US20230163079A1 - Semiconductor device and method of manufacturing thereof - Google Patents

Semiconductor device and method of manufacturing thereof Download PDF

Info

Publication number
US20230163079A1
US20230163079A1 US18/094,823 US202318094823A US2023163079A1 US 20230163079 A1 US20230163079 A1 US 20230163079A1 US 202318094823 A US202318094823 A US 202318094823A US 2023163079 A1 US2023163079 A1 US 2023163079A1
Authority
US
United States
Prior art keywords
electronic component
signal distribution
distribution structure
conductive
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/094,823
Inventor
Yi Seul Han
Tae Yong Lee
Ji Yeon Ryu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amkor Technology Singapore Holding Pte Ltd
Original Assignee
Amkor Technology Singapore Holding Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amkor Technology Singapore Holding Pte Ltd filed Critical Amkor Technology Singapore Holding Pte Ltd
Priority to US18/094,823 priority Critical patent/US20230163079A1/en
Publication of US20230163079A1 publication Critical patent/US20230163079A1/en
Assigned to Amkor Technology Singapore Holding Pte. Ltd. reassignment Amkor Technology Singapore Holding Pte. Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMKOR TECHNOLOGY, INC.
Assigned to AMKOR TECHNOLOGY, INC. reassignment AMKOR TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAN, YI SEUL, LEE, TAE YONG, RYU, JI YEON
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • H01L2224/02331Multilayer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • H01L2224/02333Structure of the redistribution layers being a bump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02379Fan-out arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02381Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16265Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1041Special adaptations for top connections of the lowermost container, e.g. redistribution layer, integral interposer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/107Indirect electrical connections, e.g. via an interposer, a flexible substrate, using TAB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15322Connection portion the connection portion being formed on the die mounting surface of the substrate being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/19011Structure including integrated passive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19104Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device on the semiconductor or solid-state device, i.e. passive-on-chip

Definitions

  • FIG. 1 shows a flow diagram of an example method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure.
  • FIGS. 2 A- 2 I show cross-sectional views illustrating various steps of an example method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure.
  • FIG. 3 A shows a cross-sectional view of an example semiconductor device, in accordance with various aspects of the present disclosure.
  • FIG. 3 B shows a bottom view of an example semiconductor device, in accordance with various aspects of the present disclosure.
  • FIGS. 4 A- 4 B show cross-sectional views illustrating various steps of an example method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure.
  • FIG. 5 A shows a cross-sectional view of an example semiconductor device, in accordance with various aspects of the present disclosure.
  • FIG. 5 B shows a bottom view an example semiconductor device, in accordance with various aspects of the present disclosure.
  • aspects of this disclosure provide a semiconductor device and a method of manufacturing a semiconductor device.
  • various aspects of this disclosure provide a semiconductor device comprising multiple encapsulating layers and multiple signal distribution structures, and a method of manufacturing thereof.
  • “and/or” means any one or more of the items in the list joined by “and/or”.
  • “x and/or y” means any element of the three-element set ⁇ (x), (y), (x, y) ⁇ . In other words, “x and/or y” means “one or both of x and y.”
  • “x, y, and/or z” means any element of the seven-element set ⁇ (x), (y), (z), (x, y), (x, z), (y, z), (x, y, z) ⁇ . In other words, “x, y and/or z” means “one or more of x, y, and z.”
  • first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, for example, a first element, a first component or a first section discussed below could be termed a second element, a second component or a second section without departing from the teachings of the present disclosure.
  • various spatial terms such as “upper,” “above,” “lower,” “below,” “side,” “lateral,” “horizontal,” “vertical,” and the like, may be used in distinguishing one element from another element in a relative manner. It should be understood, however, that components may be oriented in different manners, for example a semiconductor device may be turned sideways so that its “top” surface is facing horizontally and its “side” surface is facing vertically, without departing from the teachings of the present disclosure.
  • Coupled, connected, attached, and the like include both direct and indirect (e.g., with an intervening element) coupling, connecting, attaching, etc., unless explicitly indicated otherwise.
  • element A may be indirectly coupled to element B through an intermediate signal distribution structure, element A may be directly coupled to element B (e.g., adhered directly to, soldered directly to, attached by direct metal-to-metal bond, etc.), etc.
  • wafer level chip scale packages, chip size packages, and a chip stacked packages are being developed, and examples of such stack type packages include system in package (SIP), multi-chip package (MCP), package-on-package (POP), etc.
  • SIP system in package
  • MCP multi-chip package
  • POP package-on-package
  • a semiconductor device and method of manufacturing thereof, that comprises: a first signal distribution structure (SDS) having a top SDS side, a bottom SDS side, and a plurality of lateral SDS sides, wherein the first SDS comprises a first dielectric layer and a first conductive layer; a first electronic component coupled to the top SDS side; a first encapsulating material that covers at least a portion of the top SDS side and at least a portion of the first electronic component; a semiconductor die coupled to the bottom SDS side and positioned directly below the first electronic component; a plurality of conductive pillars coupled to the bottom SDS side and positioned laterally around the semiconductor die; and a second encapsulating material that covers at least a portion of the bottom SDS side, at least a portion of the semiconductor die, and at least a portion of the conductive pillars.
  • SDS signal distribution structure
  • a bottom side of each of the conductive pillars and a bottom side of the semiconductor die may be exposed from the second encapsulating material at a bottom side of the second encapsulating material; and the bottom side of each of the conductive pillars, the bottom side of the semiconductor die, and the bottom side of the second encapsulating material may be coplanar.
  • the device may comprise a lower dielectric layer on a bottom side of the second encapsulating material, where the lower dielectric layer comprises a plurality of apertures, each of the apertures exposing a respective one of the conductive pillars through the lower dielectric layer; and may comprise a plurality of conductive balls, where each of the conductive balls is electrically connected to a respective one of the conductive pillars through a respective one of the apertures.
  • a top side of the first electronic component may be covered by the first encapsulating material, and a bottom side of the semiconductor die might not be covered by the second encapsulating material.
  • the device may comprise a second signal distribution structure (SDS) on a bottom side of the second encapsulating material; and a plurality of conductive balls coupled to a bottom side of the second SDS and positioned directly below the semiconductor die, and wherein the second SDS electrically connects each of the plurality of conductive balls to a respective one of the conductive pillars.
  • SDS signal distribution structure
  • at least one of the lateral SDS sides may be coplanar with a respective lateral side of the first encapsulating material, a respective lateral side of the second encapsulating material, and a respective lateral side of the second SDS.
  • a semiconductor device and method of manufacturing thereof, that comprises: a first signal distribution structure (SDS) having a top first SDS side, a bottom first SDS side, and a plurality of lateral first SDS sides that extend between the top first SDS side and the bottom first SDS side; a first electronic component coupled to the top first SDS side; a first encapsulating material that covers at least a portion of the top first SDS side and at least a portion of the first electronic component; a second electronic component coupled to the bottom first SDS side and positioned below the first electronic component; conductive pillars coupled to the bottom first SDS side; a second encapsulating material that covers at least a portion of the bottom first SDS side, at least a portion of the second electronic component, and at least a portion of the conductive pillar; and a second signal distribution structure (SDS) having a top second SDS side, a bottom second SDS side, and a plurality of lateral second SDS sides that extend between the top second
  • a bottom side of each of the conductive pillars and a bottom side of the second electronic component may be exposed from the second encapsulating material at a bottom side of the second encapsulating material, for example wherein the bottom side of each of the conductive pillars, the bottom side of the semiconductor second electronic component, and the bottom side of the second encapsulating material are coplanar.
  • a top side of the first electronic component may be covered by the first encapsulating material, and a bottom side of the second electronic component might be exposed from the second encapsulating material.
  • the device may comprise a plurality of conductive balls coupled to the bottom second SDS side and positioned directly below the second electronic component, and wherein the second SDS electrically connects each of the plurality of conductive balls to a respective one of the conductive pillars; and a second plurality of conductive balls coupled to the bottom second SDS and positioned laterally outside a footprint of the second electronic component, and wherein the second SDS electrically connects each of the second plurality of conductive balls to a respective one of the conductive pillars.
  • one of the lateral first SDS sides may be coplanar with a respective lateral side of the first encapsulating material, a respective lateral side of the second encapsulating material, and a respective one of the lateral second SDS sides; and/or each of the first SDS and second SDS may comprise a plurality of conductive layers and a plurality of dielectric layers.
  • FIG. 1 shows a flow diagram of an example method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure.
  • FIGS. 2 A- 2 I show cross-sectional views illustrating various steps of a method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure.
  • FIGS. 2 A- 2 I may show cross-sectional views of an example semiconductor device during manufacturing in accordance with the example method 100 of FIG. 1 .
  • the following discussion will generally refer to FIGS. 1 and FIGS. 2 A- 2 I together.
  • the example method 100 of manufacturing a semiconductor device may comprise: ( 110 ) preparing a carrier, ( 120 ) attaching first components, ( 130 ) first encapsulating, ( 140 ) flipping and carrier removing, ( 150 ) forming a first signal distribution structure, ( 160 ) forming pillars and attaching second components, ( 170 ) second encapsulating, ( 180 ) thinning/planarizing, ( 190 ) forming a second signal distribution structure and interconnection structures, and ( 195 ) singulating.
  • FIGS. 2 A- 2 I Various blocks (or steps, stages, processes, etc.) of the example method 100 illustrated FIG. 1 will be now be described with reference to FIGS. 2 A- 2 I .
  • the example method 100 may, at block 110 , comprise preparing (or providing, receiving, etc.) a carrier 61 .
  • the carrier 61 may comprise any of a variety of characteristics, non-limiting examples of which are provided herein.
  • the carrier 61 may, for example, comprise a carrier for a single semiconductor device (or package) or may, for example, comprise a wafer or panel on which any number of semiconductor devices (or packages) may be formed.
  • the carrier 61 may, for example, comprise a semiconductor wafer or panel.
  • the carrier 61 may also, for example, comprise a glass wafer or panel, a metal wafer or panel, a ceramic wafer or panel, a plastic wafer or panel, etc.
  • Block 110 may also, for example, comprise forming an adhesive layer 62 on the carrier.
  • the adhesive layer 62 may, for example comprise a layer of adhesive paste, a layer of liquid adhesive, a preformed double-sided adhesive tape or sheet (e.g., a die-attach tape), a printed adhesive, etc.
  • the adhesive layer 62 may, for example, partially or completely cover the top side of the carrier 61 .
  • Block 110 may comprise forming the adhesive layer 62 in any of a variety of manners.
  • block 110 may comprise forming the adhesive layer 62 by applying a preformed sheet or film of the adhesive layer 62 to the carrier 61 , printing the adhesive layer 62 on the carrier 61 , spin-coating the adhesive layer 62 on the carrier 61 , dipping the carrier 61 in an adhesive, spraying the adhesive layer 62 on the carrier, etc.
  • block 110 may skip applying the adhesive layer 62 .
  • the components coupled to the carrier 61 e.g., at block 120 , etc.
  • the example method 100 may, at block 120 , comprise coupling (or attaching or forming) one or more first electronic components 23 to the carrier 61 .
  • Block 120 may, for example, comprise placing the first electronic components 23 on a top side of the adhesive layer 62 (e.g., the bottom side of the adhesive layer 62 facing the carrier 61 ).
  • the one or more first electronic components 23 may comprise characteristics of any of a variety of types of electronic components.
  • any or all of the first electronic components 23 may comprise passive electronic components (e.g., resistors, capacitors, inductors, antenna elements, etc.), integrated passive devices (IPDs), etc.
  • IPDs integrated passive devices
  • each of such first electronic components 23 may have a relatively small thickness (e.g., 50 microns or less, etc.).
  • any or all of the first electronic components 23 may comprise active electronic components (e.g., semiconductor dies, transistors, etc.).
  • active electronic components e.g., semiconductor dies, transistors, etc.
  • any or all of the first electronic components 23 may comprise a processor die, microprocessor, microcontroller, co-processor, general purpose processor, application-specific integrated circuit, programmable and/or discrete logic device, memory device, combination thereof, equivalent thereof, etc.
  • the example first electronic components 23 may, for example, comprise component terminals 28 .
  • the component terminals 28 of the first electronic components 23 may be placed in contact with the adhesive layer 62 .
  • the component terminals 28 (e.g., all or portions of lateral sides thereof) may be embedded in the adhesive layer 62 .
  • Block 120 may comprise placing the one or more first electronic components 23 in any of a variety of manners (e.g., utilizing automated pick-and-place systems, manually placing, performing any combination of automated and manual placement, etc.).
  • the example method 100 may, at block 130 , comprise forming a first encapsulating material.
  • block 130 may comprise covering the top side of the adhesive layer 62 and any or all sides of the first electronic components 23 (e.g., top sides, bottom sides facing the adhesive layer 62 where there is a gap between the component and the adhesive layer 62 , lateral sides, etc.) in a first encapsulating material 26 .
  • the first encapsulating material 26 may cover any portion of the conductive terminals 28 that is not already covered (e.g., not already covered by the adhesive layer 62 , the other portions of the first electronic components 23 , etc.). Note that any of the sides of one or more of the first electronic component(s) 23 may be left uncovered by the first encapsulating material 26 .
  • Block 130 may comprise forming the first encapsulating material 26 in any of a variety of manners, non-limiting examples of which are provided herein.
  • block 130 may comprise forming the first encapsulating material 26 utilizing one or more of compression molding, transfer molding, liquid encapsulant molding, vacuum lamination, paste printing, film assisted molding, etc.
  • block 130 may comprise forming the first encapsulating material 26 utilizing one or more of spin coating, spray coating, printing, sintering, thermal oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), plasma vapor deposition (PVD), sheet lamination, evaporating, etc.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • LPCVD low pressure chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • PVD plasma vapor deposition
  • the first encapsulating material 26 may comprise one or more of a variety of encapsulating materials, non-limiting examples of which are provided herein.
  • the first encapsulating material 26 may comprise any of a variety of encapsulating or molding materials (e.g., resin, polymer, polymer composite material, polymer with filler, epoxy resin, epoxy resin with filler, epoxy acrylate with filler, silicone resin, combinations thereof, equivalents thereof, etc.).
  • the first encapsulating material 26 may comprise any of a variety of dielectric materials, for example inorganic dielectric material (e.g., Si 3 N 4 , SiO 2 , SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.) and/or organic dielectric material (e.g., a polymer, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole (PBO), bismaleimide triazine (BT), a molding material, a phenolic resin, an epoxy, silicone, acrylate polymer, combinations thereof, equivalents thereof, etc.).
  • inorganic dielectric material e.g., Si 3 N 4 , SiO 2 , SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.
  • organic dielectric material e.g., a polymer, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole (PBO), bismale
  • the first encapsulating material 26 may be originally formed to a desired thickness, but may also be thinned (e.g., thinned while still covering the first electronic components 23 , thinned to expose a top surface of one or more of the first electronic components 23 , etc.).
  • the example method 100 may, at block 140 , comprise flipping (or turning over) the first encapsulated structure 200 c and removing the carrier 61 and adhesive layer 62 .
  • a second carrier or tooling structure
  • the first encapsulating material 26 e.g., at a side opposite the carrier 61 and adhesive layer 62 , etc.
  • Block 140 may comprise removing the carrier 61 and adhesive layer 62 in any of a variety of manners, non-limiting examples of which are provided herein.
  • block 140 may comprise applying energy (e.g., thermal energy, laser energy, etc.) to the adhesive layer 62 and/or the carrier 61 to release the adhesive layer 62 .
  • block 140 may comprise peeling, sheering, and/or pulling the carrier 61 from the first encapsulating material 26 and first electronic components 23 .
  • block 140 may comprise grinding (or abrading) and/or chemically etching away the carrier 61 and/or adhesive layer 62 . Note that in various example scenarios, a portion of the conductive terminals 28 and/or first encapsulating material 26 immediately adjacent to the adhesive layer 62 may also be removed (e.g., planarized, etc.).
  • the removal of the carrier 61 and the adhesive layer 62 may expose the side of the first encapsulating material 26 that was previously covered by the adhesive layer 62 and carrier 61 , and may also expose sides of the component terminals 28 that were previously covered by the adhesive layer 62 and carrier 61 (e.g., for example the sides facing the carrier 61 , lateral sides that may have been embedded in the adhesive layer 62 , etc.). Note that depending on the geometry of the first electronic components 23 and/or conductive terminals 28 , the removal of the carrier 61 and the adhesive layer 62 may also expose portions of the first electronic components 23 in addition to the conductive terminals 28 .
  • the example method 100 may, at block 150 , comprise forming a signal distribution structure 21 on the first encapsulating material 26 and on the first electronic components 23 (and/or conductive terminals 28 thereof).
  • Block 150 may comprise forming the signal distribution structure 21 in any of a variety of manners, non-limiting examples of which are provided herein.
  • block 150 may share any or all characteristics with generally analogous blocks (and/or the resulting structures) shown in U.S. patent application Ser. No. 14/823,689, filed on Aug. 11, 2016, and titled “Semiconductor Package and Fabricating Method Thereof,” the entirety of which is hereby incorporated herein by reference in its entirety for all purposes.
  • Block 150 may, for example, comprise forming and patterning one or more dielectric layers and one or more conductive layers to form the signal distribution structure 21 .
  • the signal distribution structure 21 may also be referred to as a redistribution layer, a redistribution layer stack, a redistribution structure, an interposer, etc.
  • Block 150 may, for example, comprise forming the signal distribution structure 21 having any number of dielectric layers and conductive layers (e.g., signal distribution layers, redistribution layers, pad layers, conductive vias, underbump metallization, land layers, etc.).
  • block 150 may comprise forming a signal distribution structure 21 comprising a first dielectric layer 21 a , a first conductive layer 21 b (e.g., a pad or land layer, a trace layer, etc.), a second dielectric layer 21 c , a second conductive layer 21 d (e.g., a pad or land layer, a trace layer, etc.), and an under bump metallization (UBM) structure (or layer) 21 e.
  • UBM under bump metallization
  • block 150 may comprise forming the first dielectric layer 21 a utilizing any one or more of a variety of processes (e.g., spin coating, spray coating, printing, sintering, thermal oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), plasma vapor deposition (PVD), sheet lamination, evaporating, etc.), but the scope of the present disclosure is not limited thereto.
  • a variety of processes e.g., spin coating, spray coating, printing, sintering, thermal oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), plasma vapor deposition (PVD), sheet lamination, evaporating, etc.
  • the dielectric layer 21 a may comprise one or more layers of any of a variety of dielectric materials, for example inorganic dielectric materials (e.g., Si 3 N 4 , SiO 2 , SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.) and/or organic dielectric materials (e.g., a polymer, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole (PBO), bismaleimide triazine (BT), a molding material, a phenolic resin, an epoxy, silicone, acrylate polymer, combinations thereof, equivalents thereof, etc.), but the scope of the present disclosure is not limited thereto.
  • inorganic dielectric materials e.g., Si 3 N 4 , SiO 2 , SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.
  • organic dielectric materials e.g., a polymer, polyimide (PI), benzocyclobuten
  • Block 150 may, for example, also comprise patterning the first dielectric layer 21 a , for example forming apertures therein that expose various portions of the electronic components 23 discussed herein (e.g., conductive terminals 28 , etc.).
  • block 150 may comprise ablating apertures (e.g., utilizing laser ablation, utilizing mechanical ablation, utilizing chemical ablation (or etching), etc.).
  • block 150 may comprise originally forming the first dielectric layer 21 a (e.g., depositing, etc.) having the desired apertures (e.g., utilizing a masking and/or printing process, etc.).
  • Block 150 may comprise forming the first conductive layer 21 b (e.g., a pad or land layer, a trace layer, etc.) in any of a variety of manners, non-limiting examples of which are provided herein.
  • block 150 may comprise forming the first conductive layer 21 b utilizing any one or more of a variety of processes (e.g., electroplating, electroless plating, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), sputtering or physical vapor deposition (PVD), atomic layer deposition (ALD), plasma vapor deposition, printing, screen printing, lithography, etc.), but the scope of the present disclosure is not limited thereto.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • plasma vapor deposition printing, screen printing, lithography, etc.
  • Block 150 may, for example, comprise forming the first conductive layer 21 b comprising pads or lands in apertures of the first dielectric layer 21 a , for example on top sides of the conductive terminals 28 of the electronic components 23 .
  • Block 150 may also, for example, comprise forming traces on the first dielectric layer 21 a (and/or in channels formed herein).
  • block 150 may comprise forming one or more seed layers as part of the processing of forming the first conductive layer 21 b (e.g., prior to electroplating the first conductive layer 21 b , etc.).
  • block 150 may comprise forming one or more seed layers on the top surface of the conductive terminals 28 , on aperture sidewalls of the first dielectric layer 21 a , on the top surface of the first dielectric layer 21 a , etc.
  • the first conductive layer 21 b which may also be referred to herein as a pad, a via, a trace, a land, a bond pad layer, a conductive layer, a trace layer, a redistribution layer, etc., may comprise any of a variety of materials (e.g., copper, aluminum, nickel, iron, silver, gold, titanium, chromium, tungsten, palladium, combinations thereof, alloys thereof, equivalents thereof, etc.), but the scope of the present disclosure is not limited thereto.
  • materials e.g., copper, aluminum, nickel, iron, silver, gold, titanium, chromium, tungsten, palladium, combinations thereof, alloys thereof, equivalents thereof, etc.
  • Block 150 may, for example, comprise forming a second dielectric layer 21 c on the first dielectric layer 21 a (or portions thereof) and/or on the first conductive layer 21 b (or portions thereof).
  • Block 150 may, for example, comprising forming the second dielectric layer 21 c in any of a variety of manners, for example any of the manners discussed herein with regard to the first dielectric layer 21 a .
  • block 150 may comprise forming the second dielectric layer 21 c in the same manner as the first dielectric layer 21 a , or in a different manner.
  • the second dielectric layer 21 c may, for example, comprise any of the characteristics discussed herein with regard to the first dielectric layer 21 a .
  • the second dielectric layer 21 c may, for example, be formed of the same dielectric material as the first dielectric layer 21 a , or of a different dielectric material.
  • block 150 may comprise patterning the second dielectric layer 21 c in any of a variety of manners.
  • block 150 may comprise forming apertures in the second dielectric layer 21 c to expose pads, lands, or traces of the first conductive layer 21 b , for example for establishing electrical contact with a second conductive layer 21 d.
  • Block 150 may, for example, comprise forming a second conductive layer 21 d on the second dielectric layer 21 c , in apertures of the second dielectric layer 21 c , in and/or on portions of the first conductive layer 21 b (or other materials) exposed through apertures of the second dielectric layer 21 c , etc.
  • Block 150 may, for example, comprising forming the second conductive layer 21 d in any of the manners discussed herein with regard to the first conductive layer 21 b .
  • block 150 may comprise forming the second conductive layer 21 d in the same manner as the first conductive layer 21 b , or in a different manner.
  • the second conductive layer 21 d may, for example, comprise any or all of the characteristics discussed herein with regard to the first conductive layer 21 b .
  • the second conductive layer 21 d may, for example, be formed of the same conductive material as the first conductive layer 21 b , or of a different conductive material.
  • the second conductive layer 21 d may comprise first pads or lands, to which interconnection structures of one or more electronic components may be attached, and second pads or lands, on which conductive pillars (or posts) may be formed.
  • first pads or lands and the second pads or lands may be the same or may have different respective characteristics (e.g., metallurgy characteristics, geometrical characteristics, etc.).
  • block 150 may comprise forming the signal distribution structure 21 to have any number of conductive and/or dielectric layers, for example one or more conductive layers, one or more dielectric layers, etc.
  • the configuration of the signal distribution structure 21 shown in the various figures herein is merely exemplary and not limiting.
  • the signal distribution structure 21 (or conductive layers thereof) may provide electrical paths directly vertically or indirectly (e.g., vertically and horizontally, etc.) through the signal distribution structure 21 , for example between the first electronic components 23 and the second electronic components 22 and/or conductive pillars 25 (or other components).
  • the signal distribution structure 21 (or conductive layers thereof) may provide lateral (or horizontal) electrical pathways through the signal distribution structure 21 , for example between the first electronic components 23 and the second electronic components 22 and/or pillars 25 (or other components).
  • Block 150 may also, for example, comprise forming an under bump metallization (UBM) structure 21 e (or layer) on the second conductive layer 21 d and/or on the second dielectric layer 21 c (e.g., on portions of the second dielectric layer 21 c around a perimeter of apertures in the second dielectric layer 21 c through which the second conductive layer 21 d is exposed, etc.).
  • block 150 may comprise forming the UBM structure 21 e to have one or more metallization layers conducive to the attachment (or formation) of interconnection structures (e.g., conductive balls, conductive pillars or posts, etc.), for example as formed and/or attached at block 160 .
  • the UBM structure 21 e may, for example, be exposed at the top surface of the signal distribution structure 21 (e.g., as oriented in FIG. 2 E ).
  • the UBM structure 21 e may also be referred to herein as a land or pad.
  • Block 150 may comprise forming the UBM structure 21 e in any of a variety of manners, non-limiting examples of which are provided herein.
  • block 150 may comprise forming a UBM seed layer of the UBM structure 21 e over the second dielectric layer 21 c and/or over the portion of the second conductive layer 21 d (e.g., a pad or land, a trace, etc.) that is exposed through an aperture in the second dielectric layer 21 c .
  • the UBM seed layer may, for example, comprise any of a variety of conductive materials (e.g., copper, gold, silver, metal, etc.).
  • the UBM seed layer may be formed in any of a variety of manners (e.g., sputtering, electroless plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), plasma vapor deposition, etc.).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • plasma vapor deposition etc.
  • Block 150 may, for example, comprise forming a mask (or template) over the UBM seed layer to define a region (or volume) in which one or more additional UBM layers of the UBM structure 21 e (and/or the conductive pillars 25 or other interconnection structure) is to be formed.
  • the mask may comprise a photoresist (PR) material or other material, which may be patterned to cover regions other than the region on which the UBM layer(s) (and/or the conductive pillars 25 ) are to be formed.
  • Block 150 may then, for example, comprise forming one or more UBM layers on the UBM seed layer exposed through the mask.
  • the UBM layer(s) may comprise any of a variety of materials (e.g., titanium, chromium, aluminum, titanium/tungsten, titanium/nickel, copper, alloys thereof, etc.).
  • Block 150 may comprise forming the UBM layer on the UBM seed layer in any of a variety of manners (e.g., electroplating, sputtering, electroless plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), plasma vapor deposition, etc.).
  • UBM structures 21 e may or may not be present, for example depending on the interconnection needs.
  • UBM structures 21 e may be formed for interconnection with the second electronic components 22 , but not for interconnection with the conductive pillars 25 .
  • UBM structures 21 e may be formed for interconnection with the second electronic components 22 and for interconnection with the conductive pillars 25 .
  • the respective UBM structures 21 e for the interconnections with the second electronic components 22 may be different from (e.g., metallurgically different, geometrically different, etc.) the respective UBM structures 21 e for the interconnections with the conductive pillars 25 (or such UBM structures 21 e may all be the same).
  • Another example implementation might not include UBM structures 21 e .
  • Still another example implementation may include UBM structures 21 e for the interconnections with the conductive pillars 25 , but not for the interconnections with the second components 22 .
  • conductive lands or pads may be used instead of the UBM structures 21 e or in addition to the UBM structures 21 e.
  • the signal distribution structure 21 may vertically and/or horizontally route any of the electrical signals of the first electronic components 23 , of the second electronic components 22 (to be mounted at block 160 ), and/or of the conductive pillars (to be formed at block 160 ).
  • the signal distribution structure 21 may route any of such signals vertically and/or both vertically and horizontally (or laterally).
  • block 150 may comprise forming a signal distribution structure 21 (or interposer). Accordingly, the scope of the present disclosure should not be limited by characteristics of any particular signal distribution structure or by characteristics of any particular manner of forming such a signal distribution structure.
  • the example method 100 may, at block 160 , comprise forming one or more conductive pillars (or posts) on the signal distribution structure, and coupling one or more second electronic components (e.g., semiconductor dies, etc.) to the signal distribution structure (e.g., as formed at block 150 , etc.).
  • one or more conductive pillars or posts
  • second electronic components e.g., semiconductor dies, etc.
  • Block 160 may, for example, comprise forming one or more conductive pillars 25 on the signal distribution structure 21 .
  • a conductive pillar 25 may, for example, be formed on a respective portion of the second conductive layer 21 d and/or at least partially on the second dielectric layer 21 c .
  • the conductive pillar 25 may also be formed on a respective UBM structure 21 e , if present.
  • block 160 may comprise forming the conductive pillar 25 to extend vertically from the signal distribution structure 21 (e.g., from a respective UBM structure 21 e , from a respective pad or land or trace of the second conductive layer 21 d , etc.). Such forming may be performed in any of a variety of manners, non-limiting examples of which are provided herein.
  • the second conductive layer 21 d may, for example, comprise any of a variety of conductive materials (e.g., copper, aluminum, silver, gold, nickel, alloys thereof, etc.).
  • the second conductive layer 21 d may, for example, be exposed through an aperture in the second dielectric layer 21 d or another dielectric layer.
  • the second dielectric layer 21 c may, for example, cover side surfaces of the second conductive layer 21 d (or pad or land thereof) and/or an outer perimeter of the top surface of the second conductive layer 21 d .
  • the second dielectric layer 21 c may also, for example, leave at least portions of lateral side surfaces of the second conductive layer 21 d exposed.
  • the conductive pillar 25 may comprise any of a variety of characteristics.
  • the conductive pillar 25 may be cylinder-shaped, elliptical cylinder-shaped, rectangular post-shaped, etc.
  • the conductive pillar 25 may, for example, comprise a flat upper end, a concave upper end, or a convex upper end.
  • the conductive pillar 25 may, for example, comprise any of the materials discussed herein with regard to the conductive layers.
  • the conductive pillar 25 may comprise copper (e.g., pure copper, copper with some impurities, etc.), a copper alloy, etc.
  • block 160 (or another block of the example method 100 ) may also comprise forming a solder cap (or dome) on the conductive pillar 25 .
  • Block 160 may comprise forming the conductive pillar 25 in any of a variety of manners (e.g., electroplating, electroless plating, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), sputtering or physical vapor deposition (PVD), atomic layer deposition (ALD), plasma vapor deposition, printing, screen printing, lithography, etc.), but the scope of the present disclosure is not limited thereto.
  • the conductive pillar 25 may also be formed by attaching a preformed wire (e.g., a die bonding wire, etc.), by filling in a via or trench in a temporary or permanent mask (e.g., a photoresist mask, a mold material mask, etc.), etc.
  • block 160 may comprise stripping or removing the mask (e.g., chemical stripping, ashing, etc.), if a mask is utilized. Additionally, block 160 may comprise removing at least a portion of a seed layer if utilized to form the conductive pillar 25 (e.g., by chemically etching, etc.). Note that during the etching of the seed layer, a lateral edge portion of at least the seed layer under other non-etched layers may, for example, be etched. Such etching may, for example, result in an undercut beneath the remaining non-etched layers (e.g., the conductive pillar 25 , the UBM structure 26 e , etc.).
  • the mask e.g., chemical stripping, ashing, etc.
  • the etching of such seed layer may result in an undercut beneath the UBM structure 26 e and/or beneath the conductive pillar 25 formed thereon.
  • the etching of such seed layer may result in an undercut beneath the conductive pillar 25 .
  • block 160 may, for example, comprise attaching (or coupling or forming) one or more second electronic components 22 to the signal distribution structure 21 .
  • the second electronic components 22 may, for example, comprise any or all of the types of components discussed herein with regard to the first electronic components 23 .
  • the first electronic components 23 may comprise passive electronic devices, and the second electronic components 22 may comprise semiconductor dies.
  • the first electric components 23 may comprise semiconductor dies, and the second electronic components 22 may comprise semiconductor dies.
  • the first electronic components 23 may comprise semiconductor dies, and the second electronic components 22 may comprise passive electronic devices.
  • the first electronic components 23 may comprise both semiconductor dies and passive components, and the second electronic components 22 may comprise both semiconductor dies and passive components.
  • Block 160 may, for example, comprise attaching a second electronic component 22 to a top side (or portion) of the signal distribution structure 21 .
  • the second electronic component 22 comprises a semiconductor die
  • the second electronic component 22 may, for example, be oriented in a manner in which an active side of the die (e.g., on which semiconductor circuitry is generally formed) faces the signal distribution structure 21 (e.g., in a flip-chip configuration, etc.) and an inactive side of the die opposite the active side of the die faces away from the signal distribution structure 21 .
  • the active side of such semiconductor die may comprise die bond pads electrically connected to semiconductor circuitry of the die. For example, as illustrated in FIG.
  • the bond pads 29 / 29 a (and/or other interconnection terminals of the second electronic component 22 at the lower side of the second electronic component 22 ) may be attached to corresponding UBM structures 26 e (if present) and/or exposed portions of the second conductive layer 26 d of the signal distribution structure 21 (e.g., pads, lands, etc.).
  • Such attachment (or connection) may, for example, be performed with conductive bumps 29 / 29 a (e.g., C4 bumps, microbumps, metal pillars, conductive balls, etc.).
  • Block 160 may comprise attaching the second electronic components 22 to the top side of the signal distribution structure 21 in any of a variety of manners (e.g., mass reflow, thermocompression bonding, direct metal-to-metal intermetallic bonding, laser soldering, conductive epoxy bonding, conductive film bonding, etc.).
  • the signal distribution structure 21 may electrically connect the conductive pillar(s) 25 to pads or terminals of the first electronic component(s) 23 and/or the second electronic component(s) 22 .
  • the second electronic components 22 may be positioned on the signal distribution structure 21 in any of a variety of manners.
  • a second electronic component 22 may be centered on the signal distribution structure 21 , but may also be laterally offset.
  • a plurality of the second electronic components 22 (as with the first electronic components 23 ) may be attached to the signal distribution structure 21 to be included in a same packaged semiconductor device.
  • the conductive pillars 25 (or posts) and the second electronic components 22 may be arranged in any of a variety of manners.
  • a second electronic component 22 (or a plurality thereof) may be laterally surrounded by a plurality of the conductive pillars 25 (e.g., surrounded on two, three, or four sides).
  • one or more conductive pillars 25 may be positioned laterally between second electronic components 22 of a same packaged semiconductor device.
  • the second electronic component 22 for example when attached to the signal distribution structure 21 , may be taller than the conductive pillar 25 , shorter than the conductive pillar 25 or generally the same height as the conductive pillar 25 .
  • the tops of the second electronic component 22 , the conductive pillar 25 , and/or the second encapsulating material 27 may be planarized in any of a variety of manners.
  • block 160 may comprise forming one or more conductive pillars (or posts) and/or forming one or more second electronic components on the signal distribution structure. Accordingly, the scope of the present disclosure should not be limited by characteristics of any particular conductive pillar(s) or manner(s) of forming such pillars, or by characteristics of any particular electronic component(s) or manner(s) of forming (or attaching) such electronic components.
  • the example method 100 may, at block 170 , comprise forming a second encapsulating material.
  • Block 170 may, for example, share any or all characteristics with block 130 .
  • block 170 may comprise covering the top side of the signal distribution structure 21 , any or all sides of the conductive pillars 25 (e.g., top sides, lateral sides, bottom sides exposed by undercutting, etc.), any or all sides of the second electronic components 22 (e.g., top sides, bottom sides facing the signal distribution structure 21 where there is a gap between the component and the signal distribution structure 21 , lateral sides, etc.) in a second encapsulating material 27 .
  • the second encapsulating material 27 may cover any portion of bond pads or bumps of the second electronic components 22 that are not already covered. Note that any of the sides of one or more of the second electronic components 22 may be left uncovered by the second encapsulating material 27 .
  • the second encapsulating material 27 may cover a top side of the signal distribution structure 21 (e.g. any dielectric and/or conductive layer that is exposed at the top side of the signal distribution structure 21 ).
  • the second encapsulating material 27 may also cover, in-whole or in-part, the lateral sides of the second electronic component 22 (or plurality thereof) and/or the lateral sides of the conductive pillar 25 (or plurality thereof).
  • the second encapsulating material 27 may be formed to also cover the top sides of the second electronic component(s) 22 and/or of the conductive pillar(s) 25 . Though FIG.
  • the second encapsulating material 27 may also be formed to cover lateral sides of the signal distribution structure 21 and/or of the first encapsulating material 26 (e.g., following separation of the electronic device from a wafer or panel or other set of such electronic devices).
  • the second encapsulating material 27 may also underfill the second electronic component 22 , and/or an underfill separate from the second encapsulating material 27 may be applied during and/or after the attaching of the second electronic component 22 .
  • such underfill may comprise any of a variety of types of material, for example, an epoxy, a thermoplastic material, a thermally curable material, polyimide, polyurethane, a polymeric material, filled epoxy, a filled thermoplastic material, a filled thermally curable material, filled polyimide, filled polyurethane, a filled polymeric material, a fluxing underfill, and equivalents thereof, but not limited thereto.
  • Such underfilling may be performed utilizing a capillary underfill process, utilizing a pre-applied underfill, etc.
  • any electronic component discussed herein may be similarly underfilled.
  • Block 170 may comprise forming the second encapsulating material 27 in any of a variety of manners, non-limiting examples of which are provided herein.
  • block 270 may comprise forming the second encapsulating material 27 utilizing one or more of compression molding, transfer molding, liquid encapsulant molding, vacuum lamination, paste printing, film assisted molding, etc.
  • block 170 may comprise forming the second encapsulating material 27 utilizing one or more of spin coating, spray coating, printing, sintering, thermal oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), plasma vapor deposition (PVD), sheet lamination, evaporating, etc.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • LPCVD low pressure chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • PVD plasma vapor deposition
  • the second encapsulating material 27 may comprise one or more of a variety of encapsulating materials, non-limiting examples of which are provided herein.
  • the second encapsulating material 27 may comprise any of a variety of encapsulating or molding materials (e.g., resin, polymer, polymer composite material, polymer with filler, epoxy resin, epoxy resin with filler, epoxy acrylate with filler, silicone resin, combinations thereof, equivalents thereof, etc.).
  • the second encapsulating material 27 may comprise any of a variety of dielectric materials, for example inorganic dielectric material (e.g., Si 3 N 4 , SiO 2 , SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.) and/or organic dielectric material (e.g., a polymer, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole (PBO), bismaleimide triazine (BT), a molding material, a phenolic resin, an epoxy, silicone, acrylate polymer, combinations thereof, equivalents thereof, etc.).
  • inorganic dielectric material e.g., Si 3 N 4 , SiO 2 , SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.
  • organic dielectric material e.g., a polymer, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole (PBO), bismale
  • the second encapsulating material 27 may share any or all characteristics with the first encapsulating material 26 .
  • block 170 may comprise forming the second encapsulating material 27 in a manner different from the manner in which block 130 forms the first encapsulating material 26 .
  • the second encapsulating material 27 may be a different type of material than the first encapsulating material 26 .
  • the example method 100 may, at block 180 , comprise thinning (or planarizing) the assembly as encapsulated at block 170 .
  • block 180 may comprise thinning or planarizing (e.g., mechanically grinding, chemically etching, shaving or shearing, peeling, any combination thereof, etc.) a top side of the second encapsulating material 27 to a desired thickness.
  • Block 180 may also, for example, comprise thinning (e.g., mechanically grinding, chemically etching, shaving, peeling, any combination thereof, etc.) the second electronic component 22 (or plurality thereof) and/or the conductive pillar 25 (or plurality thereof).
  • thinning or planarizing e.g., mechanically grinding, chemically etching, shaving or shearing, peeling, any combination thereof, etc.
  • block 180 comprises performing the thinning in a manner that results in coplanar top surfaces of the second encapsulating material 27 , the second electronic component(s) 22 , and/or the conductive pillar(s) 25 .
  • at least respective top surfaces (and/or at least an upper portion of lateral side surfaces) of the second electronic component(s) 22 and the conductive pillar(s) 25 are exposed from (or at) the top surface of the second encapsulating material 27 .
  • a thin layer of the second encapsulating material 27 covering the top side of the second electronic component 22 may remain.
  • blocks 110 - 180 may share any or all characteristics with generally analogous blocks (and/or the resulting structures) shown in U.S. patent application Ser. No. 14/823,689, filed on Aug. 11, 2016, and titled “Semiconductor Package and Fabricating Method Thereof,” the entirety of which is hereby incorporated herein by reference in its entirety for all purposes.
  • the example method 100 may, at block 190 , comprise forming a second signal distribution structure and interconnection structures.
  • Block 190 may comprise performing such operations in any of a variety of manners, non-limiting examples of which are provided herein.
  • Block 190 may, for example, share any or all characteristics with block 150 .
  • block 190 comprises forming a dielectric layer 63 on second encapsulating material 27 , conductive pillar(s) 25 , and/or second electronic component(s) 22 .
  • the dielectric layer 63 (and the forming thereof) may, for example, share any or all characteristics with any dielectric layer discussed herein (and the forming thereof), including the forming of apertures.
  • the example dielectric layer 63 is shown with apertures exposing at least a central region of top ends of the conductive pillars 25 .
  • Block 190 may, for example, comprise forming such apertures in any of a variety of manners, various examples of which are provided herein (e.g., in the discussion of block 150 ).
  • Block 190 may, for example, comprise forming the interconnection structures 24 on top ends of the conductive pillars 25 (e.g., through respective apertures through the dielectric layer 63 ) and/or on portions of the dielectric layer 63 (e.g., surrounding the respective apertures through the dielectric layer 63 ).
  • the interconnection structures 24 may comprise any of a variety of characteristics.
  • an interconnection structure 24 may comprise a conductive ball or bump (e.g., a solder ball or bump, wafer bump, a solid core or copper core solder ball, etc.).
  • such balls or bumps may comprise tin, silver, lead, Sn—Pb, Sn 37 —Pb, Sn 95 —Pb, Sn—Pb—Ag, Sn—Pb—Bi, Sn—Cu, Sn—Ag, Sn—Au, Sn—Bi, Sn—Ag—Cu, Sn—Ag—Bi, Sn—Zn, Sn—Zn—Bi, combinations thereof, equivalents thereof, etc., but the scope of this disclosures is not limited thereto.
  • An interconnection structure 24 may also comprise a conductive pillar or post, a wire, a land, etc., which may for example comprise any of the conductive materials (e.g., metals, conductive adhesives, etc.) discussed herein.
  • the interconnection structures 24 may be configured in any or a variety of configurations.
  • the interconnection structures 24 may be configured in a ball grid array configuration, a land grid array configuration, etc.
  • the interconnection structures 24 may, for example, be arranged around a perimeter around the semiconductor package (e.g., surrounding a footprint (or outline) of the second electronic component(s) 22 and/or first electronic component(s) 23 ).
  • the interconnection structure 24 may also, for example, be arranged in a row/column matrix array (e.g., where at least a portion of the matrix/array is within the footprint (or outline) of the second electronic component(s) 22 and/or the first electronic component(s) 23 ).
  • Block 190 may comprise forming (or attaching) such interconnection structures 24 in any of a variety of manners, non-limiting examples of which are provided herein.
  • block 190 may comprise forming (or attaching) such interconnection structures 24 by ball-dropping, bumping, metal-plating, pasting and reflowing, etc.
  • block 190 may comprise dropping a conductive ball on the end of the conductive pillar 25 (or exposed conductor or pad or land or UBM structure of the second signal distribution structure).
  • block 190 may also, for example, comprise forming (or attaching) additional components (e.g., passive components, active components, etc.) laterally between the interconnection structures 24 .
  • additional components e.g., passive components, active components, etc.
  • such components may have a smaller height than the interconnection structures 24 .
  • such components may have a smaller height than a solder ball conductive interconnection structure 24 , a smaller height than a solid core (e.g., a copper core, etc.) of a solder ball interconnection structure 24 , etc.
  • the interconnection structures 24 may provide a standoff to maintain space for such components when the interconnection structures 24 are attached to another substrate or component.
  • the example method 100 may, at block 195 , comprise singulating an electronic package from a wafer or panel or otherwise connected plurality of electronic packages.
  • Block 195 may comprise performing such singulating in any of a variety of manners, non-limiting examples of which are provided herein.
  • any or all of the blocks of the example method 100 may be performed at a wafer or panel level, for example forming a plurality of semiconductor devices (or packages) at the same time.
  • the wafer or panel may then, for example, be singulated into individual packages.
  • Such singulating may, for example, be performed by any one or more of mechanical cutting (e.g., sawing, cutting, abrading, snapping, etc.), energy cutting (e.g., laser cutting, plasma cutting, etc.), chemical cutting (e.g., etching, dissolving, etc.), etc.
  • such singulating may form coplanar lateral side surfaces of the semiconductor device (or package).
  • one or more of the lateral side surfaces of the first encapsulating material 26 , the first signal distribution structure 21 , the second encapsulating material 27 , and the second signal distribution structure 25 may be coplanar on one or more lateral sides of the singulated semiconductor device (or package).
  • FIG. 3 A shows a cross-sectional view of an example semiconductor device 300 , in accordance with various aspects of the present disclosure
  • FIG. 3 B shows a bottom view of the example semiconductor device 300 , in accordance with various aspects of the present disclosure.
  • the example semiconductor device 300 shown in FIGS. 3 A and 3 B may result from implementing the example method 100 of FIG. 1 , for example as illustrated in FIGS. 2 A- 2 I and discussed herein.
  • the example semiconductor device 300 may share any or all characteristics with the resulting semiconductor device 200 i shown in FIG. 2 I .
  • other method steps may be performed on the example package 300 , for example adding or removing components, etc., without departed from the scope of this disclosure.
  • the example semiconductor device 300 (or any device discussed herein) may be referred to as a semiconductor package, an electronic device, an electronic package, a device, a package, etc.
  • the conductive pillars 25 and/or interconnection structures 24 coupled thereto may be arranged in any of a variety of manners.
  • the conductive pillars 25 and interconnection structures 24 may be arranged around a perimeter of the footprint (or outline) of the second electronic component 22 .
  • the second signal distribution structure may comprise any number of dielectric and/or conductive layers.
  • the second signal distribution structure may share any or all characteristics with the signal distribution structure 21 formed at block 150 .
  • the example method 100 may, at block 190 , comprise forming a second signal distribution structure 31 .
  • the second signal distribution structure 31 (and/or the forming thereof) may share any or all characteristics with the first signal distribution structure 21 (and/or the forming thereof).
  • the example second signal distribution structure 31 for example, comprises a plurality of dielectric layers and a plurality of conductive layers (e.g., pad or land layers, trace layers, UBM layers, etc.).
  • the second signal distribution structure 31 may comprise a first dielectric layer 31 a , a first conductive layer 31 b , a second dielectric layer 31 c , a second conductive layer 32 b , and a UBM structure 32 e (or alternatively a pad).
  • the first conductive layer 31 b may be connected to the conductive pillar 25 through an aperture in the dielectric layer 63 .
  • any number of conductive layers and dielectric layers may be formed to form the signal distribution structure 31 .
  • Such conductive layers e.g., the first conductive layer 31 b , the second conductive layer 31 d , etc.
  • the example method 100 may, at block 190 , comprise forming interconnection structures 34 attached to the second signal distribution structure 31 (e.g., to pads, lands, UBM structures, etc.).
  • FIG. 5 A shows a cross-sectional view of an example semiconductor device 500 , in accordance with various aspects of the present disclosure
  • FIG. 5 B shows a bottom view of the example semiconductor device 500 , in accordance with various aspects of the present disclosure.
  • the example semiconductor device 500 shown in FIGS. 5 A and 5 B may result from implementing the example method 100 of FIG. 1 , for example as illustrated in FIGS. 2 A- 2 I and in FIGS. 4 A- 4 B , and discussed herein.
  • the example semiconductor device 500 may share any or all characteristics with the resulting semiconductor device 400 b shown in FIG. 4 B and with resulting semiconductor device 200 i shown in FIG. 2 I .
  • other method steps may be performed on the example package 500 , for example adding or removing components, etc., without departed from the scope of this disclosure.
  • the example semiconductor device 500 (or any device discussed herein) may be referred to as a semiconductor package, an electronic device, an electronic package, a device, a package, etc.
  • the conductive pillars 25 and/or interconnection structures 24 coupled thereto may be arranged in any of a variety of configurations.
  • the conductive pillars 25 may be arranged around a perimeter of the footprint (or outline) of the second electronic component 22 .
  • there might be a full matrix of the interconnection structures 24 for example the second signal distribution structure 31 providing a fan-in to locations within the footprint (or outline) of the second electronic component 22 .
  • the second signal distribution structure 31 providing a fan-in to locations within the footprint (or outline) of the second electronic component 22 .
  • some of the interconnection structures 34 are directly below the second electronic component 22 , and some of the interconnection structures 34 are not directly below the second electronic component 22 .
  • some of the interconnection structures 34 may be directly below respective conductive pillars 25 , and some of the interconnection structures 34 may be laterally offset from respective conductive pillars 25 .
  • various aspects of this disclosure provide a semiconductor device and a method of manufacturing a semiconductor device.
  • various aspects of this disclosure provide a semiconductor device comprising multiple encapsulating layers and multiple signal distribution structures, and a method of manufacturing thereof.

Abstract

A semiconductor device and a method of manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a semiconductor device comprising multiple encapsulating layers and multiple signal distribution structures, and a method of manufacturing thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS/INCORPORATION BY REFERENCE
  • This patent is a continuation of U.S. patent application Ser. No. 15/465,307, filed Mar. 21, 2017, the entire contents of which is hereby incorporated herein by reference in its entirety.
  • BACKGROUND
  • Present semiconductor devices and methods for manufacturing semiconductor devices are inadequate, for example resulting in manufacturing processes that are too time-consuming and/or too costly, resulting in semiconductor packages with unreliable connections and/or interconnection structures having suboptimal dimensions, etc. Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such approaches with the present disclosure as set forth in the remainder of the present application with reference to the drawings.
  • BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 shows a flow diagram of an example method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure.
  • FIGS. 2A-2I show cross-sectional views illustrating various steps of an example method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure.
  • FIG. 3A shows a cross-sectional view of an example semiconductor device, in accordance with various aspects of the present disclosure.
  • FIG. 3B shows a bottom view of an example semiconductor device, in accordance with various aspects of the present disclosure.
  • FIGS. 4A-4B show cross-sectional views illustrating various steps of an example method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure.
  • FIG. 5A shows a cross-sectional view of an example semiconductor device, in accordance with various aspects of the present disclosure.
  • FIG. 5B shows a bottom view an example semiconductor device, in accordance with various aspects of the present disclosure.
  • SUMMARY
  • Various aspects of this disclosure provide a semiconductor device and a method of manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a semiconductor device comprising multiple encapsulating layers and multiple signal distribution structures, and a method of manufacturing thereof.
  • DETAILED DESCRIPTION OF VARIOUS ASPECTS OF THE DISCLOSURE
  • The following discussion presents various aspects of the present disclosure by providing examples thereof. Such examples are non-limiting, and thus the scope of various aspects of the present disclosure should not necessarily be limited by any particular characteristics of the provided examples. In the following discussion, the phrases “for example,” “e.g.,” and “exemplary” are non-limiting and are generally synonymous with “by way of example and not limitation,” “for example and not limitation,” and the like.
  • As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. In other words, “x and/or y” means “one or both of x and y.” As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. In other words, “x, y and/or z” means “one or more of x, y, and z.”
  • The terminology used herein is for the purpose of describing particular examples only and is not intended to be limiting of the disclosure. As used herein, the singular forms are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “includes,” “comprising,” “including,” “has,” “have,” “having,” and the like when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Thus, for example, a first element, a first component or a first section discussed below could be termed a second element, a second component or a second section without departing from the teachings of the present disclosure. Similarly, various spatial terms, such as “upper,” “above,” “lower,” “below,” “side,” “lateral,” “horizontal,” “vertical,” and the like, may be used in distinguishing one element from another element in a relative manner. It should be understood, however, that components may be oriented in different manners, for example a semiconductor device may be turned sideways so that its “top” surface is facing horizontally and its “side” surface is facing vertically, without departing from the teachings of the present disclosure.
  • It will also be understood that terms coupled, connected, attached, and the like include both direct and indirect (e.g., with an intervening element) coupling, connecting, attaching, etc., unless explicitly indicated otherwise. For example, if element A is coupled to element B, element A may be indirectly coupled to element B through an intermediate signal distribution structure, element A may be directly coupled to element B (e.g., adhered directly to, soldered directly to, attached by direct metal-to-metal bond, etc.), etc.
  • In the drawings, the dimensions of structures, layers, regions, etc. (e.g., absolute and/or relative dimensions) may be exaggerated for clarity. While such dimensions are generally indicative of an example implementation, they are not limiting. For example, if structure A is illustrated as being larger than region B, this is generally indicative of an example implementation, but structure A is generally not required to be larger than structure B, unless otherwise indicated. Additionally, in the drawings, like reference numerals may refer to like elements throughout the discussion.
  • In recent years, portable electronic products, such as mobile phones or portable media players (PMPs), have been continuously required to be small, lightweight, and cost-effective while having high functionality. To meet these requirements, semiconductor packages mounted on the portable electronic products are developing into innovative, cost-effective three-dimensional (3D) packages.
  • Accordingly, wafer level chip scale packages, chip size packages, and a chip stacked packages, among other package types, manufactured to have nearly the same size or thickness as that of a chip, are being developed, and examples of such stack type packages include system in package (SIP), multi-chip package (MCP), package-on-package (POP), etc.
  • Various aspects of the present disclosure provide a semiconductor device, and method of manufacturing thereof, that comprises: a first signal distribution structure (SDS) having a top SDS side, a bottom SDS side, and a plurality of lateral SDS sides, wherein the first SDS comprises a first dielectric layer and a first conductive layer; a first electronic component coupled to the top SDS side; a first encapsulating material that covers at least a portion of the top SDS side and at least a portion of the first electronic component; a semiconductor die coupled to the bottom SDS side and positioned directly below the first electronic component; a plurality of conductive pillars coupled to the bottom SDS side and positioned laterally around the semiconductor die; and a second encapsulating material that covers at least a portion of the bottom SDS side, at least a portion of the semiconductor die, and at least a portion of the conductive pillars.
  • In various example implementations, a bottom side of each of the conductive pillars and a bottom side of the semiconductor die may be exposed from the second encapsulating material at a bottom side of the second encapsulating material; and the bottom side of each of the conductive pillars, the bottom side of the semiconductor die, and the bottom side of the second encapsulating material may be coplanar. In various example implementations, the device may comprise a lower dielectric layer on a bottom side of the second encapsulating material, where the lower dielectric layer comprises a plurality of apertures, each of the apertures exposing a respective one of the conductive pillars through the lower dielectric layer; and may comprise a plurality of conductive balls, where each of the conductive balls is electrically connected to a respective one of the conductive pillars through a respective one of the apertures. In various example implementations, a top side of the first electronic component may be covered by the first encapsulating material, and a bottom side of the semiconductor die might not be covered by the second encapsulating material. In various example implementations, the device may comprise a second signal distribution structure (SDS) on a bottom side of the second encapsulating material; and a plurality of conductive balls coupled to a bottom side of the second SDS and positioned directly below the semiconductor die, and wherein the second SDS electrically connects each of the plurality of conductive balls to a respective one of the conductive pillars. Additionally, in various example implementations, at least one of the lateral SDS sides may be coplanar with a respective lateral side of the first encapsulating material, a respective lateral side of the second encapsulating material, and a respective lateral side of the second SDS.
  • Various aspects of the present disclosure provide a semiconductor device, and method of manufacturing thereof, that comprises: a first signal distribution structure (SDS) having a top first SDS side, a bottom first SDS side, and a plurality of lateral first SDS sides that extend between the top first SDS side and the bottom first SDS side; a first electronic component coupled to the top first SDS side; a first encapsulating material that covers at least a portion of the top first SDS side and at least a portion of the first electronic component; a second electronic component coupled to the bottom first SDS side and positioned below the first electronic component; conductive pillars coupled to the bottom first SDS side; a second encapsulating material that covers at least a portion of the bottom first SDS side, at least a portion of the second electronic component, and at least a portion of the conductive pillar; and a second signal distribution structure (SDS) having a top second SDS side, a bottom second SDS side, and a plurality of lateral second SDS sides that extend between the top second SDS side and the bottom second SDS side.
  • In various example implementations, a bottom side of each of the conductive pillars and a bottom side of the second electronic component (e.g., a semiconductor die) may be exposed from the second encapsulating material at a bottom side of the second encapsulating material, for example wherein the bottom side of each of the conductive pillars, the bottom side of the semiconductor second electronic component, and the bottom side of the second encapsulating material are coplanar. In various example implementations, a top side of the first electronic component may be covered by the first encapsulating material, and a bottom side of the second electronic component might be exposed from the second encapsulating material. In various example implementations, the device may comprise a plurality of conductive balls coupled to the bottom second SDS side and positioned directly below the second electronic component, and wherein the second SDS electrically connects each of the plurality of conductive balls to a respective one of the conductive pillars; and a second plurality of conductive balls coupled to the bottom second SDS and positioned laterally outside a footprint of the second electronic component, and wherein the second SDS electrically connects each of the second plurality of conductive balls to a respective one of the conductive pillars. In various example implementations, one of the lateral first SDS sides may be coplanar with a respective lateral side of the first encapsulating material, a respective lateral side of the second encapsulating material, and a respective one of the lateral second SDS sides; and/or each of the first SDS and second SDS may comprise a plurality of conductive layers and a plurality of dielectric layers.
  • FIG. 1 shows a flow diagram of an example method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure. FIGS. 2A-2I show cross-sectional views illustrating various steps of a method of manufacturing a semiconductor device, in accordance with various aspects of the present disclosure. For example, FIGS. 2A-2I may show cross-sectional views of an example semiconductor device during manufacturing in accordance with the example method 100 of FIG. 1 . The following discussion will generally refer to FIGS. 1 and FIGS. 2A-2I together.
  • Referring to FIG. 1 , the example method 100 of manufacturing a semiconductor device may comprise: (110) preparing a carrier, (120) attaching first components, (130) first encapsulating, (140) flipping and carrier removing, (150) forming a first signal distribution structure, (160) forming pillars and attaching second components, (170) second encapsulating, (180) thinning/planarizing, (190) forming a second signal distribution structure and interconnection structures, and (195) singulating.
  • Various blocks (or steps, stages, processes, etc.) of the example method 100 illustrated FIG. 1 will be now be described with reference to FIGS. 2A-2I.
  • Referring to FIG. 1 and the example structure 200 a of FIG. 2A, the example method 100 may, at block 110, comprise preparing (or providing, receiving, etc.) a carrier 61. The carrier 61 may comprise any of a variety of characteristics, non-limiting examples of which are provided herein. The carrier 61 may, for example, comprise a carrier for a single semiconductor device (or package) or may, for example, comprise a wafer or panel on which any number of semiconductor devices (or packages) may be formed. The carrier 61 may, for example, comprise a semiconductor wafer or panel. The carrier 61 may also, for example, comprise a glass wafer or panel, a metal wafer or panel, a ceramic wafer or panel, a plastic wafer or panel, etc.
  • Block 110 may also, for example, comprise forming an adhesive layer 62 on the carrier. The adhesive layer 62 may, for example comprise a layer of adhesive paste, a layer of liquid adhesive, a preformed double-sided adhesive tape or sheet (e.g., a die-attach tape), a printed adhesive, etc. The adhesive layer 62 may, for example, partially or completely cover the top side of the carrier 61. Block 110 may comprise forming the adhesive layer 62 in any of a variety of manners. For example, block 110 may comprise forming the adhesive layer 62 by applying a preformed sheet or film of the adhesive layer 62 to the carrier 61, printing the adhesive layer 62 on the carrier 61, spin-coating the adhesive layer 62 on the carrier 61, dipping the carrier 61 in an adhesive, spraying the adhesive layer 62 on the carrier, etc.
  • Note that in an example scenario in which the carrier 61 is received with the adhesive layer 62 already applied, block 110 may skip applying the adhesive layer 62. Also note that in an example scenario, the components coupled to the carrier 61 (e.g., at block 120, etc.) may be coated with the adhesive layer 61 (or a portion thereof) prior to applying the components to the carrier 61.
  • Referring next to FIG. 1 and the example structure 200 b of FIG. 2B, the example method 100 may, at block 120, comprise coupling (or attaching or forming) one or more first electronic components 23 to the carrier 61. Block 120 may, for example, comprise placing the first electronic components 23 on a top side of the adhesive layer 62 (e.g., the bottom side of the adhesive layer 62 facing the carrier 61).
  • The one or more first electronic components 23 (or any electronic component discussed herein) may comprise characteristics of any of a variety of types of electronic components. For example, any or all of the first electronic components 23 (or any electronic component discussed herein) may comprise passive electronic components (e.g., resistors, capacitors, inductors, antenna elements, etc.), integrated passive devices (IPDs), etc. In an example scenario in which one or more of the first electronic components 23 comprises an IPD, each of such first electronic components 23 may have a relatively small thickness (e.g., 50 microns or less, etc.).
  • Also for example, any or all of the first electronic components 23 may comprise active electronic components (e.g., semiconductor dies, transistors, etc.). For example, any or all of the first electronic components 23 may comprise a processor die, microprocessor, microcontroller, co-processor, general purpose processor, application-specific integrated circuit, programmable and/or discrete logic device, memory device, combination thereof, equivalent thereof, etc.
  • The example first electronic components 23 may, for example, comprise component terminals 28. In an example implementation, the component terminals 28 of the first electronic components 23 may be placed in contact with the adhesive layer 62. In various example scenarios, the component terminals 28 (e.g., all or portions of lateral sides thereof) may be embedded in the adhesive layer 62. Block 120 may comprise placing the one or more first electronic components 23 in any of a variety of manners (e.g., utilizing automated pick-and-place systems, manually placing, performing any combination of automated and manual placement, etc.).
  • Referring next to FIG. 1 and the example structure 200 c of FIG. 2C, the example method 100 may, at block 130, comprise forming a first encapsulating material. For example, block 130 may comprise covering the top side of the adhesive layer 62 and any or all sides of the first electronic components 23 (e.g., top sides, bottom sides facing the adhesive layer 62 where there is a gap between the component and the adhesive layer 62, lateral sides, etc.) in a first encapsulating material 26. Additionally, the first encapsulating material 26 may cover any portion of the conductive terminals 28 that is not already covered (e.g., not already covered by the adhesive layer 62, the other portions of the first electronic components 23, etc.). Note that any of the sides of one or more of the first electronic component(s) 23 may be left uncovered by the first encapsulating material 26.
  • Block 130 may comprise forming the first encapsulating material 26 in any of a variety of manners, non-limiting examples of which are provided herein. For example, block 130 may comprise forming the first encapsulating material 26 utilizing one or more of compression molding, transfer molding, liquid encapsulant molding, vacuum lamination, paste printing, film assisted molding, etc. Also for example, block 130 may comprise forming the first encapsulating material 26 utilizing one or more of spin coating, spray coating, printing, sintering, thermal oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), plasma vapor deposition (PVD), sheet lamination, evaporating, etc.
  • The first encapsulating material 26 may comprise one or more of a variety of encapsulating materials, non-limiting examples of which are provided herein. For example, the first encapsulating material 26 may comprise any of a variety of encapsulating or molding materials (e.g., resin, polymer, polymer composite material, polymer with filler, epoxy resin, epoxy resin with filler, epoxy acrylate with filler, silicone resin, combinations thereof, equivalents thereof, etc.). Also for example, the first encapsulating material 26 may comprise any of a variety of dielectric materials, for example inorganic dielectric material (e.g., Si3N4, SiO2, SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.) and/or organic dielectric material (e.g., a polymer, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole (PBO), bismaleimide triazine (BT), a molding material, a phenolic resin, an epoxy, silicone, acrylate polymer, combinations thereof, equivalents thereof, etc.).
  • Note that, as discussed herein with regard to the second encapsulating material formed at block 170, the first encapsulating material 26 may be originally formed to a desired thickness, but may also be thinned (e.g., thinned while still covering the first electronic components 23, thinned to expose a top surface of one or more of the first electronic components 23, etc.).
  • Referring next to FIG. 1 and the example structure 200 d of FIG. 2D, the example method 100 may, at block 140, comprise flipping (or turning over) the first encapsulated structure 200 c and removing the carrier 61 and adhesive layer 62. In an example implementation, though not shown in FIG. 2D, a second carrier (or tooling structure) may be coupled to the first encapsulating material 26 (e.g., at a side opposite the carrier 61 and adhesive layer 62, etc.), and then the carrier 61 and adhesive layer 62 may be removed.
  • Block 140 may comprise removing the carrier 61 and adhesive layer 62 in any of a variety of manners, non-limiting examples of which are provided herein. For example, block 140 may comprise applying energy (e.g., thermal energy, laser energy, etc.) to the adhesive layer 62 and/or the carrier 61 to release the adhesive layer 62. Additionally for example, block 140 may comprise peeling, sheering, and/or pulling the carrier 61 from the first encapsulating material 26 and first electronic components 23. Further for example, block 140 may comprise grinding (or abrading) and/or chemically etching away the carrier 61 and/or adhesive layer 62. Note that in various example scenarios, a portion of the conductive terminals 28 and/or first encapsulating material 26 immediately adjacent to the adhesive layer 62 may also be removed (e.g., planarized, etc.).
  • Note that the removal of the carrier 61 and the adhesive layer 62 may expose the side of the first encapsulating material 26 that was previously covered by the adhesive layer 62 and carrier 61, and may also expose sides of the component terminals 28 that were previously covered by the adhesive layer 62 and carrier 61 (e.g., for example the sides facing the carrier 61, lateral sides that may have been embedded in the adhesive layer 62, etc.). Note that depending on the geometry of the first electronic components 23 and/or conductive terminals 28, the removal of the carrier 61 and the adhesive layer 62 may also expose portions of the first electronic components 23 in addition to the conductive terminals 28.
  • Referring next to FIG. 1 and the example structure 200 e of FIG. 2E, the example method 100 may, at block 150, comprise forming a signal distribution structure 21 on the first encapsulating material 26 and on the first electronic components 23 (and/or conductive terminals 28 thereof). Block 150 may comprise forming the signal distribution structure 21 in any of a variety of manners, non-limiting examples of which are provided herein. For example, block 150 may share any or all characteristics with generally analogous blocks (and/or the resulting structures) shown in U.S. patent application Ser. No. 14/823,689, filed on Aug. 11, 2016, and titled “Semiconductor Package and Fabricating Method Thereof,” the entirety of which is hereby incorporated herein by reference in its entirety for all purposes.
  • Block 150 may, for example, comprise forming and patterning one or more dielectric layers and one or more conductive layers to form the signal distribution structure 21. Note that the signal distribution structure 21 may also be referred to as a redistribution layer, a redistribution layer stack, a redistribution structure, an interposer, etc.
  • Block 150 may, for example, comprise forming the signal distribution structure 21 having any number of dielectric layers and conductive layers (e.g., signal distribution layers, redistribution layers, pad layers, conductive vias, underbump metallization, land layers, etc.). In an example implementation, block 150 may comprise forming a signal distribution structure 21 comprising a first dielectric layer 21 a, a first conductive layer 21 b (e.g., a pad or land layer, a trace layer, etc.), a second dielectric layer 21 c, a second conductive layer 21 d (e.g., a pad or land layer, a trace layer, etc.), and an under bump metallization (UBM) structure (or layer) 21 e.
  • For example, block 150 may comprise forming the first dielectric layer 21 a utilizing any one or more of a variety of processes (e.g., spin coating, spray coating, printing, sintering, thermal oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), plasma vapor deposition (PVD), sheet lamination, evaporating, etc.), but the scope of the present disclosure is not limited thereto.
  • The dielectric layer 21 a may comprise one or more layers of any of a variety of dielectric materials, for example inorganic dielectric materials (e.g., Si3N4, SiO2, SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.) and/or organic dielectric materials (e.g., a polymer, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole (PBO), bismaleimide triazine (BT), a molding material, a phenolic resin, an epoxy, silicone, acrylate polymer, combinations thereof, equivalents thereof, etc.), but the scope of the present disclosure is not limited thereto.
  • Block 150 may, for example, also comprise patterning the first dielectric layer 21 a, for example forming apertures therein that expose various portions of the electronic components 23 discussed herein (e.g., conductive terminals 28, etc.). For example, block 150 may comprise ablating apertures (e.g., utilizing laser ablation, utilizing mechanical ablation, utilizing chemical ablation (or etching), etc.). Also for example, block 150 may comprise originally forming the first dielectric layer 21 a (e.g., depositing, etc.) having the desired apertures (e.g., utilizing a masking and/or printing process, etc.).
  • Block 150 may comprise forming the first conductive layer 21 b (e.g., a pad or land layer, a trace layer, etc.) in any of a variety of manners, non-limiting examples of which are provided herein. For example, block 150 may comprise forming the first conductive layer 21 b utilizing any one or more of a variety of processes (e.g., electroplating, electroless plating, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), sputtering or physical vapor deposition (PVD), atomic layer deposition (ALD), plasma vapor deposition, printing, screen printing, lithography, etc.), but the scope of the present disclosure is not limited thereto. Block 150 may, for example, comprise forming the first conductive layer 21 b comprising pads or lands in apertures of the first dielectric layer 21 a, for example on top sides of the conductive terminals 28 of the electronic components 23. Block 150 may also, for example, comprise forming traces on the first dielectric layer 21 a (and/or in channels formed herein).
  • As with any of the conductive layers discussed herein, block 150 may comprise forming one or more seed layers as part of the processing of forming the first conductive layer 21 b (e.g., prior to electroplating the first conductive layer 21 b, etc.). For example, though not shown in FIG. 2E, block 150 may comprise forming one or more seed layers on the top surface of the conductive terminals 28, on aperture sidewalls of the first dielectric layer 21 a, on the top surface of the first dielectric layer 21 a, etc.
  • The first conductive layer 21 b, which may also be referred to herein as a pad, a via, a trace, a land, a bond pad layer, a conductive layer, a trace layer, a redistribution layer, etc., may comprise any of a variety of materials (e.g., copper, aluminum, nickel, iron, silver, gold, titanium, chromium, tungsten, palladium, combinations thereof, alloys thereof, equivalents thereof, etc.), but the scope of the present disclosure is not limited thereto.
  • Block 150 may, for example, comprise forming a second dielectric layer 21 c on the first dielectric layer 21 a (or portions thereof) and/or on the first conductive layer 21 b (or portions thereof). Block 150 may, for example, comprising forming the second dielectric layer 21 c in any of a variety of manners, for example any of the manners discussed herein with regard to the first dielectric layer 21 a. For example, block 150 may comprise forming the second dielectric layer 21 c in the same manner as the first dielectric layer 21 a, or in a different manner. The second dielectric layer 21 c may, for example, comprise any of the characteristics discussed herein with regard to the first dielectric layer 21 a. The second dielectric layer 21 c may, for example, be formed of the same dielectric material as the first dielectric layer 21 a, or of a different dielectric material.
  • As with the first dielectric layer 21 a, block 150 may comprise patterning the second dielectric layer 21 c in any of a variety of manners. For example, block 150 may comprise forming apertures in the second dielectric layer 21 c to expose pads, lands, or traces of the first conductive layer 21 b, for example for establishing electrical contact with a second conductive layer 21 d.
  • Block 150 may, for example, comprise forming a second conductive layer 21 d on the second dielectric layer 21 c, in apertures of the second dielectric layer 21 c, in and/or on portions of the first conductive layer 21 b (or other materials) exposed through apertures of the second dielectric layer 21 c, etc. Block 150 may, for example, comprising forming the second conductive layer 21 d in any of the manners discussed herein with regard to the first conductive layer 21 b. For example, block 150 may comprise forming the second conductive layer 21 d in the same manner as the first conductive layer 21 b, or in a different manner. The second conductive layer 21 d may, for example, comprise any or all of the characteristics discussed herein with regard to the first conductive layer 21 b. The second conductive layer 21 d may, for example, be formed of the same conductive material as the first conductive layer 21 b, or of a different conductive material.
  • In an example implementation, the second conductive layer 21 d (or a portion thereof) may comprise first pads or lands, to which interconnection structures of one or more electronic components may be attached, and second pads or lands, on which conductive pillars (or posts) may be formed. Note that the first pads or lands and the second pads or lands may be the same or may have different respective characteristics (e.g., metallurgy characteristics, geometrical characteristics, etc.).
  • Note that block 150 may comprise forming the signal distribution structure 21 to have any number of conductive and/or dielectric layers, for example one or more conductive layers, one or more dielectric layers, etc. Also note that the configuration of the signal distribution structure 21 shown in the various figures herein is merely exemplary and not limiting. For example, the signal distribution structure 21 (or conductive layers thereof) may provide electrical paths directly vertically or indirectly (e.g., vertically and horizontally, etc.) through the signal distribution structure 21, for example between the first electronic components 23 and the second electronic components 22 and/or conductive pillars 25 (or other components). Also for example, the signal distribution structure 21 (or conductive layers thereof) may provide lateral (or horizontal) electrical pathways through the signal distribution structure 21, for example between the first electronic components 23 and the second electronic components 22 and/or pillars 25 (or other components).
  • Block 150 may also, for example, comprise forming an under bump metallization (UBM) structure 21 e (or layer) on the second conductive layer 21 d and/or on the second dielectric layer 21 c (e.g., on portions of the second dielectric layer 21 c around a perimeter of apertures in the second dielectric layer 21 c through which the second conductive layer 21 d is exposed, etc.). For example, block 150 may comprise forming the UBM structure 21 e to have one or more metallization layers conducive to the attachment (or formation) of interconnection structures (e.g., conductive balls, conductive pillars or posts, etc.), for example as formed and/or attached at block 160. The UBM structure 21 e may, for example, be exposed at the top surface of the signal distribution structure 21 (e.g., as oriented in FIG. 2E). The UBM structure 21 e may also be referred to herein as a land or pad.
  • Block 150 may comprise forming the UBM structure 21 e in any of a variety of manners, non-limiting examples of which are provided herein. In an example implementation, block 150 may comprise forming a UBM seed layer of the UBM structure 21 e over the second dielectric layer 21 c and/or over the portion of the second conductive layer 21 d (e.g., a pad or land, a trace, etc.) that is exposed through an aperture in the second dielectric layer 21 c. The UBM seed layer may, for example, comprise any of a variety of conductive materials (e.g., copper, gold, silver, metal, etc.). The UBM seed layer may be formed in any of a variety of manners (e.g., sputtering, electroless plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), plasma vapor deposition, etc.).
  • Block 150 may, for example, comprise forming a mask (or template) over the UBM seed layer to define a region (or volume) in which one or more additional UBM layers of the UBM structure 21 e (and/or the conductive pillars 25 or other interconnection structure) is to be formed. For example, the mask may comprise a photoresist (PR) material or other material, which may be patterned to cover regions other than the region on which the UBM layer(s) (and/or the conductive pillars 25) are to be formed. Block 150 may then, for example, comprise forming one or more UBM layers on the UBM seed layer exposed through the mask. The UBM layer(s) may comprise any of a variety of materials (e.g., titanium, chromium, aluminum, titanium/tungsten, titanium/nickel, copper, alloys thereof, etc.). Block 150 may comprise forming the UBM layer on the UBM seed layer in any of a variety of manners (e.g., electroplating, sputtering, electroless plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), plasma vapor deposition, etc.).
  • Note that the UBM structures 21 e may or may not be present, for example depending on the interconnection needs. In an example implementation, UBM structures 21 e may be formed for interconnection with the second electronic components 22, but not for interconnection with the conductive pillars 25. In another example implementation, UBM structures 21 e may be formed for interconnection with the second electronic components 22 and for interconnection with the conductive pillars 25. In such an example implementation, the respective UBM structures 21 e for the interconnections with the second electronic components 22 may be different from (e.g., metallurgically different, geometrically different, etc.) the respective UBM structures 21 e for the interconnections with the conductive pillars 25 (or such UBM structures 21 e may all be the same). Another example implementation might not include UBM structures 21 e. Still another example implementation may include UBM structures 21 e for the interconnections with the conductive pillars 25, but not for the interconnections with the second components 22. Note that conductive lands or pads may be used instead of the UBM structures 21 e or in addition to the UBM structures 21 e.
  • As discussed herein, the signal distribution structure 21 may vertically and/or horizontally route any of the electrical signals of the first electronic components 23, of the second electronic components 22 (to be mounted at block 160), and/or of the conductive pillars (to be formed at block 160). For example, the signal distribution structure 21 may route any of such signals vertically and/or both vertically and horizontally (or laterally).
  • In general, block 150 may comprise forming a signal distribution structure 21 (or interposer). Accordingly, the scope of the present disclosure should not be limited by characteristics of any particular signal distribution structure or by characteristics of any particular manner of forming such a signal distribution structure.
  • Referring next to FIG. 1 and the example structure 200 f of FIG. 2F, the example method 100 may, at block 160, comprise forming one or more conductive pillars (or posts) on the signal distribution structure, and coupling one or more second electronic components (e.g., semiconductor dies, etc.) to the signal distribution structure (e.g., as formed at block 150, etc.).
  • Block 160 may, for example, comprise forming one or more conductive pillars 25 on the signal distribution structure 21. A conductive pillar 25 may, for example, be formed on a respective portion of the second conductive layer 21 d and/or at least partially on the second dielectric layer 21 c. The conductive pillar 25 may also be formed on a respective UBM structure 21 e, if present. In an example implementation, block 160 may comprise forming the conductive pillar 25 to extend vertically from the signal distribution structure 21 (e.g., from a respective UBM structure 21 e, from a respective pad or land or trace of the second conductive layer 21 d, etc.). Such forming may be performed in any of a variety of manners, non-limiting examples of which are provided herein.
  • As discussed herein, the second conductive layer 21 d may, for example, comprise any of a variety of conductive materials (e.g., copper, aluminum, silver, gold, nickel, alloys thereof, etc.). The second conductive layer 21 d may, for example, be exposed through an aperture in the second dielectric layer 21 d or another dielectric layer. The second dielectric layer 21 c may, for example, cover side surfaces of the second conductive layer 21 d (or pad or land thereof) and/or an outer perimeter of the top surface of the second conductive layer 21 d. The second dielectric layer 21 c may also, for example, leave at least portions of lateral side surfaces of the second conductive layer 21 d exposed.
  • The conductive pillar 25 (or plurality thereof) may comprise any of a variety of characteristics. For example, the conductive pillar 25 may be cylinder-shaped, elliptical cylinder-shaped, rectangular post-shaped, etc. The conductive pillar 25 may, for example, comprise a flat upper end, a concave upper end, or a convex upper end. The conductive pillar 25 may, for example, comprise any of the materials discussed herein with regard to the conductive layers. In an example implementation, the conductive pillar 25 may comprise copper (e.g., pure copper, copper with some impurities, etc.), a copper alloy, etc. In an example implementation, block 160 (or another block of the example method 100) may also comprise forming a solder cap (or dome) on the conductive pillar 25.
  • Block 160 may comprise forming the conductive pillar 25 in any of a variety of manners (e.g., electroplating, electroless plating, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), sputtering or physical vapor deposition (PVD), atomic layer deposition (ALD), plasma vapor deposition, printing, screen printing, lithography, etc.), but the scope of the present disclosure is not limited thereto. Note that the conductive pillar 25 may also be formed by attaching a preformed wire (e.g., a die bonding wire, etc.), by filling in a via or trench in a temporary or permanent mask (e.g., a photoresist mask, a mold material mask, etc.), etc.
  • After forming the conductive pillar 25, block 160 may comprise stripping or removing the mask (e.g., chemical stripping, ashing, etc.), if a mask is utilized. Additionally, block 160 may comprise removing at least a portion of a seed layer if utilized to form the conductive pillar 25 (e.g., by chemically etching, etc.). Note that during the etching of the seed layer, a lateral edge portion of at least the seed layer under other non-etched layers may, for example, be etched. Such etching may, for example, result in an undercut beneath the remaining non-etched layers (e.g., the conductive pillar 25, the UBM structure 26 e, etc.). For example, in an example implementation in which a UBM structure 26 e and a respective conductive pillar 25 are both formed over a same seed layer, the etching of such seed layer may result in an undercut beneath the UBM structure 26 e and/or beneath the conductive pillar 25 formed thereon. Also for example, in an example implementation in which a conductive pillar 25 is formed over a seed layer, the etching of such seed layer may result in an undercut beneath the conductive pillar 25.
  • After forming the conductive pillar 25, block 160 may, for example, comprise attaching (or coupling or forming) one or more second electronic components 22 to the signal distribution structure 21. The second electronic components 22 may, for example, comprise any or all of the types of components discussed herein with regard to the first electronic components 23. For example, an example implementation, the first electronic components 23 may comprise passive electronic devices, and the second electronic components 22 may comprise semiconductor dies. In another example implementation, the first electric components 23 may comprise semiconductor dies, and the second electronic components 22 may comprise semiconductor dies. In still another example implementation, the first electronic components 23 may comprise semiconductor dies, and the second electronic components 22 may comprise passive electronic devices. In yet another example implementation, the first electronic components 23 may comprise both semiconductor dies and passive components, and the second electronic components 22 may comprise both semiconductor dies and passive components.
  • Block 160 may, for example, comprise attaching a second electronic component 22 to a top side (or portion) of the signal distribution structure 21. In an example scenario in which the second electronic component 22 comprises a semiconductor die, the second electronic component 22 may, for example, be oriented in a manner in which an active side of the die (e.g., on which semiconductor circuitry is generally formed) faces the signal distribution structure 21 (e.g., in a flip-chip configuration, etc.) and an inactive side of the die opposite the active side of the die faces away from the signal distribution structure 21. Note that the active side of such semiconductor die may comprise die bond pads electrically connected to semiconductor circuitry of the die. For example, as illustrated in FIG. 2F, the bond pads 29/29 a (and/or other interconnection terminals of the second electronic component 22 at the lower side of the second electronic component 22) may be attached to corresponding UBM structures 26 e (if present) and/or exposed portions of the second conductive layer 26 d of the signal distribution structure 21 (e.g., pads, lands, etc.). Such attachment (or connection) may, for example, be performed with conductive bumps 29/29 a (e.g., C4 bumps, microbumps, metal pillars, conductive balls, etc.). Block 160 may comprise attaching the second electronic components 22 to the top side of the signal distribution structure 21 in any of a variety of manners (e.g., mass reflow, thermocompression bonding, direct metal-to-metal intermetallic bonding, laser soldering, conductive epoxy bonding, conductive film bonding, etc.). Note that the signal distribution structure 21 may electrically connect the conductive pillar(s) 25 to pads or terminals of the first electronic component(s) 23 and/or the second electronic component(s) 22.
  • The second electronic components 22 may be positioned on the signal distribution structure 21 in any of a variety of manners. For example, a second electronic component 22 may be centered on the signal distribution structure 21, but may also be laterally offset. Also for example, a plurality of the second electronic components 22 (as with the first electronic components 23) may be attached to the signal distribution structure 21 to be included in a same packaged semiconductor device.
  • The conductive pillars 25 (or posts) and the second electronic components 22 may be arranged in any of a variety of manners. For example, a second electronic component 22 (or a plurality thereof) may be laterally surrounded by a plurality of the conductive pillars 25 (e.g., surrounded on two, three, or four sides). In another example implementation, one or more conductive pillars 25 may be positioned laterally between second electronic components 22 of a same packaged semiconductor device.
  • Note that the second electronic component 22, for example when attached to the signal distribution structure 21, may be taller than the conductive pillar 25, shorter than the conductive pillar 25 or generally the same height as the conductive pillar 25. As discussed herein, the tops of the second electronic component 22, the conductive pillar 25, and/or the second encapsulating material 27 may be planarized in any of a variety of manners.
  • In general, block 160 may comprise forming one or more conductive pillars (or posts) and/or forming one or more second electronic components on the signal distribution structure. Accordingly, the scope of the present disclosure should not be limited by characteristics of any particular conductive pillar(s) or manner(s) of forming such pillars, or by characteristics of any particular electronic component(s) or manner(s) of forming (or attaching) such electronic components.
  • Referring next to FIG. 1 and the example structure 200 g of FIG. 2G, the example method 100 may, at block 170, comprise forming a second encapsulating material. Block 170 may, for example, share any or all characteristics with block 130.
  • For example, block 170 may comprise covering the top side of the signal distribution structure 21, any or all sides of the conductive pillars 25 (e.g., top sides, lateral sides, bottom sides exposed by undercutting, etc.), any or all sides of the second electronic components 22 (e.g., top sides, bottom sides facing the signal distribution structure 21 where there is a gap between the component and the signal distribution structure 21, lateral sides, etc.) in a second encapsulating material 27. Additionally, the second encapsulating material 27 may cover any portion of bond pads or bumps of the second electronic components 22 that are not already covered. Note that any of the sides of one or more of the second electronic components 22 may be left uncovered by the second encapsulating material 27.
  • In an example implementation, the second encapsulating material 27 may cover a top side of the signal distribution structure 21 (e.g. any dielectric and/or conductive layer that is exposed at the top side of the signal distribution structure 21). The second encapsulating material 27 may also cover, in-whole or in-part, the lateral sides of the second electronic component 22 (or plurality thereof) and/or the lateral sides of the conductive pillar 25 (or plurality thereof). The second encapsulating material 27 may be formed to also cover the top sides of the second electronic component(s) 22 and/or of the conductive pillar(s) 25. Though FIG. 2G and other drawings herein show the second encapsulating material 27 only covering the top side of the signal distribution structure 21, it should be understood that the second encapsulating material 27 may also be formed to cover lateral sides of the signal distribution structure 21 and/or of the first encapsulating material 26 (e.g., following separation of the electronic device from a wafer or panel or other set of such electronic devices).
  • Note that the second encapsulating material 27 may also underfill the second electronic component 22, and/or an underfill separate from the second encapsulating material 27 may be applied during and/or after the attaching of the second electronic component 22. For example, such underfill may comprise any of a variety of types of material, for example, an epoxy, a thermoplastic material, a thermally curable material, polyimide, polyurethane, a polymeric material, filled epoxy, a filled thermoplastic material, a filled thermally curable material, filled polyimide, filled polyurethane, a filled polymeric material, a fluxing underfill, and equivalents thereof, but not limited thereto. Such underfilling may be performed utilizing a capillary underfill process, utilizing a pre-applied underfill, etc. For example, any electronic component discussed herein may be similarly underfilled.
  • Block 170 may comprise forming the second encapsulating material 27 in any of a variety of manners, non-limiting examples of which are provided herein. For example, block 270 may comprise forming the second encapsulating material 27 utilizing one or more of compression molding, transfer molding, liquid encapsulant molding, vacuum lamination, paste printing, film assisted molding, etc. Also for example, block 170 may comprise forming the second encapsulating material 27 utilizing one or more of spin coating, spray coating, printing, sintering, thermal oxidation, physical vapor deposition (PVD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), plasma vapor deposition (PVD), sheet lamination, evaporating, etc.
  • The second encapsulating material 27 may comprise one or more of a variety of encapsulating materials, non-limiting examples of which are provided herein. For example, the second encapsulating material 27 may comprise any of a variety of encapsulating or molding materials (e.g., resin, polymer, polymer composite material, polymer with filler, epoxy resin, epoxy resin with filler, epoxy acrylate with filler, silicone resin, combinations thereof, equivalents thereof, etc.). Also for example, the second encapsulating material 27 may comprise any of a variety of dielectric materials, for example inorganic dielectric material (e.g., Si3N4, SiO2, SiON, SiN, oxides, nitrides, combinations thereof, equivalents thereof, etc.) and/or organic dielectric material (e.g., a polymer, polyimide (PI), benzocyclobutene (BCB), polybenzoxazole (PBO), bismaleimide triazine (BT), a molding material, a phenolic resin, an epoxy, silicone, acrylate polymer, combinations thereof, equivalents thereof, etc.).
  • The second encapsulating material 27 (or the forming thereof) may share any or all characteristics with the first encapsulating material 26. The scope of this disclosure, however, is not so limited. For example, block 170 may comprise forming the second encapsulating material 27 in a manner different from the manner in which block 130 forms the first encapsulating material 26. Also for example, the second encapsulating material 27 may be a different type of material than the first encapsulating material 26.
  • Referring next to FIG. 1 and the example structure 200 h of FIG. 2H, the example method 100 may, at block 180, comprise thinning (or planarizing) the assembly as encapsulated at block 170.
  • For example, block 180 may comprise thinning or planarizing (e.g., mechanically grinding, chemically etching, shaving or shearing, peeling, any combination thereof, etc.) a top side of the second encapsulating material 27 to a desired thickness. Block 180 may also, for example, comprise thinning (e.g., mechanically grinding, chemically etching, shaving, peeling, any combination thereof, etc.) the second electronic component 22 (or plurality thereof) and/or the conductive pillar 25 (or plurality thereof). In the example implementation shown in FIG. 2H, block 180 comprises performing the thinning in a manner that results in coplanar top surfaces of the second encapsulating material 27, the second electronic component(s) 22, and/or the conductive pillar(s) 25. Thus, at least respective top surfaces (and/or at least an upper portion of lateral side surfaces) of the second electronic component(s) 22 and the conductive pillar(s) 25, are exposed from (or at) the top surface of the second encapsulating material 27. Note that while the example implementation shows the top side of the second electronic component(s) 22 exposed from the second encapsulating material 27, such exposure is not required. For example, in various implementations, a thin layer of the second encapsulating material 27 covering the top side of the second electronic component 22 may remain.
  • In various example implementations, blocks 110-180 (and/or the resulting structure) may share any or all characteristics with generally analogous blocks (and/or the resulting structures) shown in U.S. patent application Ser. No. 14/823,689, filed on Aug. 11, 2016, and titled “Semiconductor Package and Fabricating Method Thereof,” the entirety of which is hereby incorporated herein by reference in its entirety for all purposes.
  • Referring next to FIG. 1 and the example structure 200 i of FIG. 2I, the example method 100 may, at block 190, comprise forming a second signal distribution structure and interconnection structures. Block 190 may comprise performing such operations in any of a variety of manners, non-limiting examples of which are provided herein.
  • Block 190 may, for example, share any or all characteristics with block 150. In the example implementation 200 i shown in FIG. 2I, block 190 comprises forming a dielectric layer 63 on second encapsulating material 27, conductive pillar(s) 25, and/or second electronic component(s) 22. The dielectric layer 63 (and the forming thereof) may, for example, share any or all characteristics with any dielectric layer discussed herein (and the forming thereof), including the forming of apertures.
  • The example dielectric layer 63 is shown with apertures exposing at least a central region of top ends of the conductive pillars 25. Block 190 may, for example, comprise forming such apertures in any of a variety of manners, various examples of which are provided herein (e.g., in the discussion of block 150).
  • Block 190 may, for example, comprise forming the interconnection structures 24 on top ends of the conductive pillars 25 (e.g., through respective apertures through the dielectric layer 63) and/or on portions of the dielectric layer 63 (e.g., surrounding the respective apertures through the dielectric layer 63).
  • The interconnection structures 24 may comprise any of a variety of characteristics. For example, an interconnection structure 24 may comprise a conductive ball or bump (e.g., a solder ball or bump, wafer bump, a solid core or copper core solder ball, etc.). For example, in an example implementation including a solder ball or bump, such balls or bumps may comprise tin, silver, lead, Sn—Pb, Sn37—Pb, Sn95—Pb, Sn—Pb—Ag, Sn—Pb—Bi, Sn—Cu, Sn—Ag, Sn—Au, Sn—Bi, Sn—Ag—Cu, Sn—Ag—Bi, Sn—Zn, Sn—Zn—Bi, combinations thereof, equivalents thereof, etc., but the scope of this disclosures is not limited thereto. An interconnection structure 24 may also comprise a conductive pillar or post, a wire, a land, etc., which may for example comprise any of the conductive materials (e.g., metals, conductive adhesives, etc.) discussed herein.
  • The interconnection structures 24 may be configured in any or a variety of configurations. For example, the interconnection structures 24 may be configured in a ball grid array configuration, a land grid array configuration, etc. The interconnection structures 24 may, for example, be arranged around a perimeter around the semiconductor package (e.g., surrounding a footprint (or outline) of the second electronic component(s) 22 and/or first electronic component(s) 23). The interconnection structure 24 may also, for example, be arranged in a row/column matrix array (e.g., where at least a portion of the matrix/array is within the footprint (or outline) of the second electronic component(s) 22 and/or the first electronic component(s) 23).
  • Block 190 may comprise forming (or attaching) such interconnection structures 24 in any of a variety of manners, non-limiting examples of which are provided herein. For example, block 190 may comprise forming (or attaching) such interconnection structures 24 by ball-dropping, bumping, metal-plating, pasting and reflowing, etc. For example, block 190 may comprise dropping a conductive ball on the end of the conductive pillar 25 (or exposed conductor or pad or land or UBM structure of the second signal distribution structure).
  • Though not shown, block 190 may also, for example, comprise forming (or attaching) additional components (e.g., passive components, active components, etc.) laterally between the interconnection structures 24. In an example implementation, such components may have a smaller height than the interconnection structures 24. For example, such components may have a smaller height than a solder ball conductive interconnection structure 24, a smaller height than a solid core (e.g., a copper core, etc.) of a solder ball interconnection structure 24, etc. In such an implementation, the interconnection structures 24 may provide a standoff to maintain space for such components when the interconnection structures 24 are attached to another substrate or component.
  • Referring next to FIG. 1 and the example structure 200 i of FIG. 2I, the example method 100 may, at block 195, comprise singulating an electronic package from a wafer or panel or otherwise connected plurality of electronic packages. Block 195 may comprise performing such singulating in any of a variety of manners, non-limiting examples of which are provided herein.
  • For example, any or all of the blocks of the example method 100 may be performed at a wafer or panel level, for example forming a plurality of semiconductor devices (or packages) at the same time. The wafer or panel may then, for example, be singulated into individual packages. Such singulating may, for example, be performed by any one or more of mechanical cutting (e.g., sawing, cutting, abrading, snapping, etc.), energy cutting (e.g., laser cutting, plasma cutting, etc.), chemical cutting (e.g., etching, dissolving, etc.), etc. In an example implementation, such singulating may form coplanar lateral side surfaces of the semiconductor device (or package). For example, one or more of the lateral side surfaces of the first encapsulating material 26, the first signal distribution structure 21, the second encapsulating material 27, and the second signal distribution structure 25 may be coplanar on one or more lateral sides of the singulated semiconductor device (or package).
  • FIG. 3A shows a cross-sectional view of an example semiconductor device 300, in accordance with various aspects of the present disclosure, and FIG. 3B shows a bottom view of the example semiconductor device 300, in accordance with various aspects of the present disclosure. The example semiconductor device 300 shown in FIGS. 3A and 3B may result from implementing the example method 100 of FIG. 1 , for example as illustrated in FIGS. 2A-2I and discussed herein.
  • For example, the example semiconductor device 300 (or package) may share any or all characteristics with the resulting semiconductor device 200 i shown in FIG. 2I. Note that other method steps may be performed on the example package 300, for example adding or removing components, etc., without departed from the scope of this disclosure. Note that the example semiconductor device 300 (or any device discussed herein) may be referred to as a semiconductor package, an electronic device, an electronic package, a device, a package, etc.
  • As discussed herein, for example in the discussion of block 190 of the example method 100, the conductive pillars 25 and/or interconnection structures 24 coupled thereto may be arranged in any of a variety of manners. In an example implementation, as shown in FIGS. 3A and 3B, the conductive pillars 25 and interconnection structures 24 may be arranged around a perimeter of the footprint (or outline) of the second electronic component 22. For example, in such an example configuration, there might be no fan-in of the interconnection structures 24 to locations within the footprint (or outline) of the second electronic component 22. For example, as seen in FIGS. 3A and 3B, there are no interconnection structures 24 directly below the second electronic component 22.
  • As discussed herein however (e.g., in the discussion of block 190 of the example method 100), the second signal distribution structure (shown in FIGS. 2I and 3A as a dielectric layer 63 with apertures filled with conductive material) may comprise any number of dielectric and/or conductive layers. For example, the second signal distribution structure may share any or all characteristics with the signal distribution structure 21 formed at block 150.
  • For example, referring next to FIG. 1 and the example structure 400 a of FIG. 4 a , the example method 100 may, at block 190, comprise forming a second signal distribution structure 31. The second signal distribution structure 31 (and/or the forming thereof) may share any or all characteristics with the first signal distribution structure 21 (and/or the forming thereof). The example second signal distribution structure 31, for example, comprises a plurality of dielectric layers and a plurality of conductive layers (e.g., pad or land layers, trace layers, UBM layers, etc.).
  • For example, in addition to the dielectric layer 63, the second signal distribution structure 31 may comprise a first dielectric layer 31 a, a first conductive layer 31 b, a second dielectric layer 31 c, a second conductive layer 32 b, and a UBM structure 32 e (or alternatively a pad). For example, the first conductive layer 31 b may be connected to the conductive pillar 25 through an aperture in the dielectric layer 63. Then any number of conductive layers and dielectric layers may be formed to form the signal distribution structure 31. Such conductive layers (e.g., the first conductive layer 31 b, the second conductive layer 31 d, etc.) may distribute respective signals to/from the conductive pillars 25 from/to any locations on the footprint of the semiconductor device.
  • Also for example, referring next to FIG. 1 and the example structure 440 b of FIG. 4B, the example method 100 may, at block 190, comprise forming interconnection structures 34 attached to the second signal distribution structure 31 (e.g., to pads, lands, UBM structures, etc.).
  • FIG. 5A shows a cross-sectional view of an example semiconductor device 500, in accordance with various aspects of the present disclosure, and FIG. 5B shows a bottom view of the example semiconductor device 500, in accordance with various aspects of the present disclosure. The example semiconductor device 500 shown in FIGS. 5A and 5B may result from implementing the example method 100 of FIG. 1 , for example as illustrated in FIGS. 2A-2I and in FIGS. 4A-4B, and discussed herein.
  • For example, the example semiconductor device 500 (or package) may share any or all characteristics with the resulting semiconductor device 400 b shown in FIG. 4B and with resulting semiconductor device 200 i shown in FIG. 2I. Note that other method steps may be performed on the example package 500, for example adding or removing components, etc., without departed from the scope of this disclosure. Note that the example semiconductor device 500 (or any device discussed herein) may be referred to as a semiconductor package, an electronic device, an electronic package, a device, a package, etc.
  • As discussed herein, for example in the discussion of block 190 of the example method 100, the conductive pillars 25 and/or interconnection structures 24 coupled thereto may be arranged in any of a variety of configurations. One such example, as shown in FIGS. 5A and 5B, the conductive pillars 25 may be arranged around a perimeter of the footprint (or outline) of the second electronic component 22. For example, in such an example configuration, there might be a full matrix of the interconnection structures 24, for example the second signal distribution structure 31 providing a fan-in to locations within the footprint (or outline) of the second electronic component 22. For example, as seen in FIG. 5B, some of the interconnection structures 34 are directly below the second electronic component 22, and some of the interconnection structures 34 are not directly below the second electronic component 22. For example, some of the interconnection structures 34 may be directly below respective conductive pillars 25, and some of the interconnection structures 34 may be laterally offset from respective conductive pillars 25.
  • In summary, various aspects of this disclosure provide a semiconductor device and a method of manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a semiconductor device comprising multiple encapsulating layers and multiple signal distribution structures, and a method of manufacturing thereof. While the foregoing has been described with reference to certain aspects and examples, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from its scope. Therefore, it is intended that the disclosure not be limited to the particular example(s) disclosed, but that the disclosure will include all examples falling within the scope of the appended claims.

Claims (20)

What is claimed is:
1. A semiconductor device comprising:
a first signal distribution structure having a first side and a second side that is opposite the first side of the first signal distribution structure, wherein the first signal distribution structure comprises a dielectric layer and a conductive layer;
a first electronic component coupled to the first side of the first signal distribution structure;
a second electronic component coupled to the first side of the first signal distribution structure;
a first encapsulating material on the first side of the first signal distribution structure and around the first electronic component and the second electronic component;
a third electronic component coupled to the second side of the first signal distribution structure;
conductive pillars coupled to the second side of the first signal distribution structure and positioned laterally around the third electronic component; and
a second encapsulating material on the second side of the first signal distribution structure and around the third electronic component and the conductive pillars.
2. The semiconductor device of claim 1, wherein the first electronic component and the second electronic component vertically overlap the third electronic component.
3. The semiconductor device of claim 1, wherein:
the first electronic component comprises a first semiconductor die; and
the second electronic component comprises a second semiconductor die.
4. The semiconductor device of claim 1, wherein the third electronic component comprises a semiconductor die.
5. The semiconductor device of claim 1, wherein the third electronic component comprises a passive component.
6. The semiconductor device of claim 1, wherein the second encapsulating material laterally surrounds and contacts conductive material of each conductive pillar.
7. The semiconductor device of claim 1, wherein:
a first side of each conductive pillar is exposed from the second encapsulating material at a first side of the second encapsulating material; and
a second side of each conductive pillar is exposed from the second encapsulating material at a second side of the second encapsulating material that is opposite the first side of the second encapsulating material.
8. The semiconductor device of claim 1, comprising a second signal distribution structure over the first side of the second encapsulating material, the conductive pillars, and the third electronic component.
9. The semiconductor device of claim 1, wherein:
the third electronic component comprises a first component side oriented toward the first signal distribution structure and a second component side oriented away from the first signal distribution structure; and
the second component side is devoid of the second encapsulating material.
10. A semiconductor device comprising:
a first signal distribution structure having a first side and a second side that is opposite the first side of the first signal distribution structure;
a first electronic component comprising a first terminal and a second terminal coupled to the first side of the first signal distribution structure;
a second electronic component comprising a first terminal and a second terminal coupled to the first side of the first signal distribution structure;
a first encapsulating material on the first side of the first signal distribution structure and around the first electronic component and the second electronic component;
a third electronic component coupled to the second side of the first signal distribution structure;
conductive pillars coupled to the second side of the first signal distribution structure and positioned laterally around the third electronic component; and
a second encapsulating material on the second side of the first signal distribution structure, and around the third electronic component and the conductive pillars;
wherein the first signal distribution structure comprises a first electrical pathway between the first terminal of the first electronic component and a first conductive pillar of the conductive pillars, and a second electrical pathway between the second terminal of the first electronic component and the third electronic component.
11. The semiconductor device of claim 10, wherein the first signal distribution structure comprises a third electrical pathway between the first terminal of the second electronic component and a second conductive pillar of the conductive pillars, and a fourth electrical pathway between the second terminal of the second electronic component and the third electronic component.
12. The semiconductor device of claim 10, wherein the first electronic component and the second electronic component vertically overlap the third electronic component.
13. The semiconductor device of claim 10, wherein:
the first electronic component comprises a first semiconductor die; and
the second electronic component comprises a second semiconductor die.
14. The semiconductor device of claim 10, wherein the third electronic component comprises a semiconductor die.
15. The semiconductor device of claim 10, wherein the third electronic component comprises a passive component.
16. The semiconductor device of claim 10, wherein the second encapsulating material laterally surrounds and contacts conductive material of each conductive pillar.
17. The semiconductor device of claim 10, comprising:
a conductive balls; and
wherein each conductive pillar of the conductive pillars has a conductive ball coupled to an end of the respective conductive pillar.
18. The semiconductor device of claim 10, comprising:
a second signal distribution structure on the second encapsulating material;
wherein the second encapsulating material, the conductive pillars, and the third electronic component are positioned between the first signal distribution structure and the second distribution structure.
19. A method of forming a semiconductor device, the method comprising:
providing a first signal distribution structure having a first side and a second side that is opposite the first side of the first signal distribution structure, wherein the first signal distribution structure comprises a dielectric layer and a conductive layer;
coupling a first electronic component to the first side of the first signal distribution structure;
coupling a second electronic component to the first side of the first signal distribution structure;
encapsulating the first side of the first signal distribution structure, the first electronic component, and the second electronic component in a first encapsulating material;
coupling a third electronic component to the second side of the first signal distribution structure;
providing conductive pillars coupled to the second side of the first signal distribution structure and positioned laterally around the third electronic component; and
encapsulating the second side of the first signal distribution structure, the third electronic component, and the conductive pillars in a second encapsulating material.
20. The method of claim 19, wherein:
the first electronic component comprises a first semiconductor die;
the second electronic component comprises a second semiconductor die; and
the third electronic component comprises a third semiconductor die.
US18/094,823 2017-03-21 2023-01-09 Semiconductor device and method of manufacturing thereof Pending US20230163079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/094,823 US20230163079A1 (en) 2017-03-21 2023-01-09 Semiconductor device and method of manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/465,307 US11569176B2 (en) 2017-03-21 2017-03-21 Semiconductor device and method of manufacturing thereof
US18/094,823 US20230163079A1 (en) 2017-03-21 2023-01-09 Semiconductor device and method of manufacturing thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/465,307 Continuation US11569176B2 (en) 2017-03-21 2017-03-21 Semiconductor device and method of manufacturing thereof

Publications (1)

Publication Number Publication Date
US20230163079A1 true US20230163079A1 (en) 2023-05-25

Family

ID=61400013

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/465,307 Active US11569176B2 (en) 2017-03-21 2017-03-21 Semiconductor device and method of manufacturing thereof
US18/094,823 Pending US20230163079A1 (en) 2017-03-21 2023-01-09 Semiconductor device and method of manufacturing thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/465,307 Active US11569176B2 (en) 2017-03-21 2017-03-21 Semiconductor device and method of manufacturing thereof

Country Status (4)

Country Link
US (2) US11569176B2 (en)
KR (1) KR102436836B1 (en)
CN (2) CN108630658A (en)
TW (2) TWI811191B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI652787B (en) * 2017-05-25 2019-03-01 矽品精密工業股份有限公司 Electronic package and its manufacturing method
US10541228B2 (en) 2017-06-15 2020-01-21 Taiwan Semiconductor Manufacturing Company, Ltd. Packages formed using RDL-last process
US10629539B2 (en) * 2017-11-07 2020-04-21 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure and method of fabricating the same
TWI643307B (en) * 2018-01-30 2018-12-01 矽品精密工業股份有限公司 Electronic package and method for fabricating the same
US11039531B1 (en) 2018-02-05 2021-06-15 Flex Ltd. System and method for in-molded electronic unit using stretchable substrates to create deep drawn cavities and features
US20190244943A1 (en) * 2018-02-08 2019-08-08 Powertech Technology Inc. Semiconductor package and manufacturing method thereof
US11224117B1 (en) 2018-07-05 2022-01-11 Flex Ltd. Heat transfer in the printed circuit board of an SMPS by an integrated heat exchanger
TWI697078B (en) * 2018-08-03 2020-06-21 欣興電子股份有限公司 Package substrate structure and method of bonding using the same
US10964660B1 (en) 2018-11-20 2021-03-30 Flex Ltd. Use of adhesive films for 3D pick and place assembly of electronic components
TWI703685B (en) 2018-11-21 2020-09-01 欣興電子股份有限公司 Light-emitting diode package and manufacturing method thereof
CN111211116B (en) * 2018-11-21 2022-03-01 欣兴电子股份有限公司 Light emitting diode package and method of manufacturing the same
US10896877B1 (en) * 2018-12-14 2021-01-19 Flex Ltd. System in package with double side mounted board
WO2020129808A1 (en) * 2018-12-21 2020-06-25 株式会社村田製作所 Method for producing electronic component module, and electronic component module
US11257747B2 (en) * 2019-04-12 2022-02-22 Powertech Technology Inc. Semiconductor package with conductive via in encapsulation connecting to conductive element
TWI698966B (en) * 2019-05-14 2020-07-11 矽品精密工業股份有限公司 Electronic package and manufacturing method thereof
DE102020119181A1 (en) * 2019-10-29 2021-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. SEMICONDUCTOR PACKAGES AND PROCESS FOR THEIR PRODUCTION
US10978338B1 (en) * 2019-11-13 2021-04-13 Nanya Technology Corporation Semiconductor device and manufacture method thereof
KR20210126310A (en) * 2020-04-10 2021-10-20 삼성전자주식회사 Semiconductor devices including a seed structure and method of forming the same
US11562936B2 (en) 2020-08-31 2023-01-24 Amkor Technology Singapore Holding Pte. Ltd. Electrionic devices with interposer and redistribution layer

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049170B2 (en) * 2003-12-17 2006-05-23 Tru-Si Technologies, Inc. Integrated circuits and packaging substrates with cavities, and attachment methods including insertion of protruding contact pads into cavities
FR2942583A1 (en) * 2009-03-02 2010-09-03 Clause PLANTS OF THE GENUS DIPLOTAXIS WITH CYTOPLASMIC MALE STERILITY
JP5406572B2 (en) 2009-03-19 2014-02-05 新光電気工業株式会社 Electronic component built-in wiring board and manufacturing method thereof
US9385095B2 (en) * 2010-02-26 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
US9831170B2 (en) * 2011-12-30 2017-11-28 Deca Technologies, Inc. Fully molded miniaturized semiconductor module
JP2014096547A (en) 2012-11-12 2014-05-22 Ps4 Luxco S A R L Semiconductor device and method of manufacturing the same
TWI544591B (en) 2012-11-30 2016-08-01 英力股份有限公司 Semiconductor device and method of forming the same
US8970023B2 (en) 2013-02-04 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and methods of forming same
KR101676916B1 (en) * 2014-08-20 2016-11-16 앰코 테크놀로지 코리아 주식회사 Manufacturing method of semiconductor device amd semiconductor device thereof
US10177115B2 (en) * 2014-09-05 2019-01-08 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming
US9633974B2 (en) * 2015-03-04 2017-04-25 Apple Inc. System in package fan out stacking architecture and process flow
KR101809521B1 (en) * 2015-09-04 2017-12-18 주식회사 네패스 Semiconductor package and method of manufacturing the same
US9735131B2 (en) * 2015-11-10 2017-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-stack package-on-package structures
US10026716B2 (en) * 2016-04-15 2018-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. 3DIC formation with dies bonded to formed RDLs
US9935080B2 (en) * 2016-04-29 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Three-layer Package-on-Package structure and method forming same
US10062626B2 (en) * 2016-07-26 2018-08-28 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US20180076179A1 (en) * 2016-09-09 2018-03-15 Powertech Technology Inc. Stacked type chip package structure and manufacturing method thereof
US10319683B2 (en) * 2017-02-08 2019-06-11 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-stacked package-on-package structures

Also Published As

Publication number Publication date
TW201836099A (en) 2018-10-01
KR102436836B1 (en) 2022-08-26
KR20180106791A (en) 2018-10-01
TW202320262A (en) 2023-05-16
TWI811191B (en) 2023-08-11
US11569176B2 (en) 2023-01-31
CN108630658A (en) 2018-10-09
KR20220122574A (en) 2022-09-02
US20180277485A1 (en) 2018-09-27
CN206992089U (en) 2018-02-09

Similar Documents

Publication Publication Date Title
US20230163079A1 (en) Semiconductor device and method of manufacturing thereof
US11848310B2 (en) Semiconductor device and method of manufacturing thereof
US11063001B2 (en) Semiconductor device and method of manufacturing thereof
US20210217692A1 (en) Semiconductor package and fabricating method thereof
TWI784595B (en) Semiconductor device and method of forming an integrated sip module with embedded inductor or package
US11869875B2 (en) Electronic device having a substrate-to-substrate interconnection structure and manufacturing method thereof
US10141270B2 (en) Semiconductor device and method of manufacturing thereof
KR102660697B1 (en) Semiconductor device and method of manufacturing thereof
US20240136328A1 (en) Semiconductor device and manufacturing method thereof
KR20240053569A (en) Semiconductor device and method of manufacturing thereof
TW202407917A (en) Semiconductor package and fabricating method thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMKOR TECHNOLOGY, INC.;REEL/FRAME:064468/0478

Effective date: 20191119

Owner name: AMKOR TECHNOLOGY, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAN, YI SEUL;LEE, TAE YONG;RYU, JI YEON;REEL/FRAME:064468/0370

Effective date: 20170508