US20230141181A1 - Data dispersion-based memory management - Google Patents

Data dispersion-based memory management Download PDF

Info

Publication number
US20230141181A1
US20230141181A1 US18/093,069 US202318093069A US2023141181A1 US 20230141181 A1 US20230141181 A1 US 20230141181A1 US 202318093069 A US202318093069 A US 202318093069A US 2023141181 A1 US2023141181 A1 US 2023141181A1
Authority
US
United States
Prior art keywords
memory
block
memory block
blocks
candidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US18/093,069
Other versions
US11907536B2 (en
Inventor
Ashutosh Malshe
Vamsi Pavan Rayaprolu
Kishore K. Muchherla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US18/093,069 priority Critical patent/US11907536B2/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MALSHE, ASHUTOSH, MUCHHERLA, KISHORE K., RAYAPROLU, VAMSI PAVAN
Publication of US20230141181A1 publication Critical patent/US20230141181A1/en
Application granted granted Critical
Publication of US11907536B2 publication Critical patent/US11907536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0608Saving storage space on storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/064Management of blocks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/0652Erasing, e.g. deleting, data cleaning, moving of data to a wastebasket
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0653Monitoring storage devices or systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]

Definitions

  • Embodiments of the disclosure relate generally to memory sub-systems, and more specifically, relate to data dispersion-based memory management.
  • FIG. 5 is a block diagram of an example computer system in which embodiments of the present disclosure may operate.
  • Media management operations can be performed on the memory blocks.
  • Non-limiting examples of media management operations can include error correction operations, wear leveling operations, read disturb mitigation operations, and/or garbage collection operations.
  • Media management operations can be performed in the “foreground” (e.g., during a time when a host is utilizing an interface associated with the memory sub-system and/or in the “background” (e.g., when the host is not utilizing the interface associated with the memory sub-system).
  • Media management operations can be referred to in the alternative as “memory management operations”, herein.
  • a “garbage collection operation” generally refers to a process of folding data from a victim block stripe into a new destination block stripe, with the intended purpose of data consolidation to free up memory resources for subsequent program/erase cycles.
  • a “block stripe” generally refers to a logical grouping of memory blocks that share a same upper block number and can be accessed in parallel.
  • the garbage collection operation can utilize read and write operations that result in write amplification, which can increase memory sub-system (e.g., SSD) power consumption and can decrease the lifespan of the memory sub-system, for example, since the memory cells can become unusable after experiencing a certain number of program/erase cycles.
  • the host system 120 can include a processor chipset and a software stack executed by the processor chipset.
  • the processor chipset can include one or more cores, one or more caches, a memory controller (e.g., an SSD controller), and a storage protocol controller (e.g., PCIe controller, SATA controller).
  • the host system 120 uses the memory sub-system 110 , for example, to write data to the memory sub-system 110 and read data from the memory sub-system 110 .
  • FIG. 2 B illustrates another example block of memory cells 227 in accordance with some embodiments of the present disclosure
  • FIG. 2 C illustrates yet another example block of memory cells 229 in accordance with some embodiments of the present disclosure.
  • the blocks of memory cells 227 and 229 can each be superblocks that span memory dice 221 - 1 to 221 -L, include planes 223 - 1 to 223 -P, and include pages 225 - 1 to 225 -Q.
  • the first, second, third, and fourth valid data portions can be located on the same page (e.g., page 225 - 2 ), while the sixth and seventh valid data portions can each be located on the same page (page 225 - 9 ).
  • the block of memory cells 227 can have a total of 5 pages which include at least one valid data portion.
  • the block of memory cells 227 can have a respective dispersion that is less than the respective dispersion of the block of memory cells 220 described in FIG. 2 A which has a total of 8 pages which include at least one valid data portion.
  • the first, second, third, fourth, and fifth valid data portions can be located on the same page (e.g., page 225 - 6 ), while the sixth and seventh valid data portions can each be located on the same page (page 225 - 8 ).
  • the block of memory cells 229 can have a total of 3 pages which include at least one valid data portion.
  • the block of memory cells 229 can have a respective dispersion that is less than the respective dispersion of the block of memory cells 220 described in FIG. 2 A and less than the respective dispersion of the block of memory cells 227 described in FIG. 2 B .
  • FIG. 5 is a block diagram of an example computer system 500 in which embodiments of the present disclosure may operate.
  • FIG. 5 illustrates an example machine of a computer system 500 within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.
  • the computer system 500 can correspond to a host system (e.g., the host system 120 of FIG. 1 ) that includes, is coupled to, or utilizes a memory sub-system (e.g., the memory sub-system 110 of FIG. 1 ) or can be used to perform the operations of a controller (e.g., to execute an operating system to perform operations corresponding to the data dispersion-based memory management component 113 of FIG. 1 ).
  • a host system e.g., the host system 120 of FIG. 1
  • a memory sub-system e.g., the memory sub-system 110 of FIG. 1
  • a controller e.g., to execute an operating system to perform operations corresponding to the data dispersion-based

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Read Only Memory (AREA)

Abstract

A method includes determining a respective number of and respective locations of valid data portions of a plurality of blocks of NAND memory cells, based on the respective locations of the valid data portions, determining respective dispersions of the valid data portions within the plurality of blocks of NAND memory cells, based at least on the respective dispersions, selecting a block of NAND memory cells from the plurality of blocks of NAND memory cells, and performing a folding operation on the selected block.

Description

    PRIORITY INFORMATION
  • This application is a Continuation of U.S. Application Serial No. 17/007,538, filed Aug. 31, 2020, contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • Embodiments of the disclosure relate generally to memory sub-systems, and more specifically, relate to data dispersion-based memory management.
  • BACKGROUND
  • A memory sub-system can include one or more memory devices that store data. The memory devices can be, for example, non-volatile memory devices and volatile memory devices. In general, a host system can utilize a memory sub-system to store data at the memory devices and to retrieve data from the memory devices.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the disclosure.
  • FIG. 1 illustrates an example computing system that includes a memory sub-system in accordance with some embodiments of the present disclosure.
  • FIG. 2A illustrates an example block of memory cells in accordance with some embodiments of the present disclosure.
  • FIG. 2B illustrates another example block of memory cells in accordance with some embodiments of the present disclosure.
  • FIG. 2C illustrates yet another example block of memory cells in accordance with some embodiments of the present disclosure.
  • FIG. 3 is a flow diagram corresponding to data dispersion-based memory management in accordance with some embodiments of the present disclosure.
  • FIG. 4 is a flow diagram corresponding to a method for data dispersion-based memory management in accordance with some embodiments of the present disclosure.
  • FIG. 5 is a block diagram of an example computer system in which embodiments of the present disclosure may operate.
  • DETAILED DESCRIPTION
  • Aspects of the present disclosure are directed to data dispersion-based memory management, in particular to memory sub-systems that include a data dispersion-based memory management component. A memory sub-system can be a storage system, storage device, a memory module, or a combination of such. An example of a memory sub-system is a storage system such as a solid-state drive (SSD). Examples of storage devices and memory modules are described below in conjunction with FIG. 1 , et alibi. In general, a host system can utilize a memory sub-system that includes one or more components, such as memory devices that store data. The host system can provide data to be stored at the memory sub-system and can request data to be retrieved from the memory sub-system.
  • A memory device can be a non-volatile memory device. One example of non-volatile memory devices is a negative-and (NAND) memory device (also known as flash technology). Other examples of non-volatile memory devices are described below in conjunction with FIG. 1 . A non-volatile memory device is a package of one or more dice. Each die can consist of one or more planes. Planes can be groups into logic units (LUN). For some types of non-volatile memory devices (e.g., NAND devices), each plane consists of a set of physical blocks. Each block consists of a set of pages. Each page consists of a set of memory cells (“cells”). A cell is an electronic circuit that stores information. A block hereinafter refers to a unit of the memory device used to store data and can include a group of memory cells, a word line group, a word line, or individual memory cells. For some memory devices, blocks (also hereinafter referred to as “memory blocks”) are the smallest area than can be erased. Pages cannot be erased individually, and only whole blocks can be erased.
  • Each of the memory devices can include one or more arrays of memory cells. Depending on the cell type, a cell can be written to in order to store one or more bits of binary information, and has various logic states that correlate to the number of bits being stored. The logic states can be represented by binary values, such as “0” and “1”, or combinations of such values. There are various types of cells, such as single level cells (SLCs), multi-level cells (MLCs), triple level cells (TLCs), and quad-level cells (QLCs). For example, a SLC can store one bit of information and has two logic states.
  • Some NAND memory devices employ a floating-gate architecture in which memory accesses are controlled based on a relative voltage change between the bit line and the word lines. Other examples of NAND memory devices can employ a replacement-gate architecture that can include the use of word line layouts that can allow for charges corresponding to data values to be trapped within memory cells based on properties of the materials used to construct the word lines.
  • Media management operations can be performed on the memory blocks. Non-limiting examples of media management operations can include error correction operations, wear leveling operations, read disturb mitigation operations, and/or garbage collection operations. Media management operations can be performed in the “foreground” (e.g., during a time when a host is utilizing an interface associated with the memory sub-system and/or in the “background” (e.g., when the host is not utilizing the interface associated with the memory sub-system). Media management operations can be referred to in the alternative as “memory management operations”, herein.
  • A “garbage collection operation” generally refers to a process of folding data from a victim block stripe into a new destination block stripe, with the intended purpose of data consolidation to free up memory resources for subsequent program/erase cycles. As used herein, a “block stripe” generally refers to a logical grouping of memory blocks that share a same upper block number and can be accessed in parallel. However, the garbage collection operation can utilize read and write operations that result in write amplification, which can increase memory sub-system (e.g., SSD) power consumption and can decrease the lifespan of the memory sub-system, for example, since the memory cells can become unusable after experiencing a certain number of program/erase cycles. “Folding” is the migration of data from one memory device location (e.g., NAND location) to another memory device (e.g., NAND location) location independent of any direct host interaction. Folding can be performed to pack valid data together, for example, as part of garbage collection operations, which can then free more memory device storage space for operations (e.g., new writes, error avoidance operations, wear leveling operations, restoring RAIN parity protection in the event of an error).
  • Garbage collection operations can employ selection of a source memory block to be reclaimed by the garbage collection operation. Some previous garbage collection approaches may include tracking (e.g., via a table) a quantity of valid physical translation units (PTUs) per block (e.g., a valid translation count (VTC)) and then selecting a block having the lowest VTC as a source block for garbage collection. Although such approaches can result in a low amount of folding effort (e.g., lower write amplification), such approaches can be inefficient.
  • Efficiency (e.g., an amount of bus traffic, an amount of computing overhead, etc.) associated with a media management operation such as a garbage collection operation can vary. For instance, memory blocks can be filled with both valid data portions and invalid data portions. As used herein, “valid data portions” generally refer to data corresponding to a page having a current (e.g., up to date) logical to physical mapping entry, while “invalid data portions” generally refer to data corresponding to a page whose mapping entry is stale (e.g., the corresponding logical page has been remapped to a new physical page). Due to the behavior of write operations in the host workload memory sub-systems, the valid data portions can be dispersed at various locations within the memory block. Efficiencies associated with a media management operation can vary depending on a given dispersion of the valid data portions.
  • Additionally, efficiency of the media management operation can vary based on a type of media management operation (e.g., a foreground or background garbage collection operation) to be performed on the source memory block. Thus, by not accounting for data dispersion and/or a type of media management operation, the memory sub-system can experience degraded performance with approaches that use VTC as a sole criterion for source block selection. This degradation of performance can be undesirable, especially in critical applications and/or in applications in demanding applications in which very high memory sub-system performance is expected. Further, this degraded performance that can be exhibited in such approaches can be further exacerbated in mobile (e.g., smartphone, interne of things, etc.) memory deployments in which an amount of space available to house a memory sub-system is limited in comparison to traditional computing architectures.
  • Aspects of the present disclosure address the above and other deficiencies by determining dispersions of valid data portions within memory blocks and selecting a memory block on which to perform media management operations based at least on the dispersions of valid data portions of the memory blocks. For example, in some embodiments, a memory block can be selected based at least on respective dispersions of valid data portions of the memory block and other memory blocks in a memory sub-system, and data from the selected memory block can be folded as part of performing a media management operation such as garbage collection operation. Additionally, in some embodiments, selection of a memory block can be based on a type of media management operation to be performed on the memory block. By selecting a memory block based at least on respective dispersions of valid data portions and/or a type of media management operation to be performed, memory sub-system performance can be improved in comparison to approaches in which source block selection for a media management operation is solely based on having the lowest VTC. Embodiments herein can be applied in mobile memory deployments to further improve the reliability of a memory sub-system deployed in a mobile computing architecture.
  • FIG. 1 illustrates an example computing system 100 that includes a memory sub-system 110 in accordance with some embodiments of the present disclosure. The memory sub-system 110 can include media, such as one or more volatile memory devices (e.g., memory device 140), one or more non-volatile memory devices (e.g., memory device 130), or a combination of such.
  • A memory sub-system 110 can be a storage device, a memory module, or a hybrid of a storage device and memory module. Examples of a storage device include a solid-state drive (SSD), a flash drive, a universal serial bus (USB) flash drive, an embedded Multi-Media Controller (eMMC) drive, a Universal Flash Storage (UFS) drive, a secure digital (SD) card, and a hard disk drive (HDD). Examples of memory modules include a dual in-line memory module (DIMM), a small outline DIMM (SO-DIMM), and various types of non-volatile dual in-line memory modules (NVDIMMs).
  • The computing system 100 can be a computing device such as a desktop computer, laptop computer, server, network server, mobile device, a vehicle (e.g., airplane, drone, train, automobile, or other conveyance), Internet of Things (IoT) enabled device, embedded computer (e.g., one included in a vehicle, industrial equipment, or a networked commercial device), or such computing device that includes memory and a processing device.
  • The computing system 100 can include a host system 120 that is coupled to one or more memory sub-systems 110. In some embodiments, the host system 120 is coupled to different types of memory sub-system 110. FIG. 1 illustrates one example of a host system 120 coupled to one memory sub-system 110. As used herein, “coupled to” or “coupled with” generally refers to a connection between components, which can be an indirect communicative connection or direct communicative connection (e.g., without intervening components), whether wired or wireless, including connections such as electrical, optical, magnetic, and the like.
  • The host system 120 can include a processor chipset and a software stack executed by the processor chipset. The processor chipset can include one or more cores, one or more caches, a memory controller (e.g., an SSD controller), and a storage protocol controller (e.g., PCIe controller, SATA controller). The host system 120 uses the memory sub-system 110, for example, to write data to the memory sub-system 110 and read data from the memory sub-system 110.
  • The host system 120 can be coupled to the memory sub-system 110 via a physical host interface. Examples of a physical host interface include, but are not limited to, a serial advanced technology attachment (SATA) interface, a peripheral component interconnect express (PCIe) interface, universal serial bus (USB) interface, Fibre Channel, Serial Attached SCSI (SAS), Small Computer System Interface (SCSI), a double data rate (DDR) memory bus, a dual in-line memory module (DIMM) interface (e.g., DIMM socket interface that supports Double Data Rate (DDR)), Open NAND Flash Interface (ONFI), Double Data Rate (DDR), Low Power Double Data Rate (LPDDR), or any other interface. The physical host interface can be used to transmit data between the host system 120 and the memory sub-system 110. The host system 120 can further utilize an NVM Express (NVMe) interface to access components (e.g., memory devices 130) when the memory sub-system 110 is coupled with the host system 120 by the PCIe interface. The physical host interface can provide an interface for passing control, address, data, and other signals between the memory sub-system 110 and the host system 120. FIG. 1 illustrates a memory sub-system 110 as an example. In general, the host system 120 can access multiple memory sub-systems via a same communication connection, multiple separate communication connections, and/or a combination of communication connections.
  • The memory devices 130, 140 can include any combination of the different types of non-volatile memory devices and/or volatile memory devices. The volatile memory devices (e.g., memory device 140) can be, but are not limited to, random access memory (RAM), such as dynamic random access memory (DRAM) and synchronous dynamic random access memory (SDRAM).
  • Some examples of non-volatile memory devices (e.g., memory device 130) include negative-and (NAND) type flash memory and write-in-place memory, such as three-dimensional cross-point (“3D cross-point”) memory device, which is a cross-point array of non-volatile memory cells. A cross-point array of non-volatile memory can perform bit storage based on a change of bulk resistance, in conjunction with a stackable cross-gridded data access array. Additionally, in contrast to many flash-based memories, cross-point non-volatile memory can perform a write in-place operation, where a non-volatile memory cell can be programmed without the non-volatile memory cell being previously erased. NAND type flash memory includes, for example, two-dimensional NAND (2D NAND) and three-dimensional NAND (3D NAND).
  • Each of the memory devices 130, 140 can include one or more arrays of memory cells. One type of memory cell, for example, single level cells (SLC) can store one bit per cell. Other types of memory cells, such as multi-level cells (MLCs), triple level cells (TLCs), quad-level cells (QLCs), and penta-level cells (PLC) can store multiple bits per cell. In some embodiments, each of the memory devices 130 can include one or more arrays of memory cells such as SLCs, MLCs, TLCs, QLCs, or any combination of such. In some embodiments, a particular memory device can include an SLC portion, and an MLC portion, a TLC portion, a QLC portion, or a PLC portion of memory cells. The memory cells of the memory devices 130 can be grouped as pages that can refer to a logical unit of the memory device used to store data. With some types of memory (e.g., NAND), pages can be grouped to form blocks.
  • Although non-volatile memory components such as three-dimensional cross-point arrays of non-volatile memory cells and NAND type memory (e.g., 2D NAND, 3D NAND) are described, the memory device 130 can be based on any other type of non-volatile memory or storage device, such as such as, read-only memory (ROM), phase change memory (PCM), self-selecting memory, other chalcogenide based memories, ferroelectric transistor random access memory (FeTRAM),ferroelectric random access memory (FeRAM), magneto random access memory (MRAM), Spin Transfer Torque (STT)-MRAM, conductive bridging RAM (CBRAM), resistive random access memory (RRAM), oxide based RRAM (OxRAM), negative-or (NOR) flash memory, and electrically erasable programmable read-only memory (EEPROM).
  • The memory sub-system controller 115 (or controller 115 for simplicity) can communicate with the memory devices 130 to perform operations such as reading data, writing data, or erasing data at the memory devices 130 and other such operations. The memory sub-system controller 115 can include hardware such as one or more integrated circuits and/or discrete components, a buffer memory, or a combination thereof. The hardware can include digital circuitry with dedicated (i.e., hard-coded) logic to perform the operations described herein. The memory sub-system controller 115 can be a microcontroller, special purpose logic circuitry (e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.), or other suitable processor.
  • The memory sub-system controller 115 can be a processor 117 (e.g., a processing device) configured to execute instructions stored in a local memory 119. In the illustrated example, the local memory 119 of the memory sub-system controller 115 includes an embedded memory configured to store instructions for performing various processes, operations, logic flows, and routines that control operation of the memory sub-system 110, including handling communications between the memory sub-system 110 and the host system 120.
  • In some embodiments, the local memory 119 can include memory registers storing memory pointers, fetched data, etc. The local memory 119 can also include read-only memory (ROM) for storing micro-code. While the example memory sub-system 110 in FIG. 1 has been illustrated as including the memory sub-system controller 115, in another embodiment of the present disclosure, a memory sub-system 110 does not include a memory sub-system controller 115, and can instead rely upon external control (e.g., provided by an external host, or by a processor or controller separate from the memory sub-system).
  • In general, the memory sub-system controller 115 can receive commands or operations from the host system 120 and can convert the commands or operations into instructions or appropriate commands to achieve the desired access to the memory device 130 and/or the memory device 140. The memory sub-system controller 115 can be responsible for other operations such as wear leveling operations, garbage collection operations, error detection and error-correcting code (ECC) operations, encryption operations, caching operations, and address translations between a logical address (e.g., logical block address (LBA), namespace) and a physical address (e.g., physical block address, physical media locations, etc.) that are associated with the memory devices 130. The memory sub-system controller 115 can further include host interface circuitry to communicate with the host system 120 via the physical host interface. The host interface circuitry can convert the commands received from the host system into command instructions to access the memory device 130 and/or the memory device 140 as well as convert responses associated with the memory device 130 and/or the memory device 140 into information for the host system 120.
  • The memory sub-system 110 can also include additional circuitry or components that are not illustrated. In some embodiments, the memory sub-system 110 can include a cache or buffer (e.g., DRAM) and address circuitry (e.g., a row decoder and a column decoder) that can receive an address from the memory sub-system controller 115 and decode the address to access the memory device 130 and/or the memory device 140.
  • In some embodiments, the memory device 130 includes local media controllers 135 that operate in conjunction with memory sub-system controller 115 to execute operations on one or more memory cells of the memory devices 130. An external controller (e.g., memory sub-system controller 115) can externally manage the memory device 130 (e.g., perform media management operations on the memory device 130). In some embodiments, a memory device 130 is a managed memory device, which is a raw memory device combined with a local controller (e.g., local controller 135) for media management within the same memory device package. An example of a managed memory device is a managed NAND (MNAND) device.
  • The memory sub-system 110 can include a data dispersion-based memory management component 113. Although not shown in FIG. 1 so as to not obfuscate the drawings, the data dispersion-based memory management component 113 can include various circuitry to facilitate determining respective dispersions of valid data portions within blocks, selecting a memory block based at least on the respective dispersions, and performing a folding operation on the selected memory block. In some embodiments, the data dispersion-based memory management component 113 can include special purpose circuitry in the form of an ASIC, FPGA, state machine, and/or other logic circuitry that can allow the data dispersion-based memory management component 113 to orchestrate and/or perform operations to selectively perform media management operations for the memory device 130 and/or the memory device 140 based at least on the respective dispersions of the valid data portions.
  • In some embodiments, the memory sub-system controller 115 includes at least a portion of the data dispersion-based memory management component 113. For example, the memory sub-system controller 115 can include a processor 117 (processing device) configured to execute instructions stored in local memory 119 for performing the operations described herein. In some embodiments, the data dispersion-based memory management component 113 is part of the memory sub-system 110, an application, or an operating system.
  • In a non-limiting example, an apparatus (e.g., the computing system 100) can include a memory sub-system data dispersion-based memory management component 113. The memory sub-system data dispersion-based memory management component 113 can be resident on the memory sub-system 110. As used herein, the term “resident on” refers to something that is physically located on a particular component. For example, the memory sub-system data dispersion-based memory management component 113 being “resident on” the memory sub-system 110 refers to a condition in which the hardware circuitry that comprises the memory sub-system data dispersion-based memory management component 113 is physically located on the memory sub-system 110. The term “resident on” may be used interchangeably with other terms such as “deployed on” or “located on,” herein.
  • The memory sub-system data dispersion-based memory management component 113 can be configured to determine a respective number of and/or respective locations of valid data portions (e.g., valid translation units) in one or more blocks of memory cells (e.g., blocks of NAND memory cells). As described above, the memory components can be memory dice or memory packages that form at least a portion of the memory device 130. In some embodiments, the blocks of memory cells can form one or more “superblocks.” As used herein, a “superblock” generally refers to a set of data blocks that span multiple memory dice and are written in an interleaved fashion. For instance, in some embodiments each of a number of interleaved NAND memory blocks can be deployed across multiple memory dice that have multiple planes and/or pages associated therewith. The terms “superblock,” “block,” “block of memory cells,” and/or “interleaved NAND memory blocks,” as well as variants thereof, can, given the context of the disclosure, be used interchangeably.
  • In some embodiments, the memory sub-system data dispersion-based memory management component 113 can be further configured to determine respective VTCs of the blocks of memory cells. The respective VTCs can be determined based on the respective number of the valid translation units in blocks of memory cells. The VTC can be expressed as a percentage of valid translation units in a total number of translation units in an entire memory block or portion of a memory block. For instance, a respective VTC can be determined for an entire memory block of memory cells such as for all pages, planes, and dice of the block of memory cells (e.g. an entire superblock). However, in some embodiments, a VTC can be determined for a portion of, but not all of, a block of memory cells.
  • The memory sub-system data dispersion-based memory management component 113 can be further configured to determine respective dispersions of valid translation units in the blocks of memory cells based on the locations of the valid translation units in the block of memory cells. As used herein, a “location” of a valid data portion generally refers to an address (e.g., a physical address) of a valid translation unit. As used herein, a “respective dispersion” or “dispersion” of valid data portions (e.g., valid translation units) generally refers to a measure of the relative locations of each valid data portion in a block of memory cells. In some embodiments, a dispersion of valid translation units can be determined for an entire block (or superblock) across all pages, all planes, and/or all dice of a block of memory cells. For example, a total number of pages in a block which include at least one valid translation unit can be determined to provide a respective dispersion of the block, among other possible measures of respective dispersions.
  • The memory sub-system data dispersion-based memory management component 113 can be further configured to select a block of memory cells based on a respective VTC and a respective dispersion of the valid translation units of the block of memory cells. In some embodiments the memory sub-system data dispersion-based memory management component 113 can select a block of memory cells having a lowest dispersion of valid translation units and/or a lowest respective number of valid translation units (e.g., a lowest VTC), as detailed herein.
  • The memory sub-system data dispersion-based memory management component 113 can perform folding operations on the selected block of memory cells. For example, the memory sub-system data dispersion-based memory management component 113 can perform a media scan operation which is part of a folding operation (e.g., which is part of a garbage collection operation) on the selected block of memory cells.
  • In some embodiments, a candidate block pool can be maintained. As used herein, a “candidate block pool” generally refers to a group of blocks which each have a respective VTCs that are each less than a validity threshold, while a “candidate block” generally refers to a block having a VTC that is less than a validity threshold. Designation of a candidate block can include alteration of information in a table associated with the block, among other possibilities.
  • In some embodiments, a candidate block pool can include a first candidate block and a second candidate block. The first candidate block can have a first VTC. The second candidate block can have a second VTC that is substantially similar to the first VTC. As used herein, the term “substantially” intends that the characteristic need not be absolute, but is close enough so as to achieve the advantages of the characteristic. For example, a “substantially similar VTC” is not limited to values that are absolutely the same. For instance, the first VTC can be within 0.5%, 1%, 2%, 5%, 10%, or 20% etc. of the second VTC. In such embodiments, respective dispersions of valid translation units of the first candidate block and the second candidate block can be determined, the first block or the second block can be determined to have a lower dispersion, and either of the first candidate block or the second candidate block with the lower dispersion can be selected. As described herein, a media scan operation can be performed on the selected candidate block.
  • FIG. 2A, FIG. 2B, and FIG. 2C illustrate example blocks of memory cells having substantially similar VTCs (e.g., each block of memory cells has eight total valid data portions), but with different respective dispersions of valid translation units. Each of the block of memory cells in FIG. 2A, FIG. 2B, and FIG. 2C can a be a candidate block having a VTC on the order of several percent that is less than a validity threshold . In some embodiments, the blocks of memory cells illustrated in FIG. 2A, FIG. 2B, and FIG. 2C can be superblocks (e.g., interleaved blocks of NAND memory cells deployed across multiple memory dice of a memory sub-system). In some embodiments, the blocks of memory cells illustrated in FIGS. 2A-2C can include replacement-gate memory cells, although embodiments are not so limited.
  • FIG. 2A illustrates an example block of memory cells 220 in accordance with some embodiments of the present disclosure. As illustrated in FIG. 2A, the block of memory cells 220 can be a superblock that spans multiple memory dice 221-1 to 221-L. The block of memory cells 220 can include multiple planes 223-1 to 223-P, and multiple pages 225-1 to 225-Q.
  • As described above, memory cells such as those in the block of memory cells 220 can include valid data portions. For instance, as illustrated in FIG. 2A the block of memory cells 220 can include a first valid data portion (as identified by the hatched area located at die 221-1, plane 223-1, and page 225-2). Similarly, the block of memory cells 220 can include a second valid data portion (die 221-1, plane 223-3, and page 225-6), a third valid data portion (die 221-1, plane 223-4, and page 225-13), a fourth valid data portion (die 221-3, plane 223-11, and page 225-8), a fifth valid data portion (die 221-2, plane 223-6, and page 225-11), a sixth valid data portion (die 221-L, plane 223-P, and page 225-4), a seventh valid data portion (die 221-L, plane 223-15, and page 225-14), and an eighth valid data portion (die 221-L, plane 223-15, and page 225-15). That is, in the illustrative and non-limiting example shown in FIG. 2A, the block of memory cells 220 can include a total of eight distinct valid data portions, whereas a remainder of the memory cells (e.g., the memory cells having at least a different die, plane, or page number identifier than the valid data portions shown) in the block of memory cells 220 are invalid data portions.
  • As illustrated in FIG. 2A, the block of memory cells 220 has a high respective dispersion of the valid data portions as compared to the respective dispersions of the valid data portions in the blocks of memory cells described in FIG. 2B and FIG. 2C. For instance, each of the first, second, third, fourth, fifth, sixth, seventh, and eight valid data portions shown in FIG. 2A are located in different pages in the block of memory cells 220, whereas in FIG. 2B and FIG. 2C at least some of the valid data portions are collocated in the same page. Stated differently, the block of memory cells 220 shown in FIG. 2A has a total of 8 pages that include valid data portions, as compared to the blocks of memory cells in FIG. 2B and FIG. 2C which have fewer pages that include at least one valid data portion.
  • FIG. 2B illustrates another example block of memory cells 227 in accordance with some embodiments of the present disclosure, while FIG. 2C illustrates yet another example block of memory cells 229 in accordance with some embodiments of the present disclosure. As illustrated in FIG. 2B and FIG. 2C, the blocks of memory cells 227 and 229, respectively, can each be superblocks that span memory dice 221-1 to 221-L, include planes 223-1 to 223-P, and include pages 225-1 to 225-Q.
  • The blocks of memory cells 227 and 229 can each include valid data portions and invalid data portions. For instance, the block of memory cells 227 can include a first valid data portion (die 221-1, plane 223-1, and page 225-2), a second valid data portion (die 221-1, plane 223-3, and page 225-2), a third valid data portion (die 221-3, plane 223-11, and page 225-2), a fourth valid data portion (die 221-L, plane 223-P, and page 225-2), a fifth valid data portion (die 221-2, plane 223-7, and page 225-3), a sixth valid data portion (die 221-1, plane 223-2, and page 225-9), a seventh valid data portion (die 221-L, plane 223-15, and page 225-9), and an eighth valid data portion (die 221-2, plane 223-6, and page 225-13). That is, in the illustrative and non-limiting example shown in FIG. 2B, the first, second, third, and fourth valid data portions can be located on the same page (e.g., page 225-2), while the sixth and seventh valid data portions can each be located on the same page (page 225-9). Stated differently, the block of memory cells 227 can have a total of 5 pages which include at least one valid data portion. Thus, the block of memory cells 227 can have a respective dispersion that is less than the respective dispersion of the block of memory cells 220 described in FIG. 2A which has a total of 8 pages which include at least one valid data portion.
  • The block of memory cells 229 can include a first valid data portion (die 221-1, plane 223-1, and page 225-6), a second valid data portion (die 221-1, plane 223-2, and page 225-6), a third valid data portion (die 221-2, plane 223-5, and page 225-6), a fourth valid data portion (die 221-3, plane 223-9, and page 225-6), a fifth valid data portion (die 221-L, plane 223-15, and page 225-6), a sixth valid data portion (die 221-3, plane 223-9, and page 225-8), a seventh valid data portion (die 221-L, plane 223-13, and page 225-8), and an eighth valid data portion (die 221-1, plane 223-4, and page 225-10). That is, in the illustrative and non-limiting example shown in FIG. 2C, the first, second, third, fourth, and fifth valid data portions can be located on the same page (e.g., page 225-6), while the sixth and seventh valid data portions can each be located on the same page (page 225-8). Stated differently, the block of memory cells 229 can have a total of 3 pages which include at least one valid data portion. Thus, the block of memory cells 229 can have a respective dispersion that is less than the respective dispersion of the block of memory cells 220 described in FIG. 2A and less than the respective dispersion of the block of memory cells 227 described in FIG. 2B. While dispersion is described herein at least in part with respect to an total amount of pages including at least one valid data portion in FIG. 2A, FIG. 2B, and FIG. 2C, it is understood that dispersion can be determined with respect to a total number of valid data portions in dice, planes, and/or pages in blocks of memory cells.
  • FIG. 3 is a diagram of a flow 331 corresponding to data dispersion-based memory management in accordance with some embodiments of the present disclosure. At operation 332, valid VTCs can be determined for blocks of memory cells. In some embodiments, VTCs can be determined for blocks by a memory sub-system data-dispersion memory management component, such as the data dispersion-based memory management component 113 illustrated in FIG. 1 .
  • At operation 333, a determination can be made whether the VTC is less than a validity threshold. As used herein, a “validity threshold” generally refers to a given total number of valid translation units and/or a given amount of VTC (e.g. a given percentage) at which blocks that have a lower total number of valid translation units and/or a lower VTC can be designated as candidate blocks. In some embodiments, a validity threshold can be equal to 20%, 15%, 10% or 5%, among other possible values. If the block has a VTC that has greater than or equal to the validity threshold, the flow 331 can return to operation 332 and the VTCs of blocks can continue to be determined. If, however, it is determined that the VTC of the block is less than the validity threshold, at operation 334, the block can be designated as a candidate block.
  • At operation 335, dispersions of valid translation units in the candidate blocks can be determined. As described herein, a relative dispersion of valid translation units across pages, planes, and/or memory dice of a candidate block can impact folding efficiency. In some embodiments, respective dispersions can be determined for each candidate block. For instance, a dispersion can be determined for pages of a candidate block. In some other embodiments, a dispersion can be determined for planes of a candidate block. In yet other embodiments, a dispersion can be determined for memory dice of a candidate block.
  • At operation 336, a selection of a candidate block can be made based at least on dispersions of the valid translation units in the candidate blocks. In some embodiments, a candidate block having a lowest dispersion can be selected. Selection of the candidate block having the lowest dispersion can in turn provide improved efficiency of a folding operation and thereby result in improved foreground and/or background garbage collection efficiency. That is, selection of the candidate block based on the dispersion of valid translation units can improve efficiencies of folding operations by reducing a total number of media scan operations (e.g., read operations) in the folding operation and/or by increasing an amount of parallelism such as when performing folding operations which utilize media scan operations on blocks which include valid translation units, in comparison to approaches in which candidate blocks are not selected based on the dispersion of valid translation units detected therein.
  • While selection of candidate blocks can be based at least in part on an amount of dispersion, as shown in FIG. 3 , in some embodiments, selection of the candidate block can be based on a type of type of media management operation to be performed on the selected candidate block, as shown at operation 337. For instance, selection of the candidate block can be based on a type of garbage collection operation to be performed on the candidate block. Examples of types of garbage collection operations can include foreground garbage collection operations (i.e., garbage collection operations performed while an I/O transaction encumbering a host such as the host system 120 illustrated in FIG. 1 is occurring) and background garbage collection operations (i.e., garbage collection operations performed in the absence of performance of an I/O transaction encumbering the host is occurring).
  • For instance, the media management operation can be a background garbage collection operation and a candidate block having a lowest dispersion of valid translation units can be selected. Selection of the candidate block having the lowest dispersion of valid translation units can in turn provide a higher efficiency as compared to approaches in which candidate blocks are not selected based on the dispersion of valid translation units. However, in some embodiments, the media management operation can be a foreground garbage collection operation, and a candidate block having the lowest respective number of valid translation units can be selected. Selection of the candidate block having the lowest respective number of valid translation units can reduce an amount of folding effort and therefore avoid/mitigate interference with the host system.
  • At operation 338, a folding operation can be performed on the selected block. As used herein, a folding operation or folding refers to the internal migration of data from one NAND location to another NAND location independent of any direct host interaction. In some embodiments, the folding operation can be part of a media management operation such as a garbage collection operation, as described above. Subsequent to performance of the folding operation, the flow 331 can return to operation 332 and VTCs of the blocks can be can continue to be determined.
  • FIG. 4 is flow diagram corresponding to a method 440 for data dispersion-based memory management in accordance with some embodiments of the present disclosure. The method 440 can be performed by processing logic that can include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic, microcode, hardware of a device, integrated circuit, etc.), software (e.g., instructions run or executed on a processing device), or a combination thereof. In some embodiments, the method 440 is performed by the data dispersion-based memory management component 113 of FIG. 1 . Although shown in a particular sequence or order, unless otherwise specified, the order of the processes can be modified. Thus, the illustrated embodiments should be understood only as examples, and the illustrated processes can be performed in a different order, and some processes can be performed in parallel. Additionally, one or more processes can be omitted in various embodiments. Thus, not all processes are required in every embodiment. Other process flows are possible.
  • At operation 441, a respective number of and/or respective locations of valid data portions of blocks can be determined. The blocks can be blocks of memory cells such as the blocks of memory cells 220, 227, and/or 229 illustrated in FIG. 2A, FIG. 2B, and FIG. 2C, herein. In some embodiments, the method 440 can include determining a respective number of and respective locations of valid data portions of blocks of memory cells (e.g., one or more blocks of NAND memory cells) in a memory sub-system. In some embodiments, the memory sub-system can be analogous to the memory sub-system 110 illustrated in FIG. 1 . As described above, the memory components can be memory dice or memory packages that are coupled to one another to create an array of memory cells, such as a three-dimensional stackable cross-gridded array of memory cells used by the memory sub-system to store data.
  • In some embodiments, the method 440 can include determining the respective number of and the respective locations of valid data portions by performing a media scan operation. Performing the media scan operation can include performing a Physical to logical (P2L) scan and/or an logical to physical (L2P) scan, among other possible types of scans. For instance, in some embodiments the respective number of and the respective locations of the valid data portions can be determined by performing a P2L and/or a L2P scan of a block.
  • At operation 443, respective dispersions of the valid data portions can be determined based on the respective locations of the valid data portions. As described above, the respective dispersions can be determined for a block by determining dispersion of the valid data portions across pages, planes, and/or dice of a block. In some embodiments, the dispersion of the valid data portions for a block can include determining dispersion of the valid data portions across each page, each plane, and/or each die of a block
  • At operation 445, a block can be selected based at least on the respective dispersions of the valid data portions. For instance, in some embodiments, selection can be based on a respective valid translation unit count and a respective dispersion. For example, a blocks with respective VTCs that are less than a validity threshold can be designated as candidate blocks and added to a candidate block pool. As described above, a candidate block can be selected from the candidate block pool based on the respective dispersion of the candidate block and/or a type of media management operation to be performed on the candidate block.
  • At operation 447, a folding operation can be performed on the selected block. For instance, a folding operation including performing a scan operation such as a P2L scan and/or a L2P scan on some or all of the selected block at least in part by performing the media scan operation on individual block stripes (e.g., on individual page stripes) of the selected block. As used herein, a “page stripe” generally refers to the logical grouping of all pages in a LUN stripe that have the same logical block and logical page number, such that they can all be accessed in parallel. As used herein, a “LUN stripe” refers a collection of planes that are treated as one when writing, reading, or erasing NAND memory.
  • In some examples, a folding operation/media scan associated with the folding operation can be performed exclusively on individual block stripes which include at least one valid translation unit (as determined at operation 441). Conversely, the media scan operation is not performed on other block stripes which do not include at least one valid translation unit. Performing the folding operation/media scan operation exclusively on individual block stripes which include at least one valid translation unit can reduce an amount of computational overhead and/or an amount of bus traffic associated with the performing the media scan operation in comparison to other approaches such as those which do not account for data dispersion. For instance, in some embodiments the method 440 can include performance of a folding operation/media scan operation exclusively on the respective number of planes, pages, and/or memory dice having the at least one of the respective number of valid translation units.
  • FIG. 5 is a block diagram of an example computer system 500 in which embodiments of the present disclosure may operate. For example, FIG. 5 illustrates an example machine of a computer system 500 within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed. In some embodiments, the computer system 500 can correspond to a host system (e.g., the host system 120 of FIG. 1 ) that includes, is coupled to, or utilizes a memory sub-system (e.g., the memory sub-system 110 of FIG. 1 ) or can be used to perform the operations of a controller (e.g., to execute an operating system to perform operations corresponding to the data dispersion-based memory management component 113 of FIG. 1 ). In alternative embodiments, the machine can be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, and/or the Internet. The machine can operate in the capacity of a server or a client machine in client-server network environment, as a peer machine in a peer-to-peer (or distributed) network environment, or as a server or a client machine in a cloud computing infrastructure or environment.
  • The machine can be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, a switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • The example computer system 500 includes a processing device 502, a main memory 504 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 506 (e.g., flash memory, static random access memory (SRAM), etc.), and a data storage system 518, which communicate with each other via a bus 530.
  • The processing device 502 represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processing device can be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 502 can also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 502 is configured to execute instructions 526 for performing the operations and steps discussed herein. The computer system 500 can further include a network interface device 508 to communicate over the network 520.
  • The data storage system 518 can include a machine-readable storage medium 524 (also known as a computer-readable medium) on which is stored one or more sets of instructions 526 or software embodying any one or more of the methodologies or functions described herein. The instructions 526 can also reside, completely or at least partially, within the main memory 504 and/or within the processing device 502 during execution thereof by the computer system 500, the main memory 504 and the processing device 502 also constituting machine-readable storage media. The machine-readable storage medium 524, data storage system 518, and/or main memory 504 can correspond to the memory sub-system 110 of FIG. 1 .
  • In one embodiment, the instructions 526 include instructions to implement functionality corresponding to a data dispersion-based memory management component (e.g., the data dispersion-based memory management component 113 of FIG. 1 ). While the machine-readable storage medium 524 is shown in an example embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.
  • Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
  • It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. The present disclosure can refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage systems.
  • The present disclosure also relates to an apparatus for performing the operations herein. This apparatus can be specially constructed for the intended purposes, or it can include a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program can be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, each coupled to a computer system bus.
  • The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems can be used with programs in accordance with the teachings herein, or it can prove convenient to construct a more specialized apparatus to perform the method. The structure for a variety of these systems will appear as set forth in the description below. In addition, the present disclosure is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages can be used to implement the teachings of the disclosure as described herein.
  • The present disclosure can be provided as a computer program product, or software, that can include a machine-readable medium having stored thereon instructions, which can be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure. A machine-readable medium includes any mechanism for storing information in a form readable by a machine (e.g., a computer). In some embodiments, a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium such as a read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.
  • In the foregoing specification, embodiments of the disclosure have been described with reference to specific example embodiments thereof. It will be evident that various modifications can be made thereto without departing from the broader spirit and scope of embodiments of the disclosure as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

Claims (20)

What is claimed is:
1. A non-transitory computer-readable storage medium comprising instructions that, when executed by a processing device, cause the processing device to:
determine candidate memory blocks based on respective valid translation counts (VTC) a plurality of memory blocks;
determine respective dispersions of valid data portions in pages in each candidate memory block;
select a candidate memory block from the candidate blocks of NAND memory cells; and
perform a folding operation on the selected candidate memory block.
2. The medium of claim 1, wherein the selected candidate memory block has the lowest respective dispersion of the valid data portions.
3. The medium of claim 1, further comprising selection of the candidate memory block based at least on the respective dispersions of the valid data portions in the pages of each respective candidate memory block.
4. The medium of claim 1, wherein performing the folding operation further comprises performing a media scan operation invoking a portion of but not all of the selected candidate memory blocks.
5. The medium of claim 1, wherein performing the folding operation further comprises performing a media scan operation invoking individual block stripes of the selected candidate memory block.
6. An apparatus, comprising:
a plurality of memory blocks; and
a controller coupled to the plurality of memory blocks, wherein the controller is configured to:
determine a respective number of and respective locations of valid translation units in the plurality of memory blocks;
based on the respective number of the valid translation units, determine respective valid translation unit counts (VTC) of the plurality of memory blocks;
determine candidate memory blocks based on the respective VTC;
determine respective dispersions of the valid translation units in pages in each candidate memory block;
select a candidate memory block; and
perform a folding operation on a portion of the selected candidate block.
7. The apparatus of claim 6, wherein the plurality of memory blocks further comprise a plurality of interleaved memory blocks.
8. The apparatus of claim 7, wherein the plurality of interleaved memory blocks further comprise a plurality of interleaved NAND memory blocks.
9. The apparatus of claim 8, wherein each of the interleaved NAND memory blocks are deployed across a plurality of memory dice having a plurality of planes and a plurality of pages.
10. The apparatus of claim 9, wherein the controller is configured to determine the respective dispersion by determination of a respective number of the plurality of pages having at least one of the respective number of valid translation units.
11. The apparatus of claim 10, wherein the controller is configured to perform the folding operation exclusively on the respective number of pages having the at least one of the respective number of valid translation units.
12. The apparatus of claim 6, wherein the selected candidate memory block has the lowest respective dispersion of valid translation unit counts.
13. A system, comprising:
a plurality of blocks of non-volatile memory cells; and
a controller coupled to the plurality of blocks, wherein the controller is configured to:
determine the respective VTC of a subset of the memory blocks is less than a validity threshold;
designate the subset as candidate memory blocks;
determine respective dispersions of valid translation units in pages of each of the candidate memory blocks;
select a candidate memory block based on the respective dispersions of the translation units; and
perform a folding operation on the selected candidate memory block.
14. The system of claim 13, wherein the controller is further to determine respective valid translation unit count (VTC) of each memory block by performance of a media scan operation of each memory block.
15. The system of claim 13, wherein the controller is further to select the candidate memory blocks based on a type of media management operation to be performed on the candidate memory block.
16. The system of claim 15, wherein the media management operation is a background garbage collection operation.
17. The system of claim 15, wherein the media management operation is a foreground garbage collection operation.
18. The system of claim 13, wherein the candidate memory blocks comprise a first candidate memory block and a second candidate memory block, wherein the first candidate memory block has a first VTC that is within +/−20 percent of a second VTC of the second candidate memory blocks.
19. The system of claim 18, wherein the controller is configured to select the candidate memory block by determination of whether the first candidate memory block or the second candidate memory block has a lower dispersion of valid translation units.
20. The system of claim 19, wherein the controller, in response to determination of whether the first candidate memory block or the second candidate memory block has the lower dispersion of valid translation units, is configured to select the first candidate memory block or the second candidate memory block with the lower dispersion of valid translation units.
US18/093,069 2020-08-31 2023-01-04 Data dispersion-based memory management Active US11907536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/093,069 US11907536B2 (en) 2020-08-31 2023-01-04 Data dispersion-based memory management

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/007,538 US11567665B2 (en) 2020-08-31 2020-08-31 Data dispersion-based memory management
US18/093,069 US11907536B2 (en) 2020-08-31 2023-01-04 Data dispersion-based memory management

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/007,538 Continuation US11567665B2 (en) 2020-08-31 2020-08-31 Data dispersion-based memory management

Publications (2)

Publication Number Publication Date
US20230141181A1 true US20230141181A1 (en) 2023-05-11
US11907536B2 US11907536B2 (en) 2024-02-20

Family

ID=80358522

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/007,538 Active 2040-11-19 US11567665B2 (en) 2020-08-31 2020-08-31 Data dispersion-based memory management
US18/093,069 Active US11907536B2 (en) 2020-08-31 2023-01-04 Data dispersion-based memory management

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/007,538 Active 2040-11-19 US11567665B2 (en) 2020-08-31 2020-08-31 Data dispersion-based memory management

Country Status (1)

Country Link
US (2) US11567665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11599416B1 (en) * 2021-09-01 2023-03-07 Micron Technology, Inc. Memory sub-system using partial superblocks

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070033325A1 (en) * 2005-08-03 2007-02-08 Sinclair Alan W Non-volatile memory with scheduled reclaim operations
US20080082596A1 (en) * 2006-09-29 2008-04-03 Sergey Anatolievich Gorobets Method for phased garbage collection
US20080189477A1 (en) * 2007-02-07 2008-08-07 Hitachi, Ltd. Storage system and storage management method
US20110145473A1 (en) * 2009-12-11 2011-06-16 Nimble Storage, Inc. Flash Memory Cache for Data Storage Device
US20110161784A1 (en) * 2009-12-30 2011-06-30 Selinger Robert D Method and Controller for Performing a Copy-Back Operation
US8873284B2 (en) * 2012-12-31 2014-10-28 Sandisk Technologies Inc. Method and system for program scheduling in a multi-layer memory
US20140325148A1 (en) * 2013-04-29 2014-10-30 Sang Hoon Choi Data storage devices which supply host with data processing latency information, and related data processing methods
US20140365719A1 (en) * 2013-01-28 2014-12-11 Radian Memory Systems, LLC Memory controller that provides addresses to host for memory location matching state tracked by memory controller
US20150227602A1 (en) * 2014-02-13 2015-08-13 Actifio, Inc. Virtual data backup
US9223693B2 (en) * 2012-12-31 2015-12-29 Sandisk Technologies Inc. Memory system having an unequal number of memory die on different control channels
US9336133B2 (en) * 2012-12-31 2016-05-10 Sandisk Technologies Inc. Method and system for managing program cycles including maintenance programming operations in a multi-layer memory
US9348746B2 (en) * 2012-12-31 2016-05-24 Sandisk Technologies Method and system for managing block reclaim operations in a multi-layer memory
US20160246713A1 (en) * 2013-03-15 2016-08-25 Samsung Semiconductor Co., Ltd. Host-driven garbage collection
US9465731B2 (en) * 2012-12-31 2016-10-11 Sandisk Technologies Llc Multi-layer non-volatile memory system having multiple partitions in a layer
US20170123655A1 (en) * 2015-10-30 2017-05-04 Sandisk Technologies Inc. System and method for managing extended maintenance scheduling in a non-volatile memory
US9734050B2 (en) * 2012-12-31 2017-08-15 Sandisk Technologies Llc Method and system for managing background operations in a multi-layer memory
US9734911B2 (en) * 2012-12-31 2017-08-15 Sandisk Technologies Llc Method and system for asynchronous die operations in a non-volatile memory
US9778855B2 (en) * 2015-10-30 2017-10-03 Sandisk Technologies Llc System and method for precision interleaving of data writes in a non-volatile memory
US20180189175A1 (en) * 2016-12-30 2018-07-05 Western Digital Technologies, Inc. Garbage collection read throttling
US10108543B1 (en) * 2016-09-26 2018-10-23 EMC IP Holding Company LLC Efficient physical garbage collection using a perfect hash vector
US10120613B2 (en) * 2015-10-30 2018-11-06 Sandisk Technologies Llc System and method for rescheduling host and maintenance operations in a non-volatile memory
US10430279B1 (en) * 2017-02-27 2019-10-01 Tintri By Ddn, Inc. Dynamic raid expansion
US20200089420A1 (en) * 2018-09-19 2020-03-19 Western Digital Technologies, Inc. Expandable memory for use with solid state systems and devices
US20200192794A1 (en) * 2018-12-13 2020-06-18 SK Hynix Inc. Data storage device and operating method thereof
US20200310686A1 (en) * 2019-03-29 2020-10-01 EMC IP Holding Company LLC Concurrently performing normal system operations and garbage collection
US10795812B1 (en) * 2017-06-30 2020-10-06 EMC IP Holding Company LLC Virtual copy forward method and system for garbage collection in cloud computing networks
US11086537B2 (en) * 2018-11-29 2021-08-10 SK Hynix Inc. Method and system to perform urgency level garbage collection based on write history of memory blocks
US20210342362A1 (en) * 2020-04-29 2021-11-04 EMC IP Holding Company, LLC System and Method for Prioritizing Replication Copy Activity

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8732388B2 (en) * 2008-09-16 2014-05-20 Micron Technology, Inc. Embedded mapping information for memory devices
US8853818B2 (en) 2013-02-20 2014-10-07 Macronix International Co., Ltd. 3D NAND flash memory
US9524236B1 (en) * 2014-01-09 2016-12-20 Marvell International Ltd. Systems and methods for performing memory management based on data access properties
US9875039B2 (en) * 2014-09-30 2018-01-23 Sandisk Technologies Llc Method and apparatus for wear-leveling non-volatile memory
US10409526B2 (en) 2014-12-17 2019-09-10 Violin Systems Llc Adaptive garbage collection
US9858009B2 (en) 2015-10-26 2018-01-02 Sandisk Technologies Llc Data folding in 3D nonvolatile memory
US20170123666A1 (en) * 2015-10-30 2017-05-04 Sandisk Technologies Inc. System and method for managing maintenance scheduling in a non-volatile memory
CN107025063B (en) * 2016-01-29 2020-04-14 深圳大心电子科技有限公司 Memory management method, memory storage device and memory control circuit unit
KR102596400B1 (en) * 2016-03-07 2023-11-01 에스케이하이닉스 주식회사 Data storage device and operating method for data storage device
US10545674B1 (en) * 2016-06-30 2020-01-28 EMS EP Holding Company LLC Method and system for SSD performance jitter detection and avoidance
WO2018182725A1 (en) * 2017-03-31 2018-10-04 Intel Corporation A fully self-aligned cross grid vertical memory array
US20190042130A1 (en) * 2017-12-18 2019-02-07 Intel Corporation Prefix opcode method for slc entry with auto-exit option
US10331555B1 (en) * 2018-03-06 2019-06-25 Western Digital Technologies, Inc. Dynamic memory compaction
TWI714840B (en) * 2018-04-12 2021-01-01 群聯電子股份有限公司 Memory management method, memory storage device and memory control circuit unit
CN110390985B (en) * 2018-04-20 2021-08-03 群联电子股份有限公司 Memory management method, memory storage device and memory control circuit unit
CN109725853B (en) * 2018-12-04 2022-10-04 浙江大华存储科技有限公司 Data recovery method and device
TWI696073B (en) * 2019-04-02 2020-06-11 群聯電子股份有限公司 Memory control method, memory storage device and memory control circuit unit

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070033325A1 (en) * 2005-08-03 2007-02-08 Sinclair Alan W Non-volatile memory with scheduled reclaim operations
US7610437B2 (en) * 2005-08-03 2009-10-27 Sandisk Corporation Data consolidation and garbage collection in direct data file storage memories
US7984084B2 (en) * 2005-08-03 2011-07-19 SanDisk Technologies, Inc. Non-volatile memory with scheduled reclaim operations
US20080082596A1 (en) * 2006-09-29 2008-04-03 Sergey Anatolievich Gorobets Method for phased garbage collection
US20080189477A1 (en) * 2007-02-07 2008-08-07 Hitachi, Ltd. Storage system and storage management method
US20110145473A1 (en) * 2009-12-11 2011-06-16 Nimble Storage, Inc. Flash Memory Cache for Data Storage Device
US8285918B2 (en) * 2009-12-11 2012-10-09 Nimble Storage, Inc. Flash memory cache for data storage device
US20110161784A1 (en) * 2009-12-30 2011-06-30 Selinger Robert D Method and Controller for Performing a Copy-Back Operation
US8443263B2 (en) * 2009-12-30 2013-05-14 Sandisk Technologies Inc. Method and controller for performing a copy-back operation
US9348746B2 (en) * 2012-12-31 2016-05-24 Sandisk Technologies Method and system for managing block reclaim operations in a multi-layer memory
US9223693B2 (en) * 2012-12-31 2015-12-29 Sandisk Technologies Inc. Memory system having an unequal number of memory die on different control channels
US9336133B2 (en) * 2012-12-31 2016-05-10 Sandisk Technologies Inc. Method and system for managing program cycles including maintenance programming operations in a multi-layer memory
US9734911B2 (en) * 2012-12-31 2017-08-15 Sandisk Technologies Llc Method and system for asynchronous die operations in a non-volatile memory
US9465731B2 (en) * 2012-12-31 2016-10-11 Sandisk Technologies Llc Multi-layer non-volatile memory system having multiple partitions in a layer
US8873284B2 (en) * 2012-12-31 2014-10-28 Sandisk Technologies Inc. Method and system for program scheduling in a multi-layer memory
US9734050B2 (en) * 2012-12-31 2017-08-15 Sandisk Technologies Llc Method and system for managing background operations in a multi-layer memory
US20140365719A1 (en) * 2013-01-28 2014-12-11 Radian Memory Systems, LLC Memory controller that provides addresses to host for memory location matching state tracked by memory controller
US20160246713A1 (en) * 2013-03-15 2016-08-25 Samsung Semiconductor Co., Ltd. Host-driven garbage collection
US20140325148A1 (en) * 2013-04-29 2014-10-30 Sang Hoon Choi Data storage devices which supply host with data processing latency information, and related data processing methods
US20150227602A1 (en) * 2014-02-13 2015-08-13 Actifio, Inc. Virtual data backup
US20170123655A1 (en) * 2015-10-30 2017-05-04 Sandisk Technologies Inc. System and method for managing extended maintenance scheduling in a non-volatile memory
US10133490B2 (en) * 2015-10-30 2018-11-20 Sandisk Technologies Llc System and method for managing extended maintenance scheduling in a non-volatile memory
US9778855B2 (en) * 2015-10-30 2017-10-03 Sandisk Technologies Llc System and method for precision interleaving of data writes in a non-volatile memory
US10120613B2 (en) * 2015-10-30 2018-11-06 Sandisk Technologies Llc System and method for rescheduling host and maintenance operations in a non-volatile memory
US10108543B1 (en) * 2016-09-26 2018-10-23 EMC IP Holding Company LLC Efficient physical garbage collection using a perfect hash vector
US10108544B1 (en) * 2016-09-26 2018-10-23 EMC IP Holding Company LLC Dynamic duplication estimation for garbage collection
US10255179B2 (en) * 2016-12-30 2019-04-09 Western Digital Technologies, Inc. Garbage collection read throttling
US20180189175A1 (en) * 2016-12-30 2018-07-05 Western Digital Technologies, Inc. Garbage collection read throttling
US10430279B1 (en) * 2017-02-27 2019-10-01 Tintri By Ddn, Inc. Dynamic raid expansion
US10795812B1 (en) * 2017-06-30 2020-10-06 EMC IP Holding Company LLC Virtual copy forward method and system for garbage collection in cloud computing networks
US20200089420A1 (en) * 2018-09-19 2020-03-19 Western Digital Technologies, Inc. Expandable memory for use with solid state systems and devices
US10983715B2 (en) * 2018-09-19 2021-04-20 Western Digital Technologies, Inc. Expandable memory for use with solid state systems and devices
US11086537B2 (en) * 2018-11-29 2021-08-10 SK Hynix Inc. Method and system to perform urgency level garbage collection based on write history of memory blocks
US20200192794A1 (en) * 2018-12-13 2020-06-18 SK Hynix Inc. Data storage device and operating method thereof
US20200310686A1 (en) * 2019-03-29 2020-10-01 EMC IP Holding Company LLC Concurrently performing normal system operations and garbage collection
US20210342362A1 (en) * 2020-04-29 2021-11-04 EMC IP Holding Company, LLC System and Method for Prioritizing Replication Copy Activity

Also Published As

Publication number Publication date
US11907536B2 (en) 2024-02-20
US11567665B2 (en) 2023-01-31
US20220066646A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US11733892B2 (en) Partial superblock memory management
US11886736B2 (en) Memory access threshold based memory management
US20220300160A1 (en) Memory sub-system media management operation threshold
US20220261313A1 (en) Managing storage of multiple plane parity data in a memory sub-system
US20240134554A1 (en) Smart swapping and effective encoding of a double word in a memory sub-system
US11907536B2 (en) Data dispersion-based memory management
US12131790B2 (en) Media management operations based on health characteristics of memory cells
US11972130B2 (en) Media management operations based on a ratio of valid data
US11636044B2 (en) Logical-to-physical mapping
US11791000B2 (en) Valid translation unit count-based memory management
US11599286B2 (en) Data age and validity-based memory management
US11914878B2 (en) Media management
US11853201B2 (en) Selective single-level memory cell operation
US20230386588A1 (en) Media management
US20230395152A1 (en) Memory cell voltage level selection
US11720273B2 (en) Codeword error leveling for 3DXP memory devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MALSHE, ASHUTOSH;RAYAPROLU, VAMSI PAVAN;MUCHHERLA, KISHORE K.;SIGNING DATES FROM 20200827 TO 20210322;REEL/FRAME:062271/0140

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE