US20230115331A1 - Glycotargeting therapeutics - Google Patents
Glycotargeting therapeutics Download PDFInfo
- Publication number
- US20230115331A1 US20230115331A1 US17/810,561 US202217810561A US2023115331A1 US 20230115331 A1 US20230115331 A1 US 20230115331A1 US 202217810561 A US202217810561 A US 202217810561A US 2023115331 A1 US2023115331 A1 US 2023115331A1
- Authority
- US
- United States
- Prior art keywords
- formula
- antigen
- ova
- seq
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003814 drug Substances 0.000 title abstract description 42
- 239000000427 antigen Substances 0.000 claims abstract description 308
- 108091007433 antigens Proteins 0.000 claims abstract description 282
- 102000036639 antigens Human genes 0.000 claims abstract description 282
- 230000028993 immune response Effects 0.000 claims abstract description 108
- 230000006058 immune tolerance Effects 0.000 claims abstract description 13
- 230000006698 induction Effects 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims description 198
- -1 ethylacetamido functionality Chemical group 0.000 claims description 186
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 96
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 66
- 229920005604 random copolymer Polymers 0.000 claims description 30
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 24
- 229920001577 copolymer Polymers 0.000 claims description 12
- 230000001939 inductive effect Effects 0.000 claims description 10
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 7
- 125000001931 aliphatic group Chemical group 0.000 claims description 7
- 239000000203 mixture Substances 0.000 abstract description 214
- 238000000034 method Methods 0.000 abstract description 88
- 210000004185 liver Anatomy 0.000 abstract description 47
- 238000011282 treatment Methods 0.000 abstract description 37
- 229940124597 therapeutic agent Drugs 0.000 abstract description 35
- 208000023275 Autoimmune disease Diseases 0.000 abstract description 32
- 206010052779 Transplant rejections Diseases 0.000 abstract description 21
- 208000004262 Food Hypersensitivity Diseases 0.000 abstract description 3
- 206010016946 Food allergy Diseases 0.000 abstract description 3
- 235000020932 food allergy Nutrition 0.000 abstract description 3
- 101000609767 Dromaius novaehollandiae Ovalbumin Proteins 0.000 description 138
- 210000004681 ovum Anatomy 0.000 description 138
- 239000000047 product Substances 0.000 description 132
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 118
- 241000699670 Mus sp. Species 0.000 description 106
- 238000006243 chemical reaction Methods 0.000 description 94
- 108090000623 proteins and genes Proteins 0.000 description 83
- 239000000243 solution Substances 0.000 description 83
- 235000018102 proteins Nutrition 0.000 description 80
- 102000004169 proteins and genes Human genes 0.000 description 80
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 79
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 77
- 229960003082 galactose Drugs 0.000 description 71
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 70
- 229930182830 galactose Natural products 0.000 description 70
- 125000005647 linker group Chemical group 0.000 description 70
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 68
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 66
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 65
- 229960001031 glucose Drugs 0.000 description 65
- 239000008103 glucose Substances 0.000 description 64
- 210000004027 cell Anatomy 0.000 description 63
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 60
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical group N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 56
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 55
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 55
- 229950006780 n-acetylglucosamine Drugs 0.000 description 55
- 241001465754 Metazoa Species 0.000 description 53
- 229960002442 glucosamine Drugs 0.000 description 53
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 52
- 210000001744 T-lymphocyte Anatomy 0.000 description 52
- 102000004196 processed proteins & peptides Human genes 0.000 description 52
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 49
- 229920001184 polypeptide Polymers 0.000 description 47
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 43
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 42
- 239000003446 ligand Substances 0.000 description 42
- 239000011780 sodium chloride Substances 0.000 description 42
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 40
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 40
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 40
- 108010061711 Gliadin Proteins 0.000 description 38
- 206010020751 Hypersensitivity Diseases 0.000 description 34
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- 208000026935 allergic disease Diseases 0.000 description 33
- 238000003756 stirring Methods 0.000 description 33
- 230000002829 reductive effect Effects 0.000 description 32
- 239000002904 solvent Substances 0.000 description 32
- 102000004877 Insulin Human genes 0.000 description 29
- 108090001061 Insulin Proteins 0.000 description 29
- 229940125396 insulin Drugs 0.000 description 28
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 27
- 206010012601 diabetes mellitus Diseases 0.000 description 27
- 230000027455 binding Effects 0.000 description 26
- 229920000642 polymer Polymers 0.000 description 26
- 150000001413 amino acids Chemical class 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 24
- 108010058846 Ovalbumin Proteins 0.000 description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 23
- 229940092253 ovalbumin Drugs 0.000 description 23
- 238000000746 purification Methods 0.000 description 23
- 239000013566 allergen Substances 0.000 description 22
- 229940024606 amino acid Drugs 0.000 description 22
- 210000004369 blood Anatomy 0.000 description 22
- 239000008280 blood Substances 0.000 description 22
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 21
- 102100036255 Glucose-6-phosphatase 2 Human genes 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 21
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 20
- 108700023158 Phenylalanine ammonia-lyases Proteins 0.000 description 19
- 235000013305 food Nutrition 0.000 description 19
- 239000011541 reaction mixture Substances 0.000 description 19
- 210000000952 spleen Anatomy 0.000 description 19
- 108010054218 Factor VIII Proteins 0.000 description 18
- 102000001690 Factor VIII Human genes 0.000 description 18
- 230000007815 allergy Effects 0.000 description 18
- 229960000301 factor viii Drugs 0.000 description 18
- 238000002347 injection Methods 0.000 description 18
- 239000007924 injection Substances 0.000 description 18
- 229920001223 polyethylene glycol Polymers 0.000 description 18
- 108010024976 Asparaginase Proteins 0.000 description 17
- 102100022641 Coagulation factor IX Human genes 0.000 description 17
- 108010076282 Factor IX Proteins 0.000 description 17
- 201000010099 disease Diseases 0.000 description 17
- 230000001225 therapeutic effect Effects 0.000 description 17
- 229960004222 factor ix Drugs 0.000 description 16
- 230000009610 hypersensitivity Effects 0.000 description 16
- 230000008685 targeting Effects 0.000 description 16
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 15
- 102100035857 Glutamate decarboxylase 2 Human genes 0.000 description 15
- 238000012512 characterization method Methods 0.000 description 15
- 239000012634 fragment Substances 0.000 description 15
- 108010024780 glutamate decarboxylase 2 Proteins 0.000 description 15
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 15
- 125000004076 pyridyl group Chemical group 0.000 description 15
- 230000009467 reduction Effects 0.000 description 15
- 230000004044 response Effects 0.000 description 15
- 230000003614 tolerogenic effect Effects 0.000 description 15
- 101000662009 Homo sapiens UDP-N-acetylglucosamine pyrophosphorylase Proteins 0.000 description 14
- 101710183587 Omega-gliadin Proteins 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 14
- 102100037921 UDP-N-acetylglucosamine pyrophosphorylase Human genes 0.000 description 14
- 108010056760 agalsidase beta Proteins 0.000 description 14
- 230000037430 deletion Effects 0.000 description 14
- 238000012217 deletion Methods 0.000 description 14
- 210000001165 lymph node Anatomy 0.000 description 14
- 241000196324 Embryophyta Species 0.000 description 13
- 102100023302 Myelin-oligodendrocyte glycoprotein Human genes 0.000 description 13
- 108010049936 agalsidase alfa Proteins 0.000 description 13
- 229960001239 agalsidase alfa Drugs 0.000 description 13
- 229960004470 agalsidase beta Drugs 0.000 description 13
- 125000003277 amino group Chemical group 0.000 description 13
- KUBARPMUNHKBIQ-VTHUDJRQSA-N eliglustat tartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.C([C@@H](NC(=O)CCCCCCC)[C@H](O)C=1C=C2OCCOC2=CC=1)N1CCCC1.C([C@@H](NC(=O)CCCCCCC)[C@H](O)C=1C=C2OCCOC2=CC=1)N1CCCC1 KUBARPMUNHKBIQ-VTHUDJRQSA-N 0.000 description 13
- 238000001542 size-exclusion chromatography Methods 0.000 description 13
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 12
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 12
- 101000930907 Homo sapiens Glucose-6-phosphatase 2 Proteins 0.000 description 12
- 101001018026 Homo sapiens Lysosomal alpha-glucosidase Proteins 0.000 description 12
- 108010016076 Octreotide Proteins 0.000 description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- 102100038247 Retinol-binding protein 3 Human genes 0.000 description 12
- 229960000446 abciximab Drugs 0.000 description 12
- 229960002964 adalimumab Drugs 0.000 description 12
- 229960004593 alglucosidase alfa Drugs 0.000 description 12
- 210000000612 antigen-presenting cell Anatomy 0.000 description 12
- 239000002158 endotoxin Substances 0.000 description 12
- 238000003818 flash chromatography Methods 0.000 description 12
- 229920000550 glycopolymer Polymers 0.000 description 12
- 210000003494 hepatocyte Anatomy 0.000 description 12
- 102000045921 human GAA Human genes 0.000 description 12
- 229960002486 laronidase Drugs 0.000 description 12
- 229920006008 lipopolysaccharide Polymers 0.000 description 12
- 229960002700 octreotide Drugs 0.000 description 12
- 230000002062 proliferating effect Effects 0.000 description 12
- 108010084837 rasburicase Proteins 0.000 description 12
- 229960000424 rasburicase Drugs 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 12
- 235000000346 sugar Nutrition 0.000 description 12
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 101100519207 Mus musculus Pdcd1 gene Proteins 0.000 description 11
- 108010092464 Urate Oxidase Proteins 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 11
- 108010048996 interstitial retinol-binding protein Proteins 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 108010088751 Albumins Proteins 0.000 description 10
- 102000009027 Albumins Human genes 0.000 description 10
- 108090000672 Annexin A5 Proteins 0.000 description 10
- 102000004121 Annexin A5 Human genes 0.000 description 10
- 102000012002 Aquaporin 4 Human genes 0.000 description 10
- 108010036280 Aquaporin 4 Proteins 0.000 description 10
- 101000693927 Canis lupus familiaris Albumin Proteins 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 102100022430 Melanocyte protein PMEL Human genes 0.000 description 10
- 102100022135 S-arrestin Human genes 0.000 description 10
- 101710117586 S-arrestin Proteins 0.000 description 10
- 102000003425 Tyrosinase Human genes 0.000 description 10
- 108060008724 Tyrosinase Proteins 0.000 description 10
- 230000021615 conjugation Effects 0.000 description 10
- 150000007523 nucleic acids Chemical group 0.000 description 10
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 10
- 210000003289 regulatory T cell Anatomy 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- ATGUDZODTABURZ-UHFFFAOYSA-N thiolan-2-ylideneazanium;chloride Chemical compound Cl.N=C1CCCS1 ATGUDZODTABURZ-UHFFFAOYSA-N 0.000 description 10
- 208000015943 Coeliac disease Diseases 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 101710172364 Glucose-6-phosphatase 2 Proteins 0.000 description 9
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 9
- 101001094545 Homo sapiens Retrotransposon-like protein 1 Proteins 0.000 description 9
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 9
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 230000007613 environmental effect Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 210000000987 immune system Anatomy 0.000 description 9
- 230000035755 proliferation Effects 0.000 description 9
- 125000003396 thiol group Chemical group [H]S* 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 229940086542 triethylamine Drugs 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 8
- 101000620359 Homo sapiens Melanocyte protein PMEL Proteins 0.000 description 8
- 150000001412 amines Chemical group 0.000 description 8
- 239000012043 crude product Substances 0.000 description 8
- 230000007717 exclusion Effects 0.000 description 8
- 238000000684 flow cytometry Methods 0.000 description 8
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 8
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 125000006239 protecting group Chemical group 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 244000105624 Arachis hypogaea Species 0.000 description 7
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 7
- 108010068370 Glutens Proteins 0.000 description 7
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 7
- 235000019439 ethyl acetate Nutrition 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 238000001502 gel electrophoresis Methods 0.000 description 7
- 108010050792 glutenin Proteins 0.000 description 7
- 238000010253 intravenous injection Methods 0.000 description 7
- 210000001865 kupffer cell Anatomy 0.000 description 7
- 201000006417 multiple sclerosis Diseases 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- NIJWSVFNELSKMF-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=C(F)C(F)=C(F)C(F)=C1F NIJWSVFNELSKMF-UHFFFAOYSA-N 0.000 description 6
- 101150075175 Asgr1 gene Proteins 0.000 description 6
- 108010044226 Class 8 Receptor-Like Protein Tyrosine Phosphatases Proteins 0.000 description 6
- 241000282326 Felis catus Species 0.000 description 6
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 6
- 101000825079 Homo sapiens Transcription factor SOX-13 Proteins 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 102100039093 Insulinoma-associated protein 2 Human genes 0.000 description 6
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 6
- 108010004729 Phycoerythrin Proteins 0.000 description 6
- 102100022435 Transcription factor SOX-13 Human genes 0.000 description 6
- 239000012346 acetyl chloride Substances 0.000 description 6
- 230000000890 antigenic effect Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 6
- 230000002757 inflammatory effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 239000008194 pharmaceutical composition Substances 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 239000013557 residual solvent Substances 0.000 description 6
- 230000009870 specific binding Effects 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- LECMBPWEOVZHKN-UHFFFAOYSA-N 2-(2-chloroethoxy)ethanol Chemical compound OCCOCCCl LECMBPWEOVZHKN-UHFFFAOYSA-N 0.000 description 5
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 5
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 5
- 102000015790 Asparaginase Human genes 0.000 description 5
- 101000976075 Homo sapiens Insulin Proteins 0.000 description 5
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 5
- 108700039882 Protein Glutamine gamma Glutamyltransferase 2 Proteins 0.000 description 5
- 102100038095 Protein-glutamine gamma-glutamyltransferase 2 Human genes 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 230000006907 apoptotic process Effects 0.000 description 5
- 206010003246 arthritis Diseases 0.000 description 5
- 229960003272 asparaginase Drugs 0.000 description 5
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 5
- 230000006472 autoimmune response Effects 0.000 description 5
- 150000001720 carbohydrates Chemical group 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 235000013922 glutamic acid Nutrition 0.000 description 5
- 239000004220 glutamic acid Substances 0.000 description 5
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 238000004811 liquid chromatography Methods 0.000 description 5
- 210000005229 liver cell Anatomy 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 5
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 4
- 108010058207 Anistreplase Proteins 0.000 description 4
- 235000017060 Arachis glabrata Nutrition 0.000 description 4
- 235000010777 Arachis hypogaea Nutrition 0.000 description 4
- 235000018262 Arachis monticola Nutrition 0.000 description 4
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 4
- 241000282472 Canis lupus familiaris Species 0.000 description 4
- 102100032378 Carboxypeptidase E Human genes 0.000 description 4
- 108010058255 Carboxypeptidase H Proteins 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 101710087459 Gamma-gliadin Proteins 0.000 description 4
- 102000028180 Glycophorins Human genes 0.000 description 4
- 108091005250 Glycophorins Proteins 0.000 description 4
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 4
- 108010047761 Interferon-alpha Proteins 0.000 description 4
- 102000006992 Interferon-alpha Human genes 0.000 description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 102100033342 Lysosomal acid glucosylceramidase Human genes 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 208000029310 Pediatric multiple sclerosis Diseases 0.000 description 4
- 206010034277 Pemphigoid Diseases 0.000 description 4
- 108010076181 Proinsulin Chemical group 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 4
- 108091008874 T cell receptors Proteins 0.000 description 4
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 235000021307 Triticum Nutrition 0.000 description 4
- 230000000172 allergic effect Effects 0.000 description 4
- 208000010668 atopic eczema Diseases 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229920001436 collagen Polymers 0.000 description 4
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 108010049491 glucarpidase Proteins 0.000 description 4
- 230000013595 glycosylation Effects 0.000 description 4
- 238000006206 glycosylation reaction Methods 0.000 description 4
- 230000002440 hepatic effect Effects 0.000 description 4
- 229960000598 infliximab Drugs 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 4
- OKPYIWASQZGASP-UHFFFAOYSA-N n-(2-hydroxypropyl)-2-methylprop-2-enamide Chemical compound CC(O)CNC(=O)C(C)=C OKPYIWASQZGASP-UHFFFAOYSA-N 0.000 description 4
- 229960005027 natalizumab Drugs 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 235000020232 peanut Nutrition 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 108010066381 preproinsulin Chemical group 0.000 description 4
- 108060006613 prolamin Proteins 0.000 description 4
- XXRYFVCIMARHRS-UHFFFAOYSA-N propan-2-yl n-dimethoxyphosphorylcarbamate Chemical compound COP(=O)(OC)NC(=O)OC(C)C XXRYFVCIMARHRS-UHFFFAOYSA-N 0.000 description 4
- 108010038379 sargramostim Proteins 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229960003989 tocilizumab Drugs 0.000 description 4
- 229960005486 vaccine Drugs 0.000 description 4
- 210000003462 vein Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000003442 weekly effect Effects 0.000 description 4
- NVGYTXVKRZYCDH-UHFFFAOYSA-N 2-[2-[2-[2-(pyridin-2-yldisulfanyl)ethoxy]ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCSSC1=CC=CC=N1 NVGYTXVKRZYCDH-UHFFFAOYSA-N 0.000 description 3
- 102100024419 28S ribosomal protein S31, mitochondrial Human genes 0.000 description 3
- 101710119973 28S ribosomal protein S31, mitochondrial Proteins 0.000 description 3
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 description 3
- 101710154868 60 kDa heat shock protein, mitochondrial Proteins 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 206010056508 Acquired epidermolysis bullosa Diseases 0.000 description 3
- 208000026872 Addison Disease Diseases 0.000 description 3
- 101710186708 Agglutinin Proteins 0.000 description 3
- 206010001767 Alopecia universalis Diseases 0.000 description 3
- 235000003911 Arachis Nutrition 0.000 description 3
- 208000002017 Autoimmune Hypophysitis Diseases 0.000 description 3
- 206010071576 Autoimmune aplastic anaemia Diseases 0.000 description 3
- 208000035900 Autoimmune polyendocrinopathy type 1 Diseases 0.000 description 3
- 208000023328 Basedow disease Diseases 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 101001011741 Bos taurus Insulin Proteins 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 240000006122 Chenopodium album Species 0.000 description 3
- 235000009344 Chenopodium album Nutrition 0.000 description 3
- 108010038447 Chromogranin A Proteins 0.000 description 3
- 102000010792 Chromogranin A Human genes 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 206010012468 Dermatitis herpetiformis Diseases 0.000 description 3
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 108010054265 Factor VIIa Proteins 0.000 description 3
- 108010049003 Fibrinogen Proteins 0.000 description 3
- 102000008946 Fibrinogen Human genes 0.000 description 3
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 3
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 3
- 235000016623 Fragaria vesca Nutrition 0.000 description 3
- 240000009088 Fragaria x ananassa Species 0.000 description 3
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 3
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 3
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 3
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 description 3
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 3
- 102100035902 Glutamate decarboxylase 1 Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000024869 Goodpasture syndrome Diseases 0.000 description 3
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 3
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 3
- 208000015023 Graves' disease Diseases 0.000 description 3
- 208000031220 Hemophilia Diseases 0.000 description 3
- 208000009292 Hemophilia A Diseases 0.000 description 3
- 101000738765 Homo sapiens Receptor-type tyrosine-protein phosphatase N2 Proteins 0.000 description 3
- 101710146024 Horcolin Proteins 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 102000011845 Iodide peroxidase Human genes 0.000 description 3
- 108010036012 Iodide peroxidase Proteins 0.000 description 3
- 102100027640 Islet cell autoantigen 1 Human genes 0.000 description 3
- 108050004848 Islet cell autoantigen 1 Proteins 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 108010063045 Lactoferrin Proteins 0.000 description 3
- 102000010445 Lactoferrin Human genes 0.000 description 3
- 101710189395 Lectin Proteins 0.000 description 3
- 102000009151 Luteinizing Hormone Human genes 0.000 description 3
- 108010073521 Luteinizing Hormone Proteins 0.000 description 3
- 101710179758 Mannose-specific lectin Proteins 0.000 description 3
- 101710150763 Mannose-specific lectin 1 Proteins 0.000 description 3
- 101710150745 Mannose-specific lectin 2 Proteins 0.000 description 3
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 3
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 3
- 240000005561 Musa balbisiana Species 0.000 description 3
- 102000055324 Myelin Proteolipid Human genes 0.000 description 3
- 101710094913 Myelin proteolipid protein Proteins 0.000 description 3
- 108010000123 Myelin-Oligodendrocyte Glycoprotein Proteins 0.000 description 3
- 206010068871 Myotonic dystrophy Diseases 0.000 description 3
- 201000011152 Pemphigus Diseases 0.000 description 3
- 102000004590 Peripherins Human genes 0.000 description 3
- 108010003081 Peripherins Proteins 0.000 description 3
- 208000002500 Primary Ovarian Insufficiency Diseases 0.000 description 3
- 102000011195 Profilin Human genes 0.000 description 3
- 108050001408 Profilin Proteins 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 102000001253 Protein Kinase Human genes 0.000 description 3
- 102100037404 Receptor-type tyrosine-protein phosphatase N2 Human genes 0.000 description 3
- 108091006299 SLC2A2 Proteins 0.000 description 3
- 208000021386 Sjogren Syndrome Diseases 0.000 description 3
- 201000009594 Systemic Scleroderma Diseases 0.000 description 3
- 206010042953 Systemic sclerosis Diseases 0.000 description 3
- 230000017274 T cell anergy Effects 0.000 description 3
- 230000006052 T cell proliferation Effects 0.000 description 3
- 102100029337 Thyrotropin receptor Human genes 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 108010030743 Tropomyosin Proteins 0.000 description 3
- 102000005937 Tropomyosin Human genes 0.000 description 3
- 206010047642 Vitiligo Diseases 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 239000000910 agglutinin Substances 0.000 description 3
- 208000032775 alopecia universalis congenita Diseases 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 201000005000 autoimmune gastritis Diseases 0.000 description 3
- 201000009771 autoimmune polyendocrine syndrome type 1 Diseases 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- IXIBAKNTJSCKJM-BUBXBXGNSA-N bovine insulin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 IXIBAKNTJSCKJM-BUBXBXGNSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 208000000594 bullous pemphigoid Diseases 0.000 description 3
- 229940009550 c1 esterase inhibitor Drugs 0.000 description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 210000004443 dendritic cell Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000002183 duodenal effect Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 201000011114 epidermolysis bullosa acquisita Diseases 0.000 description 3
- 229960004579 epoetin beta Drugs 0.000 description 3
- 229940012952 fibrinogen Drugs 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 229940028334 follicle stimulating hormone Drugs 0.000 description 3
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 3
- 108010024847 glutamate decarboxylase 1 Proteins 0.000 description 3
- 230000028996 humoral immune response Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 206010022498 insulinoma Diseases 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229940040129 luteinizing hormone Drugs 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 206010028417 myasthenia gravis Diseases 0.000 description 3
- 201000009340 myotonic dystrophy type 1 Diseases 0.000 description 3
- 208000008795 neuromyelitis optica Diseases 0.000 description 3
- 208000021255 pancreatic insulinoma Diseases 0.000 description 3
- 201000001976 pemphigus vulgaris Diseases 0.000 description 3
- 210000005047 peripherin Anatomy 0.000 description 3
- 230000000505 pernicious effect Effects 0.000 description 3
- 230000001817 pituitary effect Effects 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 206010036601 premature menopause Diseases 0.000 description 3
- 208000017942 premature ovarian failure 1 Diseases 0.000 description 3
- 208000011610 primary hypophysitis Diseases 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 108060006633 protein kinase Proteins 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 208000004124 rheumatic heart disease Diseases 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229960002530 sargramostim Drugs 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 230000003393 splenic effect Effects 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 3
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 3
- 238000004809 thin layer chromatography Methods 0.000 description 3
- KJAMZCVTJDTESW-UHFFFAOYSA-N tiracizine Chemical compound C1CC2=CC=CC=C2N(C(=O)CN(C)C)C2=CC(NC(=O)OCC)=CC=C21 KJAMZCVTJDTESW-UHFFFAOYSA-N 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- HMLGSIZOMSVISS-ONJSNURVSA-N (7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2,2-dimethylpropanoyloxymethoxyimino)acetyl]amino]-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@@H]1C(N2C(=C(C=C)CSC21)C(O)=O)=O)C(=O)\C(=N/OCOC(=O)C(C)(C)C)C1=CSC(N)=N1 HMLGSIZOMSVISS-ONJSNURVSA-N 0.000 description 2
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 2
- JYWKEVKEKOTYEX-UHFFFAOYSA-N 2,6-dibromo-4-chloroiminocyclohexa-2,5-dien-1-one Chemical compound ClN=C1C=C(Br)C(=O)C(Br)=C1 JYWKEVKEKOTYEX-UHFFFAOYSA-N 0.000 description 2
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 2
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 2
- YNKQCPNHMVAWHN-UHFFFAOYSA-N 4-(benzenecarbonothioylsulfanyl)-4-cyanopentanoic acid Chemical compound OC(=O)CCC(C)(C#N)SC(=S)C1=CC=CC=C1 YNKQCPNHMVAWHN-UHFFFAOYSA-N 0.000 description 2
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 2
- MJZJYWCQPMNPRM-UHFFFAOYSA-N 6,6-dimethyl-1-[3-(2,4,5-trichlorophenoxy)propoxy]-1,6-dihydro-1,3,5-triazine-2,4-diamine Chemical compound CC1(C)N=C(N)N=C(N)N1OCCCOC1=CC(Cl)=C(Cl)C=C1Cl MJZJYWCQPMNPRM-UHFFFAOYSA-N 0.000 description 2
- 208000032194 Acute haemorrhagic leukoencephalitis Diseases 0.000 description 2
- 102000055025 Adenosine deaminases Human genes 0.000 description 2
- 102100038910 Alpha-enolase Human genes 0.000 description 2
- 235000013479 Amaranthus retroflexus Nutrition 0.000 description 2
- 235000004135 Amaranthus viridis Nutrition 0.000 description 2
- 235000003129 Ambrosia artemisiifolia var elatior Nutrition 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- 108010065511 Amylases Proteins 0.000 description 2
- 102000013142 Amylases Human genes 0.000 description 2
- 206010002198 Anaphylactic reaction Diseases 0.000 description 2
- 102000004411 Antithrombin III Human genes 0.000 description 2
- 108090000935 Antithrombin III Proteins 0.000 description 2
- 240000007087 Apium graveolens Species 0.000 description 2
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 2
- 235000010591 Appio Nutrition 0.000 description 2
- 102000005427 Asialoglycoprotein Receptor Human genes 0.000 description 2
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 244000056139 Brassica cretica Species 0.000 description 2
- 235000003351 Brassica cretica Nutrition 0.000 description 2
- 235000003343 Brassica rupestris Nutrition 0.000 description 2
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 244000281762 Chenopodium ambrosioides Species 0.000 description 2
- 235000005484 Chenopodium berlandieri Nutrition 0.000 description 2
- 235000009332 Chenopodium rubrum Nutrition 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108010009685 Cholinergic Receptors Proteins 0.000 description 2
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 2
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 206010011258 Coxsackie myocarditis Diseases 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 108010019673 Darbepoetin alfa Proteins 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108010008165 Etanercept Proteins 0.000 description 2
- 108010074864 Factor XI Proteins 0.000 description 2
- 108010071289 Factor XIII Proteins 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 108010029961 Filgrastim Proteins 0.000 description 2
- 208000007465 Giant cell arteritis Diseases 0.000 description 2
- 102000006395 Globulins Human genes 0.000 description 2
- 108010044091 Globulins Proteins 0.000 description 2
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102100037907 High mobility group protein B1 Human genes 0.000 description 2
- 108010007267 Hirudins Proteins 0.000 description 2
- 102000007625 Hirudins Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101001025337 Homo sapiens High mobility group protein B1 Proteins 0.000 description 2
- 108010003272 Hyaluronate lyase Proteins 0.000 description 2
- 102000001974 Hyaluronidases Human genes 0.000 description 2
- 102100040018 Interferon alpha-2 Human genes 0.000 description 2
- 108010005716 Interferon beta-1a Proteins 0.000 description 2
- 108010079944 Interferon-alpha2b Proteins 0.000 description 2
- 102000003996 Interferon-beta Human genes 0.000 description 2
- 108090000467 Interferon-beta Proteins 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 2
- 108700021006 Interleukin-1 receptor antagonist Proteins 0.000 description 2
- 102100030694 Interleukin-11 Human genes 0.000 description 2
- 208000003456 Juvenile Arthritis Diseases 0.000 description 2
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 108010059881 Lactase Proteins 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 108010010995 MART-1 Antigen Proteins 0.000 description 2
- 102000043129 MHC class I family Human genes 0.000 description 2
- 108091054437 MHC class I family Proteins 0.000 description 2
- 102000043131 MHC class II family Human genes 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 235000011430 Malus pumila Nutrition 0.000 description 2
- 235000015103 Malus silvestris Nutrition 0.000 description 2
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 2
- 102000047918 Myelin Basic Human genes 0.000 description 2
- 101710107068 Myelin basic protein Proteins 0.000 description 2
- NDULOUKMKYLGCM-UHFFFAOYSA-N N-[2-[3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyethyl]-2-methylprop-2-enamide Chemical compound C(C)(=O)NC1C(OC(C(C1O)O)CO)OCCNC(C(=C)C)=O NDULOUKMKYLGCM-UHFFFAOYSA-N 0.000 description 2
- 102000007999 Nuclear Proteins Human genes 0.000 description 2
- 108010089610 Nuclear Proteins Proteins 0.000 description 2
- 102000019280 Pancreatic lipases Human genes 0.000 description 2
- 108050006759 Pancreatic lipases Proteins 0.000 description 2
- 108090000526 Papain Proteins 0.000 description 2
- 108010068701 Pegloticase Proteins 0.000 description 2
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 101800004937 Protein C Proteins 0.000 description 2
- 102000017975 Protein C Human genes 0.000 description 2
- 101800001700 Saposin-D Proteins 0.000 description 2
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 2
- 108010023197 Streptokinase Proteins 0.000 description 2
- 239000012505 Superdex™ Substances 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- 108010039185 Tenecteplase Proteins 0.000 description 2
- 108010049264 Teriparatide Proteins 0.000 description 2
- 108010034949 Thyroglobulin Proteins 0.000 description 2
- 102000009843 Thyroglobulin Human genes 0.000 description 2
- 108010061174 Thyrotropin Proteins 0.000 description 2
- 102000011923 Thyrotropin Human genes 0.000 description 2
- 108010066702 Thyrotropin Alfa Proteins 0.000 description 2
- 108010057266 Type A Botulinum Toxins Proteins 0.000 description 2
- 208000025851 Undifferentiated connective tissue disease Diseases 0.000 description 2
- 208000017379 Undifferentiated connective tissue syndrome Diseases 0.000 description 2
- 206010046851 Uveitis Diseases 0.000 description 2
- 229960003697 abatacept Drugs 0.000 description 2
- 102000034337 acetylcholine receptors Human genes 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 208000002552 acute disseminated encephalomyelitis Diseases 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 108010060162 alglucerase Proteins 0.000 description 2
- 229960003122 alglucerase Drugs 0.000 description 2
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 2
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 2
- 235000019418 amylase Nutrition 0.000 description 2
- 229960004238 anakinra Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000036783 anaphylactic response Effects 0.000 description 2
- 208000003455 anaphylaxis Diseases 0.000 description 2
- 229960000983 anistreplase Drugs 0.000 description 2
- 235000003484 annual ragweed Nutrition 0.000 description 2
- 230000001494 anti-thymocyte effect Effects 0.000 description 2
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 2
- 229960005348 antithrombin iii Drugs 0.000 description 2
- 108010006523 asialoglycoprotein receptor Proteins 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 2
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 2
- 229960000397 bevacizumab Drugs 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 2
- 108010055460 bivalirudin Proteins 0.000 description 2
- OIRCOABEOLEUMC-GEJPAHFPSA-N bivalirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 OIRCOABEOLEUMC-GEJPAHFPSA-N 0.000 description 2
- 229960001500 bivalirudin Drugs 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229940094657 botulinum toxin type a Drugs 0.000 description 2
- 235000006263 bur ragweed Nutrition 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 2
- 229960003773 calcitonin (salmon synthetic) Drugs 0.000 description 2
- 229960001838 canakinumab Drugs 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 229940077731 carbohydrate nutrients Drugs 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 229960003115 certolizumab pegol Drugs 0.000 description 2
- 229960005395 cetuximab Drugs 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 208000019069 chronic childhood arthritis Diseases 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 235000003488 common ragweed Nutrition 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000013058 crude material Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 229960001251 denosumab Drugs 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 108010034479 digoxin antibodies Fab fragments Proteins 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000000107 disulfanyl group Chemical group [*]SS[H] 0.000 description 2
- 229960000533 dornase alfa Drugs 0.000 description 2
- 108010067396 dornase alfa Proteins 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 229960002224 eculizumab Drugs 0.000 description 2
- 235000014103 egg white Nutrition 0.000 description 2
- 210000000969 egg white Anatomy 0.000 description 2
- 235000013345 egg yolk Nutrition 0.000 description 2
- 210000002969 egg yolk Anatomy 0.000 description 2
- 229960000403 etanercept Drugs 0.000 description 2
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229940012414 factor viia Drugs 0.000 description 2
- 229940012444 factor xiii Drugs 0.000 description 2
- 229960004177 filgrastim Drugs 0.000 description 2
- 108010081934 follitropin beta Proteins 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 150000002256 galaktoses Chemical class 0.000 description 2
- 108010089296 galsulfase Proteins 0.000 description 2
- 229960005390 galsulfase Drugs 0.000 description 2
- 108010062699 gamma-Glutamyl Hydrolase Proteins 0.000 description 2
- 208000018090 giant cell myocarditis Diseases 0.000 description 2
- 229960004859 glucarpidase Drugs 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- 229960001743 golimumab Drugs 0.000 description 2
- 229940006607 hirudin Drugs 0.000 description 2
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 2
- HHXHVIJIIXKSOE-QILQGKCVSA-N histrelin Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC(N=C1)=CN1CC1=CC=CC=C1 HHXHVIJIIXKSOE-QILQGKCVSA-N 0.000 description 2
- 229960003911 histrelin acetate Drugs 0.000 description 2
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 2
- 229960002773 hyaluronidase Drugs 0.000 description 2
- 229960002127 imiglucerase Drugs 0.000 description 2
- 108010039650 imiglucerase Proteins 0.000 description 2
- 230000008004 immune attack Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229960004461 interferon beta-1a Drugs 0.000 description 2
- 229960003161 interferon beta-1b Drugs 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 108010042414 interferon gamma-1b Proteins 0.000 description 2
- 229940028862 interferon gamma-1b Drugs 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 229960005386 ipilimumab Drugs 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 2
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 2
- 229940116108 lactase Drugs 0.000 description 2
- OTQCKZUSUGYWBD-BRHMIFOHSA-N lepirudin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)[C@@H](C)O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 OTQCKZUSUGYWBD-BRHMIFOHSA-N 0.000 description 2
- 229960004408 lepirudin Drugs 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 108010053156 lipid transfer protein Proteins 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 108010000594 mecasermin Proteins 0.000 description 2
- 229960001311 mecasermin Drugs 0.000 description 2
- 229960003613 mecasermin rinfabate Drugs 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 235000010460 mustard Nutrition 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 2
- QCTRCKYGWQLWGS-UHFFFAOYSA-N n-[2-(2-aminoethoxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)NC1C(O)C(O)C(CO)OC1OCCN QCTRCKYGWQLWGS-UHFFFAOYSA-N 0.000 description 2
- DHQJPCIPZHPDSL-UHFFFAOYSA-N n-[2-(2-azidoethoxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)NC1C(O)C(O)C(CO)OC1OCCN=[N+]=[N-] DHQJPCIPZHPDSL-UHFFFAOYSA-N 0.000 description 2
- LXIKSHBBSCNHHT-UHFFFAOYSA-N n-[2-(2-chloroethoxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)NC1C(O)C(O)C(CO)OC1OCCCl LXIKSHBBSCNHHT-UHFFFAOYSA-N 0.000 description 2
- 235000020925 non fasting Nutrition 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 229960002450 ofatumumab Drugs 0.000 description 2
- 108010046821 oprelvekin Proteins 0.000 description 2
- 229960001840 oprelvekin Drugs 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229940116369 pancreatic lipase Drugs 0.000 description 2
- 229940055729 papain Drugs 0.000 description 2
- 235000019834 papain Nutrition 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- HQQSBEDKMRHYME-UHFFFAOYSA-N pefloxacin mesylate Chemical compound [H+].CS([O-])(=O)=O.C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 HQQSBEDKMRHYME-UHFFFAOYSA-N 0.000 description 2
- 108010001564 pegaspargase Proteins 0.000 description 2
- 229960001373 pegfilgrastim Drugs 0.000 description 2
- 108010044644 pegfilgrastim Proteins 0.000 description 2
- 229960001376 pegloticase Drugs 0.000 description 2
- 229960002995 pegvisomant Drugs 0.000 description 2
- 108700037519 pegvisomant Proteins 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 229960000856 protein c Drugs 0.000 description 2
- 230000001185 psoriatic effect Effects 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 235000009736 ragweed Nutrition 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 108010074523 rimabotulinumtoxinB Proteins 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 229960000532 sacrosidase Drugs 0.000 description 2
- 108010068072 salmon calcitonin Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 125000005629 sialic acid group Chemical group 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 210000004500 stellate cell Anatomy 0.000 description 2
- 229960005202 streptokinase Drugs 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 206010043207 temporal arteritis Diseases 0.000 description 2
- 229960000216 tenecteplase Drugs 0.000 description 2
- OGBMKVWORPGQRR-UMXFMPSGSA-N teriparatide Chemical compound C([C@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C(C)C)[C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CNC=N1 OGBMKVWORPGQRR-UMXFMPSGSA-N 0.000 description 2
- 229960005460 teriparatide Drugs 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229960002175 thyroglobulin Drugs 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 229960000575 trastuzumab Drugs 0.000 description 2
- 229960001612 trastuzumab emtansine Drugs 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- 229960003824 ustekinumab Drugs 0.000 description 2
- 229940110059 voraxaze Drugs 0.000 description 2
- CBOJBBMQJBVCMW-NQZVPSPJSA-N (2r,3r,4r,5r)-2-amino-3,4,5,6-tetrahydroxyhexanal;hydrochloride Chemical compound Cl.O=C[C@H](N)[C@@H](O)[C@@H](O)[C@H](O)CO CBOJBBMQJBVCMW-NQZVPSPJSA-N 0.000 description 1
- PFDKSMIROGGYHI-AWEZNQCLSA-N (2s)-2-amino-3-[4-(4-hydroxyphenoxy)-2-iodophenyl]propanoic acid Chemical compound C1=C(I)C(C[C@H](N)C(O)=O)=CC=C1OC1=CC=C(O)C=C1 PFDKSMIROGGYHI-AWEZNQCLSA-N 0.000 description 1
- LCTORNIWLGOBPB-PHYPRBDBSA-N (2s,3r,4s,5r,6r)-2-amino-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound N[C@@]1(O)O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O LCTORNIWLGOBPB-PHYPRBDBSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- PCGDBWLKAYKBTN-UHFFFAOYSA-N 1,2-dithiole Chemical compound C1SSC=C1 PCGDBWLKAYKBTN-UHFFFAOYSA-N 0.000 description 1
- 101710102211 11S globulin Proteins 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- VFQJPQFCQFQABO-UHFFFAOYSA-N 2-(disulfanyl)ethyl carbamate Chemical compound C(N)(OCCSS)=O VFQJPQFCQFQABO-UHFFFAOYSA-N 0.000 description 1
- KECMLGZOQMJIBM-UHFFFAOYSA-N 2-[2-(2-chloroethoxy)ethoxy]ethanol Chemical compound OCCOCCOCCCl KECMLGZOQMJIBM-UHFFFAOYSA-N 0.000 description 1
- ISYSKYJOWFLWCM-UHFFFAOYSA-N 2-[2-[2-(2-chloroethoxy)ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCCl ISYSKYJOWFLWCM-UHFFFAOYSA-N 0.000 description 1
- FGDJUEZBMFELRW-UHFFFAOYSA-N 2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethyl 4-methylbenzenesulfonate Chemical compound CC1=CC=C(S(=O)(=O)OCCOCCOCCOCCO)C=C1 FGDJUEZBMFELRW-UHFFFAOYSA-N 0.000 description 1
- MEZHWIUWDFAXMR-UHFFFAOYSA-N 2-[2-[2-[2-(2-chloroethoxy)ethoxy]ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCOCCCl MEZHWIUWDFAXMR-UHFFFAOYSA-N 0.000 description 1
- WNQIKAGXSGKTDY-UHFFFAOYSA-N 2-[2-[2-[2-[2-(2-chloroethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCOCCOCCCl WNQIKAGXSGKTDY-UHFFFAOYSA-N 0.000 description 1
- GOVVGODPIHPTPH-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-(2-chloroethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCOCCOCCOCCCl GOVVGODPIHPTPH-UHFFFAOYSA-N 0.000 description 1
- AISZNMCRXZWVAT-UHFFFAOYSA-N 2-ethylsulfanylcarbothioylsulfanyl-2-methylpropanenitrile Chemical compound CCSC(=S)SC(C)(C)C#N AISZNMCRXZWVAT-UHFFFAOYSA-N 0.000 description 1
- LXDQROPOJYHQLE-UHFFFAOYSA-N 2-methyl-n-[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]prop-2-enamide Chemical group CC(=C)C(=O)NC1C(O)OC(CO)C(O)C1O LXDQROPOJYHQLE-UHFFFAOYSA-N 0.000 description 1
- KHOZZXQUYJNHHB-BTVCFUMJSA-N 2-methylprop-2-enoic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical group CC(=C)C(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O KHOZZXQUYJNHHB-BTVCFUMJSA-N 0.000 description 1
- 101710168820 2S seed storage albumin protein Proteins 0.000 description 1
- ROZMCXMTUNAAFU-IKKIYUABSA-N 3-[3-[2-[2-[2-[2-[[(4Z)-4-cyclobutyl-4-diazonioiminobutyl]disulfanyl]ethoxy]ethoxy]ethoxy]ethoxy]propanoylamino]-2,4,5-trihydroxy-6-(hydroxymethyl)oxane chloride Chemical compound [Cl-].C1(CCC1)\C(\CCCSSCCOCCOCCOCCOCCC(NC1C(OC(C(C1O)O)CO)O)=O)=N/[N+]#N ROZMCXMTUNAAFU-IKKIYUABSA-N 0.000 description 1
- UHBAPGWWRFVTFS-UHFFFAOYSA-N 4,4'-dipyridyl disulfide Chemical compound C=1C=NC=CC=1SSC1=CC=NC=C1 UHBAPGWWRFVTFS-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 1
- VDABVNMGKGUPEY-UHFFFAOYSA-N 6-carboxyfluorescein succinimidyl ester Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O VDABVNMGKGUPEY-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- 240000004731 Acer pseudoplatanus Species 0.000 description 1
- 235000002754 Acer pseudoplatanus Nutrition 0.000 description 1
- 235000009434 Actinidia chinensis Nutrition 0.000 description 1
- 244000298697 Actinidia deliciosa Species 0.000 description 1
- 235000009436 Actinidia deliciosa Nutrition 0.000 description 1
- ZHQQRIUYLMXDPP-SSDOTTSWSA-N Actinidine Natural products C1=NC=C(C)C2=C1[C@H](C)CC2 ZHQQRIUYLMXDPP-SSDOTTSWSA-N 0.000 description 1
- 102100022455 Adrenocorticotropic hormone receptor Human genes 0.000 description 1
- 208000032671 Allergic granulomatous angiitis Diseases 0.000 description 1
- 241000223602 Alternaria alternata Species 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 102100036830 Annexin A9 Human genes 0.000 description 1
- 240000004178 Anthoxanthum odoratum Species 0.000 description 1
- 241000256844 Apis mellifera Species 0.000 description 1
- 101100268765 Arabidopsis thaliana 2A6 gene Proteins 0.000 description 1
- 102000004452 Arginase Human genes 0.000 description 1
- 108700024123 Arginases Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 102000003823 Aromatic-L-amino-acid decarboxylases Human genes 0.000 description 1
- 108090000121 Aromatic-L-amino-acid decarboxylases Proteins 0.000 description 1
- 102000003916 Arrestin Human genes 0.000 description 1
- 108090000328 Arrestin Proteins 0.000 description 1
- 235000015701 Artemisia arbuscula Nutrition 0.000 description 1
- 235000002657 Artemisia tridentata Nutrition 0.000 description 1
- 235000003261 Artemisia vulgaris Nutrition 0.000 description 1
- 240000006891 Artemisia vulgaris Species 0.000 description 1
- 206010003402 Arthropod sting Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 1
- 208000022106 Autoimmune polyendocrinopathy type 2 Diseases 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 208000009299 Benign Mucous Membrane Pemphigoid Diseases 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- 241001674044 Blattodea Species 0.000 description 1
- 241000123966 Blomia tropicalis Species 0.000 description 1
- 206010048396 Bone marrow transplant rejection Diseases 0.000 description 1
- QFUASLRDDMDJKT-UHFFFAOYSA-N C1(=CC=CC=C1)C(=S)SCC(=O)OCCOCCOCCOCCSSC1=NC=CC=C1 Chemical compound C1(=CC=CC=C1)C(=S)SCC(=O)OCCOCCOCCOCCSSC1=NC=CC=C1 QFUASLRDDMDJKT-UHFFFAOYSA-N 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000013830 Calcium-Sensing Receptors Human genes 0.000 description 1
- 108010050543 Calcium-Sensing Receptors Proteins 0.000 description 1
- 102000013602 Cardiac Myosins Human genes 0.000 description 1
- 108010051609 Cardiac Myosins Proteins 0.000 description 1
- 241000723418 Carya Species 0.000 description 1
- 235000009025 Carya illinoensis Nutrition 0.000 description 1
- 244000068645 Carya illinoensis Species 0.000 description 1
- 241001655736 Catalpa bignonioides Species 0.000 description 1
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 1
- 108090000322 Cholinesterases Proteins 0.000 description 1
- 102000003914 Cholinesterases Human genes 0.000 description 1
- 208000030939 Chronic inflammatory demyelinating polyneuropathy Diseases 0.000 description 1
- 208000006344 Churg-Strauss Syndrome Diseases 0.000 description 1
- 241001149956 Cladosporium herbarum Species 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010026206 Conalbumin Proteins 0.000 description 1
- 108010074311 Corticotropin Receptors Proteins 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 101710190853 Cruciferin Proteins 0.000 description 1
- 101710151161 Cysteine proteinase inhibitor 1 Proteins 0.000 description 1
- 102100026278 Cysteine sulfinic acid decarboxylase Human genes 0.000 description 1
- 108010025905 Cystine-Knot Miniproteins Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 108090000323 DNA Topoisomerases Proteins 0.000 description 1
- 102000003915 DNA Topoisomerases Human genes 0.000 description 1
- 206010011968 Decreased immune responsiveness Diseases 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 241000238710 Dermatophagoides Species 0.000 description 1
- 108010055622 Dermatophagoides farinae antigen f 1 Proteins 0.000 description 1
- 241000238740 Dermatophagoides pteronyssinus Species 0.000 description 1
- 108010061629 Dermatophagoides pteronyssinus antigen p 1 Proteins 0.000 description 1
- 108700022150 Designed Ankyrin Repeat Proteins Proteins 0.000 description 1
- 102000006375 Desmocollins Human genes 0.000 description 1
- 108010019063 Desmocollins Proteins 0.000 description 1
- 108010045579 Desmoglein 1 Proteins 0.000 description 1
- 102000007577 Desmoglein 3 Human genes 0.000 description 1
- 108010032035 Desmoglein 3 Proteins 0.000 description 1
- 102100034579 Desmoglein-1 Human genes 0.000 description 1
- 102100034573 Desmoglein-4 Human genes 0.000 description 1
- 101710183213 Desmoglein-4 Proteins 0.000 description 1
- 102000029792 Desmoplakin Human genes 0.000 description 1
- 108091000074 Desmoplakin Proteins 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 101000692709 Drosophila melanogaster Pre-intermoult gene 1 protein Proteins 0.000 description 1
- 206010013700 Drug hypersensitivity Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000018428 Eosinophilic granulomatosis with polyangiitis Diseases 0.000 description 1
- 108010074604 Epoetin Alfa Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 206010015226 Erythema nodosum Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000238741 Euroglyphus maynei Species 0.000 description 1
- 102000008175 FSH Receptors Human genes 0.000 description 1
- 108010060374 FSH Receptors Proteins 0.000 description 1
- 108010039471 Fas Ligand Protein Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 102100031509 Fibrillin-1 Human genes 0.000 description 1
- 108010030229 Fibrillin-1 Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010073324 Glutaminase Proteins 0.000 description 1
- 102000009127 Glutaminase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 208000003084 Graves Ophthalmopathy Diseases 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 108010055039 HSP47 Heat-Shock Proteins Proteins 0.000 description 1
- 102000001214 HSP47 Heat-Shock Proteins Human genes 0.000 description 1
- 108010014095 Histidine decarboxylase Proteins 0.000 description 1
- 102100037095 Histidine decarboxylase Human genes 0.000 description 1
- 102100039869 Histone H2B type F-S Human genes 0.000 description 1
- 101000928294 Homo sapiens Annexin A9 Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 1
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101000972485 Homo sapiens Lupus La protein Proteins 0.000 description 1
- 101000612994 Homo sapiens Tetraspanin-4 Proteins 0.000 description 1
- 101000664703 Homo sapiens Transcription factor SOX-10 Proteins 0.000 description 1
- 208000000038 Hypoparathyroidism Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 208000021330 IgG4-related disease Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 208000031781 Immunoglobulin G4 related sclerosing disease Diseases 0.000 description 1
- 208000004187 Immunoglobulin G4-Related Disease Diseases 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 description 1
- 101710184277 Insulin-like growth factor 1 receptor Proteins 0.000 description 1
- 108010005714 Interferon beta-1b Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 102100039064 Interleukin-3 Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 101710090204 Kiwellin Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- 102100033467 L-selectin Human genes 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 102000004407 Lactalbumin Human genes 0.000 description 1
- 108090000942 Lactalbumin Proteins 0.000 description 1
- 201000010743 Lambert-Eaton myasthenic syndrome Diseases 0.000 description 1
- 108010062867 Lenograstim Proteins 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010015372 Low Density Lipoprotein Receptor-Related Protein-2 Proteins 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 102100021922 Low-density lipoprotein receptor-related protein 2 Human genes 0.000 description 1
- 102100022742 Lupus La protein Human genes 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 1
- 108010016113 Matrix Metalloproteinase 1 Proteins 0.000 description 1
- 108010016160 Matrix Metalloproteinase 3 Proteins 0.000 description 1
- 101710130208 Melanocyte protein PMEL Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 102000018656 Mitogen Receptors Human genes 0.000 description 1
- 108010052006 Mitogen Receptors Proteins 0.000 description 1
- 208000012192 Mucous membrane pemphigoid Diseases 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 101100096242 Mus musculus Sox9 gene Proteins 0.000 description 1
- 235000003805 Musa ABB Group Nutrition 0.000 description 1
- 102000014415 Muscarinic acetylcholine receptor Human genes 0.000 description 1
- 108050003473 Muscarinic acetylcholine receptor Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 125000003047 N-acetyl group Chemical group 0.000 description 1
- 102000019040 Nuclear Antigens Human genes 0.000 description 1
- 108010051791 Nuclear Antigens Proteins 0.000 description 1
- 108010047956 Nucleosomes Proteins 0.000 description 1
- 108010075205 OVA-8 Proteins 0.000 description 1
- 206010029888 Obliterative bronchiolitis Diseases 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 208000003435 Optic Neuritis Diseases 0.000 description 1
- 102000004264 Osteopontin Human genes 0.000 description 1
- 108010081689 Osteopontin Proteins 0.000 description 1
- 108010064983 Ovomucin Proteins 0.000 description 1
- 235000016499 Oxalis corniculata Nutrition 0.000 description 1
- 101150053185 P450 gene Proteins 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 208000008267 Peanut Hypersensitivity Diseases 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 108010069013 Phenylalanine Hydroxylase Proteins 0.000 description 1
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 description 1
- 241000746983 Phleum pratense Species 0.000 description 1
- 208000000766 Pityriasis Lichenoides Diseases 0.000 description 1
- 206010048895 Pityriasis lichenoides et varioliformis acuta Diseases 0.000 description 1
- 235000015266 Plantago major Nutrition 0.000 description 1
- 235000006485 Platanus occidentalis Nutrition 0.000 description 1
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 1
- 102100030477 Plectin Human genes 0.000 description 1
- 108010054050 Plectin Proteins 0.000 description 1
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 1
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 1
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 208000004347 Postpericardiotomy Syndrome Diseases 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 238000011878 Proof-of-mechanism Methods 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 239000012987 RAFT agent Substances 0.000 description 1
- 102000017143 RNA Polymerase I Human genes 0.000 description 1
- 108010013845 RNA Polymerase I Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 101710137010 Retinol-binding protein 3 Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000007001 Rumex acetosella Species 0.000 description 1
- 235000015761 Rumex acetosella Nutrition 0.000 description 1
- 235000015422 Rumex crispus ssp. crispus Nutrition 0.000 description 1
- 235000015426 Rumex crispus ssp. fauriei Nutrition 0.000 description 1
- 244000207667 Rumex vesicarius Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 244000197975 Solidago virgaurea Species 0.000 description 1
- 235000000914 Solidago virgaurea Nutrition 0.000 description 1
- 102000001854 Steroid 17-alpha-Hydroxylase Human genes 0.000 description 1
- 108010015330 Steroid 17-alpha-Hydroxylase Proteins 0.000 description 1
- 102000014169 Steroid 21-Hydroxylase Human genes 0.000 description 1
- 108010011732 Steroid 21-Hydroxylase Proteins 0.000 description 1
- 102100030416 Stromelysin-1 Human genes 0.000 description 1
- 102000003673 Symporters Human genes 0.000 description 1
- 108090000088 Symporters Proteins 0.000 description 1
- 102100040871 Tetraspanin-4 Human genes 0.000 description 1
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical group C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 1
- 101710203193 Thaumatin-like protein Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- 101710183280 Topoisomerase Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102100038808 Transcription factor SOX-10 Human genes 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 241000223229 Trichophyton rubrum Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102000005506 Tryptophan Hydroxylase Human genes 0.000 description 1
- 108010031944 Tryptophan Hydroxylase Proteins 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 206010054094 Tumour necrosis Diseases 0.000 description 1
- 241000611866 Tyrophagus putrescentiae Species 0.000 description 1
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 1
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 1
- 108091026838 U1 spliceosomal RNA Proteins 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 241001106462 Ulmus Species 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 102100035071 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 108090000350 actinidain Proteins 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- GZCGUPFRVQAUEE-UHFFFAOYSA-N alpha-D-galactose Natural products OCC(O)C(O)C(O)C(O)C=O GZCGUPFRVQAUEE-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-UHFFFAOYSA-N alpha-D-glucopyranose Natural products OCC1OC(O)C(O)C(O)C1O WQZGKKKJIJFFOK-UHFFFAOYSA-N 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000003432 anti-folate effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 229940124691 antibody therapeutics Drugs 0.000 description 1
- 229940127074 antifolate Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 229940030225 antihemorrhagics Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000004019 antithrombin Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000010936 aqueous wash Methods 0.000 description 1
- 229940115115 aranesp Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 229940089003 atryn Drugs 0.000 description 1
- 208000006424 autoimmune oophoritis Diseases 0.000 description 1
- 201000009780 autoimmune polyendocrine syndrome type 2 Diseases 0.000 description 1
- 229940031422 benefix Drugs 0.000 description 1
- 229940075791 berinert Drugs 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- MSWZFWKMSRAUBD-QZABAPFNSA-N beta-D-glucosamine Chemical compound N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-QZABAPFNSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229940126587 biotherapeutics Drugs 0.000 description 1
- KQNZDYYTLMIZCT-KQPMLPITSA-N brefeldin A Chemical compound O[C@@H]1\C=C\C(=O)O[C@@H](C)CCC\C=C\[C@@H]2C[C@H](O)C[C@H]21 KQNZDYYTLMIZCT-KQPMLPITSA-N 0.000 description 1
- JUMGSHROWPPKFX-UHFFFAOYSA-N brefeldin-A Natural products CC1CCCC=CC2(C)CC(O)CC2(C)C(O)C=CC(=O)O1 JUMGSHROWPPKFX-UHFFFAOYSA-N 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 201000003848 bronchiolitis obliterans Diseases 0.000 description 1
- 208000023367 bronchiolitis obliterans with obstructive pulmonary disease Diseases 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229940048961 cholinesterase Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 201000005795 chronic inflammatory demyelinating polyneuritis Diseases 0.000 description 1
- 201000010002 cicatricial pemphigoid Diseases 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 229940105774 coagulation factor ix Drugs 0.000 description 1
- 229940105778 coagulation factor viii Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 229960005463 corifollitropin alfa Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960005029 darbepoetin alfa Drugs 0.000 description 1
- 230000006240 deamidation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000001904 diabetogenic effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000006334 disulfide bridging Effects 0.000 description 1
- 125000005414 dithiopyridyl group Chemical group 0.000 description 1
- 108010051081 dopachrome isomerase Proteins 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229960003388 epoetin alfa Drugs 0.000 description 1
- 108010002601 epoetin beta Proteins 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 229940014516 fabrazyme Drugs 0.000 description 1
- 102000005525 fibrillarin Human genes 0.000 description 1
- 108020002231 fibrillarin Proteins 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 108010006620 fodrin Proteins 0.000 description 1
- 239000004052 folic acid antagonist Substances 0.000 description 1
- 229940001300 follistim Drugs 0.000 description 1
- 108010006578 follitropin alfa Proteins 0.000 description 1
- 229960005210 follitropin alfa Drugs 0.000 description 1
- 229960002907 follitropin beta Drugs 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 102000054078 gamma Catenin Human genes 0.000 description 1
- 108010084448 gamma Catenin Proteins 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 210000000585 glomerular basement membrane Anatomy 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002309 glutamines Chemical class 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- 102000028718 growth factor binding proteins Human genes 0.000 description 1
- 108091009353 growth factor binding proteins Proteins 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 210000004124 hock Anatomy 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003345 hyperglycaemic effect Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008102 immune modulation Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 108091009323 immunoglobulin binding proteins Proteins 0.000 description 1
- 102000028557 immunoglobulin binding proteins Human genes 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000004026 insulin derivative Substances 0.000 description 1
- 229950000038 interferon alfa Drugs 0.000 description 1
- 108010045648 interferon omega 1 Proteins 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 229940076264 interleukin-3 Drugs 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229940029329 intrinsic factor Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 108010028309 kalinin Proteins 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229960002618 lenograstim Drugs 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 229940087875 leukine Drugs 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 108010052522 livetin Proteins 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- IBIKHMZPHNKTHM-RDTXWAMCSA-N merck compound 25 Chemical compound C1C[C@@H](C(O)=O)[C@H](O)CN1C(C1=C(F)C=CC=C11)=NN1C(=O)C1=C(Cl)C=CC=C1C1CC1 IBIKHMZPHNKTHM-RDTXWAMCSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229950003483 moroctocog alfa Drugs 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- XNSAINXGIQZQOO-UHFFFAOYSA-N n-[1-(2-carbamoylpyrrolidin-1-yl)-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]-5-oxopyrrolidine-2-carboxamide Chemical compound NC(=O)C1CCCN1C(=O)C(NC(=O)C1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960003163 nonacog alfa Drugs 0.000 description 1
- 230000001019 normoglycemic effect Effects 0.000 description 1
- 229940112216 novoseven Drugs 0.000 description 1
- 210000001623 nucleosome Anatomy 0.000 description 1
- 201000005737 orchitis Diseases 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000000065 osmolyte Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 102000035123 post-translationally modified proteins Human genes 0.000 description 1
- 108091005626 post-translationally modified proteins Proteins 0.000 description 1
- AFNBMGLGYSGFEZ-UHFFFAOYSA-M potassium;ethanethioate Chemical compound [K+].CC([S-])=O AFNBMGLGYSGFEZ-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 201000000742 primary sclerosing cholangitis Diseases 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 150000003214 pyranose derivatives Chemical class 0.000 description 1
- QFYXSLAAXZTRLG-UHFFFAOYSA-N pyrrolidine-2,3-dione Chemical compound O=C1CCNC1=O QFYXSLAAXZTRLG-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 108010013773 recombinant FVIIa Proteins 0.000 description 1
- 108010025139 recombinant factor VIII SQ Proteins 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 108010073863 saruplase Proteins 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical class O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 208000010157 sclerosing cholangitis Diseases 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 235000003513 sheep sorrel Nutrition 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 230000009450 sialylation Effects 0.000 description 1
- 238000003998 size exclusion chromatography high performance liquid chromatography Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- ZIQRIAYNHAKDDU-UHFFFAOYSA-N sodium;hydroiodide Chemical compound [Na].I ZIQRIAYNHAKDDU-UHFFFAOYSA-N 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 108010058198 sulfoalanine decarboxylase Proteins 0.000 description 1
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009044 synergistic interaction Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 108040006218 thyroid-stimulating hormone receptor activity proteins Proteins 0.000 description 1
- 229960000902 thyrotropin alfa Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229940099456 transforming growth factor beta 1 Drugs 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- SZHOJFHSIKHZHA-UHFFFAOYSA-N tridecanoic acid Chemical compound CCCCCCCCCCCCC(O)=O SZHOJFHSIKHZHA-UHFFFAOYSA-N 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- UPCXAARSWVHVLY-UHFFFAOYSA-N tris(2-hydroxyethyl)azanium;acetate Chemical compound CC(O)=O.OCCN(CCO)CCO UPCXAARSWVHVLY-UHFFFAOYSA-N 0.000 description 1
- 108010014402 tyrosinase-related protein-1 Proteins 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 108010055450 with HCG C-terminal peptide human follicle stimulating hormone Proteins 0.000 description 1
- 235000021241 α-lactalbumin Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/164—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2013—IL-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/36—Blood coagulation or fibrinolysis factors
- A61K38/37—Factors VIII
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/38—Albumins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0002—Fungal antigens, e.g. Trichophyton, Aspergillus, Candida
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0008—Antigens related to auto-immune diseases; Preparations to induce self-tolerance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/001—Preparations to induce tolerance to non-self, e.g. prior to transplantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/35—Allergens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/549—Sugars, nucleosides, nucleotides or nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
- C07K14/01—DNA viruses
- C07K14/065—Poxviridae, e.g. avipoxvirus
- C07K14/07—Vaccinia virus; Variola virus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
- C07K14/77—Ovalbumin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2839—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
- C07K16/2848—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta3-subunit-containing molecules, e.g. CD41, CD51, CD61
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/577—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 tolerising response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6087—Polysaccharides; Lipopolysaccharides [LPS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
Definitions
- compositions that are useful in the treatment of transplant rejection, autoimmune disease, allergy (e.g., food allergy), and immune response against a therapeutic agent.
- compositions for inducing immune tolerance in a subject and methods and uses of the compositions for achieving the same.
- immune tolerance is desired because a subject develops an unwanted immune response to an antigen.
- the antigen may be one or more of a variety of antigens, for example a foreign antigen such as a food antigen that is ingested, or an antigenic portion of a therapeutic drug given to a subject.
- the antigen may be a self-antigen that the subject's immune system fails to recognize (or only recognizes as self to a limited degree) and therefore mounts an immune response against, leading to autoimmune disorders.
- composition comprising a compound of Formula 1:
- left bracket “(” indicates a bond to X
- right “) indicates a bond to Z
- bottom “)” indicates a bond to Z
- present n is an integer from about 1 to about 80
- present q is an integer from about 1 to about 4
- present p is an integer from about 1 to about 90
- present R 8 is —CH 2 — or —CH 2 —CH 2 —C(CH 3 )(CN)—
- Z comprises one or more liver-targeting moieties that specifically target liver cells expressing asialoglycoprotein receptors.
- m is 1 to 4
- Y is of a linker moiety having a formula of:
- Z comprises a liver-targeting moiety comprising one or more of galactose, galactosamine, or N-acetyl galactosamine.
- n is resolved to an integer from 1 to 4
- Y is of a linker moiety having a formula of:
- Z comprises a liver-targeting moiety comprising one or more of glucose, glucosamine, or N-acetyl glucosamine.
- compositions of Formula 1 (X Y—Z] m ), where m is an integer from about 1 to 100, X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof or X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy, Y comprises a linker moiety, and Z comprises a liver-targeting moiety.
- Z comprises galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine.
- Y is selected from N-hydroxysuccinamidyl linkers, malaemide linkers, vinylsulfone linkers, pyridyl di-thiol-poly(ethylene glycol) linkers, pyridyl di-thiol linkers, n-nitrophenyl carbonate linkers, NHS-ester linkers, and nitrophenoxy poly(ethylene glycol)ester linkers.
- Y comprises an antibody, antibody fragment, peptide or other ligand that specifically binds X, a disulfanyl ethyl ester, a structure represented by one of Formulae Ya to Yp:
- the left bracket “(” indicates the bond between X and Y
- the right or bottom bracket and “)” indicates the bond between Y and Z
- n is an integer from about 1 to 100
- q is an integer from about 1 to 44
- R 8 is —CH 2 — or —CH 2 —CH 2 —C(CH 3 )(CN)—
- Y′ represents the remaining portion of Y
- W represents a polymer of the same W 1 group, or W is a copolymer or a random copolymer of the same or different W 1 and W 2 groups, where:
- R 9 is a direct bond, —CH 2 —CH 2 —NH—C(O)— or —CH 2 —CH 2 —(O—CH 2 —CH 2 ) t —NH—C(O)—, t is an integer from 1 to 5; and R 10 is an aliphatic group, an alcohol or an aliphatic alcohol.
- Y is represented by Formula Ym, wherein R 8 is —CH 2 —CH 2 —C(CH 3 )(CN)—, and W is represented by a block copolymer of W 1 and W 2 where R 9 is —CH 2 —CH 2 —(O—CH 2 —CH 2 ) t —NH—C(O)—, t is 1, and R 10 is 2-hydroxypropyl; and Z comprises a liver-targeting moiety comprising one or more of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, N-acetylglucosamine. In several embodiments, Z is the ⁇ -anomer of the corresponding sugar.
- compositions for inducing tolerance to an antigen to which a subject develops an unwanted immune response, the compositions comprising a compound of Formula 1 (Formula 1 (X Y—Z] m ), where m is an integer from about 1 to 10, X comprises an antigen to which patients develop an unwanted immune response, wherein the antigen is a food antigen, a therapeutic agent, a self-antigen, or a fragment of any of such antigens, Y is of a linker moiety having a formula selected from the group consisting of:
- n is an integer from about 1 to 100
- present p is an integer from about 2 to 150
- present q is an integer from about 1 to 44
- present R 8 is —CH 2 — or —CH 2 —CH 2 —C(CH 3 )(CN)—
- present R 9 is a direct bond or —CH 2 —CH 2 —NH—C(O)—
- Z comprises galactose, galactosamine, or N-acetylgalactosamine.
- m is 1 to 3
- Y is of a linker moiety having a formula of:
- Z comprises a liver-targeting moiety comprising one or more of galactose, galactosamine, or N-acetylgalactosamine.
- Z is the ⁇ -anomer of the selected moiety.
- X is a self-antigen and the unwanted immune response is an autoimmune response.
- X is myelin oligodendrocyte glycoprotein or myelin proteolipid protein.
- the unwanted immune response experienced by the subject is associated with multiple sclerosis.
- X is insulin, proinsulin, or preproinsulin and wherein the unwanted immune response is associated with diabetes mellitus. It shall be appreciated that being associated with multiple sclerosis, diabetes mellitus or other auto-immune disease need not necessarily require a formal diagnosis of such auto-immune condition, but rather can be associated with common symptoms or characteristics of a particular auto-immune disorder.
- an unwanted immune response can be raised against a therapeutic agent, such as a protein drug or drug derived from non-human and/or non-mammalian species.
- a therapeutic agent such as a protein drug or drug derived from non-human and/or non-mammalian species.
- X is a therapeutic agent, such as Factor VIII, Factor IX, or other hemostasis-inducing agent.
- the unwanted immune response is against the agent and the associated disease is hemophilia, which fails to improve (in the absence of the composition) because of the autoimmune response.
- the hemophilia can improve because the composition aids in inducing tolerance to the agent, reducing the response to agent, and allowing reduced symptoms of hemophilia.
- X is a therapeutic agent such as asparaginase and uricase.
- an unwanted immune response can result from administration of such agents, as they are derived from non-human sources.
- the ability of the compositions disclosed herein to induce tolerance to these agents allows these agents to continue to be used by a subject in need of therapy, while the side effects from an immune reaction are reduced, lessened, eliminated or otherwise ameliorated.
- X is a food antigen.
- Many food antigens are known to cause allergies upon ingestion, however, in several embodiments, X is selected from the group consisting of conarachin (Ara h 1), allergen II (Ara h 2), arachis agglutinin, conglutin (Ara h 6), a-lactalbumin (ALA), lactotransferrin, Pen a 1 allergen (Pen a 1), allergen Pen m 2 (Pen m 2), tropomyosin fast isoform, high molecular weight glutenin, low molecular weight glutenin, alpha-gliadin, gamma-gliadin, omega-gliadin, hordein, seclain, and avenin.
- treatment with the compositions disclosed herein where X is a food antigen allows the subject to have a significantly reduced immune response to the antigen, e.g., many peanut allergies are so severe that exposure to peanut dust or oil can cause anaphylaxis.
- treatment reduces and/or eliminates responses to such incidental exposure to the antigen.
- treatment allows the subject to ingest the food from which the antigen is derived with limited or no adverse immune response.
- administration of the composition to the subject results in a greater degree of proliferation of antigen-specific T cells as compared to proliferation of antigen-specific T cells resulting from administration of the antigen alone.
- the proliferation of antigen-specific T cells indicates that delivery of the antigen (via the composition) to the molecular processing machinery that processes antigens as self/non-self is enhanced versus administration of the antigen alone. In other words, in such embodiments the targeted delivery is effective.
- compositions disclosed herein results in a greater expression of exhaustion markers or markers of apoptosis on antigen-specific T cells as compared to expression of exhaustion markers or markers of apoptosis on antigen-specific T cells resulting from administration of the antigen alone. This result in indicative of specific reduction in activity of T cells directed against the antigen of interest and/or deletion of T cells directed against the antigen of interest.
- these molecular hallmarks of induction of tolerance are the precursor of the reduction or amelioration of immune response symptoms that the subject would have previously experienced when exposed to the antigen.
- Z comprises a liver-targeting moiety that is a carbohydrate.
- the carbohydrate is a short-chain carbohydrate.
- Z is a sugar.
- Z is galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine.
- the induction of immune tolerance is greater when a glucose, glucosamine, or N-acetylglucosamine is used for Z.
- enhancements in induction of immune tolerance can be achieved when the liver targeting moiety is a sugar and the sugar is in the ⁇ -anomer configuration.
- Z is galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine and conjugated at its C1, C2 or C6 to Y.
- compositions can be via a variety of methods, including, but not limited to intravenous, intramuscular, oral, transdermal, or other infusion route. Administration can be daily, weekly, multiple times per day, or on an as needed basis (e.g., prior to an anticipated exposure).
- compositions disclosed herein for the treatment of unwanted immune responses after exposure to an antigen.
- such use can be for prophylactic effects and/or for reducing symptoms from prior exposure to antigens (or prior adverse immune effects, such as those in the auto-immune setting).
- compositions according to Formula 1 for the treatment of unwanted side effects due to exposure to a therapeutic antigen, exposure to a food antigen, or an adverse effect from an immune response against a self-antigen.
- the compositions disclosed herein are suitable for administration to a subject in conjunction with such use, for example by oral, IV, IM, or other suitable route. Uses of the compositions disclosed herein, in several embodiments, unexpectedly result in the reduction, elimination or amelioration of adverse immune responses to antigens of interest.
- a pharmaceutically acceptable composition for inducing tolerance to a therapeutic protein in a subject having an deficiency in production of a functional analogous native protein comprising a compound of Formula 1 (X Y—Z] m ), where m is an integer from about 1 to 10, X comprises an antigenic protein or protein fragment, Y is of a linker moiety having a formula selected from the group consisting of Formula Ya, Formula Yc, Formula Ym, Formula Yn, wherein, the left bracket “(” indicates a bond to X, the right or bottom bracket and “)” indicates the bond between Y and Z, n is an integer from about 1 to 100, where present p is an integer from about 2 to 150, where present q is an integer from about 1 to 44, where present R 8 is —CH 2 — or —CH 2 —CH 2 —C(CH 3 )(CN)—, where present R 9 is a direct bond
- m is 1 to 3
- Y is of a linker moiety having a formula of:
- CH 2 —CH 2 —NH—C(O)—, and Z comprises a liver-targeting moiety comprising one or more of glucose, glucosamine, N-acetylglucosamine, galactose, galactosamine, or N-acetylgalactosamine.
- the galactose, galactosamine, or N-acetylgalactosamine are the ⁇ -anomers.
- combinations of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine are used.
- a pharmaceutically acceptable composition for inducing tolerance to a therapeutic protein in a subject having an deficiency in production of a functional analogous native protein comprising a compound of Formula 1 (X Y—Z] m ), where m is an integer from about 1 to 10, X comprises a antigenic protein or protein fragment, Y is of a linker moiety having a formula selected from the group consisting of Formula Ya, Formula Yc, Formula Ym, or Formula Ym, wherein the left bracket “(” indicates a bond to X, where present the right “)” indicates a bond to Z, where present the bottom “)” indicates a bond to Z, where present n is an integer from about 1 to about 80, where present q is an integer from about 1 to about 4, where present p is an integer from about 1 to about 90, where present R 8 is —CH 2 — or —CH 2 —CH 2 —C(CH 3 )(CN)—, and where present W represents a polymer of the Formula 1 (X Y—
- R 9 is a direct bond, —CH 2 —CH 2 —NH—C(O)— or —CH 2 —CH 2 —(O—CH 2 —CH 2 ) t —NH—C(O)—
- t is an integer from 1 to 5
- R 10 is an aliphatic group, an alcohol or an aliphatic alcohol
- Z comprises glucose, glucosamine, N-acetylglucosamine, galactose, galactosamine, or N-acetylgalactosamine.
- the galactose, galactosamine, or N-acetylgalactosamine are the ⁇ -anomers.
- combinations of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine are used.
- m is 1 to 3
- Y is represented by Formula Ym, wherein R 8 is —CH 2 —CH 2 —C(CH 3 )(CN)—
- W is represented by a block copolymer of W 1 and W 2 where R 9 is —CH 2 —CH 2 —(O—CH 2 —CH 2 ) t —NH—C(O)—, t is 1, and R 10 is 2-hydroxypropyl; and
- Z comprises a liver-targeting moiety comprising one or more of glucose, glucosamine, N-acetylglucosamine, galactose, galactosamine, or N-acetylgalactosamine.
- the galactose, galactosamine, or N-acetylgalactosamine are the ⁇ -anomers. In several embodiments, combinations of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine are used.
- X comprises an antigenic region of myelin basic protein, myelin oligodendrocyte glycoprotein, or myelin proteolipid protein. In additional embodiments, X comprises an antigenic region of Factor VIII, Factor IX, insulin, uricase, PAL, or asparaginase.
- X comprises a foreign antigen such as conarachin (Ara h 1), allergen II (Ara h 2), arachis agglutinin, conglutin (Ara h 6), a-lactalbumin (ALA), lactotransferrin, Pen a 1 allergen (Pen a 1), allergen Pen m 2 (Pen m 2), tropomyosin fast isoform, high molecular weight glutenin, low molecular weight glutenin, alpha-gliadin, gamma-gliadin, omega-gliadin, hordein, seclain, and avenin.
- a foreign antigen such as conarachin (Ara h 1), allergen II (Ara h 2), arachis agglutinin, conglutin (Ara h 6), a-lactalbumin (ALA), lactotransferrin, Pen a 1 allergen (Pen a 1), allergen Pen m 2 (Pen
- compositions comprising a compound of Formula 1 (X-[-Y—Z] m ), where m is an integer from about 1 to 100, X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof, or X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy, Y comprises a linker moiety, and Z comprises a liver-targeting moiety.
- X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof
- X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy
- Y
- Z galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine may also be used, in several embodiments. Further, in several embodiments, the galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine are optionally the ⁇ anomer. In several embodiments, Z is conjugated at its C1, C2 or C6 to Y.
- Y is selected from N-hydroxysuccinamidyl linkers, malaemide linkers, vinylsulfone linkers, pyridyl di-thiol-poly(ethylene glycol) linkers, pyridyl di-thiol linkers, n-nitrophenyl carbonate linkers, NHS-ester linkers, and nitrophenoxy poly(ethylene glycol)ester linkers.
- Y comprises an antibody, antibody fragment, peptide or other ligand that specifically binds X, a disulfanyl ethyl ester, a structure represented by one of Formulae Ya to Yp, or Y has a portion represented by Formula Y′-CMP:
- n is an integer from about 1 to 100
- q is an integer from about 1 to 44
- R 8 is —CH 2 — or —CH 2 —CH 2 —C(CH 3 )(CN)—
- Y′ represents the remaining portion of Y
- W represents a polymer of the same W 1 group, or W is a copolymer or a random copolymer of the same or different W 1 and W 2 groups, where:
- R 9 is a direct bond, —CH 2 —CH 2 —NH—C(O)— or —CH 2 —CH 2 —(O—CH 2 —CH 2 ) t —NH—C(O)—, t is an integer from 1 to 5; and R 10 is an aliphatic group, an alcohol or an aliphatic alcohol.
- n is about 40 to 80, p is about 10 to 100, q is about 3 to 20, R 8 is —CH 2 —CH 2 —C(CH 3 )(CN)—, when R9 is —CH 2 —CH 2 —NH—C(O)—, Z is glucose, galactose, N-acetylgalactosamine or N-acetylglucosamine conjugated at its C1, and when W is a copolymer, R10 is 2-hydroxypropyl.
- Y comprises Formula Ya, Formula Yb, Formula Yc, Formula Yf, Formula Yg, Formula Yh, Formula Yi, Formula Yk, Formula Ym or Formula Yn.
- Y comprises Formula Ya, Formula Yb, Formula Yc, Formula Ym or Formula Yn.
- Y comprises Formula Ya, Formula Yb, Formula Yc, Formula Ym or Formula Yn.
- X comprises a foreign transplant antigen against which transplant recipients develop an unwanted immune response, a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune response, a foreign therapeutic agent against which patients develop an unwanted immune response, or a synthetic self-antigen against the endogenous version of which patients develop an unwanted immune response, or a tolerogenic portion thereof.
- a foreign transplant antigen against which transplant recipients develop an unwanted immune response a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune response, a foreign therapeutic agent against which patients develop an unwanted immune response, or a synthetic self-antigen against the endogenous version of which patients develop an unwanted immune response, or a tolerogenic portion thereof.
- Also provided for herein is are methods of treatment for an unwanted immune response against an antigen by administering to a mammal in need of such treatment an effective amount of a composition comprising a compound of Formula 1 (X—[—Y—Z] m ), where m is an integer from about 1 to 100, X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof or X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy, Y comprises a linker moiety, and Z comprises a glucosylated liver-targeting moiety.
- X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof
- X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody,
- X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof
- Y comprises, an antibody, antibody fragment, peptide or other ligand that specifically binds X, a disulfanyl ethyl ester, a structure represented by one of Formulae Ya to Yp or Y has a portion represented by Formula Y′-CMP where, the left bracket “(” indicates the bond between X and Y, the right or bottom bracket and “)” indicates the bond between Y and Z, n is an integer from about 1 to 100, q is an integer from about 1 to 44, R 8 is —CH 2 — or —CH 2 —CH 2 —C(CH 3 )(CN)—, Y′ represents the remaining portion of Y, and W represents a polymer of the same W 1 group, or W is a copolymer or a random copolymer of the same or different W 1 and W 2 groups, where:
- X comprises the antibody, antibody fragment or ligand, and the composition is administered for clearance of a circulating protein or peptide or antibody that specifically binds to X, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy.
- X comprises the antibody, antibody fragment or ligand, and the composition is administered in an amount effective to reduce a concentration of the antibodies that are causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy in blood of the patient by at least 50% w/w, as measured at a time between about 12 to about 48 hours after the administration.
- compositions are administered for tolerization of the patient with respect to antigen moiety X.
- X comprises a foreign transplant antigen against which transplant recipients develop an unwanted immune response, a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune response, a foreign therapeutic agent against which patients develop an unwanted immune response, or a synthetic self-antigen against the endogenous version of which patients develop an unwanted immune response, or a tolerogenic portion thereof.
- compositions comprising a compound of Formula 1:
- Z can also comprise galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine, for example, conjugated at its C1, C2 or C6 to Y.
- N-acetylglucosamine and glucose bind to different lectin receptors as do N-acetylgalactosamine and galactose.
- the experimental data indicate that the selection of Z as N-acetylglucosamine leads to elevated levels of regulatory T cell responses compared to those achieved with N-acetylgalactosamine. In several embodiments, this results in unexpectedly enhanced induction of immune tolerance and/or clearance of antigens from the blood of a subject.
- Y can be selected from N-hydroxysuccinamidyl linkers, malaemide linkers, vinylsulfone linkers, pyridyl di-thiol-poly(ethylene glycol) linkers, pyridyl di-thiol linkers, n-nitrophenyl carbonate linkers, NHS-ester linkers, and nitrophenoxy poly(ethylene glycol)ester linkers.
- Y can also comprise: an antibody, antibody fragment, peptide or other ligand that specifically binds X; a disulfanyl ethyl ester; a structure represented by one of Formulae Ya to Yp:
- linkers according to Ym yield unexpectedly effective tolerance endpoints.
- linkers according to formula Yn yield unexpectedly effective tolerance endpoints.
- formulations of F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 achieve particularly effective tolerance-associated endpoints.
- combinations of these linkers lead to synergistic results and still further unexpected increases in immune tolerance induction.
- n is about 40 to 80
- p is about 10 to 100
- q is about 3 to 20
- R 8 is —CH 2 —CH 2 —C(CH 3 )(CN)—
- R 9 is —CH 2 —CH 2 —NH—C(O)—
- Z is galactose or N-acetylgalactosamine conjugated at its C1.
- Y comprises Formula Ya, Formula Yb, Formula Yh, Formula Yi, Formula Yk, Formula Ym or Formula Yn, particularly Formula Ya, Formula Yb, Formula Ym or Formula Yn.
- X can further comprise: a foreign transplant antigen against which transplant recipients develop an unwanted immune response; a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune response; a foreign therapeutic agent against which patients develop an unwanted immune response; or a synthetic self-antigen against the endogenous version of which patients develop an unwanted immune response, or a tolerogenic portion thereof.
- the disclosure also pertains to a method of treatment for an unwanted immune response against an antigen by administering to a mammal in need of such treatment an effective amount of a composition comprising a compound of Formula 1 as disclosed herein.
- the composition can be administered for clearance of a circulating protein or peptide or antibody that specifically binds to antigen moiety X, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy.
- the composition can be administered in an amount effective to reduce a concentration of the antibodies that are causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy in blood of the patient by at least 50% w/w, as measured at a time between about 12 to about 48 hours after the administration.
- the composition can administered for tolerization of a patient with respect to antigen moiety X.
- FIGS. 1 A- 1 D are a series of graphs showing differential cellular uptake of galactose conjugates.
- FIG. 1 A depicts that F1aA-PE-m 4 -n 80 (Gal-PE) preferentially targets PE to sinusoidal endothelial cells (LSECs) of the liver.
- FIG. 1 B depicts that F1aA-PE-m 4 -n 80 (Gal-PE) preferentially targets PE to Kupffer cells (KC) of the liver.
- FIG. 1 C depicts that F1aA-PE-m 4 -n 80 (Gal-PE) preferentially targets PE to hepatocytes.
- FIG. 1 D depicts that F1aA-PE-m 4 -n 80 (Gal-PE) preferentially targets PE to other antigen presenting cells (APCs) of the liver.
- * P ⁇ 0.05.
- FIG. 2 is a graph showing proliferation of OT-I CD8+ T cells in mice treated with F1aA-OVA-m 4 -n 80 (Gal-OVA), OVA or saline (i.e. na ⁇ ve), with greatest proliferation seen in the Gal-OVA treated group.
- FIGS. 3 A- 3 B are a series of graphs depicting data related to marker expression on T cells.
- FIG. 3 A shows the percentage of OT-I CD8 + T cells expressing PD-1 (“PD1+”) in generations of proliferating T cells treated with saline, OVA or F1aA-OVA-m 4 -n 80 (GAL-OVA), with greatest level of PD-1 in the gal-OVA-treated group.
- PD1+ OT-I CD8 + T cells expressing PD-1
- GAL-OVA F1aA-OVA-m 4 -n 80
- FIG. 3 B shows the percentage of OT-I CD8 + T cells expressing phosphatidylserine (stained as “Annexin V+”) in generations of proliferating T cells treated with saline, OVA or F1aA-OVA-m 4 -n 80 (GAL-OVA), with greatest level of Annexin-V+ cells in the gal-OVA-treated group.
- FIG. 4 is a graph showing that galactose conjugation [F1aA-OVA-m 4 -n 80 (Gal-OVA)] decreases the immunogenicity of OVA as determined by OVA-specific antibody titers (shown in Ab titers log ⁇ 1 ).
- FIG. 5 shows that administration of F1aA-OVA-m 4 -n 80 (Gal-OVA) in repeated doses over time is able to deplete OVA-specific antibodies from the serum of mice.
- FIGS. 6 A- 6 F depict data related to the mitigation of the OVA-specific immune response.
- FIG. 6 A shows the immune response in mice challenged with OVA and LPS.
- FIG. 6 B shows the immune response in mice treated with OVA, while
- FIG. 6 C shows the immune response in na ⁇ ve mice.
- FIGS. 6 D and 6 E show that F1aA-OVA-m 4 -n 80 (mGal-OVA; 6 D) and F1b-OVA-m 1 -n 44 -p 34 (pGal-OVA; 6 E) are able to mitigate the OVA-specific immune response in draining lymph nodes after intradermal challenge with OVA and the adjuvant LPS.
- FIG. 6 F is from a parent application and does not form a part of the present disclosure.
- FIGS. 7 A- 7 B shows the characterization of F1aA-OVA-m 4 -n 80 and F1b-OVA-m 1 -n 44 -p 34 .
- FIG. 7 A shows size-exclusion HPLC traces of F1aA-OVA-m 4 -n 80 (open triangles), F1b-OVA-m 1 -n 44 -p 34 (filled circles) and unconjugated OVA (solid line). Shift to the left represents an increase in molecular weight.
- FIG. 7 A shows size-exclusion HPLC traces of F1aA-OVA-m 4 -n 80 (open triangles), F1b-OVA-m 1 -n 44 -p 34 (filled circles) and unconjugated OVA (solid line). Shift to the left represents an increase in molecular weight.
- FIG. 7 A shows size-exclusion HPLC traces of F1aA-OVA-m 4 -n 80 (open triangles), F1b-OVA
- FIGS. 8 A- 8 B depict data related to the reduction in antigen-specific immune response after administration of F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 [labeled OVA-p(Glu-HPMA) and shown as filled circles] or F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 [labeled OVA-p(Gal-HPMA) and shown as filled diamonds].
- FIG. 8 A- 8 B depict data related to the reduction in antigen-specific immune response after administration of F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 [labele
- FIG. 8 A depicts flow cytometric detection of OTI CD8+ T-cell populations (CD3e + /CD8 ⁇ + /CD45.2 + ) quantified from the draining lymph nodes (inguinal and popliteal) 4 days following antigen challenge in CD45.1 + mice.
- Significant reductions in OT-I CD8+ T-cells were detected following administration of OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA).
- FIG. 8 B depicts flow cytometric detection of OT-II CD4+ T-cell populations (CD3e + /CD4 + /CD45.2 + ) quantified from the draining lymph nodes (inguinal and popliteal) 4 d following antigen challenge in CD45.1 + mice.
- FIGS. 9 A- 9 B depict data related to the increase in antigen-specific regulatory T-cells in the lymph nodes and spleen of mice after antigen challenge.
- FIG. 9 A depicts flow cytometric detection of an F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 [labeled OVA-p(Glu-HPMA) and shown as filled circles] and F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 [labeled OVA-p(Gal-HPMA) and shown as filled diamonds]-induced increase in OTII T-regulator cells (CD3e+CD4+ CD45.2+ CD25+ FoxP3+) collected from the lymph nodes 4 d following antigen challenge in CD4
- FIG. 10 depicts flow cytometry data related to a decrease in the percentage of antigen-specific effector cells (IFN ⁇ + OTI CD8+ T-cells (CD3e+CD8 ⁇ + CD45.2+ IFN ⁇ +) 4 d following antigen challenge in CD45.1+ mice.
- IFN ⁇ + OTI CD8+ T-cells CD3e+CD8 ⁇ + CD45.2+ IFN ⁇ +
- FIGS. 11 A- 11 B depict data related to T cell deletion and regulation in an OTII adoptive transfer model, in which OTII cells (CD4 + T cells from a CD45.2 + mouse) are adoptively transferred into a CD45.1 + recipient, which is treated with F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 [“OVA-p(Gal-HPMA)”] or F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 [“OVA-p(Glu-HPMA)”], or OVA not linked to a polymer [“OVA”] to induce T regulatory responses and prevent subsequent responses to vaccine-mediated antigen challenge.
- OTII cells CD4 + T cells from a CD45.2 + mouse
- pGal-OVA and pGlu-OVA were each administered in other groups at the same dosings of 2.5 ⁇ g at day 1, 2.5 ⁇ g at day 4, and 16 ⁇ g at day 7 or 7 ⁇ g at day 1, 7 ⁇ g at day 4, and 7 ⁇ g at day 7, all doses being on an OVA equivalent dose basis.
- saline was administered on the same days.
- the recipient mice were then challenged with OVA (10 ⁇ g) adjuvanted with lipopolysaccharide (50 ng) by intradermal injection. Characterization of the draining lymph nodes was done on day 19, to allow determination as to whether or not deletion actually took place and whether regulatory T cells were induced from the adoptively transferred cells.
- FIG. 11 A shows the number of OTII cells present after challenge
- FIG. 11 B shows the frequency of FoxP3 + CD25 + cells (markers of T regulatory cells). * and # indicate p ⁇ 0.05, ** and ## indicate p ⁇ 0.01, and ### indicates P ⁇ 0.001.
- FIGS. 12 A- 12 B depicts data related to T cell deletion and regulation in an OTI adoptive transfer model, in which OTI cells (CD8 + T cells from a CD45.2 + mouse) are adoptively transferred into a CD45.1 + recipient, which is treated with F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 [“OVA-p(Gal-HPMA)”] or F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 [“OVA-p(Glu-HPMA)”], or OVA not linked to a polymer [“OVA”] to induce T regulatory responses and prevent subsequent responses to vaccine-mediated antigen challenge.
- OTI cells CD8 + T cells from a CD45.2 + mouse
- pGal-OVA and pGlu-OVA were each administered in other groups at the same dosings of 2.5 ⁇ g at day 1, 2.5 ⁇ g at day 4, and 16 ⁇ g at day 7 or 7 ⁇ g at day 1, 7 ⁇ g at day 4, and 7 ⁇ g at day 7, all doses being on an OVA equivalent dose basis.
- saline was administered on the same days.
- the recipient mice were then challenged with OVA (10 ⁇ g) adjuvanted with lipopolysaccharide (50 ng) by intradermal injection.
- FIG. 12 A shows the number of OTI cells present after challenge
- FIG. 12 B shows the frequency of IFN ⁇ -expressing cells (lack thereof indicating anergy). * and # indicate p ⁇ 0.05, ** and ## indicate p ⁇ 0.01).
- FIG. 13 depicts data related to blood glucose levels. Mice were treated with F1m′-P31-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 [labeled P31-p(Glu-HPMA)], F1m′-P31-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 [labeled P31-p(Gal-HPMA) conjugates (or saline).
- FIG. 14 depicts data related to the generation of spontaneous diabetes in non-obese diabetic (NOD) mice.
- Mice treated with F1c′-Insulin-B-m 1 -n 4 -p 90 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 are shown as filled squares.
- Mice treated with F1c′-Insulin-B-m 1 -n 4 -p 90 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 are shown as filled triangles.
- Mice treated with saline are shown as filled diamonds.
- Treating animals with the compounds of Formula 1 reduced the incidences of diabetes onset in NOD mice as compared to animals treated with saline.
- FIGS. 15 A- 15 B depicts data related to biodistribution of the model antigen OVA tethered to the synthetic glycopolymers, showing uptake in the liver while limiting uptake in the spleen.
- A Fluorescent signal of perfused livers taken from animals treated with OVA (1) or OVA conjugated to various glycopolymers (2-5).
- B Fluorescent images of spleens taken from animals treated with OVA (1) or OVA conjugated to various glycopolymers (2-5).
- Formulations are as follows: 1. OVA, 2. OVA-p(Gal ⁇ -HPMA), 3. OVA-p(Gal-HPMA), 4. OVA-p(Glu ⁇ -HPMA), 5. OVA-p(Glu-HPMA).
- FIGS. 16 A- 16 F depict data related to experiments comparing linker moieties.
- OVA-p(Gal-HPMA), OVA-p(Glu-HPMA), OVA-p(Gal ⁇ -HPMA), and OVA-p(Glu ⁇ -HPMA) conjugates were synthesized and tested for their ability to induce antigen-specific T cell anergy and eliminate the T cell population responsible for long term memory.
- FIG. 16 A shows a schematic of the treatment regimen for 7-day experiment.
- FIG. 16 B depicts the percentage of proliferating OTI splenic T cells as assayed by CSFE dilution.
- FIG. 16 C depicts the percentage of Annexin V+ OTI T cells in the spleens of animals treated with OVA-glycopolymer conjugates or free OVA.
- FIG. 16 D depicts the percentage of PD-1+ splenic OTI cells.
- FIG. 16 E depicts the percentage of T memory cells in the OTI population, where T memory cells was defined as CD62L+ and CD44+.
- FIG. 16 F depicts the percentage of OTI cells expressing CD127.
- ASGPRs asialoglycoprotein receptors
- LSECs liver sinusoidal endothelial cells
- Other galactose/galactosamine/N-acetylgalactosamine receptors can be found in various forms on multiple cell types [e.g., dendritic cells, hepatocytes, LSECs, and Kupffer cells].
- Dendritic cells are considered “professional antigen presenting cells,” because their primary function is to present antigens to the immune system for generating immune responses. Some cells within the liver are known to be able to present antigens, but the liver is more known to be involved in tolerogenesis. The liver is understood to be a tolerogenic organ.
- glycosylation i.e., the presence of significant numbers of glycosylated proteins.
- glycophorins e.g., glycophorin A
- Glycophorins are proteins with many covalently attached sugar chains, the terminus of which is sialic acid. As an erythrocyte ages and becomes ripe for clearance, the terminal sialic acid of its glycophorins tends to be lost, leaving N-acetylgalactosamine at the free end.
- N-acetylgalactosamine is a ligand selectively received by the ASGPR associated with hepatic cells, leading to binding of N-acetylgalactosamine-containing substances by hepatic cells and their subsequent uptake and processing in the liver.
- glycosylation of a therapeutic agent in a manner that results in hepatic targeting should be avoided due to first-pass clearance by the liver resulting in poor circulation half-life of the therapeutic agent.
- some monoclonal antibodies need to be specifically glycosylated at ASN297 for optimal binding to their Fc receptors. It has now surprisingly been found, and is disclosed herein, that galactosylation and glucosylation can be used in a manner that induces tolerogenesis.
- the present disclosure provides, in several embodiments, certain therapeutic compositions that are targeted for delivery to (and for uptake by) the liver, particularly hepatocytes, LSECs, Kupffer cells and/or stellate cells, more particularly hepatocytes and/or LSECs, and even more particularly to specifically bind ASGPR.
- Liver-targeting facilitates two mechanisms of treatment: tolerization and clearance.
- Tolerization takes advantage of the liver's role in clearing apoptotic cells and processing their proteins to be recognized by the immune system as “self,” as well as the liver's role in sampling peripheral proteins for immune tolerance. Clearance takes advantage of the liver's role in blood purification by rapidly removing and breaking down toxins, polypeptides and the like.
- compositions to the liver is accomplished by a galactosylating moiety (e.g., galactose, galactosamine and N-acetylgalactosamine, particularly conjugated at C1, C2 or C6, though some embodiments involved conjugation at other or any carbon in the molecule), by a glucosylating moiety (e.g., glucose, glucosamine and N-acetylglucosamine, particularly conjugated at C1, C2 or C6, though some embodiments involved conjugation at other or any carbon in the molecule), or by de-sialylating a polypeptide for which such liver-targeting is desired.
- a galactosylating moiety e.g., galactose, galactosamine and N-acetylgalactosamine, particularly conjugated at C1, C2 or C6, though some embodiments involved conjugation at other or any carbon in the molecule
- a glucosylating moiety e.g., glucose,
- the galactosylating or glucosylating moiety can be chemically conjugated or recombinantly fused to an antigen, whereas desialylation exposes a galactose-like moiety on an antigen polypeptide.
- the antigen can be endogenous (a self-antigen) or exogenous (a foreign antigen), including but not limited to: a foreign transplant antigen against which transplant recipients develop an unwanted immune response (e.g., transplant rejection), a foreign food, animal, plant or environmental antigen to which patients develop an unwanted immune (e.g., allergic or hypersensitivity) response, a therapeutic agent to which patients develop an unwanted immune response (e.g., hypersensitivity and/or reduced therapeutic activity), a self-antigen to which patients develop an unwanted immune response (e.g., autoimmune disease), or a tolerogenic portion (e.g., a fragment or an epitope) thereof; these compositions are useful for inducing tolerization to the antigen.
- a foreign transplant antigen against which transplant recipients develop an unwanted immune response e.g., transplant rejection
- a foreign food, animal, plant or environmental antigen to which patients develop an unwanted immune (e.g., allergic or hypersensitivity) response e.g., a therapeutic agent to which patients develop an unwanted immune
- the galactosylating or other liver-targeting moiety can be conjugated to an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, and/or allergy (as discussed above); these compositions are useful for clearing the circulating protein, peptide or antibody. Accordingly, the compositions of the present disclosure can be used for treating an unwanted immune response, e.g., transplant rejection, an immune response against a therapeutic agent, an autoimmune disease, and/or an allergy, depending on the embodiment.
- an unwanted immune response e.g., transplant rejection, an immune response against a therapeutic agent, an autoimmune disease, and/or an allergy, depending on the embodiment.
- compositions containing a therapeutically effective amount of a composition of the disclosure admixed with at least one pharmaceutically acceptable excipient.
- the disclosure provides methods for the treatment of an unwanted immune response, such as transplant rejection, response against a therapeutic agent, autoimmune disease or allergy.
- an “antigen” is any substance that serves as a target for the receptors of an adaptive immune response, such as the T cell receptor, major histocompatibility complex class I and II, B cell receptor or an antibody.
- an antigen may originate from within the body (e.g., “self,” “auto” or “endogenous”).
- an antigen may originate from outside the body (“non-self,” “foreign” or “exogenous”), having entered, for example, by inhalation, ingestion, injection, or transplantation, transdermally, etc.
- an exogenous antigen may be biochemically modified in the body.
- Foreign antigens include, but are not limited to, food antigens, animal antigens, plant antigens, environmental antigens, therapeutic agents, as well as antigens present in an allograft transplant.
- an “antigen-binding molecule” as used herein relates to molecules, in particular to proteins such as immunoglobulin molecules, which contain antibody variable regions providing a binding (specific binding in some embodiments) to an epitope.
- the antibody variable region can be present in, for example, a complete antibody, an antibody fragment, and a recombinant derivative of an antibody or antibody fragment.
- Antigen-binding fragments containing antibody variable regions include (without limitation) “Fv”, “Fab”, and “F(ab′) 2 ” regions, “single domain antibodies (sdAb)”, “nanobodies”, “single chain Fv (scFv)” fragments, “tandem scFvs” (VHA-VLA-VHB-VLB), “diabodies”, “triabodies” or “tribodies”, “single-chain diabodies (scDb)”, and “bi-specific T-cell engagers (BiTEs)”.
- a “chemical modification” refers to a change in the naturally occurring chemical structure of one or more amino acids of a polypeptide. Such modifications can be made to a side chain or a terminus, e.g., changing the amino-terminus or carboxyl terminus. In some embodiments, the modifications are useful for creating chemical groups that can conveniently be used to link the polypeptides to other materials, or to attach a therapeutic agent.
- Constant changes can generally be made to an amino acid sequence without altering activity. These changes are termed “conservative substitutions” or mutations; that is, an amino acid belonging to a grouping of amino acids having a particular size or characteristic can be substituted for another amino acid. Substitutes for an amino acid sequence can be selected from other members of the class to which the amino acid belongs.
- the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, methionine, and tyrosine.
- the polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine.
- the positively charged (basic) amino acids include arginine, lysine and histidine.
- the negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
- Such substitutions are not expected to substantially affect apparent molecular weight as determined by polyacrylamide gel electrophoresis or isoelectric point.
- Conservative substitutions also include substituting optical isomers of the sequences for other optical isomers, specifically D amino acids for L amino acids for one or more residues of a sequence. Moreover, all of the amino acids in a sequence can undergo a D to L isomer substitution.
- Exemplary conservative substitutions include, but are not limited to, Lys for Arg and vice versa to maintain a positive charge; Glu for Asp and vice versa to maintain a negative charge; Ser for Thr so that a free —OH is maintained; and Gln for Asn to maintain a free —NH 2 .
- Yet another type of conservative substitution constitutes the case where amino acids with desired chemical reactivities are introduced to impart reactive sites for chemical conjugation reactions, if the need for chemical derivatization arises.
- Such amino acids include but are not limited to Cys (to insert a sulfhydryl group), Lys (to insert a primary amine), Asp and Glu (to insert a carboxylic acid group), or specialized noncanonical amino acids containing ketone, azide, alkyne, alkene, and tetrazine side-chains.
- Conservative substitutions or additions of free —NH 2 or —SH bearing amino acids can be particularly advantageous for chemical conjugation with the linkers and galactosylating moieties of Formula 1.
- point mutations, deletions, and insertions of the polypeptide sequences or corresponding nucleic acid sequences can in some cases be made without a loss of function of the polypeptide or nucleic acid fragment.
- Substitutions can include, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more residues (including any number of substitutions between those listed).
- a variant usable in the present invention may exhibit a total number of up to 200 (e.g., up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200, including any number in between those listed) changes in the amino acid sequence (e.g., exchanges, insertions, deletions, N-terminal truncations, and/or C-terminal truncations).
- the number of changes is greater than 200.
- the variants include polypeptide sequences or corresponding nucleic acid sequences that exhibit a degree of functional equivalence with a reference (e.g., unmodified or native sequence). In several embodiments, the variants exhibit about 80%, about 85%, about 90%, about 95%, about 97%, about 98%, about 99% functional equivalence to an unmodified or native reference sequence (and any degree of functional equivalence between those listed).
- the amino acid residues described herein employ either the single letter amino acid designator or the three-letter abbreviation in keeping with the standard polypeptide nomenclature, J. Biol. Chem., (1969), 243, 3552-3559. All amino acid residue sequences are represented herein by formulae with left and right orientation in the conventional direction of amino-terminus to carboxy-terminus.
- an effective amount refers to that amount of a composition of the disclosure that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment. This amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the particular composition of the disclosure chosen, the dosing regimen to be followed, timing of administration, manner of administration and the like, all of which can readily be determined by one of ordinary skill in the art.
- an “epitope”, also known as antigenic determinant, is the segment of a macromolecule, e.g. a protein, which is recognized by the adaptive immune system, such as by antibodies, B cells, major histocompatibility complex molecules, or T cells.
- An epitope is that part or segment of a macromolecule capable of binding to an antibody or antigen-binding fragment thereof.
- binding in particular relates to a specific binding.
- the term “epitope” refers to the segment of protein or polyprotein that is recognized by the immune system.
- galactose refers to a monosaccharide sugar that exists both in open-chain form and in cyclic form, having D- and L-isomers.
- cyclic form there are two anomers, namely alpha and beta.
- alpha form the C1 alcohol group is in the axial position
- beta form the C1 alcohol group is in the equatorial position.
- galactose refers to the cyclic six-membered pyranose, more in particular the D-isomer and even more particularly the alpha-D-form ( ⁇ -D-galactopyranose) the formal name for which is (2R,3R,4S,5R,6R)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol.
- Glucose is an epimer of galactose; the formal name is (2R,3R,4S,5S,6R)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol.
- the structure and numbering of galactose and glucose are shown giving two non-limiting examples of stereochemical illustration.
- galactosylating moiety refers to a particular type of liver-targeting moiety.
- Galactosylating moieties include, but are not limited to a galactose, galactosamine and/or N-acetylgalactosamine residue.
- a “glucosylating moiety” refers to another particular type of liver-targeting moiety and includes, but is not limited to glucose, glucosamine and/or N-acetylglucosamine.
- liver-targeting moiety refers to moieties having the ability to direct, e.g., a polypeptide, to the liver.
- the liver comprises different cell types, including but not limited to hepatocytes, sinusoidal epithelial cells, Kupffer cells, stellate cells, and/or dendritic cells.
- a liver-targeting moiety directs a polypeptide to one or more of these cells.
- receptors are present which recognize and specifically bind the liver-targeting moiety.
- Liver-targeting can be achieved by chemical conjugation of an antigen or ligand to a galactosylating or glucosylating moiety, desialylation of an antigen or ligand to expose underlying galactosyl or glucosyl moieties, or specific binding of an endogenous antibody to an antigen or ligand, where the antigen or ligand is: desialylated to expose underlying galactosyl or glucosyl moieties, conjugated to a galactosylating or a glucosylating moiety.
- Naturally occurring desialylated proteins are not encompassed within the scope of certain embodiments of the present disclosure.
- n can be an integer from about 1 to 100 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95, 99, 100, 105 or 110, or any between those listed, including the endpoints of the range) and that the disclosed mixture encompasses ranges such as 1-4, 2-4, 2-6, 3-8, 7-13, 6-14, 18-23, 26-30
- a peptide that specifically binds a particular target is referred to as a “ligand” for that target.
- polypeptide is a term that refers to a chain of amino acid residues, regardless of post-translational modification (e.g., phosphorylation or glycosylation) and/or complexation with additional polypeptides, and/or synthesis into multisubunit complexes with nucleic acids and/or carbohydrates, or other molecules. Proteoglycans therefore also are referred to herein as polypeptides.
- polypeptides can be produced by a number of methods, many of which are well known in the art. For example, polypeptides can be obtained by extraction (e.g., from isolated cells), by expression of a recombinant nucleic acid encoding the polypeptide, or by chemical synthesis. Polypeptides can be produced by, for example, recombinant technology, and expression vectors encoding the polypeptide introduced into host cells (e.g., by transformation or transfection) for expression of the encoded polypeptide
- “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- purified refers to a polypeptide that has been chemically synthesized and is thus substantially uncontaminated by other polypeptides, or has been separated or isolated from most other cellular components by which it is naturally accompanied (e.g., other cellular proteins, polynucleotides, or cellular components).
- An example of a purified polypeptide is one that is at least 70%, by dry weight, free from the proteins and naturally occurring organic molecules with which it naturally associates.
- a preparation of a purified polypeptide therefore can be, for example, at least 80%, at least 90%, or at least 99%, by dry weight, the polypeptide.
- Polypeptides also can be engineered to contain a tag sequence (e.g., a polyhistidine tag, a myc tag, a FLAG® tag, or other affinity tag) that facilitates purification or marking (e.g., capture onto an affinity matrix, visualization under a microscope).
- a purified composition that comprises a polypeptide refers to a purified polypeptide unless otherwise indicated.
- isolated indicates that the polypeptides or nucleic acids of the disclosure are not in their natural environment. Isolated products of the disclosure can thus be contained in a culture supernatant, partially enriched, produced from heterologous sources, cloned in a vector or formulated with a vehicle, etc.
- random copolymer refers to the product of simultaneous polymerization of two or more monomers in admixture, where the probability of finding a given monomeric unit at any given site in a polymer chain is independent of the nature of the neighboring units at that position (Bernoullian distribution).
- the chain can comprise any sequence from 2 up to about 150 W 1 and W 2 groups, such as: —W 1 —W 2 —W 1 —W 2 —; —W 2 —W 1 —W 2 —W 1 —; —W 1 —W 1 —W 1 —W 2 —; —W 1 —W 1 —W 2 —W 2 —; —W 1 —W 2 —W 2 —W 1 —; —W 1 —W 2 —W 2 —W 1 —; —W 1 —W 2 —W 1 —W 2 —W 2 —W 1 —; —W 1 —W 1 —W 2 —W 2 —W 1 —W 2 —W 1 —; —W 1 —W 1 —W 2 —W 2 —W 1 —W 2 —W 1 —; and W 2 —W 2 —W 1 —W 2 —W 1 —W 1 —W 1 —
- sequence identity is used with regard to polypeptide (or nucleic acid) sequence comparisons. This expression in particular refers to a percentage of sequence identity, for example at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% to the respective reference polypeptide or to the respective reference polynucleotide.
- the polypeptide in question and the reference polypeptide exhibit the indicated sequence identity over a continuous stretch of 20, 30, 40, 45, 50, 60, 70, 80, 90, 100 or more amino acids or over the entire length of the reference polypeptide.
- Specific binding refers to a molecule that binds to a target with a relatively high affinity as compared to non-target tissues, and generally involves a plurality of non-covalent interactions, such as electrostatic interactions, van der Waals interactions, hydrogen bonding, and the like. Specific binding interactions characterize antibody-antigen binding, enzyme-substrate binding, and certain protein-receptor interactions; while such molecules might bind tissues besides their specific targets from time to time, to the extent that such non-target binding is inconsequential, the high-affinity binding pair can still fall within the definition of specific binding.
- treatment means any treatment of a disease or disorder in a mammal, including:
- the term “unwanted immune response” refers to a reaction by the immune system of a subject, which in the given situation is not desirable.
- the reaction of the immune system is unwanted if such reaction does not lead to the prevention, reduction, or healing of a disease or disorder but instead causes, enhances or worsens, or is otherwise associated with induction or worsening of a disorder or disease.
- a reaction of the immune system causes, enhances or worsens a disease if it is directed against an inappropriate target.
- an unwanted immune response includes but is not limited to transplant rejection, immune response against a therapeutic agent, autoimmune disease, and allergy or hypersensitivity.
- variant is to be understood as a protein (or nucleic acid) which differs in comparison to the protein from which it is derived by one or more changes in its length, sequence, or structure.
- the polypeptide from which a protein variant is derived is also known as the parent polypeptide or polynucleotide.
- variant comprises “fragments” or “derivatives” of the parent molecule. Typically, “fragments” are smaller in length or size than the parent molecule, whilst “derivatives” exhibit one or more differences in their sequence or structure in comparison to the parent molecule.
- modified molecules such as but not limited to post-translationally modified proteins (e.g.
- variants glycosylated, phosphorylated, ubiquitinated, palmitoylated, or proteolytically cleaved proteins
- modified nucleic acids such as methylated DNA.
- variants Naturally occurring and artificially constructed variants are to be understood to be encompassed by the term “variant” as used herein.
- variants usable in the present invention may also be derived from homologs, orthologs, or paralogs of the parent molecule or from artificially constructed variant, provided that the variant exhibits at least one biological activity of the parent molecule, e.g., is functionally active.
- a variant can be characterized by a certain degree of sequence identity to the parent polypeptide from which it is derived. More precisely, a protein variant in the context of the present disclosure may exhibit at least 80% sequence identity to its parent polypeptide. Preferably, the sequence identity of protein variants is over a continuous stretch of 20, 30, 40, 45, 50, 60, 70, 80, 90, 100 or more amino acids. As discussed above, in several embodiments variants exhibit about 80%, about 85%, about 90%, about 95%, about 97%, about 98%, about 99% functional equivalence to an unmodified or native reference sequence (and any degree of functional equivalence between those listed).
- compositions relates to compositions, pharmaceutical formulations, and methods of treatment employing such compositions, as represented by Formula 1:
- m in Formula 1 will depend upon the nature of X, in that each antigen, antibody, antibody fragment or ligand will have an individual number and density of sites (predominantly the N-terminal amine, lysine residues and cysteine residues) to which a linker, a galactosylating moiety or a glucosylating moiety can be bound.
- Antigens having a limited number of such sites can be derivatized, for example, at the N or C terminus, by adding lysine or cysteine residues (optionally via a cleavable linker, particularly a linker having an immunoproteosome cleavage site).
- compositions of Formula 1 Generally, it is preferred to provide an adequate degree of galactosylation/glucosylation in compositions of Formula 1 so as to facilitate uptake by liver cells.
- Pharmaceutical formulations and methods of the disclosure can employ a cocktail of compositions of Formula 1, respectively bearing different X moieties (e.g., several epitopes associated with a particular unwanted immune response).
- compositions of Formula 1 include the sub-genuses where X is a foreign transplant antigen against which transplant recipients develop an unwanted immune response (e.g., transplant rejection), a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune (e.g., allergic or hypersensitivity) response, a foreign therapeutic agent against which patients develop an unwanted immune response (e.g., hypersensitivity and/or reduced therapeutic activity), or a self-antigen against which patients develop an unwanted immune response (e.g., autoimmune disease); where Y is a linker of Formulae Ya through Yp; and/or where Z is galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine as illustrated by Formulae 1a through 1p as described below with reference to the Reaction Schemes.
- X is a foreign transplant antigen against which transplant recipients develop an unwanted immune response (e.g., transplant rejection), a foreign food, animal, plant or environmental antigen against
- X in the compositions of Formula 1, can be an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy.
- the antigen employed as X in the compositions of Formula 1 can be a protein or a peptide, e.g. the antigen may be a complete or partial therapeutic agent, a full-length transplant protein or peptide thereof, a full-length autoantigen or peptide thereof, a full-length allergen or peptide thereof, and/or a nucleic acid, or a mimetic of an aforementioned antigen.
- the antigen may be a complete or partial therapeutic agent, a full-length transplant protein or peptide thereof, a full-length autoantigen or peptide thereof, a full-length allergen or peptide thereof, and/or a nucleic acid, or a mimetic of an aforementioned antigen.
- a listing of any particular antigen in a category or association with any particular disease or reaction does not preclude that antigen from being considered part of another category or associated with another disease or reaction.
- Antigens employed in the practice of the present disclosure can be one or more of the following:
- the antigen can be a complete protein, a portion of a complete protein, a peptide, or the like, and can be derivatized (as discussed above) for attachment to a linker and/or galactosylating moiety, can be a variant and/or can contain conservative substitutions, particularly maintaining sequence identity, and/or can be desialylated.
- specific antigens can be selected from: Abatacept, Abciximab, Adalimumab, Adenosine deaminase, Ado-trastuzumab emtansine, Agalsidase alfa, Agalsidase beta, Aldeslukin, Alglucerase, Alglucosidase alfa, ⁇ -1-proteinase inhibitor, Anakinra, Anistreplase (anisoylated plasminogen streptokinase activator complex), Antithrombin III, Antithymocyte globulin, Ateplase, Bevacizumab, Bivalirudin, Botulinum toxin type A, Botulinum toxin type B, C1-esterase inhibitor, Canakinumab, Carboxypeptidase G2 (Glucarpidase and Voraxaze
- Particular therapeutic protein, peptide, antibody or antibody-like molecules include Abciximab, Adalimumab, Agalsidase alfa, Agalsidase beta, Aldeslukin, Alglucosidase alfa, Factor VIII, Factor IX, Infliximab, Insulin (including rHu Insulin), L-asparaginase, Laronidase, Natalizumab, Octreotide, Phenylalanine ammonia-lyase (PAL), or Rasburicase (uricase) and generally IgG monoclonal antibodies in their varying formats.
- Another particular group includes the hemostatic agents (Factor VIII and IX), Insulin (including rHu Insulin), and the non-human therapeutics uricase, PAL and asparaginase.
- Unwanted immune response in hematology and transplant includes autoimmune aplastic anemia, transplant rejection (generally), and Graft vs. Host Disease (bone marrow transplant rejection).
- the antigen is a human allograft transplantation antigen
- specific sequences can be selected from: subunits of the various MHC class I and MHC class II haplotype proteins (for example, donor/recipient differences identified in tissue cross-matching), and single-amino-acid polymorphisms on minor blood group antigens including RhCE, Kell, Kidd, Duffy and Ss.
- Such compositions can be prepared individually for a given donor/recipient pair.
- specific antigens can be selected from:
- MBP13-32 (SEQ ID NO: 7) KYLATASTMDHARHGFLPRH; MBP83-99: (SEQ ID NO: 8) ENPWHFFKNIVTPRTP; MBP111-129: (SEQ ID NO: 9) LSRFSWGAEGQRPGFGYGG; MBP146-170: (SEQ ID NO: 10) AQGTLSKIFKLGGRDSRSGSPMARR; MOG1-20: (SEQ ID NO: 11) GQFRVIGPRHPIRALVGDEV; MOG35-55: (SEQ ID NO: 12) MEVGWYRPPFSRWHLYRNGK; and PLP139-154: (SEQ ID NO: 13) HCLGKWLGHPDKFVGI.
- antigen is a foreign antigen against which an unwanted immune response can be developed, such as food antigens
- specific antigens can be:
- antigen is a foreign antigen against which an unwanted immune response is developed, such as to animal, plant and environmental antigens
- specific antigens can, for example, be: cat, mouse, dog, horse, bee, dust, tree and goldenrod, including the following proteins or peptides derived from:
- a patient can be tested to identify an antigen against which an unwanted immune response has developed, and a protein, peptide or the like can be developed based on that antigen and incorporated as X in a composition of the present disclosure.
- antigens antibodies, antibody fragments having sialylation that can be removed to leave glycosylation specifically targeting the ASGPR: follicle stimulating hormone (FSH), human chorionic gonadotropin (HCG), luteinizing hormone (LH), osteopontin, thyroid stimulating hormone (TSH), agalsidase alfa, agalsidase beta (FABRAZYME®; Genzyme), epoetin alfa and epoetin beta, follitropin alfa (GONAL-F®; Merck/Serono) and follitropin beta (FOLLISTIM®; Schering-Plough), insulin growth factor binding protein 6 (IGFBP-6), Iutropin alfa (LUVERIS®; Merck/Serono), transforming growth factor ⁇ 1, antithrombin (ATryn®/TROMBATE-III®; Genzyme/Talecris Biotherapeutics), thyrotropin
- FSH folli
- Pharmaceutically relevant proteins that have previously been hyperglycosylated and can be desialylated for hepatocyte-ASGPR targeting include: interferon alfa and gamma, luteinizing hormone, Fv antibody fragments, asparaginase, cholinesterase, darbepoetin alfa (AraNESP®; Amgen), thrombopoietin, leptin, FSH, IFN- ⁇ 2, serum albumin, and corifollitropin alfa.
- Proteins with glycans that do not normally terminate in sialic acids including proteins produced in bacteria or yeast (such as arginase, some insulins, and uricase) would not be amenable to desialylation.
- such moieties are chosen to specifically bind a targeted circulating protein or peptide or antibody, and result in hepatic uptake of the circulating targeted moiety, possibly as an adduct with the targeting moiety, ultimately resulting in the clearance and inactivation of the circulating targeted moiety.
- a targeted circulating protein or peptide or antibody for example, liver-targeted Factor VIII will bind and clear circulating anti-Factor VIII antibodies. Procedures for the identification of such moieties will be familiar to those skilled in the art.
- the linkers employed in the compositions of the present disclosure (“Y” in Formula 1) can include N-hydroxysuccinamidyl linkers, malaemide linkers, vinylsulfone linkers, pyridyl di-thiol-poly(ethylene glycol) linkers, pyridyl di-thiol linkers, n-nitrophenyl carbonate linkers, NHS-ester linkers, nitrophenoxy poly(ethylene glycol)ester linkers and the like.
- linkers comprises linkers of Formula Y′-CMP below (where Y′ indicates the remaining portion of the linker and R 9 and Z are as defined). More particularly, in the group of linkers including Formula Y′-CMP, in several embodiments the R 9 substituent is an ethylacetamido group, and even more particularly the ethylacetamido is conjugated with C1 of N-acetylgalactosamine or N-acetylglucosamine.
- Di-thiol-containing linkers particularly disulfanylethyl carbamate-containing linkers (named including a free amine of X, otherwise named a “disulfanyl ethyl ester” without including the free amine of X) are particularly advantageous in the present compositions as having the ability to cleave and release an antigen in its original form once inside a cell, for example as illustrated below (where Y′ indicates the remaining portion of the linker and X′ and Z are as defined).
- Linkers of Formula Yn can be synthesized via certain precursors that render Yn particularly suitable for conjugation to hydrophobic antigens.
- linkers shown above as Formulae Yh through Yn are synthesized as isomers that are employed without separation.
- the linkers of Formulae Yh, Yi, Yj and Yn will be a mixture of the 8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-8yl and 8,9-dihydro-3H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-8yl structures illustrated below:
- linkers of Formulae Yk, YL and Ym will be a mixture of the 8,9-dihydro-1H-dibenzo[3.4:7.8]cycloocta[1,2-d][1,2,3]triazol-8-yl and 8,9-dihydro-1H-dibenzo[3.4:7.8]cycloocta[1,2-d][1,2,3]triazol-9-yl structures illustrated below:
- the galactosylating moieties employed in the compositions of the present disclosure serve to target the compositions to liver cells (for example, specifically binding hepatocytes) and can be selected from: galactose, galactosamine or N-acetylgalactosamine.
- the glucosylating moieties employed in the compositions of the present disclosure serve to target the compositions to liver cells (for example, specifically binding hepatocytes or LSECs) and can be selected from: glucose, glucosamine or N-acetylglucosamine.
- liver-targeting moieties include galactose or glucose conjugated at C1 or C6, galactosamine or glucosamine conjugated at C2, and N-acetylgalactosamine or N-acetylglucosamine conjugated at C6.
- Other particular liver-targeting moieties include N-acetylgalactosamine or N-acetylglucosamine conjugated at C2, more particularly conjugated to a linker bearing an R 9 substituent that is CH 2 .
- liver-targeting moieties include galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine conjugated at C1, more particularly conjugated to a linker bearing an R 9 substituent that is an ethylacetamido group.
- compositions of Formula 1 can be named using a combination of IUPAC and trivial names.
- Y is Formula Ya
- m is 1
- n is 4
- Z is N-acetylgalactosamin-2-yl or N-acetylglucosamin-2-yl:
- composition of the disclosure where X is tissue transglutaminase can be named (Z)-(21-(tissue transglutaminase)-1-oxo-1-((2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)amino)-4,7,10,13-tetraoxa-16,17-dithiahenicosan-21-ylidene)triaz-1-yn-2-ium chloride, so the corresponding composition of the disclosure where X is tissue transglutaminase can be named (Z)-(21-(tissue transglutaminase)-1-oxo-1-((2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)amino)-4,7,10,13-tetraoxa-16,17-dithiahenicosan-21-ylidene)triaz-1-yn-2-ium chloride.
- composition of the disclosure where X′ is tissue transglutaminase, m is 2, n is 4 and Z′ is N-acetylgalactosamin-2-yl or N-acetylglucosamin-2-yl can be named (3Z)-((tissue transgultaminase)-1,3-diylbis(1-oxo-1-((2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)amino)-4,7,10,13-tetraoxa-16,17-dithiahenicosan-21-yl-21-ylidene))bis(triaz-1-yn-2-ium) chloride.
- compositions of Formula 1 can be named using an alternative naming system by reference to X and correspondence to one of Formulae 1a to 1p (as illustrated in the reaction schemes) followed by recitation of the integers for variables m, n, p and/or q, R 8 , R 9 and identification of the galactosylating moiety and the position at which it is conjugated.
- the compounds where W is a copolymer are designated by the letter of the “Y group” followed by a “prime” (e.g., F1c′) and include the number and an identification of the comonomers.
- composition of Formula 1a where X is ovalbumin, m is 2, n is 4 and Z is N-acetylgalactosamin-2-yl can be named “F1a-OVA-m 2 -n 4 -2NAcGAL.”
- the corresponding composition of Formula 1a where X is ovalbumin, m is 2, n is 4 and Z is N-acetylglucosamin-2-yl can be named “F1a-OVA-m 2 -n 4 -2NAcGLU.”
- both isomers can be named “F1n-insulin-m 1 -n 1 -p 1 -q 4 -CMP-EtAcN-1NAcGAL” (or “F1n-insulin-m 1 -n 1 -p 1 -q 4 -CMP-EtAcN-1NAcGLU” because no stereochemistry is shown for the sugar ring) where CMP indicates that R 8 is 1-cyano-1-methyl-propyl, EtAcN indicates that R 9 is ethylacetamido and 1NAcGAL indicates Z′′ is N-acetylgalactosamine conjugated at C1. Absence of the abbreviation EtAcN before the designation for Z would indicate that R 9 is a direct bond.
- composition of Formula 1 exemplifies compounds where W is a copolymer:
- the compound can be named “F1c′-DQ8-relevant Alpha Gliadin-m 1 -n 4 -p 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 2 -HPMA 2 )”.
- compositions of Formula 1 can be prepared, for example, by adjusting the procedures described in Zhu, L., et al., Bioconjugate Chem. 2010, 21, 2119-2127. Syntheses of certain compositions of Formula 1 are also described below with reference to Reaction Schemes 1 to 14. Other synthetic approaches will be apparent to those skilled in the art.
- R 1 is a free surface amino (—NH 2 ) or thiol (—SH) moiety positioned on X's three-dimensional structure so as to be accessible for conjugation to a linker
- X′ represents the remainder of X excluding the identified free amino group(s) [(X′′ is used in the reaction schemes to represent the remainder of X excluding free thiol group(s)].
- X there will be at least one (the N-terminal amine) and can be multiple R 1 groups (predominantly from lysine residues or cysteine residues that are not involved in disulfide bonding), as represented by m, which is an integer from about 1 to 100, more typically 1 or from about 4 to 20, and most typically 1 to about 10.
- solvent inert organic solvent or “inert solvent” mean a solvent inert under the conditions of the reaction being described in conjunction therewith [including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like].
- solvents used in the reactions of the present disclosure are inert organic solvents.
- q.s. means adding a quantity sufficient to achieve a stated function, e.g., to bring a solution to the desired volume (i.e., 100%).
- Isolation and purification of the compounds and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography or thick-layer chromatography, centrifugal size exclusion chromatography, high-performance liquid chromatography, recrystallization, sublimation, fast protein liquid chromatography, gel electrophoresis, dialysis, or a combination of these procedures.
- suitable separation and isolation procedures can be had by reference to the examples hereinbelow. However, other equivalent separation or isolation procedures can, of course, also be used.
- Characterization of reaction products can be made by customary means, e.g., proton and carbon NMR, mass spectrometry, size exclusion chromatography, infrared spectroscopy, gel electrophoresis.
- Reaction Scheme 1 illustrates the preparation of compositions of Formula 1 where Z can be galactose, glucose, galactosamine, glucosamine, N-acetylgalactosamine or N-acetylglucosamine.
- Z′ as employed in Reaction Scheme 1 encompasses galactose or glucose conjugated at C1 and C6 and corresponding to the following structures according to Formula 1:
- surface thiol group(s) can be generated on an antigen, antibody, antibody fragment or ligand having free surface amino group(s) (Formula 101′) by contact with a Traut reagent (Formula 102) at a pH of about 8.0 for about 1 hour to give the Formula 103′, from which unreacted Traut's reagent is removed, e.g., via centrifugal size exclusion chromatography.
- a pyridyl di-thiol-poly(ethylene glycol)-NHS ester (Formula 104) is contacted with galactosamine or glucosamine (Formula 105 where R 3 is NH 2 and R 2 , R 4 , R 5 and R 6 are OH) with stirring at about pH 8 for about 1 hour to give the corresponding pyridyl di-thiol-poly(ethylene glycol)-sugar of Formula 106A, which can be used without further purification.
- Step 4 the acid of Formula 109 is contacted with a protected galactose or N-acetylgalactosamine of Formula 105 where R 2 is OH and R 3 , R 4 , R 5 and R 6 are protecting groups (“PG”), where R 6 is OH and R 2 , R 3 , R 4 and R 5 are PG, or where R 6 is N-acetyl and R 2 , R 3 , R 4 and R 5 are PG to give the corresponding pyridyl di-thiol-poly(ethylene glycol)-sugars of Formulae 106B, 106C and 106D, which can be used following de-protection.
- PG protecting groups
- Step 5 to a stirred solution of the product of Step 1 (Formula 103′) is added an excess (corresponding to the value of m) of the product of Step 2 or Step 4 (Formula 106, i.e., 106A, 106B, 106C or 106D) for about 1 hour, followed by centrifugal sized exclusion chromatography to remove any free remaining reactants to yield the corresponding product according to Formula 1a, respectively, Formula 1aA, Formula 1aB, Formula 1aC and Formula 1aD.
- compositions corresponding to Formula 1a can be named, respectively, e.g., as follows:
- Reaction Schemes 2-14 illustrate preparation of the compounds where W is a polymer of the same W 1 group.
- Z′′ refers to N-acetylgalactosamine or N-acetylglucosamine conjugated at C2:
- the C1 conjugated compositions can be protected during synthesis, for example by cyclizing the amine with the C3 hydroxyl and de-protecting following incorporation of the protected galactosamine into the adjacent portion of the linker.
- the poly(galactose methacrylate) and poly(glucose methacrylate) reactants of Formulae 201, 401, 501, 601, 701, 803 and 1401 can be prepared by methacrylating galactose or glucose, e.g., contacting galactosamine or glucosamine and methacrylate anhydride, followed by reversible addition-fragmentation chain transfer (RAFT) polymerization with a corresponding RAFT agent in the presence of azobisisobutyronitrile (AIBN) in a suitable solvent, starting with freeze-thaw cycles followed by heating at about 60-80° C., preferably 70° C. for about 5-8, preferably about 6 hours.
- the polymer can be precipitated in a lower alkanol, preferably methanol.
- Step 1 an antigen, antibody, antibody fragment or ligand having free surface thiol group(s) prepared, e.g., as described with reference to Reaction Scheme 1, Step 1 (Formula 103′) is contacted with an excess (corresponding to the value of m) of a pyridyl di-thiol-poly(ethylene glycol) of Formula 201 for about 1 hour to yield the corresponding product according to Formula 1b.
- compositions of Formula 1b can be named as follows:
- composition of Formula 1b where X′ is uricase, m is 1, n is 4, p is 4 and Z′′ is N-acetylgalactosamine conjugated at C2 can be named “F1b-uricase-m 1 -n 4 -p 4 -2NAcGAL” or “30-(uricase)-3,5,7,9-tetramethyl-12-oxo-1-phenyl-1-thioxo-3,5,7,9-tetrakis((2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)carbamoyl)-13,16,19,22-tetraoxa-2,25,26-trithiatriacontan-30-iminium”.
- an antigen, antibody, antibody fragment or ligand having native free surface thiol group(s) (cysteines) [Formula 101′′ corresponding to Formula 101 and illustrating where X′′, as the term will be subsequently employed, represents X excluding the identified free surface thiol group(s)] is contacted with an excess (corresponding to the value of m) of a pyridyl di-thiol-poly(ethylene glycol) of Formula 201 to yield the corresponding product according to Formula 1c.
- compositions corresponding to Formula 1c can be named as follows:
- an antigen, antibody, antibody fragment or ligand having native free surface thiol group(s) of Formula 101′′ is contacted with an excess (corresponding to the value of m) of a pyridyl di-thiol of Formula 401 to yield the corresponding product according to Formula 1d.
- compositions corresponding to Formula 1d can be named as follows:
- an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) of Formula 101′ is contacted with an excess (corresponding to the value of m) of a n-nitrophenyl carbonate of Formula 501 to yield the corresponding product according to Formula 1e.
- compositions corresponding to Formula 1e can be named as follows:
- an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) of Formula 101′ is contacted with an excess (corresponding to the value of m) of a n-nitrophenyl carbonate poly(ethylene glycol)ester of Formula 601 to yield the corresponding product according to Formula 1f.
- compositions corresponding to Formula 1f can be named as follows:
- an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) of Formula 101′ is contacted with an excess (corresponding to the value of m) of a NHS-ester poly(ethylene glycol)ester of Formula 701 to yield the corresponding product according to Formula 1g.
- compositions corresponding to Formula 1g can be named as follows:
- Step 1 an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) of Formula 101′ is contacted with an excess (corresponding to the value of m) of an amine-reactive linker for Click chemistry of Formula 801 to yield the corresponding product according to Formula 802.
- Step 2 the product of Formula 802 is then contacted with an equivalent amount (again corresponding to the value of m) of a galactos(amine) polymer of Formula 803 to yield the corresponding isomeric product according to Formula 1h.
- the two isomers, illustrated above, result from non-specific cyclization of the azide of Formula 803 with the triple bond of Formula 802. Such non-specific cyclization occurs in the synthesis of other compositions where Y is selected from Formulae Yh through Yn, but will not be illustrated in each instance.
- compositions corresponding to Formula 1h can be named as follows:
- Step 1 an antigen, antibody, antibody fragment or ligand having native free surface thiol group(s) of Formula 101′′ is contacted with an excess (corresponding to the value of m) of a thiol-reactive linker for Click chemistry of Formula 901 to yield the corresponding product according to Formula 902′′.
- Step 2 the product of Formula 902′′ is then contacted with an equivalent amount (again corresponding to the value of m) of a galactos(amine) polymer of Formula 803 to yield the corresponding isomeric product according to Formula 1i.
- compositions corresponding to Formula 1i can be named as follows:
- compositions corresponding to Formula 1j can be named as follows:
- Step 1 an antigen, antibody, antibody fragment or ligand having native free surface thiol group(s) of Formula 101′′ is contacted with an excess (corresponding to the value of m) of a thiol-reactive linker for Click chemistry of Formula 1001 to yield the corresponding product according to Formula 1002.
- Step 2 the product of Formula 1002 is then contacted with an equivalent amount (again corresponding to the value of m) of a galactos(amine) polymer of Formula 803 to yield the corresponding isomeric product according to Formula 1k.
- compositions corresponding to Formula 1k can be named as follows:
- compositions corresponding to Formula 1L can be named as follows:
- Step 1 galactose, protected galactosamine or N-Acetyl-D-galactosamine (Formula1101 where R 3 and R 4 are OH, R 3 is NH-protecting group (e.g., cyclized with R 4 ) or R 3 is NHAc and R 4 is OH, respectively) is contacted with 2-chloroethan-1-ol followed by cooling and the dropwise addition of acetylchloride. The solution is warmed to room temperature and then heated to 70° C. for several hours. Ethanol is added to the crude product and the resulting solution is stirred in the presence of carbon and then filtered followed by solvent removal to yield the corresponding product of Formula 1102.
- R 3 and R 4 are OH, R 3 is NH-protecting group (e.g., cyclized with R 4 ) or R 3 is NHAc and R 4 is OH, respectively) is contacted with 2-chloroethan-1-ol followed by cooling and the dropwise addition of acety
- Step 2 the product of Formula 1102 is added to an excess of sodium azide and heated to 90° C. for several hours, then filtered followed by solvent removal to yield the corresponding product of Formula 1103.
- Step 3 the product of Formula 1103 is added to a solution of palladium on carbon and ethanol, and stirred under hydrogen gas (3 atm) for several hours, then filtered followed by solvent removal to yield the corresponding product of Formula 1104.
- Step 4 the product of Formula 1104 is added to a solution of methacrylate anhydride. Triethylamine is added and the reaction stirred for 2 hours followed by solvent removal and isolation to yield the corresponding product of Formula 1105.
- an azide-modified uRAFT agent (Formula 1106) is added to a solution of the product of Formula 1105 with azobisisobutyronitrile, subjected to 4 free-pump-thaw cycles and then stirred at 70° C. After several hours the corresponding polymer product of Formula 1107 is precipitated by addition of a lower alkanol followed by solvent removal.
- R 3 is NH-protecting group (e.g., cyclized with R 4 ) the protecting group(s) is(are) removed at this point.
- Step 6 an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) of Formula 101′ is added to a pH 8.0 buffer and contacted with an excess (corresponding to the value of m) of a dioxopyrrolidine of Formula 1108 with stirring. After 1 hour, unreacted Formula 1108 is removed and the resulting product of Formula 1109 is used without further purification.
- Step 7 the product of Formula 1107 is added to a pH 8.0 buffer, to which is added the product of Formula 1109. After stirring for 2 hours, the excess Formula 1107 is removed to yield the corresponding isomeric product of Formula 1m.
- compositions corresponding to Formula 1m can be named as follows:
- Reaction Scheme 12 is particularly suitable for hydrophobic antigens, antibodies, antibody fragments and ligands (e.g., Insulin) due to the use of organic solvents.
- ligands e.g., Insulin
- Step 1 an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) of Formula 101′ is dissolved in an organic solvent (e.g., DMF) containing triethylamine. To this is added an amount (corresponding to the value of m) of a compound of Formula 1201 followed by stirring and the addition of t-butyl methyl ether. The corresponding product of Formula 1202 is recovered as a precipitate.
- an organic solvent e.g., DMF
- the product of Formula 1202 is resuspended in the organic solvent and an amount (corresponding to the value of m) of Formula 1107 (obtained, e.g., as described with reference to Reaction Scheme 11) is added followed by stirring.
- the reaction product is precipitated via the addition of dichloromethane, followed by filtration and solvent removal. Purification (e.g., resuspension in PBS followed by centrifugal size exclusion chromatography yields the corresponding isomeric product of Formula 1n.
- compositions corresponding to Formula 1n can be named as follows:
- Step 1 a nitrophenoxycarbonyl-oxyalkyl di-thiol-poly(ethylene glycol)-NHS ester (Formula 1301) is contacted with galactose, galactosamine or N-acetylgalactosamine (Formula 105) to give the corresponding product of Formula 1302, along with the other two illustrated products, from which the desired nitrophenoxycarbonyl di-thiol-poly(ethylene glycol)-carboxyethyl galactose, galactosamine or N-acetylgalactosamine of Formula 1302 is isolated before proceeding to the next step.
- an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) of Formula 101′ is contacted with an excess (corresponding to the value of m) of the product of Formula 1302 to yield the corresponding product according to Formula 10.
- compositions corresponding to Formula 10 can be named as follows:
- an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) (Formula 101′) is contacted with an excess (corresponding to the value of m) of a pyridyl di-thiol-poly(ethylene glycol)-NHS ester of Formula 1401 to yield the corresponding product according to Formula 1p.
- compositions corresponding to Formula 1p can be named as follows:
- Reaction Schemes 15-18 illustrate preparation of the compounds where W is a copolymer of the same or different W 1 and W 2 groups.
- Step 1 galactose or glucose (Formula1101 where R 3 and R 4 are OH), protected galactosamine or protected glucosamine (Formula 1101 where R 3 is NH-protecting group, e.g., cyclized with R 4 ) or N-acetyl-D-galactosamine or N-acetyl-D-glucosamine (Formula1101 where R 3 is NHAc and R 4 is OH) is contacted with a 2-(poly-(2-chloroethoxy)ethoxy)ethan-1-ol of Formula 1501 (where t is 1 to 5) followed by cooling and the dropwise addition of acetylchloride. The solution is warmed to room temperature and then heated to 70° C. for several hours. Ethanol is added to the crude product and the resulting solution is stirred in the presence of carbon and then filtered followed by solvent removal to yield the corresponding product of Formula 1502.
- the product of Formula 1502 is added to an excess of sodium azide and heated to 90° C. for several hours, then filtered followed by solvent removal to yield the corresponding product of Formula 1503.
- Step 3 the product of Formula 1503 is added to a solution of palladium on carbon and ethanol, and stirred under hydrogen gas (3 atm) for several hours, then filtered followed by solvent removal to yield the corresponding product of Formula 1504.
- the product of Formula 1504 is added to a solution of methacrylate anhydride. Triethylamine is added and the reaction stirred for 2 hours followed by solvent removal and isolation to yield the corresponding product of Formula 1505. Alternatively, pentafluorophenyl methacrylate (or another acrylating agent) can be used to prepare the corresponding product of Formula 1505. In some embodiments, the product of formula 1504 is added to DMF. Triethyl amine (e.g., an organic base) is added and the mixture is cooled (e.g., to 4° C. using an ice bath).
- Triethyl amine e.g., an organic base
- pentafluorophenyl methacrylate (or another acrylating agent) is added (e.g., drop-wise with constant stirring). After a period of time (e.g., 30 minutes), the cooling (e.g., ice-bath) is removed and the reaction is allowed to stir at room temperature for a period of time (e.g., 4 hours). In some embodiments, the solvent is then removed. In some embodiments, the product is purified using flash chromatography.
- an azide-modified uRAFT agent of Formula 1106 and a methacrylamide of Formula 1506 are added to a solution of the product of Formula 1505 with azobisisobutyronitrile, subjected to 4 free-pump-thaw cycles and then stirred at 70° C. After several hours the corresponding random copolymer product of Formula 1507 is precipitated by addition of a lower alkanol or acetone followed by solvent removal.
- R 3 is NH-protecting group (e.g., cyclized with R 4 ) the protecting group(s) is(are) removed at this point.
- Step 6 the product of Formula 1507 is added to a pH 8.0 buffer, to which is added the product of Formula 1109 (prepared, for example, as described with reference to Reaction Scheme 11). After stirring for 2 hours, the excess Formula 1109 is removed to yield the corresponding isomeric random copolymer product of Formula 1m′.
- Step 5 By adding more than one methacrylamide of Formula 1505 in Step 5 (for example, glucose and galactose methacrylamides, or two or more methacrylamides having different values for t) and/or two or more methacrylamides of Formula 1506, and continuing with Step 6, the corresponding product of Formula 1m′ having a mixture of R 3 and/or PEG (“t”) and/or R 10 groups, i.e., compounds of Formula 1 where W is a random copolymer of different W 1 and W 2 groups are obtained.
- t PEG
- compositions corresponding to Formula 1m′ can be named as follows:
- Step 1 a compound of Formula 1601 is contacted with compounds of Formulae 1505 and 1506 under conditions analogous to those of Reaction Scheme 15, Step 5, to afford the corresponding compound of Formula 1602.
- t is an integer from about 1 to about 10 or about 1 to about 5.
- an oligoethylene glycol (1650) is reacted with p-toluenesulfonyl chloride (or some other agent capable of functionalizing 1650 with a leaving group) to form oligoethylene glycol mono p-toluenesulfonate (1651)(or some other oligoethylene glycol functionalized with a leaving group).
- compound 1651 can be reacted with potassium thioacetate to form compound 1652.
- compound 1652 is reacted with 2,2-dithiodipyridine to form compound 1653.
- compound 1653 is coupled to compound 1654 to form compound 1601a.
- Step 2 the compound of Formula 1602 is contacted with a compound of Formula 101′′ under conditions analogous to those of Reaction Scheme 15, Step 6, to afford the corresponding compound of Formula 1c′.
- compositions corresponding to Formula 1c′ can be named as follows:
- Step 1 a compound of Formula 600′ is contacted with compounds of Formulae 1505 and 1506 under conditions analogous to those of Reaction Scheme 15, Step 5, to afford the corresponding compound of Formula 601′.
- Step 2 the compound of Formula 601′ is contacted with a compound of Formula 101′ under conditions analogous to those of Reaction Scheme 15, Step 6, to afford the corresponding compound of Formula 1f′.
- compositions corresponding to Formula 1f′ can be named as follows:
- Step 1 a compound of Formula 700′ is contacted with compounds of Formulae 1505 and 1506 under conditions analogous to those of Reaction Scheme 15, Step 5, to afford the corresponding compound of Formula 701′.
- Step 2 the compound of Formula 701′ is contacted with a compound of Formula 101′ under conditions analogous to those of Reaction Scheme 15, Step 6, to afford the corresponding compound of Formula 1g′.
- compositions corresponding to Formula 1g′ can be named as follows:
- a compound of Formula 103′ is contacted with an excess (corresponding to the value of m) of a compound of Formula 106 to give the corresponding product of Formula 1a.
- a compound of Formula 103′ is contacted with an excess (corresponding to the value of m) of a compound of Formula 201 to give the corresponding product of Formula 1b.
- a compound of Formula 802, 902 or 1002 is contacted with an excess (corresponding to the value of m) of a compound of Formula 803 to give the corresponding product of Formula 1h, Formula 1i or Formula 1k, respectively.
- a compound of Formula 1109 is contacted with an excess (corresponding to the value of m) of a compound of Formula 1107 to give the corresponding product of Formula 1m, particularly where n is about 80, p is about 30, q is about 4, and m being a function of the antigen is about 2 to 10.
- a compound of Formula 1202 is contacted with an excess (corresponding to the value of m) of a compound of Formula 1107 to give the corresponding product of Formula 1n, particularly where n is about 1, p is about 30, q is about 4, and m being a function of the antigen is about 2 to 10.
- a compound of Formula 1507 is contacted with a compound of Formula 1109 to give the corresponding product of Formula 1m′, particularly where n is about 4, p is about 90, q is about 4, t is about 1 or 2, R 3 is NHAc, R 4 is OH, R 8 is CMP, R 10 is 2-hydroxypropyl and m being a function of the antigen is about 1 to 10.
- a compound of Formula 101′′ is contacted with a compound of Formula 1602 to give the corresponding product of Formula 1c′, particularly where n is about 4, p is about 90, t is about 1 or 2, R 3 is NHAc, R 4 is OH, R 8 is CMP, R 10 is 2-hydroxypropyl and m being a function of the antigen is about 1 to 10.
- a compound of Formula 101′ is contacted with a compound of Formula 601′ to give the corresponding product of Formula 1f′, particularly where n is about 4, p is about 90, t is about 1 or 2, R 3 is NHAc, R 4 is OH, R 8 is CMP, R 10 is 2-hydroxypropyl and m being a function of the antigen is about 1 to 10.
- a compound of Formula 101′ is contacted with a compound of Formula 701′ to give the corresponding product of Formula 1g′, particularly where n is about 4, p is about 90, t is about 1 or 2, R 3 is NHAc, R 4 is OH, R 8 is CMP, R 10 is 2-hydroxypropyl and m being a function of the antigen is about 1 to 10.
- compositions, pharmaceutical formulations, methods of manufacture and use of the present disclosure are the following combinations and permutations of substituent groups of Formula 1 (sub-grouped, respectively, in increasing order of preference):
- compositions of the disclosure find use in a variety of applications including, as will be appreciated by those in the art, treatment of transplant rejection, immune response against a therapeutic agent, autoimmune disease, and food allergy, among other uses.
- compositions of the disclosure are used to modulate, particularly down-regulate, antigen-specific undesirable immune response.
- compositions of the disclosure are useful, in additional embodiments, to bind and clear from the circulation specific undesired proteins, including antibodies endogenously generated in a patient (i.e., not exogenous antibodies administered to a patient), peptides and the like, which cause autoimmunity and associated pathologies, allergy, inflammatory immune responses, and anaphylaxis.
- antigens are targeted to the liver for presentation via antigen-presenting cells to specifically down-regulate the immune system or for clearance of unwanted circulating proteins.
- This is distinct from previous uses of liver targeting, for example as described in US 2013/0078216, where the purpose of liver-targeting molecules such as DOM26h-196-61 was the delivery of therapeutic agents to treat liver diseases such as fibrosis, hepatitis, Cirrhosis and liver cancer.
- compositions and methods to treat unwanted immune response to self-antigens and foreign antigens including but not limited to: a foreign transplant antigen against which transplant recipients develop an unwanted immune response (e.g., transplant rejection), a foreign antigen to which patients develop an unwanted immune (e.g., allergic or hypersensitivity) response, a therapeutic agent to which patients develop an unwanted immune response (e.g., hypersensitivity and/or reduced therapeutic activity), a self-antigen to which patients develop an unwanted immune response (e.g., autoimmune disease)
- a foreign transplant antigen against which transplant recipients develop an unwanted immune response e.g., transplant rejection
- a foreign antigen to which patients develop an unwanted immune e.g., allergic or hypersensitivity
- a therapeutic agent to which patients develop an unwanted immune response e.g., hypersensitivity and/or reduced therapeutic activity
- a self-antigen to which patients develop an unwanted immune response e.g., autoimmune disease
- Autoimmune disease states that can be treated using the methods and compositions provided herein include, but are not limited to: Acute Disseminated Encephalomyelitis (ADEM); Acute interstitial allergic nephritis (drug allergies); Acute necrotizing hemorrhagic leukoencephalitis; Addison's Disease; Alopecia areata; Alopecia universalis; Ankylosing Spondylitis; Arthritis, juvenile; Arthritis, psoriatic; Arthritis, rheumatoid; Atopic Dermatitis; Autoimmune aplastic anemia; Autoimmune gastritis; Autoimmune hepatitis; Autoimmune hypophysitis; Autoimmune oophoritis; Autoimmune orchitis; Autoimmune polyendocrine syndrome type 1; Autoimmune polyendocrine syndrome type 2; Autoimmune thyroiditis; Behcet's disease; Bronchiolitis ob
- a particular group of autoimmune disease states that can be treated using the methods and compositions provided herein include, but are not limited to: Acute necrotizing hemorrhagic leukoencephalitis; Addison's Disease; Arthritis, psoriatic; Arthritis, rheumatoid; Autoimmune aplastic anemia; Autoimmune hypophysitis; Autoimmune gastritis; Autoimmune polyendocrine syndrome type 1; Bullous pemphigoid; Celiac disease; Coxsackie myocarditis; Dermatitis herpetiformis Duhring; Diabetes mellitus (Type 1); Epidermolysis bullosa acquisita; Giant cell myocarditis; Goodpasture's syndrome; Graves' disease; Hashimoto's thyroiditis; Mixed connective tissue disease; Multiple sclerosis; Myasthenia gravis; Neuromyelitis optica; Pernicious angemis; Pemphigus vulgaris and variants;
- treatment can be provided for reactions against, for example: peanut, apple, milk, egg whites, egg yolks, mustard, celery, shrimp, wheat (and other cereals), strawberry and banana.
- a patient can be tested to identify a foreign antigen against which an unwanted immune response has developed, and a composition of the disclosure can be developed based on that antigen.
- compositions and methods of the disclosure specificity in binding to antigen-presenting cells in the liver (particularly binding to hepatocytes and specifically ASGPR) should initially be determined. This can be accomplished, for example, by employing a marker (such as the fluorescent marker phycoerythrin (“PE”)) in a composition of the disclosure.
- PE fluorescent marker
- the composition is administered to suitable experimental subjects. Controls, e.g., unconjugated PE or vehicle (saline) are administered to other group(s) of subjects.
- the composition and controls are allowed to circulate for a period of 1 to 5 hours, after which the spleens and livers of the subjects are harvested and measured for fluorescence. The specific cells in which fluorescence is found can be subsequently identified.
- Compositions of the disclosure when tested in this manner, show higher levels of concentration in the antigen-presenting cells of the liver as compared with unconjugated PE or vehicle.
- Effectiveness in immune modulation can be tested by measuring the proliferation of OT-I CD8 + cells (transplanted into host mice) in response to the administration of a composition of the disclosure incorporating a known antigen, such as ovalbumin (“OVA”), as compared with administration of the antigen alone or just vehicle.
- Compositions of the disclosure when tested in this manner, show an increase of OT-I cell proliferation as compared with antigen alone or vehicle, demonstrating increased CD8+ T-cell cross-priming.
- the proliferating OT-I CD8 + T cells can be phenotypically analyzed for molecular signatures of exhaustion [such as programmed death-1 (PD-1), FasL, and others], as well as Annexin-V binding as a hallmark of apoptosis and thus deletion.
- the OT-I CD8 + T cells can also be assessed for their responsiveness to an antigen challenge with adjuvant in order to demonstrate functional non-responsiveness, and thus immune tolerance, towards the antigen. To do so, the cells are analyzed for inflammatory signatures after administration of compositions of the disclosure into host mice followed by an antigen challenge. Compositions of the disclosure when tested in this manner demonstrate very low (e.g., background) levels of inflammatory OT-I CD8 + T cell responses towards OVA in comparison to control groups, thus demonstrating immune tolerance.
- Humoral immune response can be tested by administering a composition of the disclosure incorporating a known antigen, such as OVA, as compared with the administration of the antigen alone or just vehicle, and measuring the levels of resulting antibodies.
- Compositions of the disclosure when tested in this manner show very low (e.g., background) levels of antibody formation responsive to their administration and the administration of vehicle, with significantly higher levels of antibody formation responsive to administration of the antigen.
- Effectiveness in tolerization against an antigen can be tested as above with reference to humoral immune response, where several weeks following treatment(s) with a composition of the disclosure a group of subjects is challenged by administration of the antigen alone, followed by measuring the levels of antibodies to the antigen.
- Compositions of the disclosure when tested in this manner show low levels of antibody formation responsive to challenge with the antigen in groups pretreated with such compositions as compared to groups that are not pretreated.
- NOD non-obese diabetic
- EAE experimental autoimmune encephalomyelitis
- the NOD mouse develops spontaneous autoimmune diabetes (similar to type 1a diabetes in humans).
- Groups of NOD mice are treated with test compound or a negative control, followed by measurement of blood glucose.
- Successful treatment corresponds to likelihood of treating diabetes in humans or proof of mechanism for approaches to the treatment of other autoimmune diseases. (See, e.g., Anderson and Bluestone, Annu. Rev. Immunol. 2005; 23:447-85.)
- compositions of the disclosure are administered at a therapeutically effective dosage, e.g., a dosage sufficient to provide treatment for the disease states previously described.
- Administration of the compounds of the disclosure or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration for agents that serve similar utilities.
- an individual human dose is from about 0.01 to 2.0 mg/kg of body weight, preferably about 0.1 to 1.5 mg/kg of body weight, and most preferably about 0.3 to 1.0 mg/kg of body weight.
- Treatment can be administered for a single day or a period of days, and can be repeated at intervals of several days, one or several weeks, or one or several months. Administration can be as a single dose (e.g., as a bolus) or as an initial bolus followed by continuous infusion of the remaining portion of a complete dose over time, e.g., 1 to 7 days.
- the amount of active compound administered will, of course, be dependent on any or all of the following: the subject and disease state being treated, the severity of the affliction, the manner and schedule of administration and the judgment of the prescribing physician. It will also be appreciated that amounts administered will depend upon the molecular weight of the antigen, antibody, antibody fragment or ligand as well as the size of the linker.
- compositions of the disclosure can be administered either alone or in combination with other pharmaceutically acceptable excipients. While all typical routes of administration are contemplated (e.g. oral, topical, transdermal, injection (intramuscular, intravenous, or intra-arterial)), it is presently preferred to provide liquid dosage forms suitable for injection.
- the formulations will typically include a conventional pharmaceutical carrier or excipient and a composition of the disclosure or a pharmaceutically acceptable salt thereof.
- compositions can include other medicinal agents, pharmaceutical agents, carriers, and the like, including, but not limited to the therapeutic protein, peptide, antibody or antibody-like molecule corresponding to the antigen (X) employed in the composition of the disclosure, and other active agents that can act as immune-modulating agents and more specifically can have inhibitory effects on B-cells, including anti-folates, immune suppressants, cyostatics, mitotic inhibitors, and anti-metabolites, or combinations thereof.
- active agents that can act as immune-modulating agents and more specifically can have inhibitory effects on B-cells, including anti-folates, immune suppressants, cyostatics, mitotic inhibitors, and anti-metabolites, or combinations thereof.
- the pharmaceutically acceptable composition will contain about 0.1% to 95%, preferably about 0.5% to 50%, by weight of a composition of the disclosure, the remainder being suitable pharmaceutical excipients, carriers, etc. Dosage forms or compositions containing active ingredient in the range of 0.005% to 95% with the balance made up from non-toxic carrier can be prepared.
- Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. an active composition of the disclosure (e.g., a lyophilized powder) and optional pharmaceutical adjuvants in a carrier, such as, for example, water (water for injection), saline, aqueous dextrose, glycerol, glycols, ethanol or the like (excluding galactoses), to thereby form a solution or suspension.
- a carrier such as, for example, water (water for injection), saline, aqueous dextrose, glycerol, glycols, ethanol or the like (excluding galactoses)
- the pharmaceutical composition to be administered can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, stabilizing agents, solubilizing agents, pH buffering agents and the like, for example, sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate and triethanolamine oleate, etc., osmolytes, amino acids, sugars and carbohydrates, proteins and polymers, salts, surfactants, chelators and antioxidants, preservatives, and specific ligands.
- auxiliary substances such as wetting agents, emulsifying agents, stabilizing agents, solubilizing agents, pH buffering agents and the like, for example, sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate and triethanolamine oleate, etc., osmolytes, amino acids, sugars and carbohydrates, proteins and polymers, salts, surfactants,
- F1aA-OVA-m 4 -n 80 (or F1a-OVA-m 4 -n 80 -2NGAL)
- galactosamine (10.0 mg, 0.04638 mmol) was dissolved with stirring in 100 ⁇ l of pH 8.0 PBS containing 5 mM EDTA.
- Pyridyl dithiol-poly(ethylene glycol)-NHS ester (Formula 104 where n is 80) (16.23 mg, 0.00464 mmol) dissolved in 100 ⁇ l of pH 7.0 PBS was added to the stirring solution of galactosamine. After 1 hour, the resulting pyridyl dithiol-poly(ethylene glycol)-N-acetylgalactosamine (Formula 106A) was ready to be used without further purification.
- the purified OVA-Traut conjugate of Formula 103′ prepared in Example 1A was added directly to the stirring product of Formula 106A prepared in Example 1B. After 1 hour, the resulting product of Formula 1a was purified by passing the reaction mixture through a centrifugal size exclusion column. Characterization (UHPLC SEC, gel electrophoresis) confirmed product identity. (See FIG. 5 .)
- poly(Galactosamine Methacrylate)-(pyridyl disulfide) (Formula 201) (20.0 mg, 0.0020 mmol) was solubilized in 50 ⁇ l of pH 8.0 PBS containing 5 mM EDTA. To this was added the purified OVA-Traut product from Example 2A followed by stirring for 1 hour. The resulting product of Formula 1b was purified by passing the reaction mixture through a centrifugal size exclusion column. Characterization (UHPLC SEC, gel electrophoresis) confirmed the identity of the product. (See FIG. 5 .)
- OVA 5.0 mg, 0.000119048 mmol
- 0.2 ml of pH 7.4 PBS 75 mg (0.00297619 mmol) of Poly(Galactosamine Methacrylate)-NHS (Formula 701) dissolved in 0.4 ml of pH 7.4 PBS.
- the mixture was allowed to stir for 2 hours.
- the mixture was then collected and dialyzed for 3 days against pH 7.4 PBS (30 kDa molecular weight cut off) to afford the product of Formula 1g.
- OVA 3.0 mg, 0.0000714286 mmol
- Dibenzocyclooctyne-PEG-(p-nitrophenyl carbonate) (Formula 801) 5.265 mg, 0.002142857 mmol
- the excess dibenzocyclooctyne-PEG-(p-nitrophenyl carbonate) was removed using a centrifugal size exclusion column to afford the product of Formula 802′.
- Poly(Galactosamine Methacrylate)-N3 (Formula 803 where p is 55, q is 4 and Z′′ is N-acetylgalactosamine) (33 mg, 0.002142857 mmol) was dissolved in 100 ⁇ l of pH 7.4 PBS and added to the product of Example 5A with stirring. After 1 hour, the resulting product of Formula 1h was purified by centrifugal size exclusion chromatography.
- OVA 5.0 mg, 0.00019 mmol
- 1 mg of Taut's Reagent was dissolved in 100 ⁇ l of pH 7.0 PBS, and 16 ⁇ l (0.0019 mmol) of the Traut's Reagent solution so obtained was added to the stirred solution of OVA with continued stirring. After 1 hour, non-reacted Traut's Reagent was removed using a centrifugal size exclusion column to afford the product of Formula 103′.
- Dibenzocyclooctyne-PEG-(pyridyl disulfide) (Formula 901 where n is 45) (6.0 mg, 0.00238 mmol) was dissolved in DMF and the resulting solution was added to the OVA solution obtained in Example 6A and stirred for 1 hour. The excess dibenzocyclooctyne-PEG-(pyridyl disulfide) was removed using centrifugal size exclusion chromatography to afford the product of Formula 902′′.
- Poly(Galactosamine Methacrylate)-N3 (Formula 803 where p is 55, q is 4 and Z′′ is N-acetylgalactosamine) (36 mg, 0.00238 mmol) was dissolved in 150 ⁇ l of pH 7.4 PBS and added to the product of Example 6B with stirring. After 1 hour, the resulting product of Formula 1j was purified (excess p(GMA)-N3 removed) by centrifugal size exclusion chromatography. Characterization (UHPLC SEC, gel electrophoresis) confirmed the identity of the product.
- Dibenzocyclooctyne-PEG-(pyridyl disulfide) (Formula 1001 where n is 80) (9.0 mg, 0.00238 mmol) was dissolved in DMF and the resulting solution was added to a purified OVA solution of Formula 103′ (where X′ is Ovalbumin and m is 2), for example prepared as described in Example 6A and stirred for 1 hour.
- the excess dibenzocyclooctyne-PEG-(pyridyl disulfide) was removed using centrifugal size exclusion chromatography to afford the product of Formula 1002.
- Poly(Galactosamine Methacrylate)-N3 (Formula 803 where p is 55, q is 4 and Z′′ is N-Acetylgalactosamine) (36 mg, 0.00238 mmol) was dissolved in 150 ⁇ l of pH 7.4 PBS and added to the product of Example 7A with stirring. After 1 hour, the resulting product of Formula 1L was purified (excess poly(Galactosamine Methacrylate)-N3 removed) by centrifugal size exclusion chromatography. Characterization (UHPLC SEC, gel electrophoresis) confirmed the identity of the product.
- phycoerythrin purchased from Pierce
- 200 ⁇ l, 0.000004 mmol was added to 50 ⁇ l of pH 8.0 PBS containing 5 mM EDTA and stirred.
- 1 mg of Taut's Reagent was dissolved in 100 ⁇ l of pH 7.0 PBS, and 2 ⁇ l (0.00013 mmol) of the Traut's Reagent solution so obtained was added to the stirred solution of PE with continued stirring. After 1 hour, excess Traut's Reagent was removed using a centrifugal size exclusion column to afford the product of Formula 103′.
- galactosamine 7.0 mg, 0.03246 mmol
- pH 8.0 PBS pH 8.0 PBS containing 5 mM EDTA
- Pyridyl dithiol-poly(ethylene glycol)-NHS ester (Formula 104 where n is 80) (16.23 mg, 0.00464 mmol) dissolved in 50 ⁇ l of pH 7.0 PBS was added to the stirring solution of galactosamine. After 1 hour, the resulting product of Formula 106A was ready to be used without further purification.
- Example 9A The purified PE-Traut conjugates prepared in Example 9A were added directly to the stirring product of Formula 106A prepared in Example 9B. After 1 hour, the resulting product of Formula 1a was purified by passing the reaction mixture through a centrifugal size exclusion column. Characterization (UHPLC SEC, gel electrophoresis) confirmed the identity of the product.
- F1aA-PE-m 3 -n 80 was prepared, for example, as described in Example 9.
- a 30 ⁇ g/100 ⁇ l solution in sterile saline was prepared for injection.
- the F1aA-PE-m 3 -n 80 solution (30 ⁇ g) was administered to one of three groups of C57 black 6 mice 3 per group) via tail vein injection.
- the two other groups of mice received an equivalent volume of phycoerythrin in 100 ⁇ l of saline or saline vehicle.
- the livers and spleens of these animals were harvested and the level of cellular fluorescents in these organs was determined by flow cytometry as an indication of cellular PE content.
- sinusoidal endothelial cells (LSECs) (1A), hepatocytes (1C), kupffer cells (KC) (1B), and other antigen-presenting cells (APCs) (1 D) from the livers of mice treated with F1aA-PE-m 3 -n 80 exhibited at least a three-fold increase in fluorescence as compared with animals that received PE solution. No detectible difference in fluorescence was found in spleen cells harvested from the three groups. These results confirm that F1aA-PE-m 3 -n 80 has sufficient specificity for binding to antigen-presenting cells in the liver.
- 106 OT-I T cells were fluorescently labeled and adoptively transferred into 3 groups of CD 45.2 mice (5 per group) via tail vein injection.
- the next day (i.e. Day 1) to each of the 3 groups of mice were administered, respectively, 10 ⁇ g of F1aA-OVA-m 4 -n 80 , OVA or saline via tail vein injection.
- the animals were sacrificed and the % of splenic proliferating OT-I cells was determined via florescence activated cell sorting.
- F1aA-OVA-m 4 -n 8 does not Induce an OVA-Specific Antibody Response
- mice were administered an i.v. injection of 100 ⁇ l of saline containing one of the following: 1.) 6 ⁇ g of OVA; 2.) 6 ⁇ g of F1aA-OVA-m 4 -n 8 ; 3.) 30 ⁇ g of OVA; 4.) 30 ⁇ g of F1aA-OVA-m 4 -n 8 , or 5.) saline alone. Each group contained 5 mice.
- mice were bled via cheek puncture, and the titer of OVA-specific antibodies in each mouse's blood was determined via ELISA.
- the results for this study show that although mice treated with 6 and 30 ⁇ g of OVA had increased OVA-specific antibody titers, mice treated with both 6 and 30 ⁇ g of F1aA-OVA-m 4 -n 8 (“Gal-OVA” in FIG. 4 ) had blood titers similar to mice treated with saline (i.e. vehicle treated animals) ( FIG. 4 ).
- mice treated with 6 and 30 ⁇ g of OVA had an average antibody titer of 3.5 and 2.5, respectively; whereas, mice treated with 6 and 30 ⁇ g of OVA had an average antibody titer of 0.75 and 0.25, respectively.
- mice treated with the compounds from Examples 3A, 4A, 5B, 6C, 7B and 15G have OVA-specific antibody titers similar to mice treated with saline.
- mice treated with the compounds from Examples 1E, 1 G, 2C, 15I, 15L, 16B, 16D and 16F have antigen X-specific antibody titers similar to mice treated with saline.
- F1aA-OVA-m 4 -n 8 Depletes OVA-Specific Antibodies
- mice that had different OVA-antibody blood titers were treated with an i.v. injection of 20 ⁇ g of F1aA-OVA-m 4 -n 8 solubilized in 100 ⁇ l saline.
- Mice were given i.v. injections of F1aA-OVA-m 4 -n 8 on days 0, 5, 7, 12, and 14 (Injections of F1aA-OVA-m 4 -n 8 are labeled as “Gal-OVA” and shown as green arrows on the x-axis of FIG. 5 ).
- mice were bled on day ⁇ 1 to establish an initial antibody titer and then subsequent bleeds were carried out after each injection of F1aA-OVA-m 4 -n 8 on days 2, 6, 9. 13, and 16.
- the antibody titer for each mouse was determined via ELISA.
- the results from this study show that F1aA-OVA-m 4 -n 8 is able to deplete serum antibody levels in mice. For example, one day after the first F1aA-OVA-m 4 -n 8 injection (i.e.
- mice with positive OVA-antibody titers experience a 5 to 100-fold decrease in serum antibody levels ( FIG. 5 ).
- FIG. 5 results show that although over the course of the 19 day experiment, antibody titers did increase for certain mice, the titer levels never reached the initial antibody titer measured on Day ⁇ 1 and subsequent doses of F1aA-OVA-m 4 -n 8 were effective in reducing these transient increases in antibody titers.
- F1aA-OVA-m 4 -n 8 has the specificity to bind serum OVA-specific antibodies and the kinetics required to deplete OVA-specific serum antibodies.
- Example 13B By following the procedure described in Example 13A and substituting F1aA-OVA-m 4 -n 8 with the compounds of Formula 1 obtained, for example, as described in Examples 3A, 4A, 5B, 6C, 7B and 15G, it is shown that the compounds from Examples 3A, 4A, 5B, 6C, 7B and 15G have the specificity to bind serum OVA-specific antibodies and the kinetics required to deplete OVA-specific serum antibodies.
- Example 130 By following the procedure described in Example 13A and substituting F1aA-OVA-m 4 -n 8 with the compounds of Formula 1 obtained, for example, as described in Examples 1E, 1G, 2C, 10D, 15I, 15L, 16B, 16D and 16F, and substituting OVA with the antigens corresponding to X (or X′ or X′′), respectively, it is shown that the compounds from Examples 1E, 1G, 2C, 15I, 15L, 16B, 16D and 16F have the specificity to bind serum antigen X-specific antibodies and the kinetics required to deplete antigen X-specific serum antibodies.
- FIGS. 14B Intravenous administration of F1aA-OVA-m 4 -n 8 and F1b-OVA-m 1 -n 4 -p 34 resulted in profound reductions in OTI CD8 + T cell populations in the draining lymph nodes as compared to mice treated with unmodified OVA prior to antigen challenge with LPS, demonstrating deletional tolerance.
- FIGS. 14B Intravenous administration of F1aA-OVA-m 4 -n 8 and F1b-OVA-m 1 -n 4 -p 34 resulted in profound reductions in OTI CD8 + T cell populations in the draining lymph nodes as compared to mice treated with unmodified OVA prior to antigen challenge with LPS, demonstrating deletional tolerance.
- FIG. 6 A- 6 F show that the draining lymph nodes from mice treated with either F1aA-OVA-m 4 -n 8 (mGal-OVA) and F1b-OVA-m 1 -n 4 -p 34 (pGal-OVA) contained over 9-fold fewer OTI CD8 + T cells as compared to OVA-treated mice, and more than 43-fold fewer than the challenge control mice that did not receive intravenous injections of antigen; responses in spleen cells were similar.
- F1aA-OVA-m 4 -n 8 mGal-OVA
- pGal-OVA F1b-OVA-m 1 -n 4 -p 34
- FIG. 7 shows characterization of F1aA-OVA-m 4 -n 80 and F1b-OVA-m 1 -n 44 -p 34 .
- N-Acetyl-D-galactosamine (Formula 1101 where R 3 is NHAc and R 4 is OH) (5g, 22.6 mmol) was added to a stirred solution of chloroethanol (200 ml) at room temperature. The solution was cooled to 4° C. and acetylchloride was added drop-wise to the solution. The solution was brought to room temperature and then heated to 70° C. After 4 hours, the unreacted choroethanol was removed under reduced pressure. 100 ml of ethanol was added to the crude product and the resulting solution was stirred in the presence of carbon for 2 hours. The solution was filtered, and the solvent was removed under reduced pressure. The corresponding product of Formula 1102, N-(2-(2-chloroethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide, was used without further purification.
- N-(2-(2-chloroethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide prepared in Example 15A (2g, 7.4 mmol) was added to a stirred solution of DMF (100 ml) and sodium azide (4g, 61.5 mmol). The solution was headed at 90° C. for 12 hours and then filtered. The residual solvent was removed under reduced pressure and the crude product was purified via flash chromatography (10% MeOH in dichloromethane) to give the corresponding product of Formula 1103, N-(2-(2-azidoethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide.
- Ovalbumin (5 mg, 0.00012 mmol) was added to 100 ⁇ l of sodium phosphate buffer (pH 8.0) and stirred. To this solution was added 5 mg of the compound of Formula 1108 where n is 80. After 1 hour, the unreacted compound of Formula 1108 was removed from the solution via centrifugal size-exclusion chromatography. The resulting buffered solution containing the corresponding product of Formula 1109 was used in the next reaction without further purification.
- Example 15F The solution prepared in Example 15F was added to 100 ⁇ l of sodium phosphate buffer (pH 8.0) which contained 10 mg of the product of Formula 1107 prepared in Example 15E. The reaction was allowed to stir for 2 hours and then the excess Formula 1107 was removed via centrifugal size exclusion chromatography to afford the corresponding isomeric product of Formula 1m in solution, which was used in biological studies without further purification.
- the R 3 substituent is shown in the name of the title compound as 2NHAc.
- Example 15E By following the procedure described in Example 15A and substituting the N-acetyl-D-galactosamine with galactose, and following through to the procedure described in Example 15E except using an azide-modified uRAFT agent of Formula 1106 where q is 8, there is obtained the compound of Formula 1107 where p is 30, q is 8, R 3 is OH, R 4 is OH and R 8 is CMP.
- Recombinant human insulin (5 mg) was added to 100 ⁇ l of DMF containing 10 ⁇ l of triethylamine and stirred until the insulin became soluble.
- 10 mg (0.0161 mmol) of a linker precursor of Formula 1201 where n is 1 was added to this solution.
- 1.3 ml of tert-butyl methyl ether was added to isolate the corresponding product of Formula 1202, which was recovered as the precipitate.
- Residual DMF and tert-butyl methyl ether were removed under reduced pressure. Characterization via liquid chromatography, mass spectroscopy and polyacrylamide gel electrophoresis confirmed the identity of the product.
- the modified insulin product of Formula 1202 was used without further purification.
- the product of Formula 1202 obtained in Example 16A was resuspended in 100 ⁇ l of DMF.
- the polymer product of Formula 1107 obtained in Example 15E (10 mg) was added and the reaction was allowed to stir for 1 hour. After 1 hour, the reaction products were precipitated via the addition of dichloromethane (1.3 ml).
- the product was filtered and the residual solvent was removed under reduced pressure.
- the crude product was then resuspended in 500 ⁇ l of PBS, and the low molecular weight components were removed via centrifugal size exclusion chromatography to afford the corresponding isomeric product of Formula 1n. Characterization via liquid chromatography, mass spectroscopy and polyacrylamide gel electrophoresis confirmed the identity of the product.
- the modified insulin product of Formula 1202 was used without further purification.
- N-Acetyl-D-glucosamine (Formula 1101 where R 3 is NHAc and R 4 is OH) (5.0 g, 22.6 mmol) was added to a stirred solution of 2-(2-chloroethoxy)ethan-1-ol (50 ml) at room temperature. The solution was cooled to 4° C. and acetylchloride was added drop-wise to the solution. The solution was brought to room temperature and then heated to 70° C. After 4 hours, the reaction mixture was added to 200 ml of ethyl acetate. The precipitate that formed was collected, added to 100 ml of ethanol and stirred in the presence of carbon for 2 hours. The solution was filtered, and the solvent was removed under reduced pressure. The corresponding product of Formula 1502, N-acetyl-D-glucosamine-2-(chloroethoxy)ethanol, was used without further purification.
- N-Acetyl-D-glucosamine-2-(chloroethoxy)ethanol (2.0 g, 6.11 mmol) was added to a stirred solution of DMF (100 ml) and sodium azide (4.0 g, 61.5 mmol). The solution was headed at 90° C. for 12 hours and then filtered. The residual solvent was removed under reduced pressure and the crude product was purified via flash chromatography (10% MeOH in dichloromethane) to give the corresponding product of Formula 1503, N-acetyl-D-glucosamine-2-(azideoethoxy)ethanol.
- N-Acetyl-D-glucosamine-2-(azideoethoxy)ethanol (2.0 g, 5.9 mmol) was added to a solution of palladium on carbon and ethanol (50 ml). The solution was stirred under hydrogen gas (3 atm) for 4 hours. The resulting solution was filtered and the residual solvent was removed under reduced pressure to afford the corresponding product of Formula 1504, N-acetyl-D-glucosamine-2-(amineoethoxy)ethanol.
- N-Acetyl-D-glucosamine-2-(amineoethoxy)ethanol 1.0 g, 3.25 mmol was added to a solution of methacrylate anhydride (0.583 g, 3.78 mmol) in DMF (50 ml). Triethylamine was then added to the solution and the reaction was stirred for 2 hours at room temperature.
- a 25 ml Schlenk flask was charged with a compound of Formula 1505, the product of Example 17D (272 mg, 0.72 mmol), N-(2-hydroxypropyl)methacrylamide (“HPMA”, used as received from the manufacturer) (211 mg, 1.47 mmol), an azide-modified uRAFT agent of Formula 1106 where q is 4 and R 8 is CMP (10.41 mg, 0.0217 mmol), azobis(isobutyronitril) (0.98 mg, 0.005 mmol), and 1.2 ml dimethylformamide.
- the reaction mixture was subjected to four freeze-pump-thaw degassing cycles and then stirred at 70° C. for 20 hours.
- the corresponding random polymeric product of Formula 1507 was recovered by precipitating the reaction mixture in acetone. Excess acetone was removed at reduced pressure to provide the random polymeric product, which was used without further purification.
- Example 17E By following the procedure of Example 17E and substituting the compound of Formula 1505 where t is 1 with 0.36 mmol each of Formula 1505 where t is 2 and 4, (prepared, for example, as described in Example 17F by following the procedures of Examples 17A through 17D) there is obtained the corresponding random copolymer of Formula 1507 having about 15 W 1 groups where t is 2, 15 W 1 groups where t is 4 and 60 W 2 groups.
- Example 17E By following the procedure of Example 17E and substituting the compound of Formula 1505 with 0.36 mmol each of glucosyl and galactosyl Formula 1505 (prepared, for example, as described in Example 17D and in Example 17F by following the procedures of Examples 17A through 17D) there is obtained the corresponding random copolymer of Formula 1507 having about 15 glucosyl W 1 groups, 15 galactosyl W 1 groups and 60 W 2 groups.
- Acetyl chloride (4.35 mL, 61.05 mmol) was added dropwise to the ice-cold solution of NHAc protected D-Galactosamine (10.0 g) in 2-(2′-Chloroethoxy)ethanol (40 mL). The mixture was stirred for 15 minutes at 4° C. and then was transferred to the oil bath at 70° C. The reaction was left mixing under cooling condenser for 4 hours. After that time, a dark brown solution was cooled down and poured into 400 mL solution of ethyl acetate and dichloromethane (3:1, v/v) in order to get rid of an excess of unreacted chloroethanol.
- a compound (1502.1A) (5.0 g) was dissolved in 20 mL of N,N-dimethylformamide. To that solution, sodium azide (26628-22-8) was added (5.0 g). The suspension was placed in an oil bath and stirred over night at 80° C. After the night, the reaction mixture was filtered off through Celite. The solvent was then evaporated under high pressure to provide an oily, brown substance. Final product was purified via flash chromatography (82.2% yield).
- a compound (1504.1C) (4.5 g) was dissolved in 10 mL of N,N-dimethylformamide. To that solution, triethylamine (3 mL) was added and the mixture was cooled down to 4° C. Subsequently, pentafluorophenyl methacrylate (13642-97-2) (4.38 mL) was added drop-wise with constant stirring. After 30 minutes, ice-bath was removed and the reaction was allowed to stir at room temperature for the next 4 hours. Next, the solvent was evaporated and the residual was adsorbed on silica gel.
- ⁇ -NAc-Glactosamine-amine-methacrylate e.g., 1505.1 D
- the ⁇ -NAc-Glucosamine-amine-methacrylate monomer e.g., 1505.2D
- a is an integer between about 0 to about 150, about 1 to about 100, about 1 to about 50, about 1 to about 10, or about 1 to about 5.
- b is an integer between about 0 to about 150, about 1 to about 100, about 1 to about 50, about 1 to about 10, or about 1 to about 5.
- Acetyl chloride (75-36-5) (4.35 mL, 61.05 mmol) was added dropwise to the ice-cold solution of D-Glucosamine (7512-17-6) (10.0 g) in 2-(2′-Chloroethoxy)ethanol (628-89-7) (40 mL). The mixture was stirred for 15 minutes at 4° C. and then was transferred to the oil bath at 70° C. The reaction was left mixing under cooling condenser for 4 hours. After that time, a dark brown solution was cooled down and poured into 400 mL solution of ethyl acetate and dichloromethane (3:1, v/v) in order to get rid of an excess of unreacted chloroethanol.
- a compound (1502.2A) (5.0 g) was dissolved in 20 mL of N,N-dimethylformamide. To that solution, sodium azide (26628-22-8) was added (5.0 g). The suspension was placed in an oil bath and stirred over night at 80° C. After the night, the reaction mixture was filtered off through Celite. The solvent was then evaporated under high pressure to provide an oily, brown substance. The final product 1503.2B was purified via flash chromatography (75.4% yield).
- Example 1109 solution obtained in Example 18A was then added to Formula 1507 as obtained in Example 17E (20 mg) in an endotoxin-free tube and stirred at room temperature to afford the corresponding product of Formula 1m′ (“F1m′-OVA-m 1-3 -n 9 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 ”), which was purified from the reaction mixture via fast protein liquid chromatography (FPLC) using a Superdex 200 prep grade column and used without further purification.
- FPLC fast protein liquid chromatography
- Example 18B By following the procedure of Example 18B and substituting the galactosyl compound of Formula 1507 as obtained in Example 17F there was obtained the corresponding galactosyl compound of Formula 1m′ (“F1m′-OVA-m 1-3 -n 9 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 ”).
- the reaction mixture was subjected to four freeze-pump-thaw degassing cycles then stirred at 70° C. for 20 hours.
- the corresponding random polymeric product of Formula 1602 (having about 30 W 1 groups and about 60 W 2 groups) was recovered by precipitating the reaction mixture in acetone. Excess acetone was removed at reduced pressure to provide the random polymeric product, which was used without further purification.
- the Formula 1602 solution obtained in Example 19A (20 mg) was suspended in 200 ⁇ l of dimethylformamide and added to an endotoxin-free tube containing Insulin-B (1 mg) and stirred at room temperature for 3 hours to afford the corresponding product of Formula 1c′ (“F1c′-Insulin-B-m 1 -n 4 -p 90 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 ”).
- the reaction mixture was then precipitated in acetone and purified from the reaction mixture via fast protein liquid chromatography (FPLC) using a Superdex 200 prep grade column and used without further purification.
- FPLC fast protein liquid chromatography
- F1aA-OVA-m 4 -n 8 and F1b-OVA-m 1 -n 4 -p 34 mitigated an OVA-specific immune response after adjuvented OVA challenge.
- mice were i.v.
- mice were challenged with 5 ⁇ g of OVA and 25 ng of ultrapure E. coli LPS (InvivoGen) in 25 ⁇ L of saline injected intradermally into each rear leg pad (Hock method: total dose of 10 ⁇ g of OVA and 50 ng of LPS).
- Mice were sacrificed 4 days following challenge, and spleen and draining lymph node cells were isolated for restimulation.
- For flow cytometry analysis of intracellular cytokines cells were restimulated in the presence of 1 mg/mL OVA or 1 ⁇ g/mL SIINFEKL peptide (Genscript) for 3 h.
- Brefeldin-A (5 ⁇ g/mL; Sigma) was added, and restimulation was resumed for an additional 3 h before staining and flow cytometry analysis.
- FIGS. 8 A- 8 B the administration of OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) resulted in significant reduction in the percentages of OT-I cells (out of the total CD8+ T-cell population) and OT-II cells (out of the total CD4+ T-cell population).
- FIG. 8 A shows that OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) administration significantly reduced OT-I cells as compared to mice receiving repeat administrations of OVA alone (e.g., unconjugated). Reduction was even greater when compared to mice receiving only OVA and LPS challenge (e.g., that received saline injections).
- OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) reduced OT-I cell levels to levels not significantly different from na ⁇ ve mice.
- OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) administration resulted in significant reduction in OT-II cells as compared to mice receiving unconjugated OVA or challenge alone.
- OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) resulted in significant increases in antigen-specific regulatory T-cells in the lymph node and spleen of mice.
- treatment with either of these conjugates induced significant increases in CD25+/FoxP3+ cells in the lymph node.
- FIG. 9 B shows significant increases (vs. na ⁇ ve, challenge (saline alone), and OVA treated animals) in CD25+/FoxP3+ OT-II cells.
- mice receiving only saline pre-challenge have approximately 60% of the total OTI cells expressing IFN ⁇ .
- OVA-treated mice have about 40% IFN ⁇ -expressing cells.
- the OTI cells of OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA)-treated mice have less than 20% IFN ⁇ positive cells.
- Example 20C By following the procedures described in Example 20A or 20B and substituting the tested OVA compositions with other compositions of Formula 1 followed by challenge with the unconjugated antigen X, the treated animals demonstrate a tolerance to the specific antigen X.
- Example 20 Using the model of Example 20, additionally with OTII cells (which are CD4 + T cells from CD45.2 + mice, analogous to the CD8 + T cell OTI cells), the ability of F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 [“OVA-p(Gal-HPMA)”] and F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 [“OVA-p(Glu-HPMA)”] to induce T regulatory responses and prevent subsequent responses to vaccine-mediated antigen challenge were demonstrated, moreover using different dosing regimens.
- OTII cells which are CD4 + T cells from CD45.2 + mice, analogous to the CD8 + T cell OTI cells
- pGal-OVA and pGlu-OVA were each administered in other groups at the same dosings of 2.5 ⁇ g at day 1, 2.5 ⁇ g at day 4, and 16 ⁇ g at day 7 or 7 ⁇ g at day 1, 7 ⁇ g at day 4, and 7 ⁇ g at day 7, all doses being on an OVA equivalent dose basis.
- saline was administered on the same days.
- the recipient mice were then challenged with OVA (10 ⁇ g) adjuvanted with lipopolysaccharide (50 ng) by intradermal injection. Characterization of the draining lymph nodes was done on day 19, to allow determination as to whether or not deletion actually took place and whether regulatory T cells were induced from the adoptively transferred cells.
- the number of T regulatory cells was statistically higher with the 2.5 ⁇ g/2.5 ⁇ g/16 ⁇ g dosing regimen compared to the 7 ⁇ g/7 ⁇ g/7 ⁇ g dosing regimen, with both OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) treatment.
- CD4+ T-cells of the transgenic NOD-BDC2.5 mice express the diabetogenic BDC-2.5 specific regulatory T-cell receptor (TCR).
- BDC2.5 T-cells specifically target the islet beta-cell autoantigen, chromagranin-A.
- T-cells were isolated from the spleens of transgenic NOD-BDC2.5 mice and cultured for 4 days in DMEM supplemented with 10% (vol/vol) FBS, 0.05 mM p-mercaptoethanol, 1% puromycin/streptomycin, and 0.5 ⁇ M P31 peptide, a mimetope of islet beta-cell autoantigen chromagranin-A that stimulates T-cells expressing the BDC2.5 T-cell receptor.
- mice were i.v. injected into normoglycemic NOD/ShiLtJ mice. At 8 h and 3 days after adoptive transfer, mice were i.v.
- mice were euthanized.
- the data resulting from this experiment is shown in the time course of FIG. 13 .
- the mice receiving saline developed diabetic blood glucose levels within 4-8 days of adoptive transfer.
- mice receiving P31 (unconjugated) developed diabetic blood glucose levels within about 7-10 days after transfer.
- mice receiving F1c′-P31-m 1 -n 4 -p 90 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 or F1c′-P31-m 1 -n 4 -p 90 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 maintained relatively steady blood glucose values ( ⁇ 200 mg/dl) for over 40 days.
- X is Insulin-B or proinsulin, preproinsulin, glutamic acid decarboxylase-65 (GAD-65 or glutamate decarboxylase 2), GAD-67, glucose-6 phosphatase 2 (IGRP or islet-specific glucose 6 phosphatase catalytic subunit related protein), insulinoma-associated protein 2 (IA-2), and insulinoma-associated protein 2 ⁇ (IA-2 ⁇ ), ICA69, ICA12 (SOX-13), carboxypeptidase H, Imogen 38, GLIMA 38, chromogranin-A, HSP-60, caboxypeptidase E, peripherin, glucose transporter 2, hepatocarcinoma-intestine-pancreas/pancreatic associated protein, S100p, glial fibrillary acidic protein, regenerating gene II, pancreatic duodenal homeobox 1, dystrophia myo
- Non-obese diabetic (NOD) mice such as NOD/ShiLt mice are susceptible to the spontaneous onset of autoimmune diabetes mellitus, which is the result of an autoimmune response to various pancreatic auto-antigens. Diabetes develops in NOD mice as a result of insulitis, characterized by the infiltration of various leukocytes into the pancreatic islets. As diabetes develops, there is a leukocytic infiltration of the pancreatic islets followed by significant decreases in insulin production, and corresponding increases in blood glucose levels.
- compositions and methods for the treatment being provided in the present disclosure starting at 5 weeks of age diabetes onset in a cohort of NOD/ShiLt mice was monitored on a weekly basis by measuring nonfasting blood glucose levels using an AccuCheck Aviva glucometer (Roche).
- the injections continued for 10 consecutive weeks.
- the percentage of diabetes free animals was measured over time. Mice were considered diabetic at two consecutive blood glucose readings ⁇ 300 mg/dL or one blood glucose readings ⁇ 450 mg/dL. Mice deemed diabetic were euthanized.
- FIG. 14 depicts the data obtained as described above as the percentage of diabetes free animals as measured over time.
- Mice treated with F1c′-Insulin-B-m 1 -n 4 -p 90 -CMP-poly-(EtPEG 1 AcN-1NAcGLU 30 -ran-HPMA 60 are shown as filled squares.
- Mice treated with F1c′-Insulin-B-m 1 -n 4 -p 90 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 are shown as filled triangles.
- Mice treated with saline are shown as filled diamonds.
- X is Insulin-B or proinsulin, preproinsulin, glutamic acid decarboxylase-65 (GAD-65 or glutamate decarboxylase 2), GAD-67, glucose-6 phosphatase 2 (IGRP or islet-specific glucose 6 phosphatase catalytic subunit related protein), insulinoma-associated protein 2 (IA-2), and insulinoma-associated protein 2 ⁇ (IA-2 ⁇ ), ICA69, ICA12 (SOX-13), carboxypeptidase H, Imogen 38, GLIMA 38, chromogranin-A, HSP-60, caboxypeptidase E, peripherin, glucose transporter 2, hepatocarcinoma-intestine-pancreas/pancreatic associated protein, S100p, glial fibrillary acidic protein, regenerating gene 11, pancreatic duodenal homeobox 1, dystrophia myoto
- FIG. 15 depicts representative images of the fluorescent signals of livers (A) and spleens (B) from animals treated with OVA or OVA glycopolymer conjugates.
- the formulations are as follows: 1. OVA, 2. F1m′-OVA750-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL ⁇ 30 -ran-HPMA 60 ) [“OVA-p(Gal ⁇ -HPMA)”], 3.
- Livers from animals treated with unconjugated OVA have less fluorescent signal as compared to livers from animals treated with OVA conjugated to either p(Gal-HPMA), p(Glu-HPMA), p(Gal ⁇ -HPMA), or p(Glu ⁇ -HPMA). Additionally, images of the spleens taken from animals treated as described above show that conjugating antigens to glycopolymers reduces the delivery of antigens to the spleen. Spleens from animals treated with unconjugated OVA have significantly more fluorescent signal as compared to spleens from animals treated with OVA conjugated to either p(Gal-HPMA), p(Glu-HPMA), p(Gal ⁇ -HPMA), or p(Glu ⁇ -HPMA).
- induced tolerance can treat, reduce, prevent, or otherwise ameliorate an unwanted immune response that would have otherwise been associated with exposure to the antigen.
- mice that had received an infusion of 400,000 carboxyfluorescein succinimidyl ester (CSFE)-labeled OTI cells were treated with an intravenous injection of either OVA or OVA conjugated to either p(Gal-HPMA), p(Glu-HPMA), p(Gal ⁇ -HPMA), or p(Glu ⁇ -HPMA) (with formulations as follows: F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG 1 AcN-1NAcGAL 30 -ran-HPMA 60 ) [“OVA-p(Gal-HPMA)”]; F1m′-OVA-m 1-3 -n 79 -p 90 -q 4 -CMP-poly-(EtPEG
- mice treated with OVA in either its free or conjugated form received 10 ⁇ g of OVA on day 1 and day 3 of the experiment.
- a timeline of the experimental details is shown in FIG. 16 A .
- the mice were sacrificed and the splenocytes of the animals were harvested and analyzed via flow cytometry for phenotypical markers characteristic of T cell anergy, deletion, and memory.
- FIG. 16 B shows that OVA-glycopolymer conjugates induce more OTI T cell proliferation as compared to the amount of OTI proliferation seen in animals treated with unconjugated OVA.
- the glyoctargeting moieties disclosed herein result in increased antigen-specific T-cell proliferation—a key step in inducing tolerance to an antigen.
- animals treated with OVA-glycopolymer conjugates containing ⁇ -linked sugars induced significantly more proliferation compared to animals treated with glycopolymers containing the same sugar moiety linked to the polymer via an ⁇ -linkage (e.g., p(Gal ⁇ -HPMA) vs.
- FIG. 16 D OTI cells taken from animals treated with OVA-glycopolymer conjugates containing ⁇ -linked sugars showed an increased expression of the T cell exhaustion marker PD-1 as compared to animals treated with glycopolymers containing the same sugar moiety linked to the polymer via an ⁇ -linkage as well as animals treated with free OVA.
- treatments must reduce the number of long-lasting antigen-specific memory T cells.
- FIGS. 16 E and 16 F show that both OVA-p(Gal ⁇ -HPMA) and OVA-p(Glu ⁇ -HPMA) induce a significant reduction in OTI cells expressing markers for memory T cells.
- compositions as disclosed herein can induce tolerance to an antigen (OVA chosen here due to its general acceptance in the field as a “gold standard” antigen), and in several embodiments, can unexpectedly enhance the induction of tolerance (as represented at least in part by antigen-specific T cell proliferation, increased Annexin V expression on antigen-specific T cells, increased exhaustion marker expression on antigen-specific T cells, and reduced expression of memory T cells).
- actions such as “administering a glycotargeting tolerogenic composition” include “instructing the administration of a glycotargeting tolerogenic composition.”
- actions such as “administering a glycotargeting tolerogenic composition” include “instructing the administration of a glycotargeting tolerogenic composition.”
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Virology (AREA)
- Marine Sciences & Fisheries (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Transplantation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 16/723,914, filed Dec. 20, 2019, which is a continuation of U.S. patent application Ser. No. 16/028,209, filed Jul. 5, 2018, now U.S. Pat. No. 10,940,209, which is a continuation of U.S. patent application Ser. No. 15/185,564, filed Jun. 17, 2016, now U.S. Pat. No. 10,046,056, which is a continuation-in-part of U.S. patent application Ser. No. 14/859,292, filed Sep. 19, 2015, now U.S. Pat. No. 10,946,079, which is a continuation-in-part of U.S. patent application Ser. No. 14/627,297, filed Feb. 20, 2015, now U.S. Pat. No. 10,821,157, which claims the benefit of U.S. Provisional Application No. 61/942,942, filed Feb. 21, 2014, each entitled “GLYCOTARGETING THERAPEUTICS.” The entirety of each of the foregoing applications is hereby incorporated by reference.
- This application incorporates by reference the material in the Sequence Listing contained in the following XML file being concurrently submitted herewith: File name: ANOK.002P2C3_ST26.xml, created on Nov. 11, 2022 and is 36,144 bytes in size.
- Several embodiments of the invention disclosed herein relate to pharmaceutically acceptable compositions that are useful in the treatment of transplant rejection, autoimmune disease, allergy (e.g., food allergy), and immune response against a therapeutic agent.
- Various approaches have been used to induce tolerance to antigens that elicit an unwanted immune response. Some approaches employ targeting of the antigens to specific cells. Applications US 2012/0039989, US 2012/0178139 and WO 2013/121296 describe the targeting of antigens to erythrocytes to take advantage of the erythrocytes' role in antigen presentation for tolerization.
- Notwithstanding the positive results generated to date using cell-targeting approaches, the possibility of alternative approaches has remained of interest.
- In several embodiments disclosed herein, there are provided compositions for inducing immune tolerance in a subject and methods and uses of the compositions for achieving the same. In several embodiments, immune tolerance is desired because a subject develops an unwanted immune response to an antigen. Depending on the embodiment, the antigen may be one or more of a variety of antigens, for example a foreign antigen such as a food antigen that is ingested, or an antigenic portion of a therapeutic drug given to a subject. In additional embodiments, the antigen may be a self-antigen that the subject's immune system fails to recognize (or only recognizes as self to a limited degree) and therefore mounts an immune response against, leading to autoimmune disorders.
- In several embodiments, there is provided a composition comprising a compound of Formula 1:
- wherein:
-
- m is an integer from about 1 to 10;
- X comprises an antigen to which patients develop an unwanted immune response, wherein the antigen is a food antigen, a therapeutic agent, a self-antigen, or a fragment of any of such antigens;
- Y is of a linker moiety having a formula selected from the group consisting of:
- wherein the left bracket “(” indicates a bond to X, where present the right “)” indicates a bond to Z, where present the bottom “)” indicates a bond to Z, where present n is an integer from about 1 to about 80, where present q is an integer from about 1 to about 4, where present p is an integer from about 1 to about 90, where present R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—, and Z comprises one or more liver-targeting moieties that specifically target liver cells expressing asialoglycoprotein receptors.
- In several embodiments of the composition, m is 1 to 4, Y is of a linker moiety having a formula of:
- and Z comprises a liver-targeting moiety comprising one or more of galactose, galactosamine, or N-acetyl galactosamine.
- In several embodiments, m is resolved to an integer from 1 to 4, Y is of a linker moiety having a formula of:
- and Z comprises a liver-targeting moiety comprising one or more of glucose, glucosamine, or N-acetyl glucosamine.
- In several embodiments, there is provided compositions of Formula 1 (XY—Z]m), where m is an integer from about 1 to 100, X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof or X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy, Y comprises a linker moiety, and Z comprises a liver-targeting moiety. In several embodiments, Z comprises galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine.
- In several embodiments, Y is selected from N-hydroxysuccinamidyl linkers, malaemide linkers, vinylsulfone linkers, pyridyl di-thiol-poly(ethylene glycol) linkers, pyridyl di-thiol linkers, n-nitrophenyl carbonate linkers, NHS-ester linkers, and nitrophenoxy poly(ethylene glycol)ester linkers. In some embodiments, Y comprises an antibody, antibody fragment, peptide or other ligand that specifically binds X, a disulfanyl ethyl ester, a structure represented by one of Formulae Ya to Yp:
- or Y has a portion represented by Formula Y′-CMP:
- In such embodiments, the left bracket “(” indicates the bond between X and Y, the right or bottom bracket and “)” indicates the bond between Y and Z, n is an integer from about 1 to 100, q is an integer from about 1 to 44, R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—, Y′ represents the remaining portion of Y; and W represents a polymer of the same W1 group, or W is a copolymer or a random copolymer of the same or different W1 and W2 groups, where:
- and where p is an integer from 2 to about 150, R9 is a direct bond, —CH2—CH2—NH—C(O)— or —CH2—CH2—(O—CH2—CH2)t—NH—C(O)—, t is an integer from 1 to 5; and R10 is an aliphatic group, an alcohol or an aliphatic alcohol. In one such embodiment, m is 1 to 3, Y is represented by Formula Ym, wherein R8 is —CH2—CH2—C(CH3)(CN)—, and W is represented by a block copolymer of W1 and W2 where R9 is —CH2—CH2—(O—CH2—CH2)t—NH—C(O)—, t is 1, and R10 is 2-hydroxypropyl; and Z comprises a liver-targeting moiety comprising one or more of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, N-acetylglucosamine. In several embodiments, Z is the β-anomer of the corresponding sugar.
- In several additional embodiments compositions are provided for inducing tolerance to an antigen to which a subject develops an unwanted immune response, the compositions comprising a compound of Formula 1 (Formula 1 (XY—Z]m), where m is an integer from about 1 to 10, X comprises an antigen to which patients develop an unwanted immune response, wherein the antigen is a food antigen, a therapeutic agent, a self-antigen, or a fragment of any of such antigens, Y is of a linker moiety having a formula selected from the group consisting of:
- wherein the left bracket “(” indicates a bond to X, the right or bottom bracket and “)” indicates the bond between Y and Z, n is an integer from about 1 to 100, where present p is an integer from about 2 to 150, where present q is an integer from about 1 to 44, where present R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—, and where present R9 is a direct bond or —CH2—CH2—NH—C(O)—, and Z comprises galactose, galactosamine, or N-acetylgalactosamine.
- In several embodiments of such compositions, m is 1 to 3, Y is of a linker moiety having a formula of:
- wherein CH2—CH2—NH—C(O)—; and Z comprises a liver-targeting moiety comprising one or more of galactose, galactosamine, or N-acetylgalactosamine. In several embodiments, Z is the β-anomer of the selected moiety.
- As discussed above, in several embodiments, X is a self-antigen and the unwanted immune response is an autoimmune response.
- A variety of self-antigens is disclosed herein, but in several particular embodiments, X is myelin oligodendrocyte glycoprotein or myelin proteolipid protein. In such embodiments, the unwanted immune response experienced by the subject is associated with multiple sclerosis. In additional embodiments, X is insulin, proinsulin, or preproinsulin and wherein the unwanted immune response is associated with diabetes mellitus. It shall be appreciated that being associated with multiple sclerosis, diabetes mellitus or other auto-immune disease need not necessarily require a formal diagnosis of such auto-immune condition, but rather can be associated with common symptoms or characteristics of a particular auto-immune disorder.
- In additional embodiments, as discussed herein, an unwanted immune response can be raised against a therapeutic agent, such as a protein drug or drug derived from non-human and/or non-mammalian species. For example, in several embodiments, X is a therapeutic agent, such as Factor VIII, Factor IX, or other hemostasis-inducing agent. In such embodiments, the unwanted immune response is against the agent and the associated disease is hemophilia, which fails to improve (in the absence of the composition) because of the autoimmune response. However, upon administration of the composition, the hemophilia can improve because the composition aids in inducing tolerance to the agent, reducing the response to agent, and allowing reduced symptoms of hemophilia. In still additional embodiments, X is a therapeutic agent such as asparaginase and uricase. As discussed above, an unwanted immune response can result from administration of such agents, as they are derived from non-human sources. The ability of the compositions disclosed herein to induce tolerance to these agents allows these agents to continue to be used by a subject in need of therapy, while the side effects from an immune reaction are reduced, lessened, eliminated or otherwise ameliorated.
- In several embodiments, X is a food antigen. Many food antigens are known to cause allergies upon ingestion, however, in several embodiments, X is selected from the group consisting of conarachin (Ara h 1), allergen II (Ara h 2), arachis agglutinin, conglutin (Ara h 6), a-lactalbumin (ALA), lactotransferrin, Pen a 1 allergen (Pen a 1), allergen Pen m 2 (Pen m 2), tropomyosin fast isoform, high molecular weight glutenin, low molecular weight glutenin, alpha-gliadin, gamma-gliadin, omega-gliadin, hordein, seclain, and avenin. In several embodiments, treatment with the compositions disclosed herein where X is a food antigen allows the subject to have a significantly reduced immune response to the antigen, e.g., many peanut allergies are so severe that exposure to peanut dust or oil can cause anaphylaxis. In some embodiments, treatment reduces and/or eliminates responses to such incidental exposure to the antigen. In additional embodiments, treatment allows the subject to ingest the food from which the antigen is derived with limited or no adverse immune response.
- In several embodiments, administration of the composition to the subject results in a greater degree of proliferation of antigen-specific T cells as compared to proliferation of antigen-specific T cells resulting from administration of the antigen alone. In such embodiments, the proliferation of antigen-specific T cells indicates that delivery of the antigen (via the composition) to the molecular processing machinery that processes antigens as self/non-self is enhanced versus administration of the antigen alone. In other words, in such embodiments the targeted delivery is effective. In still additional embodiments, administration of the compositions disclosed herein results in a greater expression of exhaustion markers or markers of apoptosis on antigen-specific T cells as compared to expression of exhaustion markers or markers of apoptosis on antigen-specific T cells resulting from administration of the antigen alone. This result in indicative of specific reduction in activity of T cells directed against the antigen of interest and/or deletion of T cells directed against the antigen of interest. In several embodiments, these molecular hallmarks of induction of tolerance are the precursor of the reduction or amelioration of immune response symptoms that the subject would have previously experienced when exposed to the antigen.
- In several embodiments, Z comprises a liver-targeting moiety that is a carbohydrate. In several embodiments, the carbohydrate is a short-chain carbohydrate. In several embodiments, Z is a sugar. In several embodiments, Z is galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine. In several embodiments, the induction of immune tolerance is greater when a glucose, glucosamine, or N-acetylglucosamine is used for Z. In still additional embodiments, enhancements in induction of immune tolerance can be achieved when the liver targeting moiety is a sugar and the sugar is in the β-anomer configuration. In several embodiments, Z is galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine and conjugated at its C1, C2 or C6 to Y.
- Also provided herein are methods of inducing tolerance to antigens which, when administered alone (e.g., without the presently disclosed compositions) would result in an adverse immune response. Such methods, depending on the embodiments, involved the administration either before, or after, exposure to the antigen. In several embodiments, administration prior to exposure serves a prophylactic effect, which in several embodiments essentially avoids or significantly reduces in the immune response. Administration of the compositions can be via a variety of methods, including, but not limited to intravenous, intramuscular, oral, transdermal, or other infusion route. Administration can be daily, weekly, multiple times per day, or on an as needed basis (e.g., prior to an anticipated exposure).
- Also provided for herein are uses of the compositions disclosed herein for the treatment of unwanted immune responses after exposure to an antigen. As discussed herein, such use can be for prophylactic effects and/or for reducing symptoms from prior exposure to antigens (or prior adverse immune effects, such as those in the auto-immune setting). For example, provided herein are uses of compositions according to
Formula 1 for the treatment of unwanted side effects due to exposure to a therapeutic antigen, exposure to a food antigen, or an adverse effect from an immune response against a self-antigen. The compositions disclosed herein are suitable for administration to a subject in conjunction with such use, for example by oral, IV, IM, or other suitable route. Uses of the compositions disclosed herein, in several embodiments, unexpectedly result in the reduction, elimination or amelioration of adverse immune responses to antigens of interest. - Additional compositions and methods of using them are provided herein. For example, in several embodiments, there is provided a pharmaceutically acceptable composition for inducing tolerance to a therapeutic protein in a subject having an deficiency in production of a functional analogous native protein, comprising a compound of Formula 1 (XY—Z]m), where m is an integer from about 1 to 10, X comprises an antigenic protein or protein fragment, Y is of a linker moiety having a formula selected from the group consisting of Formula Ya, Formula Yc, Formula Ym, Formula Yn, wherein, the left bracket “(” indicates a bond to X, the right or bottom bracket and “)” indicates the bond between Y and Z, n is an integer from about 1 to 100, where present p is an integer from about 2 to 150, where present q is an integer from about 1 to 44, where present R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—, where present R9 is a direct bond or —CH2—CH2—NH—C(O)—, and Z comprises galactose, galactosamine, or N-acetylgalactosamine.
- In several embodiments of the composition, m is 1 to 3, Y is of a linker moiety having a formula of:
- wherein CH2—CH2—NH—C(O)—, and Z comprises a liver-targeting moiety comprising one or more of glucose, glucosamine, N-acetylglucosamine, galactose, galactosamine, or N-acetylgalactosamine. In several embodiments, the galactose, galactosamine, or N-acetylgalactosamine are the β-anomers. In several embodiments, combinations of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine are used.
- Also provided for herein is a pharmaceutically acceptable composition for inducing tolerance to a therapeutic protein in a subject having an deficiency in production of a functional analogous native protein, comprising a compound of Formula 1 (XY—Z]m), where m is an integer from about 1 to 10, X comprises a antigenic protein or protein fragment, Y is of a linker moiety having a formula selected from the group consisting of Formula Ya, Formula Yc, Formula Ym, or Formula Ym, wherein the left bracket “(” indicates a bond to X, where present the right “)” indicates a bond to Z, where present the bottom “)” indicates a bond to Z, where present n is an integer from about 1 to about 80, where present q is an integer from about 1 to about 4, where present p is an integer from about 1 to about 90, where present R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—, and where present W represents a polymer of the Formula W1 or W2 group or W is a copolymer of Formula W1 or W2 where:
- where R9 is a direct bond, —CH2—CH2—NH—C(O)— or —CH2—CH2—(O—CH2—CH2)t—NH—C(O)—, t is an integer from 1 to 5, R10 is an aliphatic group, an alcohol or an aliphatic alcohol; and Z comprises glucose, glucosamine, N-acetylglucosamine, galactose, galactosamine, or N-acetylgalactosamine. In several embodiments, the galactose, galactosamine, or N-acetylgalactosamine are the β-anomers. In several embodiments, combinations of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine are used. In several embodiments of the composition, m is 1 to 3, Y is represented by Formula Ym, wherein R8 is —CH2—CH2—C(CH3)(CN)—, and W is represented by a block copolymer of W1 and W2 where R9 is —CH2—CH2—(O—CH2—CH2)t—NH—C(O)—, t is 1, and R10 is 2-hydroxypropyl; and Z comprises a liver-targeting moiety comprising one or more of glucose, glucosamine, N-acetylglucosamine, galactose, galactosamine, or N-acetylgalactosamine. In several embodiments, the galactose, galactosamine, or N-acetylgalactosamine are the β-anomers. In several embodiments, combinations of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine, or N-acetylglucosamine are used.
- In several embodiments, X comprises an antigenic region of myelin basic protein, myelin oligodendrocyte glycoprotein, or myelin proteolipid protein. In additional embodiments, X comprises an antigenic region of Factor VIII, Factor IX, insulin, uricase, PAL, or asparaginase. In additional embodiments, X comprises a foreign antigen such as conarachin (Ara h 1), allergen II (Ara h 2), arachis agglutinin, conglutin (Ara h 6), a-lactalbumin (ALA), lactotransferrin, Pen a 1 allergen (Pen a 1), allergen Pen m 2 (Pen m 2), tropomyosin fast isoform, high molecular weight glutenin, low molecular weight glutenin, alpha-gliadin, gamma-gliadin, omega-gliadin, hordein, seclain, and avenin.
- Additionally provided for herein are compositions comprising a compound of Formula 1 (X-[-Y—Z]m), where m is an integer from about 1 to 100, X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof, or X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy, Y comprises a linker moiety, and Z comprises a liver-targeting moiety.
- In several embodiments, Z galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine. Combinations of galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine may also be used, in several embodiments. Further, in several embodiments, the galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine are optionally the β anomer. In several embodiments, Z is conjugated at its C1, C2 or C6 to Y.
- In several embodiments, Y is selected from N-hydroxysuccinamidyl linkers, malaemide linkers, vinylsulfone linkers, pyridyl di-thiol-poly(ethylene glycol) linkers, pyridyl di-thiol linkers, n-nitrophenyl carbonate linkers, NHS-ester linkers, and nitrophenoxy poly(ethylene glycol)ester linkers. In several embodiments, Y comprises an antibody, antibody fragment, peptide or other ligand that specifically binds X, a disulfanyl ethyl ester, a structure represented by one of Formulae Ya to Yp, or Y has a portion represented by Formula Y′-CMP:
- where the left bracket “(” indicates the bond between X and Y, the right or bottom bracket and “)” indicates the bond between Y and Z, n is an integer from about 1 to 100, q is an integer from about 1 to 44, R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—, Y′ represents the remaining portion of Y, and W represents a polymer of the same W1 group, or W is a copolymer or a random copolymer of the same or different W1 and W2 groups, where:
- where p is an integer from 2 to about 150, R9 is a direct bond, —CH2—CH2—NH—C(O)— or —CH2—CH2—(O—CH2—CH2)t—NH—C(O)—, t is an integer from 1 to 5; and R10 is an aliphatic group, an alcohol or an aliphatic alcohol.
- In some such embodiments, n is about 40 to 80, p is about 10 to 100, q is about 3 to 20, R8 is —CH2—CH2—C(CH3)(CN)—, when R9 is —CH2—CH2—NH—C(O)—, Z is glucose, galactose, N-acetylgalactosamine or N-acetylglucosamine conjugated at its C1, and when W is a copolymer, R10 is 2-hydroxypropyl. In some embodiments, Y comprises Formula Ya, Formula Yb, Formula Yc, Formula Yf, Formula Yg, Formula Yh, Formula Yi, Formula Yk, Formula Ym or Formula Yn. In some embodiments, Y comprises Formula Ya, Formula Yb, Formula Yc, Formula Ym or Formula Yn. In still additional embodiments, Y comprises Formula Ya, Formula Yb, Formula Yc, Formula Ym or Formula Yn.
- In several embodiments, X comprises a foreign transplant antigen against which transplant recipients develop an unwanted immune response, a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune response, a foreign therapeutic agent against which patients develop an unwanted immune response, or a synthetic self-antigen against the endogenous version of which patients develop an unwanted immune response, or a tolerogenic portion thereof. Specific examples of various antigens are disclosed herein.
- Also provided for herein is are methods of treatment for an unwanted immune response against an antigen by administering to a mammal in need of such treatment an effective amount of a composition comprising a compound of Formula 1 (X—[—Y—Z]m), where m is an integer from about 1 to 100, X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof or X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy, Y comprises a linker moiety, and Z comprises a glucosylated liver-targeting moiety.
- In several such embodiments, X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof, and Y comprises, an antibody, antibody fragment, peptide or other ligand that specifically binds X, a disulfanyl ethyl ester, a structure represented by one of Formulae Ya to Yp or Y has a portion represented by Formula Y′-CMP where, the left bracket “(” indicates the bond between X and Y, the right or bottom bracket and “)” indicates the bond between Y and Z, n is an integer from about 1 to 100, q is an integer from about 1 to 44, R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—, Y′ represents the remaining portion of Y, and W represents a polymer of the same W1 group, or W is a copolymer or a random copolymer of the same or different W1 and W2 groups, where:
- where p is an integer from 2 to about 150, R9 is a direct bond, —CH2—CH2—NH—C(O)— or —CH2—CH2—(O—CH2—CH2)t—NH—C(O)—, t is an integer from 1 to 5, and R10 is an aliphatic group, an alcohol or an aliphatic alcohol. In several such treatment method embodiments, X comprises the antibody, antibody fragment or ligand, and the composition is administered for clearance of a circulating protein or peptide or antibody that specifically binds to X, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy.
- In still additional embodiments, X comprises the antibody, antibody fragment or ligand, and the composition is administered in an amount effective to reduce a concentration of the antibodies that are causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy in blood of the patient by at least 50% w/w, as measured at a time between about 12 to about 48 hours after the administration.
- In several such treatment embodiments, compositions are administered for tolerization of the patient with respect to antigen moiety X.
- In several embodiments X comprises a foreign transplant antigen against which transplant recipients develop an unwanted immune response, a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune response, a foreign therapeutic agent against which patients develop an unwanted immune response, or a synthetic self-antigen against the endogenous version of which patients develop an unwanted immune response, or a tolerogenic portion thereof.
- Several embodiments disclosed herein provide a composition comprising a compound of Formula 1:
- where:
-
- m is an integer from about 1 to 100;
- X comprises an antigen against which a patient develops an unwanted immune response, or a tolerogenic portion thereof; or
- X comprises an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy;
- Y comprises a linker moiety; and
- Z comprises a liver-targeting moiety.
- Z can also comprise galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine, for example, conjugated at its C1, C2 or C6 to Y. N-acetylglucosamine and glucose bind to different lectin receptors as do N-acetylgalactosamine and galactose. In the examples below the experimental data (and the full disclosure of this application) indicate that the selection of Z as N-acetylglucosamine leads to elevated levels of regulatory T cell responses compared to those achieved with N-acetylgalactosamine. In several embodiments, this results in unexpectedly enhanced induction of immune tolerance and/or clearance of antigens from the blood of a subject.
- Y can be selected from N-hydroxysuccinamidyl linkers, malaemide linkers, vinylsulfone linkers, pyridyl di-thiol-poly(ethylene glycol) linkers, pyridyl di-thiol linkers, n-nitrophenyl carbonate linkers, NHS-ester linkers, and nitrophenoxy poly(ethylene glycol)ester linkers.
- Y can also comprise: an antibody, antibody fragment, peptide or other ligand that specifically binds X; a disulfanyl ethyl ester; a structure represented by one of Formulae Ya to Yp:
- or Y has a portion represented by Formula Y′-CMP:
- where:
-
- the left bracket “(” indicates the bond between X and Y;
- the right or bottom bracket and “)” indicates the bond between Y and Z;
- n is an integer from about 1 to 100;
- q is an integer from about 1 to 44;
- R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—;
- Y′ represents the remaining portion of Y (e.g., HS-PEG); and
- W represents a polymer of the same W1 group, or W is a copolymer (preferably a random copolymer) of the same or different W1 and W2 groups, where:
- where:
-
- p is an integer from 2 to about 150;
- R9 is a direct bond, —CH2—CH2—NH—C(O)— (i.e., an ethylacetamido group or “EtAcN”) or —CH2—CH2—(O—CH2—CH2)t—NH—C(O)— (i.e., a pegylated ethylacetamido group or “Et-PEGt-AcN”)
- t is an integer from 1 to 5, (particularly 1 to 3, and more particularly 1 or 2); and
- R10 is an aliphatic group, an alcohol or an aliphatic alcohol. In some embodiments, R10 is a Cfalkyl or CfalkylOHg where f is independently an integer between 0 and 10 and g is independently an integer between 0 and 10. In some embodiments, R10 is 2-hydroxypropyl.
- In several embodiments, particular linkers are preferred. For example, in several embodiments, linkers according to Ym yield unexpectedly effective tolerance endpoints. In additional embodiments, linkers according to formula Yn yield unexpectedly effective tolerance endpoints. In still additional embodiments, formulations of F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 achieve particularly effective tolerance-associated endpoints. In several embodiments, combinations of these linkers lead to synergistic results and still further unexpected increases in immune tolerance induction.
- In another aspect of the above, n is about 40 to 80, p is about 10 to 100, q is about 3 to 20, R8 is —CH2—CH2—C(CH3)(CN)—; and when R9 is —CH2—CH2—NH—C(O)—, Z is galactose or N-acetylgalactosamine conjugated at its C1.
- In still another aspect of the above, Y comprises Formula Ya, Formula Yb, Formula Yh, Formula Yi, Formula Yk, Formula Ym or Formula Yn, particularly Formula Ya, Formula Yb, Formula Ym or Formula Yn.
- X can further comprise: a foreign transplant antigen against which transplant recipients develop an unwanted immune response; a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune response; a foreign therapeutic agent against which patients develop an unwanted immune response; or a synthetic self-antigen against the endogenous version of which patients develop an unwanted immune response, or a tolerogenic portion thereof.
- The disclosure also pertains to a method of treatment for an unwanted immune response against an antigen by administering to a mammal in need of such treatment an effective amount of a composition comprising a compound of
Formula 1 as disclosed herein. In some such methods the composition can be administered for clearance of a circulating protein or peptide or antibody that specifically binds to antigen moiety X, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy. The composition can be administered in an amount effective to reduce a concentration of the antibodies that are causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy in blood of the patient by at least 50% w/w, as measured at a time between about 12 to about 48 hours after the administration. The composition can administered for tolerization of a patient with respect to antigen moiety X. -
FIGS. 1A-1D are a series of graphs showing differential cellular uptake of galactose conjugates.FIG. 1A depicts that F1aA-PE-m4-n80 (Gal-PE) preferentially targets PE to sinusoidal endothelial cells (LSECs) of the liver.FIG. 1B depicts that F1aA-PE-m4-n80 (Gal-PE) preferentially targets PE to Kupffer cells (KC) of the liver.FIG. 1C depicts that F1aA-PE-m4-n80 (Gal-PE) preferentially targets PE to hepatocytes.FIG. 1D depicts that F1aA-PE-m4-n80 (Gal-PE) preferentially targets PE to other antigen presenting cells (APCs) of the liver. *=P<0.05. -
FIG. 2 is a graph showing proliferation of OT-I CD8+ T cells in mice treated with F1aA-OVA-m4-n80 (Gal-OVA), OVA or saline (i.e. naïve), with greatest proliferation seen in the Gal-OVA treated group. -
FIGS. 3A-3B are a series of graphs depicting data related to marker expression on T cells.FIG. 3A shows the percentage of OT-I CD8+ T cells expressing PD-1 (“PD1+”) in generations of proliferating T cells treated with saline, OVA or F1aA-OVA-m4-n80 (GAL-OVA), with greatest level of PD-1 in the gal-OVA-treated group.FIG. 3B shows the percentage of OT-I CD8+ T cells expressing phosphatidylserine (stained as “Annexin V+”) in generations of proliferating T cells treated with saline, OVA or F1aA-OVA-m4-n80 (GAL-OVA), with greatest level of Annexin-V+ cells in the gal-OVA-treated group. -
FIG. 4 is a graph showing that galactose conjugation [F1aA-OVA-m4-n80 (Gal-OVA)] decreases the immunogenicity of OVA as determined by OVA-specific antibody titers (shown in Ab titers log−1). -
FIG. 5 shows that administration of F1aA-OVA-m4-n80 (Gal-OVA) in repeated doses over time is able to deplete OVA-specific antibodies from the serum of mice. -
FIGS. 6A-6F depict data related to the mitigation of the OVA-specific immune response.FIG. 6A shows the immune response in mice challenged with OVA and LPS.FIG. 6B shows the immune response in mice treated with OVA, whileFIG. 6C shows the immune response in naïve mice.FIGS. 6D and 6E (respectively) show that F1aA-OVA-m4-n80 (mGal-OVA; 6D) and F1b-OVA-m1-n44-p34 (pGal-OVA; 6E) are able to mitigate the OVA-specific immune response in draining lymph nodes after intradermal challenge with OVA and the adjuvant LPS.FIG. 6F is from a parent application and does not form a part of the present disclosure. -
FIGS. 7A-7B shows the characterization of F1aA-OVA-m4-n80 and F1b-OVA-m1-n44-p34.FIG. 7A shows size-exclusion HPLC traces of F1aA-OVA-m4-n80 (open triangles), F1b-OVA-m1-n44-p34 (filled circles) and unconjugated OVA (solid line). Shift to the left represents an increase in molecular weight.FIG. 7B shows polyacrylamide gel demonstrating increased molecular weight after OVA conjugation: (1.) Unconjugated OVA, (2.) F1aA-OVA-m4-n80 and (3.) F1b-OVA-m1-n44-p34. -
FIGS. 8A-8B depict data related to the reduction in antigen-specific immune response after administration of F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 [labeled OVA-p(Glu-HPMA) and shown as filled circles] or F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 [labeled OVA-p(Gal-HPMA) and shown as filled diamonds].FIG. 8A depicts flow cytometric detection of OTI CD8+ T-cell populations (CD3e+/CD8α+/CD45.2+) quantified from the draining lymph nodes (inguinal and popliteal) 4 days following antigen challenge in CD45.1+ mice. Significant reductions in OT-I CD8+ T-cells were detected following administration of OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA).FIG. 8B depicts flow cytometric detection of OT-II CD4+ T-cell populations (CD3e+/CD4+/CD45.2+) quantified from the draining lymph nodes (inguinal and popliteal) 4 d following antigen challenge in CD45.1+ mice. Significant reductions in OT-II CD4+ T-cells were detected following administration of OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) *=P<0.05, **=P<0.01; #=P<0.05, ##=P<0.01 (#'s represent significance as compared to naïve animals). -
FIGS. 9A-9B depict data related to the increase in antigen-specific regulatory T-cells in the lymph nodes and spleen of mice after antigen challenge.FIG. 9A depicts flow cytometric detection of an F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 [labeled OVA-p(Glu-HPMA) and shown as filled circles] and F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 [labeled OVA-p(Gal-HPMA) and shown as filled diamonds]-induced increase in OTII T-regulator cells (CD3e+CD4+ CD45.2+ CD25+ FoxP3+) collected from the lymph nodes 4 d following antigen challenge in CD45.1+ mice.FIG. 9B shows the corresponding analysis from the spleen of mice treated with OVA-p(Glu-HPMA) or OVA-p(Gal-HPMA) as compared to animals treated with OVA or saline (i.e. Challenge) *=P<0.05, **=P<0.01; ***=P<0.001; #=P<0.01, ##=P<0.01; ###=P<0.001 (#'s represent significance as compared to naïve animals). -
FIG. 10 depicts flow cytometry data related to a decrease in the percentage of antigen-specific effector cells (IFNγ+ OTI CD8+ T-cells (CD3e+CD8α+ CD45.2+ IFNγ+) 4 d following antigen challenge in CD45.1+ mice. Mice treated with F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 [labeled OVA-p(Glu-HPMA) and shown as filled circles] or F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 [labeled OVA-p(Gal-HPMA) and shown as filled diamonds] conjugates generated significantly fewer IFNγ+ OTI CD8+ T-cells after antigen challenge as compared to mice treated with OVA or saline (i.e. Challenge) *=P<0.01, **=P<0.01; ##=P<0.01 (#'s represent significance as compared to naïve animals). -
FIGS. 11A-11B depict data related to T cell deletion and regulation in an OTII adoptive transfer model, in which OTII cells (CD4+ T cells from a CD45.2+ mouse) are adoptively transferred into a CD45.1+ recipient, which is treated with F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 [“OVA-p(Gal-HPMA)”] or F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 [“OVA-p(Glu-HPMA)”], or OVA not linked to a polymer [“OVA”] to induce T regulatory responses and prevent subsequent responses to vaccine-mediated antigen challenge. Both 3×105 CFSE-labeled OTI and 3×105 CFSE-labeled OTII cells were adoptively transferred to CD45.1+ mice (n=8 mice per group) onday 0. Ondays day 1, 2.5 μg atday day 7. In another, OVA was provided at a dose of 7 μg atday day day 7, for the same total dose. Likewise, pGal-OVA and pGlu-OVA were each administered in other groups at the same dosings of 2.5 μg atday 1, 2.5 μg atday day day day day 7, all doses being on an OVA equivalent dose basis. In a final group, saline was administered on the same days. Onday 14, the recipient mice were then challenged with OVA (10 μg) adjuvanted with lipopolysaccharide (50 ng) by intradermal injection. Characterization of the draining lymph nodes was done onday 19, to allow determination as to whether or not deletion actually took place and whether regulatory T cells were induced from the adoptively transferred cells.FIG. 11A shows the number of OTII cells present after challenge, andFIG. 11B shows the frequency of FoxP3+CD25+ cells (markers of T regulatory cells). * and # indicate p<0.05, ** and ## indicate p<0.01, and ### indicates P<0.001. -
FIGS. 12A-12B depicts data related to T cell deletion and regulation in an OTI adoptive transfer model, in which OTI cells (CD8+ T cells from a CD45.2+ mouse) are adoptively transferred into a CD45.1+ recipient, which is treated with F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 [“OVA-p(Gal-HPMA)”] or F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 [“OVA-p(Glu-HPMA)”], or OVA not linked to a polymer [“OVA”] to induce T regulatory responses and prevent subsequent responses to vaccine-mediated antigen challenge. Both 3×105 CFSE-labeled OTI and 3×105 CFSE-labeled OTII cells were adoptively transferred to CD45.1+ mice (n=8 mice per group) onday 0. Ondays day 1, 2.5 μg atday day 7. In another, OVA was provided at a dose of 7 μg atday day day 7, for the same total dose. Likewise, pGal-OVA and pGlu-OVA were each administered in other groups at the same dosings of 2.5 μg atday 1, 2.5 μg atday day day day day 7, all doses being on an OVA equivalent dose basis. In a final group, saline was administered on the same days. Onday 14, the recipient mice were then challenged with OVA (10 μg) adjuvanted with lipopolysaccharide (50 ng) by intradermal injection. Characterization of the draining lymph nodes was done onday 19, to allow determination as to whether or not deletion actually took place and whether T cells were responsive to antigen re-exposure though their cytokine expression.FIG. 12A shows the number of OTI cells present after challenge, andFIG. 12B shows the frequency of IFNγ-expressing cells (lack thereof indicating anergy). * and # indicate p<0.05, ** and ## indicate p<0.01). -
FIG. 13 depicts data related to blood glucose levels. Mice were treated with F1m′-P31-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 [labeled P31-p(Glu-HPMA)], F1m′-P31-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 [labeled P31-p(Gal-HPMA) conjugates (or saline). Animals receiving P31-p(Glu-HPMA) or P31-p(Gal-HPMA) maintained normal blood glucose levels for 42 days, whereas animals treated with P31 or Saline developed rapid hyperglycemia within 5-10 days, demonstrating that conjugates disclosed herein protect mice from T-cell induced autoimmune diabetes. -
FIG. 14 depicts data related to the generation of spontaneous diabetes in non-obese diabetic (NOD) mice. Mice treated with F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 are shown as filled squares. Mice treated with F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 are shown as filled triangles. Mice treated with saline are shown as filled diamonds. Treating animals with the compounds ofFormula 1 reduced the incidences of diabetes onset in NOD mice as compared to animals treated with saline. -
FIGS. 15A-15B depicts data related to biodistribution of the model antigen OVA tethered to the synthetic glycopolymers, showing uptake in the liver while limiting uptake in the spleen. A. Fluorescent signal of perfused livers taken from animals treated with OVA (1) or OVA conjugated to various glycopolymers (2-5). B. Fluorescent images of spleens taken from animals treated with OVA (1) or OVA conjugated to various glycopolymers (2-5). Formulations are as follows: 1. OVA, 2. OVA-p(Galβ-HPMA), 3. OVA-p(Gal-HPMA), 4. OVA-p(Gluβ-HPMA), 5. OVA-p(Glu-HPMA). -
FIGS. 16A-16F depict data related to experiments comparing linker moieties. OVA-p(Gal-HPMA), OVA-p(Glu-HPMA), OVA-p(Galβ-HPMA), and OVA-p(Gluβ-HPMA) conjugates were synthesized and tested for their ability to induce antigen-specific T cell anergy and eliminate the T cell population responsible for long term memory.FIG. 16A shows a schematic of the treatment regimen for 7-day experiment.FIG. 16B depicts the percentage of proliferating OTI splenic T cells as assayed by CSFE dilution.FIG. 16C depicts the percentage of Annexin V+ OTI T cells in the spleens of animals treated with OVA-glycopolymer conjugates or free OVA.FIG. 16D depicts the percentage of PD-1+ splenic OTI cells.FIG. 16E depicts the percentage of T memory cells in the OTI population, where T memory cells was defined as CD62L+ and CD44+.FIG. 16 F depicts the percentage of OTI cells expressing CD127. Of particular note is the unexpectedly enhanced efficacy of compositions employing glucose or galactose in the β-conformation, as compared to the α-conformation. *=P<0.05**=P<0.01; #=P<0.05, ##=P<0.01 and ###=P<0.001 (#'s represent significance as compared to animals treated with OVA alone) - Two known asialoglycoprotein receptors (“ASGPRs”) are expressed on hepatocytes and liver sinusoidal endothelial cells (or “LSECs”). Other galactose/galactosamine/N-acetylgalactosamine receptors can be found in various forms on multiple cell types [e.g., dendritic cells, hepatocytes, LSECs, and Kupffer cells]. While the molecular and cellular targets of glucose, glucosamine and N-acetylglucosamine can be distinct from those of the corresponding galactose isomers, it has been found that the corresponding compounds of
Formula 1 where Z is a glucosylating moiety are comparably effective in some instances, while in some embodiments disclosed herein, they are unexpectedly effective. Dendritic cells are considered “professional antigen presenting cells,” because their primary function is to present antigens to the immune system for generating immune responses. Some cells within the liver are known to be able to present antigens, but the liver is more known to be involved in tolerogenesis. The liver is understood to be a tolerogenic organ. For example, lower incidences of rejection are reported in cases of multiple organ transplants when the liver is one of the organs transplanted. LSECs are much newer to the literature; consequently their role in tolerogenesis and/or moderation of inflammatory immune responses is not yet widely acknowledged or well understood. However, it is becoming clear that they also can play a significant role in the induction of antigen-specific tolerance. - One of the distinctive features of the erythrocyte surface is its glycosylation, i.e., the presence of significant numbers of glycosylated proteins. Indeed, the glycophorins (e.g., glycophorin A) have been employed as targets for erythrocyte binding. Glycophorins are proteins with many covalently attached sugar chains, the terminus of which is sialic acid. As an erythrocyte ages and becomes ripe for clearance, the terminal sialic acid of its glycophorins tends to be lost, leaving N-acetylgalactosamine at the free end. N-acetylgalactosamine is a ligand selectively received by the ASGPR associated with hepatic cells, leading to binding of N-acetylgalactosamine-containing substances by hepatic cells and their subsequent uptake and processing in the liver.
- Heretofore, it has been understood by those skilled in the art that glycosylation of a therapeutic agent in a manner that results in hepatic targeting should be avoided due to first-pass clearance by the liver resulting in poor circulation half-life of the therapeutic agent. By the same token, some monoclonal antibodies need to be specifically glycosylated at ASN297 for optimal binding to their Fc receptors. It has now surprisingly been found, and is disclosed herein, that galactosylation and glucosylation can be used in a manner that induces tolerogenesis.
- The present disclosure provides, in several embodiments, certain therapeutic compositions that are targeted for delivery to (and for uptake by) the liver, particularly hepatocytes, LSECs, Kupffer cells and/or stellate cells, more particularly hepatocytes and/or LSECs, and even more particularly to specifically bind ASGPR. Liver-targeting facilitates two mechanisms of treatment: tolerization and clearance. Tolerization takes advantage of the liver's role in clearing apoptotic cells and processing their proteins to be recognized by the immune system as “self,” as well as the liver's role in sampling peripheral proteins for immune tolerance. Clearance takes advantage of the liver's role in blood purification by rapidly removing and breaking down toxins, polypeptides and the like. Targeting of these compositions to the liver is accomplished by a galactosylating moiety (e.g., galactose, galactosamine and N-acetylgalactosamine, particularly conjugated at C1, C2 or C6, though some embodiments involved conjugation at other or any carbon in the molecule), by a glucosylating moiety (e.g., glucose, glucosamine and N-acetylglucosamine, particularly conjugated at C1, C2 or C6, though some embodiments involved conjugation at other or any carbon in the molecule), or by de-sialylating a polypeptide for which such liver-targeting is desired. The galactosylating or glucosylating moiety can be chemically conjugated or recombinantly fused to an antigen, whereas desialylation exposes a galactose-like moiety on an antigen polypeptide. The antigen can be endogenous (a self-antigen) or exogenous (a foreign antigen), including but not limited to: a foreign transplant antigen against which transplant recipients develop an unwanted immune response (e.g., transplant rejection), a foreign food, animal, plant or environmental antigen to which patients develop an unwanted immune (e.g., allergic or hypersensitivity) response, a therapeutic agent to which patients develop an unwanted immune response (e.g., hypersensitivity and/or reduced therapeutic activity), a self-antigen to which patients develop an unwanted immune response (e.g., autoimmune disease), or a tolerogenic portion (e.g., a fragment or an epitope) thereof; these compositions are useful for inducing tolerization to the antigen. Alternatively, the galactosylating or other liver-targeting moiety can be conjugated to an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, and/or allergy (as discussed above); these compositions are useful for clearing the circulating protein, peptide or antibody. Accordingly, the compositions of the present disclosure can be used for treating an unwanted immune response, e.g., transplant rejection, an immune response against a therapeutic agent, an autoimmune disease, and/or an allergy, depending on the embodiment. Also provided are pharmaceutical compositions containing a therapeutically effective amount of a composition of the disclosure admixed with at least one pharmaceutically acceptable excipient. In another aspect, the disclosure provides methods for the treatment of an unwanted immune response, such as transplant rejection, response against a therapeutic agent, autoimmune disease or allergy.
- As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
- The singular forms “a,” “an,” and “the” include plural referents, unless the context clearly indicates otherwise.
- The term “about” when used in connection with a numerical value is meant to encompass numerical values within a range typically having a lower limit that is, e.g., 5-10% smaller than the indicated numerical value and having an upper limit that is, e.g., 5-10% larger than the indicated numerical value. Also included are any values within the disclosed range, including the listed endpoints.
- As used herein, an “antigen” is any substance that serves as a target for the receptors of an adaptive immune response, such as the T cell receptor, major histocompatibility complex class I and II, B cell receptor or an antibody. In some embodiments, an antigen may originate from within the body (e.g., “self,” “auto” or “endogenous”). In additional embodiments, an antigen may originate from outside the body (“non-self,” “foreign” or “exogenous”), having entered, for example, by inhalation, ingestion, injection, or transplantation, transdermally, etc. In some embodiments, an exogenous antigen may be biochemically modified in the body. Foreign antigens include, but are not limited to, food antigens, animal antigens, plant antigens, environmental antigens, therapeutic agents, as well as antigens present in an allograft transplant.
- An “antigen-binding molecule” as used herein relates to molecules, in particular to proteins such as immunoglobulin molecules, which contain antibody variable regions providing a binding (specific binding in some embodiments) to an epitope. The antibody variable region can be present in, for example, a complete antibody, an antibody fragment, and a recombinant derivative of an antibody or antibody fragment. The term “antigen-binding fragment” of an antibody (or “binding portion”), as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind a target sequence. Antigen-binding fragments containing antibody variable regions include (without limitation) “Fv”, “Fab”, and “F(ab′)2” regions, “single domain antibodies (sdAb)”, “nanobodies”, “single chain Fv (scFv)” fragments, “tandem scFvs” (VHA-VLA-VHB-VLB), “diabodies”, “triabodies” or “tribodies”, “single-chain diabodies (scDb)”, and “bi-specific T-cell engagers (BiTEs)”.
- As used herein, a “chemical modification” refers to a change in the naturally occurring chemical structure of one or more amino acids of a polypeptide. Such modifications can be made to a side chain or a terminus, e.g., changing the amino-terminus or carboxyl terminus. In some embodiments, the modifications are useful for creating chemical groups that can conveniently be used to link the polypeptides to other materials, or to attach a therapeutic agent.
- The term “comprising”, which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. The phrase “consisting of” excludes any element, step, or ingredient not specified. The phrase “consisting essentially of” limits the scope of described subject matter to the specified materials or steps and those that do not materially affect its basic and novel characteristics. It is understood that wherever embodiments are described herein with the language “comprising”, otherwise analogous embodiments described in terms of “consisting of” and/or “consisting essentially of” are also provided. When used in the claims as transitional phrases, each should be interpreted separately and in the appropriate legal and factual context (e.g., “comprising” is considered more of an open-ended phrase while “consisting of” is more exclusive and “consisting essentially of” achieves a middle ground).
- “Conservative changes” can generally be made to an amino acid sequence without altering activity. These changes are termed “conservative substitutions” or mutations; that is, an amino acid belonging to a grouping of amino acids having a particular size or characteristic can be substituted for another amino acid. Substitutes for an amino acid sequence can be selected from other members of the class to which the amino acid belongs. For example, the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, methionine, and tyrosine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Such substitutions are not expected to substantially affect apparent molecular weight as determined by polyacrylamide gel electrophoresis or isoelectric point. Conservative substitutions also include substituting optical isomers of the sequences for other optical isomers, specifically D amino acids for L amino acids for one or more residues of a sequence. Moreover, all of the amino acids in a sequence can undergo a D to L isomer substitution. Exemplary conservative substitutions include, but are not limited to, Lys for Arg and vice versa to maintain a positive charge; Glu for Asp and vice versa to maintain a negative charge; Ser for Thr so that a free —OH is maintained; and Gln for Asn to maintain a free —NH2. Yet another type of conservative substitution constitutes the case where amino acids with desired chemical reactivities are introduced to impart reactive sites for chemical conjugation reactions, if the need for chemical derivatization arises. Such amino acids include but are not limited to Cys (to insert a sulfhydryl group), Lys (to insert a primary amine), Asp and Glu (to insert a carboxylic acid group), or specialized noncanonical amino acids containing ketone, azide, alkyne, alkene, and tetrazine side-chains. Conservative substitutions or additions of free —NH2 or —SH bearing amino acids can be particularly advantageous for chemical conjugation with the linkers and galactosylating moieties of
Formula 1. Moreover, point mutations, deletions, and insertions of the polypeptide sequences or corresponding nucleic acid sequences can in some cases be made without a loss of function of the polypeptide or nucleic acid fragment. Substitutions can include, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 or more residues (including any number of substitutions between those listed). A variant usable in the present invention may exhibit a total number of up to 200 (e.g., up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200, including any number in between those listed) changes in the amino acid sequence (e.g., exchanges, insertions, deletions, N-terminal truncations, and/or C-terminal truncations). In several embodiments, the number of changes is greater than 200. Additionally, in several embodiments, the variants include polypeptide sequences or corresponding nucleic acid sequences that exhibit a degree of functional equivalence with a reference (e.g., unmodified or native sequence). In several embodiments, the variants exhibit about 80%, about 85%, about 90%, about 95%, about 97%, about 98%, about 99% functional equivalence to an unmodified or native reference sequence (and any degree of functional equivalence between those listed). The amino acid residues described herein employ either the single letter amino acid designator or the three-letter abbreviation in keeping with the standard polypeptide nomenclature, J. Biol. Chem., (1969), 243, 3552-3559. All amino acid residue sequences are represented herein by formulae with left and right orientation in the conventional direction of amino-terminus to carboxy-terminus. - The terms “effective amount” or “therapeutically effective amount” refer to that amount of a composition of the disclosure that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment. This amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the particular composition of the disclosure chosen, the dosing regimen to be followed, timing of administration, manner of administration and the like, all of which can readily be determined by one of ordinary skill in the art.
- An “epitope”, also known as antigenic determinant, is the segment of a macromolecule, e.g. a protein, which is recognized by the adaptive immune system, such as by antibodies, B cells, major histocompatibility complex molecules, or T cells. An epitope is that part or segment of a macromolecule capable of binding to an antibody or antigen-binding fragment thereof. In this context, the term “binding” in particular relates to a specific binding. In the context of several embodiments of the present invention, it is preferred that the term “epitope” refers to the segment of protein or polyprotein that is recognized by the immune system.
- The term galactose refers to a monosaccharide sugar that exists both in open-chain form and in cyclic form, having D- and L-isomers. In the cyclic form, there are two anomers, namely alpha and beta. In the alpha form, the C1 alcohol group is in the axial position, whereas in the beta form, the C1 alcohol group is in the equatorial position. In particular, “galactose” refers to the cyclic six-membered pyranose, more in particular the D-isomer and even more particularly the alpha-D-form (α-D-galactopyranose) the formal name for which is (2R,3R,4S,5R,6R)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol. Glucose is an epimer of galactose; the formal name is (2R,3R,4S,5S,6R)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol. The structure and numbering of galactose and glucose are shown giving two non-limiting examples of stereochemical illustration.
- The term “galactosylating moiety” refers to a particular type of liver-targeting moiety. Galactosylating moieties include, but are not limited to a galactose, galactosamine and/or N-acetylgalactosamine residue. A “glucosylating moiety” refers to another particular type of liver-targeting moiety and includes, but is not limited to glucose, glucosamine and/or N-acetylglucosamine.
- The term “liver-targeting moiety”, refers to moieties having the ability to direct, e.g., a polypeptide, to the liver. The liver comprises different cell types, including but not limited to hepatocytes, sinusoidal epithelial cells, Kupffer cells, stellate cells, and/or dendritic cells. Typically, a liver-targeting moiety directs a polypeptide to one or more of these cells. On the surface of the respective liver cells, receptors are present which recognize and specifically bind the liver-targeting moiety. Liver-targeting can be achieved by chemical conjugation of an antigen or ligand to a galactosylating or glucosylating moiety, desialylation of an antigen or ligand to expose underlying galactosyl or glucosyl moieties, or specific binding of an endogenous antibody to an antigen or ligand, where the antigen or ligand is: desialylated to expose underlying galactosyl or glucosyl moieties, conjugated to a galactosylating or a glucosylating moiety. Naturally occurring desialylated proteins are not encompassed within the scope of certain embodiments of the present disclosure.
- The “numerical values” and “ranges” provided for the various substituents are intended to encompass all integers within the recited range. For example, when defining n as an integer representing a mixture including from about 1 to 100, particularly about 8 to 90 and more particularly about 40 to 80 ethylene glycol groups, where the mixture typically encompasses the integer specified as n±about 10% (or for smaller integers from 1 to about 25, ±3), it should be understood that n can be an integer from about 1 to 100 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95, 99, 100, 105 or 110, or any between those listed, including the endpoints of the range) and that the disclosed mixture encompasses ranges such as 1-4, 2-4, 2-6, 3-8, 7-13, 6-14, 18-23, 26-30, 42-50, 46-57, 60-78, 85-90, 90-110 and 107-113 ethylene glycol groups. The combined terms “about” and “±10%” or “±3” should be understood to disclose and provide specific support for equivalent ranges wherever used.
- The term “optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not.
- A peptide that specifically binds a particular target is referred to as a “ligand” for that target.
- A “polypeptide” is a term that refers to a chain of amino acid residues, regardless of post-translational modification (e.g., phosphorylation or glycosylation) and/or complexation with additional polypeptides, and/or synthesis into multisubunit complexes with nucleic acids and/or carbohydrates, or other molecules. Proteoglycans therefore also are referred to herein as polypeptides. A long polypeptide (having over about 50 amino acids) is referred to as a “protein.” A short polypeptide (having fewer than about 50 amino acids) is referred to as a “peptide.” Depending upon size, amino acid composition and three dimensional structure, certain polypeptides can be referred to as an “antigen-binding molecule,” “antibody,” an “antibody fragment” or a “ligand.” Polypeptides can be produced by a number of methods, many of which are well known in the art. For example, polypeptides can be obtained by extraction (e.g., from isolated cells), by expression of a recombinant nucleic acid encoding the polypeptide, or by chemical synthesis. Polypeptides can be produced by, for example, recombinant technology, and expression vectors encoding the polypeptide introduced into host cells (e.g., by transformation or transfection) for expression of the encoded polypeptide
- As used herein, “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- The term “purified” as used herein with reference to a polypeptide refers to a polypeptide that has been chemically synthesized and is thus substantially uncontaminated by other polypeptides, or has been separated or isolated from most other cellular components by which it is naturally accompanied (e.g., other cellular proteins, polynucleotides, or cellular components). An example of a purified polypeptide is one that is at least 70%, by dry weight, free from the proteins and naturally occurring organic molecules with which it naturally associates. A preparation of a purified polypeptide therefore can be, for example, at least 80%, at least 90%, or at least 99%, by dry weight, the polypeptide. Polypeptides also can be engineered to contain a tag sequence (e.g., a polyhistidine tag, a myc tag, a FLAG® tag, or other affinity tag) that facilitates purification or marking (e.g., capture onto an affinity matrix, visualization under a microscope). Thus, a purified composition that comprises a polypeptide refers to a purified polypeptide unless otherwise indicated. The term “isolated” indicates that the polypeptides or nucleic acids of the disclosure are not in their natural environment. Isolated products of the disclosure can thus be contained in a culture supernatant, partially enriched, produced from heterologous sources, cloned in a vector or formulated with a vehicle, etc.
- The term “random copolymer” refers to the product of simultaneous polymerization of two or more monomers in admixture, where the probability of finding a given monomeric unit at any given site in a polymer chain is independent of the nature of the neighboring units at that position (Bernoullian distribution). Thus, when the variable group identified as Wp represents a random copolymer, the chain can comprise any sequence from 2 up to about 150 W1 and W2 groups, such as: —W1—W2—W1—W2—; —W2—W1—W2—W1—; —W1—W1—W1—W2—; —W1—W1—W2—W2—; —W1—W2—W2—W1—; —W1—W2—W1—W2—W2—W1—W2—W1—; —W1—W1—W2—W2—W1—W2—W2—W1—; and W2—W2—W1—W2—W1—W1—W1—W2—W2—W1—W2—W2—W1; ad infinitum, where Z attached to the various W1 groups and the W1 and W2 groups themselves can be the same or different.
- The term “sequence identity” is used with regard to polypeptide (or nucleic acid) sequence comparisons. This expression in particular refers to a percentage of sequence identity, for example at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% to the respective reference polypeptide or to the respective reference polynucleotide. Particularly, the polypeptide in question and the reference polypeptide exhibit the indicated sequence identity over a continuous stretch of 20, 30, 40, 45, 50, 60, 70, 80, 90, 100 or more amino acids or over the entire length of the reference polypeptide.
- “Specific binding,” as that term is commonly used in the biological arts, refers to a molecule that binds to a target with a relatively high affinity as compared to non-target tissues, and generally involves a plurality of non-covalent interactions, such as electrostatic interactions, van der Waals interactions, hydrogen bonding, and the like. Specific binding interactions characterize antibody-antigen binding, enzyme-substrate binding, and certain protein-receptor interactions; while such molecules might bind tissues besides their specific targets from time to time, to the extent that such non-target binding is inconsequential, the high-affinity binding pair can still fall within the definition of specific binding.
- The term “treatment” or “treating” means any treatment of a disease or disorder in a mammal, including:
-
- preventing or protecting against the disease or disorder, that is, causing the clinical symptoms not to develop;
- inhibiting the disease or disorder, that is, arresting or suppressing the development of clinical symptoms; and/or
- relieving the disease or disorder, that is, causing the regression of clinical symptoms.
- The term “unwanted immune response” refers to a reaction by the immune system of a subject, which in the given situation is not desirable. The reaction of the immune system is unwanted if such reaction does not lead to the prevention, reduction, or healing of a disease or disorder but instead causes, enhances or worsens, or is otherwise associated with induction or worsening of a disorder or disease. Typically, a reaction of the immune system causes, enhances or worsens a disease if it is directed against an inappropriate target. Exemplified, an unwanted immune response includes but is not limited to transplant rejection, immune response against a therapeutic agent, autoimmune disease, and allergy or hypersensitivity.
- The term “variant” is to be understood as a protein (or nucleic acid) which differs in comparison to the protein from which it is derived by one or more changes in its length, sequence, or structure. The polypeptide from which a protein variant is derived is also known as the parent polypeptide or polynucleotide. The term “variant” comprises “fragments” or “derivatives” of the parent molecule. Typically, “fragments” are smaller in length or size than the parent molecule, whilst “derivatives” exhibit one or more differences in their sequence or structure in comparison to the parent molecule. Also encompassed are modified molecules such as but not limited to post-translationally modified proteins (e.g. glycosylated, phosphorylated, ubiquitinated, palmitoylated, or proteolytically cleaved proteins) and modified nucleic acids such as methylated DNA. Also mixtures of different molecules such as but not limited to RNA-DNA hybrids, are encompassed by the term “variant”. Naturally occurring and artificially constructed variants are to be understood to be encompassed by the term “variant” as used herein. Further, the variants usable in the present invention may also be derived from homologs, orthologs, or paralogs of the parent molecule or from artificially constructed variant, provided that the variant exhibits at least one biological activity of the parent molecule, e.g., is functionally active. A variant can be characterized by a certain degree of sequence identity to the parent polypeptide from which it is derived. More precisely, a protein variant in the context of the present disclosure may exhibit at least 80% sequence identity to its parent polypeptide. Preferably, the sequence identity of protein variants is over a continuous stretch of 20, 30, 40, 45, 50, 60, 70, 80, 90, 100 or more amino acids. As discussed above, in several embodiments variants exhibit about 80%, about 85%, about 90%, about 95%, about 97%, about 98%, about 99% functional equivalence to an unmodified or native reference sequence (and any degree of functional equivalence between those listed).
- Compositions
- One aspect of the present disclosure relates to compositions, pharmaceutical formulations, and methods of treatment employing such compositions, as represented by Formula 1:
- where:
-
- m is an integer from about 1 to 100, particularly from about 1 to 20, and most particularly 1 to about 10;
- X is an antigen moiety, particularly a foreign antigen or self-antigen against which a patient develops an unwanted immune response, or a tolerogenic portion (e.g., a fragment or an epitope) of such an antigen moiety;
- Y is a linker moiety or a direct bond, or an antibody, antibody fragment, peptide or other ligand that specifically binds X; and
- Z is a liver-targeting moiety, in particular galactosylating or a glucosylating moiety.
- The value for m in
Formula 1 will depend upon the nature of X, in that each antigen, antibody, antibody fragment or ligand will have an individual number and density of sites (predominantly the N-terminal amine, lysine residues and cysteine residues) to which a linker, a galactosylating moiety or a glucosylating moiety can be bound. Antigens having a limited number of such sites can be derivatized, for example, at the N or C terminus, by adding lysine or cysteine residues (optionally via a cleavable linker, particularly a linker having an immunoproteosome cleavage site). Generally, it is preferred to provide an adequate degree of galactosylation/glucosylation in compositions ofFormula 1 so as to facilitate uptake by liver cells. Pharmaceutical formulations and methods of the disclosure can employ a cocktail of compositions ofFormula 1, respectively bearing different X moieties (e.g., several epitopes associated with a particular unwanted immune response). - The compositions of
Formula 1 include the sub-genuses where X is a foreign transplant antigen against which transplant recipients develop an unwanted immune response (e.g., transplant rejection), a foreign food, animal, plant or environmental antigen against which patients develop an unwanted immune (e.g., allergic or hypersensitivity) response, a foreign therapeutic agent against which patients develop an unwanted immune response (e.g., hypersensitivity and/or reduced therapeutic activity), or a self-antigen against which patients develop an unwanted immune response (e.g., autoimmune disease); where Y is a linker of Formulae Ya through Yp; and/or where Z is galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine as illustrated by Formulae 1a through 1p as described below with reference to the Reaction Schemes. - In additional embodiments, in the compositions of
Formula 1, X can be an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody is causatively involved in transplant rejection, immune response against a therapeutic agent, autoimmune disease, hypersensitivity and/or allergy. - Antigens
- The antigen employed as X in the compositions of
Formula 1 can be a protein or a peptide, e.g. the antigen may be a complete or partial therapeutic agent, a full-length transplant protein or peptide thereof, a full-length autoantigen or peptide thereof, a full-length allergen or peptide thereof, and/or a nucleic acid, or a mimetic of an aforementioned antigen. A listing of any particular antigen in a category or association with any particular disease or reaction does not preclude that antigen from being considered part of another category or associated with another disease or reaction. - Antigens employed in the practice of the present disclosure can be one or more of the following:
-
- Therapeutic agents that are proteins, peptides, antibodies and antibody-like molecules, including antibody fragments and fusion proteins with antibodies and antibody fragments. These include human, non-human (such as mouse) and non-natural (i.e., engineered) proteins, antibodies, chimeric antibodies, humanized antibodies, and non-antibody binding scaffolds, such as fibronectins, DARPins, knottins, and the like.
- Human allograft transplantation antigens against which transplant recipients develop an unwanted immune response.
- Self-antigens that cause an unwanted, autoimmune response. Those skilled in the art will appreciate that while self-antigens are of an endogenous origin in an autoimmune disease patient, the polypeptides employed in the disclosed compositions are typically synthesized exogenously (as opposed to being purified and concentrated from a source of origin).
- Foreign antigens, such as food, animal, plant and environmental antigens, against which a patient experiences an unwanted immune response. Those skilled in the art will appreciate that while a therapeutic protein can also be considered a foreign antigen due to its exogenous origin, for purposes of clarity in the description of the present disclosure such therapeutics are described as a separate group. Similarly, a plant or an animal antigen can be eaten and considered a food antigen, and an environmental antigen may originate from a plant. They are, however, all foreign antigens. In the interest of simplicity no attempt will be made to describe distinguish and define all of such potentially overlapping groups, as those skilled in the art can appreciate the antigens that can be employed in the compositions of the disclosure, particularly in light of the detailed description and examples.
- The antigen can be a complete protein, a portion of a complete protein, a peptide, or the like, and can be derivatized (as discussed above) for attachment to a linker and/or galactosylating moiety, can be a variant and/or can contain conservative substitutions, particularly maintaining sequence identity, and/or can be desialylated.
- In the embodiments where the antigen is a therapeutic protein, peptide, antibody or antibody-like molecule, specific antigens can be selected from: Abatacept, Abciximab, Adalimumab, Adenosine deaminase, Ado-trastuzumab emtansine, Agalsidase alfa, Agalsidase beta, Aldeslukin, Alglucerase, Alglucosidase alfa, α-1-proteinase inhibitor, Anakinra, Anistreplase (anisoylated plasminogen streptokinase activator complex), Antithrombin III, Antithymocyte globulin, Ateplase, Bevacizumab, Bivalirudin, Botulinum toxin type A, Botulinum toxin type B, C1-esterase inhibitor, Canakinumab, Carboxypeptidase G2 (Glucarpidase and Voraxaze), Certolizumab pegol, Cetuximab, Collagenase, Crotalidae immune Fab, Darbepoetin-α, Denosumab, Digoxin immune Fab, Dornase alfa, Eculizumab, Etanercept, Factor VIIa, Factor VIII, Factor IX, Factor XI, Factor XIII, Fibrinogen, Filgrastim, Galsulfase, Golimumab, Histrelin acetate, Hyaluronidase, Idursulphase, Imiglucerase, Infliximab, Insulin [including recombinant human insulin (“rHu insulin”) and bovine insulin], Interferon-α2a, Interferon-α2b, Interferon-β1a, Interferon-β1b, Interferon-γ1b, Ipilimumab, L-arginase, L-asparaginase, L-methionase, Lactase, Laronidase, Lepirudin/hirudin, Mecasermin, Mecasermin rinfabate, Methoxy Natalizumab, Octreotide, Ofatumumab, Oprelvekin, Pancreatic amylase, Pancreatic lipase, Papain, Peg-asparaginase, Peg-doxorubicin HCl, PEG-epoetin-β, Pegfilgrastim, Peg-Interferon-α2a, Peg-Interferon-α2b, Pegloticase, Pegvisomant, Phenylalanine ammonia-lyase (PAL), Protein C, Rasburicase (uricase), Sacrosidase, Salmon calcitonin, Sargramostim, Streptokinase, Tenecteplase, Teriparatide, Tocilizumab (atlizumab), Trastuzumab, Type 1 alpha-interferon, Ustekinumab, vW factor. The therapeutic protein can be obtained from natural sources (e.g., concentrated and purified) or synthesized, e.g., recombinantly, and includes antibody therapeutics that are typically IgG monoclonal or fragments or fusions.
- Particular therapeutic protein, peptide, antibody or antibody-like molecules include Abciximab, Adalimumab, Agalsidase alfa, Agalsidase beta, Aldeslukin, Alglucosidase alfa, Factor VIII, Factor IX, Infliximab, Insulin (including rHu Insulin), L-asparaginase, Laronidase, Natalizumab, Octreotide, Phenylalanine ammonia-lyase (PAL), or Rasburicase (uricase) and generally IgG monoclonal antibodies in their varying formats.
- Another particular group includes the hemostatic agents (Factor VIII and IX), Insulin (including rHu Insulin), and the non-human therapeutics uricase, PAL and asparaginase.
- Unwanted immune response in hematology and transplant includes autoimmune aplastic anemia, transplant rejection (generally), and Graft vs. Host Disease (bone marrow transplant rejection). In the embodiments where the antigen is a human allograft transplantation antigen, specific sequences can be selected from: subunits of the various MHC class I and MHC class II haplotype proteins (for example, donor/recipient differences identified in tissue cross-matching), and single-amino-acid polymorphisms on minor blood group antigens including RhCE, Kell, Kidd, Duffy and Ss. Such compositions can be prepared individually for a given donor/recipient pair.
- In the embodiments where the antigen is a self-antigen, specific antigens (and the autoimmune disease with which they are associated) can be selected from:
-
- In
type 1 diabetes mellitus, several main antigens have been identified: insulin, proinsulin, preproinsulin, glutamic acid decarboxylase-65 (GAD-65 or glutamate decarboxylase 2), GAD-67, glucose-6 phosphatase 2 (IGRP or islet-specific glucose 6 phosphatase catalytic subunit related protein), insulinoma-associated protein 2 (IA-2), and insulinoma-associated protein 2β (IA-2β); other antigens include ICA69, ICA12 (SOX-13), carboxypeptidase H, Imogen 38, GLIMA 38, chromogranin-A, HSP-60, carboxypeptidase E, peripherin,glucose transporter 2, hepatocarcinoma-intestine-pancreas/pancreatic associated protein, S100p, glial fibrillary acidic protein, regenerating gene II, pancreaticduodenal homeobox 1, dystrophia myotonica kinase, islet-specific glucose-6-phosphatase catalytic subunit-related protein, and SST G-protein coupled receptors 1-5. It should be noted that insulin is an example of an antigen that can be characterized both as a self-antigen and a therapeutic protein antigen. For example, rHu Insulin and bovine insulin are therapeutic protein antigens (that are the subject of unwanted immune attack), whereas endogenous human insulin is a self-antigen (that is the subject of an unwanted immune attack). Because endogenous human insulin is not available to be employed in a pharmaceutical composition, a recombinant form is employed in the compositions of the disclosure.- Human insulin, including an exogenously obtained from useful in the compositions of the disclosure, has the following sequence (UNIPROT P01308):
- In
-
(SEQ ID NO: 1) MALWMRLLPL LALLALWGPD PAAAFVNQHL CGSHLVEALY LVCGERGFFY TPKTRREAED LQVGQVELGG GPGAGSLQPL ALEGSLQKRG IVEQCCTSIC SLYQLENYCN. -
-
- GAD-65, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT Q05329):
-
-
(SEQ ID NO: 2) MASPGSGFWS FGSEDGSGDS ENPGTARAWC QVAQKFTGGI GNKLCALLYG DAEKPAESGG SQPPRAAARK AACACDQKPC SCSKVDVNYA FLHATDLLPA CDGERPTLAF LQDVMNILLQ YVVKSFDRST KVIDFHYPNE LLQEYNWELA DQPQNLEEIL MHCQTTLKYA IKTGHPRYFN QLSTGLDMVG LAADWLTSTA NTNMFTYEIA PVFVLLEYVT LKKMREIIGW PGGSGDGIFS PGGAISNMYA MMIARFKMFP EVKEKGMAAL PRLIAFTSEH SHFSLKKGAA ALGIGTDSVI LIKCDERGKM IPSDLERRIL EAKQKGFVPF LVSATAGTTV YGAFDPLLAV ADICKKYKIW MHVDAAWGGG LLMSRKHKWK LSGVERANSV TWNPHKMMGV PLQCSALLVR EEGLMQNCNQ MHASYLFQQD KHYDLSYDTG DKALQCGRHV DVFKLWLMWR AKGTTGFEAH VDKGLELAEY LYNIIKNREG YEMVFDGKPQ HTNVCFWYIP PSLRTLEDNE ERMSRLSKVA PVIKARMMEY GTTMVSYQPL GDKVNFFRMV ISNPAATHQD IDFLIEEIER LGQDL. -
-
- IGRP, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT QN9QR9):
-
-
(SEQ ID NO: 3) MDFLHRNGVLIIQHLQKDYRAYYTFLNFMSNVGDP RNIFFIYFPLCFQFNQTVGTKMIWVAVIGDWLNLI FKWILFGHRPYWWVQETQIYPNHSSPCLEQFPTTC ETGPGSPSGHAMGASCVWYVMVTAALSHTVCGMDK FSITLHRLTWSFLWSVFWLIQISVCISRVFIATHF PHQVILGVIGGMLVAEAFEHTPGIQTASLGTYLKT NLFLFLFAVGFYLLLRVLNIDLLWSVPIAKKWCAN PDWIHIDTTPFAGLVRNLGVLFGLGFAINSEMFLL SCRGGNNYTLSFRLLCALTSLTILQLYHFLQIPTH EEHLFYVLSFCKSASIPLTVVAFIPYSVHMLMKQS GKKSQ. -
- In autoimmune diseases of the thyroid, including Hashimoto's thyroiditis and Graves' disease, main antigens include thyroglobulin (TG), thyroid peroxidase (TPO) and thyrotropin receptor (TSHR); other antigens include sodium iodine symporter (NIS) and megalin. In thyroid-associated ophthalmopathy and dermopathy, in addition to thyroid autoantigens including TSHR, an antigen is insulin-
like growth factor 1 receptor. In hypoparathyroidism, a main antigen is calcium sensitive receptor. - In Addison's Disease, main antigens include 21-hydroxylase, 17α-hydroxylase, and P450 side chain cleavage enzyme (P450scc); other antigens include ACTH receptor, P450c21 and P450c17.
- In premature ovarian failure, main antigens include FSH receptor and α-enolase.
- In autoimmune hypophysitis, or pituitary autoimmune disease, main antigens include pituitary gland-specific protein factor (PGSF) 1a and 2; another antigen is
type 2 iodothyronine deiodinase. - In multiple sclerosis, main antigens include myelin basic protein (“MBP”), myelin oligodendrocyte glycoprotein (“MOG”) and myelin proteolipid protein (“PLP”).
- MBP, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT P02686):
- In autoimmune diseases of the thyroid, including Hashimoto's thyroiditis and Graves' disease, main antigens include thyroglobulin (TG), thyroid peroxidase (TPO) and thyrotropin receptor (TSHR); other antigens include sodium iodine symporter (NIS) and megalin. In thyroid-associated ophthalmopathy and dermopathy, in addition to thyroid autoantigens including TSHR, an antigen is insulin-
-
(SEQ ID NO: 4) MGNHAGKRELNAEKASTNSETNRGESEKKRNLGEL SRTTSEDNEVFGEADANQNNGTSSQDTAVTDSKRT ADPKNAWQDAHPADPGSRPHLIRLFSRDAPGREDN TFKDRPSESDELQTIQEDSAATSESLDVMASQKRP SQRHGSKYLATASTMDHARHGFLPRHRDTGILDSI GRFFGGDRGAPKRGSGKDSHHPARTAHYGSLPQKS HGRTQDENPVVHFFKNIVTPRTPPPSQGKGRGLSL SRFSWGAEGQRPGFGYGGRASDYKSAHKGFKGVDA QGTLSKIFKLGGRDSRSGSPMARR -
-
- MOG, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT Q16653):
-
-
(SEQ ID NO: 5) MASLSRPSLPSCLCSFLLLLLLQVSSSYAGQFRVI GPRHPIRALVGDEVELPCRISPGKNATGMEVGWYR PPFSRVVHLYRNGKDQDGDQAPEYRGRTELLKDAI GEGKVTLRIRNVRFSDEGGFTCFFRDHSYQEEAAM ELKVEDPFYWVSPGVLVLLAVLPVLLLQITVGLIF LCLQYRLRGKLRAEIENLHRTFDPHFLRVPCWKIT LFVIVPVLGPLVALIICYNWLHRRLAGQFLEELRN PF -
-
- PLP, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT P60201):
-
-
(SEQ ID NO: 6) MGLLECCARCLVGAPFASLVATGLCFFGVALFCGC GHEALTGTEKLIETYFSKNYQDYEYLINVIHAFQY VIYGTASFFFLYGALLLAEGFYTTGAVRQIFGDYK TTICGKGLSATVTGGQKGRGSRGQHQAHSLERVCH CLGKWLGHPDKFVGITYALTVVWLLVFACSAVPVY IYFNTWTTCQSIAFPSKTSASIGSLCADARMYGVL PWNAFPGKVCGSNLLSICKTAEFQMTFHLFIAAFV GAAATLVSLLTFMIAATYNFAVLKLMGRGTKF. -
-
- Peptides/epitopes useful in the compositions of the disclosure for treating multiple sclerosis include some or all of the following sequences, individually in a composition of
Formula 1 or together in a cocktail of compositions of Formula 1:
- Peptides/epitopes useful in the compositions of the disclosure for treating multiple sclerosis include some or all of the following sequences, individually in a composition of
-
-
MBP13-32: (SEQ ID NO: 7) KYLATASTMDHARHGFLPRH; MBP83-99: (SEQ ID NO: 8) ENPWHFFKNIVTPRTP; MBP111-129: (SEQ ID NO: 9) LSRFSWGAEGQRPGFGYGG; MBP146-170: (SEQ ID NO: 10) AQGTLSKIFKLGGRDSRSGSPMARR; MOG1-20: (SEQ ID NO: 11) GQFRVIGPRHPIRALVGDEV; MOG35-55: (SEQ ID NO: 12) MEVGWYRPPFSRWHLYRNGK; and PLP139-154: (SEQ ID NO: 13) HCLGKWLGHPDKFVGI. -
- In rheumatoid arthritis, main antigens include collagen II, immunoglobulin binding protein, the fragment crystallizable region of immunoglobulin G, double-stranded DNA, and the natural and cirtullinated forms of proteins implicated in rheumatoid arthritis pathology, including fibrin/fibrinogen, vimentin, collagen I and II, and alpha-enolase.
- In autoimmune gastritis, a main antigen is H+, K+-ATPase.
- In pernicious angemis, a main antigen is intrinsic factor.
- In celiac disease, main antigens are tissue transglutaminase and the natural and deamidated forms of gluten or gluten-like proteins, such as alpha-, gamma-, and omega-gliadin, glutenin, hordein, secalin, and avenin. Those skilled in the art will appreciate, for example, that while the main antigen of celiac disease is alpha gliadin, alpha gliadin turns more immunogenic in the body through deamidation by tissue glutaminase converting alpha gliadin's glutamines to glutamic acid. Thus, while alpha gliadin is originally a foreign food antigen, once it has been modified in the body to become more immunogenic it can be characterized as a self-antigen.
- In vitiligo, a main antigen is tyrosinase, and tyrosinase related
protein - MART1, Melanoma antigen recognized by
T cells 1, Melan-A, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT Q16655):
- MART1, Melanoma antigen recognized by
-
(SEQ ID NO: 14) MPREDAHFIYGYPKKGHGHSYTTAEEAAGIGILTV ILGVLLLIGCWYCRRRNGYRALMDKSLHVGTQCAL TRRCPQEGFDHRDSKVSLQEKNCEPVVPNAPPAYE KLSAEQSPPPYSP -
-
- Tyrosinase, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT P14679):
-
-
(SEQ ID NO: 15) MLLAVLYCLLWSFQTSAGHFPRACVSSKNLMEKEC CPPWSGDRSPCGQLSGRGSCQNILLSNAPLGPQFP FTGVDDRESWPSVFYNRTCQCSGNFMGFNCGNCKF GFWGPNCTERRLLVRRNIFDLSAPEKDKFFAYLTL AKHTISSDYVIPIGTYGQMKNGSTPMFNDINIYDL FVWMHYYVSMDALLGGSEIWRDIDFAHEAPAFLPW HRLFLLRWEQEIQKLTGDENFTIPYWDWRDAEKCD ICTDEYMGGQHPTNPNLLSPASFFSSWQIVCSRLE EYNSHQSLCNGTPEGPLRRNPGNHDKSRTPRLPSS ADVEFCLSLTQYESGSMDKAANFSFRNTLEGFASP LTGIADASQSSMHNALHIYMNGTMSQVQGSANDPI FLLHHAFVDSIFEQWLRRHRPLQEVYPEANAPIGH NRESYMVPFIPLYRNGDFFISSKDLGYDYSYLQDS DPDSFQDYIKSYLEQASRIWSWLLGAAMVGAVLTA LLAGLVSLLCRHKRKQLPEEKQPLLMEKEDYHSLY QSHL -
-
- Melanocyte protein PMEL, gp100, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT P40967):
-
-
(SEQ ID NO: 16) MDLVLKRCLLHLAVIGALLAVGATKVPRNQDWLGV SRQLRTKAWNRQLYPEWTEAQRLDCWRGGQVSLKV SNDGPTLIGANASFSIALNFPGSQKVLPDGQVIWV NNTIINGSQVWGGQPVYPQETDDACIFPDGGPCPS GSWSQKRSFVYVWKTWGQYWQVLGGPVSGLSIGTG RAMLGTHTMEVTVYHRRGSRSYVPLAHSSSAFTIT DQVPFSVSVSQLRALDGGNKHFLRNQPLTFALQLH DPSGYLAEADLSYTWDFGDSSGTLISRALVVTHTY LEPGPVTAQVVLQAAIPLTSCGSSPVPGTTDGHRP TAEAPNTTAGQVPTTEVVGTTPGQAPTAEPSGTTS VQVPTTEVISTAPVQMPTAESTGMTPEKVPVSEVM GTTLAEMSTPEATGMTPAEVSIVVLSGTTAAQVTT TEWVETTARELPIPEPEGPDASSIMSTESITGSLG PLLDGTATLRLVKRQVPLDCVLYRYGSFSVTLDIV QGIESAEILQAVPSGEGDAFELTVSCQGGLPKEAC MEISSPGCQPPAQRLCQPVLPSPACQLVLHQILKG GSGTYCLNVSLADTNSLAVVSTQLIMPGQEAGLGQ VPLIVGILLVLMAVVLASLIYRRRLMKQDFSVPQL PHSSSHWLRLPRIFCSCPIGENSPLLSGQQV -
- In myasthenia gravis, a main antigen is acetylcholine receptor.
- In pemphigus vulgaris and variants, main antigens are desmoglein 3, 1 and 4; other antigens include pemphaxin, desmocollins, plakoglobin, perplakin, desmoplakins, and acetylcholine receptor.
- In bullous pemphigoid, main antigens include BP180 and BP230; other antigens include plectin and
laminin 5. - In dermatitis herpetiformis Duhring, main antigens include endomysium and tissue transglutaminase.
- In epidermolysis bullosa acquisita, a main antigen is collagen VII.
- In systemic sclerosis, main antigens include
matrix metalloproteinase - In mixed connective tissue disease, a main antigen is U1snRNP.
- In Sjogren's syndrome, the main antigens are nuclear antigens SS-A and SS-B; other antigens include fodrin, poly(ADP-ribose) polymerase and topoisomerase, muscarinic receptors, and the Fc-gamma receptor IIIb.
- In systemic lupus erythematosus, main antigens include nuclear proteins including the “Smith antigen,” SS-A, high mobility group box 1 (HMGB1), nucleosomes, histone proteins and double-stranded DNA (against which auto-antibodies are made in the disease process).
- In Goodpasture's syndrome, main antigens include glomerular basement membrane proteins including collagen IV.
- In rheumatic heart disease, a main antigen is cardiac myosin.
- In autoimmune
polyendocrine syndrome type 1 antigens include aromatic L-amino acid decarboxylase, histidine decarboxylase, cysteine sulfinic acid decarboxylase, tryptophan hydroxylase, tyrosine hydroxylase, phenylalanine hydroxylase, hepatic P450 cytochromes P4501A2 and 2A6, SOX-9, SOX-10, calcium-sensing receptor protein, and thetype 1 interferons interferon alpha, beta and omega. - In neuromyelitis optica, a main antigen is AQP4.
- Aquaporin-4, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT P55087):
-
(SEQ ID NO: 17) MSDRPTARRWGKCGPLCTRENIMVAFKGVWTQAFW KAVTAEFLAMLIFVLLSLGSTINWGGTEKPLPVDM VLISLCFGLSIATMVQCFGHISGGHINPAVTVAMV CTRKISIAKSVFYIAAQCLGAIIGAGILYLVTPPS VVGGLGVTMVHGNLTAGHGLLVELIITFQLVFTIF ASCDSKRTDVTGSIALAIGFSVAIGHLFAINYTGA SMNPARSFGPAVIMGNWENHWIYWVGPIIGAVLAG GLYEYVFCPDVEFKRRFKEAFSKAAQQTKGSYMEV EDNRSQVETDDLILKPGVVHVIDVDRGEEKKGKDQ SGEVLSSV -
- In uveitis, main antigens include Retinal S-antigen or “S-arrestin” and interphotoreceptor retinoid binding protein (IRBP) or retinol-binding
protein 3.- S-arrestin, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT P10523):
- In uveitis, main antigens include Retinal S-antigen or “S-arrestin” and interphotoreceptor retinoid binding protein (IRBP) or retinol-binding
-
(SEQ ID NO: 18) MAASGKTSKS EPNHVIFKKI SRDKSVTIYL GNRDYIDHVS QVQPVDGVVL VDPDLVKGKK VYVTLTCAFR YGQEDIDVIG LTFRRDLYFS RVQVYPPVGA ASTPTKLQES LLKKLGSNTY PFLLTFPDYL PCSVMLQPAP QDSGKSCGVD FEVKAFATDS TDAEEDKIPK KSSVRLLIRK VQHAPLEMGP QPRAEAAWQF FMSDKPLHLA VSLNKEIYFH GEPIPVTVTV TNNTEKTVKK IKAFVEQVAN VVLYSSDYYV KPVAMEEAQE KVPPNSTLTK TLTLLPLLAN NRERRGIALD GKIKHEDTNL ASSTIIKEGI DRTVLGILVS YQIKVKLTVS GFLGELTSSE VATEVPFRLM HPQPEDPAKE SYQDANLVFE EFARHNLKDA GEAEEGKRDK NDVDE. -
-
- IRBP, including an exogenously obtained form useful in the compositions of the disclosure, has the following sequence (UNIPROT P10745):
-
-
(SEQ ID NO: 19) MMREWVLLMSVLLCGLAGPTHLFQPSLVLDMAKVL LDNYCFPENLLGMQEAIQQAIKSHEILSISDPQTL ASVLTAGVQSSLNDPRLVISYEPSTPEPPPQVPAL TSLSEEELLAWLQRGLRHEVLEGNVGYLRVDSVPG QEVLSMMGEFLVAHVWGNLMGTSALVLDLRHCTGG QVSGIPYIISYLHPGNTILHVDTIYNRPSNTTTEI WTLPQVLGERYGADKDVVVLTSSQTRGVAEDIAHI LKQMRRAIVVGERTGGGALDLRKLRIGESDFFFTV PVSRSLGPLGGGSQTWEGSGVLPCVGTPAEQALEK ALAILTLRSALPGVVHCLQEVLKDYYTLVDRVPTL LQHLASMDFSTVVSEEDLVTKLNAGLQAASEDPRL LVRAIGPTETPSWPAPDAAAEDSPGVAPELPEDEA IRQALVDSVFQVSVLPGNVGYLRFDSFADASVLGV LAPYVLRQVWEPLQDTEHLIMDLRHNPGGPSSAVP LLLSYFQGPEAGPVHLFTTYDRRTNITQEHFSHME LPGPRYSTQRGVYLLTSHRTATAAEEFAFLMQSLG WATLVGEITAGNLLHTRTVPLLDTPEGSLALTVPV LTFIDNHGEAWLGGGVVPDAIVLAEEALDKAQEVL EFHQSLGALVEGTGHLLEAHYARPEVVGQTSALLR AKLAQGAYRTAVDLESLASQLTADLQEVSGDHRLL VFHSPGELVVEEAPPPPPAVPSPEELTYLIEALFK TEVLPGQLGYLRFDAMAELETVKAVGPQLVRLVWQ QLVDTAALVIDLRYNPGSYSTAIPLLCSYFFEAEP RQHLYSVFDRATSKVTEVWTLPQVAGQRYGSHKDL YILMSHTSGSAAEAFAHTMQDLQRATVIGEPTAGG ALSVGIYQVGSSPLYASMPTQMAMSATTGKAWDLA GVEPDITVPMSEALSIAQDIVALRAKVPTVLQTAG KLVADNYASAELGAKMATKLSGLQSRYSRVTSEVA LAEILGADLQMLSGDPHLKAAHIPENAKDRIPGIV PMQIPSPEVFEELIKFSFHTNVLEDNIGYLRFDMF GDGELLTQVSRLLVEHIWKKIMHTDAMIIDMRFNI GGPTSSIPILCSYFFDEGPPVLLDKIYSRPDDSVS ELWTHAQVVGERYGSKKSMVILTSSVTAGTAEEFT YIMKRLGRALVIGEVTSGGCQPPQTYHVDDTNLYL TIPTARSVGASDGSSWEGVGVTPHVVVPAEEALAR AKEMLQHNQLRVKRSPGLQDHL - In the embodiments where the antigen is a foreign antigen against which an unwanted immune response can be developed, such as food antigens, specific antigens can be:
-
- from peanut: conarachin (Ara h 1), allergen II (Ara h 2), arachis agglutinin, conglutin (Ara h 6);
- conarachin, for example has the sequence identified as UNIPROT Q6PSU6
- from apple: 31 kda major allergen/disease resistance protein homolog (Mal d 2), lipid transfer protein precursor (Mal d 3), major allergen Mal d 1.03D (Mal d 1);
- from milk: α-lactalbumin (ALA), lactotransferrin; from kiwi: actinidin (
Act c 1, Act d 1), phytocystatin, thaumatin-like protein (Act d 2), kiwellin (Act d 5); - from egg whites: ovomucoid, ovalbumin, ovotransferrin, and lysozyme;
- from egg yolks: livetin, apovitillin, and vosvetin;
- from mustard: 2S albumin (Sin a 1), 11S globulin (Sin a 2), lipid transfer protein (Sin a 3), profilin (Sin a 4);
- from celery: profilin (Api g 4), high molecular weight glycoprotein (Api g 5);
- from shrimp: Pen a 1 allergen (Pen a 1), allergen Pen m 2 (Pen m 2), tropomyosin fast isoform;
- from wheat and/or other cerials: high molecular weight glutenin, low molecular weight glutenin, alpha-, gamma- and omega-gliadin, hordein, secalin and/or avenin;
- peptides/epitopes useful in the compositions of the disclosure for treating Celiac Disease include some or all of the following sequences, individually in a composition of
Formula 1 or together in a cocktail of compositions of Formula 1:- DQ-2 relevant, Alpha-gliadin “33-mer” native:
- peptides/epitopes useful in the compositions of the disclosure for treating Celiac Disease include some or all of the following sequences, individually in a composition of
- from peanut: conarachin (Ara h 1), allergen II (Ara h 2), arachis agglutinin, conglutin (Ara h 6);
-
(SEQ ID NO: 20) LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF -
-
-
- DQ-2 relevant, Alpha-gliadin “33-mer” deamidated:
-
-
-
(SEQ ID NO: 21) LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF -
-
-
- DQ-8 relevant, Alpha-gliadin:
-
-
-
(SEQ ID NO: 22) QQYPSGQGSFQPSQQNPQ -
-
-
- DQ-8 relevant, Omega-gliadin (wheat, U5UA46):
-
-
-
(SEQ ID NO: 23) QPFPQPEQPFPW -
- from strawberry: major strawberry allergy Fra a 1-E (Fra a 1); and
- from banana: profilin (Mus xp 1).
- In the embodiments where the antigen is a foreign antigen against which an unwanted immune response is developed, such as to animal, plant and environmental antigens, specific antigens can, for example, be: cat, mouse, dog, horse, bee, dust, tree and goldenrod, including the following proteins or peptides derived from:
-
- weeds, (including ragweed allergens amb a 1, 2, 3, 5, and 6, and
Amb t 5; pigweed Che a 2 and 5; and other weedallergens Par j - grass (including major
allergens Cyn d Dac g Lol p Poa p 1 and 5); - pollen from ragweed and other weeds (including curly dock, lambs quarters, pigweed, plantain, sheep sorrel, and sagebrush), grass (including Bermuda, Johnson, Kentucky, Orchard, Sweet vernal, and Timothy grass), and trees (including catalpa, elm, hickory, olive, pecan, sycamore, and walnut);
- dust (including major allergens from species Dermatophagoides pteronyssinus, such as
Der p Der f Blo t allergens Eur m 2 from Euroglyphus maynei,Tyr p 13 from Tyrophagus putrescentiae, and allergens Blag - pets (including cats, dogs, rodents, and farm animals; major cat allergens include
Fel d 1 through 8, cat IgA,BLa g 2, and cat albumin; major dog allergens include Canf 1 through 6, and dog albumin); - bee stings, including major
allergens Api m 1 through 12; and - fungus, including allergens derived from, species of Aspergillus and Penicillium, as well as the species Alternaria alternata, Davidiella tassiana, and Trichophyton rubrum.
- weeds, (including ragweed allergens amb a 1, 2, 3, 5, and 6, and
- As will be appreciated by those skilled in the art, a patient can be tested to identify an antigen against which an unwanted immune response has developed, and a protein, peptide or the like can be developed based on that antigen and incorporated as X in a composition of the present disclosure.
- Sialated Antigens, Antibodies, Antibody Fragments
- Following are non-limiting examples of antigens, antibodies, antibody fragments having sialylation that can be removed to leave glycosylation specifically targeting the ASGPR: follicle stimulating hormone (FSH), human chorionic gonadotropin (HCG), luteinizing hormone (LH), osteopontin, thyroid stimulating hormone (TSH), agalsidase alfa, agalsidase beta (FABRAZYME®; Genzyme), epoetin alfa and epoetin beta, follitropin alfa (GONAL-F®; Merck/Serono) and follitropin beta (FOLLISTIM®; Schering-Plough), insulin growth factor binding protein 6 (IGFBP-6), Iutropin alfa (LUVERIS®; Merck/Serono), transforming growth factor β1, antithrombin (ATryn®/TROMBATE-III®; Genzyme/Talecris Biotherapeutics), thyrotropin alfa (THYROGEN®; Genzyme), lenograstim, sargramostim (LEUKINE®; Genzyme), interleukin-3, prourokinase, lymphotoxin, C1-esterase inhibitor (Berinert®; CSL), IgG-like antibodies, interferon beta, coagulation factor VIIa (NOVOSEVEN®; Novo Nordisk), coagulation factor VIII (moroctocog alfa), coagulation factor IX (nonacog alfa) (BENEFIX®; Wyeth), and the p55 tumor necrosis receptor fusion protein. (See: Byrne et al., Drug Discovery Today,
Vol 12, No. 7/8, pages 319-326, April 2007 and Sola et al., BioDrugs. 2010; 24(1): 9-21). Pharmaceutically relevant proteins that have previously been hyperglycosylated and can be desialylated for hepatocyte-ASGPR targeting include: interferon alfa and gamma, luteinizing hormone, Fv antibody fragments, asparaginase, cholinesterase, darbepoetin alfa (AraNESP®; Amgen), thrombopoietin, leptin, FSH, IFN-α2, serum albumin, and corifollitropin alfa. - Proteins with glycans that do not normally terminate in sialic acids, including proteins produced in bacteria or yeast (such as arginase, some insulins, and uricase) would not be amenable to desialylation.
- Those skilled in the art will appreciate that publicly available references, such as UNIPROT, disclose the presence and location of sites for desialylation on most if not all antigens, antibodies, antibody fragments and ligands of interest.
- Antibodies and Peptide Ligands
- In the embodiments employing an antibody, antibody fragment or ligand, such moieties are chosen to specifically bind a targeted circulating protein or peptide or antibody, and result in hepatic uptake of the circulating targeted moiety, possibly as an adduct with the targeting moiety, ultimately resulting in the clearance and inactivation of the circulating targeted moiety. For example, liver-targeted Factor VIII will bind and clear circulating anti-Factor VIII antibodies. Procedures for the identification of such moieties will be familiar to those skilled in the art.
- Linkers
- The linkers employed in the compositions of the present disclosure (“Y” in Formula 1) can include N-hydroxysuccinamidyl linkers, malaemide linkers, vinylsulfone linkers, pyridyl di-thiol-poly(ethylene glycol) linkers, pyridyl di-thiol linkers, n-nitrophenyl carbonate linkers, NHS-ester linkers, nitrophenoxy poly(ethylene glycol)ester linkers and the like.
- One particular group of linkers comprises linkers of Formula Y′-CMP below (where Y′ indicates the remaining portion of the linker and R9 and Z are as defined). More particularly, in the group of linkers including Formula Y′-CMP, in several embodiments the R9 substituent is an ethylacetamido group, and even more particularly the ethylacetamido is conjugated with C1 of N-acetylgalactosamine or N-acetylglucosamine.
- Di-thiol-containing linkers, particularly disulfanylethyl carbamate-containing linkers (named including a free amine of X, otherwise named a “disulfanyl ethyl ester” without including the free amine of X) are particularly advantageous in the present compositions as having the ability to cleave and release an antigen in its original form once inside a cell, for example as illustrated below (where Y′ indicates the remaining portion of the linker and X′ and Z are as defined).
- Particularly with regard to the linkers illustrated below in Formula Ya through Formula Yp: the left bracket “(” indicates the bond between X and Y;
-
- the right or bottom bracket “)” indicates the bond between Y and Z;
- n is an integer representing a mixture including from about 1 to 100, particularly about 8 to 90 (e.g., 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 70, 75, 80, 85, 90 or 95), more particularly about 40 to 80 (e.g., 39, 40, 43, 45, 46, 48, 50, 52, 53, 55, 57, 60, 62, 65, 66, 68, 70, 73, 75, 78, 80 or 81) ethylene glycol groups, where the mixture typically encompasses the integer specified as n±10%;
- p is an integer representing a mixture including from about 2 to 150, particularly about 20 to 100 (e.g., 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 70, 75, 80, 85, 90, 95, 100 or 105) and more particularly about 30 to 40 (e.g., 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 or 44), where the mixture typically encompasses the integer specified as p±10%;
- q is an integer representing a mixture including from about 1 to 44, particularly about 3 to 20 (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22) and more particularly about 4 to 12 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13), where the mixture typically encompasses the integer specified as q±10%; and
- R8 is —CH2— (“methyl”) or —CH2—CH2—C(CH3)(CN)— (“1-cyano-1-methyl-propyl” or “CMP”).
- Y′ represents the remaining portion of Y (e.g., HS-PEG); and
- W represents a polymer of the same W1 group, or W is a copolymer (preferably a random copolymer) of the same or different W1 and W2 groups, where:
- where:
-
- p is an integer from 2 to about 150;
- R9 is a direct bond, —CH2—CH2—NH—C(O)— (i.e., an ethylacetamido group or “EtAcN”) or —CH2—CH2—(O—CH2—CH2)t—NH—C(O)— (i.e., a pegylated ethylacetamido group or “Et-PEG-AcN”)
- t is an integer from 1 to 5, (particularly 1 to 3, and more particularly 1 or 2); and
- R10 is an aliphatic group, an alcohol or an aliphatic alcohol, particularly N-(2-hydroxypropyl)methylacrylamide; and
- Z (not shown) is galactose, glucose, galactosamine, glucosamine, N-acetylgalactosamine or N-acetylglucosamine.
- Formulae Ya Through Yp
- (Linkers of Formula Yn can be synthesized via certain precursors that render Yn particularly suitable for conjugation to hydrophobic antigens.)
- The linkers shown above as Formulae Yh through Yn are synthesized as isomers that are employed without separation. For example, the linkers of Formulae Yh, Yi, Yj and Yn will be a mixture of the 8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-8yl and 8,9-dihydro-3H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-8yl structures illustrated below:
- The linkers of Formulae Yk, YL and Ym will be a mixture of the 8,9-dihydro-1H-dibenzo[3.4:7.8]cycloocta[1,2-d][1,2,3]triazol-8-yl and 8,9-dihydro-1H-dibenzo[3.4:7.8]cycloocta[1,2-d][1,2,3]triazol-9-yl structures illustrated below:
- The presence of such isomeric mixtures does not impair the functionality of the compositions employing such linkers.
- Liver-Targeting Moieties
- The galactosylating moieties employed in the compositions of the present disclosure serve to target the compositions to liver cells (for example, specifically binding hepatocytes) and can be selected from: galactose, galactosamine or N-acetylgalactosamine. The glucosylating moieties employed in the compositions of the present disclosure serve to target the compositions to liver cells (for example, specifically binding hepatocytes or LSECs) and can be selected from: glucose, glucosamine or N-acetylglucosamine. It has been reported that ASGPR affinity can be retained while modifying either side of galactose's C3/C4-diol anchor (Mamidyala, Sreeman K., et al., J. Am. Chem. Soc. 2012, 134, 1978-1981), therefore the points of conjugation used in several embodiments are particularly at C1, C2 and C6.
- Particular liver-targeting moieties include galactose or glucose conjugated at C1 or C6, galactosamine or glucosamine conjugated at C2, and N-acetylgalactosamine or N-acetylglucosamine conjugated at C6. Other particular liver-targeting moieties include N-acetylgalactosamine or N-acetylglucosamine conjugated at C2, more particularly conjugated to a linker bearing an R9 substituent that is CH2. Still other particular liver-targeting moieties include galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine conjugated at C1, more particularly conjugated to a linker bearing an R9 substituent that is an ethylacetamido group.
- Nomenclature
- The compositions of Formula 1 can be named using a combination of IUPAC and trivial names. For example, a compound corresponding to Formula 1 where X is a cyclobutyl moiety (shown instead of an antigen for illustrative purposes), Y is Formula Ya, m is 1, n is 4 and Z is N-acetylgalactosamin-2-yl or N-acetylglucosamin-2-yl:
- can be named (Z)-(21-cyclobutyl-1-oxo-1-((2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)amino)-4,7,10,13-tetraoxa-16,17-dithiahenicosan-21-ylidene)triaz-1-yn-2-ium chloride, so the corresponding composition of the disclosure where X is tissue transglutaminase can be named (Z)-(21-(tissue transglutaminase)-1-oxo-1-((2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)amino)-4,7,10,13-tetraoxa-16,17-dithiahenicosan-21-ylidene)triaz-1-yn-2-ium chloride. The corresponding composition of the disclosure where X′ is tissue transglutaminase, m is 2, n is 4 and Z′ is N-acetylgalactosamin-2-yl or N-acetylglucosamin-2-yl can be named (3Z)-((tissue transgultaminase)-1,3-diylbis(1-oxo-1-((2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)amino)-4,7,10,13-tetraoxa-16,17-dithiahenicosan-21-yl-21-ylidene))bis(triaz-1-yn-2-ium) chloride.
- In the interest of simplification, the compositions of
Formula 1 can be named using an alternative naming system by reference to X and correspondence to one of Formulae 1a to 1p (as illustrated in the reaction schemes) followed by recitation of the integers for variables m, n, p and/or q, R8, R9 and identification of the galactosylating moiety and the position at which it is conjugated. In some embodiments, the compounds where W is a copolymer are designated by the letter of the “Y group” followed by a “prime” (e.g., F1c′) and include the number and an identification of the comonomers. Under this system, the composition of Formula 1a where X is ovalbumin, m is 2, n is 4 and Z is N-acetylgalactosamin-2-yl can be named “F1a-OVA-m2-n4-2NAcGAL.” The corresponding composition of Formula 1a where X is ovalbumin, m is 2, n is 4 and Z is N-acetylglucosamin-2-yl can be named “F1a-OVA-m2-n4-2NAcGLU.” - Similarly, the following composition of
Formula 1 - can be named “2-((2-(((3-(3-(22-((3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-16-cyano-16,18-dimethyl-13,19-dioxo-18-((phenylcarbonothioyl)thio)-3,6,9,12-tetraoxa-20-azadocosyl)-3,9-dihydro-8H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-8-yl)-3-oxopropyl)carbamoyl)oxy)ethyl)disulfanyl)ethyl insulin carboxylate” The isomer:
- can be named “2-((2-(((3-(1-(22-((3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-16-cyano-16,18-dimethyl-13,19-dioxo-18-((phenylcarbonothioyl)thio)-3,6,9,12-tetraoxa-20-azadocosyl)-1,9-dihydro-8H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-8-yl)-3-oxopropyl)carbamoyl)-oxy)ethyl)disulfanyl)ethyl insulin carboxylate” (bold lettering highlights added for convenience in identifying the difference between the formal names). Employing the naming system adopted for the present disclosure, both isomers can be named “F1n-insulin-m1-n1-p1-q4-CMP-EtAcN-1NAcGAL” (or “F1n-insulin-m1-n1-p1-q4-CMP-EtAcN-1NAcGLU” because no stereochemistry is shown for the sugar ring) where CMP indicates that R8 is 1-cyano-1-methyl-propyl, EtAcN indicates that R9 is ethylacetamido and 1NAcGAL indicates Z″ is N-acetylgalactosamine conjugated at C1. Absence of the abbreviation EtAcN before the designation for Z would indicate that R9 is a direct bond.
- The following composition of Formula 1 exemplifies compounds where W is a copolymer:
- and can be named 2-(2-(2-(2-(QQYPSGQGSFQPSQQNPQGGGSC-sulfanyl)ethoxy)ethoxy)ethoxy)
ethyl 6,10-bis((2-(2-(((2R,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethyl)carbamoyl)-4-cyano-13-((2-hydroxypropyl)amino)-8-((2-hydroxypropyl)carbamoyl)-4,6,8,10,12-pentamethyl-13-oxo-12-((phenylcarbonothioyl)thio)tridecanoate. Employing the naming system adopted for the present disclosure the compound can be named “F1c′-DQ8-relevant Alpha Gliadin-m1-n4-p4-CMP-poly-(EtPEG1AcN-1NAcGLU2-HPMA2)”. - Preparation of the Compositions of the Disclosure
- The compositions of
Formula 1 can be prepared, for example, by adjusting the procedures described in Zhu, L., et al., Bioconjugate Chem. 2010, 21, 2119-2127. Syntheses of certain compositions ofFormula 1 are also described below with reference toReaction Schemes 1 to 14. Other synthetic approaches will be apparent to those skilled in the art. - Formula 101 (below) is an alternative representation of X
- where R1 is a free surface amino (—NH2) or thiol (—SH) moiety positioned on X's three-dimensional structure so as to be accessible for conjugation to a linker, and X′ represents the remainder of X excluding the identified free amino group(s) [(X″ is used in the reaction schemes to represent the remainder of X excluding free thiol group(s)]. Depending upon the identity of X, there will be at least one (the N-terminal amine) and can be multiple R1 groups (predominantly from lysine residues or cysteine residues that are not involved in disulfide bonding), as represented by m, which is an integer from about 1 to 100, more typically 1 or from about 4 to 20, and most typically 1 to about 10.
- Variables employed in the reaction schemes are as defined above, and additionally include the following, which should be understood to have these meanings absent any specific indication otherwise with respect to a particular reaction scheme or step.
-
- R2 is OH or a protecting group;
- R3 is OH, NH2, NHAc, a protecting group or NH-protecting group;
- R4 is OH or a protecting group;
- R5 is OH or a protecting group;
- R6 is OH or a protecting group;
- Z′ is galactose or glucose conjugated at C1 or C6, galactosamine or glucosamine conjugated at C2, or N-acetylgalactosamine conjugated or N-acetylglucosamine at C6;
- R8 is —CH2— or —CH2—CH2—C(CH3)(CN)—; and
- R9 is a direct bond and Z″ is N-acetylgalactosamine conjugated at C2; or
- R9 is an ethylacetamido or a pegylated ethylacetamido group and Z″ is galactose, glucose, galactosamine, glucosamine, N-acetylgalactosamine or N-acetylglucosamine conjugated at C1.
- Synthetic Reaction Parameters
- The terms “solvent”, “inert organic solvent” or “inert solvent” mean a solvent inert under the conditions of the reaction being described in conjunction therewith [including, for example, benzene, toluene, acetonitrile, tetrahydrofuran (“THF”), dimethylformamide (“DMF”), chloroform, methylene chloride (or dichloromethane), diethyl ether, methanol, pyridine and the like]. Unless specified to the contrary, the solvents used in the reactions of the present disclosure are inert organic solvents.
- The term “q.s.” means adding a quantity sufficient to achieve a stated function, e.g., to bring a solution to the desired volume (i.e., 100%).
- Isolation and purification of the compounds and intermediates described herein can be effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography or thick-layer chromatography, centrifugal size exclusion chromatography, high-performance liquid chromatography, recrystallization, sublimation, fast protein liquid chromatography, gel electrophoresis, dialysis, or a combination of these procedures. Specific illustrations of suitable separation and isolation procedures can be had by reference to the examples hereinbelow. However, other equivalent separation or isolation procedures can, of course, also be used.
- Unless otherwise specified (including in the examples), all reactions are conducted at standard atmospheric pressure (about 1 atmosphere) and ambient (or room) temperature (about 20° C.), at about pH 7.0-8.0.
- Characterization of reaction products can be made by customary means, e.g., proton and carbon NMR, mass spectrometry, size exclusion chromatography, infrared spectroscopy, gel electrophoresis.
- Reaction Scheme 1 illustrates the preparation of compositions of Formula 1 where Z can be galactose, glucose, galactosamine, glucosamine, N-acetylgalactosamine or N-acetylglucosamine. In that regard and as defined above, Z′ as employed in Reaction Scheme 1 encompasses galactose or glucose conjugated at C1 and C6 and corresponding to the following structures according to Formula 1:
- galactosamine or glucosamine conjugated at C2 and corresponding to the following structure according to Formula 1:
- and N-acetylgalactosamine or N-acetylglucosamine conjugated at C6 and corresponding to the following structure according to Formula 1:
- As illustrated above in
Reaction Scheme 1,Step 1, surface thiol group(s) can be generated on an antigen, antibody, antibody fragment or ligand having free surface amino group(s) (Formula 101′) by contact with a Traut reagent (Formula 102) at a pH of about 8.0 for about 1 hour to give theFormula 103′, from which unreacted Traut's reagent is removed, e.g., via centrifugal size exclusion chromatography. The two structures shown below, illustrate the product ofReaction Scheme 1,Step 1, respectively showing the free surface amino group(s) originally found on X (i.e.,Formula 103′ where X′ represents the remainder of X excluding the identified free surface amino groups) and omitting the free surface amino group(s) (i.e., Formula 103). This parallels the distinction illustrated as between X andFormula 101. The convention has been followed in the subsequent reaction schemes. - In
Reaction Scheme 1,Step 2, a pyridyl di-thiol-poly(ethylene glycol)-NHS ester (Formula 104) is contacted with galactosamine or glucosamine (Formula 105 where R3 is NH2 and R2, R4, R5 and R6 are OH) with stirring at aboutpH 8 for about 1 hour to give the corresponding pyridyl di-thiol-poly(ethylene glycol)-sugar of Formula 106A, which can be used without further purification. - In
Reaction Scheme 1,Step - In
Reaction Scheme 1,Step 4, the acid of Formula 109 is contacted with a protected galactose or N-acetylgalactosamine ofFormula 105 where R2 is OH and R3, R4, R5 and R6 are protecting groups (“PG”), where R6 is OH and R2, R3, R4 and R5 are PG, or where R6 is N-acetyl and R2, R3, R4 and R5 are PG to give the corresponding pyridyl di-thiol-poly(ethylene glycol)-sugars of Formulae 106B, 106C and 106D, which can be used following de-protection. - In
Reaction Scheme 1,Step 5, to a stirred solution of the product of Step 1 (Formula 103′) is added an excess (corresponding to the value of m) of the product ofStep 2 or Step 4 (Formula 106, i.e., 106A, 106B, 106C or 106D) for about 1 hour, followed by centrifugal sized exclusion chromatography to remove any free remaining reactants to yield the corresponding product according to Formula 1a, respectively, Formula 1aA, Formula 1aB, Formula 1aC and Formula 1aD. - The compositions corresponding to Formula 1a can be named, respectively, e.g., as follows:
-
“F1aA-X′-m m-n n” or “F1a-X′-m m-n n-2NGAL” -
“F1aB-X′-m m-n n” or “F1a-X′-m m-n n-1GAL” -
“F1aC-X′-m m-n n” or “F1a-X′-m m-n n-6GAL” -
“F1aD-X′-m m-n n” or “F1a-X′-m m-n n-6NAcGAL” -
“F1aA-X′-m m-n n” or “F1a-X′-m m-n n-2NGLU” -
“F1aB-X′-m m-n n” or “F1a-X′-m m-n n-1GLU” -
“F1aC-X′-m m-n n” or “F1a-X′-m m-n n-6GLU” -
“F1aD-X′-m m-n n” or “F1a-X′-m m-n n-6NAcGLU” - respectively, for products made employing an intermediate according to Formulae 106A-D.
- Reaction Schemes 2-14 illustrate preparation of the compounds where W is a polymer of the same W1 group. For the purposes of the nomenclature employed therewith, except as expressly stated otherwise, Z″ refers to N-acetylgalactosamine or N-acetylglucosamine conjugated at C2:
- or to galactose, glucose, galactosamine, glucosamine, N-acetylgalactosamine or N-acetylglucosamine conjugated at C1. It should be noted that, according to several embodiments, in order to improve yields, the C1 conjugated compositions can be protected during synthesis, for example by cyclizing the amine with the C3 hydroxyl and de-protecting following incorporation of the protected galactosamine into the adjacent portion of the linker.
- The poly(galactose methacrylate) and poly(glucose methacrylate) reactants of
Formulae - As illustrated in
Reaction Scheme 2, an antigen, antibody, antibody fragment or ligand having free surface thiol group(s) prepared, e.g., as described with reference toReaction Scheme 1, Step 1 (Formula 103′) is contacted with an excess (corresponding to the value of m) of a pyridyl di-thiol-poly(ethylene glycol) ofFormula 201 for about 1 hour to yield the corresponding product according to Formula 1b. - The compositions of Formula 1b can be named as follows:
-
“F1b-X′-m m-n n-p p-2NAcGAL” “F1b-X′-m m-n n-p p-2NAcGLU” or “F1b-X′-m m-n n-p p-EtAcN-Z”. - For example, the composition of Formula 1b where X′ is uricase, m is 1, n is 4, p is 4 and Z″ is N-acetylgalactosamine conjugated at C2 can be named “F1b-uricase-m1-n4-p4-2NAcGAL” or “30-(uricase)-3,5,7,9-tetramethyl-12-oxo-1-phenyl-1-thioxo-3,5,7,9-tetrakis((2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)carbamoyl)-13,16,19,22-tetraoxa-2,25,26-trithiatriacontan-30-iminium”.
- As illustrated in
Reaction Scheme 3, an antigen, antibody, antibody fragment or ligand having native free surface thiol group(s) (cysteines) [Formula 101″ corresponding toFormula 101 and illustrating where X″, as the term will be subsequently employed, represents X excluding the identified free surface thiol group(s)] is contacted with an excess (corresponding to the value of m) of a pyridyl di-thiol-poly(ethylene glycol) ofFormula 201 to yield the corresponding product according to Formula 1c. - The compositions corresponding to Formula 1c can be named as follows:
-
“F1c-X′-m m-n n-p p-2NAcGAL” “F1c-X′-m m-n n-p p-2NAcGLU” or “F1c-X′-m m-n n-p p-EtAcN-Z”. - As illustrated in
Reaction Scheme 4, an antigen, antibody, antibody fragment or ligand having native free surface thiol group(s) ofFormula 101″ is contacted with an excess (corresponding to the value of m) of a pyridyl di-thiol ofFormula 401 to yield the corresponding product according to Formula 1d. - The compositions corresponding to Formula 1d can be named as follows:
-
“F1d-X′-m m-p p-2NAcGAL” “F1d-X′-m m-p p-2NAcGLU” or “F1d-X′-m m-p p-EtAcN-Z”. - As illustrated in
Reaction Scheme 5, an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) ofFormula 101′ is contacted with an excess (corresponding to the value of m) of a n-nitrophenyl carbonate of Formula 501 to yield the corresponding product according to Formula 1e. - The compositions corresponding to Formula 1e can be named as follows:
-
“F1e-X′-m m-p p-2NAcGAL” “F1e-X′-m m-p p-2NAcGLU” or “F1e-X′-m m-p p-EtAcN-Z”. - As illustrated in
Reaction Scheme 6, an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) ofFormula 101′ is contacted with an excess (corresponding to the value of m) of a n-nitrophenyl carbonate poly(ethylene glycol)ester ofFormula 601 to yield the corresponding product according to Formula 1f. - The compositions corresponding to Formula 1f can be named as follows:
-
“F1f-X′-m m-n n-p p-2NAcGAL” “F1f-X′-m m-n n-p p-2NAcGLU” or “F1f-X′-m m-n n-p p-EtAcN-Z”. - As illustrated in
Reaction Scheme 7, an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) ofFormula 101′ is contacted with an excess (corresponding to the value of m) of a NHS-ester poly(ethylene glycol)ester of Formula 701 to yield the corresponding product according to Formula 1g. - The compositions corresponding to Formula 1g can be named as follows:
-
“F1g-X′-m m-p p-2NAcGAL” “F1g-X′-m m-p p-2NAcGLU” or “F1g-X′-m m-p p-EtAcN-Z” - As illustrated in
Reaction Scheme 8,Step 1, an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) ofFormula 101′ is contacted with an excess (corresponding to the value of m) of an amine-reactive linker for Click chemistry of Formula 801 to yield the corresponding product according to Formula 802. - In
Reaction Scheme 8,Step 2, the product of Formula 802 is then contacted with an equivalent amount (again corresponding to the value of m) of a galactos(amine) polymer of Formula 803 to yield the corresponding isomeric product according to Formula 1h. The two isomers, illustrated above, result from non-specific cyclization of the azide of Formula 803 with the triple bond of Formula 802. Such non-specific cyclization occurs in the synthesis of other compositions where Y is selected from Formulae Yh through Yn, but will not be illustrated in each instance. - The compositions corresponding to Formula 1h can be named as follows:
-
“F1h-X′-m m-n n-p p-q q-2NAcGAL” “F1h-X′-m m-n n-p p-q q-2NAcGLU” or “F1h-X′-m m-n n-p p-q q-EtAcN-Z”. - As illustrated in
Reaction Scheme 9,Step 1, an antigen, antibody, antibody fragment or ligand having native free surface thiol group(s) ofFormula 101″ is contacted with an excess (corresponding to the value of m) of a thiol-reactive linker for Click chemistry of Formula 901 to yield the corresponding product according to Formula 902″. - In
Reaction Scheme 9,Step 2, the product of Formula 902″ is then contacted with an equivalent amount (again corresponding to the value of m) of a galactos(amine) polymer of Formula 803 to yield the corresponding isomeric product according to Formula 1i. - The compositions corresponding to Formula 1i can be named as follows:
-
“F1i-X′-m m-n n-p p-q q-2NAcGAL” “F1i-X′-m m-n n-p p-q q-2NAcGLU” or “F1i-X′-m m-n n-p p-q q-EtAcN-Z”. - By following the procedures described with regard to
Reaction Scheme 9, but substituting startingmaterial 101″ with a compound ofFormula 103′ (derivatized with the Traut reagent) there is obtained the corresponding isomeric product of Formula 1j as shown below. - The compositions corresponding to Formula 1j can be named as follows:
-
“F1j-X′-m m-n n-p p-q q-2NAcGAL” “F1j-X′-m m-n n-p p-q q-2NAcGLU” or “F1j-X′-m m-n n-p p-q q-EtAcN-Z”. - As illustrated in
Reaction Scheme 10,Step 1, an antigen, antibody, antibody fragment or ligand having native free surface thiol group(s) ofFormula 101″ is contacted with an excess (corresponding to the value of m) of a thiol-reactive linker for Click chemistry of Formula 1001 to yield the corresponding product according to Formula 1002. - In
Reaction Scheme 10,Step 2, the product of Formula 1002 is then contacted with an equivalent amount (again corresponding to the value of m) of a galactos(amine) polymer of Formula 803 to yield the corresponding isomeric product according to Formula 1k. - The compositions corresponding to Formula 1k can be named as follows:
-
“F1k-X′-m m-n n-p p-q q-2NAcGAL” “F1k-X′-m m-n n-p p-q q-2NAcGLU” or “F1k-X′-m m-n n-p p-q q-EtAcN-Z”. - By following the procedures described with regard to
Reaction Scheme 10, but substituting startingmaterial 101″ with a compound ofFormula 103′ (derivatized with the Traut reagent) there is obtained the corresponding isomeric product of Formula 1L as shown below. - The compositions corresponding to Formula 1L can be named as follows:
-
“F1L-X′-m m-n n-p p-q q-2NAcGAL” “F1L-X′-m m-n n-p p-q q-2NAcGLU” or “F1L-X′-m m-n n-p p-q q-EtAcN-Z”. - As illustrated in
Reaction Scheme 11,Step 1, galactose, protected galactosamine or N-Acetyl-D-galactosamine (Formula1101 where R3 and R4 are OH, R3 is NH-protecting group (e.g., cyclized with R4) or R3 is NHAc and R4 is OH, respectively) is contacted with 2-chloroethan-1-ol followed by cooling and the dropwise addition of acetylchloride. The solution is warmed to room temperature and then heated to 70° C. for several hours. Ethanol is added to the crude product and the resulting solution is stirred in the presence of carbon and then filtered followed by solvent removal to yield the corresponding product of Formula 1102. - As illustrated in
Reaction Scheme 11,Step 2, the product of Formula 1102 is added to an excess of sodium azide and heated to 90° C. for several hours, then filtered followed by solvent removal to yield the corresponding product of Formula 1103. - As illustrated in
Reaction Scheme 11,Step 3, the product of Formula 1103 is added to a solution of palladium on carbon and ethanol, and stirred under hydrogen gas (3 atm) for several hours, then filtered followed by solvent removal to yield the corresponding product of Formula 1104. - As illustrated in
Reaction Scheme 11,Step 4, the product of Formula 1104 is added to a solution of methacrylate anhydride. Triethylamine is added and the reaction stirred for 2 hours followed by solvent removal and isolation to yield the corresponding product of Formula 1105. - As illustrated in
Reaction Scheme 11,Step 5, an azide-modified uRAFT agent (Formula 1106) is added to a solution of the product of Formula 1105 with azobisisobutyronitrile, subjected to 4 free-pump-thaw cycles and then stirred at 70° C. After several hours the corresponding polymer product of Formula 1107 is precipitated by addition of a lower alkanol followed by solvent removal. Where R3 is NH-protecting group (e.g., cyclized with R4) the protecting group(s) is(are) removed at this point. - As illustrated in
Reaction Scheme 11,Step 6, an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) ofFormula 101′ is added to a pH 8.0 buffer and contacted with an excess (corresponding to the value of m) of a dioxopyrrolidine of Formula 1108 with stirring. After 1 hour, unreacted Formula 1108 is removed and the resulting product of Formula 1109 is used without further purification. - As illustrated in
Reaction Scheme 11,Step 7, the product of Formula 1107 is added to a pH 8.0 buffer, to which is added the product of Formula 1109. After stirring for 2 hours, the excess Formula 1107 is removed to yield the corresponding isomeric product of Formula 1m. - By substituting N-(2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)methacrylamide for the product of Formula 1105 in
Step 5 and continuing withSteps - The compositions corresponding to Formula 1m can be named as follows:
-
“F1m-X′-m m-n n-p p-q q-EtAcN-Z” where Z″ is 1GAL, 1NGAL, 1NAcGAL, “F1m-X′-m m-n n-p p-q q-2NAcGAL” or “F1m-X′-m m-n n-p p-q q-2NAcGLU”(or the corresponding 1GAL, 1 GLU, 1NGAL, 1 NGLU, 1NAcGAL or 1NAcGLU compounds). - The synthetic approach of
Reaction Scheme 12 is particularly suitable for hydrophobic antigens, antibodies, antibody fragments and ligands (e.g., Insulin) due to the use of organic solvents. - As illustrated in
Reaction Scheme 12,Step 1, an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) ofFormula 101′ is dissolved in an organic solvent (e.g., DMF) containing triethylamine. To this is added an amount (corresponding to the value of m) of a compound of Formula 1201 followed by stirring and the addition of t-butyl methyl ether. The corresponding product of Formula 1202 is recovered as a precipitate. - The product of Formula 1202 is resuspended in the organic solvent and an amount (corresponding to the value of m) of Formula 1107 (obtained, e.g., as described with reference to Reaction Scheme 11) is added followed by stirring. The reaction product is precipitated via the addition of dichloromethane, followed by filtration and solvent removal. Purification (e.g., resuspension in PBS followed by centrifugal size exclusion chromatography yields the corresponding isomeric product of Formula 1n.
- The compositions corresponding to Formula 1n can be named as follows:
-
“F1n-X′-m m-n n-p p-q q-EtAcN-Z” where Z″ is 1GAL, 1NGAL, 1NAcGAL, 1 GLU, 1 NGLU, 1NAcGLU, or “F1m-X′-n m-n n-p p-q q-2NAcGAL” or “F1m-X′-n m-n n-p p-q q-2NAcGLU”. - In
Reaction Scheme 13,Step 1, a nitrophenoxycarbonyl-oxyalkyl di-thiol-poly(ethylene glycol)-NHS ester (Formula 1301) is contacted with galactose, galactosamine or N-acetylgalactosamine (Formula 105) to give the corresponding product of Formula 1302, along with the other two illustrated products, from which the desired nitrophenoxycarbonyl di-thiol-poly(ethylene glycol)-carboxyethyl galactose, galactosamine or N-acetylgalactosamine of Formula 1302 is isolated before proceeding to the next step. - As illustrated in
Reaction Scheme 13,Step 2, an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) ofFormula 101′ is contacted with an excess (corresponding to the value of m) of the product of Formula 1302 to yield the corresponding product according toFormula 10. - The compositions corresponding to
Formula 10 can be named as follows: -
“F1o-X′-m m-n n-Z′.” - As illustrated in
Reaction Scheme 14, an antigen, antibody, antibody fragment or ligand having native free surface amino group(s) (Formula 101′) is contacted with an excess (corresponding to the value of m) of a pyridyl di-thiol-poly(ethylene glycol)-NHS ester of Formula 1401 to yield the corresponding product according to Formula 1p. - The compositions corresponding to Formula 1p can be named as follows:
-
“F1p-X′-m m-n n-p p-2NAcGAL” “F1p-X′-m m-n n-p p-2NAcGLU” or “F1p-X′-m m-n n-p p-EtAcN-Z”. - Reaction Schemes 15-18 illustrate preparation of the compounds where W is a copolymer of the same or different W1 and W2 groups.
- As illustrated in
Reaction Scheme 15,Step 1, galactose or glucose (Formula1101 where R3 and R4 are OH), protected galactosamine or protected glucosamine (Formula 1101 where R3 is NH-protecting group, e.g., cyclized with R4) or N-acetyl-D-galactosamine or N-acetyl-D-glucosamine (Formula1101 where R3 is NHAc and R4 is OH) is contacted with a 2-(poly-(2-chloroethoxy)ethoxy)ethan-1-ol of Formula 1501 (where t is 1 to 5) followed by cooling and the dropwise addition of acetylchloride. The solution is warmed to room temperature and then heated to 70° C. for several hours. Ethanol is added to the crude product and the resulting solution is stirred in the presence of carbon and then filtered followed by solvent removal to yield the corresponding product of Formula 1502. - As illustrated in
Reaction Scheme 15,Step 2, the product of Formula 1502 is added to an excess of sodium azide and heated to 90° C. for several hours, then filtered followed by solvent removal to yield the corresponding product of Formula 1503. - As illustrated in
Reaction Scheme 15,Step 3, the product of Formula 1503 is added to a solution of palladium on carbon and ethanol, and stirred under hydrogen gas (3 atm) for several hours, then filtered followed by solvent removal to yield the corresponding product of Formula 1504. - As illustrated in
Reaction Scheme 15,Step 4, the product of Formula 1504 is added to a solution of methacrylate anhydride. Triethylamine is added and the reaction stirred for 2 hours followed by solvent removal and isolation to yield the corresponding product of Formula 1505. Alternatively, pentafluorophenyl methacrylate (or another acrylating agent) can be used to prepare the corresponding product of Formula 1505. In some embodiments, the product of formula 1504 is added to DMF. Triethyl amine (e.g., an organic base) is added and the mixture is cooled (e.g., to 4° C. using an ice bath). Subsequently, pentafluorophenyl methacrylate (or another acrylating agent) is added (e.g., drop-wise with constant stirring). After a period of time (e.g., 30 minutes), the cooling (e.g., ice-bath) is removed and the reaction is allowed to stir at room temperature for a period of time (e.g., 4 hours). In some embodiments, the solvent is then removed. In some embodiments, the product is purified using flash chromatography. - As illustrated in
Reaction Scheme 15,Step 5, an azide-modified uRAFT agent of Formula 1106 and a methacrylamide of Formula 1506 are added to a solution of the product of Formula 1505 with azobisisobutyronitrile, subjected to 4 free-pump-thaw cycles and then stirred at 70° C. After several hours the corresponding random copolymer product of Formula 1507 is precipitated by addition of a lower alkanol or acetone followed by solvent removal. Where R3 is NH-protecting group (e.g., cyclized with R4) the protecting group(s) is(are) removed at this point. - As illustrated in
Reaction Scheme 15,Step 6, the product of Formula 1507 is added to a pH 8.0 buffer, to which is added the product of Formula 1109 (prepared, for example, as described with reference to Reaction Scheme 11). After stirring for 2 hours, the excess Formula 1109 is removed to yield the corresponding isomeric random copolymer product of Formula 1m′. - By adding more than one methacrylamide of Formula 1505 in Step 5 (for example, glucose and galactose methacrylamides, or two or more methacrylamides having different values for t) and/or two or more methacrylamides of Formula 1506, and continuing with
Step 6, the corresponding product of Formula 1m′ having a mixture of R3 and/or PEG (“t”) and/or R10 groups, i.e., compounds ofFormula 1 where W is a random copolymer of different W1 and W2 groups are obtained. - The compositions corresponding to Formula 1m′ can be named as follows:
-
“F1m′-X′-m m-n n-p p-q q-R8-poly-(W1 tZ″W1p-ran-W2 W2p)”. - As illustrated in
Reaction Scheme 16,Step 1, a compound of Formula 1601 is contacted with compounds of Formulae 1505 and 1506 under conditions analogous to those ofReaction Scheme 15,Step 5, to afford the corresponding compound of Formula 1602. - In some embodiments, the following synthesis is performed to form compound 1601a (an embodiment of 1601):
- In some embodiments, t is an integer from about 1 to about 10 or about 1 to about 5. In some embodiments, an oligoethylene glycol (1650) is reacted with p-toluenesulfonyl chloride (or some other agent capable of functionalizing 1650 with a leaving group) to form oligoethylene glycol mono p-toluenesulfonate (1651)(or some other oligoethylene glycol functionalized with a leaving group). In some embodiments, compound 1651 can be reacted with potassium thioacetate to form compound 1652. In some embodiments, compound 1652 is reacted with 2,2-dithiodipyridine to form compound 1653. In some embodiments, compound 1653 is coupled to compound 1654 to form compound 1601a.
- As illustrated in
Reaction Scheme 16,Step 2, the compound of Formula 1602 is contacted with a compound ofFormula 101″ under conditions analogous to those ofReaction Scheme 15,Step 6, to afford the corresponding compound of Formula 1c′. - The compositions corresponding to Formula 1c′ can be named as follows:
-
“F1c′-X′-m m-n n-p p-R8-poly-(W1 tZ″-ran-W2)”. - As illustrated in
Reaction Scheme 17,Step 1, a compound ofFormula 600′ is contacted with compounds of Formulae 1505 and 1506 under conditions analogous to those ofReaction Scheme 15,Step 5, to afford the corresponding compound ofFormula 601′. - As illustrated in
Reaction Scheme 17,Step 2, the compound ofFormula 601′ is contacted with a compound ofFormula 101′ under conditions analogous to those ofReaction Scheme 15,Step 6, to afford the corresponding compound of Formula 1f′. - The compositions corresponding to Formula 1f′ can be named as follows:
-
“F1f′-X′-m m-n n-p p-R8-poly-(W1 tZ″-ran-W2)”. - As illustrated in
Reaction Scheme 18,Step 1, a compound of Formula 700′ is contacted with compounds of Formulae 1505 and 1506 under conditions analogous to those ofReaction Scheme 15,Step 5, to afford the corresponding compound of Formula 701′. - As illustrated in
Reaction Scheme 18,Step 2, the compound of Formula 701′ is contacted with a compound ofFormula 101′ under conditions analogous to those ofReaction Scheme 15,Step 6, to afford the corresponding compound of Formula 1g′. - The compositions corresponding to Formula 1g′ can be named as follows:
-
“F1g′-X′-m m-p p-R8-poly-(W1 tZ″-ran-W2)”. - Particular Processes and Last Steps
- A compound of
Formula 103′ is contacted with an excess (corresponding to the value of m) of a compound ofFormula 106 to give the corresponding product of Formula 1a. - A compound of
Formula 103′ is contacted with an excess (corresponding to the value of m) of a compound ofFormula 201 to give the corresponding product of Formula 1b. - A compound of Formula 802, 902 or 1002 is contacted with an excess (corresponding to the value of m) of a compound of Formula 803 to give the corresponding product of Formula 1h, Formula 1i or Formula 1k, respectively.
- A compound of Formula 1109 is contacted with an excess (corresponding to the value of m) of a compound of Formula 1107 to give the corresponding product of Formula 1m, particularly where n is about 80, p is about 30, q is about 4, and m being a function of the antigen is about 2 to 10.
- A compound of Formula 1202 is contacted with an excess (corresponding to the value of m) of a compound of Formula 1107 to give the corresponding product of Formula 1n, particularly where n is about 1, p is about 30, q is about 4, and m being a function of the antigen is about 2 to 10.
- A compound of Formula 1507 is contacted with a compound of Formula 1109 to give the corresponding product of Formula 1m′, particularly where n is about 4, p is about 90, q is about 4, t is about 1 or 2, R3 is NHAc, R4 is OH, R8 is CMP, R10 is 2-hydroxypropyl and m being a function of the antigen is about 1 to 10.
- A compound of
Formula 101″ is contacted with a compound of Formula 1602 to give the corresponding product of Formula 1c′, particularly where n is about 4, p is about 90, t is about 1 or 2, R3 is NHAc, R4 is OH, R8 is CMP, R10 is 2-hydroxypropyl and m being a function of the antigen is about 1 to 10. - A compound of
Formula 101′ is contacted with a compound ofFormula 601′ to give the corresponding product of Formula 1f′, particularly where n is about 4, p is about 90, t is about 1 or 2, R3 is NHAc, R4 is OH, R8 is CMP, R10 is 2-hydroxypropyl and m being a function of the antigen is about 1 to 10. - A compound of
Formula 101′ is contacted with a compound of Formula 701′ to give the corresponding product of Formula 1g′, particularly where n is about 4, p is about 90, t is about 1 or 2, R3 is NHAc, R4 is OH, R8 is CMP, R10 is 2-hydroxypropyl and m being a function of the antigen is about 1 to 10. - Particular Compositions
- By way of non-limiting example, a particular group preferred for the compositions, pharmaceutical formulations, methods of manufacture and use of the present disclosure are the following combinations and permutations of substituent groups of Formula 1 (sub-grouped, respectively, in increasing order of preference):
-
- X is a foreign transplant antigen against which transplant recipients develop an unwanted immune response, a foreign antigen to which patients develop an unwanted immune response, a therapeutic protein to which patients develop an unwanted immune response, a self-antigen to which patients develop an unwanted immune response, or a tolerogenic portion thereof.
- X is a therapeutic protein to which patients develop an unwanted immune response selected from: Abatacept, Abciximab, Adalimumab, Adenosine deaminase, Ado-trastuzumab emtansine, Agalsidase alfa, Agalsidase beta, Aldeslukin, Alglucerase, Alglucosidase alfa, α-1-proteinase inhibitor, Anakinra, Anistreplase (anisoylated plasminogen streptokinase activator complex), Antithrombin III, Antithymocyte globulin, Ateplase, Bevacizumab, Bivalirudin, Botulinum toxin type A, Botulinum toxin type B, C1-esterase inhibitor, Canakinumab, Carboxypeptidase G2 (Glucarpidase and Voraxaze), Certolizumab pegol, Cetuximab, Collagenase, Crotalidae immune Fab, Darbepoetin-a, Denosumab, Digoxin immune Fab, Dornase alfa, Eculizumab, Etanercept, Factor VIIa, Factor VIII, Factor IX, Factor XI, Factor XIII, Fibrinogen, Filgrastim, Galsulfase, Golimumab, Histrelin acetate, Hyaluronidase, Idursulphase, Imiglucerase, Infliximab, Insulin (including rHu insulin and bovine insulin), Interferon-α2a, Interferon-α2b, Interferon-β1a, Interferon-β1 b, Interferon-γ1 b, Ipilimumab, L-arginase, L-asparaginase, L-methionase, Lactase, Laronidase, Lepirudin/hirudin, Mecasermin, Mecasermin rinfabate, Methoxy Ofatumumab, Natalizumab, Octreotide, Oprelvekin, Pancreatic amylase, Pancreatic lipase, Papain, Peg-asparaginase, Peg-doxorubicin HCl, PEG-epoetin-β, Pegfilgrastim, Peg-Interferon-α2a, Peg-Interferon-α2b, Pegloticase, Pegvisomant, Phenylalanine ammonia-lyase (PAL), Protein C, Rasburicase (uricase), Sacrosidase, Salmon calcitonin, Sargramostim, Streptokinase, Tenecteplase, Teriparatide, Tocilizumab (atlizumab), Trastuzumab, Type 1 alpha-interferon, Ustekinumab, and vW factor.
- Especially where X is Abciximab, Adalimumab, Agalsidase alfa, Agalsidase beta, Aldeslukin, Alglucosidase alfa, Factor VIII, Factor IX, Infliximab, L-asparaginase, Laronidase, Natalizumab, Octreotide, Phenylalanine ammonia-lyase (PAL), or Rasburicase (uricase).
- Particularly where X is Factor VIII, Factor IX, uricase, PAL or asparaginase.
- Especially where X is Abciximab, Adalimumab, Agalsidase alfa, Agalsidase beta, Aldeslukin, Alglucosidase alfa, Factor VIII, Factor IX, Infliximab, L-asparaginase, Laronidase, Natalizumab, Octreotide, Phenylalanine ammonia-lyase (PAL), or Rasburicase (uricase).
- X is a self-antigen polypeptide selected for treating
type 1 diabetes mellitus, pediatric multiple sclerosis, juvenile rheumatoid arthritis, celiac disease, or alopecia universalis.- Especially where X is a self-antigen polypeptide selected for treating
new onset type 1 diabetes mellitus, pediatric multiple sclerosis or celiac disease.
- Especially where X is a self-antigen polypeptide selected for treating
- X is a foreign antigen to which patients develop an unwanted immune response
- From peanut, including conarachin (Ara h 1)
- From wheat, including Alpha-gliadin “33-mer” native (SEQ ID NO:20), Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21), Alpha-gliadin (SEQ ID NO:22) and Omega-gliadin (SEQ ID NO:23).
- From cat, including Fel d 1A (UNIPROT P30438) and Cat albumin (UNIPROT P49064).
- From dog, including Can f 1 (UNIPROT O18873) and Dog albumin (UNIPROT P49822).
- X is a foreign transplant antigen against which transplant recipients develop an unwanted immune response, e.g. a human leukocyte antigen protein.
- X is an antibody, antibody fragment or ligand that specifically binds a circulating protein or peptide or antibody, which circulating protein or peptide or antibody gives rise to transplant rejection, immune response against a therapeutic agent, autoimmune disease, and/or allergy.
- Especially where X binds an endogenous circulating protein or peptide or antibody.
- Y is a linker selected from: Formula Ya, Formula Yb, Formula Yh, Formula Yi, Formula Yk, Formula Ym, Formula Yn, Formula Yo and Formula Yp.
- Especially where n is 8 to 90±10%, p is 20 to 100±10%, and q is 3 to 20±3.
- Particularly where n is 40 to 80±10%, p is 30 to 40±10%, and q is 4 to 12±3.
- Especially where Y is Formula Ya, Formula Yb, Formula Ym or Formula Yn.
- Particularly where n is 8 to 90±10%, p is 20 to 100±10% and q is 3 to 20±3.
- More particularly where n is 40 to 80±10%, p is 30 to 40±10%, and q is 4 to 12±3.
- Particularly where Z is conjugated to Y via an ethylacetamido group.
- More particularly where Z is conjugated to Y at its C1.
- More particularly where R8 is CMP.
- More particularly where R8 is CMP.
- Particularly where R8 is CMP.
- Particularly where n is 8 to 90±10%, p is 20 to 100±10% and q is 3 to 20±3.
- Especially where n is 8 to 90±10%, p is 20 to 100±10%, and q is 3 to 20±3.
- Y is a linker selected from: Formula Yc, Formula Yf, Formula Yg and Formula Ym.
- Especially where Wp is a random copolymer in which R9 is Et-PEG-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 1.
- Particularly where p is about 90 and includes about 30 W1 and 60 W2 comonomers.
- Particularly where t is 1 or 2
- Especially where Wp is a random copolymer in which R9 is Et-PEG-AcN and R10 is 2-hydroxypropyl.
- Z is galactose, galactosamine, N-acetylgalactosamine, glucose, glucosamine or N-acetylglucosamine.
- Especially where Z is galactose or N-acetylgalactosamine conjugated at C1, C2 or C6.
- Particularly where Z is galactose or N-acetylgalactosamine conjugated at C1 or C2.
- More particularly where Z is N-acetylgalactosamine conjugated at C1.
- Particularly where Z is galactose or N-acetylgalactosamine conjugated at C1 or C2.
- Especially where Z is glucose or N-acetylglucosamine conjugated at C1, C2 or C6.
- Particularly where Z is glucose or N-acetylglucosamine conjugated at C1 or C2.
- More particularly where Z is N-acetylglucosamine conjugated at C1.
- Particularly where Z is glucose or N-acetylglucosamine conjugated at C1 or C2.
- Especially where Z is galactose or N-acetylgalactosamine conjugated at C1, C2 or C6.
- Each of the above-described groups and sub-groups are individually preferred and can be combined to describe further preferred aspects of the disclosure, for example but not by way of limitation, as follows:
-
- X is a self-antigen polypeptide selected for treating
type 1 diabetes mellitus, pediatric multiple sclerosis, juvenile rheumatoid arthritis, celiac disease, or alopecia universalis.- Especially where X is a self-antigen polypeptide selected for treating
new onset type 1 diabetes mellitus, pediatric multiple sclerosis or celiac disease.- Particularly where Y is a linker selected from: Formula Ya, Formula Yb, Formula Yc, Formula Yf, Formula Yg, Formula Yh, Formula Yi, Formula Yk, Formula Ym, Formula Yn, Formula Yo and Formula Yp.
- Especially where Wp is a W1 polymer in which R9 is Et-PEGt-AcN or a random copolymer in which R9 is Et-PEGt-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 2.
- More particularly where t is 1.
- Particularly where p is about 90
- More particularly where Wp is a random copolymer and includes about 30 W1 and 60 W2 comonomers.
- Especially where n is 8 to 90±10%, p is 20 to 100±10%, and q is 3 to 20±3.
- Particularly where n is 40 to 80±10%, p is 30 to 40±10%, and q is 4 to 12±3.
- Especially where Y is Formula Ya, Formula Yb, Formula Ym or Formula Yn.
- Particularly where n is 8 to 90+10%, p is 20 to 100±10% and q is 3 to 20±3.
- More particularly where n is 40 to 80±10%, p is 30 to 40±10%, and q is 4 to 12±3.
- Even more particularly where Z is conjugated to Y via an ethylacetamido group.
- More particularly where Z is conjugated to Y via an ethylacetamido group.
- Particularly where Z is conjugated to Y via an ethylacetamido group.
- Especially where Z is galactose, galactosamine or N-acetylgalactosamine.
- Particularly where Z is galactose or N-acetylgalactosamine conjugated at C1, C2 or C6.
- More particularly where Z is galactose or N-acetylgalactosamine conjugated at C1 or C2.
- Even more particularly where Z is N-acetylgalactosamine conjugated at C1.
- Especially where Z is glucose, glucosamine or N-acetylglucosamine.
- Particularly where Z is glucose or N-acetylglucosamine conjugated at C1, C2 or C6.
- More particularly where Z is glucose or N-acetylglucosamine conjugated at C1 or C2.
- Even more particularly where Z is N-acetylglucosamine conjugated at C1.
- Particularly where Y is a linker selected from: Formula Ya, Formula Yb, Formula Yc, Formula Yf, Formula Yg, Formula Yh, Formula Yi, Formula Yk, Formula Ym, Formula Yn, Formula Yo and Formula Yp.
- Particularly where Y is a linker selected from: Formula Yc, Formula Yf, Formula Yg and Formula Ym.
- Especially where Wp is a random copolymer in which R9 is Et-PEGt-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 1.
- Particularly where p is about 90 and includes about 30 W1 and 60 W2 comonomers.
- Especially where Wp is a random copolymer in which R9 is Et-PEGt-AcN and R10 is 2-hydroxypropyl.
- Particularly where Y is a linker selected from: Formula Yc and Formula Ym.
- Especially where Wp is a random copolymer in which R9 is Et-PEGt-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 1.
- Particularly where p is about 90 and includes about 30 W1 and 60 W2 comonomers.
- Especially where Wp is a random copolymer in which R9 is Et-PEGt-AcN and R10 is 2-hydroxypropyl.
- Particularly where Z is galactose, galactosamine or N-acetylgalactosamine.
- Especially where Z is galactose or N-acetylgalactosamine conjugated at C1, C2 or C6.
- Particularly where Z is galactose or N-acetylgalactosamine conjugated at C1 or C2.
- More particularly where Z is N-acetylgalactosamine conjugated at C1.
- Especially where Z is galactose or N-acetylgalactosamine conjugated at C1, C2 or C6.
- Particularly where Z is glucose, glucosamine or N-acetylglucosamine.
- Especially where Z is glucose or N-acetylglucosamine conjugated at C1, C2 or C6.
- More particularly where Z is glucose or N-acetylglucosamine conjugated at C1 or C2.
- Even more particularly where Z is N-acetylglucosamine conjugated at C1.
- Especially where Z is glucose or N-acetylglucosamine conjugated at C1, C2 or C6.
- Especially where Y is a linker selected from: Formula Ya, Formula Yb, Formula Yh, Formula Yi, Formula Yk, Formula Ym, Formula Yn, Formula Yo and Formula Yp.
- Particularly where Y is a linker selected from: Formula Yc, Formula Yf, Formula Yg and Formula Ym.
- Especially where Wp is a random copolymer in which R9 is Et-PEGt-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 1.
- Particularly where p is about 90 and includes about 30 W1 and 60 W2 comonomers.
- Particularly where Y is a linker selected from: Formula Yc and Formula Ym.
- Especially where Wp is a random copolymer in which R9 is Et-PEGt-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 1.
- Particularly where p is about 90 and includes about 30 W1 and 60 W2 comonomers.
- Particularly where n is 8 to 90±10%, p is 20 to 100±10%, and q is 3 to 20±3.
- More particularly where n is 40 to 80+10%, p is 30 to 40+10%, and q is 4 to 12±3.
- Particularly where Y is Formula Ya, Formula Yb, Formula Ym or Formula Yn.
- More particularly where n is 8 to 90±10%, p is 20 to 100±10% and q is 3 to 20±3.
- More preferably where n is 40 to 80±10%, p is 30 to 40±10%, and q is 4 to 12±3.
- More particularly where Z is conjugated to Y via an ethylacetamido group.
- Particularly where Y is a linker selected from: Formula Yc, Formula Yf, Formula Yg and Formula Ym.
- Especially where Z is galactose, galactosamine or N-acetylgalactosamine.
- Particularly where Z is galactose or N-acetylgalactosamine conjugated at C1, C2 or C6.
- More particularly where Z is galactose or N-acetylgalactosamine conjugated at C1 or C2.
- More preferably where Z is N-acetylgalactosamine conjugated at C1.
- More particularly where Y is a linker selected from: Formula Yc, Formula Yf, Formula Yg and Formula Ym.
- Especially where Wp is a random copolymer in which R9 is Et-PEG-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 1.
- Particularly where p is about 90 and includes about 30 W1 and 60 W2 comonomers.
- Particularly where Z is galactose or N-acetylgalactosamine conjugated at C1, C2 or C6.
- Especially where Z is glucose, glucosamine or N-acetylglucosamine.
- Particularly where Z is glucose or N-acetylglucosamine conjugated at C1, C2 or C6.
- More particularly where Z is glucose or N-acetylglucosamine conjugated at C1 or C2.
- More preferably where Z is N-acetylglucosamine conjugated at C1.
- More particularly where Y is a linker selected from: Formula Yc, Formula Yf, Formula Yg and Formula Ym.
- Especially where Wp is a random copolymer in which R9 is Et-PEG-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 1.
- Particularly where p is about 90 and includes about 30 W1 and 60 W2 comonomers.
- More particularly where Y is a linker selected from: Formula Yc and Formula Ym.
- Especially where Wp is a random copolymer in which R9 is Et-PEG-AcN and R10 is 2-hydroxypropyl.
- Particularly where t is 1 or 2
- More particularly where t is 1.
- Particularly where p is about 90 and includes about 30 W1 and 60 W2 comonomers.
- Particularly where Z is glucose or N-acetylglucosamine conjugated at C1, C2 or C6.
- Especially where X is a self-antigen polypeptide selected for treating
- m is an integer from about 1 to 100.
- m is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 70, 75, 80, 85, 90, 95, 100 or 110.
- Particularly m is from about 1 to 20.
- m is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22.
- More particularly m is about 10.
- m is 9, 10 or 11.
- n is an integer representing a mixture including from about 1 to 100
- n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95, 99, 100, 105 or 110.
- Particularly n is about 8 to 90.
- Particularly n is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95 or 99.
- More particularly n is about 40 to 80.
- More particularly n is 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83 or 88.
- n represents a mixture encompassing the ranges 1-4, 2-4, 2-6, 3-8, 7-13, 6-14, 15-25, 26-30, 42-50, 46-57, 60-82, 85-90, 90-110 and 107-113.
- Particularly n represents a mixture encompassing the ranges 7-13, 6-14, 15-25, 26-30, 42-50, 46-57, 60-82, 85-90 and 82-99.
- More particularly n represents a mixture encompassing the ranges 36-44, 42-50, 46-57, 60-82 and 75-85.
- Particularly n represents a mixture encompassing the ranges 7-13, 6-14, 15-25, 26-30, 42-50, 46-57, 60-82, 85-90 and 82-99.
- p is an integer representing a mixture including from about 2 to 150.
- p is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160 or 165.
- Particularly where n is an integer representing a mixture including from about 1 to 100.
- Particularly n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95, 99, 100, 105 or 110.
- More particularly where n is about 8 to 90.
- More particularly n is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95 or 99.
- Even more particularly where n is about 40 to 80.
- Even more particularly n is 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83 or 88.
- More particularly p is 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 70, 75, 80, 85, 90, 95, 100 or 110.
- Particularly where n is an integer representing a mixture including from about 1 to 100.
- Particularly n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95, 99, 100, 105 or 110.
- More particularly where n is about 8 to 90.
- More particularly n is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95 or 99.
- Even more particularly where n is about 40 to 80.
- Even more particularly n is 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83 or 88.
- More particularly p is 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, or 44.
- Particularly where n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95, 99, 100, 105 or 110.
- More particularly where n is about 8 to 90.
- More particularly n is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95 or 99.
- Even more particularly where n is about 40 to 80.
- Even more particularly n is 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83 or 88.
- q is an integer representing a mixture including from about 1 to 44.
- q is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 44 or 48.
- n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 34, 35, 37, 40, 41, 45, 50, 54, 55, 59, 60, 65, 70, 75, 80, 82, 83, 85, 88, 90, 95, 99, 100, 105 or 110.
- X is a self-antigen polypeptide selected for treating
- Utility, Testing and Administration
- General Utility
- The compositions of the disclosure find use in a variety of applications including, as will be appreciated by those in the art, treatment of transplant rejection, immune response against a therapeutic agent, autoimmune disease, and food allergy, among other uses.
- In a preferred embodiment, the compositions of the disclosure are used to modulate, particularly down-regulate, antigen-specific undesirable immune response.
- The compositions of the disclosure are useful, in additional embodiments, to bind and clear from the circulation specific undesired proteins, including antibodies endogenously generated in a patient (i.e., not exogenous antibodies administered to a patient), peptides and the like, which cause autoimmunity and associated pathologies, allergy, inflammatory immune responses, and anaphylaxis.
- In several embodiments according to the present disclosure, antigens are targeted to the liver for presentation via antigen-presenting cells to specifically down-regulate the immune system or for clearance of unwanted circulating proteins. This is distinct from previous uses of liver targeting, for example as described in US 2013/0078216, where the purpose of liver-targeting molecules such as DOM26h-196-61 was the delivery of therapeutic agents to treat liver diseases such as fibrosis, hepatitis, Cirrhosis and liver cancer.
- According to several embodiments, the present disclosure provides compositions and methods to treat unwanted immune response to self-antigens and foreign antigens, including but not limited to: a foreign transplant antigen against which transplant recipients develop an unwanted immune response (e.g., transplant rejection), a foreign antigen to which patients develop an unwanted immune (e.g., allergic or hypersensitivity) response, a therapeutic agent to which patients develop an unwanted immune response (e.g., hypersensitivity and/or reduced therapeutic activity), a self-antigen to which patients develop an unwanted immune response (e.g., autoimmune disease)
- Autoimmune disease states that can be treated using the methods and compositions provided herein include, but are not limited to: Acute Disseminated Encephalomyelitis (ADEM); Acute interstitial allergic nephritis (drug allergies); Acute necrotizing hemorrhagic leukoencephalitis; Addison's Disease; Alopecia areata; Alopecia universalis; Ankylosing Spondylitis; Arthritis, juvenile; Arthritis, psoriatic; Arthritis, rheumatoid; Atopic Dermatitis; Autoimmune aplastic anemia; Autoimmune gastritis; Autoimmune hepatitis; Autoimmune hypophysitis; Autoimmune oophoritis; Autoimmune orchitis; Autoimmune polyendocrine syndrome type 1; Autoimmune polyendocrine syndrome type 2; Autoimmune thyroiditis; Behcet's disease; Bronchiolitis obliterans; Bullous pemphigoid; Celiac disease; Churg-Strauss syndrome; Chronic inflammatory demyelinating polyneuropathy; Cicatricial pemphigoid; Crohn's disease; Coxsackie myocarditis; Dermatitis herpetiformis Duhring; Diabetes mellitus (Type 1); Erythema nodosum; Epidermolysis bullosa acquisita, Giant cell arteritis (temporal arteritis); Giant cell myocarditis; Goodpasture's syndrome; Graves' disease; Guillain-Barre syndrome; Hashimoto's encephalitis; Hashimoto's thyroiditis; IgG4-related sclerosing disease; Lambert-Eaton syndrome; Mixed connective tissue disease; Mucha-Habermann disease; Multiple sclerosis; Myasthenia gravis; Optic neuritis; Neuromyelitis optica; Pemphigus vulgaris and variants; Pernicious angemis; Pituitary autoimmune disease; Polymyositis; Postpericardiotomy syndrome; Premature ovarian failure; Primary Biliary Cirrhosis; Primary sclerosing cholangitis; Psoriasis; Rheumatic heart disease; Sjogren's syndrome; Systemic lupus erythematosus; Systemic sclerosis; Ulcerative colitis; Undifferentiated connective tissue disease (UCTD); Uveitis; Vitiligo; and Wegener's granulomatosis.
- A particular group of autoimmune disease states that can be treated using the methods and compositions provided herein include, but are not limited to: Acute necrotizing hemorrhagic leukoencephalitis; Addison's Disease; Arthritis, psoriatic; Arthritis, rheumatoid; Autoimmune aplastic anemia; Autoimmune hypophysitis; Autoimmune gastritis; Autoimmune
polyendocrine syndrome type 1; Bullous pemphigoid; Celiac disease; Coxsackie myocarditis; Dermatitis herpetiformis Duhring; Diabetes mellitus (Type 1); Epidermolysis bullosa acquisita; Giant cell myocarditis; Goodpasture's syndrome; Graves' disease; Hashimoto's thyroiditis; Mixed connective tissue disease; Multiple sclerosis; Myasthenia gravis; Neuromyelitis optica; Pernicious angemis; Pemphigus vulgaris and variants; Pituitary autoimmune disease; Premature ovarian failure; Rheumatic heart disease; Systemic sclerosis; Sjogren's syndrome; Systemic lupus erythematosus; and Vitiligo. - In the embodiments employing an antigen against which an unwanted immune response is developed, such as food antigens, treatment can be provided for reactions against, for example: peanut, apple, milk, egg whites, egg yolks, mustard, celery, shrimp, wheat (and other cereals), strawberry and banana.
- As will be appreciated by those skilled in the art, a patient can be tested to identify a foreign antigen against which an unwanted immune response has developed, and a composition of the disclosure can be developed based on that antigen.
- Testing
- In establishing the utility of the compositions and methods of the disclosure, specificity in binding to antigen-presenting cells in the liver (particularly binding to hepatocytes and specifically ASGPR) should initially be determined. This can be accomplished, for example, by employing a marker (such as the fluorescent marker phycoerythrin (“PE”)) in a composition of the disclosure. The composition is administered to suitable experimental subjects. Controls, e.g., unconjugated PE or vehicle (saline) are administered to other group(s) of subjects. The composition and controls are allowed to circulate for a period of 1 to 5 hours, after which the spleens and livers of the subjects are harvested and measured for fluorescence. The specific cells in which fluorescence is found can be subsequently identified. Compositions of the disclosure, when tested in this manner, show higher levels of concentration in the antigen-presenting cells of the liver as compared with unconjugated PE or vehicle.
- Effectiveness in immune modulation can be tested by measuring the proliferation of OT-I CD8+ cells (transplanted into host mice) in response to the administration of a composition of the disclosure incorporating a known antigen, such as ovalbumin (“OVA”), as compared with administration of the antigen alone or just vehicle. Compositions of the disclosure, when tested in this manner, show an increase of OT-I cell proliferation as compared with antigen alone or vehicle, demonstrating increased CD8+ T-cell cross-priming. To distinguish T cells being expanded into a functional effector phenotype from those being expanded and deleted, the proliferating OT-I CD8+ T cells can be phenotypically analyzed for molecular signatures of exhaustion [such as programmed death-1 (PD-1), FasL, and others], as well as Annexin-V binding as a hallmark of apoptosis and thus deletion. The OT-I CD8+ T cells can also be assessed for their responsiveness to an antigen challenge with adjuvant in order to demonstrate functional non-responsiveness, and thus immune tolerance, towards the antigen. To do so, the cells are analyzed for inflammatory signatures after administration of compositions of the disclosure into host mice followed by an antigen challenge. Compositions of the disclosure when tested in this manner demonstrate very low (e.g., background) levels of inflammatory OT-I CD8+ T cell responses towards OVA in comparison to control groups, thus demonstrating immune tolerance.
- Humoral immune response can be tested by administering a composition of the disclosure incorporating a known antigen, such as OVA, as compared with the administration of the antigen alone or just vehicle, and measuring the levels of resulting antibodies. Compositions of the disclosure when tested in this manner show very low (e.g., background) levels of antibody formation responsive to their administration and the administration of vehicle, with significantly higher levels of antibody formation responsive to administration of the antigen.
- Effectiveness in tolerization against an antigen can be tested as above with reference to humoral immune response, where several weeks following treatment(s) with a composition of the disclosure a group of subjects is challenged by administration of the antigen alone, followed by measuring the levels of antibodies to the antigen. Compositions of the disclosure when tested in this manner show low levels of antibody formation responsive to challenge with the antigen in groups pretreated with such compositions as compared to groups that are not pretreated.
- Disease-focused experimental models are well known to those skilled in the art and include the NOD (or non-obese diabetic) mouse model of autoimmunity and tolerance and the EAE (experimental autoimmune encephalomyelitis) model for the human inflammatory demyelinating disease, multiple sclerosis. In particular, the NOD mouse develops spontaneous autoimmune diabetes (similar to type 1a diabetes in humans). Groups of NOD mice are treated with test compound or a negative control, followed by measurement of blood glucose. Successful treatment corresponds to likelihood of treating diabetes in humans or proof of mechanism for approaches to the treatment of other autoimmune diseases. (See, e.g., Anderson and Bluestone, Annu. Rev. Immunol. 2005; 23:447-85.)
- Administration
- The compositions of the disclosure are administered at a therapeutically effective dosage, e.g., a dosage sufficient to provide treatment for the disease states previously described. Administration of the compounds of the disclosure or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration for agents that serve similar utilities.
- While human dosage levels have yet to be optimized for the compounds of the disclosure, these can initially be extrapolated from the about 10 μg to 100 μg doses administered for mice. Generally, an individual human dose is from about 0.01 to 2.0 mg/kg of body weight, preferably about 0.1 to 1.5 mg/kg of body weight, and most preferably about 0.3 to 1.0 mg/kg of body weight. Treatment can be administered for a single day or a period of days, and can be repeated at intervals of several days, one or several weeks, or one or several months. Administration can be as a single dose (e.g., as a bolus) or as an initial bolus followed by continuous infusion of the remaining portion of a complete dose over time, e.g., 1 to 7 days. The amount of active compound administered will, of course, be dependent on any or all of the following: the subject and disease state being treated, the severity of the affliction, the manner and schedule of administration and the judgment of the prescribing physician. It will also be appreciated that amounts administered will depend upon the molecular weight of the antigen, antibody, antibody fragment or ligand as well as the size of the linker.
- The compositions of the disclosure can be administered either alone or in combination with other pharmaceutically acceptable excipients. While all typical routes of administration are contemplated (e.g. oral, topical, transdermal, injection (intramuscular, intravenous, or intra-arterial)), it is presently preferred to provide liquid dosage forms suitable for injection. The formulations will typically include a conventional pharmaceutical carrier or excipient and a composition of the disclosure or a pharmaceutically acceptable salt thereof. In addition, these compositions can include other medicinal agents, pharmaceutical agents, carriers, and the like, including, but not limited to the therapeutic protein, peptide, antibody or antibody-like molecule corresponding to the antigen (X) employed in the composition of the disclosure, and other active agents that can act as immune-modulating agents and more specifically can have inhibitory effects on B-cells, including anti-folates, immune suppressants, cyostatics, mitotic inhibitors, and anti-metabolites, or combinations thereof.
- Generally, depending on the intended mode of administration, the pharmaceutically acceptable composition will contain about 0.1% to 95%, preferably about 0.5% to 50%, by weight of a composition of the disclosure, the remainder being suitable pharmaceutical excipients, carriers, etc. Dosage forms or compositions containing active ingredient in the range of 0.005% to 95% with the balance made up from non-toxic carrier can be prepared.
- Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. an active composition of the disclosure (e.g., a lyophilized powder) and optional pharmaceutical adjuvants in a carrier, such as, for example, water (water for injection), saline, aqueous dextrose, glycerol, glycols, ethanol or the like (excluding galactoses), to thereby form a solution or suspension. If desired, the pharmaceutical composition to be administered can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, stabilizing agents, solubilizing agents, pH buffering agents and the like, for example, sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate and triethanolamine oleate, etc., osmolytes, amino acids, sugars and carbohydrates, proteins and polymers, salts, surfactants, chelators and antioxidants, preservatives, and specific ligands. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington: The Science and Practice of Pharmacy, Pharmaceutical Press, 22nd Edition, 2012. The composition or formulation to be administered will, in any event, contain a quantity of the active compound in an amount effective to treat the symptoms of the subject being treated.
- The following examples serve to more fully describe the manner of using the above-described disclosure, as well as to set forth the best modes contemplated for carrying out various aspects of the disclosure. It is understood that these examples in no way serve to limit the true scope of this disclosure, but rather are presented for illustrative purposes. All references cited herein are incorporated by reference in their entirety.
- 1A.
Formula 103′ where X′ is OVA and m is 4 - In an endotoxin-free tube, OVA (5.0 mg, 0.00012 mmol) was added to 100 μl of pH 8.0 PBS containing 5 mM EDTA and stirred. Separately, 1 mg of Traut's Reagent was dissolved in 100 μl of pH 7.0 PBS, and 16 μl (0.00119 mmol) of the Traut's Reagent solution so obtained was added to the stirred solution of OVA with continued stirring. After 1 hour, excess Traut's Reagent was removed using a centrifugal size exclusion column to afford the corresponding product of
Formula 103′. - 1B. Formula 106A where n is 80
- In an endotoxin-free tube, galactosamine (10.0 mg, 0.04638 mmol) was dissolved with stirring in 100 μl of pH 8.0 PBS containing 5 mM EDTA. Pyridyl dithiol-poly(ethylene glycol)-NHS ester (
Formula 104 where n is 80) (16.23 mg, 0.00464 mmol) dissolved in 100 μl of pH 7.0 PBS was added to the stirring solution of galactosamine. After 1 hour, the resulting pyridyl dithiol-poly(ethylene glycol)-N-acetylgalactosamine (Formula 106A) was ready to be used without further purification. - 1C. Formula 1aA where X′ is OVA, m is 4, n is 80 (and Z′ is C2 galactosamine)
- The purified OVA-Traut conjugate of
Formula 103′ prepared in Example 1A was added directly to the stirring product of Formula 106A prepared in Example 1B. After 1 hour, the resulting product of Formula 1a was purified by passing the reaction mixture through a centrifugal size exclusion column. Characterization (UHPLC SEC, gel electrophoresis) confirmed product identity. (SeeFIG. 5 .) - 1 D. Other Compounds of
Formula 103′ - By following the procedure described in Example 1A and substituting OVA with the following:
-
- Abciximab,
- Adalimumab,
- Agalsidase alfa,
- Agalsidase beta,
- Aldeslukin,
- Alglucosidase alfa,
- Factor VIII,
- Factor IX,
- L-asparaginase,
- Laronidase,
- Octreotide,
- Phenylalanine ammonia-lyase,
- Rasburicase,
- Insulin (SEQ ID NO:1),
- GAD-65 (SEQ ID NO:2),
- IGRP (SEQ ID NO:3)
- MBP (SEQ ID NO:4),
- MOG (SEQ ID NO:5),
- PLP (SEQ ID NO:6),
- MBP13-32 (SEQ ID NO:7),
- MBP83-99 (SEQ ID NO:8),
- MBP111-129 (SEQ ID NO:9),
- MBP146-170 (SEQ ID NO:10),
- MOG1-20 (SEQ ID NO:11),
- MOG35-55 (SEQ ID NO:12),
- PLP139-154 (SEQ ID NO:13),
- MART1 (SEQ ID NO:14),
- Tyrosinase (SEQ ID NO:15),
- PMEL (SEQ ID NO:16),
- Aquaporin-4 (SEQ ID NO:17),
- S-arrestin (SEQ ID NO:18),
- IRBP (SEQ ID NO:19),
- Conarachin (UNIPROT Q6PSU6),
- Alpha-gliadin “33-mer” native (SEQ ID NO:20),
- Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21),
- Alpha-gliadin (SEQ ID NO:22),
- Omega-gliadin (SEQ ID NO:23),
- Fel d 1A (UNIPROT P30438),
- Cat albumin (UNIPROT P49064),
- Can f 1 (UNIPROT 018873),
- Dog albumin (UNIPROT P49822), and
- RhCE (UNIPROT P18577),
there are obtained the following corresponding compounds ofFormula 103′ where: - X is Abciximab and m is 10,
- X is Adalimumab and m is 11,
- X is Agalsidase alfa and m is 14,
- X is Agalsidase beta and m is 14,
- X is Aldeslukin and m is 6,
- X is Alglucosidase alfa and m is 13,
- X is Factor VIII and m is 100,
- X is Factor IX and m is 18,
- X is L-asparaginase and m is 5,
- X is Laronidase and m is 7,
- X is Octreotide and m is 1,
- X is Phenylalanine ammonia-lyase and m is 12,
- X is Rasburicase and m is 12,
- X is Insulin (SEQ ID NO:1) and m is 2,
- X is GAD-65 (SEQ ID NO:2) and m is 8,
- X is IGRP (SEQ ID NO:3) and m is 7,
- X is MBP (SEQ ID NO:4) and m is 6,
- X is MOG (SEQ ID NO:5) and m is 5,
- X is PLP (SEQ ID NO:6) and m is 8,
- X is MBP13-32 (SEQ ID NO:7) and m is 1,
- X is MBP83-99 (SEQ ID NO:8) and m is 1,
- X is MBP111-129 (SEQ ID NO:9) and m is 1,
- X is MBP146-170 (SEQ ID NO:10) and m is 2,
- X is MOG1-20 (SEQ ID NO:11) and m is 1,
- X is MOG35-55 (SEQ ID NO:12) and m is 2,
- X is PLP139-154 (SEQ ID NO:13) and m is 3,
- X is MART1 (SEQ ID NO:14) and m is 4,
- X is Tyrosinase (SEQ ID NO:15) and m is 8,
- X is PMEL (SEQ ID NO:16) and m is 5,
- X is Aquaporin-4 (SEQ ID NO:17) and m is 4,
- X is S-arrestin (SEQ ID NO:18) and m is 12,
- X is IRBP (SEQ ID NO:19) and m is 21,
- X is Conarachin and m is 21,
- X is Alpha-gliadin “33-mer” native (SEQ ID NO:20) and m is 1,
- X is Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21) and m is 1,
- X is Alpha-gliadin (SEQ ID NO:22) and m is 1,
- X is Omega-gliadin (SEQ ID NO:23) and m is 1,
- X is
Fel d 1 and m is 4, - X is Cat albumin and m is 16,
- X is Can
f 1 and m is 6, - X is Dog albumin and m is 23, and
- X is RhCE and m is 10.
- 1E. Other Compounds of Formula 1aA
- By following the procedure described in Example 1C and substituting the compounds of
Formula 103′, for example as obtained in Example 1 D, there are obtained the following corresponding compounds of Formula 1aA: -
- F1aA-Abciximab-m10-n80,
- F1aA-Adalimumab-m11-n80,
- F1aA-Agalsidase alfa-m14-n80,
- F1aA-Agalsidase beta-m14-n80,
- F1aA-Aldeslukin-m6-n80,
- F1aA-Alglucosidase alfa-m13-n80,
- F1aA-Factor VIII-m100-n80,
- F1aA-Factor IX-m18-n80,
- F1aA-L-asparaginase-m5-n80,
- F1aA-Laronidase-m7-n80,
- F1aA-Octreotide-m1-n80,
- F1aA-Phenylalanine ammonia-lyase-m12-n80,
- F1aA-Rasburicase-m12-n80,
- F1aA-Insulin-m2-n80,
- F1aA-GAD-65-m6-n80,
- F1aA-IGRP-m7-n80,
- F1aA-MBP-m6-n80,
- F1aA-MOG-m5-n80,
- F1aA-PLP-m8-n80,
- F1aA-MBP13-32-m1-n80,
- F1aA-MBP83-99-m1-n80,
- F1aA-MBP111-129-m1-n80,
- F1aA-MBP146-170-m2-n80,
- F1aA-MOG1-20-m1-n80,
- F1aA-MOG35-55-m2-n80,
- F1aA-PLP139-154-m3-n80,
- F1aA-MART1-m4-n80,
- F1aA-Tyrosinase-m8-n80,
- F1aA-PMEL-m5-n80,
- F1aA-Aquaporin-4-m4-n80,
- F1aA-S-arrestin-m12-n80,
- F1aA-IRBP-m21-n80,
- F1aA-Conarachin-m21-n80,
- F1aA-Alpha-gliadin “33-mer” native-m1-n80,
- F1aA-Alpha-gliadin “33-mer” deamidated-m1-n80,
- F1aA-Alpha-gliadin-m1-n80,
- F1aA-Omega-gliadin-m1-n80,
- F1aA-Fel d 1-m4-n80,
- F1aA-Cat albumin-m16-n80,
- F1aA-Can f 1-m6-n80,
- F1aA-Dog albumin-m23-n80, and
- F1aA-RhCE-m10-n80.
- 1F. Other Compounds of Formula 106A
- By following the procedure described in Example 1B and substituting the pyridyl dithiol-poly(ethylene glycol)-NHS ester (
Formula 104 where n is 80) with the following: -
-
Formula 104 where n is 12, -
Formula 104 where n is 33, -
Formula 104 where n is 40, -
Formula 104 where n is 43, -
Formula 104 where n is 50, -
Formula 104 where n is 60, -
Formula 104 where n is 75, and -
Formula 104 where n is 80,
there are obtained the following corresponding compounds of Formula 106A where: - n is 12,
- n is 33,
- n is 40,
- n is 43,
- n is 50,
- n is 60,
- n is 75, and
- n is 84,
-
- 1G. Other Compounds of Formula 1aA
- By following the procedure described in Example 1E and substituting the compound of Formula 106A with the compounds obtained in Example 1F, there are obtained the corresponding compounds of Formula 1aA where n is 12, 33, 40, 43, 50, 60, 75 and 84, such as:
-
- F1aA-Insulin-m2-n12,
- F1aA-Insulin-m2-n33,
- F1aA-Insulin-m2-n40,
- F1aA-Insulin-m2-n43,
- F1aA-Insulin-m2-n50,
- F1aA-Insulin-m2-n60,
- F1aA-Insulin-m2-n75, and
- F1aA-Insulin-m2-n84.
- 1H. Other Compounds of Formula 1aA
- Similarly, by following the procedures described in Example 1A-G and substituting the compound glucosamine for galactosamine, there are obtained the corresponding compounds of Formula 1aA where Z′ is C2 glucosamine.
- 2A.
Formula 103′ where X′ is Ovalbumin and m is 1 - In an endotoxin-free tube, OVA (6.5 mg, 0.000155 mmol) was added to 200 μl of pH 8.0 PBS containing 5 mM EDTA and stirred. Separately, 1 mg of Taut's Reagent was dissolved in 100 μl of pH 7.0 PBS, and 43 μl (0.00310 mmol) of the Traut's Reagent solution so obtained was added to the stirred solution of OVA with continued stirring. After 1 hour, non-reacted Traut's Reagent was removed using a centrifugal size exclusion column to afford the product of
Formula 103′. - 2B. Formula 1b where X′ is Ovalbumin, m is 1, n is 4, p is 34, R9 is a direct bond and Z″ is 2NAcGAL
- In a micro centrifuge tube, poly(Galactosamine Methacrylate)-(pyridyl disulfide) (Formula 201) (20.0 mg, 0.0020 mmol) was solubilized in 50 μl of pH 8.0 PBS containing 5 mM EDTA. To this was added the purified OVA-Traut product from Example 2A followed by stirring for 1 hour. The resulting product of Formula 1b was purified by passing the reaction mixture through a centrifugal size exclusion column. Characterization (UHPLC SEC, gel electrophoresis) confirmed the identity of the product. (See
FIG. 5 .) - 2C. Other Compounds of Formula 1b
- By following the procedure described in Example 2B and substituting the compounds of
Formula 103′, for example as obtained in Example 1 D, there are obtained the following corresponding compounds of Formula 1b: -
- F1b-Abciximab-m10-n4-p34-2NAcGAL,
- F1b-Adalimumab-m1-n4-p34-2NAcGAL,
- F1b-Agalsidase alfa-m14-n4-p34-2NAcGAL,
- F1b-Agalsidase beta-m14-n4-p34-2NAcGAL,
- F1b-Aldeslukin-m6-n4-p34-2NAcGAL,
- F1b-Alglucosidase alfa-m13-n4-p34-2NAcGAL,
- F1b-Factor VIII-m100-n4-p34-2NAcGAL,
- F1b-Factor IX-m18-n4-p34-2NAcGAL,
- F1b-L-asparaginase-m5-n4-p34-2NAcGAL,
- F1b-Laronidase-m7-n4-p34-2NAcGAL,
- F1b-Octreotide-m1-n4-p34-2NAcGAL,
- F1b-Phenylalanine ammonia-lyase-m12-n4-p34-2NAcGAL,
- F1b-Rasburicase-m12-n4-p34-2NAcGAL,
- F1b-Insulin-m2-n4-p34-2NAcGAL,
- F1b-GAD-65-m8-n4-p34-2NAcGAL,
- F1b-IGRP-m7-n4-p34-2NAcGAL,
- F1b-MBP-m6-n4-p34-2NAcGAL,
- F1b-MOG-m5-n4-p34-2NAcGAL,
- F1b-PLP-m8-n4-p34-2NAcGAL,
- F1b-MBP13-32-m1-n4-p34-2NAcGAL,
- F1b-MBP83-99-m1-n4-p34-2NAcGAL,
- F1b-MBP111-129-m1-n4-p34-2NAcGAL,
- F1b-MBP146-170-m2-n4-p34-2NAcGAL,
- F1b-MOG1-20-m1-n4-p34-2NACGAL,
- F1b-MOG35-55-m2-n4-p34-2NAcGAL,
- F1b-PLP139-154-m3-n4-p34-2NAcGAL,
- F1b-MART1-m4-n4-p34-2NAcGAL,
- F1b-Tyrosinase-m8-n4-p34-2NAcGAL,
- F1b-PMEL-m5-n4-p34-2NAcGAL,
- F1b-Aquaporin-4-m4-n4-p34-2NAcGAL,
- F1b-S-arrestin-m12-n4-p34-2NAcGAL,
- F1b-IRBP-m21-n4-p34-2NACGAL,
- F1b-Conarachin-m21-n4-p34-2NACGAL,
- F1b-Alpha-gliadin “33-mer” native-m1-n4-p34-2NAcGAL,
- F1b-Alpha-gliadin “33-mer” deamidated-m-n4-p34-2NAcGAL,
- F1b-Alpha-gliadin-m-n4-p34-2NAcGAL,
- F1b-Omega-gliadin-m1-n4-p34-2NAcGAL,
- F1b-Fel d 1-m4-n4-p34-2NAcGAL,
- F1b-Cat albumin-m16-n4-p34-2NAcGAL,
- F1b-Can f 1-m6-n4-p34-2NAcGAL,
- F1b-Dog albumin-m23-n4-p34-2NAcGAL, and
- F1b-RhCE-m10-n4-p34-2NAcGAL.
- 1D. Other Compounds of Formula 1b
- Similarly, by following the procedures described in Example 2B-C and substituting the compound poly(Glucosamine Methacrylate)-(pyridyl disulfide) or poly(Galactosamine Methacrylate)-(pyridyl disulfide), there are obtained the corresponding compounds of Formula 1b where Z″ is 2-NAcGLU.
- 3A. Formula if where X′ is Ovalbumin and m is 1, n is 4, p is 33, R9 is a direct bond and Z″ is 2NAcGAL
- In an endotoxin-free tube, OVA (4.0 mg, 0.0000952381 mmol) was added to 0.1 ml of pH 7.4 PBS and stirred. Separately, poly-(n-Acetylgalactosamine)-p-nitrophenyol carbonate of
Formula 601 where n is 4 and p is 33 (33.0 mg, 0.002380952 mmol) was added to 100 μl of pH 7.5 PBS and vortexed until dissolved. The two solutions were combined and the mixture was stirred vigorously for 1 hour. The mixture was then collected and dialyzed for 3 days against pH 7.4 PBS (30 kDa molecular weight cut off) to afford the product of Formula 1f. - 3B. Formula if where X′ is Ovalbumin and m is 1, n is 4, p is 33, R9 is a direct bond and Z″ is 2NAcGLU
- Similarly, by following the procedure of Example 3A and substituting poly-(n-Acetylglucosamine)-p-nitrophenyol carbonate for poly-(n-Acetylgalactosamine)-p-nitrophenyol carbonate, there is obtained the corresponding compound of Formula 1f where Z″ is 2NAcGLU.
- 4A.
Formula 1 where X′ is Ovalbumin and m is 1, p is 90, R9 is a direct bond and Z″ is 2NAcGAL - In an endotoxin-free tube, OVA (5.0 mg, 0.000119048 mmol) was added to 0.2 ml of pH 7.4 PBS and stirred. To the stirring solution was added 75 mg (0.00297619 mmol) of Poly(Galactosamine Methacrylate)-NHS (Formula 701) dissolved in 0.4 ml of pH 7.4 PBS. The mixture was allowed to stir for 2 hours. The mixture was then collected and dialyzed for 3 days against pH 7.4 PBS (30 kDa molecular weight cut off) to afford the product of Formula 1g.
- 4B. Formula 1q where X′ is Ovalbumin and m is 1, p is 90, R9 is a direct bond and Z″ is 2NAcGLU
- Similarly, by following the procedure of Example 4A and substituting Poly(Glucosamine Methacrylate)-NHS for Poly(Galactosamine Methacrylate)-NHS, there is obtained the corresponding compound of Formula 1g where Z″ is 2NAcGLU.
- 5A. Formula 802′ where X′ is Ovalbumin, m is 2 and n is 45
- In an endotoxin-free tube, OVA (3.0 mg, 0.0000714286 mmol) was added to 150 μl of pH 8.0 PBS containing 5 mM EDTA and stirred. Dibenzocyclooctyne-PEG-(p-nitrophenyl carbonate) (Formula 801) (5.265 mg, 0.002142857 mmol) dissolved in DMF was added to the OVA solution and stirred for 1 hour. The excess dibenzocyclooctyne-PEG-(p-nitrophenyl carbonate) was removed using a centrifugal size exclusion column to afford the product of Formula 802′.
- 5B. Formula 1h where X′ is Ovalbumin, m is 2, n is 45, p is 55, q is 4, R8 is CH2, R9 is a direct bond and Z″ is 2NAcGAL
- Poly(Galactosamine Methacrylate)-N3 (Formula 803 where p is 55, q is 4 and Z″ is N-acetylgalactosamine) (33 mg, 0.002142857 mmol) was dissolved in 100 μl of pH 7.4 PBS and added to the product of Example 5A with stirring. After 1 hour, the resulting product of Formula 1h was purified by centrifugal size exclusion chromatography.
- 5C. Formula 1h where X′ is Ovalbumin, m is 2, n is 45, p is 55, q is 4, R8 is CH2, R9 is a direct bond and Z″ is 2NAcGLU
- Similarly, by following the procedure of Example 5B and substituting Poly(Glucosamine Methacrylate)-NHS for Poly(Galactosamine Methacrylate)-NHS, there is obtained the corresponding compound of Formula 1h where Z″ is 2NAcGLU.
- 6A.
Formula 103′ where X′ is Ovalbumin and m is 10 - In an endotoxin-free tube, OVA (5.0 mg, 0.00019 mmol) was added to 150 μl of pH 8.0 PBS containing 5 mM EDTA and stirred. Separately, 1 mg of Taut's Reagent was dissolved in 100 μl of pH 7.0 PBS, and 16 μl (0.0019 mmol) of the Traut's Reagent solution so obtained was added to the stirred solution of OVA with continued stirring. After 1 hour, non-reacted Traut's Reagent was removed using a centrifugal size exclusion column to afford the product of
Formula 103′. - 6B. Formula 902″ where X′ is Ovalbumin, m is 10 and n is 45
- Dibenzocyclooctyne-PEG-(pyridyl disulfide) (Formula 901 where n is 45) (6.0 mg, 0.00238 mmol) was dissolved in DMF and the resulting solution was added to the OVA solution obtained in Example 6A and stirred for 1 hour. The excess dibenzocyclooctyne-PEG-(pyridyl disulfide) was removed using centrifugal size exclusion chromatography to afford the product of Formula 902″.
- 6C. Formula 1j where X′ is Ovalbumin, m is 10, n is 45, p is 55, q is 4, R8 is CH2, R9 is a direct bond and Z″ is 2NAcGAL
- Poly(Galactosamine Methacrylate)-N3 (Formula 803 where p is 55, q is 4 and Z″ is N-acetylgalactosamine) (36 mg, 0.00238 mmol) was dissolved in 150 μl of pH 7.4 PBS and added to the product of Example 6B with stirring. After 1 hour, the resulting product of Formula 1j was purified (excess p(GMA)-N3 removed) by centrifugal size exclusion chromatography. Characterization (UHPLC SEC, gel electrophoresis) confirmed the identity of the product.
- 6D. Formula 1j where X′ is Ovalbumin, m is 10, n is 45, p is 55, q is 4, R8 is CH2, R9 is a direct bond and Z″ is 2NAcGLU
- Similarly, by following the procedure of Example 6C and substituting Poly(Glucosamine Methacrylate)-NHS for Poly(Galactosamine Methacrylate)-NHS, there is obtained the corresponding compound of Formula 1j where Z″ is 2NAcGLU.
- 7A. Formula 1002 where X′ is Ovalbumin, m is 2 and n is 80
- Dibenzocyclooctyne-PEG-(pyridyl disulfide) (Formula 1001 where n is 80) (9.0 mg, 0.00238 mmol) was dissolved in DMF and the resulting solution was added to a purified OVA solution of
Formula 103′ (where X′ is Ovalbumin and m is 2), for example prepared as described in Example 6A and stirred for 1 hour. The excess dibenzocyclooctyne-PEG-(pyridyl disulfide) was removed using centrifugal size exclusion chromatography to afford the product of Formula 1002. - 7B. Formula 1L where X′ is Ovalbumin, m is 2, n is 80, p is 55, q is 4, R8 is CH2, R9 is a direct bond and Z″ is 2NAcGAL
- Poly(Galactosamine Methacrylate)-N3 (Formula 803 where p is 55, q is 4 and Z″ is N-Acetylgalactosamine) (36 mg, 0.00238 mmol) was dissolved in 150 μl of pH 7.4 PBS and added to the product of Example 7A with stirring. After 1 hour, the resulting product of Formula 1L was purified (excess poly(Galactosamine Methacrylate)-N3 removed) by centrifugal size exclusion chromatography. Characterization (UHPLC SEC, gel electrophoresis) confirmed the identity of the product.
- 7C. Formula 1L where X′ is Ovalbumin, m is 2, n is 80, p is 55, q is 4, R8 is CH2, R9 is a direct bond and Z″ is 2NAcGLU
- Similarly, by following the procedure of Example 7B and substituting Poly(Glucosamine Methacrylate)-NHS for Poly(Galactosamine Methacrylate)-NHS, there is obtained the corresponding compound of Formula 1jL where Z″ is 2NAcGLU.
- 8A. Galactosamine Methacrylate
- To stirred galactosamine hydrochloride (2.15 g, 10.0 mmol) was added 0.5 M sodium methoxide (22 ml, 11.0 mmol). After 30 minutes, methacrylate anhydride (14.694 g, 11.0 mmol) was added and stirring continued for 4 hours. The resulting galactosamine methacrylate was loaded onto silica gel via rotovap and purified via column chromatography using DCM:MeOH (85:15).
- 8B.
Formula 201 where n is 4 and p is 30 - Galactose methacrylate (600 mg, 2.43 mmol), 2-(2-(2-(2-(pyridin-2-yldisulfanyl)ethoxy)ethoxy)ethoxy)ethyl 2-((phenylcarbonothioyl)thio)acetate (44.8 mg, 0.081 mmol) and AIBN (3.174089069 mg, 0.016 mmol) were added to 1.5 ml of DMF in a Schlenk Flask. The reaction mixture was subjected to 4 freeze-thaw cycles and then stirred at 70° C. for 6 hours. The desired polymer product of
Formula 201 was precipitated in 12 ml of methanol, and excess solvent was removed under reduced pressure. - 8C.
Formula 201 where n is 4 and p is 30 - Similarly, by following the procedure of Example 8B and substituting Glucose methacrylate for galactose methacrylate there are obtained the corresponding poly(Glucosamine methacrylate) polymers.
- 9A.
Formula 103′ where X′ is Phycoerythrin - In an endotoxin-free tube, phycoerythrin (“PE”) (purchased from Pierce) (200 μl, 0.000004 mmol) was added to 50 μl of pH 8.0 PBS containing 5 mM EDTA and stirred. Separately, 1 mg of Taut's Reagent was dissolved in 100 μl of pH 7.0 PBS, and 2 μl (0.00013 mmol) of the Traut's Reagent solution so obtained was added to the stirred solution of PE with continued stirring. After 1 hour, excess Traut's Reagent was removed using a centrifugal size exclusion column to afford the product of
Formula 103′. - 9B. Formula 106A where n is 80
- In an endotoxin-free tube, galactosamine (7.0 mg, 0.03246 mmol) was dissolved with stirring in 100 μl of pH 8.0 PBS containing 5 mM EDTA. Pyridyl dithiol-poly(ethylene glycol)-NHS ester (
Formula 104 where n is 80) (16.23 mg, 0.00464 mmol) dissolved in 50 μl of pH 7.0 PBS was added to the stirring solution of galactosamine. After 1 hour, the resulting product of Formula 106A was ready to be used without further purification. - 9C. Formula 1a where X′ is Phycoerythrin, m is 3, n is 80 and Z′ is galactosamine
- The purified PE-Traut conjugates prepared in Example 9A were added directly to the stirring product of Formula 106A prepared in Example 9B. After 1 hour, the resulting product of Formula 1a was purified by passing the reaction mixture through a centrifugal size exclusion column. Characterization (UHPLC SEC, gel electrophoresis) confirmed the identity of the product.
- 9D. Formula 1a where X′ is Phycoerythrin, m is 3, n is 80 and Z′ is glucosamine
- Similarly, by following the procedure of Example 9B and C and substituting glucosamine for galactoseamine there is obtained the corresponding compound of Formula 1a where Z″ is glucosamine.
- 10A. F1aA-PE-m3-n80 was prepared, for example, as described in Example 9. A 30 μg/100 μl solution in sterile saline was prepared for injection.
- The F1aA-PE-m3-n80 solution (30 μg) was administered to one of three groups of C57 black 6
mice 3 per group) via tail vein injection. The two other groups of mice received an equivalent volume of phycoerythrin in 100 μl of saline or saline vehicle. Three hours after administration, the livers and spleens of these animals were harvested and the level of cellular fluorescents in these organs was determined by flow cytometry as an indication of cellular PE content. - As shown in
FIGS. 1A-1D , sinusoidal endothelial cells (LSECs) (1A), hepatocytes (1C), kupffer cells (KC) (1B), and other antigen-presenting cells (APCs) (1 D) from the livers of mice treated with F1aA-PE-m3-n80 exhibited at least a three-fold increase in fluorescence as compared with animals that received PE solution. No detectible difference in fluorescence was found in spleen cells harvested from the three groups. These results confirm that F1aA-PE-m3-n80 has sufficient specificity for binding to antigen-presenting cells in the liver. - 10B. By following the procedure described in Example 10A and substituting F1aA-PE-m3-n80 with the compounds F1b-PE-m3-n4-p34-2NAcGAL, F1f-PE-m3-n4-p33-2NAcGAL, F1g-PE-m3-p90-2NAcGAL, F1h-PE-m3-n45-p55-q4-2NAcGAL, F1j-PE-m3-n45-p55-q4-2NAcGAL, F1L-PE-m3-n80-p55-q4-2NAcGAL, F1m-PE-m3-n80-p30-q4-CMP-2NHAc, F1m-PE-m3-n62-p30-q8-CMP-2OH, F1n-PE-m3-n1-p30-q4-CMP-2NHAc and F1n-PE-m3-n33-p30-q8-CMP-2OH, prepared, for example, as described with reference to Example 9 by substitution for X in Examples 2B, 3, 4, 5B, 6B, 7B, 15G, 15L, 16B and 16F, respectively it is confirmed that the compounds F1aA-PE-m3-n80 with the compounds F1b-PE-m3-n4-p34-2NAcGAL, F1f-PE-m3-n4-p33-2NAcGAL, F1g-PE-m3-p90-2NAcGAL, F1h-PE-m3-n45-p55-q4-2NAcGAL, F1j-PE-m3-n45-p55-q4-2NAcGAL, F1L-PE-m3-n80-p55-q4-2NAcGAL, F1m-PE-m3-n80-p30-q4-CMP-2NHAc, F1m-PE-m3-n62-p30-q8-CMP-2OH, F1n-PE-m3-n1-p30-q4-CMP-2NHAc and F1n-PE-m3-n33-p30-q8-CMP-2OH have sufficient specificity for binding to antigen-presenting cells in the liver.
- 10C. By following the procedure described in Example 10A and 10B and substituting the corresponding glucosylated compounds for the galactosylated compounds, it is confirmed that the glucolsylated compounds have sufficient specificity for binding to antigen-presenting cells in the liver.
- 11A. F1aA-OVA-m4-n80 synthesized, for example, as described in Example 1, was prepared as a 10 μg/100 μl saline solution for injection. On
day day 6, the animals were sacrificed and the % of splenic proliferating OT-I cells was determined via florescence activated cell sorting. - The results from this study (see
FIG. 2 ) show that the percentage of proliferating OTI T cells in mice treated with F1aA-OVA-m4-n80 (“Gal-OVA” inFIG. 2 ) was significantly greater than the percentage of proliferating OTI cells in the spleens of mice treated with OVA or saline (“naïve” inFIG. 2 ). The increase in OTI cell-proliferation demonstrates the increased CD8+ T-cell cross-priming in animals treated with F1aA-OVA-m4-n80 versus the other therapies. In concert with the results from Example 12, these results indicate that the ability of F1aA-OVA-m4-n80 to target antigens to the liver increases OVA presentation by antigen presenting cells in the liver to OVA-specific OTI T cells. - 11B. To distinguish T cells being expanded into a functional effector phenotype from those being expanded and deleted, the proliferating OTI CD8+ T cells were analyzed for phosphatidylserine exposure by way of Annexin-V binding, as a hallmark of apoptosis and thus deletion, as well as the exhaustion marker programmed death-1 (PD-1). As shown in
FIGS. 3A-3B , F1aA-OVA-m4-no (“Gal-OVA” inFIGS. 3A-3B ) induced much higher numbers of Annexin-V+ and PD-1+ proliferating OTI CD8+ T cells than soluble OVA. These data demonstrate that, in accordance with several embodiments disclosed herein, coupling an antigen to which tolerance is to be induced with linkers and liver targeting moieties as disclosed herein result in unexpectedly enhanced generation of T cells having the capacity to be immunologically functional. - 11C. By following the procedure described in Examples 11A and 11B, and substituting F1aA-OVA-m4-n8 with the compounds of
Formula 1 obtained, for example, as described in Examples 3A, 4A, 5B, 6C, 7B and 19G, it is shown the compounds from Examples 3A, 4A, 5B, 6C, 7B and 19G induce much higher numbers of Annexin-V+ and PD-1+ proliferating OTI CD8+ T cells than soluble OVA. - 11D. By following the procedure described in Examples 11A and 11B and substituting F1aA-OVA-m4-n8 with the compounds of
Formulae - 11E. By following the procedure described in Example 11A-D and substituting the corresponding glucosylated compounds for the galactosylated compounds, it is confirmed that the glucolsylated compounds induce much higher numbers of Annexin-V+ and PD-1+ proliferating OTI CD8+ T cells than soluble antigen X.
- 12A. In order to assess the humoral immune response to F1aA-OVA-m4-n8 we treated mice with a weekly i.v. injection of either F1aA-OVA-m4-n8 or OVA, then measured the levels of OVA-specific antibodies in the blood. On
day day 19, the mice were bled via cheek puncture, and the titer of OVA-specific antibodies in each mouse's blood was determined via ELISA. The results for this study show that although mice treated with 6 and 30 μg of OVA had increased OVA-specific antibody titers, mice treated with both 6 and 30 μg of F1aA-OVA-m4-n8 (“Gal-OVA” inFIG. 4 ) had blood titers similar to mice treated with saline (i.e. vehicle treated animals) (FIG. 4 ). For example mice treated with 6 and 30 μg of OVA had an average antibody titer of 3.5 and 2.5, respectively; whereas, mice treated with 6 and 30 μg of OVA had an average antibody titer of 0.75 and 0.25, respectively. Thus, these data demonstrate that coupling an antigen to which immune tolerance is desired to a linker and liver targeting moiety according to several embodiments disclosed herein results in significantly less antigen specific antibody generation. As such, these data demonstrate that the immune response to the antigen delivered to the liver by the compositions disclosed herein is reduced. - 12B. By following the procedure described in Example 12A and substituting F1aA-OVA-m4-n8 with the compounds of
Formula 1 obtained, for example, as described in Examples 3A, 4A, 5B, 6C, 7B and 15G, it is shown that mice treated with the compounds from Examples 3A, 4A, 5B, 6C, 7B and 15G have OVA-specific antibody titers similar to mice treated with saline. - 120. By following the procedure described in Example 12B and substituting F1aA-OVA-m4-n8 with the compounds of
Formula 1 obtained, for example, as described in Examples 1E, 1 G, 2C, 15I, 15L, 16B, 16D and 16F, and substituting OVA with the antigens corresponding to X (or X′ or X″), respectively, it is shown that mice treated with the compounds from Examples 1E, 1 G, 2C, 15I, 15L, 16B, 16D and 16F have antigen X-specific antibody titers similar to mice treated with saline. - 12D. By following the procedure described in Example 12A-C and substituting the corresponding glucosylated compounds for the galactosylated compounds, it is confirmed that the glucolsylated compounds have antigen X-specific antibody titers similar to mice treated with saline.
- 13A. Mice that had different OVA-antibody blood titers (each mouse had a titer from 0 to 4.5) were treated with an i.v. injection of 20 μg of F1aA-OVA-m4-n8 solubilized in 100 μl saline. Mice were given i.v. injections of F1aA-OVA-m4-n8 on
days FIG. 5 ). In order to determine the ability of F1aA-OVA-m4-n8 to deplete serum OVA-specific antibodies, the mice were bled on day −1 to establish an initial antibody titer and then subsequent bleeds were carried out after each injection of F1aA-OVA-m4-n8 ondays FIG. 5 ). These results show that although over the course of the 19 day experiment, antibody titers did increase for certain mice, the titer levels never reached the initial antibody titer measured on Day −1 and subsequent doses of F1aA-OVA-m4-n8 were effective in reducing these transient increases in antibody titers. These results demonstrate that F1aA-OVA-m4-n8 has the specificity to bind serum OVA-specific antibodies and the kinetics required to deplete OVA-specific serum antibodies. - 13B. By following the procedure described in Example 13A and substituting F1aA-OVA-m4-n8 with the compounds of
Formula 1 obtained, for example, as described in Examples 3A, 4A, 5B, 6C, 7B and 15G, it is shown that the compounds from Examples 3A, 4A, 5B, 6C, 7B and 15G have the specificity to bind serum OVA-specific antibodies and the kinetics required to deplete OVA-specific serum antibodies. - 130. By following the procedure described in Example 13A and substituting F1aA-OVA-m4-n8 with the compounds of
Formula 1 obtained, for example, as described in Examples 1E, 1G, 2C, 10D, 15I, 15L, 16B, 16D and 16F, and substituting OVA with the antigens corresponding to X (or X′ or X″), respectively, it is shown that the compounds from Examples 1E, 1G, 2C, 15I, 15L, 16B, 16D and 16F have the specificity to bind serum antigen X-specific antibodies and the kinetics required to deplete antigen X-specific serum antibodies. - 13D. By following the procedure described in Example 13A-C and substituting the corresponding glucosylated compounds for the galactosylated compounds, it is confirmed that the glucolsylated compounds have the specificity to bind serum antigen X-specific antibodies and the kinetics required to deplete antigen X-specific serum antibodies.
- 14A. Using an established OTI challenge-to-tolerance model (Liu, lyoda, et al., 2002), the ability of F1aA-OVA-m4-n8 (mGal-OVA) and F1b-OVA-m1-n4-p34 (pGal-OVA) to prevent subsequent immune responses to vaccine-mediated antigen challenge were demonstrated—even with a challenge involving a very strong bacterially-derived adjuvant (i.e. lipopolysaccharide). To tolerize, 233 nmol of either F1aA-OVA-m4-n8, F1b-OVA-m1-n4-p34, or soluble OVA were intravenously administered in 100 μl saline at 1 and 6 days following adoptive transfer of OTI CD8+ (CD45.2+) T cells to CD45.1+ mice (n=5 mice per group). After 9 additional days to allow potential deletion of the transferred T cells, the recipient mice were then challenged with OVA (10 μg) adjuvanted with lipopolysaccharide (LPS) (50 ng) by intradermal injection. Characterization of the draining lymph nodes 4 d after challenge allowed a determination as to whether or not deletion actually took place.
- 14B. Intravenous administration of F1aA-OVA-m4-n8 and F1b-OVA-m1-n4-p34 resulted in profound reductions in OTI CD8+ T cell populations in the draining lymph nodes as compared to mice treated with unmodified OVA prior to antigen challenge with LPS, demonstrating deletional tolerance. For example,
FIGS. 6A-6F show that the draining lymph nodes from mice treated with either F1aA-OVA-m4-n8 (mGal-OVA) and F1b-OVA-m1-n4-p34 (pGal-OVA) contained over 9-fold fewer OTI CD8+ T cells as compared to OVA-treated mice, and more than 43-fold fewer than the challenge control mice that did not receive intravenous injections of antigen; responses in spleen cells were similar. These results demonstrate that F1aA-OVA-m4-n8 and F1b-OVA-m1-n4-p34 mitigated an OVA-specific immune response after adjuvented OVA challenge, thus establishing that the compositions disclosed herein are suitable for induction of immune tolerance. As to characterization,FIG. 7 shows characterization of F1aA-OVA-m4-n80 and F1b-OVA-m1-n44-p34. - 14C. By following the procedure described in Examples 14A and B, and substituting F1aA-OVA-m4-n8 and F1b-OVA-m1-n4-p34 with the compounds of
Formula 1 obtained, for example, as described in Examples 3A, 4A, 5B, 6C, 7B and 15G, it is shown that the compounds from Examples 3A, 4A, 5B, 6C, 7B and 15G mitigate an OVA-specific immune response after adjuvented OVA challenge. - 14D. By following the procedure described in Examples 14A and B, and substituting F1aA-OVA-m4-n8 and F1b-OVA-m1-n4-p34 with the compounds of
Formula 1 obtained, for example, as described in Examples 1E, 1 G, 2C, 15I, 15L, 16B, 16D and 16F, and substituting OVA with the antigens corresponding to X (or X′ or X″), respectively, it is shown that the compounds from Examples 1E, 1G, 2C, 15I, 15L, 16B, 16D and 16F mitigate an antigen X-specific immune response after adjuvented antigen X challenge. - 14E. By following the procedure described in Example 14A-D and substituting the corresponding glucosylated compounds for the galactosylated compounds, it is confirmed that the glucolsylated compounds mitigate an antigen X-specific immune response after adjuvanted antigen X challenge.
- 15A. Formula 1102 where R3 is NHAc and R4 is OH
- N-Acetyl-D-galactosamine (Formula 1101 where R3 is NHAc and R4 is OH) (5g, 22.6 mmol) was added to a stirred solution of chloroethanol (200 ml) at room temperature. The solution was cooled to 4° C. and acetylchloride was added drop-wise to the solution. The solution was brought to room temperature and then heated to 70° C. After 4 hours, the unreacted choroethanol was removed under reduced pressure. 100 ml of ethanol was added to the crude product and the resulting solution was stirred in the presence of carbon for 2 hours. The solution was filtered, and the solvent was removed under reduced pressure. The corresponding product of Formula 1102, N-(2-(2-chloroethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide, was used without further purification.
- 15B. Formula 1103 where R3 is NHAc and R4 is OH
- The N-(2-(2-chloroethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide prepared in Example 15A (2g, 7.4 mmol) was added to a stirred solution of DMF (100 ml) and sodium azide (4g, 61.5 mmol). The solution was headed at 90° C. for 12 hours and then filtered. The residual solvent was removed under reduced pressure and the crude product was purified via flash chromatography (10% MeOH in dichloromethane) to give the corresponding product of Formula 1103, N-(2-(2-azidoethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide.
- 15C. Formula 1104 where R3 is NHAc and R4 is OH
- The N-(2-(2-azidoethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide prepared in Example 15B (2 g, 6.9 mmol) was added to a solution of palladium on carbon and ethanol (50 ml). The solution was stirred under hydrogen gas (3 atm) for 4 hours. The resulting solution was filtered and the residual solvent was removed under reduced pressure to afford the corresponding product of Formula 1104, N-(2-(2-aminoethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide, which was used without further purification.
- 15D. Formula 1105 where R3 is NHAc and R4 is OH
- The N-(2-(2-aminoethoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide prepared in Example 15C (1.0 g, 3.78 mmol) was added to a solution of methacrylate anhydride (0.583 g, 3.78 mmol) in DMF (50 ml). Triethylamine was then added to the solution and the reaction was stirred for 2 hours at room temperature. After 2 hours, the excess solvent was removed under reduced pressure, and the corresponding product of Formula 1105, N-(2-((3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)ethyl)methacrylamide, was isolated via flash chromatography.
- 15E. Formula 1107 where p is 30, q is 4, R3 is NHAc, R4 is OH and R8 is CMP
- An azide-modified uRAFT agent of Formula 1106 where q is 4 (28 mg) was added to a solution of N-(2-((3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)ethyl)methacrylamide prepared in Example 15D (579 mg, 1.74 mmol) and azobisisobutyronitrile (2.2 mg, 0.0116 mmol) in DMF. The reaction mixture was subjected to 4 free-pump-thaw cycles, and then stirred at 70° C. After 12 hours, the polymer product of Formula 1107, where p is 30 and q is 4 was precipitated from the reaction mixture via the addition of methanol. The solvent was decanted from the solid and the solid was collected and residual solvent was removed via reduced pressure.
- 15F. Formula 1109 where X′ is OVA, m is 2 and n is 80
- Ovalbumin (5 mg, 0.00012 mmol) was added to 100 μl of sodium phosphate buffer (pH 8.0) and stirred. To this solution was added 5 mg of the compound of Formula 1108 where n is 80. After 1 hour, the unreacted compound of Formula 1108 was removed from the solution via centrifugal size-exclusion chromatography. The resulting buffered solution containing the corresponding product of Formula 1109 was used in the next reaction without further purification.
- 15G. Formula 1m where X′ is OVA, m is 2, n is 80, p is 30, q is 4, R3 is NHAc and R8 is CMP
- The solution prepared in Example 15F was added to 100 μl of sodium phosphate buffer (pH 8.0) which contained 10 mg of the product of Formula 1107 prepared in Example 15E. The reaction was allowed to stir for 2 hours and then the excess Formula 1107 was removed via centrifugal size exclusion chromatography to afford the corresponding isomeric product of Formula 1m in solution, which was used in biological studies without further purification. The R3 substituent is shown in the name of the title compound as 2NHAc.
- 15H. Other Compounds of Formula 1109
- By following the procedure described in Example 15F and substituting OVA with the following:
-
- Abciximab,
- Adalimumab,
- Agalsidase alfa,
- Agalsidase beta,
- Aldeslukin,
- Alglucosidase alfa,
- Factor VIII,
- Factor IX,
- L-asparaginase,
- Laronidase,
- Octreotide,
- Phenylalanine ammonia-lyase,
- Rasburicase,
- Insulin (SEQ ID NO:1),
- GAD-65 (SEQ ID NO:2),
- IGRP (SEQ ID NO:3)
- MBP (SEQ ID NO:4),
- MOG (SEQ ID NO:5),
- PLP (SEQ ID NO:6),
- MBP13-32 (SEQ ID NO:7),
- MBP83-99 (SEQ ID NO:8),
- MBP111-129 (SEQ ID NO:9),
- MBP146-170 (SEQ ID NO:10),
- MOG1-20 (SEQ ID NO:11),
- MOG35-55 (SEQ ID NO:12),
- PLP139-154 (SEQ ID NO:13),
- MART1 (SEQ ID NO:14),
- Tyrosinase (SEQ ID NO:15),
- PMEL (SEQ ID NO:16),
- Aquaporin-4 (SEQ ID NO:17),
- S-arrestin (SEQ ID NO:18),
- IRBP (SEQ ID NO:19),
- Conarachin (UNIPROT Q6PSU6),
- Alpha-gliadin “33-mer” native (SEQ ID NO:20),
- Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21),
- Alpha-gliadin (SEQ ID NO:22),
- Omega-gliadin (SEQ ID NO:23),
- Fel d 1A (UNIPROT P30438),
- Cat albumin (UNIPROT P49064),
- Can f 1 (UNIPROT 018873),
- Dog albumin (UNIPROT P49822), and
- RhCE (UNIPROT P18577),
there are obtained the following corresponding compounds of Formula 1109 where n is 80: - X is Abciximab and m is 10,
- X is Adalimumab and m is 11,
- X is Agalsidase alfa and m is 14,
- X is Agalsidase beta and m is 14,
- X is Aldeslukin and m is 6,
- X is Alglucosidase alfa and m is 13,
- X is Factor VIII and m is 100,
- X is Factor IX and m is 18,
- X is L-asparaginase and m is 5,
- X is Laronidase and m is 7,
- X is Octreotide and m is 1,
- X is Phenylalanine ammonia-lyase and m is 12,
- X is Rasburicase and m is 12,
- X is Insulin (SEQ ID NO:1) and m is 2,
- X is GAD-65 (SEQ ID NO:2) and m is 8,
- X is IGRP (SEQ ID NO:3) and m is 7,
- X is MBP (SEQ ID NO:4) and m is 6,
- X is MOG (SEQ ID NO:5) and m is 5,
- X is PLP (SEQ ID NO:6) and m is 8,
- X is MBP13-32 (SEQ ID NO:7) and m is 1,
- X is MBP83-99 (SEQ ID NO:8) and m is 1,
- X is MBP111-129 (SEQ ID NO:9) and m is 1,
- X is MBP146-170 (SEQ ID NO:10) and m is 2,
- X is MOG1-20 (SEQ ID NO:11) and m is 1,
- X is MOG35-55 (SEQ ID NO:12) and m is 2,
- X is PLP139-154 (SEQ ID NO:13) and m is 3,
- X is MART1 (SEQ ID NO:14) and m is 4,
- X is Tyrosinase (SEQ ID NO:15) and m is 8,
- X is PMEL (SEQ ID NO:16) and m is 5,
- X is Aquaporin-4 (SEQ ID NO:17) and m is 4,
- X is S-arrestin (SEQ ID NO:18) and m is 12,
- X is IRBP (SEQ ID NO:19) and m is 21,
- X is Conarachin and m is 21,
- X is Alpha-gliadin “33-mer” native (SEQ ID NO:20) and m is 1,
- X is Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21) and m is 1,
- X is Alpha-gliadin (SEQ ID NO:22) and m is 1,
- X is Omega-gliadin (SEQ ID NO:23) and m is 1,
- X is
Fel d 1 and m is 4, - X is Cat albumin and m is 16,
- X is Can
f 1 and m is 6, - X is Dog albumin and m is 23, and
- X is RhCE and m is 10.
- 15I. Other Compounds of Formula 1m
- By following the procedure described in Example 15G and substituting the compounds of Formula 1109, for example as obtained in Example 15H, there are obtained the following corresponding compounds of Formula 1m:
-
- F1m-Abciximab-m10-n80-p30-q4-CMP-2NHAc,
- F1m-Adalimumab-m11-n80-p30-q4-CMP-2NHAc,
- F1m-Agalsidase alfa-m14-n80-p30-q4-CMP-2NHAc,
- F1m-Agalsidase beta-m14-n80-p30-q4-CMP-2NHAc,
- F1m-Aldeslukin-m6-n80-p30-q4-CMP-2NHAc,
- F1m-Alglucosidase alfa-m13-n80-p30-q4-CMP-2NHAc,
- F1m-Factor VIII-m100-n80-p30-q4-CMP-2NHAc,
- F1m-Factor IX-m18-n80-p30-q4-CMP-2NHAc,
- F1m-L-asparaginase-m5-n80-p30-q4-CMP-2NHAc,
- F1m-Laronidase-m7-n80-p30-q4-CMP-2NHAc,
- F1m-Octreotide-m1-n80-p30-q4-CMP-2NHAc,
- F1m-Phenylalanine ammonia-lyase-m12-n80-p30-q4-CMP-2NHAc,
- F1m-Rasburicase-m12-n80-p30-q4-CMP-2NHAc,
- F1m-Insulin-m2-n80-p30-q4-CMP-2NHAc,
- F1m-GAD-65-m8-n80-p30-q4-CMP-2NHAc,
- F1m-IGRP-m7-n80-p30-q4-CMP-2NHAc,
- F1m-MBP-m6-n80-p30-q4-CMP-2NHAc,
- F1m-MOG-m5-n80-p30-q4-CMP-2NHAc,
- F1m-PLP-m8-n80-p30-q4-CMP-2NHAc,
- F1m-MBP13-32-m1-n80-p30-q4-CMP-2NHAc,
- F1m-MBP83-99-m1-n80-p30-q4-CMP-2NHAc,
- F1m-MBP111-129-m1-n80-p30-q4-CMP-2NHAc,
- F1m-MBP146-170-m2-n80-p30-q4-CMP-2NHAc,
- F1m-MOG1-20-m1-n80-p30-q4-CMP-2NHAc,
- F1m-MOG35-55-m2-n80-p30-q4-CMP-2NHAc,
- F1m-PLP139-154-m3-n80-p30-q4-CMP-2NHAc,
- F1m-MART1-m4-n80-p30-q4-CMP-2NHAc,
- F1m-Tyrosinase-m8-n80-p30-q4-CMP-2NHAc,
- F1m-PMEL-m5-n80-p30-q4-CMP-2NHAc,
- F1m-Aquaporin-4-m4-n80-p30-q4-CMP-2NHAc,
- F1m-S-arrestin-m12-n80-p30-q4-CMP-2NHAc,
- F1m-IRBP-m21-n80-p30-q4-CMP-2NHAc,
- F1m-Conarachin-m21-n80-p30-q4-CMP-2NHAc,
- F1m-Alpha-gliadin “33-mer” native-m1-n80-p30-q4-CMP-2NHAc,
- F1m-Alpha-gliadin “33-mer” deamidated-m1-n80-p30-q4-CMP-2NHAc,
- F1m-Alpha-gliadin-m1-n80-p30-q4-CMP-2NHAc,
- F1m-Omega-gliadin-m1-n80-p30-q4-CMP-2NHAc,
- F1m-Fel d 1-m4-n80-p30-q4-CMP-2NHAc,
- F1m-Cat albumin-m16-n80-p30-q4-CMP-2NHAc,
- F1m-Can f 1-m6-n80-p30-q4-CMP-2NHAc,
- F1m-Dog albumin-m23-n80-p30-q4-CMP-2NHAc, and
- F1m-RhCE-m10-n80-p30-q4-CMP-2NHAc.
- 15J. Formula 1107 where p is 30, q is 8, R3 is OH, R4 is OH and R8 is CMP
- By following the procedure described in Example 15A and substituting the N-acetyl-D-galactosamine with galactose, and following through to the procedure described in Example 15E except using an azide-modified uRAFT agent of Formula 1106 where q is 8, there is obtained the compound of Formula 1107 where p is 30, q is 8, R3 is OH, R4 is OH and R8 is CMP.
- 15K. Formula 1109 where n is 62 and where X′ and m are as in Example 19H
- By following the procedure described in Example 15F, substituting the OVA with the compounds as described in Example 15H and employing the compound of Formula 1108 where n is 62, there are obtained the corresponding compounds of Formula 1109 where n is 62.
- 15L. Other Compounds of Formula 1m
- By following the procedure described in Example 15G and substituting the compound of Formula 1107 with the compounds obtained in Example 15J, and substituting the compound of Formula 1109 with the compounds obtained in Example 15K, there are obtained the following corresponding compounds of Formula 1m:
-
- F1m-Abciximab-m10-n62-p30-q8-CMP-2OH,
- F1m-Adalimumab-m11-n62-p30-q8-CMP-2OH,
- F1m-Agalsidase alfa-m14-n62-p30-q8-CMP-2OH,
- F1m-Agalsidase beta-m14-n62-p30-q8-CMP-2OH,
- F1m-Aldeslukin-m6-n62-p30-q8-CMP-2OH,
- F1m-Alglucosidase alfa-m13-n62-p30-q8-CMP-2OH,
- F1m-Factor VIII-m100-n62-p30-q8-CMP-2OH,
- F1m-Factor IX-m18-n62-p30-q8-CMP-2OH,
- F1m-L-asparaginase-m5-n62-p30-q8-CMP-2OH,
- F1m-Laronidase-m7-n62-p30-q8-CMP-2OH,
- F1m-Octreotide-m1-n62-p30-q8-CMP-2OH,
- F1m-Phenylalanine ammonia-lyase-m12-n62-p30-q8-CMP-2OH,
- F1m-Rasburicase-m12-n62-p30-q8-CMP-2OH,
- F1m-Insulin-m2-n62-p30-q8-CMP-2OH,
- F1m-GAD-65-m8-n62-p30-q8-CMP-2OH,
- F1m-IGRP-m7-n62-p30-q8-CMP-2OH,
- F1m-MBP-m6-n62-p30-q8-CMP-2OH,
- F1m-MOG-m5-n62-p30-q8-CMP-2OH,
- F1m-PLP-m8-n62-p30-q8-CMP-2OH,
- F1m-MBP13-32-m1-n62-p30-q8-CMP-2OH,
- F1m-MBP83-99-m1-n62-p30-q8-CMP-2OH,
- F1m-MBP111-129-m1-n62-p30-q8-CMP-2OH,
- F1m-MBP146-170-m2-n62-p30-q8-CMP-2OH,
- F1m-MOG1-20-m1-n62-p30-q8-CMP-2OH,
- F1m-MOG35-55-m2-n62-p30-q8-CMP-2OH,
- F1m-PLP139-154-m3-n62-p30-q8-CMP-2OH,
- F1m-MART1-m4-n62-p30-q8-CMP-2OH,
- F1m-Tyrosinase-m8-n62-p30-q8-CMP-2OH,
- F1m-PMEL-m5-n62-p30-q8-CMP-2OH,
- F1m-Aquaporin-4-m4-n62-p30-q8-CMP-2OH,
- F1m-S-arrestin-m12-n62-p30-q8-CMP-2OH,
- F1m-IRBP-m21-n62-p30-q8-CMP-2OH,
- F1m-Conarachin-m21-n62-p30-q8-CMP-2OH,
- F1m-Alpha-gliadin “33-mer” native-m1-n62-p30-q8-CMP-2OH,
- F1m-Alpha-gliadin “33-mer” deamidated-m1-n62-p30-q8-CMP-2OH,
- F1m-Alpha-gliadin-m1-n62-p30-q8-CMP-2OH,
- F1m-Omega-gliadin-m1-n62-p30-q8-CMP-2OH,
- F1m-Fel d 1-m4-n62-p30-q8-CMP-2OH,
- F1m-Cat albumin-m16-n62-p30-q8-CMP-2OH,
- F1m-Can f 1-m6-n62-p30-q8-CMP-2OH,
- F1m-Dog albumin-m23-n62-p30-q8-CMP-2OH, and
- F1m-RhCE-m10-n62-p30-q8-CMP-2OH.
- 15M. Other Compounds of Formula 1m
- By following the procedure described in Examples 15A-L and substituting the galactosamine or galactose with glucosamine or glucose, respectively, there are obtained the corresponding glucosylated compounds of Formula 1m.
- 16A. Formula 1202 where X′ is Insulin, m is 2 and n is 1
- Recombinant human insulin (5 mg) was added to 100 μl of DMF containing 10 μl of triethylamine and stirred until the insulin became soluble. To this solution was added 10 mg (0.0161 mmol) of a linker precursor of Formula 1201 where n is 1 and the reaction was allowed to stir. After 1 hour, 1.3 ml of tert-butyl methyl ether was added to isolate the corresponding product of Formula 1202, which was recovered as the precipitate. Residual DMF and tert-butyl methyl ether were removed under reduced pressure. Characterization via liquid chromatography, mass spectroscopy and polyacrylamide gel electrophoresis confirmed the identity of the product. The modified insulin product of Formula 1202 was used without further purification.
- 16B. Formula 1n where X′ is Insulin, m is 2, n is 1, p is 30, q is 4 and R8 is CMP
- The product of Formula 1202 obtained in Example 16A was resuspended in 100 μl of DMF. The polymer product of Formula 1107 obtained in Example 15E (10 mg) was added and the reaction was allowed to stir for 1 hour. After 1 hour, the reaction products were precipitated via the addition of dichloromethane (1.3 ml). The product was filtered and the residual solvent was removed under reduced pressure. The crude product was then resuspended in 500 μl of PBS, and the low molecular weight components were removed via centrifugal size exclusion chromatography to afford the corresponding isomeric product of Formula 1n. Characterization via liquid chromatography, mass spectroscopy and polyacrylamide gel electrophoresis confirmed the identity of the product. The modified insulin product of Formula 1202 was used without further purification.
- 16C. Other Compounds of Formula 1202
- By following the procedure described in Example 16A and substituting insulin with the following:
-
- Abciximab,
- Adalimumab,
- Agalsidase alfa,
- Agalsidase beta,
- Aldeslukin,
- Alglucosidase alfa,
- Factor VIII,
- Factor IX,
- L-asparaginase,
- Laronidase,
- Octreotide,
- Phenylalanine ammonia-lyase,
- Rasburicase,
- GAD-65 (SEQ ID NO:2),
- IGRP (SEQ ID NO:3)
- MBP (SEQ ID NO:4),
- MOG (SEQ ID NO:5),
- PLP (SEQ ID NO:6),
- MBP13-32 (SEQ ID NO:7),
- MBP83-99 (SEQ ID NO:8),
- MBP111-129 (SEQ ID NO:9),
- MBP146-170 (SEQ ID NO:10),
- MOG1-20 (SEQ ID NO:11),
- MOG35-55 (SEQ ID NO:12),
- PLP139-154 (SEQ ID NO:13),
- MART1 (SEQ ID NO:14),
- Tyrosinase (SEQ ID NO:15),
- PMEL (SEQ ID NO:16),
- Aquaporin-4 (SEQ ID NO:17),
- S-arrestin (SEQ ID NO:18),
- IRBP (SEQ ID NO:19),
- Conarachin (UNIPROT Q6PSU6),
- Alpha-gliadin “33-mer” native (SEQ ID NO:20),
- Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21),
- Alpha-gliadin (SEQ ID NO:22),
- Omega-gliadin (SEQ ID NO:23),
- Fel d 1A (UNIPROT P30438),
- Cat albumin (UNIPROT P49064),
- Can f 1 (UNIPROT 018873),
- Dog albumin (UNIPROT P49822), and
- RhCE (UNIPROT P18577),
there are obtained the following corresponding compounds of Formula 1202 where n is 1: - X is Abciximab and m is 10,
- X is Adalimumab and m is 11,
- X is Agalsidase alfa and m is 14,
- X is Agalsidase beta and m is 14,
- X is Aldeslukin and m is 6,
- X is Alglucosidase alfa and m is 13,
- X is Factor VIII and m is 100,
- X is Factor IX and m is 18,
- X is L-asparaginase and m is 5,
- X is Laronidase and m is 7,
- X is Octreotide and m is 1,
- X is Phenylalanine ammonia-lyase and m is 12,
- X is Rasburicase and m is 12,
- X is GAD-65 (SEQ ID NO:2) and m is 8,
- X is IGRP (SEQ ID NO:3) and m is 7,
- X is MBP (SEQ ID NO:4) and m is 6,
- X is MOG (SEQ ID NO:5) and m is 5,
- X is PLP (SEQ ID NO:6) and m is 8,
- X is MBP13-32 (SEQ ID NO:7) and m is 1,
- X is MBP83-99 (SEQ ID NO:8) and m is 1,
- X is MBP111-129 (SEQ ID NO:9) and m is 1,
- X is MBP146-170 (SEQ ID NO:10) and m is 2,
- X is MOG1-20 (SEQ ID NO:11) and m is 1,
- X is MOG35-55 (SEQ ID NO:12) and m is 2,
- X is PLP139-154 (SEQ ID NO:13) and m is 3,
- X is MART1 (SEQ ID NO:14) and m is 4,
- X is Tyrosinase (SEQ ID NO:15) and m is 8,
- X is PMEL (SEQ ID NO:20) and m is 5,
- X is Aquaporin-4 (SEQ ID NO:21) and m is 4,
- X is S-arrestin (SEQ ID NO:22) and m is 12,
- X is IRBP (SEQ ID NO:19) and m is 21,
- X is Conarachin and m is 21,
- X is Alpha-gliadin “33-mer” native (SEQ ID NO:20) and m is 1,
- X is Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21) and m is 1,
- X is Alpha-gliadin (SEQ ID NO:22) and m is 1,
- X is Omega-gliadin (SEQ ID NO:27) and m is 1,
- X is
Fel d 1 and m is 4, - X is Cat albumin and m is 16,
- X is Can
f 1 and m is 6, - X is Dog albumin and m is 23, and
- X is RhCE and m is 10.
- 16D. Other Compounds of Formula 1n
- By following the procedure described in Example 16B and substituting the compounds of Formula 1202, for example as obtained in Example 16C, there are obtained the following corresponding compounds of Formula 1m:
-
- F1n-Abciximab-m10-n1-p30-q4-CMP-2NHAc,
- F1n-Adalimumab-min-n1-p30-q4-CMP-2NHAc,
- F1n-Agalsidase alfa-m14-n1-p30-q4-CMP-2NHAc,
- F1n-Agalsidase beta-m14-n1-p30-q4-CMP-2NHAc,
- F1n-Aldeslukin-m6-n1-p30-q4-CMP-2NHAc,
- F1n-Alglucosidase alfa-m13-n1-p30-q4-CMP-2NHAc,
- F1n-Factor VIII-m100-n1-p30-q4-CMP-2NHAc,
- F1n-Factor IX-m18-n1-p30-q4-CMP-2NHAc,
- F1n-L-asparaginase-m5-n1-p30-q4-CMP-2NHAc,
- F1n-Laronidase-m7-n1-p30-q4-CMP-2NHAc,
- F1n-Octreotide-m1-n1-p30-q4-CMP-2NHAc,
- F1n-Phenylalanine ammonia-lyase-m12-n1-p30-q4-CMP-2NHAc,
- F1n-Rasburicase-m12-n1-p30-q4-CMP-2NHAc,
- F1n-GAD-65-m8-n1-p30-q4-CMP-2NHAc,
- F1n-IGRP-m7-n1-p30-q4-CMP-2NHAc,
- F1n-MBP-m6-n1-p30-q4-CMP-2NHAc,
- F1n-MOG-m5-n1-p30-q4-CMP-2NHAc,
- F1n-PLP-m8-n1-p30-q4-CMP-2NHAc,
- F1n-MBP13-32-m1-n1-p30-q4-CMP-2NHAc,
- F1n-MBP83-99-m1-n1-p30-q4-CMP-2NHAc,
- F1n-MBP111-129-m1-n1-p30-q4-CMP-2NHAc,
- F1n-MBP146-170-m2-n1-p30-q4-CMP-2NHAc,
- F1n-MOG1-20-m1-n1-p30-q4-CMP-2NHAc,
- F1n-MOG35-55-m2-n1-p30-q4-CMP-2NHAc,
- F1n-PLP139-154-m3-n1-p30-q4-CMP-2NHAc,
- F1n-MART1-m4-n1-p30-q4-CMP-2NHAc,
- F1n-Tyrosinase-m8-n1-p30-q4-CMP-2NHAc,
- F1n-PMEL-m5-n1-p30-q4-CMP-2NHAc,
- F1n-Aquaporin-4-m4-n1-p30-q4-CMP-2NHAc,
- F1n-S-arrestin-m12-n1-p30-q4-CMP-2NHAc,
- F1n-IRBP-m21-n1-p30-q4-CMP-2NHAc,
- F1n-Conarachin-m21-n1-p30-q4-CMP-2NHAc,
- F1n-Alpha-gliadin “33-mer” native-m1-n1-p30-q4-CMP-2NHAc,
- F1n-Alpha-gliadin “33-mer” deamidated-m1-n1-p30-q4-CMP-2NHAc,
- F1n-Alpha-gliadin-m1-n1-p30-q4-CMP-2NHAc,
- F1n-Omega-gliadin-m1-n1-p30-q4-CMP-2NHAc,
- F1n-Fel d 1-m4-n1-p30-q4-CMP-2NHAc,
- F1n-Cat albumin-m16-n1-p30-q4-CMP-2NHAc,
- F1n-Can f 1-m6-n1-p30-q4-CMP-2NHAc,
- F1n-Dog albumin-m23-n1-p30-q4-CMP-2NHAc, and
- F1n-RhCE-m10-n1-p30-q4-CMP-2NHAc.
- 16E. Formula 1202 where n is 33 and where X′ and m are as in Example 20C
- By following the procedure described in Example 16F, substituting the insulin with the compounds as described in Example 16C and employing the compound of Formula 1201 where n is 33, there are obtained the corresponding compounds of Formula 1202 where n is 33.
- 16F. Other Compounds of Formula 1n
- By following the procedure described in Example 16B and substituting the compound of Formula 1107 with the compounds obtained in Example 15J, and substituting the compound of Formula 1202 with the compounds obtained in Example 16E, there are obtained the following corresponding compounds of Formula 1n:
-
- F1n-Abciximab-m10-n33-p30-q8-CMP-2OH,
- F1n-Adalimumab-m11-n33-p30-q8-CMP-2OH,
- F1n-Agalsidase alfa-m14-n33-p30-q-CMP-2OH,
- F1n-Agalsidase beta-m14-n33-p30-q8-CMP-2OH,
- F1n-Aldeslukin-m6-n33-p30-q8-CMP-2OH,
- F1n-Alglucosidase alfa-m13-n33-p30-q-CMP-2OH,
- F1n-Factor VIII-m100-n33-p30-q-CMP-2OH,
- F1n-Factor IX-m18-n33-p30-q-CMP-2OH,
- F1n-L-asparaginase-m5-n33-p30-q8-CMP-2OH,
- F1n-Laronidase-m7-n33-p30-q8-CMP-2OH,
- F1n-Octreotide-m1-n33-p30-q8-CMP-2OH,
- F1n-Phenylalanine ammonia-lyase-m12-n33-p30-q8-CMP-2OH,
- F1n-Rasburicase-m12-n33-p30-q8-CMP-2OH,
- F1n-GAD-65-m8-n33-p30-q-CMP-2OH,
- F1n-IGRP-m7-n33-p30-q8-CMP-2OH,
- F1n-MBP-m6-n33-p30-q-CMP-2OH,
- F1n-MOG-m5-n33-p30-q-CMP-2OH,
- F1n-PLP-m8-n33-p30-q-CMP-2OH,
- F1n-MBP13-32-m1-n33-p30-q8-CMP-2OH,
- F1n-MBP83-99-m1-n33-p30-q8-CMP-2OH,
- F1n-MBP111-129-m1-n33-p30-q8-CMP-2OH,
- F1n-MBP146-170-m2-n33-p30-q-CMP-2OH,
- F1n-MOG1-20-m1-n33-p30-q8-CMP-2OH,
- F1n-MOG35-55-m2-n33-p30-q8-CMP-2OH,
- F1n-PLP139-154-m3-n33-p30-q-CMP-2OH,
- F1n-MART1-m4-n33-p30-q-CMP-2OH,
- F1n-Tyrosinase-m8-n33-p30-q8-CMP-2OH,
- F1n-PMEL-m5-n33-p30-q-CMP-2OH,
- F1n-Aquaporin-4-m4-n33-p30-q8-CMP-2OH,
- F1n-S-arrestin-m12-n33-p30-q8-CMP-2OH,
- F1n-IRBP-m21-n33-p30-q-CMP-2OH,
- F1n-Conarachin-m21-n33-p30-q8-CMP-2OH,
- F1n-Alpha-gliadin “33-mer” native-m1-n33-p30-q8-CMP-2OH,
- F1n-Alpha-gliadin “33-mer” deamidated-m1-n33-p30-q8-CMP-2OH,
- F1n-Alpha-gliadin-m1-n33-p30-q8-CMP-2OH,
- F1n-Omega-gliadin-m1-n33-p30-q8-CMP-2OH,
- F1n-Fel d 1-m4-n33-p30-q-CMP-2OH,
- F1n-Cat albumin-m16-n33-p30-q-CMP-2OH,
- F1n-Can f 1-m6-n33-p30-q-CMP-2OH,
- F1n-Dog albumin-m23-n33-p30-q8-CMP-2OH, and
- F1n-RhCE-m10-n33-p30-q8-CMP-2OH.
- 16G. Other Compounds of Formula 1n
- By following the procedure described in Examples 16A-F and substituting the galactosylating moieties with glucosylating moieties, there are obtained the corresponding glucosylated compounds of Formula 1n.
- 17A. Formula 1502 where t is 1, R3 is NHAc and R4 is OH
- N-Acetyl-D-glucosamine (Formula 1101 where R3 is NHAc and R4 is OH) (5.0 g, 22.6 mmol) was added to a stirred solution of 2-(2-chloroethoxy)ethan-1-ol (50 ml) at room temperature. The solution was cooled to 4° C. and acetylchloride was added drop-wise to the solution. The solution was brought to room temperature and then heated to 70° C. After 4 hours, the reaction mixture was added to 200 ml of ethyl acetate. The precipitate that formed was collected, added to 100 ml of ethanol and stirred in the presence of carbon for 2 hours. The solution was filtered, and the solvent was removed under reduced pressure. The corresponding product of Formula 1502, N-acetyl-D-glucosamine-2-(chloroethoxy)ethanol, was used without further purification.
- 17B. Formula 1503 where t is 1, R3 is NHAc and R4 is OH
- N-Acetyl-D-glucosamine-2-(chloroethoxy)ethanol (2.0 g, 6.11 mmol) was added to a stirred solution of DMF (100 ml) and sodium azide (4.0 g, 61.5 mmol). The solution was headed at 90° C. for 12 hours and then filtered. The residual solvent was removed under reduced pressure and the crude product was purified via flash chromatography (10% MeOH in dichloromethane) to give the corresponding product of Formula 1503, N-acetyl-D-glucosamine-2-(azideoethoxy)ethanol.
- 17C. Formula 1504 where t is 1, R3 is NHAc and R4 is OH
- N-Acetyl-D-glucosamine-2-(azideoethoxy)ethanol (2.0 g, 5.9 mmol) was added to a solution of palladium on carbon and ethanol (50 ml). The solution was stirred under hydrogen gas (3 atm) for 4 hours. The resulting solution was filtered and the residual solvent was removed under reduced pressure to afford the corresponding product of Formula 1504, N-acetyl-D-glucosamine-2-(amineoethoxy)ethanol.
- 17D. Formula 1505 where t is 1, R3 is NHAc and R4 is OH
- N-Acetyl-D-glucosamine-2-(amineoethoxy)ethanol (1.0 g, 3.25 mmol) was added to a solution of methacrylate anhydride (0.583 g, 3.78 mmol) in DMF (50 ml). Triethylamine was then added to the solution and the reaction was stirred for 2 hours at room temperature. After 2 hours, the excess solvent was removed under reduced pressure, and the corresponding product of Formula 1505, ((2S,3S,4S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-2-(2-(2-methacrylamidoethoxy)ethoxy)tetrahydro-2H-pyran-3-yl)carbamic acid, was isolated via flash chromatography.
- 17E. Formula 1507 where p is 90, q is 4, t is 1, R3 is NHAc, R4 is OH, R8 is CMP, and R10 is 2-Hydroxypropyl
- A 25 ml Schlenk flask was charged with a compound of Formula 1505, the product of Example 17D (272 mg, 0.72 mmol), N-(2-hydroxypropyl)methacrylamide (“HPMA”, used as received from the manufacturer) (211 mg, 1.47 mmol), an azide-modified uRAFT agent of Formula 1106 where q is 4 and R8 is CMP (10.41 mg, 0.0217 mmol), azobis(isobutyronitril) (0.98 mg, 0.005 mmol), and 1.2 ml dimethylformamide. The reaction mixture was subjected to four freeze-pump-thaw degassing cycles and then stirred at 70° C. for 20 hours. The corresponding random polymeric product of Formula 1507 was recovered by precipitating the reaction mixture in acetone. Excess acetone was removed at reduced pressure to provide the random polymeric product, which was used without further purification.
- 17F. Formula 1507 where p is 90, q is 4, t is 1, R3 is NHAc, R4 is OH. R8 is CMP, and R10 is 2-Hydroxypropyl, Using N-Acetyl-D-Galactosamine
- By following the procedures of Examples 17A through 17E and substituting N-acetyl-D-galactosamine for N-acetyl-D-glucosamine in the procedure of Example 17A, there was obtained the corresponding galactosyl compound of Formula 1507.
- 17G. Compounds of Formula 1507 where t is Other than 1
- By following the procedures of Examples 17A through 17E and substituting 2-(2-chloroethoxy)ethan-1-ol with:
-
- 2-(2-(2-chloroethoxy)ethoxy)ethan-1-ol will afford the corresponding compound of Formula 1507 where t is 2,
- 2-(2-(2-(2-chloroethoxy)ethoxy)ethoxy)ethan-1-ol will afford the corresponding compound of Formula 1507 where t is 3,
- 2-(2-(2-(2-(2-chloroethoxy)ethoxy)ethoxy)ethoxy)ethan-1-ol will afford the corresponding compound of Formula 1507 where t is 4,
- 2-(2-(2-(2-(2-(2-chloroethoxy)ethoxy)ethoxy)ethoxy)ethoxy)ethan-1-ol will afford the corresponding compound of Formula 1507 where t is 5, and
- 2-(2-(2-(2-(2-(2-(2-chloroethoxy)ethoxy)ethoxy)ethoxy)ethoxy)ethoxy)ethan-1-ol will afford the corresponding compound of Formula 1507 where t is 6.
- 17H. Compounds of Formula 1507 Having a Plurality of W1 Groups where t Varies
- By following the procedure of Example 17E and substituting the compound of Formula 1505 where t is 1 with 0.36 mmol each of Formula 1505 where t is 2 and 4, (prepared, for example, as described in Example 17F by following the procedures of Examples 17A through 17D) there is obtained the corresponding random copolymer of Formula 1507 having about 15 W1 groups where t is 2, 15 W1 groups where t is 4 and 60 W2 groups.
- 17I. Compounds of Formula 1507 Having a Mixture of Glucosyl and Galactosyl Moieties
- By following the procedure of Example 17E and substituting the compound of Formula 1505 with 0.36 mmol each of glucosyl and galactosyl Formula 1505 (prepared, for example, as described in Example 17D and in Example 17F by following the procedures of Examples 17A through 17D) there is obtained the corresponding random copolymer of Formula 1507 having about 15 glucosyl W1 groups, 15 galactosyl W1 groups and 60 W2 groups.
-
- 17.1A. Formula 1502 where t is 1, R3 is NHAc and R4 is OH: 2-(2-(2-chloroethoxy)ethoxy)-α-NAc-Galactosamine (1502.1A).
- Acetyl chloride (4.35 mL, 61.05 mmol) was added dropwise to the ice-cold solution of NHAc protected D-Galactosamine (10.0 g) in 2-(2′-Chloroethoxy)ethanol (40 mL). The mixture was stirred for 15 minutes at 4° C. and then was transferred to the oil bath at 70° C. The reaction was left mixing under cooling condenser for 4 hours. After that time, a dark brown solution was cooled down and poured into 400 mL solution of ethyl acetate and dichloromethane (3:1, v/v) in order to get rid of an excess of unreacted chloroethanol. The mixture was placed in a freezer for 30 minutes and then decanted from dark brown, sticky precipitate. The precipitate was dissolved in anhydrous ethanol and activated charcoal was added. The suspension was mixed for 1.5 hours and then filtered off through Celite and washed with ethanol. In the last step, ethanol was evaporated in vacuum to provide 12.8 g of product (1502.1A) (95.24% yield).
- 17.1B. Formula 1503 where t is 1, R3 is NHAc and R4 is OH: 2-(2-(2-Azidoethoxy)ethoxy)-α-NAc-Galactosamine (1503.1B).
- A compound (1502.1A) (5.0 g) was dissolved in 20 mL of N,N-dimethylformamide. To that solution, sodium azide (26628-22-8) was added (5.0 g). The suspension was placed in an oil bath and stirred over night at 80° C. After the night, the reaction mixture was filtered off through Celite. The solvent was then evaporated under high pressure to provide an oily, brown substance. Final product was purified via flash chromatography (82.2% yield).
- 17.1C. Formula 1504 where t is 1, R3 is NHAc and R4 is OH: 2-(2-(2-aminoethoxy)ethoxy)-α-NAc-Galactosamine (1504.1C).
- A suspension of (1503.1B) (5.5 g) and 10% palladium on carbon (ca. 500 mg) in 20 mL of ethanol was hydrogenated in a Shlenk flask with an initial pressure of 2 bars of hydrogen gas. The reduction process was controlled by TLC. After 3 hours reaction was completed and the suspension was filtered through Celite (78% yield).
- 17.1D. Formula 1505 where t is 1, R3 is NHAc and R4 is OH: α-NAc-Glactosamine-amine-methacrylate (1505.1 D)
- A compound (1504.1C) (4.5 g) was dissolved in 10 mL of N,N-dimethylformamide. To that solution, triethylamine (3 mL) was added and the mixture was cooled down to 4° C. Subsequently, pentafluorophenyl methacrylate (13642-97-2) (4.38 mL) was added drop-wise with constant stirring. After 30 minutes, ice-bath was removed and the reaction was allowed to stir at room temperature for the next 4 hours. Next, the solvent was evaporated and the residual was adsorbed on silica gel. The purification of crude material using flash chromatography (dichloromethane:methanol 95:5, v/v) provided 3.8g of NAc-Galactosamine monomer (α-NAc-Glactosamine-amine-methacrylate (1505.1D)) (64.73% yield).
- Tetraethylene Glycol Mono p-Toluenesulfonate (1651a).
- Tetraethylene glycol (1650a) (112-60-7) (2.5 g) and pyridine (1.0 g) were added to 50 mL of dichloromethane and stirred for 20 minutes at 0° C. To that solution, p-toluenesulfonyl chloride (98-59-9)(2.37) in 15 mL of dichloromethane was added slowly. The reaction mixture was then stirred for 2h at 0° C. followed by 4h at room temperature. After that time, the solvent was evaporated and crude product was purified via flash chromatography (ethyl acetate:hexane 6:4, v/v) to afford 1651a (44% yield).
- S-[2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethyl] ester (1652a)
- To a suspension of potassium thioacetate (10387-40-3) (10.1 g, 88 mmol) in 650 mL of DMF was added a solution of (1651a) (15.4 g) in 100 mL of DMF. The mixture was stirred at room temperature for 1 h and then at 90 C for 4 h. After filtration, the solvent was evaporated under reduced pressure. The residue was dissolved in ethyl acetate (150 mL) and washed with water (2×50 mL) and brine (2×50 mL). The aqueous wash solutions were reextracted with ethyl acetate (2×50 mL), and the combined organic layers were dried over magnesium sulfate and evaporated under reduced pressure to give a yellow oil product 1652a (45% yield)
- 2-(2-(2-(2-(pyridin-2-yldisulfanyl)ethoxy)ethoxy)ethoxy)ethan-1-ol (1653a)
- Sodium methoxide (1.40 ml of 0.5M in methanol) was added dropwise to a stirred solution of (1652a) (70.9 mg) and 2,2-dithiodipyridine (2127-03-9) (77.4 mg, 0.351 mmol) in anhydrous methanol (3 mL) under an argon atmosphere. After 2 h the reaction was concentrated with silica to a powder, and the crude product was purified by flash chromatography over silica (1:1 hexanes:EtOAc) to afford 1653a as a clear, pale yellow liquid (26.3 mg, 44% yield).
- uRAFT Agent (1601a)
- Compound 1653a (1g) was added dropwise to a stirred solution of 4-Cyano-4-(thiobenzoylthio)pentanoic acid (1.1g) (201611-92-9), N,N′-Dicyclohexylcarbodiimide (538-75-0) (0.5 g) and 4-Dimethylaminopyridine (DMAP) (1122-58-3) (0.1 g) in DCM (15 ml). The reaction was stirred at OC for 2 h then allowed to warm to room temperature. After 3 h, the reaction was filtered through celite and the solvent was removed via reduced pressure. The final product (1601a) was recovered from flash chromatography (67% yield).
- DGal (17.1E)
- The following conditions were performed using the α-NAc-Glactosamine-amine-methacrylate (e.g., 1505.1 D) monomer to afford 17.1E. In some embodiments, the α-NAc-Glucosamine-amine-methacrylate monomer (e.g., 1505.2D) can be used instead to afford a glucosamine-based polymer. In some embodiments, a is an integer between about 0 to about 150, about 1 to about 100, about 1 to about 50, about 1 to about 10, or about 1 to about 5. In some embodiments, b is an integer between about 0 to about 150, about 1 to about 100, about 1 to about 50, about 1 to about 10, or about 1 to about 5.
- Compound 1601a, 1505.1D, Azobisisobutyronitrile (78-67-1), and N-(2-hydroxypropyl)methacrylamide (21442-01-3) were added to DMF (1 ml). The reaction mixture was subjected to 4 freeze-pump-thaw degassing cycles before being stirred for 20 h at 70 C. The polymeric product was recovered via precipitation from acetone. The excess solvent was removed under reduced pressure (55% yield).
-
- 17.2A. Formula 1502 where t is 1, R3 is NHAc and R4 is OH: 2-(2-(2-Chloroethoxy)Ethoxy)-α-NAc-glucosamine (1502.2A).
- Acetyl chloride (75-36-5) (4.35 mL, 61.05 mmol) was added dropwise to the ice-cold solution of D-Glucosamine (7512-17-6) (10.0 g) in 2-(2′-Chloroethoxy)ethanol (628-89-7) (40 mL). The mixture was stirred for 15 minutes at 4° C. and then was transferred to the oil bath at 70° C. The reaction was left mixing under cooling condenser for 4 hours. After that time, a dark brown solution was cooled down and poured into 400 mL solution of ethyl acetate and dichloromethane (3:1, v/v) in order to get rid of an excess of unreacted chloroethanol. The mixture was placed in a freezer for 30 minutes and then decanted from dark brown, sticky precipitate. The precipitate was dissolved in anhydrous ethanol and activated charcoal was added. The suspension was mixed for 1.5 hours and then filtered off through Celite and washed with ethanol. In the last step, ethanol was evaporated in vacuum to afford 1502.2A (76% yield).
- 17.2B. Formula 1503 where t is 1, R3 is NHAc and R4 is OH: 2-(2-(2-Azidoethoxy)Ethoxy)-α-NAc-Glucosamine (1503.2B).
- A compound (1502.2A) (5.0 g) was dissolved in 20 mL of N,N-dimethylformamide. To that solution, sodium azide (26628-22-8) was added (5.0 g). The suspension was placed in an oil bath and stirred over night at 80° C. After the night, the reaction mixture was filtered off through Celite. The solvent was then evaporated under high pressure to provide an oily, brown substance. The final product 1503.2B was purified via flash chromatography (75.4% yield).
- 17.2C. Formula 1504 where t is 1, R3 is NHAc and R4 is OH: 2-(2-(2-aminoethoxy)ethoxy)-α-NAc-Glucosamine (1504.2C).
- A suspension of (1503.2B) (5.5 g) and 10% palladium on carbon (ca. 500 mg) in 20 mL of ethanol was hydrogenated in a Shlenk flask with an initial pressure of 2 bars of hydrogen gas. The reduction process was controlled by TLC. After 3 hours reaction was completed and the suspension was filtered through Celite to afford 1504.2C (65% yield).
- 17.2D. Formula 1505 where t is 1, R3 is NHAc and R4 is OH: α-NAc-Glucosamine-amine-methacrylate (1505.2D).
- Compound 1504.2C (4.5 g) was dissolved in 10 mL of N,N-dimethylformamide. To that solution, triethylamine (3 mL) was added and the mixture was cooled down to 4° C. Subsequently, pentafluorophenyl methacrylate (13642-97-2) (4.38 mL) was added drop-wise with constant stirring. After 30 minutes, ice-bath was removed and the reaction was allowed to stir at room temperature for the next 4 hours. Next, the solvent was evaporated and the residual was adsorbed on silica gel. The purification of crude material using flash chromatography (dichloromethane:methanol 95:5, v/v) provided 3.8g of NAc-Glucosamine monomer 1505.2D (74% yield).
- 18A. Formula 1109 where X′ is OVA, m is 1-3 and n is 79
- A solution of
Formula 101′ where X′ is OVA (10 mg of endotoxin-free ovalbumin) in pH 7.6 PBS was added to Formula 1108 where n Is 79 (10 mg) in an endotoxin-free tube. The reaction mixture was allowed to stir at room temperature. After 1 hour, any unconjugated Formula 1108 was removed via centrifugal size exclusion chromatography to afford the corresponding product of Formula 1109, which was used without further purification. - 18B. Formula 1m′ where X′ is OVA, m is 1-3, n is 79, p is 90, q is 4, t is 1, R3 is NHAc, R4 is OH. R8 is CMP, and R10 is 2-hydroxypropyl
- The Formula 1109 solution obtained in Example 18A was then added to Formula 1507 as obtained in Example 17E (20 mg) in an endotoxin-free tube and stirred at room temperature to afford the corresponding product of Formula 1m′ (“F1m′-OVA-m1-3-n9-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60”), which was purified from the reaction mixture via fast protein liquid chromatography (FPLC) using a
Superdex 200 prep grade column and used without further purification. - 18C. Formula 1m′ where X′ is OVA, m is 1-3, n is 79, p is 90, q is 4, t is 1, R3 is NHAc, R4 is OH. R8 is CMP, and R10 is 2-hydroxypropyl, using N-acetyl-D-galactosamine
- By following the procedure of Example 18B and substituting the galactosyl compound of Formula 1507 as obtained in Example 17F there was obtained the corresponding galactosyl compound of Formula 1m′ (“F1m′-OVA-m1-3-n9-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60”).
- 18D. Other Compounds of Formula 1m′ where X′ is OVA, m is 1-3, n is 79, p is 90, q is 4, t is 1, R3 is NHAc, R4 is OH. R8 is CMP, and R10 is 2-hydroxypropyl
- By following the procedures described in Example 18A, 18B and 18C and substituting OVA with the following:
-
- Abciximab,
- Adalimumab,
- Agalsidase alfa,
- Agalsidase beta,
- Aldeslukin,
- Alglucosidase alfa,
- Factor VIII,
- Factor IX,
- L-asparaginase,
- Laronidase,
- Octreotide,
- Phenylalanine ammonia-lyase,
- Rasburicase,
- GAD-65 (SEQ ID NO:2),
- IGRP (SEQ ID NO:3)
- MBP (SEQ ID NO:4),
- MOG (SEQ ID NO:5),
- PLP (SEQ ID NO:6),
- MBP13-32 (SEQ ID NO:7),
- MBP83-99 (SEQ ID NO:8),
- MBP111-129 (SEQ ID NO:9),
- MBP146-170 (SEQ ID NO:10),
- MOG1-20 (SEQ ID NO:11),
- MOG35-55 (SEQ ID NO:12),
- PLP139-154 (SEQ ID NO:13),
- MART1 (SEQ ID NO:14),
- Tyrosinase (SEQ ID NO:15),
- PMEL (SEQ ID NO:16),
- Aquaporin-4 (SEQ ID NO:17),
- S-arrestin (SEQ ID NO:18),
- IRBP (SEQ ID NO:19),
- Conarachin (UNIPROT Q6PSU6),
- Alpha-gliadin “33-mer” native (SEQ ID NO:20),
- Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21),
- Alpha-gliadin (SEQ ID NO:22),
- Omega-gliadin (SEQ ID NO:23),
- Fel d 1A (UNIPROT P30438),
- Cat albumin (UNIPROT P49064),
- Can f 1 (UNIPROT 018873),
- Dog albumin (UNIPROT P49822), and
- RhCE (UNIPROT P18577),
there are obtained the following corresponding glucosyl and galactosyl compounds of Formula 1m′: - X′ is Abciximab and m is 10,
- X′ is Adalimumab and m is 11,
- X′ is Agalsidase alfa and m is 14,
- X′ is Agalsidase beta and m is 14,
- X′ is Aldeslukin and m is 6,
- X′ is Alglucosidase alfa and m is 13,
- X′ is Factor VIII and m is 100,
- X′ is Factor IX and m is 18,
- X′ is L-asparaginase and m is 5,
- X′ is Laronidase and m is 7,
- X′ is Octreotide and m is 1,
- X′ is Phenylalanine ammonia-lyase and m is 12,
- X′ is Rasburicase and m is 12,
- X′ is GAD-65 (SEQ ID NO:2) and m is 8,
- X′ is IGRP (SEQ ID NO:3) and m is 7,
- X′ is MBP (SEQ ID NO:4) and m is 6,
- X′ is MOG (SEQ ID NO:5) and m is 5,
- X′ is PLP (SEQ ID NO:6) and m is 8,
- X′ is MBP13-32 (SEQ ID NO:7) and m is 1,
- X′ is MBP83-99 (SEQ ID NO:8) and m is 1,
- X′ is MBP111-129 (SEQ ID NO:9) and m is 1,
- X′ is MBP146-170 (SEQ ID NO:10) and m is 2,
- X′ is MOG1-20 (SEQ ID NO:11) and m is 1,
- X′ is MOG35-55 (SEQ ID NO:12) and m is 2,
- X′ is PLP139-154 (SEQ ID NO:13) and m is 3,
- X′ is MART1 (SEQ ID NO:14) and m is 4,
- X′ is Tyrosinase (SEQ ID NO:15) and m is 8,
- X′ is PMEL (SEQ ID NO:16) and m is 5,
- X′ is Aquaporin-4 (SEQ ID NO:17) and m is 4,
- X′ is S-arrestin (SEQ ID NO:18) and m is 12,
- X′ is IRBP (SEQ ID NO:19) and m is 21,
- X′ is Conarachin and m is 21,
- X′ is Alpha-gliadin “33-mer” native (SEQ ID NO:20) and m is 1,
- X′ is Alpha-gliadin “33-mer” deamidated (SEQ ID NO:21) and m is 1,
- X′ is Alpha-gliadin (SEQ ID NO:22) and m is 1,
- X′ is Omega-gliadin (SEQ ID NO:23) and m is 1,
- X′ is
Fel d 1 and m is 4, - X is Cat albumin and m is 16,
- X′ is Can
f 1 and m is 6, - X′ is Dog albumin and m is 23, and
- X′ is RhCE and m is 10.
- 18E. Compounds of Formulae 1h′, 1i′, 1j′, 1k′, 1L′, and 1n′
- By following the procedures described in Example 18B, 18C and 18D and substituting Formula 1109 with the following:
-
- Formula 802 will afford the corresponding random copolymers of Formula 1h′,
- Formula 902 will afford the corresponding random copolymers of Formula 1i′,
- Formula 902 made with a compound of
Formula 103′ will afford the corresponding random copolymers of Formula 1j′, - Formula 1002 will afford the corresponding random copolymers of Formula 1k′,
- Formula 1002 made with a compound of
Formula 103′ will afford the corresponding random copolymers of Formula 1L′, and - Formula 1202 will afford the corresponding random copolymers of Formula 1n′.
- 18F. Other Compounds of Formulae 1 h′,1 i′, 1i′, 1j′, 1L′, 1m′ and 1n′
- By following the procedures described in Example 18B, 18C, 18D and 18E, and substituting Formula 1507 with the compounds prepared as described in Examples 17G, 17H and 17I, there are obtained the corresponding compounds of Formulae 1h′,1i′, 1j′, 1k′, 1L′, 1m′ and 1n′ where t is other than 1, having a plurality of t groups, and having a mixture of glucosyl and galactosyl moieties.
- 19A. Formula 1602 where n is 4, p is 90, t is 1, R3 is NHAc, R4 is OH. R8 is CMP, and R10 is 2-hydroxypropyl
- A 25 ml Schlenk flask was charged with ((2S,3S,4S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-2-(2-(2-methacrylamidoethoxy)ethoxy)tetrahydro-2H-pyran-3-yl)carbamic acid (272 mg, 0.72 mmol) (Formula 1505, prepared, for example, as described in Example 17D), HPMA (211 mg, 1.47 mmol) (Formula 1506), a dithio-pyridyl functionalized uRAFT agent of Formula 1601 where n is 4 and R8 is CMP (12.5 mg, 0.0217 mmol), azobis(isobutyronitril) (0.98 mg, 0.005 mmol), and 1.2 ml dimethylformamide. The reaction mixture was subjected to four freeze-pump-thaw degassing cycles then stirred at 70° C. for 20 hours. The corresponding random polymeric product of Formula 1602 (having about 30 W1 groups and about 60 W2 groups) was recovered by precipitating the reaction mixture in acetone. Excess acetone was removed at reduced pressure to provide the random polymeric product, which was used without further purification.
- 19B. Formula 1c′ where X″ is Insulin-B, m is 1, n is 4, p is 90 (30 W1+60 W2), t is 1, R3 is NHAc, R4 is OH, R8 is CMP, and R10 is 2-hydroxypropyl
- The Formula 1602 solution obtained in Example 19A (20 mg) was suspended in 200 μl of dimethylformamide and added to an endotoxin-free tube containing Insulin-B (1 mg) and stirred at room temperature for 3 hours to afford the corresponding product of Formula 1c′ (“F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60”). The reaction mixture was then precipitated in acetone and purified from the reaction mixture via fast protein liquid chromatography (FPLC) using a
Superdex 200 prep grade column and used without further purification. - 19C. Formula 1c′ where X″ is Insulin-B, m is 1, n is 4, p is 90 (30 W1+60 W2), t is 1, R3 is NHAc, R4 is OH, R8 is CMP, and R10 is 2-hydroxypropyl, using N-acetyl-D-galactosamine
- By following the procedure of Examples 19A and 19B and substituting ((2S,3S,4S,5S,6S)-4,5-dihydroxy-6-(hydroxymethyl)-2-(2-(2-methacrylamidoethoxy)ethoxy)tetrahydro-2H-pyran-3-yl)carbamic acid for Formula 1505, there was obtained the corresponding galactosyl compound of Formula 1c′ (“F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60”).
- 19D. Formula 1c′ where X″ is P31, m is 1, n is 4, p is 90 (30 W1+60 W2), t is 1, R3 is NHAc, R4 is OH, R8 is CMP, and R10 is 2-hydroxypropyl
- By following the procedure of Examples 19B and 19C and substituting 20 mg of P31 for Insulin-B, there were obtained the corresponding glucosyl and galactosyl compounds of Formula 1c′ where X″ is P31.
- 19E. Compounds of Formulae 1f′ and 1g′
- By following the procedures of Examples 19A and 19B and substituting the uRAFT agent of Formula 1601 with a uRAFT agent of
Formulae 600′ or 700′ there are obtained the corresponding compounds ofFormulae 601′ or 701′, which are in turn contacted with a compound ofFormula 101′ to afford the corresponding compound of Formula 1f′ or Formula 1g′, respectively. - 20A. As discussed above in Example 14, F1aA-OVA-m4-n8 and F1b-OVA-m1-n4-p34 mitigated an OVA-specific immune response after adjuvented OVA challenge.
- 20B. A total of 3×105 CFSE-labeled OTI CD8+ T cells and 3×105 CFSE-labeled OTII CD4+ T cells were injected into CD45.1+ recipient mice. At 1 and 6 days following adoptive transfer, mice were i.v. administered saline solutions containing OVA, F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 [“OVA-p(Gal-HPMA)”], F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 [“OVA-p(Glu-HPMA)”], or saline alone. Each mouse treated with formulations containing OVA in its free or conjugated form, received the molar equivalent of 20 μg OVA. At 15 d following adoptive transfer, mice were challenged with 5 μg of OVA and 25 ng of ultrapure E. coli LPS (InvivoGen) in 25 μL of saline injected intradermally into each rear leg pad (Hock method: total dose of 10 μg of OVA and 50 ng of LPS). Mice were sacrificed 4 days following challenge, and spleen and draining lymph node cells were isolated for restimulation. For flow cytometry analysis of intracellular cytokines, cells were restimulated in the presence of 1 mg/mL OVA or 1 μg/mL SIINFEKL peptide (Genscript) for 3 h. Brefeldin-A (5 μg/mL; Sigma) was added, and restimulation was resumed for an additional 3 h before staining and flow cytometry analysis.
- As shown in
FIGS. 8A-8B , the administration of OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) resulted in significant reduction in the percentages of OT-I cells (out of the total CD8+ T-cell population) and OT-II cells (out of the total CD4+ T-cell population).FIG. 8A shows that OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) administration significantly reduced OT-I cells as compared to mice receiving repeat administrations of OVA alone (e.g., unconjugated). Reduction was even greater when compared to mice receiving only OVA and LPS challenge (e.g., that received saline injections). Notably, the reduction resulting from treatment with OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) reduced OT-I cell levels to levels not significantly different from naïve mice. Similarly, as shown inFIG. 8B , OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) administration resulted in significant reduction in OT-II cells as compared to mice receiving unconjugated OVA or challenge alone. These data indicate that the production of cells that are specifically designed to react when encountering OVA as an antigen decreases, indicative of a reduction in immune response to OVA. - Additionally, the administration of OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) resulted in significant increases in antigen-specific regulatory T-cells in the lymph node and spleen of mice. As shown in
FIG. 9A , treatment with either of these conjugates induced significant increases in CD25+/FoxP3+ cells in the lymph node. Likewise,FIG. 9B shows significant increases (vs. naïve, challenge (saline alone), and OVA treated animals) in CD25+/FoxP3+ OT-II cells. These data indicate that regulatory T cell production is upregulated, which in turn, indicates that the immune system is negatively modulated with respect to its response to OVA (e.g., less responsive, or more tolerant). - Further building on the above data showing the increased tolerance to an antigen after delivery of that antigen complex with a liver targeting moiety is the data shown in
FIG. 10 . In this experiment, the percentage of cells expressing interferon gamma (IFNγ) was measured. IFNγ is produced by CD4 and CD8 T cells after antigen-specific immunity develops. As shown inFIG. 10 , mice receiving only saline pre-challenge have approximately 60% of the total OTI cells expressing IFNγ. In contrast, OVA-treated mice have about 40% IFNγ-expressing cells. Nearly the same as naïve mice, the OTI cells of OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA)-treated mice have less than 20% IFNγ positive cells. This significant reduction in IFNγ indicates a reduction in the mechanisms that drive antigen-specific immunity. Collectively, and in view of the additional disclosure herein, these data demonstrate that targeting an antigen to the liver can reduce the antigen-specific immune response to that antigen. In particular, targeting with glucose or galactose results in significant shifts in the cell populations responsible for antigen-specific immunity, that shift demonstrating a tolerance to the specific antigen. - 20C. By following the procedures described in Example 20A or 20B and substituting the tested OVA compositions with other compositions of
Formula 1 followed by challenge with the unconjugated antigen X, the treated animals demonstrate a tolerance to the specific antigen X. - Using the model of Example 20, additionally with OTII cells (which are CD4+ T cells from CD45.2+ mice, analogous to the CD8+ T cell OTI cells), the ability of F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 [“OVA-p(Gal-HPMA)”] and F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 [“OVA-p(Glu-HPMA)”] to induce T regulatory responses and prevent subsequent responses to vaccine-mediated antigen challenge were demonstrated, moreover using different dosing regimens. 3×105 CFSE-labeled OTI and 3×105 CFSE-labeled OTII cells were adoptively transferred to CD45.1+ mice (n=8 mice per group) on
day 0. Ondays day 1, 2.5 μg atday day 7. In another, OVA was provided at a dose of 7 μg atday day day 7, for the same total dose. Likewise, pGal-OVA and pGlu-OVA were each administered in other groups at the same dosings of 2.5 μg atday 1, 2.5 μg atday day day day day 7, all doses being on an OVA equivalent dose basis. In a final group, saline was administered on the same days. Onday 14, the recipient mice were then challenged with OVA (10 μg) adjuvanted with lipopolysaccharide (50 ng) by intradermal injection. Characterization of the draining lymph nodes was done onday 19, to allow determination as to whether or not deletion actually took place and whether regulatory T cells were induced from the adoptively transferred cells. - Profound tolerance was induced in the CD4+ T cell compartment, as shown in
FIGS. 11A-11B . In terms of total cell frequencies, both dosing regimens of both OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) resulted in equivalent low levels of OTII cells after challenge, statistically lower than by treatment of OVA (* and # indicate p<0.05, ** and ## indicate p<0.01), as shown inFIG. 11A . When the cells that remained were analyzed by flow cytometry for the presence of the transcription factor FoxP3 and the receptor CD25, the numbers of FoxP3+CD25+ cells (markers of T regulatory cells) was statistically significantly elevated compared to treatment with OVA alone, as shown inFIG. 11B . Here, the number of T regulatory cells was statistically higher with the 2.5 μg/2.5 μg/16 μg dosing regimen compared to the 7 μg/7 μg/7 μg dosing regimen, with both OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) treatment. - Profound tolerance was also induced in the CD8+ T cell compartment, as shown in
FIGS. 12A-12B . In terms of total cell frequencies, both dosing regimens of both OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) resulted in equivalent low levels of OTI cells after challenge, statistically lower than by treatment of OVA (* and # indicate p<0.05, ** and ## indicate p<0.01), as shown inFIG. 12A . When the cells that remained were analyzed by flow cytometry for the expression of IFN-γ after re-exposure to OVA antigen, the frequency of cells expressing this inflammatory cytokine was decreased in the groups receiving the 2.5 μg/2.5 μg/16 μg dosing regimen compared to the 7 μg/7 μg/7 μg dosing regimen, with both OVA-p(Gal-HPMA) and OVA-p(Glu-HPMA) treatment, as shown inFIG. 12B . - 22A. CD4+ T-cells of the transgenic NOD-BDC2.5 mice express the diabetogenic BDC-2.5 specific regulatory T-cell receptor (TCR). BDC2.5 T-cells specifically target the islet beta-cell autoantigen, chromagranin-A. T-cells were isolated from the spleens of transgenic NOD-BDC2.5 mice and cultured for 4 days in DMEM supplemented with 10% (vol/vol) FBS, 0.05 mM p-mercaptoethanol, 1% puromycin/streptomycin, and 0.5 μM P31 peptide, a mimetope of islet beta-cell autoantigen chromagranin-A that stimulates T-cells expressing the BDC2.5 T-cell receptor. Following stimulation with P31, cells were washed with basal DMEM and analyzed for purity by flow cytometry, and 5×106 T-cells were i.v. injected into normoglycemic NOD/ShiLtJ mice. At 8 h and 3 days after adoptive transfer, mice were i.v. administered saline, 10 μg F1c′-P31-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60, 10 μg F1c′-P31-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60, or an equimolar dose of P31 peptide. Starting on
day 4, diabetes onset was monitored by measuring nonfasting blood glucose levels using an AccuCheck Aviva glucometer (Roche). Mice were considered diabetic at blood glucose readings ≥300 mg/dL. After two hyperglycemic readings, mice were euthanized. The data resulting from this experiment is shown in the time course ofFIG. 13 . As shown, the mice receiving saline developed diabetic blood glucose levels within 4-8 days of adoptive transfer. Similarly, mice receiving P31 (unconjugated) developed diabetic blood glucose levels within about 7-10 days after transfer. In stark contrast, mice receiving F1c′-P31-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 or F1c′-P31-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 maintained relatively steady blood glucose values (<200 mg/dl) for over 40 days. - 22B. By following the procedures described in Example 21A and substituting the tested compositions with other compositions of Formula 1 where X is Insulin-B or proinsulin, preproinsulin, glutamic acid decarboxylase-65 (GAD-65 or glutamate decarboxylase 2), GAD-67, glucose-6 phosphatase 2 (IGRP or islet-specific glucose 6 phosphatase catalytic subunit related protein), insulinoma-associated protein 2 (IA-2), and insulinoma-associated protein 2β (IA-2β), ICA69, ICA12 (SOX-13), carboxypeptidase H, Imogen 38, GLIMA 38, chromogranin-A, HSP-60, caboxypeptidase E, peripherin, glucose transporter 2, hepatocarcinoma-intestine-pancreas/pancreatic associated protein, S100p, glial fibrillary acidic protein, regenerating gene II, pancreatic duodenal homeobox 1, dystrophia myotonica kinase, islet-specific glucose-6-phosphatase catalytic subunit-related protein and SST G-protein coupled receptors 1-5, such as F1aA-Insulin-m2-n80, F1aA-Insulin-m2-n12, F1aA-Insulin-m2-n33, F1aA-Insulin-m2-n40, F1aA-Insulin-m2-n43, F1aA-Insulin-m2-n80, F1aA-Insulin-m2-n60, F1aA-Insulin-m2-n75, F1aA-Insulin-m2-n84, F1b-Insulin-m2-n4-p34-2NAcGAL, F1m-Insulin-m2-n80-p30-q4-CMP-2NHAc, F1m-Insulin-m2-n62-p30-q-CMP-2OH, F1n-insulin-m2-n1-p30-q4-CMP-2NHAc, F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 or F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 the blood glucose values in the treated NOD mice remain steady as compared to animals that receive saline.
- 23A. Non-obese diabetic (NOD) mice, such as NOD/ShiLt mice are susceptible to the spontaneous onset of autoimmune diabetes mellitus, which is the result of an autoimmune response to various pancreatic auto-antigens. Diabetes develops in NOD mice as a result of insulitis, characterized by the infiltration of various leukocytes into the pancreatic islets. As diabetes develops, there is a leukocytic infiltration of the pancreatic islets followed by significant decreases in insulin production, and corresponding increases in blood glucose levels.
- In order to evaluate the efficacy of a treatment for diabetes mellitus, compositions and methods for the treatment being provided in the present disclosure, starting at 5 weeks of age diabetes onset in a cohort of NOD/ShiLt mice was monitored on a weekly basis by measuring nonfasting blood glucose levels using an AccuCheck Aviva glucometer (Roche). Starting at 6 weeks of age, the mice were divided into control and test groups (n=15 for each group) and treated, respectively, with weekly intravenous injections of saline, 10 μg of F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60, or 10 μg of F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 (10 μg). The injections continued for 10 consecutive weeks. The percentage of diabetes free animals was measured over time. Mice were considered diabetic at two consecutive blood glucose readings ≥300 mg/dL or one blood glucose readings ≥450 mg/dL. Mice deemed diabetic were euthanized.
-
FIG. 14 depicts the data obtained as described above as the percentage of diabetes free animals as measured over time. Mice treated with F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 are shown as filled squares. Mice treated with F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 are shown as filled triangles. Mice treated with saline are shown as filled diamonds. As can readily be appreciated from the data collected from the saline treated animals over time as early as 11 weeks of age, spontaneous diabetes was present. Prevalence increased over time (shown by the downward trend in the graph) with 60% of the tested animals developing diabetes byweek 20. As shown inFIG. 14 , treating NOD mice with either F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 or F1c′-Insulin-B-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 reduced the incidences of diabetes onset in NOD mice as compared to animals that received saline. The data demonstrate that administration of insulin coupled with linkers and liver targeting moieties as disclosed herein can successfully reduce the development of type I diabetes mellitus by reducing the autoimmune response to the various pancreatic autoantigens produced. - 23B. By following the procedures described in Example 22A and substituting the tested compositions with other compositions of Formula 1 where X is Insulin-B or proinsulin, preproinsulin, glutamic acid decarboxylase-65 (GAD-65 or glutamate decarboxylase 2), GAD-67, glucose-6 phosphatase 2 (IGRP or islet-specific glucose 6 phosphatase catalytic subunit related protein), insulinoma-associated protein 2 (IA-2), and insulinoma-associated protein 2β (IA-2β), ICA69, ICA12 (SOX-13), carboxypeptidase H, Imogen 38, GLIMA 38, chromogranin-A, HSP-60, caboxypeptidase E, peripherin, glucose transporter 2, hepatocarcinoma-intestine-pancreas/pancreatic associated protein, S100p, glial fibrillary acidic protein, regenerating gene 11, pancreatic duodenal homeobox 1, dystrophia myotonica kinase, islet-specific glucose-6-phosphatase catalytic subunit-related protein and SST G-protein coupled receptors 1-5, such as F1aA-Insulin-m2-n80, F1aA-Insulin-m2-n12, F1aA-Insulin-m2-n33, F1aA-Insulin-m2-n40, F1aA-Insulin-m2-n43, F1aA-Insulin-m2-n80, F1aA-Insulin-m2-n60, F1aA-Insulin-m2-n75, F1aA-Insulin-m2-n84, F1b-Insulin-m2-n4-p34-2NAcGAL, F1m-Insulin-m2-n80-p30-q4-CMP-2NHAc, F1m-Insulin-m2-n62-p30-q8-CMP-2OH, F1n-insulin-m2-n1-p30-q4-CMP-2NHAc, F1c′-P31-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60 or F1c′-P31-m1-n4-p90-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60 the incidences of diabetes onset in the treated NOD mice are reduced as compared to animals that receive saline.
- In order to examine the biodistribution of antigen glycopolymer conjugates we treated BALB/c mice with fluorescently labeled OVA or fluorescently-labeled OVA conjugated to either p(Gal-HPMA), p(Glu-HPMA), p(Galβ-HPMA), or p(Gluβ-HPMA). The sugar moieties attached to the backbone of p(Gal-HPMA) and p(Glu-HPMA) are attached to the polymer in the α-conformation at the C1 position, whereas the sugars attached to the backbone of p(Galβ-HPMA) and p(Gluβ-HPMA) are attached to the polymer in the β-conformation at the C1 position. OVA was labeled with Dy750. All treatments were given via tail vein injection in 140 μl. Each animal was treated with an equal amount of fluorescent conjugate on a fluorescence unit basis. After 3 hours, the animals were euthanized and the livers of each animal were perfused with saline, then both the livers and spleens were harvested and imaged via an IVIS Spectrum system with appropriate filter set.
-
FIG. 15 depicts representative images of the fluorescent signals of livers (A) and spleens (B) from animals treated with OVA or OVA glycopolymer conjugates. The formulations are as follows: 1. OVA, 2. F1m′-OVA750-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGALβ30-ran-HPMA60) [“OVA-p(Galβ-HPMA)”], 3. F1m′-OVA750-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60) [“OVA-p(Gal-HPMA)”], 4. F1m′-OVA750-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLUβ30-ran-HPMA60) [“OVA-p(Gluβ-HPMA)”], 5. F1m′-OVA750-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60) [“OVA-p(Glu-HPMA)”]. Images of the livers from animals treated as described above show that glycopolymer conjugates significantly enhance the delivery of their conjugated antigen to the liver (or spleen) as compared to the uptake of unconjugated antigens. Livers from animals treated with unconjugated OVA have less fluorescent signal as compared to livers from animals treated with OVA conjugated to either p(Gal-HPMA), p(Glu-HPMA), p(Galβ-HPMA), or p(Gluβ-HPMA). Additionally, images of the spleens taken from animals treated as described above show that conjugating antigens to glycopolymers reduces the delivery of antigens to the spleen. Spleens from animals treated with unconjugated OVA have significantly more fluorescent signal as compared to spleens from animals treated with OVA conjugated to either p(Gal-HPMA), p(Glu-HPMA), p(Galβ-HPMA), or p(Gluβ-HPMA). These data are significant in that they demonstrate enhanced targeting of an antigen to which tolerance is desired to the liver and/or spleen, which, as demonstrated by the experimental data presented herein results in reduced immune response (i.e., induced tolerance) to the antigen. In accordance with several embodiments disclosed herein, this induced tolerance can treat, reduce, prevent, or otherwise ameliorate an unwanted immune response that would have otherwise been associated with exposure to the antigen. - In order to compare the ability of various glycopolymer-antigen conjugates to induce antigen-specific T cell proliferation as well as upregulate the expression and presentation of various markers of T cell anergy and deletion, mice that had received an infusion of 400,000 carboxyfluorescein succinimidyl ester (CSFE)-labeled OTI cells were treated with an intravenous injection of either OVA or OVA conjugated to either p(Gal-HPMA), p(Glu-HPMA), p(Galβ-HPMA), or p(Gluβ-HPMA) (with formulations as follows: F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGAL30-ran-HPMA60) [“OVA-p(Gal-HPMA)”]; F1m′-OVA-m1-3-n79-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLU30-ran-HPMA60) [“OVA-p(Glu-HPMA)”]; F1m′-OVA-m1-3-n9-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGALβ30-ran-HPMA60) [“OVA-p(Galβ-HPMA)”]; F1m′-OVA-m1-3-n9-p90-q4-CMP-poly-(EtPEG1AcN-1NAcGLUβ30-ran-HPMA60) [“OVA-p(Gluβ-HPMA)”]. Animals treated with OVA in either its free or conjugated form received 10 μg of OVA on
day 1 andday 3 of the experiment. A timeline of the experimental details is shown inFIG. 16A . After 7 days, the mice were sacrificed and the splenocytes of the animals were harvested and analyzed via flow cytometry for phenotypical markers characteristic of T cell anergy, deletion, and memory. -
FIG. 16B shows that OVA-glycopolymer conjugates induce more OTI T cell proliferation as compared to the amount of OTI proliferation seen in animals treated with unconjugated OVA. As discussed above, these data further support that, according to several embodiments disclosed herein, the glyoctargeting moieties disclosed herein result in increased antigen-specific T-cell proliferation—a key step in inducing tolerance to an antigen. Interestingly, animals treated with OVA-glycopolymer conjugates containing β-linked sugars induced significantly more proliferation compared to animals treated with glycopolymers containing the same sugar moiety linked to the polymer via an α-linkage (e.g., p(Galβ-HPMA) vs. p(Gal-HPMA)). Unexpectedly, this conformational change in one element of the overall composition leads to an enhanced efficacy in terms of T-cell proliferation, which Applicant believes (without being bound by theory) results from synergistic interaction of the components of the composition with their respective physiological targets. Additionally, the population of OTI cells taken from animals treated with all OVA-glycopolymer conjugates, with the exception of OVA-p(Gal-HPMA), showed significantly more surface expression of the apoptosis marker Annexin V+ as compared to the cells taken from animals treated with OVA (seeFIG. 16C ). Consistent with data discussed above, this indicates a greater percentage of antigen-specific T cells are being targeted for, or are in, the apoptotic cascade. As shown inFIG. 16D , OTI cells taken from animals treated with OVA-glycopolymer conjugates containing β-linked sugars showed an increased expression of the T cell exhaustion marker PD-1 as compared to animals treated with glycopolymers containing the same sugar moiety linked to the polymer via an α-linkage as well as animals treated with free OVA. In order to maintain long-term tolerance, treatments must reduce the number of long-lasting antigen-specific memory T cells.FIGS. 16E and 16F show that both OVA-p(Galβ-HPMA) and OVA-p(Gluβ-HPMA) induce a significant reduction in OTI cells expressing markers for memory T cells. Both OVA-p(Galβ-HPMA) and OVA-p(Gluβ-HPMA) induce a five-fold decrease in the number of memory T cells compared to animals treated with free OVA. These data further indicate that compositions as disclosed herein can induce tolerance to an antigen (OVA chosen here due to its general acceptance in the field as a “gold standard” antigen), and in several embodiments, can unexpectedly enhance the induction of tolerance (as represented at least in part by antigen-specific T cell proliferation, increased Annexin V expression on antigen-specific T cells, increased exhaustion marker expression on antigen-specific T cells, and reduced expression of memory T cells). - While the present disclosure has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes can be made and equivalents can be substituted without departing from the true spirit and scope of the disclosure. In addition, many modifications can be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto. All publications, patents, patent applications, internet sites, and accession numbers/database sequences (including both polynucleotide and polypeptide sequences) cited are herein incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, patent application, internet site, or accession number/database sequence were specifically and individually indicated to be so incorporated by reference.
- It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “administering a glycotargeting tolerogenic composition” include “instructing the administration of a glycotargeting tolerogenic composition.” In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
- The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 10 nanometers” includes “10 nanometers.”
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/810,561 US20230115331A1 (en) | 2014-02-21 | 2022-07-01 | Glycotargeting therapeutics |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461942942P | 2014-02-21 | 2014-02-21 | |
US14/627,297 US10821157B2 (en) | 2014-02-21 | 2015-02-20 | Glycotargeting therapeutics |
US14/859,292 US10946079B2 (en) | 2014-02-21 | 2015-09-19 | Glycotargeting therapeutics |
US15/185,564 US10046056B2 (en) | 2014-02-21 | 2016-06-17 | Glycotargeting therapeutics |
US16/028,209 US10940209B2 (en) | 2014-02-21 | 2018-07-05 | Glycotargeting therapeutics |
US16/723,914 US11793882B2 (en) | 2014-02-21 | 2019-12-20 | Glycotargeting therapeutics |
US17/810,561 US20230115331A1 (en) | 2014-02-21 | 2022-07-01 | Glycotargeting therapeutics |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/723,914 Continuation US11793882B2 (en) | 2014-02-21 | 2019-12-20 | Glycotargeting therapeutics |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230115331A1 true US20230115331A1 (en) | 2023-04-13 |
Family
ID=57730362
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/185,564 Active US10046056B2 (en) | 2014-02-21 | 2016-06-17 | Glycotargeting therapeutics |
US16/028,209 Active US10940209B2 (en) | 2014-02-21 | 2018-07-05 | Glycotargeting therapeutics |
US16/723,914 Active US11793882B2 (en) | 2014-02-21 | 2019-12-20 | Glycotargeting therapeutics |
US17/810,561 Pending US20230115331A1 (en) | 2014-02-21 | 2022-07-01 | Glycotargeting therapeutics |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/185,564 Active US10046056B2 (en) | 2014-02-21 | 2016-06-17 | Glycotargeting therapeutics |
US16/028,209 Active US10940209B2 (en) | 2014-02-21 | 2018-07-05 | Glycotargeting therapeutics |
US16/723,914 Active US11793882B2 (en) | 2014-02-21 | 2019-12-20 | Glycotargeting therapeutics |
Country Status (1)
Country | Link |
---|---|
US (4) | US10046056B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230093483A1 (en) * | 2014-02-21 | 2023-03-23 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
US20230108299A1 (en) * | 2014-02-21 | 2023-04-06 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
US20230119325A1 (en) * | 2014-02-21 | 2023-04-20 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
US12060414B2 (en) | 2010-08-10 | 2024-08-13 | École Polytechnique Fédérale De Lausanne (Epfl) | Erythrocyte-binding therapeutics |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9517257B2 (en) | 2010-08-10 | 2016-12-13 | Ecole Polytechnique Federale De Lausanne (Epfl) | Erythrocyte-binding therapeutics |
CA2807942C (en) | 2010-08-10 | 2021-07-27 | Ecole Polytechnique Federale De Lausanne | Erythrocyte-binding therapeutics |
US10046056B2 (en) | 2014-02-21 | 2018-08-14 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
EP3638296A1 (en) | 2017-06-16 | 2020-04-22 | The University Of Chicago | Compositions and methods for inducing immune tolerance |
WO2021050978A1 (en) * | 2019-09-11 | 2021-03-18 | University Of Cincinnati | Treatment of skin blistering diseases using antibodies |
AU2020351344A1 (en) * | 2019-09-20 | 2022-03-31 | Anokion Sa | Compounds for the induction of antigen-specific immune tolerance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210244812A1 (en) * | 2018-05-09 | 2021-08-12 | The University Of Chicago | Compositions and methods concerning immune tolerance |
US20230069712A1 (en) * | 2019-09-20 | 2023-03-02 | Anokion Sa | Compounds for the induction of antigen-specific immune tolerance |
US11801305B2 (en) * | 2014-02-21 | 2023-10-31 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
Family Cites Families (253)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5742852A (en) | 1980-08-27 | 1982-03-10 | Seikagaku Kogyo Co Ltd | Erythrocyte sensitized with antibody of polysaccharide of hemolytic streptococcus |
US4950738A (en) | 1984-09-13 | 1990-08-21 | Cytogen Corporation | Amine derivatives of anthracycline antibiotics |
CA1203164A (en) | 1982-03-09 | 1986-04-15 | Thomas J. Mckearn | Antibody conjugates |
US5156840A (en) | 1982-03-09 | 1992-10-20 | Cytogen Corporation | Amine-containing porphyrin derivatives |
US4867973A (en) | 1984-08-31 | 1989-09-19 | Cytogen Corporation | Antibody-therapeutic agent conjugates |
US5140104A (en) | 1982-03-09 | 1992-08-18 | Cytogen Corporation | Amine derivatives of folic acid analogs |
US4671958A (en) | 1982-03-09 | 1987-06-09 | Cytogen Corporation | Antibody conjugates for the delivery of compounds to target sites |
US5162512A (en) | 1982-03-09 | 1992-11-10 | Cytogen Corporation | Amine derivatives of anthracycline antibodies |
US4741900A (en) | 1982-11-16 | 1988-05-03 | Cytogen Corporation | Antibody-metal ion complexes |
EP0119650A3 (en) | 1983-03-21 | 1987-09-30 | THE PROCTER & GAMBLE COMPANY | Galactosyl-insulin conjugates useful in treating diabetics |
JPS59173762A (en) | 1983-03-22 | 1984-10-01 | Green Cross Corp:The | Reagent for clotting reaction of red blood cell by reverse passive antibody |
CA1260827A (en) | 1984-08-31 | 1989-09-26 | Richard C. Siegel | Antibody-metal ion complexes |
WO1986001720A1 (en) | 1984-09-13 | 1986-03-27 | Cytogen Corporation | Antibody therapeutic agent conjugates |
CA1330378C (en) | 1986-05-08 | 1994-06-21 | Daniel J. Coughlin | Amine derivatives of folic acid analogs |
US5086002A (en) | 1987-09-07 | 1992-02-04 | Agen Biomedical, Ltd. | Erythrocyte agglutination assay |
US20030022826A1 (en) | 1987-09-08 | 2003-01-30 | Duke University | Use of synthetic peptides to induce tolerance to pathogenic T and B cell epitopes of autoantigens or infectious agents |
US4859449A (en) | 1987-09-14 | 1989-08-22 | Center For Molecular Medicine And Immunology | Modified antibodies for enhanced hepatocyte clearance |
US5358857A (en) | 1989-08-29 | 1994-10-25 | The General Hospital Corp. | Method of preparing fusion proteins |
US5227293A (en) | 1989-08-29 | 1993-07-13 | The General Hospital Corporation | Fusion proteins, their preparation and use |
US5227165A (en) | 1989-11-13 | 1993-07-13 | Nova Pharmaceutical Corporation | Liposphere delivery systems for local anesthetics |
ATE177321T1 (en) | 1989-12-11 | 1999-03-15 | Immunomedics Inc | METHOD FOR DETECTING DIAGNOSTIC OR THERAPEUTIC AGENTS BY ANTIBODIES |
JPH0436185A (en) | 1990-03-28 | 1992-02-06 | Kyowa Hakko Kogyo Co Ltd | Fused antigen polypeptide |
AU8869291A (en) | 1990-10-04 | 1992-04-28 | University Of Virginia Alumni Patents Foundation, The | Primate erythrocyte bound monoclonal antibody heteropolymers |
KR950014915B1 (en) | 1991-06-19 | 1995-12-18 | 주식회사녹십자 | Asialoglycoprotein-conjugated compounds |
GB9219562D0 (en) | 1992-03-11 | 1992-10-28 | Prendergast Kennet F | Anti-viral peptides |
EP0630407B1 (en) | 1992-03-11 | 2000-08-02 | PRENDERGAST, Kenneth, Francis | Anti-viral fusion peptides |
US6217869B1 (en) | 1992-06-09 | 2001-04-17 | Neorx Corporation | Pretargeting methods and compounds |
GB9223084D0 (en) | 1992-11-04 | 1992-12-16 | Imp Cancer Res Tech | Compounds to target cells |
EP0602290B1 (en) | 1992-12-04 | 1999-08-25 | ConjuChem, Inc. | Antibody-conjugated Hepatitis B surface antigen and use thereof |
US6090925A (en) | 1993-03-09 | 2000-07-18 | Epic Therapeutics, Inc. | Macromolecular microparticles and methods of production and use |
WO1995006737A1 (en) | 1993-09-03 | 1995-03-09 | Kenneth Francis Prendergast | Glycophorin binding protein (gbp130) fusion compositions |
US5681571A (en) | 1993-10-08 | 1997-10-28 | Duotol Ab | Immunological tolerance-inducing agent |
US6153203A (en) | 1993-10-08 | 2000-11-28 | Duotol Ab | Immunological tolerance-inducing agent |
PT743856E (en) | 1994-02-28 | 2003-12-31 | Univ Virginia | ANTIGEN HETEROPOLYMES AND METHOD FOR THE TREATMENT OF AUTO-IMMUNE DISEASES USING THOSE HETEROPOLYMES |
US5698679A (en) | 1994-09-19 | 1997-12-16 | National Jewish Center For Immunology And Respiratory Medicine | Product and process for targeting an immune response |
US5997861A (en) | 1994-10-31 | 1999-12-07 | Burstein Laboratories, Inc. | Antiviral supramolecules containing target-binding molecules and therapeutic molecules bound to spectrin |
US5718915A (en) | 1994-10-31 | 1998-02-17 | Burstein Laboratories, Inc. | Antiviral liposome having coupled target-binding moiety and hydrolytic enzyme |
US5886143A (en) | 1994-12-07 | 1999-03-23 | Neorx Corporation | Hepatic-directed compounds and reagents for preparation thereof |
US20040258688A1 (en) | 1995-01-31 | 2004-12-23 | Daniel Hawiger | Enhanced antigen delivery and modulation of the immune response therefrom |
WO1996023882A1 (en) | 1995-01-31 | 1996-08-08 | The Rockefeller University | IDENTIFICATION OF DEC, (DENTRITIC AND EPITHELIAL CELLS, 205 kDa), A RECEPTOR WITH C-TYPE LECTIN DOMAINS, NUCLEIC ACIDS ENCODING DEC, AND USES THEREOF |
US20020187131A1 (en) | 1995-01-31 | 2002-12-12 | Daniel Hawiger | Enhanced antigen delivery and modulation of the immune response therefrom |
AU699216B2 (en) | 1995-06-07 | 1998-11-26 | Immunomedics Inc. | Improved delivery of diagnostic and therapeutic agents to a target site |
US6512103B1 (en) | 1995-12-08 | 2003-01-28 | Schering Corporation | Mammalian chemokine reagents |
US6060054A (en) | 1996-04-10 | 2000-05-09 | National Jewish Medical And Research Center | Product for T lymphocyte immunosuppression |
US6124128A (en) | 1996-08-16 | 2000-09-26 | The Regents Of The University Of California | Long wavelength engineered fluorescent proteins |
WO1998015263A2 (en) | 1996-10-09 | 1998-04-16 | Takeda Chemical Industries, Ltd. | A method for producing a microparticle |
US5994104A (en) | 1996-11-08 | 1999-11-30 | Royal Free Hospital School Of Medicine | Interleukin-12 fusion protein |
US20030103967A1 (en) | 1997-01-07 | 2003-06-05 | Habib Zaghouani | Compounds, compositions and methods for the endocytic presentation of immunosuppressive factors |
US6737057B1 (en) | 1997-01-07 | 2004-05-18 | The University Of Tennessee Research Corporation | Compounds, compositions and methods for the endocytic presentation of immunosuppressive factors |
US20090280132A1 (en) | 1997-01-07 | 2009-11-12 | Habib Zaghouani | Coupling of peripheral tolerance to endogenous il-10 promotes effective modulation of t cells and ameliorates autoimmune disease |
WO2000001732A2 (en) | 1998-07-06 | 2000-01-13 | The University Of Tennessee Research Corporation | Compounds, compositions and methods for the endocytic presentation of immunosuppressive factors |
US20020081298A1 (en) | 1997-01-07 | 2002-06-27 | Habib Zaghouani | Compounds, compositions and methods for the endocytic presentation of immunosuppressive factors |
US20070218053A1 (en) | 1997-01-07 | 2007-09-20 | Habib Zaghouani | Coupling of peripheral tolerance to endogenous il-10 promotes effective modulation of t cells and ameliorates autoimmune disease |
US5948639A (en) | 1997-04-10 | 1999-09-07 | Millennium Pharmaceuticals, Inc. | TGF-β pathway genes |
DE69838061T2 (en) | 1997-04-18 | 2008-03-13 | Biogen Idec Ma Inc., Cambridge | TYPE II TGF-BETA RECEPTOR / IMMUNOGLOBULIN CONSTANT DOMAIN FUSION PROTEINS |
CU22737A1 (en) | 1997-04-28 | 2002-02-28 | Ct Ingenieria Genetica Biotech | RECOMBINANT FUSION PROTEINS BASED ON BACTERIAL ADHESINS FOR THE DEVELOPMENT OF DIAGNOSTIC TESTS |
US6120770A (en) | 1997-09-12 | 2000-09-19 | University Of Notre Dame Du Lac | Plasmodium proteins useful for preparing vaccine compositions |
US6953675B2 (en) | 1997-11-06 | 2005-10-11 | Immunomedics, Inc. | Landscaped antibodies and antibody fragments for clinical use |
US6703488B1 (en) | 1998-01-15 | 2004-03-09 | Center For Molecular Medicine And Immunology | Antibody/receptor targeting moiety for enhanced delivery of armed ligand |
ATE424415T1 (en) | 1998-01-15 | 2009-03-15 | Ct Molecular Med & Immunology | BI-SPECIFIC ßTARGETING MOIETYß COMPRISING AN ANTIBODY AGAINST CEA (CARCINOEMBRYONIC ANTIGEN) AND THE LIGAND-BINDING REGION OF THE IL13RECEPTOR ALPHA SUBUNIT |
AU2329199A (en) | 1998-01-29 | 1999-08-16 | Poly-Med, Inc. | Absorbable microparticles |
AU2903999A (en) | 1998-03-12 | 1999-09-27 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Methods and compositions of chemokine-tumor antigen fusion proteins as cancer vaccines |
US6224794B1 (en) | 1998-05-06 | 2001-05-01 | Angiotech Pharmaceuticals, Inc. | Methods for microsphere production |
US7041287B2 (en) | 1998-05-21 | 2006-05-09 | Trustees Of The University Of Pennsylvania | Compositions and methods for selective dissolution of nascent intravascular blood clots |
WO1999059611A1 (en) | 1998-05-21 | 1999-11-25 | The Trustees Of The University Of Pennsylvania | Compositions and methods for prevention and treatment of uncontrolled formation of intravascular fibrin clots |
WO1999065948A1 (en) | 1998-06-16 | 1999-12-23 | Biogen, Inc. | Variant type ii tgf-beta receptor fusion proteins and methods |
JP3762222B2 (en) | 1998-10-07 | 2006-04-05 | ストライカー・コーポレーション | Modified TGF-β superfamily protein |
EP1046651A1 (en) | 1999-04-19 | 2000-10-25 | Koninklijke Universiteit Nijmegen | Composition and method for modulating dendritic cell-T interaction |
FR2794461B1 (en) | 1999-06-07 | 2004-01-23 | Lab Francais Du Fractionnement | PROCESS FOR THE PREPARATION OF NEW HUMAN IG FRACTIONS HAVING IMMUNOMODULATORY ACTIVITY |
WO2001022995A1 (en) | 1999-09-30 | 2001-04-05 | Novo Nordisk A/S | A method for preparing conjugates between an antigen and mucosal binding component |
GB9923306D0 (en) | 1999-10-01 | 1999-12-08 | Isis Innovation | Diagnostic and therapeutic epitope, and transgenic plant |
US6926898B2 (en) | 2000-04-12 | 2005-08-09 | Human Genome Sciences, Inc. | Albumin fusion proteins |
JP2004509978A (en) | 2000-06-05 | 2004-04-02 | ユニバーシティ オブ テネシー コーポレイション | Compositions and methods for endocytic presentation of immunosuppressive factors |
IL153853A0 (en) | 2000-07-10 | 2003-07-31 | Novartis Ag | Bifunctional molecules and vectors complexed therewith for targeted gene delivery |
WO2002011756A2 (en) | 2000-08-07 | 2002-02-14 | Entremed, Inc. | Anti-plasmodium compositions and methods of use |
GB0019302D0 (en) | 2000-08-08 | 2000-09-27 | Univ Nottingham Trent | Biological materials and the use thereof for the treatment of disease |
SE0003538D0 (en) | 2000-09-29 | 2000-09-29 | Isconova Ab | New immunogenic complex |
AU2002245205B2 (en) | 2000-10-19 | 2007-07-19 | Ecole Polytechnique Federale De Lausanne | Block copolymers for multifunctional self-assembled systems |
US7470420B2 (en) | 2000-12-05 | 2008-12-30 | The Regents Of The University Of California | Optical determination of glucose utilizing boronic acid adducts |
US7175988B2 (en) | 2001-02-09 | 2007-02-13 | Human Genome Sciences, Inc. | Human G-protein Chemokine Receptor (CCR5) HDGNR10 |
CA2437814C (en) | 2001-02-12 | 2008-05-13 | Medarex, Inc. | Human monoclonal antibodies to fc alpha receptor (cd89) |
EP1241249A1 (en) | 2001-03-12 | 2002-09-18 | Gerold Schuler | CD4+CD25+regulatory T cells from human blood |
EP1377353A4 (en) | 2001-04-10 | 2005-08-31 | Bioergonomics Inc | Cell separation compositions and methods |
CA2446584A1 (en) | 2001-05-09 | 2002-11-14 | Ecd Systems, Inc. | Systems and methods for the prevention of unauthorized use and manipulation of digital content |
GB0113798D0 (en) | 2001-06-06 | 2001-07-25 | Chiron Spa | Antigens and vectors for vaccination |
US20040185057A1 (en) | 2001-06-15 | 2004-09-23 | Kirkby Nikolai Soren | Therapeutical vaccination |
US7704964B2 (en) | 2001-08-17 | 2010-04-27 | Exothera L.L.C. | Methods and compounds for the targeting of protein to exosomes |
FR2829500B1 (en) | 2001-09-13 | 2003-12-12 | Hemosystem | PROCESS FOR THE CONCENTRATION AND DETECTION OF PATHOGENIC SPROUTS FROM BLOOD PRODUCTS AND / OR DERIVATIVES THEREOF AND DEVICE FOR CARRYING OUT SAID METHOD |
EP2428226A1 (en) | 2001-10-22 | 2012-03-14 | The Scripps Research Institute | Antibody targeting compounds |
US20050053579A1 (en) | 2001-10-23 | 2005-03-10 | Jacques Galipeau | Novel synthetic chimeric fusion transgene with immuno-therapeutic uses |
US20030211078A1 (en) | 2001-12-07 | 2003-11-13 | Heavner George A. | Pseudo-antibody constructs |
GB0202399D0 (en) | 2002-02-01 | 2002-03-20 | Univ Bristol | Peptide |
AU2003216184A1 (en) | 2002-02-05 | 2003-09-02 | The Regents Of The University Of California | Nucleic acid molecules encoding cd1-derived endosomal targeting proteins and uses thereof |
GB0212885D0 (en) | 2002-06-05 | 2002-07-17 | Isis Innovation | Therapeutic epitopes and uses thereof |
CN101057976B (en) | 2002-08-06 | 2010-05-26 | 洛马林达大学 | Substances for preventing and treating autoimmune diseases |
US20040146948A1 (en) | 2002-10-18 | 2004-07-29 | Centenary Institute Of Cancer Medicine And Cell Biology | Compositions and methods for targeting antigen-presenting cells with antibody single-chain variable region fragments |
ES2392511T3 (en) | 2002-11-15 | 2012-12-11 | Musc Foundation For Research Development | Complement modulators targets on complement receptor 2 |
US20060173168A1 (en) | 2002-12-16 | 2006-08-03 | Wayne State University | Bioactive peptides and unique ires elements from myelin proteolipid protein plp/dm20 |
CN1756564A (en) | 2003-03-04 | 2006-04-05 | 亚历森制药有限公司 | Method of treating autoimmune disease by inducing antigen presentation by tolerance inducing antigen presenting cells |
US20050281828A1 (en) | 2003-03-04 | 2005-12-22 | Bowdish Katherine S | Method of treating autoimmune disease by inducing antigen presentation by tolerance inducing antigen presenting cells |
DE602004017447D1 (en) | 2003-04-28 | 2008-12-11 | Sekisui Chemical Co Ltd | COMPLEX OF CHAPERONE AND TARGET PROTEIN, METHOD FOR THE PRODUCTION THEREOF, METHOD FOR STABILIZING THE TARGET PROTEIN, PROCESS FOR IMMOBILIZING THE TARGET PROTEIN, METHOD FOR ANALYZING THE STRUCTURE OF THE TARGET PROTEIN, PREPARING WITH RETARDANT RELEASE AND METHOD FOR PRODUCING ANTIBODIES AGAINST THE TARGET PROTEIN |
CA2524615A1 (en) | 2003-05-12 | 2004-11-18 | Tolerogen, Ltd. | Immunoglobulin conjugates of autoantigens and their use in the prevention of disease |
US8007805B2 (en) | 2003-08-08 | 2011-08-30 | Paladin Labs, Inc. | Chimeric antigens for breaking host tolerance to foreign antigens |
WO2005019429A2 (en) | 2003-08-22 | 2005-03-03 | Potentia Pharmaceuticals, Inc. | Compositions and methods for enhancing phagocytosis or phagocyte activity |
US20050100964A1 (en) | 2003-11-11 | 2005-05-12 | George Jackowski | Diagnostic methods for congestive heart failure |
WO2005051174A2 (en) | 2003-11-21 | 2005-06-09 | The Trustees Of Columbia University In The City Of New York | Nucleic acid aptamer-based compositions and methods |
US20110064754A1 (en) | 2005-03-03 | 2011-03-17 | Center For Molecular Medicine And Immunology | Immunoconjugates Comprising Poxvirus-Derived Peptides and Antibodies Against Antigen-Presenting Cells for Subunit-Based Poxvirus Vaccines |
FR2869323B1 (en) | 2004-04-22 | 2006-07-21 | Univ Reims Champagne Ardenne | USE OF THE GENE ENCODING THE BETA CHAIN OF THE PROTEIN C4BP IN THE PRODUCTION OF RECOMBINANT DIMERIC PROTEINS |
EP1755639B1 (en) | 2004-04-28 | 2017-08-16 | BTG International Limited | Epitopes related to coeliac disease |
AU2005258281A1 (en) | 2004-06-24 | 2006-01-05 | The Scripps Research Institute | Arrays with cleavable linkers |
US8273357B2 (en) | 2004-07-16 | 2012-09-25 | Massachusetts Institute Of Technology | Antigen-carbohydrate conjugates |
FR2873925B1 (en) | 2004-08-05 | 2006-10-13 | Erytech Pharma Soc Par Actions | METHOD AND DEVICE FOR LYSE-RESCALING FOR THE INCORPORATION OF ACTIVE PRINCIPLE, IN PARTICULAR ASPARAGINASE OR INOSITOL HEXAPHOSPHATE, IN ERYTHROCYTES |
TW200616604A (en) | 2004-08-26 | 2006-06-01 | Nicholas Piramal India Ltd | Nitric oxide releasing prodrugs containing bio-cleavable linker |
WO2006034081A2 (en) | 2004-09-17 | 2006-03-30 | Massachusetts Institute Of Technology | Polymers for analyte detection |
US20080233143A1 (en) | 2005-02-07 | 2008-09-25 | Lipotek Pty Ltd. | Adjuvanting Material |
AU2006218454B2 (en) | 2005-03-03 | 2011-11-17 | Immunomedics, Inc. | Humanized L243 antibodies |
FR2884717B1 (en) | 2005-04-25 | 2009-07-03 | Erytech Pharma Soc Par Actions | ERYTHROCYTES CONTAINING ARGININE DEIMINASE |
JP5329949B2 (en) | 2005-05-31 | 2013-10-30 | エコーレ ポリテクニーク フェデラーレ デ ローザンヌ | Triblock copolymers for cytoplasmic delivery of gene-based drugs |
US7811809B2 (en) | 2005-06-15 | 2010-10-12 | Saint Louis University | Molecular biosensors for use in competition assays |
SI1904104T1 (en) | 2005-07-08 | 2013-12-31 | Biogen Idec Ma Inc. | Sp35 antibodies and uses thereof |
FI20050814A0 (en) | 2005-08-11 | 2005-08-11 | Procollagen Oy | Procedure for observing autoantibodies formed in rheumatoid arthritis |
US20090130104A1 (en) | 2005-10-05 | 2009-05-21 | The Trustees Of The University Of Pennsylvania | Fusion proteins for inhibition and dissolution of coagulation |
WO2007061936A2 (en) | 2005-11-18 | 2007-05-31 | New England Medical Center Hospitals, Inc. | Clearance of abnormal iga1 in iga1 deposition diseases |
JP5410759B2 (en) | 2005-11-29 | 2014-02-05 | アクトジェニックス・エヌブイ | Induction of mucosal tolerance to antigens |
WO2007097934A2 (en) | 2006-02-17 | 2007-08-30 | Elusys Therapeutics, Inc. | Methods and compositions for using erythrocytes as carriers for delivery of drugs |
US8021689B2 (en) | 2006-02-21 | 2011-09-20 | Ecole Polytechnique Federale de Lausanne (“EPFL”) | Nanoparticles for immunotherapy |
US7420041B2 (en) | 2006-02-24 | 2008-09-02 | Arius Research Inc. | Cytotoxicity mediation of cells evidencing surface expression of TROP-2 |
US20080213267A1 (en) | 2006-02-24 | 2008-09-04 | Arius Research, Inc. | Cytotoxicity mediation of cells evidencing surface expression of TROP-2 |
US20080305104A1 (en) | 2006-02-24 | 2008-12-11 | Young David S F | Cytotoxicity mediation of cells evidencing surface expression of TROP-2 |
US20080131428A1 (en) | 2006-02-24 | 2008-06-05 | Arius Research, Inc. | Cytotoxicity mediation of cells evidencing surface expression of TROP-2 |
WO2007099387A1 (en) | 2006-03-03 | 2007-09-07 | Mymetics Corporation | Virosome-like vesicles comprising gp41-derived antigens |
ZA200808289B (en) | 2006-03-09 | 2010-02-24 | Aplagen Gmbh | Modified molecules which promote hematopoiesis |
CA2680228A1 (en) | 2006-03-09 | 2007-09-13 | Aplagen Gmbh | Modified molecules which promote hematopoiesis |
WO2007130873A2 (en) | 2006-04-28 | 2007-11-15 | Regents Of The University Of Minnesota | Liver-specific nanocapsules and methods of using |
WO2007150020A1 (en) | 2006-06-23 | 2007-12-27 | Simon Paul M | Targeted immune conjugates |
EP2077821B1 (en) | 2006-10-12 | 2019-08-14 | The University Of Queensland | Compositions and methods for modulating immune responses |
WO2008130382A2 (en) | 2006-10-31 | 2008-10-30 | East Carolina University | Fusion proteins comprising an anti -inflammatory cytokine and an antigen for treatment of immune disorders |
CA2667802A1 (en) | 2006-11-03 | 2008-05-29 | Northwestern University | Multiple sclerosis therapy |
WO2008057501A2 (en) | 2006-11-06 | 2008-05-15 | Whitehead Institute | Immunomodulating compositions and methods of use thereof |
US9457047B2 (en) | 2006-11-06 | 2016-10-04 | Whitehead Institute | Immunomodulating compositions and methods of use thereof |
EP1938836A1 (en) | 2006-12-28 | 2008-07-02 | Universite Rene Descartes (Paris V) | Compositions comprising a B subunit of shiga toxin and a means stimulating NKT cells |
EP2115002B1 (en) | 2007-02-02 | 2014-08-20 | Baylor Research Institute | Vaccines based on targeting antigen to dcir expressed an antigen-presenting cells |
JP5543785B2 (en) | 2007-02-02 | 2014-07-09 | ベイラー リサーチ インスティテュート | Multiple variable antigens complexed with humanized targeting monoclonal antibodies |
TWI422594B (en) | 2007-02-02 | 2014-01-11 | Baylor Res Inst | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (dc-asgpr) |
TW200846363A (en) | 2007-03-22 | 2008-12-01 | Urrma R & B | Novel human anti-R7V antibodies and uses thereof |
ES2470772T3 (en) | 2007-05-11 | 2014-06-24 | Altor Bioscience Corporation | Fusion molecules and variants of IL-15 |
WO2008151005A2 (en) | 2007-05-31 | 2008-12-11 | Transtarget, Inc. | Compositions and methods for tissue repair |
US7507539B2 (en) | 2007-07-30 | 2009-03-24 | Quest Diagnostics Investments Incorporated | Substractive single label comparative hybridization |
RU2010107199A (en) | 2007-07-31 | 2011-09-10 | Дзе Джонс Хопкинс Юниверсити (Us) | CONJUGATE POLYPEPTIDE-NUCLEIC ACID FOR IMMUNOPROPHYLAXIS OR IMMUNOTHERAPY FOR NEOPLASTIC OR INFECTIOUS DISORDERS |
FR2919804B1 (en) | 2007-08-08 | 2010-08-27 | Erytech Pharma | COMPOSITION AND ANTI-TUMOR THERAPEUTIC VACCINE |
WO2009024977A2 (en) | 2007-08-20 | 2009-02-26 | Protalix Ltd. | Saccharide-containing protein conjugates and uses thereof |
MX350501B (en) | 2007-10-12 | 2017-09-07 | Massachusetts Inst Technology | Vaccine nanotechnology. |
US9260692B2 (en) | 2007-10-31 | 2016-02-16 | Universitat Zurich | Use of modified cells for the treatment of multiple sclerosis |
EP2057998A1 (en) | 2007-10-31 | 2009-05-13 | Universitätsklinikum Hamburg-Eppendorf | Use of modified cells for the treatment of multiple sclerosis |
CA2708942A1 (en) | 2007-12-19 | 2009-06-25 | Mivac Development Aktiebolag | Compositions and methods for treatment of autoimmune and allergic diseases |
FR2925339B1 (en) | 2007-12-24 | 2010-03-05 | Erytech Pharma | DRUG FOR THE TREATMENT OF PANCREATIC CANCER |
WO2009086552A1 (en) | 2008-01-02 | 2009-07-09 | The Trustees Of The University Of Pennsylvania | Targeting recombinant therapeutics to circulating red blood cells |
CA2715379A1 (en) | 2008-02-13 | 2009-08-20 | Erytech Pharma | Formulation and method for the prevention and treatment of skeletal manifestation of gaucher's disease |
FR2928270B1 (en) | 2008-03-10 | 2011-01-21 | Erytech Pharma | FORMULATION METHOD FOR THE PREVENTION OR TREATMENT OF BONE METASTASES AND OTHER BONE DISEASES |
NZ588658A (en) | 2008-03-28 | 2012-10-26 | Mitomics Inc | Aberrant mitochondrial dna, associated fusion transcripts and hybridization probes therefor |
AU2009228217A1 (en) | 2008-03-28 | 2009-10-01 | The Regents Of The University Of California | Polypeptide-polymer conjugates and methods of use thereof |
US8617823B2 (en) | 2008-04-29 | 2013-12-31 | Immunexcite, Inc. | Immunomodulating compositions and methods of use thereof |
US8852640B2 (en) | 2008-07-03 | 2014-10-07 | Ecole Polytechnique Federale De Lausanne (Epfl) | Micelles for delivery of nitric oxide |
CA2729961C (en) | 2008-07-09 | 2018-05-01 | Biogen Idec Ma Inc. | Li113, li62 variant co2, anti-lingo antibodies |
US8323696B2 (en) | 2008-08-29 | 2012-12-04 | Ecole Polytechnique Federale De Lausanne | Nanoparticles for immunotherapy |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US8343497B2 (en) | 2008-10-12 | 2013-01-01 | The Brigham And Women's Hospital, Inc. | Targeting of antigen presenting cells with immunonanotherapeutics |
US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
US8277812B2 (en) | 2008-10-12 | 2012-10-02 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IgG humoral response without T-cell antigen |
CN101750244B (en) | 2008-10-13 | 2014-03-12 | 艾博生物医药(杭州)有限公司 | Method for separating red cells from blood sample and application |
US20110262466A1 (en) | 2008-10-16 | 2011-10-27 | The Trustees Of The University Of Pennsylvania | Compositions containing thrombomodulin domains and uses thereof |
FR2938332B1 (en) | 2008-11-07 | 2011-11-25 | Erytech Pharma | PREDICTIVE TEST FOR NEUTRALIZATION OF ASPARAGINASE ACTIVITY |
US8268977B2 (en) | 2008-11-20 | 2012-09-18 | The Board Of Trustees Of The Leland Stanford Junior University | Strongly quenching oligomeric excimer/quencher pairs for detection schemes |
CN102438643B (en) | 2008-11-30 | 2015-07-01 | 免疫桑特公司 | Compositions and methods for treatment of celiac disease |
FR2940087B1 (en) | 2008-12-18 | 2011-05-06 | Lab Francais Du Fractionnement | ERYTHROCYTES CONTAINING FACTOR VIII, PREPARATION AND USES. |
JP2012515722A (en) | 2009-01-20 | 2012-07-12 | ノースウェスタン ユニバーシティ | Compositions and methods for induction of antigen-specific tolerance |
EP2406286B1 (en) | 2009-03-10 | 2016-05-18 | Baylor Research Institute | Anti-cd40 antibodies and uses thereof |
BRPI1009458A2 (en) | 2009-03-10 | 2016-03-01 | Baylor Res Inst | antiviral vaccines targeted at antigen presenting cells |
CN103415534A (en) | 2009-03-10 | 2013-11-27 | 贝勒研究院 | Antigen presenting cell targeted cancer vaccines |
US9371386B2 (en) | 2009-03-16 | 2016-06-21 | Daniel A. Vallera | Methods and compositions for bi-specific targeting of CD19/CD22 |
FR2944106B1 (en) | 2009-04-03 | 2012-09-28 | Erytech Pharma | METHOD OF DETERMINING INOSITOL HEXAPHOSPHATE (IHP). |
SG177761A1 (en) | 2009-07-31 | 2012-03-29 | Ascendis Pharma As | Biodegradable polyethylene glycol based water-insoluble hydrogels |
CN102741279A (en) | 2009-08-31 | 2012-10-17 | 艾普利穆恩公司 | B7-h4 fusion proteins and methods of use thereof |
US8734786B2 (en) | 2009-09-16 | 2014-05-27 | Northwestern University | Use of ECDI-fixed cell tolerance as a method for preventing allograft rejection |
GB0916749D0 (en) | 2009-09-23 | 2009-11-04 | Mologic Ltd | Peptide cleaning agents |
US20110091493A1 (en) | 2009-10-16 | 2011-04-21 | Northwestern University | Vaccine compositions and uses thereof |
CA2778669C (en) | 2009-10-27 | 2019-04-16 | Erytech Pharma | Composition to induce specific immune tolerance |
WO2011072290A2 (en) | 2009-12-11 | 2011-06-16 | The Regents Of The University Of Michigan | Targeted dendrimer-drug conjugates |
CA2786660A1 (en) | 2010-01-14 | 2011-07-21 | Glaxo Group Limited | Liver targeting molecules |
WO2011092715A2 (en) | 2010-01-27 | 2011-08-04 | Tata Memorial Centre | Method for in-vivo binding of chromatin fragments |
US8592364B2 (en) | 2010-02-11 | 2013-11-26 | Ecole Polytechnique Federale de Lausanne (“EPFL”) | CCR7 ligand delivery and co-delivery in immunotherapy |
WO2011112482A2 (en) | 2010-03-08 | 2011-09-15 | University Of Utah Research Foundation | Polymeric drug delivery conjugates and methods of making and using thereof |
IT1399590B1 (en) | 2010-04-26 | 2013-04-26 | Erydel Spa | APPARATUS AND KIT FOR ENCAPSING AT LEAST A COMPOUND FOR THERAPEUTIC AND / OR DIAGNOSTIC USE WITHIN ERYTHROCYTES |
WO2011136645A1 (en) | 2010-04-27 | 2011-11-03 | Stichting Katholieke Universiteit, More Particularly Radboud University Nijmegen | Fused cyclooctyne compounds and their use in metal-free click reactions |
WO2011137354A2 (en) | 2010-04-30 | 2011-11-03 | Augmenta Biologicals, Llc | Delivery proteins |
WO2011154887A1 (en) | 2010-06-07 | 2011-12-15 | Assistance Publique - Hopitaux De Paris | Mellitin for the use thereof in the treatment of parkinson's disease |
WO2012018380A2 (en) | 2010-07-31 | 2012-02-09 | The Scripps Research Institute | Compositions and methods for inducing immune tolerance |
CA2807139A1 (en) | 2010-07-31 | 2012-02-09 | The Scripps Research Institute | Liposome targeting compounds and related uses |
CA2807942C (en) | 2010-08-10 | 2021-07-27 | Ecole Polytechnique Federale De Lausanne | Erythrocyte-binding therapeutics |
US9517257B2 (en) | 2010-08-10 | 2016-12-13 | Ecole Polytechnique Federale De Lausanne (Epfl) | Erythrocyte-binding therapeutics |
US9850296B2 (en) | 2010-08-10 | 2017-12-26 | Ecole Polytechnique Federale De Lausanne (Epfl) | Erythrocyte-binding therapeutics |
CA2814143C (en) | 2010-10-12 | 2020-09-08 | The Children's Hospital Of Philadelphia | Methods and compositions for treating hemophilia b |
US20120121592A1 (en) | 2010-10-13 | 2012-05-17 | Baylor Research Institute | Targeting Antigens to Human Dendritic Cells Via DC-Asialoglycoprotein Receptor to Produce IL-10 Regulatory T-Cells |
SE535625C2 (en) | 2010-10-28 | 2012-10-16 | Toleranzia Ab | New compositions and procedures for the treatment of autoimmune and allergic diseases |
US8501930B2 (en) | 2010-12-17 | 2013-08-06 | Arrowhead Madison Inc. | Peptide-based in vivo siRNA delivery system |
WO2012112690A2 (en) | 2011-02-16 | 2012-08-23 | Fabius Biotechnology | Targeting of therapeutic drugs and diagnostic agents employing collagen binding domains |
CA2838158C (en) | 2011-06-03 | 2019-07-16 | 3M Innovative Properties Company | Heterobifunctional linkers with polyethylene glycol segments and immune response modifier conjugates made therefrom |
US10227290B2 (en) | 2012-02-07 | 2019-03-12 | The Regents Of The University Of California | Glycosphingolipids for use in modulating immune responses |
MX2014009900A (en) | 2012-02-15 | 2015-06-02 | Ecole Polytech | Erythrocyte-binding therapeutics. |
WO2013155526A2 (en) | 2012-04-13 | 2013-10-17 | Whitehead Institute For Biomedical Research | Sortase- modified vhh domains and uses thereof |
WO2013160865A1 (en) | 2012-04-26 | 2013-10-31 | Toleranzia Ab | Immunotolerizing fusion proteins for treatment of multiple sclerosis |
US9688991B2 (en) | 2012-07-13 | 2017-06-27 | Albert Einstein College Of Medicine, Inc. | Aptamer-targetted antigen delivery |
CN109705218B (en) | 2012-08-09 | 2022-07-19 | 罗切格利卡特公司 | ASGPR antibodies and uses thereof |
US10548957B2 (en) | 2012-09-28 | 2020-02-04 | Dana-Farber Cancer Institute, Inc. | Targeted expansion of Qa-1-peptide-specific regulatory CD8 T cells to ameliorate arthritis |
US9371352B2 (en) | 2013-02-08 | 2016-06-21 | Vaccinex, Inc. | Modified glycolipids and methods of making and using the same |
EP2964677A1 (en) | 2013-03-04 | 2016-01-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Fusion proteins and immunoconjugates and uses thereof |
EP2983791A4 (en) | 2013-04-11 | 2016-11-09 | Brigham & Womens Hospital | Methods and compositions of treating autoimmune diseases |
WO2014176125A1 (en) | 2013-04-22 | 2014-10-30 | The Scripps Research Institute | Methods and compositions for treating bleeding disorders |
US10046056B2 (en) * | 2014-02-21 | 2018-08-14 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
US10946079B2 (en) * | 2014-02-21 | 2021-03-16 | Ecole Polytechnique Federale De Lausanne | Glycotargeting therapeutics |
MX2016010835A (en) | 2014-02-21 | 2017-07-11 | Anokion Sa | Glycotargeting therapeutics. |
ES2865825T3 (en) | 2014-04-01 | 2021-10-18 | Rubius Therapeutics Inc | Methods and compositions for immunomodulation |
RS58440B1 (en) | 2014-04-11 | 2019-04-30 | Medimmune Llc | Conjugated compounds comprising cysteine-engineered antibodies |
EP3152233A1 (en) | 2014-05-08 | 2017-04-12 | The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. | USING B-CELL-TARGETING ANTIGEN IgG FUSION AS TOLEROGENIC PROTEIN THERAPY FOR TREATING ADVERSE IMMUNE RESPONSES |
CN106659774A (en) | 2014-05-16 | 2017-05-10 | 贝勒研究院 | Methods and compositions for treating autoimmune and inflammatory conditions |
ES2962260T3 (en) | 2014-08-08 | 2024-03-18 | Univ Leland Stanford Junior | SIRPa alpha-antibody fusion proteins |
US20160060358A1 (en) | 2014-08-28 | 2016-03-03 | California Institute Of Technology | Induction of antigen-specific tolerance |
BR122023020794A2 (en) | 2014-09-17 | 2024-01-23 | Spogen Biotech Inc. | RECOMBINANT BACILLUS BACTERIA AND ITS FORMULATION |
MA40861A (en) | 2014-10-31 | 2017-09-05 | Biogen Ma Inc | ANTI-GLYCOPROTEIN IIB / IIIA ANTIBODIES |
WO2016161372A1 (en) | 2015-04-01 | 2016-10-06 | President And Fellows Of Harvard College | Immunoconjugates for programming or reprogramming of cells |
US20180104284A1 (en) | 2015-05-13 | 2018-04-19 | Advaxis, Inc. | Immunogenic Listeria-Based Compositions Comprising Truncated Acta-Antigen Fusions And Methods Of Use Thereof |
CN107709356A (en) | 2015-06-26 | 2018-02-16 | 南加利福尼亚大学 | Masking Chimeric antigen receptor T cell for tumour-specific activation |
WO2017015141A1 (en) | 2015-07-17 | 2017-01-26 | President And Fellows Of Harvard College | Humanized anti-glycophorin a antibodies and uses thereof |
WO2017023779A1 (en) | 2015-07-31 | 2017-02-09 | Tarveda Therapeutics, Inc. | Compositions and methods for immuno-oncology therapies |
WO2017025889A1 (en) | 2015-08-13 | 2017-02-16 | Pfizer Inc. | Polymeric nanoparticles with dec-205 ligand and co-encapsulating an antigen subject to an autoimmune response and a glucocorticoid receptor agonist |
CA2997442C (en) | 2015-09-04 | 2021-01-26 | Yale University | Polymeric bile acid nanocompositions targeting the pancreas and colon |
CA2998115A1 (en) | 2015-09-10 | 2017-03-16 | Albert Einstein College Of Medicine, Inc. | Synthetic antibodies to bax and uses thereof |
EA036102B9 (en) | 2015-09-19 | 2020-12-30 | Эколь Политекник Федераль Де Лозан | Glycotargeting therapeutics |
US11484599B2 (en) | 2015-09-29 | 2022-11-01 | The University Of Chicago | Polymer conjugate vaccines |
CA3040110A1 (en) | 2015-10-13 | 2017-04-20 | Daniel C. Carter | Nsp10 self-assembling fusion proteins for vaccines, therapeutics, diagnostics and other nanomaterial applications |
AU2016375021B2 (en) | 2015-12-22 | 2022-02-03 | CureVac SE | Method for producing RNA molecule compositions |
JP7194593B2 (en) | 2015-12-23 | 2022-12-22 | クール ファーマシューティカルズ ディベロップメント カンパニー インコーポレイテッド | Covalent polymer antigen-conjugated particles |
KR20180105243A (en) | 2016-02-09 | 2018-09-27 | 코어 파마슈티칼스 디벨롭먼트 컴퍼니 인크. | TIMPS encapsulating Japanese cedar pollen epitope |
WO2017139787A1 (en) | 2016-02-12 | 2017-08-17 | Bloodworks | Therapeutic induction of tolerance using recombinant cell surface antigens |
WO2017155981A1 (en) | 2016-03-07 | 2017-09-14 | Massachusetts Institute Of Technology | Protein-chaperoned t-cell vaccines |
AU2017259987B2 (en) | 2016-05-03 | 2023-10-19 | Sqz Biotechnologies Company | Intracellular delivery of biomolecules to induce tolerance |
WO2017192786A1 (en) | 2016-05-03 | 2017-11-09 | Sqz Biotechnologies Company | Intracellular delivery of biomolecules to induce tolerance |
US20170326213A1 (en) | 2016-05-16 | 2017-11-16 | Augusta University Research Institute, Inc. | Protein-Coupled Red Blood Cell Compositions and Methods of Their Use |
JP6687498B2 (en) | 2016-10-25 | 2020-04-22 | 住友ナコ フォ−クリフト株式会社 | Mounting bracket for camera |
EP3638296A1 (en) | 2017-06-16 | 2020-04-22 | The University Of Chicago | Compositions and methods for inducing immune tolerance |
EP3712178A4 (en) | 2017-11-14 | 2021-08-11 | Green Cross Lab Cell Corporation | Anti-her2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same |
JP2021519305A (en) | 2018-03-26 | 2021-08-10 | ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago | Methods and compositions for targeting sinusoidal endothelial cell type C lectin (LSECTin) in the liver and lymph nodes |
EP3790901A1 (en) | 2018-05-07 | 2021-03-17 | Anokion SA | Glycophorin a antigen-binding proteins |
-
2016
- 2016-06-17 US US15/185,564 patent/US10046056B2/en active Active
-
2018
- 2018-07-05 US US16/028,209 patent/US10940209B2/en active Active
-
2019
- 2019-12-20 US US16/723,914 patent/US11793882B2/en active Active
-
2022
- 2022-07-01 US US17/810,561 patent/US20230115331A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11801305B2 (en) * | 2014-02-21 | 2023-10-31 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
US20210244812A1 (en) * | 2018-05-09 | 2021-08-12 | The University Of Chicago | Compositions and methods concerning immune tolerance |
US20230069712A1 (en) * | 2019-09-20 | 2023-03-02 | Anokion Sa | Compounds for the induction of antigen-specific immune tolerance |
Non-Patent Citations (7)
Title |
---|
Ashwell et al., Ann. Rev. Biochem. 51:531-554 (1982) (Year: 1982) * |
Buzzetti et al., Diabetes 69:2037-2047 (2020) (Year: 2020) * |
G-Biosciences, Double-Do™ Protein Cross-Linkers, Handbook & Selection Guide, available online at https://wolfson.huji.ac.il/purification/PDF/ProteinInteractions/GBIOSC_ProtCrossLinkersHandbook.pdf, 16 pages (first available 2011) (Year: 2011) * |
Kumar Chellappan et al., Int. J. Molec. Sci. 23:9470 (2022) (Year: 2022) * |
Roth et al., Macromol. Rapid Commun. 32:1123-1143 (2011) (Year: 2011) * |
Stenzel, ACS Macro Lett. 2:14-18 (2013) (Year: 2013) * |
UniProt Database, Accession No. Q96T92, 10 pages (2010) (Year: 2010) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12060414B2 (en) | 2010-08-10 | 2024-08-13 | École Polytechnique Fédérale De Lausanne (Epfl) | Erythrocyte-binding therapeutics |
US20230093483A1 (en) * | 2014-02-21 | 2023-03-23 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
US20230108299A1 (en) * | 2014-02-21 | 2023-04-06 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
US20230119325A1 (en) * | 2014-02-21 | 2023-04-20 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
Also Published As
Publication number | Publication date |
---|---|
US10940209B2 (en) | 2021-03-09 |
US20170007708A1 (en) | 2017-01-12 |
US20180303951A1 (en) | 2018-10-25 |
US10046056B2 (en) | 2018-08-14 |
US20200129629A1 (en) | 2020-04-30 |
US11793882B2 (en) | 2023-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230115331A1 (en) | Glycotargeting therapeutics | |
US11666638B2 (en) | Glycotargeting therapeutics | |
JP7434248B2 (en) | Sugar targeting therapeutic agent | |
US11801305B2 (en) | Glycotargeting therapeutics | |
US11654188B2 (en) | Glycotargeting therapeutics | |
EA044172B1 (en) | THERAPEUTICS WITH CARBOHYDRATE-MEDIATED TARGETED DELIVERY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL), SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUBBELL, JEFFREY ALAN;WILSON, DAVID SCOTT;SIGNING DATES FROM 20160629 TO 20160630;REEL/FRAME:065347/0638 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |