72 .
  • Such impedance data could for instance be used to determine suitable arterial locations for ablation.
  • the DC voltage generator 73 sends a DC voltage to the controller 71 through high voltage leads 77
  • the voltage generator is triggered by control and timing inputs 78 from the controller unit 71 .
  • the computer 74 is integrated with the controller 71 in a single enclosure.
  • a user interface for the system can comprise multiple elements such as, for non-limiting purposes, a graphical display, a push button, foot pedal or joystick for user-triggered ablation application, a touch screen interface, or any of a variety of such interfaces that are familiar to those skilled in the art and as may be convenient for implementation and for user interaction in the context of the medical application.
  • a DC voltage for electroporation can be applied to the catheter electrodes.
  • the DC voltage is applied in brief pulses sufficient to cause irreversible electroporation can be in the range of 0.5 kV to 10 kV and more preferably in the range 1 kV to 4 kV, so that an appropriate threshold electric field is effectively achieved in the renal nerve tissue to be ablated.
  • the electrodes marked for ablation can be automatically identified, or manually identified by suitable marking, on an X-ray or fluoroscopic image obtained at an appropriate angulation that permits identification of the geometric distance between anode and cathode electrodes, or their respective centroids.
  • the DC voltage generator setting for irreversible electroporation is then automatically identified by the electroporation system based on this distance measure.
  • the DC voltage value is selected directly by a user from a suitable dial, slider, touch screen, or any other user interface.
  • the DC voltage pulse results in a current flowing between the anode and cathode electrodes, with said current flowing through the blood in the renal artery, the blood path through the catheter lumen, and the vessel wall tissue, with the current flowing from the anode and returning back through the cathode electrode.
  • the forward and return current paths (leads) are both inside the catheter.
  • the controller and generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or biphasic or more generally, multiphasic forms and with either constant or progressively changing amplitudes.
  • FIG. 19 shows a rectangular wave pulse train where the pulses 101 have a uniform height or maximum voltage.
  • FIG. 20 shows an example of a balanced biphasic rectangular pulse train, where each positive voltage pulse such as 103 is immediately followed by a negative voltage pulse such as 104 of equal amplitude and opposite sign. While in this example the biphasic pulses are balanced with equal amplitudes of the positive and negative voltages, in other embodiments an unbalanced biphasic waveform could also be used as may be convenient for a given application.
  • FIG. 21 shows a progressive balanced rectangular pulse train, where each distinct biphasic pulse has equal-amplitude positive and negative voltages, but each pulse such as 107 is larger in amplitude than its immediate predecessor 106 .
  • FIG. 21 shows a progressive balanced rectangular pulse train, where each distinct biphasic pulse has equal-amplitude positive and negative voltages, but each pulse such as 107 is larger in amplitude than its immediate predecessor 106 .
  • Other variations such as a progressive unbalanced rectangular pulse train, or indeed a wide variety of other variations of pulse amplitude with respect to time can be conceived and implemented by those skilled in the art based on the teachings herein.
  • the time duration of each irreversible electroporation rectangular voltage pulse could lie in the range from 1 nanosecond to 10 milliseconds, with the range 10 microseconds to 1 millisecond being more preferable and the range 50 microseconds to 300 microseconds being still more preferable.
  • the time interval between successive pulses of a pulse train could be in the range of 1 nanosecond to 1 millisecond, with the range 50 microseconds to 300 microseconds being more preferable.
  • the number of pulses applied in a single pulse train (with delays between individual pulses lying in the ranges just mentioned) can range from 1 to 100, with the range 1 to 10 being more preferable.
  • a pulse train can be driven by a user-controlled switch or button, in one embodiment mounted on a hand-held joystick-like device while in an alternate embodiment it could be in the form of a foot pedal and in still another embodiment it could be implemented with a computer mouse. Indeed a variety of such triggering schemes can be implemented by those skilled in the art, as convenient for the application and without departing from the scope of the present invention.
  • a pulse train can be generated for every push of such a control button, while in an alternate mode of operation pulse trains can be generated repeatedly for as long as the user-controlled switch or button is engaged by the user.
  • a multiplicity of electrodes could be located proximal to the balloon and a multiplicity of electrodes could be located distal to the balloon.
  • a device can include an expandable member similar to the expanded member shown and described with reference to FIGS. 2 and 3 along with a recessed electrode similar to the recessed electrodes shown and described with reference to FIGS. 11 through 13 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

A catheter device for renal denervation ablation includes a flexible catheter shaft having an electrically insulating expandable member in its distal portion with at least one electrode located proximal to the member, at least one electrode located distal to the member, and with openings in the distal shaft with at least one opening proximal to the proximal electrode and one opening distal to the distal electrode of said electrode pair, said openings connected through an inner lumen in the catheter that provides a path for blood to flow through the expandable member. In one embodiment, the device comprises a flexible catheter shaft with a multiplicity of recessed paired electrodes disposed in recessed spaces in its distal portion, such that an electrically conducting portion of each electrode is exposed to the exterior of the catheter within a recessed space, and with an electrical insulator separating the electrodes of each pair.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/719,708, filed Dec. 18, 2019, entitled APPARATUS AND METHODS FOR RENAL DENERVATION ABLATION, now U.S. Pat. No. 11,589,919, which is a divisional of U.S. patent application Ser. No. 15/201,997 filed Jul. 5, 2016, entitled “APPARATUS AND METHODS FOR RENAL DENERVATION ABLATION,” now U.S. Pat. No. 10,517,672, which is a continuation of PCT/US2015/010223 filed Jan. 6, 2015, entitled “APPARATUS AND METHODS FOR RENAL DENERVATION ABLATION,” which claims priority to and the benefit of U.S. Provisional Application No. 61/923,969 filed Jan. 6, 2014, entitled “BALLOON CATHETER WITH BLOOD PATH,” and U.S. Provisional Application No. 61/923,966 filed Jan. 6, 2014, entitled “OFFSET RENAL DENERVATION ELECTRODE,” all of which are incorporated by reference herein in their entirety.
  • BACKGROUND
  • This application is in the general field of therapeutic electrical energy delivery, and it pertains more specifically to electrical energy delivery in the context of ablation of nerves in the vascular or vessel walls of renal arteries or renal denervation, a therapeutic procedure that can lead to reduced hypertension in patients with high blood pressure. The ablation energy can be in the form of high voltage DC pulses that generate irreversible electroporation of cell membranes and destroy tissue locally for therapeutic purposes, or it can be applied as RF energy that generates thermal energy.
  • The past two decades have seen advances in the technique of electroporation as it has progressed from the laboratory to clinical applications. Known methods include applying brief, high voltage DC pulses to tissue, thereby generating locally high electric fields, typically in the range of hundreds of Volts/centimeter. The electric fields disrupt cell membranes by generating pores in the cell membrane, which subsequently destroys the cell membrane and the cell. While the precise mechanism of this electrically-driven pore generation (or electroporation) awaits a detailed understanding, it is thought that the application of relatively large electric fields generates instabilities in the phospholipid bilayers in cell membranes, as well as mitochondria, causing the occurrence of a distribution of local gaps or pores in the membrane. If the applied electric field at the membrane exceeds a threshold value, typically dependent on cell size, the electroporation is irreversible and the pores remain open, permitting exchange of material across the membrane and leading to apoptosis or cell death. Subsequently, the surrounding tissue heals in a natural process.
  • While pulsed DC voltages are known to drive electroporation under the right circumstances, the examples of irreversible electroporation applications in medicine and delivery methods described in the prior art do not provide specific means of limiting possible damage to nearby tissue while it is desired to ablate tissue relatively farther away. There is a need for selective energy delivery methods and devices that generate tissue ablation where it is desired, while leaving tissue elsewhere relatively intact and unchanged. In the specific context of minimally invasive renal denervation for the treatment of hypertension, known ablation devices are generally positioned in the renal arteries for electrical energy delivery to the renal artery walls. The outer layers of the renal arteries, or adventitia, have a distribution of renal nerve endings. When these nerve endings are destroyed by application of a high electric field, the consequent reduction in renal sympathetic activity can result in decreased hypertension. During this process, the vessel wall must be maintained intact; the local electric field in the vessel wall must not be too large, in order to avoid generating locally large current densities in the vessel wall which can lead to local thermal “hot spots” that can unintentionally damage or perforate the renal vessel. Thus it is desired to maintain vessel integrity and reduce and/or avoid local thermal hot spots driven by locally large current densities while still maintaining an electric field magnitude that is still above the threshold of irreversible electroporation.
  • There is a need for selective energy delivery for electroporation in such a manner as to preserve overall vascular integrity while destroying the nerve endings in the adventitia of the renal artery where ablation is to be performed.
  • SUMMARY
  • The present disclosure addresses the need for tools and methods for rapid and selective application of electroporation therapy in the treatment of hypertension by minimally invasive ablation of the renal arteries. The embodiments described herein can result in well-controlled and specific delivery of electroporation in an efficacious manner while preserving vascular tissue where the local damage is to be preferentially minimized by reducing and/or eliminating thermal hot spots (or localized areas of high temperature and/or spatial temperature gradients), in order to maintain overall vascular integrity. In some embodiments, an apparatus includes a flexible catheter shaft and at least one electrode pair. The flexible catheter shaft has an electrically insulating expandable member coupled thereto such that the expandable member surrounds a portion of the catheter shaft. The portion of the catheter shaft defines a lumen, and a surface of the catheter shaft defines a first opening and a second opening. The first opening and the second opening are each in fluid communication with the lumen. The expandable member is disposed between the first opening and the second opening to establish a pathway through the expandable member via the lumen. The electrode pair includes a first electrode and a second electrode. The first electrode is coupled to the catheter shaft between the first opening and the expandable member. The second electrode is coupled to the catheter shaft between the second opening and the expandable member.
  • In some embodiments, a method includes using the catheter device and systems for the selective and rapid application of DC voltage to produce electroporation ablation for renal denervation. For example, in some embodiments, an irreversible electroporation system includes a DC voltage/signal generator and a controller for triggering voltage pulses to be applied to a selected multiplicity or a subset of electrodes. The catheter device has a set of electrodes for ablation or delivery of voltage pulses, and an expandable member (e.g., an inflatable balloon) disposed between a pair of electrodes. When the expandable member is moved to an expanded configuration (e.g., the balloon is inflated), the electrodes are positioned in the central region of the vessel lumen, away from the vessel wall. Furthermore, the catheter has openings from the exterior surface into an internal lumen that runs along a path approximately parallel to the longitudinal axis of the balloon, and with a lumen length that extends beyond either electrode of the electrode pair. Thus, the internal lumen provides an internal path in the device for blood flow through the renal vessel. When the balloon is inflated and blocks most of the vessel lumen, blood can still flow from one end of the balloon to the other through the internal blood path in the catheter. Thus, vessel occlusion of blood flow does not occur. The internal blood path also provides a shunt path for electric current to flow through when the electrodes on either end of the balloon are polarized. This shunt path for electric current also serves to reduce electric field intensities in corner regions between the balloon and the vessel wall, suppressing or eliminating local or regional hot spots where large current density values can drive local thermal heating of vascular tissue, resulting in a safer and more effective ablation device. Thus, the intense electric field near or in the internal vessel wall is reduced and/or eliminated, reducing the likelihood of vessel wall perforation. The electric field magnitude in the vessel wall can remain large enough to generate irreversible electroporation of the renal nerve endings therein.
  • In some embodiments, the catheter device has a set of electrodes for ablation or delivery of voltage pulses, at least one member of which is recessed from the outer surface such that when inserted in a vascular structure, it cannot directly contact the inner vascular wall. The recessed electrode contacts blood in the vessel, with blood forming a portion of the electrical path between anode and cathode electrodes, and with the vascular wall also forming a portion of the electrical path between anode and cathode electrodes. In some embodiments, all of the electrodes on the catheter are recessed so that there is no direct physical contact between any of the electrodes and the vascular wall. Thus, the intense electric field near the electrode surface is removed from the wall, reducing or eliminating the likelihood of vessel wall perforation. The electric field magnitude in the vessel wall, however, is large enough to generate irreversible electroporation of the renal nerve endings therein. In some embodiments, at least one pair of anode and cathode electrodes are set in a recessed void in the catheter, and separated from each other by an insulator. In general, the catheter can have a multiplicity of such pairs of anode and cathode electrodes recessed in the catheter, so as to be able to ablate a longer region or length of arterial wall more conveniently.
  • In some embodiments, for example, the voltage pulses can have pulse widths in the range of nanoseconds to hundreds of microseconds. In some embodiments, there could be a multiplicity of such voltage pulses applied through the electrodes, with an interval between pulses that can for illustrative purposes be in the range of nanoseconds to hundreds of microseconds. The generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or multiphasic forms and with either constant or progressively changing amplitudes.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the placement of a catheter device according to an embodiment in the renal arteries for the purpose of renal denervation.
  • FIG. 2 is a schematic illustration of a catheter assembly according to an embodiment showing an expandable member on a catheter shaft with electrodes disposed on the shaft near the ends of the expandable member, and showing openings in the catheter shaft into an internal device lumen that provides a blood path for blood flow.
  • FIG. 3 is a side view of a catheter assembly according to an embodiment showing the catheter shaft, expandable member, and electrodes.
  • FIG. 4 is a schematic cutaway view of a catheter assembly according to an embodiment in a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter, and showing the distal portion of the catheter with expanded member inside a blood vessel with a vessel wall and a blood pool in the annular space between the catheter and the vessel wall, together with blood path through the catheter.
  • FIG. 5 illustrates a finite element analysis-derived spatial intensity plot of electric voltage or potential within a three dimensional geometry including the catheter assembly of FIG. 4 with expanded member and a blood path when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 6 depicts a finite element analysis-derived spatial quiver plot of current density within a finite element geometry similar to that of FIG. 4 , but without a blood path through the catheter, when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 7 depicts a finite element analysis-derived spatial quiver plot of current density within the finite element geometry of FIG. 4 including a blood path through the catheter, when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 8 illustrates a finite element analysis-derived spatial intensity plot of electric field within a three dimensional geometry including a catheter of the present invention with expanded member and a blood path, when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 9A is an illustration of a balloon catheter according to an embodiment in a renal vessel and showing a line segment along the inner vessel wall along which electric field intensity values can be plotted.
  • FIG. 9B is a graph plotting the variation of electric field intensity along the line segment of FIG. 9A.
  • FIG. 10 is an illustration of a catheter embodiment showing a recessed void in the exterior surface of the catheter wherein electrodes are disposed.
  • FIG. 11 is a schematic cross-sectional view of a catheter embodiment in a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter.
  • FIG. 12 is a schematic cross-sectional view of the catheter shown in FIG. 11 disposed inside a blood vessel with a vessel wall.
  • FIG. 13 illustrates the three dimensional geometry of a catheter embodiment with recessed electrodes, the catheter placed within a blood vessel with a vessel wall and a blood pool in the annular space of the blood vessel.
  • FIG. 14 illustrates a finite element analysis-derived spatial intensity plot of electric voltage within a catheter according to an embodiment.
  • FIG. 15 depicts a finite element analysis-derived spatial intensity plot of electric field within a catheter according to an embodiment when a defined electric potential difference is applied between the electrodes of the catheter.
  • FIG. 16 shows a line plot of electric field intensity along a line perpendicular to the longitudinal axis of the catheter and passing along a transverse edge of one of the recessed catheter electrodes.
  • FIG. 17 shows a catheter device according to an embodiment with a multiplicity of anode-cathode electrode sets disposed along a distal length of device.
  • FIG. 18 schematically represents an irreversible electroporation system that together with a catheter device disclosed herein provides a therapeutic system for renal denervation ablation.
  • FIG. 19 is a schematic illustration of a waveform generated by the irreversible electroporation system that can be used with a catheter device disclosed herein, showing a balanced square wave.
  • FIG. 20 is a schematic illustration of a waveform generated by the irreversible electroporation system that can be used with a catheter device disclosed herein, showing a balanced biphasic square wave.
  • FIG. 21 is a schematic illustration of a waveform generated by the irreversible electroporation system that can be used with a catheter device disclosed herein, showing a progressive balanced biphasic square wave.
  • DETAILED DESCRIPTION
  • This embodiments described herein include a catheter device and systems for renal denervation ablation with rapid application of DC high voltage pulses to drive irreversible electroporation. In some embodiments, the irreversible electroporation system described herein includes a DC voltage pulse/signal generator and a controller capable of being configured to apply voltages to a selected multiplicity of electrodes.
  • In some embodiments, the catheter has an inflatable balloon or similar expandable member disposed in its distal portion such that the catheter shaft passes through the balloon. The catheter has at least one anode-cathode pair of electrodes that are disposed on either end of the expandable member or inflatable balloon in the distal region of the catheter. With the balloon inflated, the electrodes are positioned in the central region of the vessel lumen and away from the vessel wall. Furthermore, the catheter has openings from the exterior surface into an internal lumen that runs along a path approximately parallel to the longitudinal axis of the catheter/balloon, and with a lumen length that extends beyond either electrode of the electrode pair. Thus, the internal lumen provides an internal path for blood flow in the device starting from a location proximal to the proximal electrode and ending at a location distal to the distal electrode, thus shunting blood flowing through the renal vessel. In this manner, when the balloon is inflated and blocks most of the vessel lumen, blood can still flow from one end of the balloon to the other through the internal blood path in the catheter. Thus, vessel occlusion of blood flow does not occur.
  • Moreover, in some embodiments, the internal blood path also provides a shunt path for electric current to flow through when the electrodes on either end of the balloon are polarized by an applied potential difference. This shunt path for electric current also serves to reduce electric field intensities in corner regions between the balloon and the vessel wall, suppressing or eliminating local or regional hot spots where large current density values can drive local thermal heating of vascular tissue, thereby resulting in an overall safer and more effective ablation device. Thus, the intense electric field and associated large current density near or in the internal vascular wall is eliminated, reducing the likelihood of vessel wall perforation.
  • The electric field magnitude in the vessel wall, however, can remain large enough to generate irreversible electroporation of the renal nerve endings therein and successful ablation results. In some embodiments, the voltage pulses can have pulse widths in the range of nanoseconds to hundreds of microseconds. In some embodiments, there could be a multiplicity of such voltage pulses applied through the electrodes, with an interval between pulses that can for illustrative purposes be in the range of nanoseconds to hundreds of microseconds. The generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or multiphasic forms and with either constant or progressively changing amplitudes.
  • The balloons and/or expandable members described herein can be constructed from any suitable material. For example, in some embodiments, the balloon is made of a material that is electrically an insulator such as for example polyurethane.
  • In some embodiments, an apparatus includes a flexible catheter shaft and at least one electrode pair. The flexible catheter shaft has an electrically insulating expandable member coupled thereto such that the expandable member surrounds a portion of the catheter shaft. The portion of the catheter shaft defines a lumen, and a surface of the catheter shaft defines a first opening and a second opening. The first opening and the second opening are each in fluid communication with the lumen. The expandable member is disposed between the first opening and the second opening to establish a pathway through the expandable member via the lumen. The electrode pair includes a first electrode and a second electrode. The first electrode is coupled to the catheter shaft between the first opening and the expandable member. The second electrode is coupled to the catheter shaft between the second opening and the expandable member.
  • In some embodiments, a method includes inserting a catheter device comprising a flexible catheter shaft and at least one electrode pair into a renal artery. The flexible catheter shaft has an electrically insulating expandable member coupled thereto such that the expandable member surrounds a portion of the catheter shaft. The expandable member is expanded until in expanded form it abuts the arterial vessel wall around its circumference, thereby positioning the catheter device so that it becomes well-centered within the vessel lumen. The portion of the catheter shaft surrounded by the expandable member defines a lumen, and a surface of the catheter shaft defines a first opening and a second opening each in fluid communication with the lumen. With the expandable member in expanded form, the first and second openings in the catheter shaft surface and the lumen together provide a path for blood flow to continue in the arterial vessel, even when the expanded member occludes longitudinal blood flow in the circumferential portions of the vessel cross section. With the device thus deployed, a voltage pulse for tissue ablation is applied between the electrodes of the electrode pair, ablating the nerve endings in the renal arterial wall. Subsequently, the expandable member is relaxed or returned to unexpanded form, and the catheter device is inserted further into the renal arterial vessel for ablation at a subsequent location, and so on. The iterative steps of inserting and positioning the catheter device and applying ablation are continued as needed until the user decides that a sufficient degree of ablation has been applied.
  • An anatomical pathway and context for use of the catheter device according to an embodiment in a renal denervation ablation procedure is illustrated in FIG. 1 , illustrating the placement of a catheter device in the renal arteries for this purpose. FIG. 1 depicts a left (patient left) kidney 135 and a right kidney 134 together with left renal artery 132 and right renal artery 131. Any of the catheter devices shown and described herein can be inserted into the vascular anatomy via, for example, femoral access and the distal portion 137 of the catheter is shown disposed within right renal artery 131. Ablation pulses are applied at such a location or at a multiplicity of similar locations in the renal artery to destroy renal nerve endings in the vessel wall of the renal artery.
  • A catheter assembly according to an embodiment is illustrated in FIG. 2 in schematic form showing an expanded member (for purposes of non-limiting example, one form of the expanded member can be an inflated catheter balloon) on a catheter shaft with electrodes disposed on the shaft near the ends of the balloon. As shown in FIG. 2 , the distal portion of the catheter 346 has an inflatable balloon 348 disposed between proximal electrode 350 and distal electrode 351 located on either side (forward or backward along the device longitudinal axis) of the balloon. The electrodes are disposed with conducting surfaces exposed to the blood flow. Thus, the electrodes could be, for example, in the form of ring electrodes mounted on the catheter shaft and attached by an etching and gluing process, or swaged or crimped in place, or otherwise mounted by any of a range of processes known to those skilled in the art. Furthermore, an internal lumen for blood flow is present in the device between internal lumen end sections 356 and 357. The catheter shaft has openings 353 and 354 respectively proximal to electrode 350 and electrode 351 so that blood flowing in the renal vessel can flow into the catheter internal lumen at one opening and out of the internal catheter lumen back into the renal vessel at the other opening, thus providing a shunt path for blood flow even when the balloon is inflated and is occluding most of the vessel cross section. As will be described in detail below, the blood path also offers advantages in terms of distribution of electric field when a voltage difference is applied between the electrodes for pulsed high voltage delivery. In a preferred embodiment, the distal tip of the catheter can be rounded gently or tapered and rounded so as to present a smooth, blunt distal tip profile.
  • A catheter device 400 according to an embodiment is shown in a more detailed illustration (not to scale) in FIG. 3 . The distal portion of the catheter shaft 401 has an inner lumen 403 that runs from the proximal catheter end (not shown) to the distal portion, for delivery of pressurized air or fluid (such as, for example, saline) that may be utilized to inflate the balloon. In the FIG., the lumen 403 starts from a cut plane or section AI and runs up to approximately the proximal end of the balloon (denoted by section C1), where it expands to fill a larger eccentric annular space within the catheter with openings (indicated by the small dotted ellipses such as 415 and 416) on the shaft that open into the balloon. Pressurized air or fluid injected into the proximal end of the lumen 403 can thus inflate the balloon 348 in FIG. 3 . Further, the catheter has a shorter inner lumen 409 providing a blood path, with ends indicated by the reference characters 406 and 407. This inner lumen has proximal and distal openings 353 and 354, respectively, to the exterior lateral surface of the catheter, so that blood (which has a flow direction in the renal vessel from proximal to distal along the catheter when the catheter is inserted into the renal vessel as indicated in FIG. 1 ) can enter at one opening (for example, 353), flow inside the inner lumen 409 and exit through the other opening (for example, 354).
  • As shown, electrodes in the form of rings 350 and 351 are indicated as mounted on the catheter shaft near proximal and distal ends respectively of the balloon 348. The electrodes 350, 351 can have any suitable size and/or shape. For example in some embodiments, the electrodes 450, 451 can be a ring-shaped electrode having a width in the range 1 mm-6 mm, and a diameter in the range of about 1 mm to about 6 mm. The nearest edge-to-edge separation between electrodes can be in the range from about 3 mm to about 25 mm.
  • In one method of assembly, segmental pieces AI-B1, B1-C1, CI-D1, and DI-E1 with distinct and suitably mating lumen structures can comprise polymeric material, be extruded separately and joined by processes such as heat bonding that are well known to those skilled in the art. Various polymeric materials can be used in the construction; for example, the balloon can be made of thin polyurethane with suitable stretchability (or compliance) for inflation. The catheter shaft can comprise polymers such as Teflon, polyurethane, Nylon, PEEK (Poly Ester Ester Ketone) or polyethylene that are utilized frequently in the medical device industry and known to one skilled in the art. The balloon 348 (and any of the balloons or expanded members described herein) can have a length in the range 3 mm-25 mm and an inflated diameter in the range 2 mm-6 mm. It is to be noted that in alternate embodiments, the inflatable balloon 348 (and any of the balloons or expanded members described herein) can instead be in the form of an expandable member, whether in the form of an expanded structure with a mesh-based unfolding structure, or a variety of other forms known to those skilled in the art. In the latter case the expandable member can have an expanded diameter in the range of about 2 mm to about 6 mm and a length in the range 3 mm-25 mm.
  • The catheter shaft can also include metallic mesh or braid constructions in the wall for torque transmission and suitable rigidity. The electrodes can include metals such as Platinum Iridium alloy, stainless steel, silver or other biocompatible metals that are known in the medical device industry as suitable electrode materials, and may be affixed to the catheter by an etching and gluing process, swaging, crimping or other processes known to one skilled in the art. The electrodes have leads attached to the inner or non-exposed side that run back to the catheter handle for connection to an appropriate electrical connector (not shown in FIG. 3 ). The diameter of the catheter can be in the approximate range 0.8 mm-4 mm. While the materials and methods mentioned here are for illustrative purposes, it should be appreciated that those skilled in the art can conceive of the use of a variety of other materials and construction methods.
  • A schematic cutaway view of a catheter 13 according to an embodiment is shown in FIG. 4 in a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter, and showing the distal portion of the catheter with inflated balloon inside a blood vessel with a vessel wall and a blood pool in the annular space between the catheter and the vessel wall, together with blood path through the catheter. The distal portion of the catheter 13 has a balloon 11 disposed on it, said balloon being inflated within a renal vessel with a thin vascular wall 12. The balloon includes an electrical insulator, for example in the form of a mechanically compliant polymer such as polyurethane. Electrodes 15 on either end of the balloon can be polarized with an electrical voltage or potential difference. Flowing blood pool 19 is present in the renal vessel, enters the inner catheter lumen through opening 14 in the catheter wall and exits the inner lumen through opening 141. In use, either of the electrodes 15 can serve as anode, with the other member of the pair then taking on the role of cathode. Electrical leads (not shown) passing through a hollow lumen in the catheter connect to the respective electrodes for voltage delivery. The electrical leads are provided with suitable high dielectric strength insulation utilizing a suitable material such as for example Teflon. In some embodiments, the material and thickness of the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 500 Volts in the electrical conductor of the lead without dielectric discharge or breakdown. As described herein, finite element analysis of the current density for the entire geometric region shown in FIG. 4 was conducted. In particular, the geometry shown can be used in a computational model with appropriate physical parameters (such as electrical conductivities) assigned to blood, tissue, metal and insulator to compute the electric potential and field in the spatial region around the catheter when a voltage or potential difference is applied between the electrodes.
  • Such a simulation result is shown in FIG. 5 in the form of a shaded intensity plot for the electric potential, when the proximal electrode 15 has a high potential (500 Volts) and the distal electrode 151 is assigned a low potential (ground or zero voltage). FIG. 5 also indicates the catheter shaft 13, openings 14 and 141 in the catheter for access to the blood path, the balloon 11 and the vessel wall 10. The electric potential is directly solved for in the computational model, and its negative gradient (the electric field vector E) may be thence evaluated as well as the current density j=oE. The indicated contours 160, 152, 153, and 162 (marked by dashed contour lines in FIG. 5 ) represent isopotential lines at approximate voltages of 500 Volts, 420 Volts, 320 Volts, and 250 Volts, respectively, while the dashed lines 154, 155 and 161 represent isopotential lines at voltages 180 Volts, 80 Volts, and 0 Volts, respectively.
  • A finite element analysis-derived spatial quiver plot of current density within a finite element geometry similar to that of FIG. 4 but without a blood path through the catheter is depicted in FIG. 6 . The arrows in the quiver plot indicate the local direction of the current density vector and the arrow length indicates the magnitude of local current density when a defined electric potential difference is applied between the electrodes of the catheter, with electrode 15 at a high potential and electrode 151 at a low potential. The catheter shaft is indicated as 13 and the vessel wall 12 is also labeled in the FIG. along with the balloon 11. The current density exits electrode 15 and enters electrode 151 with the potential difference applied between the electrodes. It can be noted that there is a significant magnitude of current density 17 at or near the vessel wall, determined from the simulation to correspond to an electric field intensity or magnitude of over 1260 Volts/cm.
  • In like manner, FIG. 7 depicts a finite element analysis-derived spatial quiver plot of current density within the finite element geometry of FIG. 4 including a blood path through the catheter, again with the arrows in the quiver plot indicating the local direction of the current density vector and the arrow length indicating magnitude of local current density when a defined electric potential difference is applied between the electrodes of the catheter, with electrode 15 at a high potential and electrode 151 at a low potential. The catheter shaft is indicated as 13 and the vessel wall 12 is also labeled in the FIG. along with the balloon 11. The current density exits electrode 15 and enters electrode 151 with the potential difference applied between the electrodes. It can be noted that the magnitude of current density 23 at or near the vessel wall is now very small. Further, there is a significant current density 21 near the opening 14 flowing in the same direction as the blood flow/path and exiting at the opening 141 before it loops back to enter at electrode 151. In effect, excess current at the vessel wall has been shunted to flow through the blood path in the internal lumen of the catheter instead. Indeed, from the simulation it was determined that a peak electric field intensity or magnitude of approximately 500 Volts/cm was produced at the vessel wall. This electric field intensity is large enough to generate irreversible electroporation ablation while not being large enough to cause a local hot spot or thermal damage, in contrast to the case of the catheter device without the blood path.
  • FIG. 8 illustrates a finite element analysis-derived spatial intensity plot of electric field within a three dimensional geometry including a catheter according to an embodiment with an inflated balloon and a blood path, the catheter placed within a blood vessel with a vessel wall and a blood pool in the annular space between the catheter and the vessel wall (i.e., the same configuration as is shown in FIG. 7 ). FIG. 8 shows a shaded intensity plot when a defined electric potential difference is applied between the electrodes of the catheter, with electrode 15 at a high potential and electrode 151 at a low potential. The catheter shaft is indicated as 13 and the vessel wall 12 is also labeled in FIG. 8 along with the balloon 11. The shaded area represents the region where the electric field intensity is approximately 500 V/cm, suitable for the irreversible electroporation of renal nerve endings in the vessel wall, and it can be seen as indicated by 41 that the vessel wall has an appropriate electric field intensity for ablation.
  • Regions with very high intensity electric fields (leading to thermal hot spots) have been effectively moved away from the interior of the vessel wall. In contrast, as mentioned in the foregoing, a similar catheter device without a blood path generates electric field intensities of over 1260 Volts/cm at the vessel wall.
  • The sharp drop-off of electric field intensity from a localized peak along a longitudinal direction can be illustrated with line plots as for example shown in FIGS. 9A and 9B. FIG. 9A shows a portion of the balloon catheter with balloon 11 and electrode 151 disposed in a vessel with arterial walls 12. A longitudinal line 145 of length 1 cm centered at the point of contact 144 of the balloon with the wall (and with the line 145 disposed at the inner surface of the vessel wall) is used as a line along which electric field intensity is plotted in FIG. 9B. As seen in FIG. 9B, the peak value 146 of electric field intensity along the line 145 of FIG. 9A substantially drops from a value of approximately 1200 V/cm to a value 147 of 500 V/cm within about 1 mm.
  • In one embodiment, the catheter has at least one anode-cathode pair of electrodes that are recessed from the exterior surface of the distal region of the catheter. With the electrodes positioned away in a radially inward manner from the diameter profile of the cross section of the catheter, the electric field generated due to an applied potential difference between the electrodes is not excessively large at the arterial wall, thus preserving the wall itself. At the same time, the nerve cells in the nerves present in the vascular wall are in the presence of an electric field large enough to generate irreversible electroporation and subsequent cell necrosis.
  • The recessed electrodes contact blood in the vessel, with blood thus forming a portion of the electrical path between anode and cathode electrodes. The vascular wall also forms a portion of the electrical path between anode and cathode electrodes. In some embodiments, all the electrodes on the catheter are recessed so that there is no direct physical contact between any of the electrodes and the vascular wall. Thus, the intense electric field near the electrode surface is removed from the wall, reducing or eliminating the likelihood of vessel wall perforation while the electric field is still large enough to generate irreversible electroporation of the renal nerve endings therein. In some embodiments, a pair of anode and cathode electrodes are set in a recessed void in the catheter, and separated from each other by an insulator. The voltage pulses can for exemplary purposes have pulse widths in the range of tens to hundreds of microseconds. In some embodiments there could be a multiplicity of such voltage pulses applied through the electrodes, with an interval between pulses that can for illustrative purposes be in the range of tens to hundreds of microseconds. The generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or multiphasic forms and with either constant or progressively changing amplitudes.
  • A catheter according to an embodiment having a recessed void in the exterior surface of the catheter, wherein recessed electrodes are disposed therein for applying electrical voltages for ablation purposes, is shown in FIG. 10 . As shown, the distal portion 511 of the catheter body has a recessed void 512 where electrodes are located, with anode and cathode electrodes on diametrically opposite sides of the catheter's central longitudinal axis. In some embodiments, the distal tip of the catheter can be rounded gently or tapered and rounded (not shown in FIG. 10 ) so as to present a smooth, blunt distal tip profile.
  • The internal arrangement of the electrodes within the recess is displayed more clearly in FIG. 11 , which shows a schematic cross-sectional view of a catheter 511 in a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter. As shown, the catheter body 511 has a recess or void 512, within which are located metallic or electrically conducting electrodes 21 disposed on either side of an electrical insulator 522. The catheter body can be made of Teflon, polyurethane, Nylon, PEEK (Polyether Ether Ketone), polyethylene or any of a range of polymers commonly used in the medical device industry to build catheter devices and known to those skilled in the art. The diameter of the catheter can be in the approximate range 0.8 mm-4 mm. The void or recess can have a length dimension in the range 0.5 mm-5 mm and a width dimension in the range 0.2 mm-2 mm at the exterior catheter surface, while having a recess or depth dimension in the approximate range 0.5 mm-1.5 mm measured radially inward from the surface. The ratio of recess depth to catheter diameter can be in the range 0.1 to 0.45. The metallic electrodes can comprise biocompatible materials such as platinum iridium, stainless steel, silver or a range of other conductors familiar to one skilled in the art. The void can be fabricated by machining, drilling, punching or molding. The insulator between the electrodes can comprise materials such as Teflon or polyurethane that are known to have a high dielectric strength. The electrodes and insulator between the electrodes can be positioned by etching the catheter and held in place by a suitable gluing process.
  • It is to be noted that while FIG. 11 shows a rectangular geometry for the electrodes and flat surfaces for the recess walls, more general shapes could be used in other embodiments. Thus for example ellipsoidal electrodes disposed in a recess with either flat or curved walls, approximately spherical or ellipsoidal recess walls, and so on can be used in some embodiments. In one embodiment, approximately rectangular parallelepiped electrodes are disposed in the catheter, with edges and corners rounded to result in gently curving forms in order to reduce or eliminate areas of high curvature, which can result in further reductions in electric field intensity distributions.
  • FIG. 12 illustrates a schematic cutaway view of a catheter according to an embodiment along a central longitudinal plane of the catheter with the plane passing through the longitudinal axis of the catheter, and showing the catheter inside a blood vessel with a vessel wall 531 and a blood pool 532 disposed in the annular space between the catheter and the vessel wall, together providing a geometry for finite element analysis. The recess or void 512 in the catheter body, and the electrically conducting electrodes 521 within the void are indicated along with the electrical insulator 522 disposed between the electrodes 521. In use, either of the electrodes 521 can serve as anode, with the other member of the pair then taking on the role of cathode. Electrical leads (not shown) passing through a hollow lumen in the catheter connect to the respective electrodes for voltage delivery. The electrical leads are provided with suitable high dielectric strength insulation utilizing a suitable material such as for example Teflon; the material and thickness of the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 500 Volts in the electrical conductor of the lead without dielectric discharge or breakdown. In an alternate embodiment, the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 2000 Volts in the electrical conductor of the lead without dielectric discharge or breakdown.
  • The three dimensional geometry of the catheter with the recessed electrodes within a blood vessel filled with blood is further illustrated in FIG. 13 , where the inner cylinder represents the catheter shaft 511 within a blood vessel illustrated by vessel wall 531 and with blood 532 disposed in the annular space between the catheter shaft and the vessel wall. The electrodes 512 and insulator 522 between the electrodes are indicated within the catheter body. This geometry can be used in a computational model with appropriate physical parameters (such as electrical conductivities) assigned to blood, tissue, metal and insulator to compute the electric potential and field in the spatial region around the catheter when a voltage or potential difference is applied between the electrodes.
  • Such a simulation result is shown in FIG. 14 in a longitudinal section view in the form of a contour plot for the electric potential, when the top electrode 521 in the FIG. is assigned a high potential and the bottom electrode is assigned a low potential. In this example the high and low potentials were set at 500 Volts and zero respectively. The electric potential was directly solved for in the computational model, and its negative gradient (the electric field vector) was evaluated. In FIG. 14 , contours 590, 591 and 592 correspond to isopotential lines at 500 Volts, 400 Volts and 300 Volts respectively. The magnitude of the electric field, or the electric field intensity is displayed in FIG. 15 in a longitudinal section view, also in the form of a contour plot. This plot shows electric field intensity contours 561, 562 and 563 at magnitudes of 2000 Volts/cm, 1000 Volts/cm and 500 Volts/cm respectively. It can be seen that there are high intensity electric fields 561 (approximately 2000 Volts/cm) near corners of the recess at the catheter surface, whereas outside the catheter, and in regions 531 in the arterial vessel wall, the electric field intensity 563 is significantly lower (approximately 500 Volts/cm). Thus, the very high electric field regions have been effectively moved away from the vessel wall. The electric field distribution with the same potential difference of 500 Volts between the electrodes is further clarified in FIG. 16 , which provides a line plot of electric field intensity along a line perpendicular to the catheter's longitudinal axis and along one of the transverse edges of the electrodes. The plot therein shows the line plot along line 620, with the top portion of the FIG. (above the peaks in the plot) representing a rotated version of a portion of the contour plot of FIG. 15 . Thus electrodes 521 are visible along with arterial wall 531 (now running in the vertical direction in the top portion of FIG. 16 ). Locally very high electric field intensity regions near internal corners of the electrodes are marked as contour 571 (corresponding to an electric field magnitude of approximately 14,000 Volts/cm). Contours 572 and 573 correspond to electric field magnitudes of approximately 8,600 Volts/cm and 2,900 Volts/cm respectively. Proceeding along line 620 from left to right in the FIG., the graphical plot in the lower portion of FIG. 16 shows that the electric field intensities 624 and 622 at the arterial wall are substantially reduced (they have an approximate value of 500 Volts/cm, a safe level in tissue) in comparison with the peak value 625 that occurs near inner corners of the electrode. In particular, the electric field in the tissue wall of the vessel is large enough to generate irreversible electroporation therein without being large enough to cause a thermal hot spot.
  • An embodiment of the catheter device according to an embodiment with two pairs of anode-cathode ablation electrodes in the distal portion of the device is illustrated in FIG. 17 , which shows the distal portion 746 of the catheter device within a renal artery 745. While two pairs or sets of electrodes are shown in this illustration, in other embodiments, any number of electrodes can be disposed in the device without limitation. FIG. 17 shows a distal electrode set 748 with electrodes 752 and 753 separated by an electrically insulating region 755. Also shown is a proximal electrode set 749. Electrical leads 758 and 759 connect to electrodes 752 and 753 respectively while electrical leads 761 and 762 connect to respective electrodes of electrode set 749. The electrical leads are provided with suitable high dielectric strength insulation utilizing a suitable material such as for example Teflon; the material and thickness of the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 500 Volts in the electrical conductor of the lead without dielectric discharge or breakdown. In an alternate embodiment the high dielectric strength insulation is chosen so that it can withstand a voltage of at least 2000 Volts in the electrical conductor of the lead without dielectric discharge or breakdown.
  • A schematic representation of an irreversible electroporation system is depicted in FIG. 18 , and together with the catheter device disclosed herein it provides a complete therapeutic system for renal denervation ablation. A DC voltage/signal generator 73 is driven or triggered by a controller unit 71 that interfaces with a computer device 74 by means of a two-way communication link 79. The controller can perform channel selection and routing functions for applying DC voltages to appropriate electrodes that have been selected by a user or by the computer 74, and apply the voltages via a multiplicity of leads (shown collectively as 80) to a catheter device 72. In one embodiment the controller can also record and display impedance data from at least a pair of the electrodes of the catheter device 72. Such impedance data could for instance be used to determine suitable arterial locations for ablation. While the DC voltage generator 73 sends a DC voltage to the controller 71 through high voltage leads 77, the voltage generator is triggered by control and timing inputs 78 from the controller unit 71. In one preferred embodiment the computer 74 is integrated with the controller 71 in a single enclosure. A user interface for the system can comprise multiple elements such as, for non-limiting purposes, a graphical display, a push button, foot pedal or joystick for user-triggered ablation application, a touch screen interface, or any of a variety of such interfaces that are familiar to those skilled in the art and as may be convenient for implementation and for user interaction in the context of the medical application.
  • A DC voltage for electroporation can be applied to the catheter electrodes. The DC voltage is applied in brief pulses sufficient to cause irreversible electroporation can be in the range of 0.5 kV to 10 kV and more preferably in the range 1 kV to 4 kV, so that an appropriate threshold electric field is effectively achieved in the renal nerve tissue to be ablated. In one embodiment of the invention, the electrodes marked for ablation can be automatically identified, or manually identified by suitable marking, on an X-ray or fluoroscopic image obtained at an appropriate angulation that permits identification of the geometric distance between anode and cathode electrodes, or their respective centroids. In one embodiment, the DC voltage generator setting for irreversible electroporation is then automatically identified by the electroporation system based on this distance measure. In an alternate embodiment, the DC voltage value is selected directly by a user from a suitable dial, slider, touch screen, or any other user interface. The DC voltage pulse results in a current flowing between the anode and cathode electrodes, with said current flowing through the blood in the renal artery, the blood path through the catheter lumen, and the vessel wall tissue, with the current flowing from the anode and returning back through the cathode electrode. The forward and return current paths (leads) are both inside the catheter.
  • The controller and generator can output waveforms that can be selected to generate a sequence of voltage pulses in either monophasic or biphasic or more generally, multiphasic forms and with either constant or progressively changing amplitudes. FIG. 19 shows a rectangular wave pulse train where the pulses 101 have a uniform height or maximum voltage. FIG. 20 shows an example of a balanced biphasic rectangular pulse train, where each positive voltage pulse such as 103 is immediately followed by a negative voltage pulse such as 104 of equal amplitude and opposite sign. While in this example the biphasic pulses are balanced with equal amplitudes of the positive and negative voltages, in other embodiments an unbalanced biphasic waveform could also be used as may be convenient for a given application.
  • Yet another example of a waveform or pulse shape that can be generated by the system is illustrated in FIG. 21 , which shows a progressive balanced rectangular pulse train, where each distinct biphasic pulse has equal-amplitude positive and negative voltages, but each pulse such as 107 is larger in amplitude than its immediate predecessor 106. Other variations such as a progressive unbalanced rectangular pulse train, or indeed a wide variety of other variations of pulse amplitude with respect to time can be conceived and implemented by those skilled in the art based on the teachings herein.
  • The time duration of each irreversible electroporation rectangular voltage pulse could lie in the range from 1 nanosecond to 10 milliseconds, with the range 10 microseconds to 1 millisecond being more preferable and the range 50 microseconds to 300 microseconds being still more preferable. The time interval between successive pulses of a pulse train could be in the range of 1 nanosecond to 1 millisecond, with the range 50 microseconds to 300 microseconds being more preferable. The number of pulses applied in a single pulse train (with delays between individual pulses lying in the ranges just mentioned) can range from 1 to 100, with the range 1 to 10 being more preferable. In one embodiment, a pulse train can be driven by a user-controlled switch or button, in one embodiment mounted on a hand-held joystick-like device while in an alternate embodiment it could be in the form of a foot pedal and in still another embodiment it could be implemented with a computer mouse. Indeed a variety of such triggering schemes can be implemented by those skilled in the art, as convenient for the application and without departing from the scope of the present invention. In one mode of operation a pulse train can be generated for every push of such a control button, while in an alternate mode of operation pulse trains can be generated repeatedly for as long as the user-controlled switch or button is engaged by the user.
  • While several specific examples and embodiments of systems and tools for tissue ablation with irreversible electroporation were described in the foregoing for illustrative and purposes, it should be clear that a wide variety of variations and alternate embodiments could be conceived or constructed by those skilled in the art based on the teachings of the present invention. Persons skilled in the art would recognize that any of a wide variety of other control or user input methods and device variations can be implemented without departing from the scope of the embodiments described herein. Likewise, while the foregoing described specific tools or devices for more effective and selective DC voltage application for irreversible electroporation, other device constructions and variations could be implemented by one skilled in the art by employing the principles and teachings disclosed herein without departing from the scope of the present invention. For example, while the description above discussed one electrode located proximal to the balloon and another electrode located distal to the balloon, in one variation a multiplicity of electrodes could be located proximal to the balloon and a multiplicity of electrodes could be located distal to the balloon.
  • Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments as discussed above. For example, in some embodiments, a device can include an expandable member similar to the expanded member shown and described with reference to FIGS. 2 and 3 along with a recessed electrode similar to the recessed electrodes shown and described with reference to FIGS. 11 through 13 .

Claims (20)

1. An apparatus, comprising:
a flexible catheter shaft having an electrically insulating expandable member coupled thereto such that the expandable member surrounds a portion of the catheter shaft, the portion of the catheter shaft defines a lumen, a surface of the catheter shaft defining a first opening and a second opening, the first opening and the second opening each in fluid communication with the lumen, the expandable member disposed between the first opening and the second opening to establish a pathway through the expandable member via the lumen; and
at least one electrode pair, the electrode pair including a first electrode and a second electrode, the first electrode coupled to the catheter shaft between the first opening and the expandable member, the second electrode coupled to the catheter shaft between the second opening and the expandable member.
2. The apparatus of claim 1, further comprising:
a first insulated electrical lead coupled to the first electrode, the first electrical lead disposed at least partially within the catheter shaft; and
a second insulated electrical lead coupled to the second electrode, the second electrical lead disposed at least partially within the catheter shaft.
3. The apparatus of claim 2, wherein the first electrical lead has an insulation layer having a thickness and a dielectric strength such that the first electrical lead is configured to withstand a voltage of at least 500 Volts without dielectric breakdown.
4. The apparatus of claim 1, wherein:
the lumen is a first lumen;
the expandable member is configured to be filled with a fluid to move between a collapsed configuration and an expanded configuration; and
the portion of the catheter shaft defines a second lumen in fluid communication with the expandable member, the second lumen fluidically isolated from the first lumen.
5. The apparatus of claim 1, where the electrode pair includes rings with ring widths in the range between approximately 1 mm and approximately 6 mm.
6. The apparatus of claim 1, where the expandable member has an expanded diameter in the range between approximately 2 mm and approximately 6 mm.
7. The apparatus of claim 1, where the electrodes in the pair of electrodes have a nearest edge-to-edge separation distance in the range between approximately 3 mm and approximately 25 mm.
8. The apparatus of claim 1, where the expandable member material comprises polyurethane.
9. A system for irreversible electroporation renal denervation ablation comprising:
a. a voltage pulse generator unit,
b. a controller unit connected to the pulse generator unit for triggering the pulses of the pulse generator unit, and which is capable of applying voltage pulses to a multiplicity of electrodes on at least one medical device connected to it,
c. said medical device having an electrically insulating inflatable balloon coupled to its distal portion such that the catheter shaft passes through the balloon, and having at least one electrode on the shaft located proximal to the balloon and at least one electrode on the shaft located distal to the balloon, and having an inner lumen in the catheter with at least a pair of openings to the exterior surface of the catheter, said lumen providing a path for blood to flow through the balloon, and
d. a user interface for a user to interact with the system.
10. The system of claim 9, where the voltage pulses have an amplitude of at least 500 Volts.
11. The system of claim 9, where the voltage pulses are applied in the form of a train of multiple pulses, each pulse having a pulse width of at least 10 nanoseconds.
12. The system of claim 9, where the openings from the exterior surface of the catheter to the inner lumen in the catheter are disposed with at least one opening located proximal to an electrode proximal to the balloon, and with at least one opening located distal to an electrode distal to the balloon.
13. The system of claim 9, where the electrodes of the medical device comprise a biocompatible metal.
14. The system of claim 9, where an insulated electrical lead connects to each electrode of the medical device, the insulated lead having an insulation layer with a thickness and a dielectric strength capable of withstanding a voltage of at least 2000 Volts without dielectric breakdown.
15. The system of claim 9, where the medical device is a flexible catheter with a shaft constructed from a material comprising one or more of Teflon, polyurethane, Nylon, PEEK and polyethylene.
16. The system of claim 9, where the inflatable balloon material comprises polyurethane.
17. The system of claim 9, where the electrodes on the medical device are rings with ring widths in the range between approximately 1 mm and approximately 6 mm.
18. The system of claim 9, where the controller unit records impedance data from at least a pair of the electrodes of the medical device connected to it.
19. The system of claim 9, where the user interface comprises a push-button interface for the user-driven application of voltage pulse trains for ablation.
20. A method, comprising:
inserting a distal end portion of a catheter assembly into a renal artery, the distal end portion of the catheter assembly including an electrically insulating expandable member, the distal end portion of the catheter assembly defining a lumen, a surface of the catheter assembly defining a first opening and a second opening, the first opening and the second opening each in fluid communication with the lumen, the expandable member disposed between the first opening and the second opening;
transitioning the expandable member from a collapsed configuration to an expanded configuration to establish a blood flow through the lumen; and
applying a voltage pulse train to an electrode pair, the electrode pair including a first electrode and a second electrode, the first electrode coupled to the catheter assembly between the first opening and the expandable member, the second electrode coupled to the catheter assembly between the second opening and the expandable member.
US18/170,348 2014-01-06 2023-02-16 Apparatus and methods for renal denervation ablation Pending US20230190368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/170,348 US20230190368A1 (en) 2014-01-06 2023-02-16 Apparatus and methods for renal denervation ablation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201461923966P 2014-01-06 2014-01-06
US201461923969P 2014-01-06 2014-01-06
PCT/US2015/010223 WO2015103574A1 (en) 2014-01-06 2015-01-06 Apparatus and methods for renal denervation ablation
US15/201,997 US10517672B2 (en) 2014-01-06 2016-07-05 Apparatus and methods for renal denervation ablation
US16/719,708 US11589919B2 (en) 2014-01-06 2019-12-18 Apparatus and methods for renal denervation ablation
US18/170,348 US20230190368A1 (en) 2014-01-06 2023-02-16 Apparatus and methods for renal denervation ablation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/719,708 Continuation US11589919B2 (en) 2014-01-06 2019-12-18 Apparatus and methods for renal denervation ablation

Publications (1)

Publication Number Publication Date
US20230190368A1 true US20230190368A1 (en) 2023-06-22

Family

ID=53494110

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/201,997 Active US10517672B2 (en) 2014-01-06 2016-07-05 Apparatus and methods for renal denervation ablation
US16/719,708 Active 2036-03-01 US11589919B2 (en) 2014-01-06 2019-12-18 Apparatus and methods for renal denervation ablation
US18/170,348 Pending US20230190368A1 (en) 2014-01-06 2023-02-16 Apparatus and methods for renal denervation ablation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/201,997 Active US10517672B2 (en) 2014-01-06 2016-07-05 Apparatus and methods for renal denervation ablation
US16/719,708 Active 2036-03-01 US11589919B2 (en) 2014-01-06 2019-12-18 Apparatus and methods for renal denervation ablation

Country Status (3)

Country Link
US (3) US10517672B2 (en)
EP (1) EP3091921B1 (en)
WO (1) WO2015103574A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301926B2 (en) 2012-08-09 2018-03-28 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Catheter, catheter system, and method for piercing tissue structure
EP3091921B1 (en) 2014-01-06 2019-06-19 Farapulse, Inc. Apparatus for renal denervation ablation
EP4238521A3 (en) 2014-05-07 2023-11-29 Farapulse, Inc. Methods and apparatus for selective tissue ablation
WO2015192027A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective transurethral tissue ablation
WO2015192018A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective tissue ablation with cooling
EP3206613B1 (en) 2014-10-14 2019-07-03 Farapulse, Inc. Apparatus for rapid and safe pulmonary vein cardiac ablation
CN107921258B (en) * 2015-08-06 2021-09-07 美敦力公司 Cardiac pulsed field ablation
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
WO2017218734A1 (en) 2016-06-16 2017-12-21 Iowa Approach, Inc. Systems, apparatuses, and methods for guide wire delivery
CN109788979B (en) 2016-06-27 2022-04-19 盖能适治疗股份有限公司 Generator and catheter with electrodes and method for treating a lung passageway
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
EP3681391A1 (en) 2017-09-12 2020-07-22 Farapulse, Inc. Systems, apparatuses, and methods for ventricular focal ablation
US11969197B2 (en) * 2017-10-13 2024-04-30 Mayo Foundation For Medical Education And Research Methods and devices for electroporation for treatment of ventricular fibrillation
US11541241B2 (en) 2017-12-11 2023-01-03 Mayo Foundation For Medical Education And Research Methods and systems for electroporation
US20190336198A1 (en) 2018-05-03 2019-11-07 Farapulse, Inc. Systems, devices, and methods for ablation using surgical clamps
EP4410228A3 (en) 2018-05-07 2024-11-06 Boston Scientific Scimed, Inc. Epicardial ablation catheter
WO2019217317A1 (en) 2018-05-07 2019-11-14 Farapulse, Inc. Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation
EP3790486A1 (en) 2018-05-07 2021-03-17 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10687892B2 (en) 2018-09-20 2020-06-23 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US12102293B2 (en) * 2019-08-30 2024-10-01 Biosese Webster (Israel) Ltd. ENT guidewire
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
US11707320B2 (en) * 2019-12-24 2023-07-25 Biosense Webster (Israel) Ltd. Irreversible electroporation (IRE) based on field, contact force and time
US12076071B2 (en) 2020-08-14 2024-09-03 Kardium Inc. Systems and methods for treating tissue with pulsed field ablation
KR102551847B1 (en) * 2021-01-04 2023-07-06 재단법인 아산사회복지재단 Electrode stent device using bipolar electrode
CA3214189A1 (en) 2021-04-07 2022-10-13 Vojtech NEDVED Pulsed field ablation device and method
IL309432B1 (en) 2021-07-06 2024-10-01 Btl Medical Dev A S Pulsed field ablation device and method
WO2024075034A1 (en) 2022-10-05 2024-04-11 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
EP4445855A1 (en) * 2023-04-13 2024-10-16 BIOTRONIK SE & Co. KG Method and catheter for renal denervation

Family Cites Families (526)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200104A (en) 1977-11-17 1980-04-29 Valleylab, Inc. Contact area measurement apparatus for use in electrosurgery
US4470407A (en) * 1982-03-11 1984-09-11 Laserscope, Inc. Endoscopic device
US5547467A (en) 1988-01-21 1996-08-20 Massachusettes Institute Of Technology Method for rapid temporal control of molecular transport across tissue
US5344435A (en) 1988-07-28 1994-09-06 Bsd Medical Corporation Urethral inserted applicator prostate hyperthermia
US5257635A (en) 1988-11-25 1993-11-02 Sensor Electronics, Inc. Electrical heating catheter
US5749914A (en) * 1989-01-06 1998-05-12 Advanced Coronary Intervention Catheter for obstructed stent
US5342301A (en) * 1992-08-13 1994-08-30 Advanced Polymers Incorporated Multi-lumen balloons and catheters made therewith
JPH06507797A (en) 1991-05-24 1994-09-08 イーピー・テクノロジーズ・インコーポレーテッド Single-phase action potential/ablation combination catheter and high-performance filter system
US6029671A (en) 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US5524338A (en) * 1991-10-22 1996-06-11 Pi Medical Corporation Method of making implantable microelectrode
US5242441A (en) 1992-02-24 1993-09-07 Boaz Avitall Deflectable catheter with rotatable tip electrode
US5281213A (en) 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5700243A (en) * 1992-10-30 1997-12-23 Pdt Systems, Inc. Balloon perfusion catheter
US6068653A (en) 1992-11-13 2000-05-30 Scimed Life Systems, Inc. Electrophysiology catheter device
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5545161A (en) * 1992-12-01 1996-08-13 Cardiac Pathways Corporation Catheter for RF ablation having cooled electrode with electrically insulated sleeve
US6749604B1 (en) 1993-05-10 2004-06-15 Arthrocare Corporation Electrosurgical instrument with axially-spaced electrodes
US5531685A (en) 1993-06-11 1996-07-02 Catheter Research, Inc. Steerable variable stiffness device
FR2708860B1 (en) 1993-08-11 1995-10-13 Ela Medical Sa Protection circuit for implantable electronic device.
US5545193A (en) 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5722400A (en) 1995-02-16 1998-03-03 Daig Corporation Guiding introducers for use in the treatment of left ventricular tachycardia
US5921924A (en) 1993-12-03 1999-07-13 Avitall; Boaz Mapping and ablation catheter system utilizing multiple control elements
US5454370A (en) 1993-12-03 1995-10-03 Avitall; Boaz Mapping and ablation electrode configuration
US5928269A (en) 1994-04-04 1999-07-27 Alt; Eckhard Apparatus and method for temporary atrial defibrillation with external defibrillator and implanted transvenous catheter and electrodes
US5578040A (en) 1994-06-14 1996-11-26 Smith; Albert C. Ocular repair system and apparatus
US5617854A (en) 1994-06-22 1997-04-08 Munsif; Anand Shaped catheter device and method
US6071274A (en) 1996-12-19 2000-06-06 Ep Technologies, Inc. Loop structures for supporting multiple electrode elements
US5836947A (en) 1994-10-07 1998-11-17 Ep Technologies, Inc. Flexible structures having movable splines for supporting electrode elements
US5876336A (en) 1994-10-11 1999-03-02 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structure
US5722402A (en) 1994-10-11 1998-03-03 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structures
US5624430A (en) 1994-11-28 1997-04-29 Eton; Darwin Magnetic device to assist transcorporeal guidewire placement
US5810762A (en) 1995-04-10 1998-09-22 Genetronics, Inc. Electroporation system with voltage control feedback for clinical applications
US20060024359A1 (en) 1995-06-07 2006-02-02 Walker Jeffrey P Drug delivery system and method
US6090104A (en) 1995-06-07 2000-07-18 Cordis Webster, Inc. Catheter with a spirally wound flat ribbon electrode
US5702438A (en) 1995-06-08 1997-12-30 Avitall; Boaz Expandable recording and ablation catheter system
US5788692A (en) 1995-06-30 1998-08-04 Fidus Medical Technology Corporation Mapping ablation catheter
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5706823A (en) 1995-08-18 1998-01-13 Quinton Instrument Company Electrophysiology filtering system
CA2233963C (en) 1995-10-06 2005-06-21 Cordis Webster, Inc. Split tip electrode catheter
DE29519651U1 (en) 1995-12-14 1996-02-01 Muntermann, Axel, 35583 Wetzlar Device for linear radio frequency catheter ablation of endomyocardial tissue
BR9612395A (en) 1995-12-29 1999-07-13 Gyrus Medical Ltd Electrosurgical instrument and an electrosurgical electrode set
US7141049B2 (en) 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US5868736A (en) 1996-04-12 1999-02-09 Ep Technologies, Inc. Systems and methods to control tissue heating or ablation with porous electrode structures
US5836874A (en) 1996-04-08 1998-11-17 Ep Technologies, Inc. Multi-function electrode structures for electrically analyzing and heating body tissue
CA2243595A1 (en) 1996-01-19 1997-07-24 Ep Technologies, Inc. Multi-function electrode structures for electrically analyzing and heating body tissue
US5800482A (en) 1996-03-06 1998-09-01 Cardiac Pathways Corporation Apparatus and method for linear lesion ablation
US5830224A (en) 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5779699A (en) 1996-03-29 1998-07-14 Medtronic, Inc. Slip resistant field focusing ablation catheter electrode
US5836942A (en) 1996-04-04 1998-11-17 Minnesota Mining And Manufacturing Company Biomedical electrode with lossy dielectric properties
US5863291A (en) 1996-04-08 1999-01-26 Cardima, Inc. Linear ablation assembly
US5904709A (en) * 1996-04-17 1999-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microwave treatment for cardiac arrhythmias
US5672170A (en) 1996-06-20 1997-09-30 Cynosure, Inc. Laser transmyocardial revascularization arrangement
US6006131A (en) 1996-08-13 1999-12-21 Uab Research Foundation Dual current pathway atrial defibrillation apparatus
EP0832602B1 (en) 1996-09-27 2004-03-17 Sulzer Osypka GmbH Device for carrying out diagnostic and/or therapeutic heart procedures with a catheter
US7052493B2 (en) 1996-10-22 2006-05-30 Epicor Medical, Inc. Methods and devices for ablation
US6805128B1 (en) 1996-10-22 2004-10-19 Epicor Medical, Inc. Apparatus and method for ablating tissue
US6311692B1 (en) 1996-10-22 2001-11-06 Epicor, Inc. Apparatus and method for diagnosis and therapy of electrophysiological disease
US6096036A (en) 1998-05-05 2000-08-01 Cardiac Pacemakers, Inc. Steerable catheter with preformed distal shape and method for use
US6002955A (en) 1996-11-08 1999-12-14 Medtronic, Inc. Stabilized electrophysiology catheter and method for use
US5916213A (en) 1997-02-04 1999-06-29 Medtronic, Inc. Systems and methods for tissue mapping and ablation
US6039757A (en) * 1997-03-12 2000-03-21 Cardiosynopsis, Inc. In situ formed fenestrated stent
US6223085B1 (en) * 1997-05-06 2001-04-24 Urologix, Inc. Device and method for preventing restenosis
US6012457A (en) 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US5849028A (en) 1997-05-16 1998-12-15 Irvine Biomedical, Inc. Catheter and method for radiofrequency ablation of cardiac tissue
US5978704A (en) 1997-06-03 1999-11-02 Uab Research Foundation Method and apparatus for treating cardiac arrhythmia
US5938660A (en) 1997-06-27 1999-08-17 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6966908B2 (en) 1997-07-08 2005-11-22 Atrionix, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
EP1009303B1 (en) 1997-07-08 2009-06-10 The Regents of the University of California Circumferential ablation device assembly
US6245064B1 (en) 1997-07-08 2001-06-12 Atrionix, Inc. Circumferential ablation device assembly
US6164283A (en) 1997-07-08 2000-12-26 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6009351A (en) 1997-07-14 1999-12-28 Urologix, Inc. System and method for transurethral heating with rectal cooling
US6014579A (en) 1997-07-21 2000-01-11 Cardiac Pathways Corp. Endocardial mapping catheter with movable electrode
EP0932428A1 (en) 1997-07-22 1999-08-04 Emed Corporation Iontophoretic delivery of an agent into cardiac tissue
US6216034B1 (en) 1997-08-01 2001-04-10 Genetronics, Inc. Method of programming an array of needle electrodes for electroporation therapy of tissue
US5895404A (en) 1997-09-29 1999-04-20 Ruiz; Carlos E. Apparatus and methods for percutaneously forming a passageway between adjacent vessels or portions of a vessel
US6464699B1 (en) 1997-10-10 2002-10-15 Scimed Life Systems, Inc. Method and apparatus for positioning a diagnostic or therapeutic element on body tissue and mask element for use with same
US6071281A (en) 1998-05-05 2000-06-06 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US6645200B1 (en) 1997-10-10 2003-11-11 Scimed Life Systems, Inc. Method and apparatus for positioning a diagnostic or therapeutic element within the body and tip electrode for use with same
CA2308278A1 (en) 1997-10-31 1999-05-14 C.R. Bard, Inc. Ring electrode structure for diagnostic and ablation catheters
US6120500A (en) 1997-11-12 2000-09-19 Daig Corporation Rail catheter ablation and mapping system
US5928270A (en) 1997-12-02 1999-07-27 Cardiocommand, Inc. Method and apparatus for incremental cardioversion or defibrillation
US6517534B1 (en) 1998-02-11 2003-02-11 Cosman Company, Inc. Peri-urethral ablation
US6447505B2 (en) 1998-02-11 2002-09-10 Cosman Company, Inc. Balloon catheter method for intra-urethral radio-frequency urethral enlargement
US6167291A (en) 1998-03-12 2000-12-26 Cardima, Inc. Protected pin connector for an electrophysiology catheter
DE19817553A1 (en) 1998-04-15 1999-10-21 Biotronik Mess & Therapieg Ablation arrangement
US6592581B2 (en) 1998-05-05 2003-07-15 Cardiac Pacemakers, Inc. Preformed steerable catheter with movable outer sleeve and method for use
US6146381A (en) 1998-05-05 2000-11-14 Cardiac Pacemakers, Inc. Catheter having distal region for deflecting axial forces
US6045550A (en) 1998-05-05 2000-04-04 Cardiac Peacemakers, Inc. Electrode having non-joined thermocouple for providing multiple temperature-sensitive junctions
US6527767B2 (en) 1998-05-20 2003-03-04 New England Medical Center Cardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization
US6231518B1 (en) 1998-05-26 2001-05-15 Comedicus Incorporated Intrapericardial electrophysiological procedures
US6287306B1 (en) 1998-06-22 2001-09-11 Daig Corporation Even temperature linear lesion ablation catheter
US6251107B1 (en) 1998-06-25 2001-06-26 Cardima, Inc. Ep catheter
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
US6623480B1 (en) 1998-07-24 2003-09-23 University Of Kentucky Research Foundation Flexible recording/high energy electrode catheter with anchor for ablation of atrial flutter by radio frequency energy
US7435247B2 (en) * 1998-08-11 2008-10-14 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
US6251128B1 (en) 1998-09-01 2001-06-26 Fidus Medical Technology Corporation Microwave ablation catheter with loop configuration
US8308719B2 (en) 1998-09-21 2012-11-13 St. Jude Medical, Atrial Fibrillation Division, Inc. Apparatus and method for ablating tissue
US6807447B2 (en) 1998-09-25 2004-10-19 Ep Medsystems, Inc. Triple array defibrillation catheter and method of using the same
US6033403A (en) 1998-10-08 2000-03-07 Irvine Biomedical, Inc. Long electrode catheter system and methods thereof
US6638278B2 (en) 1998-11-23 2003-10-28 C. R. Bard, Inc. Intracardiac grasp catheter
IT1302900B1 (en) 1998-12-04 2000-10-10 Riccardo Fenici AMAGNETIC CATHETER FOR THE SINGLE-CATHETER REGISTRATION OF MULTIPLE SINGLE-PHASE ACTION POTENTIALS, LOCABLE THREE-DIMENSIONALLY AND
US20070066972A1 (en) * 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US6219582B1 (en) 1998-12-30 2001-04-17 Daig Corporation Temporary atrial cardioversion catheter
US6206831B1 (en) 1999-01-06 2001-03-27 Scimed Life Systems, Inc. Ultrasound-guided ablation catheter and methods of use
US20010007070A1 (en) 1999-04-05 2001-07-05 Medtronic, Inc. Ablation catheter assembly and method for isolating a pulmonary vein
US6702811B2 (en) 1999-04-05 2004-03-09 Medtronic, Inc. Ablation catheter assembly with radially decreasing helix and method of use
US6270476B1 (en) 1999-04-23 2001-08-07 Cryocath Technologies, Inc. Catheter
US6272384B1 (en) 1999-05-27 2001-08-07 Urologix, Inc. Microwave therapy apparatus
US7171263B2 (en) 1999-06-04 2007-01-30 Impulse Dynamics Nv Drug delivery device
US6391024B1 (en) 1999-06-17 2002-05-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method having electrode/tissue contact assessment scheme and electrocardiogram filtering
US6300108B1 (en) 1999-07-21 2001-10-09 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
DE19938558A1 (en) 1999-08-17 2001-02-22 Axel Muntermann Catheters with improved electrical properties and treatment methods for improving the electrical properties of catheters
US6607520B2 (en) 1999-09-15 2003-08-19 The General Hospital Corporation Coiled ablation catheter system
US6370412B1 (en) 1999-10-07 2002-04-09 Massachusetts Institute Of Technology Method and apparatus for guiding ablative therapy of abnormal biological electrical excitation
US6613062B1 (en) 1999-10-29 2003-09-02 Medtronic, Inc. Method and apparatus for providing intra-pericardial access
US6529756B1 (en) 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US6892091B1 (en) 2000-02-18 2005-05-10 Biosense, Inc. Catheter, method and apparatus for generating an electrical map of a chamber of the heart
DE10008918A1 (en) 2000-02-25 2001-08-30 Biotronik Mess & Therapieg Ablation catheter to generate linear lesions in heart muscle; has catheter body with linear, cylindrical ablation electrode and at least one insulated sensing electrode
US6743227B2 (en) 2000-03-31 2004-06-01 Medtronic, Inc. Intraluminal visualization system with deflectable mechanism
US7497844B2 (en) 2000-03-31 2009-03-03 Medtronic, Inc. System and method for positioning implantable medical devices within coronary veins
US6652517B1 (en) 2000-04-25 2003-11-25 Uab Research Foundation Ablation catheter, system, and method of use thereof
US6932811B2 (en) 2000-04-27 2005-08-23 Atricure, Inc. Transmural ablation device with integral EKG sensor
US20020107514A1 (en) 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
US6546935B2 (en) 2000-04-27 2003-04-15 Atricure, Inc. Method for transmural ablation
US6743239B1 (en) 2000-05-25 2004-06-01 St. Jude Medical, Inc. Devices with a bendable tip for medical procedures
WO2002032335A1 (en) 2000-07-25 2002-04-25 Rita Medical Systems Inc. Apparatus for detecting and treating tumors using localized impedance measurement
US8251986B2 (en) 2000-08-17 2012-08-28 Angiodynamics, Inc. Method of destroying tissue cells by eletroporation
US6728563B2 (en) 2000-11-29 2004-04-27 St. Jude Medical, Daig Division, Inc. Electrophysiology/ablation catheter having “halo” configuration
US7081114B2 (en) 2000-11-29 2006-07-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
EP1349510A4 (en) 2000-12-15 2005-07-13 Tony R Brown Atrial fibrillation rf treatment device and method
DE10102254A1 (en) 2001-01-19 2002-08-08 Celon Ag Medical Instruments Device for the electrothermal treatment of the human or animal body
US7229402B2 (en) 2001-02-09 2007-06-12 Cardiac Output Technologies, Inc. Minimally invasive ventricular assist technology and method
US7137975B2 (en) 2001-02-13 2006-11-21 Aciont, Inc. Method for increasing the battery life of an alternating current iontophoresis device using a barrier-modifying agent
US6666863B2 (en) 2001-03-01 2003-12-23 Scimed Life Systems, Inc. Device and method for percutaneous myocardial revascularization
US6666862B2 (en) 2001-03-01 2003-12-23 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
US6743225B2 (en) 2001-03-27 2004-06-01 Uab Research Foundation Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates
JP4279559B2 (en) 2001-04-27 2009-06-17 シー・アール・バード・インコーポレーテッド Electrophysiological catheter for mapping and / or ablation
US6972016B2 (en) 2001-05-01 2005-12-06 Cardima, Inc. Helically shaped electrophysiology catheter
US6771996B2 (en) 2001-05-24 2004-08-03 Cardiac Pacemakers, Inc. Ablation and high-resolution mapping catheter system for pulmonary vein foci elimination
US6685702B2 (en) 2001-07-06 2004-02-03 Rodolfo C. Quijano Device for treating tissue and methods thereof
US20030018374A1 (en) * 2001-07-16 2003-01-23 Paulos Lonnie E. Treatment probe using RF energy
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
US7182725B2 (en) 2001-09-24 2007-02-27 Best Vascular, Inc. Methods and apparatus employing ionizing radiation for treatment of cardiac arrhythmia
JP4450622B2 (en) 2001-09-28 2010-04-14 アンジオ ダイナミクス インコーポレイテッド Impedance-controlled tissue peeling device and method
US7285116B2 (en) 2004-05-15 2007-10-23 Irvine Biomedical Inc. Non-contact tissue ablation device and methods thereof
US8175680B2 (en) 2001-11-09 2012-05-08 Boston Scientific Scimed, Inc. Systems and methods for guiding catheters using registered images
US6669693B2 (en) 2001-11-13 2003-12-30 Mayo Foundation For Medical Education And Research Tissue ablation device and methods of using
US7542807B2 (en) 2001-12-04 2009-06-02 Endoscopic Technologies, Inc. Conduction block verification probe and method of use
US6740084B2 (en) 2001-12-18 2004-05-25 Ethicon, Inc. Method and device to enhance RF electrode performance
US7493156B2 (en) 2002-01-07 2009-02-17 Cardiac Pacemakers, Inc. Steerable guide catheter with pre-shaped rotatable shaft
US8062251B2 (en) 2002-02-01 2011-11-22 Vascular Designs, Inc. Multi-function catheter and use thereof
US6926714B1 (en) 2002-02-05 2005-08-09 Jasbir S. Sra Method for pulmonary vein isolation and catheter ablation of other structures in the left atrium in atrial fibrillation
US6733499B2 (en) 2002-02-28 2004-05-11 Biosense Webster, Inc. Catheter having circular ablation assembly
US6869414B2 (en) 2002-03-22 2005-03-22 Cardiac Pacemakers, Inc. Pre-shaped catheter with proximal articulation and pre-formed distal end
US7756583B2 (en) * 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US8774913B2 (en) * 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US7617005B2 (en) * 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
DE10218427A1 (en) 2002-04-24 2003-11-06 Biotronik Mess & Therapieg Ablation device for cardiac tissue, in particular for creating a circular lesion around a vascular mouth in the heart
US6764486B2 (en) 2002-04-24 2004-07-20 Biotronik Mess- und Therapieger{haeck over (a)}te GmbH & Co. Ingenieurbüro Berlin Ablation device for cardiac tissue, especially for forming a circular lesion around a vessel orifice in the heart
US20030204161A1 (en) 2002-04-25 2003-10-30 Bozidar Ferek-Petric Implantable electroporation therapy device and method for using same
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
AU2003239474A1 (en) 2002-05-17 2003-12-02 Stan F. Obino Device and method for the treatment of cardiac disorders
AU2003237671A1 (en) 2002-05-27 2003-12-12 Celon Ag Medical Instruments Device for electrosurgically destroying body tissue
US20030229379A1 (en) 2002-06-06 2003-12-11 Maynard Ramsey Method for cardioversion or defibrillation using electrical impulses at pacing strength
US7367974B2 (en) 2004-09-20 2008-05-06 Wisconsin Alumni Research Foundation Electrode array for tissue ablation
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US7258690B2 (en) * 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
US7001383B2 (en) 2002-10-21 2006-02-21 Biosense, Inc. Real-time monitoring and mapping of ablation lesion formation in the heart
US20040082947A1 (en) 2002-10-25 2004-04-29 The Regents Of The University Of Michigan Ablation catheters
US9730100B2 (en) 2002-10-28 2017-08-08 MeshDynamics Terse message networks
US9819747B2 (en) 2008-11-24 2017-11-14 MeshDynamics Chirp networks
EP1562506B1 (en) 2002-11-15 2009-05-13 C.R.Bard, Inc. Electrophysiology catheter with ablation electrode
AU2003290806A1 (en) 2002-11-15 2004-06-15 The Government Of The United States As Represented By The Secretary Of The Department Of Health And Human Services Variable curve catheter
US7195628B2 (en) 2002-12-11 2007-03-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Atrial fibrillation therapy with pulmonary vein support
US6984232B2 (en) 2003-01-17 2006-01-10 St. Jude Medical, Daig Division, Inc. Ablation catheter assembly having a virtual electrode comprising portholes
US6960207B2 (en) 2003-01-21 2005-11-01 St Jude Medical, Daig Division, Inc. Ablation catheter having a virtual electrode comprising portholes and a porous conductor
US7387629B2 (en) 2003-01-21 2008-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter design that facilitates positioning at tissue to be diagnosed or treated
US8192425B2 (en) 2006-09-29 2012-06-05 Baylis Medical Company Inc. Radiofrequency perforation apparatus
US7622172B2 (en) 2003-02-19 2009-11-24 Erick Keenan Composite flexible and conductive catheter electrode
US20070276361A1 (en) * 2003-03-28 2007-11-29 Debbie Stevens-Wright Method and apparatus for adjusting electrode dimensions
US6985776B2 (en) 2003-04-25 2006-01-10 Medtronic, Inc. Method and apparatus for coronary sinus cannulation
US6980843B2 (en) 2003-05-21 2005-12-27 Stereotaxis, Inc. Electrophysiology catheter
US7163537B2 (en) 2003-06-02 2007-01-16 Biosense Webster, Inc. Enhanced ablation and mapping catheter and method for treating atrial fibrillation
US7044946B2 (en) 2003-06-10 2006-05-16 Cryocath Technologies Inc. Surgical clamp having treatment elements
US7540853B2 (en) * 2003-06-30 2009-06-02 Cardiac Pacemakers, Inc. Method and apparatus for diverting blood flow during ablation procedures
US6973339B2 (en) 2003-07-29 2005-12-06 Biosense, Inc Lasso for pulmonary vein mapping and ablation
US20060009755A1 (en) 2003-09-04 2006-01-12 Sra Jasbir S Method and system for ablation of atrial fibrillation and other cardiac arrhythmias
US8147486B2 (en) 2003-09-22 2012-04-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical device with flexible printed circuit
US7229437B2 (en) 2003-09-22 2007-06-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical device having integral traces and formed electrodes
US7435248B2 (en) 2003-09-26 2008-10-14 Boston Scientific Scimed, Inc. Medical probes for creating and diagnosing circumferential lesions within or around the ostium of a vessel
US7179256B2 (en) 2003-10-24 2007-02-20 Biosense Webster, Inc. Catheter with ablation needle and mapping assembly
US7207989B2 (en) 2003-10-27 2007-04-24 Biosense Webster, Inc. Method for ablating with needle electrode
FR2861997A1 (en) 2003-11-06 2005-05-13 Fred Zacouto Cardiac muscle stimulation device e.g. defibrillator, for use during tachycardia treatment, has impulse generator that sends stimulation pulse without delay at end of refractory period
WO2005046487A1 (en) 2003-11-06 2005-05-26 Nmt Medical, Inc. Transseptal puncture apparatus
US7896873B2 (en) 2003-12-01 2011-03-01 Biotronik Crm Patent Ag Electrode catheter for the electrotherapy of cardiac tissue
US20050171523A1 (en) 2003-12-24 2005-08-04 The Regents Of The University Of California Irreversible electroporation to control bleeding
US20060100610A1 (en) 2004-03-05 2006-05-11 Wallace Daniel T Methods using a robotic catheter system
JP4755638B2 (en) 2004-03-05 2011-08-24 ハンセン メディカル,インク. Robotic guide catheter system
US8548583B2 (en) 2004-03-10 2013-10-01 Impulse Dynamics Nv Protein activity modification
US20050261672A1 (en) * 2004-05-18 2005-11-24 Mark Deem Systems and methods for selective denervation of heart dysrhythmias
US7250049B2 (en) 2004-05-27 2007-07-31 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with suspension system incorporating rigid and flexible components
WO2005120375A2 (en) 2004-06-02 2005-12-22 Medtronic, Inc. Loop ablation apparatus and method
US7527625B2 (en) 2004-08-04 2009-05-05 Olympus Corporation Transparent electrode for the radiofrequency ablation of tissue
US7556627B2 (en) * 2004-09-13 2009-07-07 Ethicon Endo-Surgery, Inc. Mucosal ablation device
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US20060089637A1 (en) 2004-10-14 2006-04-27 Werneth Randell L Ablation catheter
FR2877207B1 (en) * 2004-10-29 2007-02-23 Jacques Hamou DEVICE FOR RESECTING ORGANIC TISSUE USED IN PARTICULAR IN UROLOGY OR HYSTEROSCOPY
US8409191B2 (en) 2004-11-04 2013-04-02 Boston Scientific Scimed, Inc. Preshaped ablation catheter for ablating pulmonary vein ostia within the heart
US7468062B2 (en) 2004-11-24 2008-12-23 Ablation Frontiers, Inc. Atrial ablation catheter adapted for treatment of septal wall arrhythmogenic foci and method of use
US7429261B2 (en) 2004-11-24 2008-09-30 Ablation Frontiers, Inc. Atrial ablation catheter and method of use
US7731715B2 (en) 2004-12-10 2010-06-08 Edwards Lifesciences Corporation Ablative treatment of atrial fibrillation via the coronary sinus
US7869865B2 (en) 2005-01-07 2011-01-11 Biosense Webster, Inc. Current-based position sensing
US20070225589A1 (en) 2005-01-11 2007-09-27 Viswanathan Raju R Single catheter diagnosis, navigation and treatment of arrhythmias
RU2401067C2 (en) 2005-01-31 2010-10-10 Конинклейке Филипс Электроникс Н.В. Catheter guide wire and guiding technique in electrophysiological examinations
US9821158B2 (en) 2005-02-17 2017-11-21 Metacure Limited Non-immediate effects of therapy
US7578816B2 (en) 2005-04-22 2009-08-25 Abl Technologies, Llc Method and system of increasing safety of cardiac ablation procedures
US7588567B2 (en) 2005-04-22 2009-09-15 Abl Technologies, Llc Method and system of stopping energy delivery of an ablation procedure with a computer based device for increasing safety of ablation procedures
US7512447B2 (en) 2005-04-25 2009-03-31 Medtronic, Inc. Medical electrical electrodes with conductive polymer
US20060264752A1 (en) 2005-04-27 2006-11-23 The Regents Of The University Of California Electroporation controlled with real time imaging
US8571635B2 (en) 2005-04-28 2013-10-29 Boston Scientific Scimed, Inc. Automated activation/deactivation of imaging device based on tracked medical device position
US20060270900A1 (en) 2005-05-26 2006-11-30 Chin Albert K Apparatus and methods for performing ablation
US8932208B2 (en) 2005-05-26 2015-01-13 Maquet Cardiovascular Llc Apparatus and methods for performing minimally-invasive surgical procedures
US9861836B2 (en) 2005-06-16 2018-01-09 Biosense Webster, Inc. Less invasive methods for ablation of fat pads
CA2612679A1 (en) 2005-06-20 2007-01-04 Richardo D. Roman Ablation catheter
US20060293731A1 (en) 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating tumors using electroporation
US20060293730A1 (en) 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating restenosis sites using electroporation
US20070005053A1 (en) 2005-06-30 2007-01-04 Dando Jeremy D Ablation catheter with contoured openings in insulated electrodes
EP1907042B1 (en) 2005-07-06 2009-03-11 Vascular Pathways Inc. Intravenous catheter insertion device and method of use
US20070021744A1 (en) 2005-07-07 2007-01-25 Creighton Francis M Iv Apparatus and method for performing ablation with imaging feedback
US8834461B2 (en) 2005-07-11 2014-09-16 Medtronic Ablation Frontiers Llc Low power tissue ablation system
ITBO20050495A1 (en) 2005-07-22 2007-01-23 Fiab Spa EXOGUE PIPELINE
US7681579B2 (en) 2005-08-02 2010-03-23 Biosense Webster, Inc. Guided procedures for treating atrial fibrillation
US7416552B2 (en) 2005-08-22 2008-08-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Multipolar, multi-lumen, virtual-electrode catheter with at least one surface electrode and method for ablation
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US7623899B2 (en) 2005-09-16 2009-11-24 Biosense Webster, Inc. Catheter with flexible pre-shaped tip section
WO2007063443A2 (en) 2005-12-02 2007-06-07 Koninklijke Philips Electronics, N.V. Automating the ablation procedure to minimize the need for manual intervention
US8406866B2 (en) 2005-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US9492226B2 (en) 2005-12-06 2016-11-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Graphical user interface for real-time RF lesion depth display
US8603084B2 (en) 2005-12-06 2013-12-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the formation of a lesion in tissue
US8403925B2 (en) 2006-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing lesions in tissue
US10362959B2 (en) 2005-12-06 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the proximity of an electrode to tissue in a body
US8449535B2 (en) 2005-12-06 2013-05-28 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US8137342B2 (en) 2005-12-24 2012-03-20 Crossman Arthur W Circumferential ablation guide wire system and related method of using the same
EP1971285B1 (en) 2005-12-30 2012-01-18 C.R.Bard, Inc. Apparatus for ablation of cardiac tissue
US7857809B2 (en) 2005-12-30 2010-12-28 Biosense Webster, Inc. Injection molded irrigated tip electrode and catheter having the same
US20070167740A1 (en) 2005-12-30 2007-07-19 Grunewald Debby E Magnetic stabilization of catheter location sensor
US20070156135A1 (en) 2006-01-03 2007-07-05 Boris Rubinsky System and methods for treating atrial fibrillation using electroporation
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US7374567B2 (en) 2006-01-25 2008-05-20 Heuser Richard R Catheter system for connecting adjacent blood vessels
US7918850B2 (en) 2006-02-17 2011-04-05 Biosense Wabster, Inc. Lesion assessment by pacing
WO2007123770A2 (en) 2006-03-31 2007-11-01 Automated Medical Instruments, Inc. System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or therapeutic device
US7615044B2 (en) 2006-05-03 2009-11-10 Greatbatch Ltd. Deflectable sheath handle assembly and method therefor
US20070270792A1 (en) 2006-05-08 2007-11-22 Willard Hennemann Interferometric characterization of ablated tissue
US20140276782A1 (en) 2013-03-15 2014-09-18 Larry D. Paskar Catheter system
US7515954B2 (en) 2006-06-13 2009-04-07 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
US7729752B2 (en) 2006-06-13 2010-06-01 Rhythmia Medical, Inc. Non-contact cardiac mapping, including resolution map
US7783352B1 (en) 2006-06-23 2010-08-24 Pacesetter, Inc. Optimizing anti-tachycardia pacing for terminating atrial fibrillation
US8920411B2 (en) 2006-06-28 2014-12-30 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
WO2008134245A1 (en) 2007-04-27 2008-11-06 Cvdevices, Llc Devices, systems, and methods for promotion of infarct healing and reinforcement of border zone
EP2037828A2 (en) 2006-07-12 2009-03-25 Les Hôpitaux Universitaires De Geneve Medical device for tissue ablation
US20080033426A1 (en) 2006-07-27 2008-02-07 Machell Charles H Catheter system and method of use thereof
US8273081B2 (en) 2006-09-08 2012-09-25 Stereotaxis, Inc. Impedance-based cardiac therapy planning method with a remote surgical navigation system
CA2666529A1 (en) 2006-10-13 2008-04-24 Apnex Medical, Inc. Obstructive sleep apnea treatment devices, systems and methods
AU2007231704B2 (en) 2006-11-29 2011-02-24 Cathrx Ltd Heat treating a biological site in a patient's body
US20080132884A1 (en) 2006-12-01 2008-06-05 Boris Rubinsky Systems for treating tissue sites using electroporation
US20080132885A1 (en) 2006-12-01 2008-06-05 Boris Rubinsky Methods for treating tissue sites using electroporation
US8228065B2 (en) 2006-12-22 2012-07-24 Koninklijke Philips Electronics N.V. Transmission line for use in magnetic resonance system
US7883508B2 (en) 2006-12-29 2011-02-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Contact-sensitive pressure-sensitive conductive composite electrode and method for ablation
US8226648B2 (en) 2007-12-31 2012-07-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Pressure-sensitive flexible polymer bipolar electrode
US8449537B2 (en) 2006-12-29 2013-05-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with thermally mediated catheter body for mitigating blood coagulation and creating larger lesion
US8108069B2 (en) 2007-01-10 2012-01-31 Hansen Medical, Inc. Robotic catheter system and methods
US9924998B2 (en) 2007-01-12 2018-03-27 Atricure, Inc. Ablation system, clamp and method of use
US8588830B2 (en) * 2007-02-02 2013-11-19 Inovus Solar, Inc Wireless autonomous solar-powered outdoor lighting and energy and information management network
US20080200913A1 (en) 2007-02-07 2008-08-21 Viswanathan Raju R Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
JP2008213793A (en) 2007-03-08 2008-09-18 Yamaha Motor Electronics Co Ltd Immobilizer release signal authentication method
WO2008118737A1 (en) 2007-03-22 2008-10-02 University Of Virginia Patent Foundation Electrode catheter for ablation purposes and related method thereof
US9468396B2 (en) 2007-03-19 2016-10-18 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
US11058354B2 (en) 2007-03-19 2021-07-13 University Of Virginia Patent Foundation Access needle with direct visualization and related methods
DE202007004236U1 (en) * 2007-03-22 2007-06-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with ignition aid
KR101490374B1 (en) 2007-03-26 2015-02-05 보스톤 싸이엔티픽 리미티드 High resolution electrophysiology catheter
US8597288B2 (en) 2008-10-01 2013-12-03 St. Jude Medical, Artial Fibrillation Division, Inc. Vacuum-stabilized ablation system
WO2008131302A2 (en) 2007-04-19 2008-10-30 The Foundry, Inc. Methods and apparatus for reducing sweat production
US8588885B2 (en) 2007-05-09 2013-11-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Bendable catheter arms having varied flexibility
US8224416B2 (en) 2007-05-09 2012-07-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Basket catheter having multiple electrodes
US8100900B2 (en) 2007-05-11 2012-01-24 Board Of Trustees Of The Leland Stanford Junior University System for delivering therapy
US8641704B2 (en) 2007-05-11 2014-02-04 Medtronic Ablation Frontiers Llc Ablation therapy system and method for treating continuous atrial fibrillation
US8628522B2 (en) 2007-05-21 2014-01-14 Estech, Inc. (Endoscopic Technologies, Inc.) Cardiac ablation systems and methods
US10220187B2 (en) * 2010-06-16 2019-03-05 St. Jude Medical, Llc Ablation catheter having flexible tip with multiple flexible electrode segments
US7742810B2 (en) 2007-05-23 2010-06-22 Boston Scientific Neuromodulation Corporation Short duration pre-pulsing to reduce stimulation-evoked side-effects
US8160690B2 (en) 2007-06-14 2012-04-17 Hansen Medical, Inc. System and method for determining electrode-tissue contact based on amplitude modulation of sensed signal
US20090024084A1 (en) 2007-07-16 2009-01-22 Peritec Biosciences Ltd. Multi-lumen catheter assembly and method of providing relative motion thereto
US20090062788A1 (en) 2007-08-31 2009-03-05 Long Gary L Electrical ablation surgical instruments
US20090076500A1 (en) 2007-09-14 2009-03-19 Lazure Technologies, Llc Multi-tine probe and treatment by activation of opposing tines
US7614592B2 (en) * 2007-10-04 2009-11-10 Pearl K. Bean, legal representative Device and method for securing a bow
EP2205309A4 (en) 2007-10-05 2011-05-11 Coaptus Medical Corp Systems and methods for transeptal cardiac procedures
US8500697B2 (en) 2007-10-19 2013-08-06 Pressure Products Medical Supplies, Inc. Transseptal guidewire
WO2009062061A1 (en) 2007-11-09 2009-05-14 University Of Virginia Patent Foundation Steerable epicardial pacing catheter system placed via the subxiphoid process
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9717501B2 (en) * 2007-11-21 2017-08-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Methods and systems for occluding vessels during cardiac ablation including optional electroanatomical guidance
US9452288B2 (en) 2007-12-06 2016-09-27 Boston Scientific Neuromodulation Corporation Multimodal neurostimulation systems and methods
US8353907B2 (en) 2007-12-21 2013-01-15 Atricure, Inc. Ablation device with internally cooled electrodes
AU2008340270A1 (en) 2007-12-21 2009-07-02 Medical And Surgical Review, P.C. Methods and devices for endoscopically creating an anastomosis
US8562600B2 (en) 2007-12-27 2013-10-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Integration of control software with a medical device and system
US9204927B2 (en) 2009-05-13 2015-12-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for presenting information representative of lesion formation in tissue during an ablation procedure
US8538501B2 (en) 2008-01-09 2013-09-17 Mayo Foundation For Medical Education And Research Mapping and ablation catheter system
WO2009092059A2 (en) 2008-01-16 2009-07-23 Catheter Robotics, Inc. Remotely controlled catheter insertion system
WO2009094588A2 (en) 2008-01-24 2009-07-30 Coherex Medical, Inc. Systems and methods for reduction of atrial fibrillation
US8617145B2 (en) 2008-01-25 2013-12-31 Intrepid Medical, Inc. Methods of treating a cardiac arrhythmia by thoracoscopic production of a Cox maze III lesion set
US20090228003A1 (en) 2008-03-04 2009-09-10 Prorhythm, Inc. Tissue ablation device using radiofrequency and high intensity focused ultrasound
US9011425B2 (en) 2008-03-12 2015-04-21 Afreeze Gmbh Ablation system
US20100004623A1 (en) 2008-03-27 2010-01-07 Angiodynamics, Inc. Method for Treatment of Complications Associated with Arteriovenous Grafts and Fistulas Using Electroporation
US8538509B2 (en) 2008-04-02 2013-09-17 Rhythmia Medical, Inc. Intracardiac tracking system
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US9198733B2 (en) 2008-04-29 2015-12-01 Virginia Tech Intellectual Properties, Inc. Treatment planning for electroporation-based therapies
US8992517B2 (en) 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US8926606B2 (en) 2009-04-09 2015-01-06 Virginia Tech Intellectual Properties, Inc. Integration of very short electric pulses for minimally to noninvasive electroporation
US20090281477A1 (en) 2008-05-09 2009-11-12 Angiodynamics, Inc. Electroporation device and method
US9474574B2 (en) 2008-05-21 2016-10-25 Atricure, Inc. Stabilized ablation systems and methods
US8206385B2 (en) 2008-06-09 2012-06-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter assembly with front-loaded tip and multi-contact connector
US20090306651A1 (en) 2008-06-09 2009-12-10 Clint Schneider Catheter assembly with front-loaded tip
EP2317952A1 (en) 2008-07-17 2011-05-11 Maestroheart SA Medical device for tissue ablation
US8585695B2 (en) 2008-07-22 2013-11-19 Hue-Teh Shih Systems and methods for noncontact ablation
US8221411B2 (en) 2008-07-28 2012-07-17 Medtronic, Inc. Systems and methods for cardiac tissue electroporation ablation
JP4545210B2 (en) 2008-09-11 2010-09-15 日本ライフライン株式会社 Defibrillation catheter
US9119533B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8167876B2 (en) 2008-10-27 2012-05-01 Rhythmia Medical, Inc. Tracking system using field mapping
US9220924B2 (en) 2008-10-30 2015-12-29 Vytronus, Inc. System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion
US8414508B2 (en) 2008-10-30 2013-04-09 Vytronus, Inc. System and method for delivery of energy to tissue while compensating for collateral tissue
US9192789B2 (en) 2008-10-30 2015-11-24 Vytronus, Inc. System and method for anatomical mapping of tissue and planning ablation paths therein
US9192769B2 (en) 2008-10-31 2015-11-24 Medtronic, Inc. Shunt-current reduction techniques for an implantable therapy system
US9795442B2 (en) 2008-11-11 2017-10-24 Shifamed Holdings, Llc Ablation catheters
US8475445B2 (en) 2008-12-01 2013-07-02 Daniel Soroff Spectral analysis of intracardiac electrograms to predict identification of radiofrequency ablation sites
US8475450B2 (en) 2008-12-30 2013-07-02 Biosense Webster, Inc. Dual-purpose lasso catheter with irrigation
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
WO2010088301A1 (en) 2009-01-27 2010-08-05 Boveda Marco Medical Llc Catheters and methods for performing electrophysiological interventions
US8231603B2 (en) 2009-02-10 2012-07-31 Angiodynamics, Inc. Irreversible electroporation and tissue regeneration
JP5693471B2 (en) 2009-02-11 2015-04-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Insulated ablation catheter device and use thereof
EP2395933B1 (en) 2009-02-12 2016-05-04 UMC Utrecht Holding B.V. Ablation catheter for electrically isolating cardiac tissue
WO2010096347A1 (en) 2009-02-20 2010-08-26 Boston Scientific Scimed, Inc. Asymmetric dual directional steerable catheter sheath
US8747297B2 (en) 2009-03-02 2014-06-10 Olympus Corporation Endoscopic heart surgery method
JP2012521863A (en) 2009-03-31 2012-09-20 アンジオダイナミツクス・インコーポレイテツド System and method for treatment area estimation and interactive patient treatment planning of treatment devices
US8632534B2 (en) 2009-04-03 2014-01-21 Angiodynamics, Inc. Irreversible electroporation (IRE) for congestive obstructive pulmonary disease (COPD)
US8287532B2 (en) 2009-04-13 2012-10-16 Biosense Webster, Inc. Epicardial mapping and ablation catheter
WO2010120847A1 (en) 2009-04-14 2010-10-21 Old Dominion University Research Foundation System and method for applying plasma sparks to tissue
US9566107B2 (en) 2009-04-22 2017-02-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for radiofrequency ablation with increased depth and/or decreased volume of ablated tissue
CA2703347C (en) 2009-05-08 2016-10-04 Endosense Sa Method and apparatus for controlling lesion size in catheter-based ablation treatment
US8571647B2 (en) 2009-05-08 2013-10-29 Rhythmia Medical, Inc. Impedance based anatomy generation
US8103338B2 (en) 2009-05-08 2012-01-24 Rhythmia Medical, Inc. Impedance based anatomy generation
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
US8430875B2 (en) 2009-05-19 2013-04-30 Estech, Inc. (Endoscopic Technologies, Inc.) Magnetic navigation systems and methods
WO2010138919A2 (en) 2009-05-28 2010-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
GB2472216A (en) * 2009-07-28 2011-02-02 Gyrus Medical Ltd Bipolar electrosurgical instrument with four electrodes
US20110028962A1 (en) 2009-07-31 2011-02-03 Randell Werneth Adjustable pulmonary vein ablation catheter
US9216055B2 (en) 2009-08-05 2015-12-22 Scr Inc. Systems, devices and methods for treating the heart with ablation
US9042969B2 (en) 2009-08-12 2015-05-26 Angel Medical Systems, Inc. Heart rate correction system and methods for the detection of cardiac events
US20110054487A1 (en) 2009-09-02 2011-03-03 Circulite, Inc. Coaxial transseptal guide-wire and needle assembly
US20150321021A1 (en) 2009-09-03 2015-11-12 The Johns Hopkins University Method and device for treating cardiac arrhythmias
US9642534B2 (en) 2009-09-11 2017-05-09 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
US20110098694A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Methods and instruments for treating cardiac tissue through a natural orifice
US9861438B2 (en) 2009-12-11 2018-01-09 Biosense Webster (Israel), Ltd. Pre-formed curved ablation catheter
US8608735B2 (en) 2009-12-30 2013-12-17 Biosense Webster (Israel) Ltd. Catheter with arcuate end section
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US20110190727A1 (en) * 2010-02-02 2011-08-04 Boston Scientific Scimed, Inc. Intervascular catheter, system and method
US8556891B2 (en) 2010-03-03 2013-10-15 Medtronic Ablation Frontiers Llc Variable-output radiofrequency ablation power supply
WO2011112248A2 (en) 2010-03-08 2011-09-15 Alpha Orthopaedics, Inc. Methods and devices for real time monitoring of collagen and for altering collagen status
CN102917638B (en) 2010-04-08 2015-11-25 加利福尼亚大学董事会 For detecting, the method for Diagnosis and Treat biorhythm disorder, system and equipment
AU2011241103A1 (en) 2010-04-13 2012-11-08 Sentreheart, Inc. Methods and devices for treating atrial fibrillation
AU2011239637B2 (en) 2010-04-13 2014-12-11 Atricure, Inc. Methods and devices for pericardial access
US9510894B2 (en) 2010-04-28 2016-12-06 Biosense Webster (Israel) Ltd. Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance
US9943363B2 (en) 2010-04-28 2018-04-17 Biosense Webster, Inc. Irrigated ablation catheter with improved fluid flow
EP3338852B1 (en) 2010-05-05 2023-01-04 ElectroPhysiology Frontiers S.p.A. Anchored cardiac ablation catheter
US9924997B2 (en) 2010-05-05 2018-03-27 Ablacor Medical Corporation Anchored ablation catheter
US9655677B2 (en) 2010-05-12 2017-05-23 Shifamed Holdings, Llc Ablation catheters including a balloon and electrodes
KR101455746B1 (en) 2010-06-08 2014-10-28 도레이 카부시키가이샤 Catheter for measuring electric potential
ITRM20100314A1 (en) 2010-06-09 2011-12-10 Luca Viviana De CATHETER WITH REVERSIBLE STABILITY, FOR STABILIZATION DURING THE ABLATION TRANSCATETERE BY MEANS OF RADIO FREQUENCY.
US20120029512A1 (en) * 2010-07-30 2012-02-02 Willard Martin R Balloon with surface electrodes and integral cooling for renal nerve ablation
CN103037792B (en) 2010-07-30 2016-07-13 Umc乌德勒支控股有限公司 The combination of generator, generator and conduit and the method for offer electric pulse
JP2012050538A (en) 2010-08-31 2012-03-15 Terumo Corp Ablation device
US9289606B2 (en) 2010-09-02 2016-03-22 St. Jude Medical, Atrial Fibrillation Division, Inc. System for electroporation therapy
US20120089089A1 (en) 2010-10-12 2012-04-12 Ethicon Endo-Surgery, Inc. Methods of magnetically guiding and axially aligning distal ends of surgical devices
EP2627274B1 (en) 2010-10-13 2022-12-14 AngioDynamics, Inc. System for electrically ablating tissue of a patient
EP2629690B1 (en) * 2010-10-20 2019-07-31 Medtronic Ardian Luxembourg S.à.r.l. Catheter apparatuses having expandable mesh structures for renal neuromodulation
US9877781B2 (en) 2010-11-19 2018-01-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrode catheter device with indifferent electrode for direct current tissue therapies
US20120265198A1 (en) 2010-11-19 2012-10-18 Crow Loren M Renal nerve detection and ablation apparatus and method
US11246653B2 (en) * 2010-12-07 2022-02-15 Boaz Avitall Catheter systems for cardiac arrhythmia ablation
US20120232409A1 (en) * 2010-12-15 2012-09-13 Stahmann Jeffrey E System and method for renal artery occlusion during renal denervation therapy
US20120158021A1 (en) 2010-12-19 2012-06-21 Mitralign, Inc. Steerable guide catheter having preformed curved shape
WO2012088149A2 (en) 2010-12-20 2012-06-28 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US9308041B2 (en) 2010-12-22 2016-04-12 Biosense Webster (Israel) Ltd. Lasso catheter with rotating ultrasound transducer
DE102010064101B4 (en) 2010-12-23 2017-02-23 Siemens Healthcare Gmbh Pair of endocardial and epicardial catheters and catheters
US20120303019A1 (en) 2010-12-25 2012-11-29 Xue Zhao Kind of cardiac ablation catheter with guide-wire
US9149327B2 (en) 2010-12-27 2015-10-06 St. Jude Medical Luxembourg Holding S.À.R.L. Prediction of atrial wall electrical reconnection based on contact force measured during RF ablation
JP6027024B2 (en) 2010-12-27 2016-11-16 セント・ジュード・メディカル・ルクセンブルク・ホールディング・エスエーアールエル Prediction of atrial wall electrical reconnection based on contact force measured during RF ablation
US9572620B2 (en) 2010-12-29 2017-02-21 Kyungmoo Ryu System and method for treating arrhythmias in the heart using information obtained from heart wall motion
US9044245B2 (en) 2011-01-05 2015-06-02 Medtronic Ablation Frontiers Llc Multipolarity epicardial radiofrequency ablation
US9095262B2 (en) 2011-01-05 2015-08-04 Mehdi Razavi Guided ablation devices, systems, and methods
US9002442B2 (en) 2011-01-13 2015-04-07 Rhythmia Medical, Inc. Beat alignment and selection for cardiac mapping
US9486273B2 (en) 2011-01-21 2016-11-08 Kardium Inc. High-density electrode-based medical device system
CA2764494A1 (en) 2011-01-21 2012-07-21 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9937002B2 (en) 2011-03-08 2018-04-10 Nexus Control Systems, Llc Ablation catheter system with safety features
EP2683317B1 (en) 2011-03-08 2019-11-20 Nexus Control Systems, LLC Ablation catheter system with safety features
CN106510679A (en) 2011-04-13 2017-03-22 维特罗纳斯有限公司 Integrated ablation and mapping system
WO2012151301A1 (en) 2011-05-02 2012-11-08 Topera, Inc. System and method for targeting heart rhythm disorders using shaped ablation
KR101248959B1 (en) 2011-05-12 2013-04-01 신경민 Electrode device having flexible tube for high frequency thermotherapy
US9072518B2 (en) 2011-05-31 2015-07-07 Atricure, Inc. High-voltage pulse ablation systems and methods
US20120310230A1 (en) 2011-06-01 2012-12-06 Angiodynamics, Inc. Coaxial dual function probe and method of use
US20120316557A1 (en) 2011-06-08 2012-12-13 Tyco Healthcare Group Lp Septoplasty Instrument
EP2823857B1 (en) 2011-06-15 2015-08-12 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Apparatus for terminating an atrial fibrillation of an atrium of a heart
JP6139518B2 (en) 2011-07-05 2017-05-31 カーディオインサイト テクノロジーズ インコーポレイテッド Positioning for ECG mapping
WO2013013099A1 (en) 2011-07-19 2013-01-24 Adagio Medical, Inc. Methods and devices for the treatment of atrial fibrillation
US20130030430A1 (en) 2011-07-29 2013-01-31 Stewart Mark T Intracardiac tools and methods for delivery of electroporation therapies
US9387031B2 (en) * 2011-07-29 2016-07-12 Medtronic Ablation Frontiers Llc Mesh-overlayed ablation and mapping device
US10085799B2 (en) * 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US20130158621A1 (en) 2011-12-20 2013-06-20 Jiang Ding Ectopic-triggered para-his stimulation
US9072902B2 (en) * 2011-12-23 2015-07-07 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US8825130B2 (en) 2011-12-30 2014-09-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrode support structure assemblies
US9687289B2 (en) 2012-01-04 2017-06-27 Biosense Webster (Israel) Ltd. Contact assessment based on phase measurement
JP6317927B2 (en) * 2012-01-09 2018-04-25 ムー・メディカル・デバイスズ・エルエルシーMoe Medical Devices Llc Plasma assisted skin treatment
US8876817B2 (en) 2012-01-10 2014-11-04 Boston Scientific Scimed Inc. Electrophysiology system and methods
US9414881B2 (en) 2012-02-08 2016-08-16 Angiodynamics, Inc. System and method for increasing a target zone for electrical ablation
US8808273B2 (en) 2012-02-10 2014-08-19 Biosense Webster (Israel) Ltd. Electrophysiology catheter with mechanical use limiter
US9095350B2 (en) 2012-05-01 2015-08-04 Medtronic Ablation Frontiers Llc Impedance detection of venous placement of multi-electrode catheters
WO2013165584A1 (en) 2012-05-04 2013-11-07 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for controlling delivery of ablation energy to tissue
US9693832B2 (en) 2012-05-21 2017-07-04 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US9554847B2 (en) 2012-07-02 2017-01-31 Biosense Webster (Israel) Ltd. Real time assessment of ablation from electrocardiogram signals
US9101374B1 (en) 2012-08-07 2015-08-11 David Harris Hoch Method for guiding an ablation catheter based on real time intracardiac electrical signals and apparatus for performing the method
JP6301926B2 (en) 2012-08-09 2018-03-28 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Catheter, catheter system, and method for piercing tissue structure
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US20140052216A1 (en) 2012-08-15 2014-02-20 Ethicon Endo-Surgery, Inc. Methods for promoting wound healing
US9801681B2 (en) 2012-08-17 2017-10-31 Medtronic Ablation Frontiers Llc Catheters and methods for intracardiac electrical mapping
US9168004B2 (en) 2012-08-20 2015-10-27 Biosense Webster (Israel) Ltd. Machine learning in determining catheter electrode contact
WO2014031800A1 (en) 2012-08-22 2014-02-27 Energize Medical Llc Therapeutic energy systems
CA2881457C (en) 2012-08-31 2021-10-26 Acutus Medical, Inc. Catheter system and methods of medical uses of same, including diagnostic and treatment uses for the heart
JP2014054430A (en) * 2012-09-13 2014-03-27 Nippon Koden Corp Catheter
US11096741B2 (en) 2012-10-10 2021-08-24 Biosense Webster (Israel) Ltd. Ablation power control based on contact force
US9827036B2 (en) 2012-11-13 2017-11-28 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US9757185B2 (en) 2012-11-29 2017-09-12 Gyrus Acmi, Inc. Quadripolar forceps
WO2014089373A1 (en) 2012-12-05 2014-06-12 University Of Rochester Catheter with integrated transeptal puncture needle
US9023036B2 (en) 2012-12-07 2015-05-05 Biosense Webster (Israel) Ltd. Lasso catheter with tip electrode
US9474850B2 (en) 2012-12-11 2016-10-25 Biosense Webster (Israel) Ltd. Lasso catheter with guide wire
US9078667B2 (en) 2012-12-11 2015-07-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter having reduced force concentration at tissue contact site
JP2016507272A (en) 2012-12-21 2016-03-10 ヴォルカノ コーポレイションVolcano Corporation Functional gain measurement technique and display
US10537286B2 (en) 2013-01-08 2020-01-21 Biosense Webster (Israel) Ltd. Catheter with multiple spines of different lengths arranged in one or more distal assemblies
CN104837430A (en) 2013-01-31 2015-08-12 雷纳尔动力有限公司 Ablation catheter with insulation
US9031642B2 (en) 2013-02-21 2015-05-12 Medtronic, Inc. Methods for simultaneous cardiac substrate mapping using spatial correlation maps between neighboring unipolar electrograms
US9474486B2 (en) 2013-03-08 2016-10-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Basket for a multi-electrode array catheter
US9519021B2 (en) 2013-03-11 2016-12-13 Covidien Lp Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9486272B2 (en) 2013-03-12 2016-11-08 Biosense Webster (Israel) Ltd. Force feedback device and method for catheters
EP2967738A1 (en) 2013-03-15 2016-01-20 Medtronic Ardian Luxembourg S.à.r.l. Treatment device with electrode contact surface configured for enhancing uniformity of electrical energy distribution and associated devices and methods
EP3510919A3 (en) 2013-03-27 2019-10-16 Autonomix Medical, Inc. Systems for neurological traffic and/or receptor functional evaluation and/or modification
CN110141177B (en) 2013-04-08 2021-11-23 阿帕玛医疗公司 Ablation catheter
US10575743B2 (en) 2013-04-11 2020-03-03 Biosense Webster (Israel) Ltd. High electrode density basket catheter
EP3003192A1 (en) 2013-06-05 2016-04-13 Tel HaShomer Medical Research Infrastructure and Services Ltd. Myocardial ablation by irreversible electroporation
WO2015021113A1 (en) 2013-08-06 2015-02-12 Memorial Sloan Kettering Cancer Center System, method and computer-accessible medium for in-vivo tissue ablation and/or damage
US9616233B2 (en) 2013-08-29 2017-04-11 Boston Scientific Neuromodulation Corporation Systems and method of adjusting the compliance voltage in a neuromodulation device
CN105636514B (en) 2013-11-01 2020-06-05 波士顿科学医学有限公司 Cardiac mapping using delay interpolation
EP3071137A1 (en) 2013-11-20 2016-09-28 Boston Scientific Scimed, Inc. Ablation medical devices and methods for making and using ablation medical devices
US20150173828A1 (en) 2013-12-23 2015-06-25 Boaz Avitall Small loop ablation catheter
US20160324564A1 (en) 2013-12-27 2016-11-10 Empire Technology Development Llc Devices and techniques for ablative treatment
EP3091921B1 (en) 2014-01-06 2019-06-19 Farapulse, Inc. Apparatus for renal denervation ablation
CN105939686A (en) 2014-01-06 2016-09-14 衣阿华方法股份有限公司 Devices and methods for delivering therapeutic electrical impulses
JP6779133B2 (en) 2014-02-11 2020-11-04 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Ablation catheter
AU2015218223B2 (en) 2014-02-17 2019-05-16 Children's National Medical Center Delivery tool and method for devices in the pericardial space
CN105960200B (en) 2014-02-25 2019-08-30 圣犹达医疗用品心脏病学部门有限公司 The system and method classified for using electro physiology property to arrhythmia cordis source
GEP20197025B (en) 2014-03-20 2019-10-10 S P A Atricath Ablation catheter and ablation apparatus
US10279170B2 (en) 2014-03-21 2019-05-07 Mayo Foundation For Medical Education And Research Multi-electrode epicardial pacing
US9956035B2 (en) 2014-03-27 2018-05-01 Biosense Webster (Israel) Ltd. Temperature measurement in catheter
US20150289923A1 (en) 2014-04-14 2015-10-15 Virginia Tech Intellectual Properties, Inc. Treatment planning for electrical-energy based therapies based on cell characteristics
US10342606B2 (en) 2014-05-06 2019-07-09 Cosman Instruments, Llc Electrosurgical generator
EP4238521A3 (en) 2014-05-07 2023-11-29 Farapulse, Inc. Methods and apparatus for selective tissue ablation
EP3142584A1 (en) 2014-05-16 2017-03-22 Iowa Approach Inc. Methods and apparatus for multi-catheter tissue ablation
WO2015187430A2 (en) 2014-06-04 2015-12-10 Boston Scientific Scimed, Inc. Electrode assembly
WO2015192027A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective transurethral tissue ablation
WO2015192018A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective tissue ablation with cooling
US12114911B2 (en) 2014-08-28 2024-10-15 Angiodynamics, Inc. System and method for ablating a tissue site by electroporation with real-time pulse monitoring
WO2016059027A1 (en) 2014-10-13 2016-04-21 Dr Philippe Debruyne Bvba Limited ablation for the treatment of sick sinus syndrome and other inappropriate sinus bradycardias
EP3206612B1 (en) 2014-10-13 2022-06-29 Boston Scientific Scimed Inc. Tissue diagnosis and treatment using mini-electrodes
EP3206613B1 (en) 2014-10-14 2019-07-03 Farapulse, Inc. Apparatus for rapid and safe pulmonary vein cardiac ablation
US10231778B2 (en) 2014-10-20 2019-03-19 Biosense Webster (Israel) Ltd. Methods for contemporaneous assessment of renal denervation
WO2016065337A1 (en) 2014-10-24 2016-04-28 Boston Scientific Scimed Inc. Medical devices with a flexible electrode assembly coupled to an ablation tip
WO2016081650A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. Ablation devices, systems and methods of using a high-resolution electrode assembly
AU2015358385B2 (en) 2014-12-03 2020-09-03 Medtronic Ireland Manufacturing Unlimited Company Systems and methods for modulating nerves or other tissue
US10271893B2 (en) 2014-12-15 2019-04-30 Medtronic Ablation Frontiers Llc Timed energy delivery
US9743854B2 (en) 2014-12-18 2017-08-29 Boston Scientific Scimed, Inc. Real-time morphology analysis for lesion assessment
US9782099B2 (en) 2014-12-31 2017-10-10 Biosense Webster (Israel) Ltd. Basket catheter with improved spine flexibility
EP3294410B1 (en) 2015-05-12 2024-08-21 National University of Ireland Galway Devices for therapeutic nasal neuromodulation
US11298175B2 (en) 2015-05-12 2022-04-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Asymmetric balanced waveform for AC cardiac irreversible electroporation
US20160361109A1 (en) 2015-06-11 2016-12-15 Massachusetts Institute Of Technology Methods for inducing electroporation and tissue ablation
US9949656B2 (en) 2015-06-29 2018-04-24 Biosense Webster (Israel) Ltd. Catheter with stacked spine electrode assembly
US9931487B2 (en) 2015-08-06 2018-04-03 Boston Scientific Scimed, Inc. Bidirectional steering control apparatus for a catheter
CN107921258B (en) 2015-08-06 2021-09-07 美敦力公司 Cardiac pulsed field ablation
US20170071543A1 (en) 2015-09-14 2017-03-16 Biosense Webster (Israel) Ltd. Convertible basket catheter
CN108472481A (en) 2015-10-06 2018-08-31 哈尔西恩医疗有限公司 Aortorenal ganglions detects
US20170105793A1 (en) 2015-10-15 2017-04-20 Boston Scientific Scimed, Inc. Energy delivery devices and related methods of use
AU2016362114B2 (en) 2015-12-01 2020-07-16 Symap Medical (Suzhou), Ltd System and method for mapping functional nerves innervating wall of arteries,3-D mapping and catheters for same
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
EP4026506B1 (en) 2016-01-05 2023-10-04 Farapulse, Inc. Systems for delivery of ablative energy to tissue
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
JP6847960B2 (en) 2016-01-05 2021-03-24 ファラパルス,インコーポレイテッド Systems, devices, and methods for delivering the cauterizing energy of a pulsed electric field to endocardial tissue
US10874451B2 (en) 2016-02-29 2020-12-29 Pulse Biosciences, Inc. High-voltage analog circuit pulser and pulse generator discharge circuit
US10548665B2 (en) 2016-02-29 2020-02-04 Pulse Biosciences, Inc. High-voltage analog circuit pulser with feedback control
WO2017192495A1 (en) 2016-05-02 2017-11-09 Affera, Inc. System comprising a catheter and an expandable electrode and a method of forming a lesion
WO2017218734A1 (en) 2016-06-16 2017-12-21 Iowa Approach, Inc. Systems, apparatuses, and methods for guide wire delivery
CN109788979B (en) 2016-06-27 2022-04-19 盖能适治疗股份有限公司 Generator and catheter with electrodes and method for treating a lung passageway
JP2019535386A (en) 2016-11-11 2019-12-12 ナショナル ユニバーシティ オブ アイルランド ゴールウェイ Devices, systems, and methods for identifying, monitoring, and / or evaluating therapeutic nasal nerve modulation
US20180184982A1 (en) 2017-01-05 2018-07-05 Biosense Webster (Israel) Ltd. Hybrid balloon basket catheter
US10912609B2 (en) 2017-01-06 2021-02-09 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
EP3612103B1 (en) 2017-04-20 2022-02-09 Medtronic, Inc. Stabilization of a transseptal delivery device
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
WO2018226761A1 (en) 2017-06-06 2018-12-13 Cardiac Pacemakers, Inc. Ablation delivery using a catheter having a semi-permeable inflatable balloon structure
US20180360534A1 (en) 2017-06-19 2018-12-20 St. Jude Medical, Cardiology Division, Inc. Apparatuses and methods for high-density sensing and ablation during a medical procedure
WO2019126260A1 (en) 2017-12-19 2019-06-27 St. Jude Medical, Cardiology Division, Inc. Methods of assessing contact between an electrode and tissue using complex impedance measurements
AU2018397685A1 (en) 2017-12-26 2020-07-23 Galvanize Therapeutics, Inc. Methods, apparatuses, and systems for the treatment of disease states and disorders
US20190336198A1 (en) 2018-05-03 2019-11-07 Farapulse, Inc. Systems, devices, and methods for ablation using surgical clamps
EP3790486A1 (en) 2018-05-07 2021-03-17 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
WO2020236558A1 (en) 2019-05-17 2020-11-26 Mayo Foundation For Medical Education And Research Catheters that deliver pulsed electrical field for targeted cellular ablation
US20210015550A1 (en) 2019-07-17 2021-01-21 Biosense Webster (Israel) Ltd. Catheter for endovascular sympathetic denervation of spasmed intracranial arteries

Also Published As

Publication number Publication date
EP3091921B1 (en) 2019-06-19
EP3091921A1 (en) 2016-11-16
US10517672B2 (en) 2019-12-31
WO2015103574A1 (en) 2015-07-09
US20160310211A1 (en) 2016-10-27
EP3091921A4 (en) 2017-09-13
US20200297411A1 (en) 2020-09-24
US11589919B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
US20230190368A1 (en) Apparatus and methods for renal denervation ablation
US20240315769A1 (en) Methods and apparatus for selective tissue ablation
US20220257938A1 (en) Expandable elements for delivery of electric fields
CN111065327B (en) Systems, devices, and methods for ventricular focal ablation
EP3884895B1 (en) Electroporation systems and catheters for electroporation systems
JP6854015B2 (en) Devices and related methods and systems for therapeutic nasal nerve regulation
JP6611722B2 (en) Devices and methods for delivering therapeutic electrical impulses
US20220133403A1 (en) Systems and methods for ablation using non-adjacent bipoles
US12121290B2 (en) Electrode assembly including expandable isolation member
JP7428816B2 (en) Electrode assembly including expandable isolation member
US20240099769A1 (en) Methods and Systems for Thermal Enhancement of Electroporation
CN112716599A (en) Electrode assembly including expandable spacer member

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FARAPULSE, INC.;REEL/FRAME:067118/0441

Effective date: 20210806

Owner name: IOWA APPROACH, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LONG, GARY;GLL, LLC;REEL/FRAME:067117/0773

Effective date: 20150410

Owner name: FARAPULSE, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:IOWA APPROACH, INC.;REEL/FRAME:067125/0398

Effective date: 20180531