US20230176461A1 - Projection Display Apparatus - Google Patents

Projection Display Apparatus Download PDF

Info

Publication number
US20230176461A1
US20230176461A1 US17/922,235 US202117922235A US2023176461A1 US 20230176461 A1 US20230176461 A1 US 20230176461A1 US 202117922235 A US202117922235 A US 202117922235A US 2023176461 A1 US2023176461 A1 US 2023176461A1
Authority
US
United States
Prior art keywords
light
display apparatus
projection display
prism
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/922,235
Other languages
English (en)
Inventor
Lebao YANG
Zhicong XIE
Bo Tian
Jing Zhang
Fei Zhao
Jingfei Zhang
Zhenlin XIE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of US20230176461A1 publication Critical patent/US20230176461A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/117Adjustment of the optical path length
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • This application relates to the field of projection display technologies, and in particular, to a projection display apparatus.
  • An existing projection display apparatus generally includes a light emitting module, a modulation module, and a lens module that are successively connected to each other. After light emitted from the light emitting module is modulated by the modulation module, the light is projected by the lens module to a specific position (for example, a screen) for displaying an image.
  • a modulation module based on a liquid crystal on silicon or reflective liquid crystal light valve (liquid crystal on silicon, LCOS) modulator generally uses a plurality of polarizing beam splitters (polarizing beam splitter, PBS) and one light-combining prism (also referred to as an X prism) to combine beams, thus needs a relatively large quantity of component parts, and has a relatively complex structure.
  • polarizing beam splitter polarizing beam splitter, PBS
  • one light-combining prism also referred to as an X prism
  • This application provides a projection display apparatus, to resolve a problem that a modulation module in a related technology has a relatively large quantity of component parts and a relatively complex structure.
  • the projection display apparatus includes an optical machine module.
  • the optical machine module includes a light emitting module and a modulation module.
  • the light emitting module includes a light source that is configured to emit linearly polarized light.
  • the modulation module includes a modulation component.
  • the modulation component includes a light-combining prism and an LCOS modulator.
  • the LCOS modulator is configured to generate modulated light and unmodulated light.
  • the light-combining prism includes four rectangular prisms.
  • the light-combining prism has four sides and four intersection planes formed by the four rectangular prisms.
  • the LCOS modulator includes a first LCOS modulator, a second LCOS modulator, and a third LCOS modulator.
  • the first LCOS modulator, the second LCOS modulator, and the third LCOS modulator are respectively disposed on light emitting sides of three different sides. At least two of the four intersection planes are configured to split light emitted from the light source in the light-combining prism. At least two of the four intersection planes are configured to combine light emitted from the light source in the light-combining prism.
  • a light-combining component in the modulation module in this application includes only the light-combining prism and the LCOS modulator, that is, a plurality of polarizing beam splitters are omitted. In this way, component parts of the light-combining component can be reduced, and a structure is simple, so that manufacturing costs and a forming size of the projection display apparatus can be reduced.
  • the light source includes a red laser light source configured to emit red light, a green laser light source configured to emit green light, and a blue laser light source configured to emit blue light.
  • a red laser light source configured to emit red light
  • a green laser light source configured to emit green light
  • a blue laser light source configured to emit blue light.
  • One beam of monochromatic light in the red light, the green light, and the blue light is in a first linear polarization state
  • the other two beams of monochromatic light are in a second linear polarization state
  • the first linear polarization state and the second linear polarization state are different.
  • One beam of monochromatic light with the first linear polarization state and two beams of monochromatic light with the second linear polarization state are used to form white light, so that the white light can be incident on the light-combining prism from a first high transparent surface or a second high transparent surface, and can be emitted from the light-combining prism through a third high transparent surface or a fourth high transparent surface.
  • two intersection planes are polarizing beam splitting planes
  • the other two intersection planes are dichroic planes
  • the polarizing beam splitting planes and the dichroic planes are distributed alternately. In this way, white light splitting and combining can be implemented.
  • a metal wire grid is disposed on a polarizing beam splitting plane on which two beams of monochromatic light with different linear polarization states can be split.
  • a beam splitting effect that is, transmitting P-state light and reflecting S-state light
  • a beam splitting angle is larger.
  • metal wire grids are disposed on the two polarizing beam splitting planes. In this way, a polarizing beam splitting effect of the red light can be better.
  • the light emitting module further includes a uniform light prism, the uniform light prism is disposed on a light emitting side of the green laser light source, and the uniform light prism is configured to weaken a speckle during laser projection.
  • the speckle during laser projection can be weakened by disposing the uniform light prism.
  • the uniform light prism is disposed on a light emitting side of each of the green laser light source and the red laser light source. In this way, the costs and size of the projection display apparatus can be further reduced without affecting a projection effect.
  • the uniform light prism includes a plurality of parallelogram prisms arranged in sequence, and a semi-transparent and semi-reflective membrane is disposed on bevel edges of each parallelogram prism.
  • a length of a horizontal edge of the parallelogram prism is greater than a coherence length of incident light that is incident on the parallelogram prism.
  • An optical path difference of light emitted from different paths is equal to the length of the horizontal edge of the parallelogram prism. Therefore, when the length of the horizontal edge of the parallelogram prism is greater than the coherence length of the incident light that is incident on the parallelogram prism, coherence of laser can be reduced, and a speckle during laser projection can be weakened.
  • the light emitting module further includes a beam-combining component, a first focusing lens, a diffusion wheel, and a collimating lens that are successively disposed along an optical path of the light source.
  • the beam-combining component is configured to combine beams of red light, green light, and blue light
  • the uniform light prism is disposed between the green laser light source and the beam-combining component corresponding to the green laser light source. In this way, light emitted from the light emitting module can be more uniform and a speckle has less impact.
  • the modulation module further includes a uniform light component.
  • the uniform light component successively includes a compound eye lens array and a focusing lens along an optical path.
  • the compound eye lens array is disposed on a light emitting side of the collimating lens, and the modulation component is disposed on a light emitting side of the focusing lens.
  • FIG. 1 is a schematic diagram of a structure of a projection display apparatus according to an embodiment of this application.
  • FIG. 2 is a schematic diagram of a structure of an optical machine module in the projection display apparatus shown in FIG. 1 :
  • FIG. 3 is a schematic diagram of a structure of a light emitting module in the optical machine module shown in FIG. 2 ;
  • FIG. 4 is a schematic diagram of a structure of the light emitting module shown in FIG. 3 after a first upper cover is removed;
  • FIG. 5 is a schematic diagram of a structure of a uniform light prism according to an embodiment of this application.
  • FIG. 6 is a schematic diagram of a structure of a uniform light prism according to another embodiment of this application:
  • FIG. 7 is a schematic diagram of decomposition of a modulation module in the light emitting module shown in FIG. 3 ;
  • FIG. 8 is a schematic diagram of a structure of a light-combining component in the modulation module shown in FIG. 7 ;
  • FIG. 9 is a schematic diagram of a structure of a lens module in the light emitting module shown in FIG. 3 ;
  • FIG. 10 is a schematic diagram of an application scenario of a projection display apparatus according to an embodiment of this application.
  • 1-optical machine module 11-light emitting module; 111-light source; 111a-red laser light source; 111b-green laser light source; 111c-blue laser light source; 112a-first dichroic mirror; 112b-first reflector; 112c-second dichroic mirror; 113-first focusing lens; 114-diffusion wheel; 115-collimating lens; 116-uniform light prism; 116a-parallelogram prism; 116b-semi-transparent and semi-reflective membrane; 117-first upper cover; 118-first lower cover; 119-first connector; 12-modulation module; 121-uniform light component; 121a-first compound eye lens array; 121b-second compound eye lens array; 121c-second focusing lens; 121d-second reflector; 121e-third focusing lens; 122-light-combining component; 122a-light-combining prism; 122a1-first high transparent surface; 122a2-second high transparent surface
  • the projection display apparatus includes a housing 5 (an upper cover disposed on the housing 5 is omitted in FIG. 1 ), and an optical machine module 1 , a cooling module 2 , and a control module 3 that are accommodated in the housing 5 .
  • the optical machine module 1 includes a light emitting module 11 , a modulation module 12 , and a lens module 13 that are successively connected (refer to FIG. 2 ).
  • the cooling module 2 is configured to cool the optical machine module 1 and the control module 3 .
  • the control module 3 is configured to control the optical machine module 1 and the cooling module 2 to work.
  • the cooling module 2 includes an air cooling module 21 and a liquid cooling module 22 .
  • the air cooling module 21 and the liquid cooling module 22 may be fastened to a sidewall of the housing 5 , or certainly may be fastened to another position of the housing 5 .
  • the air cooling module 21 includes a first fan 211 .
  • the air cooling module 21 in FIG. 1 includes two first fans 211 .
  • One of the first fans 211 is opposite to the light emitting module 11 of the optical machine module 1
  • the other first fan 211 is opposite to the modulation module 12 of the optical machine module 1 . This is because the light emitting module 11 and the modulation module 12 are two parts of the optical machine module 1 that generate maximum heat.
  • the light emitting module 11 is a part of the optical machine module 1 that generates maximum heat.
  • the liquid cooling module 22 includes a heat dissipation patch 221 (refer to FIG. 3 ), a liquid cooling heat sink 222 , a cooling pipeline (not shown in the figure) connected between the heat dissipation patch 221 and the liquid cooling heat sink 222 , a second fan 223 opposite to the liquid cooling heat sink 222 , and a liquid pump 224 disposed on the cooling pipeline.
  • the heat dissipation patch 221 is attached to the outside of a light source 111 (refer to FIG. 4 ) of the light emitting module 11 , so as to rapidly and effectively absorb heat generated by the light source 111 , thereby effectively improving a heat dissipation effect of the projection display apparatus.
  • the control module 3 includes a signal transmitter 31 , a driver 32 connected to a modulator of the modulation module 12 , and a main controller 33 separately connected to the signal transmitter 31 and the modulator.
  • all components such as the signal transmitter 31 , the driver 32 , and the main controller 33 may be PCB boards, and functional modules or devices that can implement the foregoing component functions are disposed on the PCB boards.
  • An external image signal is transmitted to the main controller 33 by using the signal transmitter 31 .
  • the main controller 33 controls, based on the received image signal, the driver 32 to move.
  • the driver 32 controls the modulator to modulate light emitted from the light source to obtain an image signal same as that being input into the projection display apparatus.
  • the main controller 33 may further include but is not limited to controlling the light source 111 to emit light and the cooling module 2 to work. It may be understood that the control module 3 may also generate heat when working.
  • the driver 32 may be disposed at a position adjacent to the modulation module 12 .
  • the first fan 211 in FIG. 1 may be opposite to the driver 32 and the modulation module 12 .
  • each modulator is connected to one driver 32 .
  • there are three drivers 32 in FIG. 1 that is, a projection display apparatus with three modulators is used in this application.
  • the projection display apparatus may alternatively use one modulator or two modulators based on an actual requirement.
  • a type of the driver 32 may be a field-programmable gate array (field-programmable gate array, FPGA) chip, an application-specific integrated circuit (application-specific integrated circuit, ASIC) chip, a digital signal processor (digital signal processor, DSP) chip, or the like.
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • DSP digital signal processor
  • the projection display apparatus further includes a power supply 4 , and the power supply 4 may be electrically connected to the optical machine module 1 , the cooling module 2 , and the control module 3 , so as to supply power to the three.
  • a type of the power supply 4 may be, for example, a lead storage battery or a lithium battery, which is not specifically limited in this application.
  • optical machine module 1 The following describes various parts of the optical machine module 1 .
  • the light emitting module 11 includes a light source 111 configured to emit polarized light.
  • the light source 111 referred to in this application includes a case in which the light source 111 is a light emitting element that directly emits polarized light (for example, a semiconductor light emitting element, a semiconductor light emitting element array, or a light bulb light source), and also includes a case in which the light source 111 is a light emitting module 11 obtained by combining a light emitting element with another optical element and capable of emitting polarized light (for example, a light emitting module 11 obtained by combining a light emitting element and a lens, and a light emitting module 11 obtained by combining a light emitting element and a polarization conversion element).
  • the light source described in this application may be considered as a light-emitting “black box”, and the “black box” may include any type of optical element.
  • the light source 111 is a laser light source, such as a laser diode light source, a laser diode array light source, or a laser device light source.
  • the light source 111 has a characteristic of a small etendue, so that when entering the modulation module 12 , the emitted polarized light has a relatively small light spot, a relatively small light divergence angle, and a relatively small etendue, which can avoid a case that a large quantity of light cannot be used because of a large divergence angle, improving light utilization.
  • an etendue of the light source is far greater than an etendue of the laser light source.
  • a light divergence angle will be enlarged. As a result, a large quantity of light cannot be used by the modulation module 12 , and is absorbed and converted into heat outside an effective optical surface of the modulation module 12 .
  • the light bulb or LED light source may alternatively be used as the light source 111 of the light emitting module 11 .
  • FIG. 4 is a schematic diagram of decomposition of FIG. 3 .
  • the light emitting module 11 includes a red laser light source 111 a , a green laser light source 111 b , and a blue laser light source 111 c .
  • the light emitting module 11 further includes a beam-combining component configured to combine beams of the three laser light sources, for example, may be a combination of a dichroic mirror and a focusing lens, or may be a combination of a dichroic mirror, a reflector, and a focusing lens.
  • the red laser light source 111 a is located on one side, and the green laser light source 111 b and the blue laser light source 111 c are located on a side perpendicular to the red laser light source 111 a .
  • a first dichroic mirror 112 a is disposed on a light emitting side of the red laser light source 111 a , and the first dichroic mirror 112 a is configured to transmit red light and reflect blue light and green light.
  • a reflector is disposed on a light emitting side of the green laser light source 111 b , and the reflector is configured to reflect green light.
  • a second dichroic mirror 112 c is disposed on a light emitting side of the blue laser light source 111 c , and the second dichroic mirror 112 c is configured to transmit blue light and reflect green light.
  • a specific optical path is as follows: The red laser light source 111 a emits red light. After passing through the first dichroic mirror 112 a , the red light is incident on a first focusing lens 113 . The blue laser light source 111 c emits blue light. After passing through the second dichroic mirror 112 c and the first dichroic mirror 112 a , the blue light is incident on the first focusing lens 113 . The green laser light source 111 b emits green light. After passing through the first reflector 112 b , the second dichroic mirror 112 c , and the first dichroic mirror 112 a , the green light is incident on the first focusing lens 113 .
  • the light emitting module 11 further includes a diffusion wheel 114 and a collimating lens 115 .
  • the diffusion wheel 114 is configured to eliminate a laser speckle.
  • the collimating lens 115 functions to enable light to be parallel and uniform within a longer distance range.
  • Light emitted from the first focusing lens 113 is emitted after successively passing through the diffusion wheel 114 and the collimating lens 115 , and is incident on the modulation module 12 .
  • the diffusion wheel 114 may be connected to a motor, so as to control rotation of the diffusion wheel 114 by using the motor, that is, the diffusion wheel 114 uniformly reflects, in a rotation manner, light incident on the diffusion wheel 114 .
  • the diffusion wheel 114 may be replaced by a diffusion sheet, and a difference between the diffusion sheet and the diffusion wheel 114 is that the diffusion sheet is fastened. From a perspective of eliminating the laser speckle, an effect of the diffusion wheel 114 is better than that of the diffusion sheet.
  • a speckle may exist during projection.
  • a uniform light prism 116 is disposed on a light emitting side (specifically, between the green laser light source 111 b and the reflector) of the green laser light source 111 b , and a function of the uniform light prism 116 is to weaken coherence of the laser light source itself, thereby weakening the speckle during projection.
  • a visibility function in a visible spectrum, a human eye is most sensitive to the middle (yellow green) of the spectrum, and is less sensitive to positions closer to both ends of the spectrum. Therefore, at least the uniform light prism 116 needs to be disposed on the light emitting side of the green laser light source 111 b , so as to reduce impact of a human eye on a speckle generated by green light during projection.
  • the uniform light prism 116 may alternatively be disposed on a light emitting side (specifically, between the red laser light source 111 a and the first dichroic mirror 112 a ) of the red laser light source 111 a , or the uniform light prism 116 may be disposed on a light emitting side (specifically, between the green laser light source 111 b and the reflector) of the blue laser light source 111 c .
  • the uniform light prism 116 is disposed on the light emitting side of the green laser light source 111 b
  • the uniform light prism 116 is also disposed on the light emitting side of the red laser light source 111 a .
  • the uniform light prism 116 is not disposed on the light emitting side of the blue laser light source 111 c , so as to further reduce costs and a size without affecting the projection effect.
  • the light emitting module 11 includes a first upper cover 117 and a first lower cover 118 fastened to the first upper cover 117 .
  • a first cavity is formed between the first upper cover 117 and the first lower cover 118 .
  • the light emitting module 11 is further provided with a first connector 119 configured to connect to the modulation module 12 , and the first connector 119 is fastened to the first upper cover 117 and the first lower cover 118 .
  • the foregoing components such as the red laser light source 111 a , the green laser light source 111 b , and the blue laser light source 111 c , the uniform light prism 116 , the first dichroic mirror 112 a , the second dichroic mirror 112 c , the first reflector 112 b , the first focusing lens 113 , the diffusion wheel 114 , and the collimating lens 115 , are all accommodated in the first cavity, so as to protect the foregoing components by using the first upper cover 117 and the first lower cover 118 .
  • the following describes a structure, a function, and a principle of the uniform light prism 116 .
  • FIG. 5 is a schematic diagram of a structure of the uniform light prism 116 .
  • the uniform light prism 116 includes a plurality of parallelogram prisms 116 a arranged in sequence.
  • a plane on which light is incident or emitted is a side
  • a plane perpendicular to the side is a principal section.
  • the prism may be classified into a triangular prism, a rectangular prism, a pentagonal prism, and a parallelogram prism.
  • a semi-transparent and semi-reflective membrane 116 b is disposed on bevel edges of each parallelogram prism 116 a , that is, after light is incident on the semi-transparent and semi-reflective membrane 116 b , half of the light is reflected and the other half of the light is transmitted.
  • parallelogram prisms 116 a at two ends of the uniform light prism 116 are not the case, because the parallelogram prisms 116 a each have total reflection with the outside (which may be considered as a gas). Therefore, when incident light is incident on the parallelogram prisms 116 a at two ends of the uniform light prism 116 , the light is fully reflected.
  • an angle between a bevel edge of each parallelogram prism 116 a and a horizontal edge is 45 degrees.
  • the incident light is LDn (where LDn is not incident light at two ends of the uniform light prism 116 , that is, LDn is not LD 1 ), and emitted light after the incident light LDn passes through the parallelogram prism 116 a is LDn 1 , LDn 2 , LDn 3 , and the like in sequence.
  • An optical path of LDn 1 is d 1
  • an optical path of LDn 2 is d 1 +d 2
  • an optical path of LDn 3 is d 1 +2d 2 , and so on.
  • An application principle is as follows: Each laser beam emitted by a light source is divided into a plurality of laser beams after passing through the uniform light prism 116 , and different paths are traveled by different laser beams, so that lengths of paths traveled by different emitted light such as LDn 1 and LDn 2 are different.
  • an optical path difference of emitted light of different paths is greater than a coherence length of incident light, coherence of laser can be reduced, and a speckle during laser projection can be weakened.
  • an optical path difference between LDn 1 and LDn 2 is d 2 .
  • d 2 is greater than a coherence length of LDn, coherence of laser can be reduced, and a speckle during laser projection can be weakened.
  • FIG. 6 is a schematic diagram of another structure of a uniform light prism 116 .
  • a difference between the uniform light prism 116 provided in this implementation and the uniform light prism 116 shown in FIG. 5 lies in that there are two rows of uniform light prisms 116 shown in FIG. 5 that are symmetrically disposed. Specifically, the two rows of uniform light prisms 116 shown in FIG. 5 are symmetrically disposed along horizontal edges of a parallelogram prism 116 a.
  • incident light is LDn.
  • emitted light after the incident light LDn passes through the parallelogram prism 116 a is LDn 1 , LDn 2 .
  • LDn 3 emitted light after the incident light LDn passes through the parallelogram prism 116 a.
  • An optical path of LDn 1 is 2d 1 +d 2
  • an optical path of LDn 2 is 2d 1
  • an optical path of LDn 3 is 2d 1 +d 2
  • an optical path of LDn 4 is 2d 1 +3d 2 , and so on.
  • an optical path difference between two beams of adjacent emitted light is d 2 , which is consistent with that in the foregoing implementation.
  • a principle which is further based on includes: A size of a speckle is represented by a speckle contrast ratio, and the speckle contrast ratio depends on uniformity of light intensity.
  • LDn in FIG. 5 is used as an example.
  • Light intensity of the incident light LDn is I.
  • light intensity of LDn 1 is 1 ⁇ 2I
  • light intensity of LDn 2 is 1 ⁇ 4I
  • light intensity of LDn 3 is 1 ⁇ 8I.
  • Light intensity of emitted light after LDn 3 is less than that of LDn 1 and that of LDn 2 , and can be ignored.
  • LDn in FIG. 6 is used as an example.
  • Light intensity of the incident light LDn is 1.
  • light intensity of LDn 1 is about 1 ⁇ 3I
  • light intensity of LDn 2 is about 1 ⁇ 3I.
  • Light intensity of each of LDn 3 and emitted light after LDn 3 is less than that of LDn 1 and that of LDn 2 , and can be ignored. Therefore, it may be learned by comparing the light intensity of LDn 1 and LDn 2 in FIG. 5 and the light intensity of LDn 1 and LDn 2 in FIG. 6 that the speckle contrast ratio of LDn 1 and LDn 2 in FIG. 6 is smaller. Therefore, light intensity of emitted light of the uniform light prism 116 shown in FIG. 6 is more uniform than that of the uniform light prism 116 shown in FIG. 5 , so that the speckle during laser projection can be further weakened.
  • the modulation module 12 includes a second upper cover 123 and a second lower cover 124 fastened to the second upper cover 123 , a second cavity is formed between the second upper cover 123 and the second lower cover 124 , and the second cavity is configured to accommodate a uniform light component 121 .
  • the modulation module 12 further includes a third upper cover 125 and a third lower cover 126 fastened to the third upper cover 125 , a third cavity is formed between the third upper cover 125 and the third lower cover 126 , and the third cavity is configured to accommodate a light-combining component 122 .
  • the modulation module 12 further includes a second connector 127 , and the second connector 127 is configured to connect to the uniform light component 121 and the light-combining component 122 .
  • the second connector 127 is fastened to the second upper cover 123 and the second lower cover 124 , and the other end is fastened to the third upper cover 125 and the third lower cover 126 .
  • the uniform light component 121 is disposed on a light emitting side of a light emitting module 11 .
  • the uniform light component 121 is disposed on a light emitting side of a collimating lens 115 .
  • the light emitting module 11 is connected to the second upper cover 123 and the second lower cover 124 of the modulation module 12 by using a first connector 119 .
  • the uniform light component 121 includes a compound eye lens array and a focusing lens. Light emitted from the light emitting module 11 first passes through the compound eye lens array, and then passes through the focusing lens, so that the light is irradiated on an LCOS modulator.
  • the compound eye lens array may be replaced with an optical wand, and the optical wand may be a solid optical wand or a hollow optical wand.
  • the compound eye lens array includes two columns of first compound eye lens arrays 121 a and second compound eye lens arrays 121 b that are arranged in parallel, and the focusing lens includes a second focusing lens 121 c and a third focusing lens 121 e . In this way, uniform lighting can be implemented.
  • a specific implementation principle is not described herein.
  • the uniform light component 121 and the light-combining component 122 may be disposed vertically, so that structural compactness can be improved. Therefore, a reflector may be disposed in the uniform light component 121 , for example, a second reflector 121 d may be disposed between a first focusing lens 113 and the second focusing lens 121 c .
  • the uniform light component 121 and the light-combining component 122 may alternatively be disposed in parallel. In this way, the uniform light component 121 does not need to be disposed with a reflector, and in this case, the first focusing lens 113 and the second focusing lens 121 c are also disposed in parallel.
  • the light-combining component 122 includes a light-combining prism 122 a and an LCOS modulator.
  • the light-combining prism 122 a includes four rectangular prisms.
  • the light-combining prism 122 a has four sides and four intersection planes formed by the four rectangular prisms. Two adjacent sides in the four sides are perpendicular to each other, and two adjacent intersection planes in the four intersection planes are perpendicular to each other.
  • the four sides are respectively a first high transparent surface 122 al , a second high transparent surface 122 a 2 , a third high transparent surface 122 a 3 , and a fourth high transparent surface 122 a 4 , so that white light can be incident into the light-combining prism 122 a at high transmittance or emitted from the light-combining prism 122 a , thereby improving light utilization.
  • the four intersection planes are respectively a first intersection plane 122 a 5 , a second intersection plane 122 a 6 , a third intersection plane 122 a 7 , and a fourth intersection plane 122 a 8 .
  • At least two of the four intersection planes are configured to split light emitted from a light source 111 in the light-combining prism 122 a
  • at least two of the four intersection planes are configured to combine light emitted from the light source 111 in the light-combining prism 122 a
  • the first intersection plane 122 a 5 and the second intersection plane 122 a 6 can split light emitted from the light source 111 in the light-combining prism 122 a
  • the second intersection plane 122 a 6 and the third intersection plane 122 a 7 can combine light emitted from the light source 111 in the light-combining prism 122 a .
  • the four intersection planes are disposed to have different optical characteristics, so as to implement splitting and combining of white light.
  • the first intersection plane 122 a 5 intersects the first high transparent surface 122 a 1 and the second high transparent surface 122 a 2 separately
  • the second intersection plane 122 a 6 intersects the second high transparent surface 122 a 2 and the third high transparent surface 122 a 3 separately
  • the third intersection plane 122 a 7 intersects the third high transparent surface 122 a 3 and the fourth high transparent surface 122 a 4 separately
  • the fourth intersection plane 122 a 8 intersects the fourth high transparent surface 122 a 4 and the first high transparent surface 122 al separately.
  • each LCOS modulator is disposed on a light emitting side of one side of the light-combining prism 122 a .
  • beam splitting is implemented by using two intersection planes in the four intersection planes, that is, the light is decomposed into red light, green light, and blue light.
  • Monochromatic light obtained after decomposition enters each LCOS modulator for modulation after passing through sides disposed opposite to the LCOS modulator, modulated monochromatic light then enters the light-combining prism 122 a to combine light after passing through the sides disposed opposite to each LCOS modulator, and combined light is emitted from one of the sides.
  • a structure of a modulation module disclosed in a related technology is relatively complex, and has a relatively large quantity of component parts.
  • a modulation module based on an LCOS modulator provided in this patent performs beam combining by using a plurality of polarizing beam splitters and one light-combining prism.
  • a structure of the modulation module is complex, and a forming size of a projection display apparatus is also increased.
  • the light-combining component 122 in the modulation module 12 in this application includes only the light-combining prism 122 a and the LCOS modulator, that is, a plurality of polarizing beam splitters are omitted. In this way, component parts of the light-combining component 122 can be reduced, and a structure is simple, so that a forming size of a projection display apparatus can be reduced.
  • a heat sink 128 is further disposed on the outside of the light-combining component 122 .
  • the heat sink 128 may be fastened (for example, affixed) to the third upper cover 125 and/or the third lower cover 126 , and the outside of each LCOS modulator has one corresponding heat sink 128 , so as to perform good heat dissipation on each LCOS modulator by disposing the heat sink 128 .
  • the heat sink 128 may be a fin.
  • the first LCOS modulator 122 c is disposed on a side of the first high transparent surface 122 al
  • the second LCOS modulator 122 d is disposed on a side of the second high transparent surface 122 a 2
  • the third LCOS modulator 122 e is disposed on a side of the third high transparent surface 122 a 3 .
  • Light emitted from the light emitting module 11 is white light
  • one beam of monochromatic light is in a first linear polarization state (for example, an S state or a P state)
  • the other two beams of monochromatic light are in a second linear polarization state (for example, a P state or an S state).
  • the white light may be incident on the light-combining prism 122 a from the first high transparent surface 122 al or the second high transparent surface 122 a 2 , and may be emitted from the light-combining prism 122 a through the third high transparent surface 122 a 3 or the fourth high transparent surface 122 a 4 .
  • the first LCOS modulator 122 c is configured to modulate red light
  • the second LCOS modulator 122 d is configured to modulate blue light
  • the third LCOS modulator 122 e is configured to modulate green light.
  • the light emitted from the light emitting module 11 is white light.
  • the green light is P-state polarized light
  • the red light and the blue light are S-state polarized light.
  • the white light is incident on the light-combining prism 122 a from the second high transparent surface 122 a 2 , and is emitted from the light-combining prism 122 a through the fourth high transparent surface 122 a 4 .
  • the first intersection plane 122 a 5 has an optical characteristic of high transmittance for red light and high reflection for blue and green light, that is, the first intersection plane 122 a 5 is a dichroic plane.
  • the second intersection plane 122 a 6 has an optical characteristic of transmitting P-state polarized light and reflecting S-state polarized light, that is, the second intersection plane 122 a 6 is a polarizing beam splitting plane.
  • the third intersection plane 122 a 7 has an optical characteristic of high transmittance for blue and green light and high reflection for red light, that is, the third intersection plane 122 a 7 is a dichroic plane.
  • the fourth intersection plane 122 a 8 has an optical characteristic of transmitting P-state polarized light and reflecting S-state polarized light, that is, the fourth intersection plane 122 a 8 is a polarizing beam splitting plane. That is, two intersection planes are polarizing beam splitting planes, the other two intersection planes are dichroic planes, and the polarizing beam splitting planes and the dichroic planes are distributed alternately. In this way, white light splitting and combining can be implemented.
  • monochromatic light modulated by the first LCOS modulator 122 c , the second LCOS modulator 122 d , and the third LCOS modulator 122 e is not limited, and references may be made to Table 1.
  • One beam of monochromatic light constituting the white light is in the first linear polarization state (for example, an S state or a P state), and the other two beams of monochromatic light are in the second linear polarization state (for example, a P state or an S state).
  • Aside of the light-combining prism 122 a on which the white light is incident is one of two adjacent high transparent surfaces (for example, the first high transparent surface 122 al or the second high transparent surface 122 a 2 ), and a side of the light-combining prism 122 a on which combined light is emitted is one of the other two adjacent high transparent surfaces (for example, the third high transparent surface 122 a 3 or the fourth high transparent surface 122 a 4 ).
  • the foregoing cases may be freely combined.
  • the following describes an optical path (that is, the uniform light component 121 is ignored herein) of light in the light-combining component 122 by using a case shown in the foregoing example.
  • the white light emitted from the light emitting module 11 is incident on the first intersection plane 122 a 5 after passing through the second high transparent surface 122 a 2 , and S-state red light is incident on the fourth intersection plane 122 a 8 after passing through the first intersection plane 122 a 5 .
  • the S-state red light is reflected and incident on the first high transparent surface 122 al .
  • the red light passing through the first high transparent surface 122 al is incident on the first LCOS modulator 122 c , and becomes P-state red light after being modulated by the first LCOS modulator 122 c .
  • the P-state red light is reflected by the first LCOS modulator 122 c and then successively passes through the first high transparent surface 122 al , the fourth intersection plane 122 a 8 , and the third intersection plane 122 a 7 .
  • the red light is reflected from the third intersection plane 122 a 7 and is incident on the fourth high transparent surface 122 a 4 , and finally, modulated red light is emitted from the fourth high transparent surface 122 a 4 .
  • the white light emitted from the light emitting module 11 is incident on the first intersection plane 122 a 5 after passing through the second high transparent surface 122 a 2 , and S-state blue light is reflected to the second intersection plane 122 a 6 after passing through the first intersection plane 122 a 5 .
  • the S-state blue light is reflected and incident on the second high transparent surface 122 a 2 .
  • the blue light passing through the second high transparent surface 122 a 2 is incident on the second LCOS modulator 122 d , and becomes P-state blue light after being modulated by the second LCOS modulator 122 d .
  • the P-state blue light is reflected by the second LCOS modulator 122 d and then successively passes through the second high transparent surface 122 a 2 , the second intersection plane 122 a 6 , the third intersection plane 122 a 7 , and the fourth high transparent surface 122 a 4 . Finally, modulated blue light is emitted from the fourth high transparent surface 122 a 4 .
  • the white light emitted from the light emitting module 11 is incident on the first intersection plane 122 a 5 after passing through the second high transparent surface 122 a 2 , and P-state green light is reflected to the second intersection plane 122 a 6 after passing through the first intersection plane 122 a 5 .
  • the P-state green light is incident on the third high transparent surface 122 a 3 .
  • the green light passing through the third high transparent surface 122 a 3 is incident on the third LCOS modulator 122 e , and becomes S-state green light after being modulated by the third LCOS modulator 122 e .
  • the S-state green light is reflected by the third LCOS modulator 122 e and then successively passes through the third high transparent surface 122 a 3 , the second intersection plane 122 a 6 , the third intersection plane 122 a 7 , and the fourth high transparent surface 122 a 4 . Finally, modulated green light is emitted from the fourth high transparent surface 122 a 4 .
  • disposing a metal wire grid 122 b on the second intersection plane 122 a 6 may be considered, for example, the metal wire grid 122 b may be affixed to the second intersection plane 122 a 6 . That is, the metal wire grid 122 b is disposed on a polarizing beam splitting plane for beam splitting and through which two beams of monochromatic light in different linear polarization states pass.
  • the metal wire grid 122 b may be disposed on the fourth intersection plane 122 a 8 .
  • the lens module 13 is connected to the light-combining component 122 , and light emitted from the light-combining component 122 can be incident on the lens module 13 .
  • the lens module 13 includes a first lens group 131 , a third reflector 132 , a second lens group 133 , and a fourth reflector 134 that are successively connected, where the first lens group 131 is connected to the light-combining component 122 , and finally, emitted light of the projection display apparatus is emitted from the fourth reflector 134 .
  • a specific composition of the lens module 13 is merely used as an example of the lens module 13 in this implementation.
  • the lens module 13 may be disposed based on an actual requirement. For example, the lens module 13 may be disposed with only an emitting lens (for example, the first lens group 131 ).
  • the projection display apparatus may include an engineering projector, a cinema projector, a laser television, a home theater, an education projector, a portable micro projector, and the like.
  • the projection display apparatus may be placed on a horizontal plane, or may be hung on a roof by using a davit.
  • the projection display apparatus may be placed on a horizontal plane, such as a ground or a table (such as a television bench), and is configured to enlarge and project image light to a projection surface such as a wall or a screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
US17/922,235 2020-04-30 2021-03-24 Projection Display Apparatus Pending US20230176461A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010368408.XA CN113589627A (zh) 2020-04-30 2020-04-30 投影显示装置
CN202010368408.X 2020-04-30
PCT/CN2021/082502 WO2021218499A1 (zh) 2020-04-30 2021-03-24 投影显示装置

Publications (1)

Publication Number Publication Date
US20230176461A1 true US20230176461A1 (en) 2023-06-08

Family

ID=78237833

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/922,235 Pending US20230176461A1 (en) 2020-04-30 2021-03-24 Projection Display Apparatus

Country Status (5)

Country Link
US (1) US20230176461A1 (zh)
EP (1) EP4130872A4 (zh)
JP (1) JP2023523358A (zh)
CN (1) CN113589627A (zh)
WO (1) WO2021218499A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326139B (zh) * 2020-09-30 2023-10-20 华为技术有限公司 一种消散斑装置、激光光源及投影设备
CN114594585B (zh) * 2022-03-31 2023-11-10 歌尔光学科技有限公司 一种光学模组以及电子设备
CN117590678B (zh) * 2024-01-19 2024-05-28 宜宾市极米光电有限公司 合光系统和投影设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW407222B (en) * 1998-05-14 2000-10-01 Primax Electronics Ltd The projective display apparatus used to show the image
JP3370010B2 (ja) * 1999-03-31 2003-01-27 三洋電機株式会社 液晶プロジェクタ装置
US7556382B1 (en) * 2003-05-13 2009-07-07 Lightmaster Systems, Inc. Illuminator that outputs linearly polarized light and that is suitable for use in microdisplay based light engine applications
US20070242239A1 (en) * 2006-04-12 2007-10-18 Arthur Berman Method and Apparatus for Placing Light Modifying Elements in a Projection Lens
US8087785B2 (en) * 2008-02-25 2012-01-03 Young Optics Inc. Projection display apparatus
CN101546045B (zh) * 2008-03-28 2012-08-15 红蝶科技(深圳)有限公司 偏振转换装置及使用其的投影系统
JP5495041B2 (ja) * 2010-03-31 2014-05-21 カシオ計算機株式会社 プロジェクタ
EP3460928A3 (en) * 2010-07-30 2019-08-21 Sony Corporation Light source unit, illuminator, and display
JP5673046B2 (ja) * 2010-12-06 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
CN105137610A (zh) * 2015-10-22 2015-12-09 海信集团有限公司 一种激光消散斑光路及双色、三色激光光源
US10634982B2 (en) * 2017-09-01 2020-04-28 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display apparatus
CN110376755A (zh) * 2019-08-15 2019-10-25 浙江水晶光电科技股份有限公司 消激光散斑装置及扫描投影设备

Also Published As

Publication number Publication date
EP4130872A1 (en) 2023-02-08
JP2023523358A (ja) 2023-06-02
CN113589627A (zh) 2021-11-02
EP4130872A4 (en) 2023-10-11
WO2021218499A1 (zh) 2021-11-04

Similar Documents

Publication Publication Date Title
US20230176461A1 (en) Projection Display Apparatus
US7576313B2 (en) Light source device and image display device
US8905554B2 (en) Illumination unit having a plurality of light sources including a light source emitting two or more different wavelengths
JP6537103B2 (ja) 光源装置、投写型表示装置及び光生成方法
US9374564B2 (en) Illumination unit, projection display unit, and direct view display unit
JP2007288169A (ja) 光学素子、照明装置および画像表示装置
CN112114475B (zh) 激光投影设备
CN112114480A (zh) 激光投影设备
CN113534587B (zh) 激光器和投影设备
CN111722464A (zh) 激光投影设备
US10620518B2 (en) Light source device and projector
CN112114482B (zh) 激光投影设备
US10571788B2 (en) Light source device, illumination device, and projector
CN114609854A (zh) 投影光源及投影设备
US20200201162A1 (en) Projection display apparatus
CN113534588B (zh) 激光器和投影设备
CN112114483B (zh) 激光投影设备
CN113960866A (zh) 激光光源及激光投影设备
US20190339602A1 (en) Projector and light source module
CN112114481A (zh) 激光投影设备
US20230324776A1 (en) Optical system comprising hybrid light source, and projector device comprising same
JP4429682B2 (ja) 光学エンジン
CN113589628B (zh) 投影显示装置及其校准方法
WO2023082666A1 (zh) 光源和激光投影设备
CN112114484B (zh) 激光投影设备

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION