US20230103780A1 - On-Demand Access to Compute Resources - Google Patents
On-Demand Access to Compute Resources Download PDFInfo
- Publication number
- US20230103780A1 US20230103780A1 US17/960,244 US202217960244A US2023103780A1 US 20230103780 A1 US20230103780 A1 US 20230103780A1 US 202217960244 A US202217960244 A US 202217960244A US 2023103780 A1 US2023103780 A1 US 2023103780A1
- Authority
- US
- United States
- Prior art keywords
- resources
- environment
- demand
- workload
- compute environment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 43
- 230000004044 response Effects 0.000 claims description 19
- 238000012546 transfer Methods 0.000 abstract description 19
- 238000004891 communication Methods 0.000 abstract description 14
- 238000007726 management method Methods 0.000 description 50
- 230000015654 memory Effects 0.000 description 25
- 238000012545 processing Methods 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 230000003068 static effect Effects 0.000 description 11
- 230000008901 benefit Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000005457 optimization Methods 0.000 description 6
- 230000008520 organization Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 206010047289 Ventricular extrasystoles Diseases 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000013523 data management Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000005129 volume perturbation calorimetry Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012946 outsourcing Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000609 ganglia Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000013515 script Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/827—Aggregation of resource allocation or reservation requests
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/83—Admission control; Resource allocation based on usage prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1008—Server selection for load balancing based on parameters of servers, e.g. available memory or workload
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/509—Offload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
Definitions
- the present disclosure relates to an on-demand compute environment and more specifically to a system and method of providing access and use of on-demand compute resources from a local compute environment.
- a cluster is typically defined as a parallel computer that is constructed of commodity components and runs as its system software commodity software.
- a cluster contains nodes each containing one or more processors, memory that is shared by all of the processors in the respective node and additional peripheral devices such as storage disks that are connected by a network that allows data to move between nodes.
- a cluster is one example of a compute environment. Other examples include a grid, which is loosely defined as a group of clusters, and a computer farm which is another organization of computers for processing.
- Enabling capacity on demand in an easy-to-use manner is important to increasing the pervasiveness of hosting in an on-demand computing environment such as a high performance computing or data center environment.
- an on-demand computing environment such as a high performance computing or data center environment.
- Several entities can provide a version of on-demand capability, but there still exists multi-hour or multi-delays in obtaining access to the environment. The delay is due to the inflexibility of transferring workload because the on-demand centers require participating parties to align to certain hardware, operating systems or resource manager environments. These requirements act as inhibitors to widespread adoption of the use of on-demand centers and make it too burdensome for potential customers to try out the service. Users must pay for unwanted or unexpected charges and costs to make the infrastructure changes for compatibility with the on-demand centers.
- the disclosure relates to systems, methods and computer-readable media for controlling and managing the identification and provisioning of resources within an on-demand center as well as the transfer of workload to the provisioned resources.
- One aspect involves creating a virtual private cluster via a reservation of resources within the on-demand center for the particular workload from a local environment.
- One aspect relates to a method of managing resources between a local compute environment and an on-demand environment.
- the method includes detecting an event associated with a local compute environment and, based on the detected event, identifying information about the local environment, establishing a communication with an on-demand compute environment and transmitting the information about the local environment to the on-demand compute environment.
- the system at a first time establishes an advanced reservation of resources in the on-demand compute environment to yield reserved resources.
- the timing of the advanced reservation is at a second time which is later than the first time.
- the system then provisions the reserved resources within the on-demand compute environment to substantially duplicate the local compute environment to yield provisional resources and transfers workload from the local compute environment to the reserved, provisional resources in the on-demand compute environment.
- the event can be a threshold associated with a job processing in the local compute environment or a triggering event within or outside of the local compute environment.
- Another aspect of the disclosure provides for a method including generating at least one profile associated with workload that can be processed in a local compute environment, selecting at the local compute environment a profile from the at least one profile, communicating the selected profile from the local compute environment to the on-demand compute environment, reserving resources in the on-demand compute environment to yield reserved resources, provisioning the reserved resources within the on-demand compute environment according to the selected profile to yield provisional resources and transferring workload from the local-environment to the reserved, provisional resources in the on-demand compute environment.
- the step of generating at least one profile associated with workload that can be processed in a compute environment can be performed in advance of receiving job requests on the local compute environment. Further, generating at least one profile associated with workload that can be processed in a compute environment can be performed dynamically as job requests are received on the local compute environment. There can be one or more profiles generated. Furthermore, one or more of the steps of the method can be performed after an operation from a user or an administrator, such as a one-click operation. Any profile of the generated at least one profile can relate to configuring resources that are different from available resources within the local compute environment.
- Another aspect provides for a method of integrating an on-demand compute environment into a local compute environment.
- This method includes determining whether a backlog workload condition exists in the local compute environment and, if so, then analyzing the backlog workload, communicating information associated with the analysis to the on-demand compute environment, establishing an advanced reservation of resources in the on-demand compute environment to yield reserved resources, provisioning the reserved resources in the on-demand compute environment according to the analyzed backlog workload to yield provisional resources and transferring the backlog workload to the provisioned resources in the on-demand compute environment.
- a method of managing resources between a webserver and an on-demand compute environment includes determining whether web traffic directed to the webserver should be at least partially served via the on-demand compute environment, establishing an advanced reservation of resources in the on-demand compute environment to yield reserved resources, provisioning the reserved resources within the on-demand compute environment to enable it to respond to web traffic for the webserver and to yield provisional resources, establishing a routing of at least part of the web traffic from the webserver to the provisioned resources in the on-demand compute environment and communicating data between a client browser and the on-demand compute environment such that the use of the on-demand compute environment for the web traffic is transparent.
- FIG. 1 illustrates the basic arrangement of the present disclosure
- FIG. 2 illustrates the basic hardware components according to an embodiment of the disclosure
- FIG. 3 illustrates an example graphical interface for use in obtaining on-demand resources
- FIG. 4 illustrates optimization from intelligent data staging
- FIG. 5 illustrates various components of utility-based computing
- FIG. 6 illustrates grid types
- FIG. 7 illustrates grid relationship combinations
- FIG. 8 illustrates graphically a web-server aspect of the disclosure
- FIG. 9 illustrates a method aspect of the disclosure.
- hosting centers In order for hosting centers to obtain the maximum advantage, the hosting centers need to simplify the experience for potential customers, enable fine-grained control over the sharing of resources and also dynamically adjust what is being provided based on each customer's needs. Additional intelligence control optimizes the delivery of resources so that hosting centers can lower costs and provide competitive offerings that will more easily be adopted and used.
- FIG. 1 illustrates the basic arrangement and interaction between a local compute environment 104 and an on-demand hosting center 102 .
- the local compute environment can include a cluster, a grid, or any other variation of these types of multiple node and commonly managed environments.
- the on-demand hosting center or on-demand computing environment 102 includes one or more nodes that are available for reservation and provisioning, and preferably has a dedicated node containing a hosting master 128 which can include a slave management module 106 and/or at least one other module, such as the identity manager 112 and node provisioner 118 .
- the terms software, workload manager (WM), management module, system and so forth can be used to refer generally to software that performs functions similar to one or more of the MoabTM products from Cluster Resources, Inc., but are certainly not limited to the exact implementation of MoabTM (for example, the Moab Workload Manager®, Moab Grid Monitor®, etc.).
- WM can be used to relate to software that performs the steps being discussed.
- Such software provides a service for optimization of a local compute environment and according to the principles of the disclosure can also be used to control access to on-demand resources.
- the software provides an analysis into how & when local resources, such as software and hardware devices, are being used for the purposes of charge-back, planning, auditing, troubleshooting and reporting internally or externally.
- Such optimization enables the local environment to be tuned to get the most out of the resources in the local compute environment.
- the software has detailed knowledge of jobs in a queue that will consume resources in a compute environment.
- the software schedules, at a first time, advanced reservations in the compute environment such that the reservation of resources is at a second time, later than the first time. For example, if a queue has ten jobs waiting, job number four can be analyzed with other jobs in the queue and the software establishes at noon an advanced reservation to run job number four at 2 PM. In this manner, when 2 PM arrives, job number four has resources already reserved (and have been for two hours), such that job number four will consume, at 2 PM, its reserved resources.
- FIG. 4 , portion 404 illustrates advanced reservations in the future for jobs.
- a hosting center 102 will have the following attributes. It allows an organization to provide resources or services to customers where the resources or services are custom-tailored to the needs of the customer. Supporting true utility computing usually requires creating a hosting center 102 with one or more capabilities as follows: use of advanced reservations; secure remote access; guaranteed resource availability at a fixed time or series of times; integrated auditing, accounting, and billing services; tiered service level (QoS/SLA) based resource access; dynamic compute node provisioning; full environment management over compute, network, storage, and application/service based resources; intelligent workload optimization; high availability; failure recovery; and automated re-allocation.
- QoS/SLA tiered service level
- a management module 108 enables utility computing by allowing compute resources to be reserved, allocated, and dynamically provisioned to meet the needs of internal or external workload.
- the management module reserves at a first time specific resources in the environment (local or on-demand) for each job in an access control list.
- the jobs consume the reserved resources at a second time which is later than the first time.
- a management module may establish at 1 PM (a first time), an advanced reservation for resources at 4 PM (a second time which is later than a first time). This yields reserved resources (in the local or on-demand environment) which will be consumed by workload at the second time, i.e., workload will flow to the reserved resources for use at the appointed time and consume the resources then.
- the module 108 , 122 knows how the compute environment will be used in the future because each job in a queue has its own reservation of resources and, therefore, the system knows what the workload use will be at any given time. This is distinguishable from a load balancing approach which does not reserve resources for future use. Thus, at peak workload times or based on some other criteria, the local compute environment does not need to be built out with peak usage in mind. As periodic peak resources are required, triggers can cause overflow to the on-demand environment and thus save money for the customer.
- the module 108 is able to respond to either manual or automatically generated requests and can guarantee resource availability subject to existing service level agreement (SLA) or quality of service (QOS) based arrangements. As an example, FIG.
- SLA service level agreement
- QOS quality of service
- the local environment 104 will typically be a cluster or a grid with local workload. Jobs can be submitted which have explicit resource requirements and will each have an established reservation. Workload can have explicit requirements.
- the local environment 104 will have various attributes such as operating systems, architecture, network types, applications, software, bandwidth capabilities, etc., which are expected by the job implicitly. In other words, jobs will typically expect that the local environment will have certain attributes that will enable it to consume resources in an expected way. These expected attributes can be duplicated or substantially duplicated in an on-demand environment, or substitute resources (which can be an improvement or less optimal) can be provisioned in the on-demand environment.
- the management module When accessing the on-demand compute environment, the management module will reserve the necessary resources in the on-demand environment to prepare for the overflow of workload.
- An example of a duplicated or substantially duplicated environment is when the local environment utilizes Pentium CPUs and the Linux v.2 Operating System.
- the on-demand center may reserve and provision AMD CPUs or Pentium CPUs and Linux v.3 Operating Systems.
- the version of Linux is not exactly the same as in the local environment and is not sufficient to meet the affinity requests of the workload that will be transferred.
- a distributed resource manager such as Torque 128 and various nodes 130 , 132 and 134 .
- the management modules can interact and operate with any resource manager, such as Torque, LSF, SGE, PBS and LoadLeveler and are agnostic in this regard.
- Any resource manager such as Torque, LSF, SGE, PBS and LoadLeveler and are agnostic in this regard.
- a hosting master or hosting management module 106 can also be an instance of a MoabTM software product with hosting center capabilities to enable an organization to dynamically control network, advanced reservation, compute, application, and storage resources and to dynamically reserve and provision operating systems, security, credentials, and other aspects of a complete end-to-end compute environment.
- Module 106 is responsible for knowing all the policies, guarantees, promises and also for managing the provisioning of resources within the utility computing space 102 .
- module 106 can be referred to as the “master” module in that it couples and needs to know all of the information associated with both the utility environment and the local environment.
- slave module or provisioning broker wherein it takes instructions from the customer management module 108 for provisioning resources and builds whatever environment is requested in the on-demand center 102 .
- a slave module would have none of its own local policies but rather follows all requests from another management module. For example, when module 106 is the slave module, then a master module 108 would submit automated or manual (via an administrator or user) requests that the slave module 106 simply follows to manage the reservations of and build out of the requested environment.
- a single easily usable interface can increase efficiency; reduce costs, including management costs; and improve investments in the local customer environment.
- the interface to the local environment which also has the access to the on-demand environment, can be a web-interface or an access portal. Restrictions of feasibility only can exist.
- the customer module 108 would have rights and ownership of all resources.
- the reserved and allocated resources would not be shared, but would be dedicated to the requestor.
- any policy restrictions will preferably occur on the master module 108 in the local environment.
- the modules also provide data management services that simplify adding resources from across a local environment. For example, if the local environment includes a wide area network, the management module 108 provides a security model that ensures, when the environment dictates, that administrators can rely on the system even when untrusted resources at the certain level have been added to the local environment or the on-demand environment.
- the management modules comply with n-tier web services based architectures and therefore, scalability and reporting are inherent parts of the system.
- a system operating according to the principles set forth herein also has the ability to track, record and archive information about jobs or other processes that have been run on the system.
- a hosting center 102 provides scheduled dedicated resources to customers for various purposes and typically has a number of key attributes: secure remote access, guaranteed resource availability at a fixed time or series of times, tightly integrated auditing/accounting services, varying quality of service levels providing privileged access to a set of users, node image management allowing the hosting center to restore an exact customer-specific image before enabling access.
- Resources available to a module 106 which can also be referred to as a provider resource broker, will have both rigid (architecture, RAM, local disk space, etc.) and flexible (OS, queues, installed applications etc.) attributes.
- the provider or on-demand resource broker 106 can typically provision (dynamically modify) flexible attributes, but not rigid attributes.
- the provider broker 106 can possess multiple resources, each with different types with rigid attributes (i.e., single processor and dual processor nodes, Intel nodes, AMD nodes, nodes with 512 MB RAM, nodes with 1 GB RAM, etc).
- This combination of attributes presents unique constraints on a management system. Described herein are how the management modules 108 and 106 are able to effectively manage, modify, reserve, and provision resources in this environment and provide full array of services on top of these resources.
- the management modules' 108 , 120 advanced reservation and policy management tools provide support for the establishment of extensive service level agreements, automated billing, and instant chart and report creation.
- the management modules can make, at a first time, reservations for future consumption of resources at a second time, which is later than the first time, by the jobs and more intelligently know what the resource usage will be in the future, thus allowing the system to know, for example, that the local environment will need on-demand resources in an hour.
- the system can reserve, provision and use resources in the on-demand center for overflow workload from the local compute environment. Each job has an allocated reservation of resources for those resources it will consume when the job is transferred into the compute environment.
- Utility-based computing technology allows a hosting center 102 to quickly harness existing compute resources, dynamically co-allocate the resources, and automatically provision them into a seamless virtual cluster.
- U.S. application Ser. No. 11/276,852 incorporated herein by reference above discloses a virtual private cluster (VPC). The process involves aggregating compute resources and establishing partitions of the aggregated compute resources. Then the system presents only the partitioned resources accessible by an organization to use within the organization.
- the control and establishment of an environment for workload from a local environment can occur via the means of creating, via reservations, a virtual private cluster for the local user workload within reserved, provisioned resources in the on-demand compute environment 120 .
- VPCs are found in the '852 application.
- on-demand compute resources are identified, reserved, provisioned and consumed by local environment workload, the means by which this is accomplished can be through the creation of a VPC within the on-demand center.
- the hosting master 128 can include an identity manager interface 112 that can coordinate global and local information regarding users, groups, accounts, and classes associated with compute resources.
- the identity manager interface 112 can also allow the management module 106 to automatically and dynamically create and modify user accounts and credential attributes according to current workload needs.
- the hosting master 128 allows sites extensive flexibility when it comes to defining credential access, attributes, and relationships. In most cases, use of the USERCFG, GROUPCFG, ACCOUNTCFG, CLASSCFG, and QOSCFG parameters is adequate to specify the needed configuration.
- the modules 108 , 106 , 120 address these and similar issues through the use of the identity manager 112 .
- the identity manager 112 allows the module to exchange information with an external identity management service. As with the module's resource manager interfaces, this service can be a full commercial package designed for this purpose, or something far simpler by which the module obtains the needed information for a web service, text file, or database.
- the node provisioner 118 can enable the allocation of resources in the hosting center 102 for workload from a local compute environment 104 .
- one aspect of this process can be to create a VPC within the hosting center as directed by the module 108 . Reservations of resources in the hosting center are used to create the VPC, or to reserve resources in the on-demand compute environment that can be provisioned on the VPC.
- the customer management module 108 will communicate with the hosting management module 106 to begin the provisioning process.
- the provisioning module 118 can generate another instance of necessary management software 120 and 122 which will be created in the hosting center environment as well as compute nodes 124 and 126 to be consumed by a submitted job at the time of their reservation.
- the new management module 120 is created on the fly, can be associated with a specific request and will preferably be operative on a dedicated node. If the new management module 120 is associated with a specific request or job, as the job consumes the reserved resources associated with the provisioned compute nodes 124 , 126 , and the job completes, then the system can remove the management module 120 since it was only created for the specific request.
- the new management module 120 can connect to other modules such as module 108 .
- the module 120 does not necessarily have to be created but can be generated on the fly as necessary to assist in communication, reservations, and provisioning and use of the resources in the utility environment 102 .
- the module 106 can go ahead and reserve and allocate nodes within the utility computing environment 102 and connect these nodes directly to module 108 but in that case you can lose some batch ability as a tradeoff.
- the hosting master 128 having the management module 106 , identity manager 112 and node provisioner 118 preferably is co-located with the utility computing environment but can be distributed.
- the management module 108 on the local environment 104 can then communicate directly with the created management module 120 in the hosting center 102 to manage the transfer of workload and consumption of on-demand center resources.
- Created management module 120 can be part of a VPC.
- an exemplary system for implementing the disclosure includes a general purpose computing device 200 , including a processing unit (CPU) 220 , a system memory 230 , and a system bus 210 that couples various system components including the system memory 230 to the processing unit 220 .
- the system bus 210 can be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
- the system can also include other memory such as read only memory (ROM) 240 .
- ROM read only memory
- the computing device 200 further includes storage means such as a hard disk drive 250 , a magnetic disk drive, an optical disk drive, tape drive or the like.
- the storage device 260 is connected to the system bus 210 by a drive interface.
- the drives and the associated computer-readable media provide nonvolatile storage of computer readable instructions, data structures, program modules and other data for the computing device 200 .
- the basic components are known to those of skill in the art and appropriate variations are contemplated depending on the type of device, such as whether the device is a small, handheld computing device, a desktop computer, or a computer server.
- FIG. 3 illustrates an example interface 300 that a user can utilize to connect to an on-demand center by a simple configuration of several parameters on each site. These parameters can be pre-configured and activated in a manner as simple as using an “enable now” button 302 .
- license terms and agreement can be prepackaged or accepted with the software's other licenses during an installation process or can be reviewed via a web form as a response to activating the service.
- the administrator can configure the resource requirements 308 in the on-demand center easily to control how many simultaneous processors, nodes, and so forth can be reserved and used in the on-demand center. Other parameters can be set such as the size of incremental steps, minimum duration and processor hours per month.
- the interface 300 also includes example capabilities such as customizing capacity limits 304 , customizing service level policies 306 and other outsourcing permissions. For example, the user can vary the permissions of users, groups, classes and accounts with outsourcing permissions.
- a user can provide for a customized approach to utilizing the on-demand center.
- the user can enable service level enforcement policies and apply the policies to various gradations of the workload, such as to all workload with excessive wait times, only high priority workload with excessive wait time and/or only workload with excessive wait time that has the outsource flag applied.
- Other gradations are also contemplated, such as enabling the user to further define “excessive” wait time or how high the high priority workload is.
- the dynamic VPC enables for the packaging, securing, optimizing and guaranteeing of the right resource delivery in cluster, grid and hosting center environments.
- the VPC is used to virtually partition multiple types of resources (such as different hardware resources, software licenses, VLANs, storage, etc.) into units that can be treated as independent clusters. These independent virtual clusters can have their own policy controls, security, resource guarantees, optimization, billing and reporting.
- the VPC uses the management software's scheduling, reservation and policy controls to automatically change the virtual boundaries to match the required resources to the associated workload. For example, if a client first needed resources from a traditional Linux compute farm, but then over time had workload that increasingly needed SMP resources, the dynamic VPC could optimally adapt the correct resources to match the workload requirements.
- the dynamic VPC provides flexibility to manage and modify the resources in the on-demand center. Otherwise, the hosting services are too rigid, causing clients to go through the tasks of redefining and renegotiating which resources are provided or causing them to pay for resources that didn't match their changing needs.
- management software includes detailed knowledge and fine grained control of workload which includes workload allocation (CPU vs. data intensive workload), optimized data staging, resource affinity, highly optimized resource co-allocation, provisioning integration, and integration security management.
- Service level enforcement controls relate to guaranteed response times and guaranteed uptime.
- management capabilities such as multi-resource manager support and flexibility in management modules such as single system images. More details about these features follow.
- one of the intelligence capabilities enabled by the detailed knowledge and control over workload is its ability to differentiate between CPU-intensive and data-intensive workload.
- HPC workload When the software schedules, via advanced reservations, HPC workload for a hosting center, it can automatically send the more CPU-intensive workload to the hosting site, while focusing the data-intensive workload locally. This means that jobs with large data files do not need to tie up networks, and the approach reduces the total response time of the clients' workload. Clients are more satisfied because their work gets done sooner and the hosting center is more satisfied because it can process workload that is most profitable to the “CPU Hour” billing model.
- Optimized data staging is another aspect of the software's detailed knowledge and control of workload.
- This technology increases the performance of data-intensive workload by breaking a job's reservation into the two, three (or more) elements of pre-staging data, processing workload and staging results back.
- Each job in a queue can have its own reservation of resources such that the software has detailed knowledge of resources that will be consumed in the future for jobs in the queue.
- Other scheduling technologies reserve the processor and other resources on a node for the duration of all three, leaving the CPU idle during data staging and the I/O capacity virtually idle during the processing period.
- the management software of the present disclosure has an information querying service that analyzes both file and network information services and then intelligently schedules all two or three processes in an optimized manner.
- FIG. 4 illustrates how intelligent data staging works.
- the top portion 402 of this figure shows the traditional method of reserving an entire node, including the CPU, for the entire data staging, compute time, and staging back.
- the top row of the top portion 402 shows CPU usage and blank spaces reporting idle CPU time.
- the bottom row shows I/O capacity being used for pre-staging and staging back, but idle during CPU usage. As is shown in FIG. 4 , the top portion 402 only completes three jobs.
- the bottom half 404 shows how the management module schedules reservations such that the data staging and processing to overlap and thus optimize workload.
- the “events” utilize the CPU during the prestaging and stage back periods rather than leaving the CPU idle during those times.
- 7.5 jobs are shown as being completed via the reservations and “events,” which can be CPU time reserved for other jobs. This provides efficient use of CPU cycle and network resources.
- Row 404 illustrates how reservations exist in a compute environment over time (on the horizontal axis). Four reservations are established for four jobs and eight events are shown as also filling in CPU time during prestaging and staging back. Thus, other jobs can fill the CPU available time reserved by the “events.”
- the management module 108 , 120 leverages its detailed knowledge of workload requests and reservations in the compute environment, by applying jobs to the resource type able to provide the fastest response time. For example, if a job is likely to run faster on AIX over Linux, on an SMP system as opposed to a traditional CPU farm, or performs better on a specific network type, such affinities can be configured manually or set automatically to occur so that workload is optimized
- the management modules 108 , 120 also have the capability to track these variables and apply higher charge rates to those using the more costly systems.
- the management modules 108 , 120 associate workload requests with service level enforcement controls, such as guaranteeing response time and guaranteeing uptime. This is accomplished through intelligent use of advanced reservations. It is noted that on-demand high performance computing centers can therefore manage service level enforcement, or else their clientele will never repeat business.
- An application of this capability includes setting rules that automatically push all of a site's backlogged workload over to a hosting center. This capability can be referred to as workload surge protection.
- the advanced scheduling algorithms and policy management capabilities can be set to meet these needs by reserving resources in the hosting center for the backlogged workload overflow.
- the software's intelligence allows hosting sites to provide promised SLA levels that keep the client fully satisfied, while providing the highest possible return to the hosting provider; multi-media-film, gaming, simulation and other rendering intense areas (guarantee response time); oil & gas (guarantee response time, workload surge protection); Aerospace (guarantee response time); Financial (guarantee uptime and guarantee response time, workload surge protection); Manufacturers—Pharmaceuticals, Auto, Chip and other “First to Market” intense industries (guarantee response time, workload surge protection).
- the software provides features applicable in many markets.
- Another feature relates to the software's architecture which allows for simultaneous monitoring, reserving, scheduling, and managing of multiple resource types, and can be deployed across different environments or used as a central point of connection for distinct environments.
- the software's server-side elements work on at least Linux, Unix and Mac OS X environments (it can manage Linux, Unix, Mac OS X, Windows and mainframe environments—depending on what the local resource manager supports).
- the client-side software works on Linux, Unix, Mac OS X and Windows environments as well as other environments.
- Multi-resource manager support enables the software to work across virtually all mainstream compute resource managers.
- These compute resource managers include, but are not limited to, LoadLeveler, LSF, PBSPro, TORQUE, OpenPBS and others. Not only does this increase the number of environments in which it can be used to provide capacity on demand capabilities, but it leaves the customer with a larger set of options going forward because it doesn't lock them into one particular vendor's solution.
- the software can interoperate with multiple compute resource managers at the same time, thus allowing grid capabilities even in mixed environments.
- the software can integrate with storage resource managers, network resource managers, software license resource managers, etc. It uses this multiplicity of information sources to make its policy decisions more effective.
- the software can also connect up to hardware monitors such as Ganglia, custom scripts, executables and databases to get additional information that most local compute resource managers would not have available. This additional information can be queried and evaluated by the software or an administrator to be applied to workload reservation and placement decisions and other system policies.
- FIG. 5 illustrates graphically 500 how the software integrates with other technologies.
- the items along the bottom are resource types such as storage, licenses, and networks.
- the items on the left are interface mechanisms for end users and administrators. Items on the right side of the figure are service with which the software can integrate to provide additional extended capabilities such as provisioning, database-centric reporting and allocation management.
- the example software packages shown in FIG. 5 are primarily IBM products but of course other software can be integrated.
- the software enables providing the capacity on demand capability any supported cluster environment or grid environment.
- the software can be configured to enable multiple grid types and management models.
- the two preferable grid types enabled by the software are local area grids and wide area grids, although others are also enabled.
- FIG. 6 illustrates 600 examples of various grid types as well as various grid management scenarios.
- a “Local Area Grid” (LAG) uses one instance of a workload manager WM, such as Moab, within an environment that shares a user and data space across multiple clusters, which can have multiple hardware types, operating systems and compute resource managers (e.g. LoadLeveler, TORQUE, LSF, PBSPro, etc.).
- WM workload manager
- WM such as Moab
- the benefits of a LAG are that it is very easy to set up and even easier to manage.
- a “Wide Area Grid” uses multiple WM instances working together within an environment that can have one or more user and data spaces across various clusters, which can have mixed hardware types, operating systems and compute resource managers (e.g. LoadLeveler, TORQUE, LSF, PBSPro, etc.).
- WAG management rules can be centralized, locally controlled or mixed.
- the benefit of a WAG is that an organization can maintain the sovereign management of its own local cluster, while still setting strict or relaxed political sharing policies of its resources to the outside grid. Collaboration can be facilitated with a very flexible set of optional policies in the areas of ownership, control, information sharing and privacy. Sites are able to choose how much of their cluster's resources and information they share with the outside grid.
- Grids are inherently political in nature and flexibility to manage what information is shared and what information is not is central to establishing such grids. Using the software, administrators can create policies to manage information sharing in difficult political environments.
- Organizations can control information sharing and privacy in at least three different ways: (1) Allow all resource (e.g. nodes, storage, etc.), workload (e.g. jobs, reservations, etc.) and policy (e.g. sharing and prioritization rules) information to be shared to provide full accounting and reporting; (2) Allow other sites to only see resource, workload and policy information that pertains to them so that full resource details can be kept private and more simplified; (3) Allow other sites to only see a single resource block, revealing nothing more than the aggregate volume of resources available for reservation and use by the other site. This allows resources, workload and policy information to be kept private, while still allowing shared relationships to take place. For example, a site that has 1,024 processors can publicly display only 64 processors to other sites on the grid.
- resource e.g. nodes, storage, etc.
- workload e.g. jobs, reservations, etc.
- policy e.g. sharing and prioritization rules
- FIG. 7 illustrates an example of how grids can be combined. Many combinations are possible.
- the software is able to facilitate virtually any grid relationship such as by joining local area grids into wide area grids; joining wide area grids to other wide area grids (whether they be managed centrally, locally—“peer to peer,” or mixed); sharing resources in one direction (e.g. for use with hosting centers or lease out one's own resources); enabling multiple levels of grid relationships (e.g. conglomerates within conglomerates).
- the local environment can be one of many configurations as discussed by way of example above.
- One aspect relates to enabling the automatic detection of an event such as resource thresholds or service thresholds within the compute environment 104 . For example, if a threshold of 95% of processor consumption is met because 951 processors out of the 1000 processors in the environment are being utilized, then the WM 108 can automatically establish a connection with the on-demand environment 102 .
- a service threshold, a policy-based threshold, a hardware-based threshold or any other type of threshold can trigger the communication to the hosting center 102 .
- Other events as well can trigger communication with the hosting center such as a workload backlog having a certain configuration.
- the WM 108 then can communicate with WM 106 to reserve resources, and then provision or customize the reserved on-demand resources 102 .
- the creation of a VPC within the on-demand center can occur.
- the two environments exchange the necessary information to create reservations of resources, provision the resources, manage licensing, and so forth, necessary to enable the automatic transfer of jobs or other workload from the local environment 104 to the on-demand environment 102 .
- Nothing about a user job 110 submitted to a WM 108 changes.
- the physical environment of the local compute environment 104 can also be replicated in the on-demand center.
- the on-demand environment 102 then instantly begins running the job without any change in the job or perhaps even any knowledge of the submitter.
- predicted events can also be triggers.
- a predicted failure of nodes within the local environment, predicted events internal or external to the environment, or predicted meeting of thresholds can trigger communication with the on-demand center.
- the method embodiment provides for determining whether a backlog workload condition exists in the local compute environment. If the backlog workload condition exists, then the system analyzes the backlog workload, communicates information associated with the analysis to the on-demand compute environment, establishes a reservation of resources in the on-demand compute environment to yield reserved resources, provisions the reserved resources in the on-demand compute environment to yield provisional resources in the on-demand compute environment according to the analyzed backlog workload and transfers the backlog workload to the provisioned resources. It is preferable that the provisioning the on-demand compute environment further includes establishing a reservation of resources to create a virtual private cluster within the on-demand compute environment. Analyzing the workload can include determining at least one resource type associated with the backlog workload for provisioning in the on-demand compute environment.
- analyzing the backlog workload communicating the information associated with analysis to the on-demand compute environment, reserving resources at a future time in the on-demand compute environment to yield reserved resources, provisioning the reserved resources in the on-demand compute environment according to the analyzed backlog workload and transferring the backlog workload to the provisioned resources in the on-demand compute environment occurs in response to a one-click operation from an administrator.
- the process of reserving, provisioning and transferring backlog workload to the on-demand center can begin based on any number of events. For example, a user can interact with a user interface to initiate the transfer of backlog workload.
- An internal event such as a threshold, for example, a wait time reaching a maximum, can be an event that could trigger the analysis and transfer.
- An external event can also trigger the transfer of backlog workload such as a terrorist attack, weather conditions, power outages, etc.
- a method embodiment can therefore provide a method of managing resources between a local compute environment and an on-demand compute environment.
- An exemplary method includes detecting an event associated with a local compute environment. As mentioned the event can be any type of trigger or threshold.
- the software then identifies information about the local compute environment, establishes communication with an on-demand compute environment and transmits the information about the local environment to the on-demand compute environment. With that information, the software establishes at a first time an advanced reservation of resources in the on-demand compute environment to yield reserved resources, and then provisions the reserved resources within the on-demand compute environment to duplicate or substantially duplicate the local compute environment and transfers workload from the local-environment to the provisional resources in the on-demand compute environment.
- the workload consumes the provisional resources at a second time which is later than the first time.
- the provisioning does not necessarily duplicate the local environment but specially provisions the on-demand environment for the workload to be migrated to the on-demand center.
- the information communicated about the local environment can relate to at least hardware and/or an operating system. But the workload to be transferred to the on-demand center may have an affinity to hardware and/or an operating system that differs from that in the local compute environment. Therefore, the software can request different hardware and/or software in the on-demand center from the configuration of the local compute environment.
- Establishing communication with the on-demand compute environment and transmitting the information about the local environment to the on-demand compute environment can be performed automatically or manually via a user interface. Using such an interface can enable the user to provide a one-click or one action request to establish the communication and migrate workload to the on-demand center.
- the software will identify and select a substitute resource.
- This process of identifying and selecting a substitute resource can be accomplished either at the on-demand environment or via negotiation between a slave workload manager 120 at the on-demand environment and a master workload manager 108 on the local compute environment.
- the method further can include identifying a type of workload to transfer to the on-demand environment 102 , and wherein transferring workload from the local-environment 104 to the on-demand compute environment 102 further includes only transferring the identified type of workload to the on-demand center.
- the transferring of the identified type of workload to the on-demand center 102 is based upon different hardware and/or software capabilities between the on-demand environment and the local compute environment.
- Another aspect of the disclosure is the ability to automate data management between two sites. This involves the transparent handling of data management between the on-demand environment 102 and the local environment 104 that is transparent to the user. In other words, it can be accomplished without explicit action or configuration by the user. It can also be unknown to the user. Yet another aspect relates to a simple and easy mechanism to enable on-demand center integration. This aspect of the disclosure involves the ability of the user or an administrator to, in a single action like the click of a button, the touching of a touch sensitive screen, motion detection, or other simple action, command the integration of an on-demand center information and capability into the local WM 108 .
- the system will be able to automatically exchange and integrate all the necessary information and resource knowledge in a single click to broaden the set of resources that can be available to users who have access initially only to the local compute environment 104 .
- the information can include the various aspect of available resources at the on-demand center such as time-frame, cost of resources, resource type, etc.
- One of the aspects of the integration of an on-demand environment 102 and a local compute environment 104 is that the overall data appears locally.
- the WM 108 will have access to the resources and knowledge of the on-demand environment 102 but the view of those resources, with the appropriate adherence to local policy requirements, is handled locally and appears locally to users and administrators of the local environment 104 .
- a static reservation is a reservation that a user or an administrator cannot change, remove or destroy. It is a reservation that is associated with the WM 108 itself.
- a static reservation blocks out time frames when resources are not available for other uses. For example, if, to enable a compute environment to run (consume) resources, a job takes an hour to provision a resource, then the WM 108 can establish a static reservation of resources for the provisioning process. The WM 108 will locally create a static reservation for the provisioning component of running the job. The WM 108 will report on these constraints associated with the created static reservation.
- the WM 108 can communicate with the slave WM 106 if on-demand resources are needed to run a job.
- the WM 108 communicates with the slave WM 106 and identifies what resources are needed (20 processors and 512 MB of memory, for example) and inquires when can those resources be available. Assume that WM 106 responds that the processors and memory will be available in one hour and that the WM 108 can have those resources for 36 hours.
- the system can establish a normal reservation of the processors and memory in the on-demand center starting in an hour and lasting for 36 hours.
- WM 108 creates a static reservation in the on-demand center to block the first part of the resources which requires the one hour of provisioning.
- the WM 108 can also block out the resources with a static reservation from hour 36 to infinity until the resources go away. Therefore, from zero to one hour is blocked out by a static reservation and from the end of the 36 hours to infinity is blocked out with a static reservation. In this way, the scheduler 108 can optimize the on-demand resources and insure that they are available for local workloads.
- the communication between the WMs 106 and 108 is performed preferably via tunneling.
- Yet another aspect is the ability to have a single agent such as the WM 108 or some other software agent detect a parameter, event or configuration in the local environment 104 .
- the environment in this sense includes both hardware and software and other aspects of the environment.
- a cluster environment 104 can have, besides the policies and restrictions on users and groups as discussed above, a certain hardware/software configuration such as a certain number of nodes, a certain amount of memory and disk space, operating systems and software loaded onto the nodes and so forth.
- the agent (which can be WM 108 or some other software module) determines the physical aspects of the compute environment 104 and communicates with the on-demand hosting center to provide an automatic reservation of and provisioning of reserved resources within the center 102 such that the local environment is duplicated.
- the duplication can match the same hardware/software configuration or can may dynamically or manually substitute alternate components.
- the communication and transfer of workload to a replicated environment within the hosting center 102 can occur automatically (say at the detection of a threshold value) or at the push of a button from an administrator. Therefore information regarding the local environment is examined and the WM 108 or another software agent transfers that information to the hosting center 102 for replication.
- the replication therefore, involves providing the same or perhaps similar number of nodes, provisioning operating systems, file system architecture and memory and any other hardware or software aspects of the hosting center 102 using WM 106 to replicate the compute environment 104 .
- WM 106 to replicate the compute environment 104 .
- decisions can be made by the WM 106 or via negotiation between WM 106 and WM 108 to determine an alternate provisioning.
- a user of the compute environment 104 such as an administrator can configure at the client site 104 a compute environment and when workload is transferred to the hosting center 102 , the desired compute environment can be provisioned.
- the administrator could configure a better or more suited environment than the compute environment 104 that exists.
- a company can want to build a compute environment 104 that will be utilized by processor intensive jobs and memory intensive jobs. It can be cheaper for the administrator of the environment 104 to build an environment that is better suited to the processor intensive jobs.
- the administrator can configure a processor intensive environment at the local cluster 104 and when a memory intensive job 110 is submitted, the memory intensive environment can be reserved and provisioned in the hosting center 102 to offload that job.
- the administrator can generate profiles of various configurations for various “one-click” provisioning on the hosting center 102 .
- the administrator can have profiles for compute intensive jobs, memory intensive jobs, types of operating system, types of software, any combination of software and hardware requirements and other types of environments.
- the local cluster 104 has a relationship with the hosting center 102 where the administrator can transfer workload based on one of the one or more created profiles. This can be done automatically if the WM 108 identifies a user job 110 that matches a profile or can be done manually by the administrator via a user interface that can be graphical.
- the administrator can be able to, in “one click,” select the option to have resources in the on-demand center reserved and provisioned to receive a memory intensive component of the workload to process according to the memory-intensive profile.
- the relationship between the hosting center 102 and the local cluster 104 by way of arranging for managing the workload can be established in advance or dynamically.
- the example above illustrates the scenario where the arrangement is created in advance where profiles exist for selection by a system or an administrator.
- the dynamic scenario can occur where the local administrator for the environment 104 has a new user with a different desired profile than the profiles already created. The new user wants to utilize the resources 104 .
- Profiles configured for new users or groups can be manually added and/or negotiated between the hosting center 102 and the local cluster 104 or can be automatic.
- WM 108 can communicate with WM 106 (or another module) to arrange for the availability/capability of the on-demand center to handle workload according to the new profile and to arrange cost, etc. If no new profile can be created, then a default or generic profile, or the closest previously existing profile to match the needs of the new user's job can be selected. In this manner, the system can easily and dynamically manage the addition of new users or groups to the local cluster 104 .
- WM 108 when WM 108 submits a query to the WM 106 stating that it needs a certain set of resources, it passes the profile(s) as well.
- Receiving resource requirement information may be based on user specification, current or predicted workload.
- the specification of resources may be one of fully explicit, partially explicit, fully implicit based on workload, and based on virtual private cluster (VPC) package concept where VPC package can include aspects of allocated or provisioning support environment and adjustments to resource request timeframes including pre-allocation, allocation duration, and post-allocation timeframe adjustments.
- VPC virtual private cluster
- the incorporated application above includes the discussion of virtual private clusters which are completely applicable and integrated into this disclosure and capability with on-demand centers.
- the reserved resources may be associated with provisioning or customizing the delivered compute environment.
- a reservation may involve the co-allocation of resources including any combination of compute, network, storage, license, or service resources (i.e., parallel database services, security services, provisioning services) as part of a reservation across multiple different resource types. Also, the co-allocation of resources over disjoint timeframes to improve availability and utilization of resources may be part of a reservation or a modification of resources. Resources may also be reserved with automated failure handling and resource recovery.
- WM 106 identifies when resources are available in static dimensions (such as identifies that a certain amount of memory, nodes and/or other types of architecture are available). This step will identify whether the requestor obtains the raw resources to meet those needs. Then the WM 106 will manage the customer install and provisioning of the software, operating systems, and so forth according to the received profile. In this manner, the entire specification of needs according to the profile can be met.
- the system can customize the environment for the particular overflow workload. This was referenced above.
- the agent 108 can examine the workload on the local cluster 104 and determine what part of that workload or if all of that workload, can be transferred to the hosting center 102 .
- the agent identifies whether the local environment is overloaded with work and what type of work is causing the overload.
- the agent can preemptively identify workload that would overload the local environment or can dynamically identify overload work being processed. For example, if a job 110 is submitted that is both memory intensive and processor intensive, the WM 108 will recognize that and intelligently communicate with the WM 106 to transfer the processor intensive portion of the workload to reserve resources in the hosting center 102 .
- the WM 106 manages the proper reservation and provisioning of resources in the hosting center environment for the overflow workload.
- the system can automatically reserve and provision resources in the hosting center to match the overload workload and then transfer that workload over.
- a threshold can be met for work being processed on the local cluster 104 .
- the threshold can be met by how much processing power is being used, how much memory is available, whether the user has hit a restriction on permissions, and/or a determination that a quality of service has not been met or any other parameter.
- a button can be pressed and WM 108 analyzes the workload on the environment 104 .
- the WM 108 can identify that there is a backlog and determine that more nodes are needed (or more of any specific type of resource is needed).
- the WM 108 will communicate with WM 106 to enable, at a first time, the creation of an advanced reservation of resources in the hosting center.
- the WM 108 / 106 autoprovisions the reserved resources within the hosting center to meet the needs of the backlogged jobs.
- the appropriate resources, hardware, software, permissions and policies can be duplicated exactly or in an acceptable fashion to resolve the backlog.
- the autoprovisioning can be performed with reference to the backlog workload needs rather than the local environment configuration.
- the overflow workload is identified and analyzed and the reservation and provisioning in the hosting center is matched to the workload itself (in contrast to matching the local environment) for processing when the backlog workload is transferred.
- the reservation of the resources is for a second time which is later than the first time.
- the workload is transferred such that the reservation insures that the reserved resources are available for the workload. Therefore, the reservation and provisioning can be based on a specific resource type that will resolve most efficiently the backlog workload.
- One aspect of this disclosure relates to the application of the concepts above to provide a website server with backup computing power via a hosting center 102 .
- This aspect of the disclosure is shown by the system 800 in FIG. 8 .
- the hosting center 102 and WM 106 are configured as discussed above and adjustment as necessary are made to communicate with a webserver 802 .
- a website version of the workload manager (WM) 804 would operate on the webserver 302 .
- Known adjustments are made to enable the Domain Name Service (DNS) to provide for setting up the overflow of network traffic to be directed to either the web server 802 or the hosting center 102 .
- the webserver would preferably handle all of the rerouting of traffic to the on-demand center once it was reserved and provisioned for overflow web traffic.
- a separate network service can provide the control of web traffic control directed to either the webserver or the on-demand center.
- IP internet protocol
- the WM 804 would monitor the web traffic 306 and resources on the web server 802 .
- the web server 802 of course can be a cluster or group of servers configured to provide a website.
- the WM 804 is configured to treat web traffic 806 and everything associated with how the web traffic consumes resources within the web server 802 as a job or a group of jobs. An event such as a threshold is detected by WM 804 .
- the WM 804 communicates with the WM 106 of the hosting center 102 , the WM 106 establishes an advanced reservation of resources to yield reserved resources and then autoprovisions the reserved resources and enables web traffic to flow to the autoprovisioned resources in the hosting center 102 where the requests would be received and webpages and web content is returned.
- the provisioning of resources can also be performed manually for example in preparation for increased web traffic for some reason. As an example, if an insurance company knows that a hurricane is coming it can provide for and prepare for increased website traffic.
- the management of web traffic 806 to the webserver 802 and to the hosting center 102 can also be coordinated such that a portion of the requests go directly to the hosting center 102 or are routed from the web server 802 to the hosting center 102 for response.
- an agent which can communicate with the WM 804 ) can then intercept web traffic directed to the web server 302 and direct it to the hosting center 102 , which can deliver website content directly to the client browser (not shown) requesting the information.
- web traffic 806 can be intercepted and routed to the provisioned reserved resources at the hosting center 102 such that it is transparent to the client web browser that a hosting center 102 rather than the web server 802 is servicing the web session.
- the identification of the threshold can be based on an increase of current traffic or can be identified from another source. For example, if the New York Times or some other major media outlet mentions a website, that event can cause a predictable increase in traffic.
- one aspect of the disclosure is a monitoring of possible triggers to increased web activity.
- the monitoring can be via a Google (or any type of) automatic search of the website name in outlets like www.nytimes.com, www.washingtonpost.com or www.powerlineblog.com. If the website is identified in these outlets, then an administrator or automatically the provisioning of reserved resources can occur at a predictable time of when the increased traffic would occur.
- Another aspect of the disclosure is illustrated in an example.
- a small website (we can call it www.smallsite.com) was referenced in the GoogleTM search engine page. Because of the large number of users of Google, www.smallsite.com went down. To prevent this from happening, when a high traffic source such as www.google.com or www.nytimes.com links to or references a small or low traffic website, then an automatic reservation and provisioning of reserved resources can be performed.
- the hosting center 102 If some of the traffic is routed to the hosting center 102 , then provisions are made to send that traffic either directly or indirectly to the reserved, provisioned resources in the hosting center 102 .
- the data is mirrored to the hosting center 102 and the hosting center can exclusively handle the traffic until a certain threshold is met and the web traffic can be automatically transferred back to the web server 802 .
- the off-loading of web traffic can be featured as an add-on charge available to websites as well as charges or fees for the services that can be used to identify when traffic can increase.
- External forces such as mentioning a website on the news
- the increase can be well as internal forces. For example, if a special offer is posted on a website for a reduced price for a product, then the website can expect increased traffic.
- the principles of the present disclosure enable the average user “surfing” the web to enjoy access and experience websites that can otherwise be unavailable due to large internet traffic.
- the benefit certainly inures to website owners and operators who will avoid unwanted down time and the negative impact that can have on their business.
- FIG. 9 illustrates a method aspect of the webserver embodiment of the disclosure.
- a method of managing resources between a webserver and an on-demand compute environment including determining whether web traffic directed to the webserver should be at least partially served via the on-demand compute environment ( 902 ), reserving resources in the on-demand compute environment to yield reserved resources, provisioning the reserved resources within the on-demand compute environment to enable it to respond to web traffic for the webserver ( 904 ), establishing a routing of at least part of the web traffic from the webserver to the provisioned resources in the on-demand compute environment ( 906 ) and communicating data between a client browser and the on-demand compute environment such that the use of the on-demand compute environment for the web traffic is transparent ( 908 ).
- the disclosure can also include a local compute environment 104 and/or an on-demand center 102 configured to operated as described above.
- a webserver(s) 802 and/or the on-demand center 102 with any other network nodes configured to enable the offloading of web traffic 806 can also be an embodiment of the disclosure. This can also involve an additional software alteration on a web browser to enable the offloading of web traffic.
- any hardware system or network can also be embodied in the disclosure.
- Embodiments within the scope of the present disclosure can also include transitory or non-transitory computer-readable media for carrying or having computer-executable instructions or data structures stored thereon.
- Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer.
- Such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions or data structures.
- a network or another communications connection either hardwired, wireless, or combination thereof
- any such connection is properly termed a computer-readable medium.
- Combinations of the above should also be included within the scope of the computer-readable media.
- Non-transitory computer readable media excludes energy and signals per se.
- Computer-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions.
- Computer-executable instructions also include program modules that are executed by computers in stand-alone or network environments.
- program modules include routines, programs, objects, components, and data structures, etc. that perform particular tasks or implement particular abstract data types.
- Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps.
- Embodiments of the disclosure can be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like.
- Embodiments can also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination thereof) through a communications network.
- program modules can be located in both local and remote memory storage devices.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Debugging And Monitoring (AREA)
- Stored Programmes (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
- The present application is a continuation of U.S. patent application Ser. No. 11/279,007, filed Apr. 7, 2006, which claims priority to U.S. Provisional Application No. 60/669,278 filed Apr. 7, 2005, the contents of which are incorporated herein by reference.
- A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the United States Patent & Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
- The present application is related to U.S. patent application Ser. Nos. 11/276,852 11/276,853; 11/276,854; 11/276,855; and 11/276,856 all filed on 16 Mar. 2006. Each of these cases is incorporated herein by reference as well as the corresponding PCT Applications where applicable.
- The present disclosure relates to an on-demand compute environment and more specifically to a system and method of providing access and use of on-demand compute resources from a local compute environment.
- Managers of clusters desire maximum return on investment, often meaning high system utilization and the ability to deliver various qualities of service to various users and groups. A cluster is typically defined as a parallel computer that is constructed of commodity components and runs as its system software commodity software. A cluster contains nodes each containing one or more processors, memory that is shared by all of the processors in the respective node and additional peripheral devices such as storage disks that are connected by a network that allows data to move between nodes. A cluster is one example of a compute environment. Other examples include a grid, which is loosely defined as a group of clusters, and a computer farm which is another organization of computers for processing.
- Often a set of resources organized in a cluster or a grid can have jobs to be submitted to the resources that require more capability than the set of resources has available. In this regard, there is a need in the art for being able to easily, efficiently and on-demand utilize new resources or different resources to handle a job. The concept of “on-demand” compute resources has been developing in the high performance computing community recently. An on-demand computing environment enables companies to procure compute power for average demand and then contract remote processing power to help in peak loads or to offload all their compute needs to a remote facility.
- Enabling capacity on demand in an easy-to-use manner is important to increasing the pervasiveness of hosting in an on-demand computing environment such as a high performance computing or data center environment. Several entities can provide a version of on-demand capability, but there still exists multi-hour or multi-delays in obtaining access to the environment. The delay is due to the inflexibility of transferring workload because the on-demand centers require participating parties to align to certain hardware, operating systems or resource manager environments. These requirements act as inhibitors to widespread adoption of the use of on-demand centers and make it too burdensome for potential customers to try out the service. Users must pay for unwanted or unexpected charges and costs to make the infrastructure changes for compatibility with the on-demand centers.
- Often a set of resources organized in a cluster or a grid can have jobs to be submitted to the resources that require more capability than the set of resource has available. In this regard, there is a need in the art for being able to easily, efficiently and on-demand utilize new resources or different resources to handle a job. The concept of “on-demand” compute resources has been developing in the high performance computing community recently. An on-demand computing environment enables companies to procure compute power for average demand and then contract remote processing power to help in peak loads or to offload all their compute needs to a remote facility. Several reference books having background material related to on-demand computing or utility computing include Mike Ault, Madhu Tumma, Oracle 10g Grid & Real Application Clusters, Rampant TechPress, 2004 and Guy Bunker, Darren Thomson, Delivering Utility Computing Business-driven IT Optimization, John Wiley & Sons Ltd, 2006.
- In Bunker and Thompson, section 3.3 on page 32 is entitled “Connectivity: The Great Enabler” wherein they discuss how the interconnecting of computers will dramatically increase their usefulness. This disclosure addresses that issue. There exists in the art a need for improved solutions to enable communication and connectivity with an on-demand high performance computing center.
- Additional features and advantages of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or can be learned by practice of the disclosure. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the present disclosure will become more fully apparent from the following description and appended claims, or can be learned by the practice of the disclosure as set forth herein.
- The disclosure relates to systems, methods and computer-readable media for controlling and managing the identification and provisioning of resources within an on-demand center as well as the transfer of workload to the provisioned resources. One aspect involves creating a virtual private cluster via a reservation of resources within the on-demand center for the particular workload from a local environment. Various embodiments will be discussed next with reference to example methods which can be applicable to systems and computer-readable media.
- One aspect relates to a method of managing resources between a local compute environment and an on-demand environment. The method includes detecting an event associated with a local compute environment and, based on the detected event, identifying information about the local environment, establishing a communication with an on-demand compute environment and transmitting the information about the local environment to the on-demand compute environment. The system, at a first time establishes an advanced reservation of resources in the on-demand compute environment to yield reserved resources. The timing of the advanced reservation is at a second time which is later than the first time. The system then provisions the reserved resources within the on-demand compute environment to substantially duplicate the local compute environment to yield provisional resources and transfers workload from the local compute environment to the reserved, provisional resources in the on-demand compute environment. The event can be a threshold associated with a job processing in the local compute environment or a triggering event within or outside of the local compute environment.
- Another aspect of the disclosure provides for a method including generating at least one profile associated with workload that can be processed in a local compute environment, selecting at the local compute environment a profile from the at least one profile, communicating the selected profile from the local compute environment to the on-demand compute environment, reserving resources in the on-demand compute environment to yield reserved resources, provisioning the reserved resources within the on-demand compute environment according to the selected profile to yield provisional resources and transferring workload from the local-environment to the reserved, provisional resources in the on-demand compute environment.
- The step of generating at least one profile associated with workload that can be processed in a compute environment can be performed in advance of receiving job requests on the local compute environment. Further, generating at least one profile associated with workload that can be processed in a compute environment can be performed dynamically as job requests are received on the local compute environment. There can be one or more profiles generated. Furthermore, one or more of the steps of the method can be performed after an operation from a user or an administrator, such as a one-click operation. Any profile of the generated at least one profile can relate to configuring resources that are different from available resources within the local compute environment.
- Another aspect provides for a method of integrating an on-demand compute environment into a local compute environment. This method includes determining whether a backlog workload condition exists in the local compute environment and, if so, then analyzing the backlog workload, communicating information associated with the analysis to the on-demand compute environment, establishing an advanced reservation of resources in the on-demand compute environment to yield reserved resources, provisioning the reserved resources in the on-demand compute environment according to the analyzed backlog workload to yield provisional resources and transferring the backlog workload to the provisioned resources in the on-demand compute environment.
- Yet another aspect of the disclosure relates to web servers. In this regard, a method of managing resources between a webserver and an on-demand compute environment includes determining whether web traffic directed to the webserver should be at least partially served via the on-demand compute environment, establishing an advanced reservation of resources in the on-demand compute environment to yield reserved resources, provisioning the reserved resources within the on-demand compute environment to enable it to respond to web traffic for the webserver and to yield provisional resources, establishing a routing of at least part of the web traffic from the webserver to the provisioned resources in the on-demand compute environment and communicating data between a client browser and the on-demand compute environment such that the use of the on-demand compute environment for the web traffic is transparent.
- In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the disclosure briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended documents and drawings. Understanding that these drawings depict only typical embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings.
-
FIG. 1 illustrates the basic arrangement of the present disclosure; -
FIG. 2 illustrates the basic hardware components according to an embodiment of the disclosure; and -
FIG. 3 illustrates an example graphical interface for use in obtaining on-demand resources; -
FIG. 4 illustrates optimization from intelligent data staging; -
FIG. 5 illustrates various components of utility-based computing; -
FIG. 6 illustrates grid types; -
FIG. 7 illustrates grid relationship combinations; -
FIG. 8 illustrates graphically a web-server aspect of the disclosure; and -
FIG. 9 illustrates a method aspect of the disclosure. - Various embodiments are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without parting from the spirit and scope of the disclosure.
- In order for hosting centers to obtain the maximum advantage, the hosting centers need to simplify the experience for potential customers, enable fine-grained control over the sharing of resources and also dynamically adjust what is being provided based on each customer's needs. Additional intelligence control optimizes the delivery of resources so that hosting centers can lower costs and provide competitive offerings that will more easily be adopted and used.
- This disclosure relates to the access and management of on-demand or utility computing resources at a hosting center.
FIG. 1 illustrates the basic arrangement and interaction between alocal compute environment 104 and an on-demand hosting center 102. The local compute environment can include a cluster, a grid, or any other variation of these types of multiple node and commonly managed environments. The on-demand hosting center or on-demand computing environment 102 includes one or more nodes that are available for reservation and provisioning, and preferably has a dedicated node containing a hostingmaster 128 which can include aslave management module 106 and/or at least one other module, such as theidentity manager 112 andnode provisioner 118. - Throughout the description, the terms software, workload manager (WM), management module, system and so forth can be used to refer generally to software that performs functions similar to one or more of the Moab™ products from Cluster Resources, Inc., but are certainly not limited to the exact implementation of Moab™ (for example, the Moab Workload Manager®, Moab Grid Monitor®, etc.). Generally, the term “WM” can be used to relate to software that performs the steps being discussed. Such software provides a service for optimization of a local compute environment and according to the principles of the disclosure can also be used to control access to on-demand resources. In terms of local environment control, the software provides an analysis into how & when local resources, such as software and hardware devices, are being used for the purposes of charge-back, planning, auditing, troubleshooting and reporting internally or externally. Such optimization enables the local environment to be tuned to get the most out of the resources in the local compute environment. However, there are times where more resources are needed than are available in the local environment. This is where the on-demand or hosting center can provide additional resources.
- The software has detailed knowledge of jobs in a queue that will consume resources in a compute environment. The software schedules, at a first time, advanced reservations in the compute environment such that the reservation of resources is at a second time, later than the first time. For example, if a queue has ten jobs waiting, job number four can be analyzed with other jobs in the queue and the software establishes at noon an advanced reservation to run job number four at 2 PM. In this manner, when 2 PM arrives, job number four has resources already reserved (and have been for two hours), such that job number four will consume, at 2 PM, its reserved resources.
FIG. 4 ,portion 404 illustrates advanced reservations in the future for jobs. - Typically, a hosting
center 102 will have the following attributes. It allows an organization to provide resources or services to customers where the resources or services are custom-tailored to the needs of the customer. Supporting true utility computing usually requires creating a hostingcenter 102 with one or more capabilities as follows: use of advanced reservations; secure remote access; guaranteed resource availability at a fixed time or series of times; integrated auditing, accounting, and billing services; tiered service level (QoS/SLA) based resource access; dynamic compute node provisioning; full environment management over compute, network, storage, and application/service based resources; intelligent workload optimization; high availability; failure recovery; and automated re-allocation. - A
management module 108 enables utility computing by allowing compute resources to be reserved, allocated, and dynamically provisioned to meet the needs of internal or external workload. The management module reserves at a first time specific resources in the environment (local or on-demand) for each job in an access control list. The jobs consume the reserved resources at a second time which is later than the first time. For example, a management module may establish at 1 PM (a first time), an advanced reservation for resources at 4 PM (a second time which is later than a first time). This yields reserved resources (in the local or on-demand environment) which will be consumed by workload at the second time, i.e., workload will flow to the reserved resources for use at the appointed time and consume the resources then. Themodule module 108 is able to respond to either manual or automatically generated requests and can guarantee resource availability subject to existing service level agreement (SLA) or quality of service (QOS) based arrangements. As an example,FIG. 1 shows auser 110 submitting a job or a query to the cluster orlocal environment 104. The local environment will typically be a cluster or a grid with local workload. Jobs can be submitted which have explicit resource requirements and will each have an established reservation. Workload can have explicit requirements. Thelocal environment 104 will have various attributes such as operating systems, architecture, network types, applications, software, bandwidth capabilities, etc., which are expected by the job implicitly. In other words, jobs will typically expect that the local environment will have certain attributes that will enable it to consume resources in an expected way. These expected attributes can be duplicated or substantially duplicated in an on-demand environment, or substitute resources (which can be an improvement or less optimal) can be provisioned in the on-demand environment. When accessing the on-demand compute environment, the management module will reserve the necessary resources in the on-demand environment to prepare for the overflow of workload. An example of a duplicated or substantially duplicated environment is when the local environment utilizes Pentium CPUs and the Linux v.2 Operating System. The on-demand center may reserve and provision AMD CPUs or Pentium CPUs and Linux v.3 Operating Systems. Thus, the version of Linux is not exactly the same as in the local environment and is not sufficient to meet the affinity requests of the workload that will be transferred. - Other software is shown by way of example in a distributed resource manager such as
Torque 128 andvarious nodes - A hosting master or hosting
management module 106 can also be an instance of a Moab™ software product with hosting center capabilities to enable an organization to dynamically control network, advanced reservation, compute, application, and storage resources and to dynamically reserve and provision operating systems, security, credentials, and other aspects of a complete end-to-end compute environment.Module 106 is responsible for knowing all the policies, guarantees, promises and also for managing the provisioning of resources within theutility computing space 102. In one sense,module 106 can be referred to as the “master” module in that it couples and needs to know all of the information associated with both the utility environment and the local environment. However, in another sense it can be referred to as the slave module or provisioning broker wherein it takes instructions from thecustomer management module 108 for provisioning resources and builds whatever environment is requested in the on-demand center 102. A slave module would have none of its own local policies but rather follows all requests from another management module. For example, whenmodule 106 is the slave module, then amaster module 108 would submit automated or manual (via an administrator or user) requests that theslave module 106 simply follows to manage the reservations of and build out of the requested environment. Thus, for both IT and end users, a single easily usable interface can increase efficiency; reduce costs, including management costs; and improve investments in the local customer environment. The interface to the local environment, which also has the access to the on-demand environment, can be a web-interface or an access portal. Restrictions of feasibility only can exist. Thecustomer module 108 would have rights and ownership of all resources. The reserved and allocated resources would not be shared, but would be dedicated to the requestor. As theslave module 106 follows all directions from themaster module 108, any policy restrictions will preferably occur on themaster module 108 in the local environment. - The modules also provide data management services that simplify adding resources from across a local environment. For example, if the local environment includes a wide area network, the
management module 108 provides a security model that ensures, when the environment dictates, that administrators can rely on the system even when untrusted resources at the certain level have been added to the local environment or the on-demand environment. In addition, the management modules comply with n-tier web services based architectures and therefore, scalability and reporting are inherent parts of the system. A system operating according to the principles set forth herein also has the ability to track, record and archive information about jobs or other processes that have been run on the system. - A hosting
center 102 provides scheduled dedicated resources to customers for various purposes and typically has a number of key attributes: secure remote access, guaranteed resource availability at a fixed time or series of times, tightly integrated auditing/accounting services, varying quality of service levels providing privileged access to a set of users, node image management allowing the hosting center to restore an exact customer-specific image before enabling access. Resources available to amodule 106, which can also be referred to as a provider resource broker, will have both rigid (architecture, RAM, local disk space, etc.) and flexible (OS, queues, installed applications etc.) attributes. The provider or on-demand resource broker 106 can typically provision (dynamically modify) flexible attributes, but not rigid attributes. Theprovider broker 106 can possess multiple resources, each with different types with rigid attributes (i.e., single processor and dual processor nodes, Intel nodes, AMD nodes, nodes with 512 MB RAM, nodes with 1 GB RAM, etc). - This combination of attributes presents unique constraints on a management system. Described herein are how the
management modules FIG. 1 , the system can reserve, provision and use resources in the on-demand center for overflow workload from the local compute environment. Each job has an allocated reservation of resources for those resources it will consume when the job is transferred into the compute environment. - Utility-based computing technology allows a hosting
center 102 to quickly harness existing compute resources, dynamically co-allocate the resources, and automatically provision them into a seamless virtual cluster. U.S. application Ser. No. 11/276,852 incorporated herein by reference above, discloses a virtual private cluster (VPC). The process involves aggregating compute resources and establishing partitions of the aggregated compute resources. Then the system presents only the partitioned resources accessible by an organization to use within the organization. Thus, in the on-demand center 102, as resources are needed, the control and establishment of an environment for workload from a local environment can occur via the means of creating, via reservations, a virtual private cluster for the local user workload within reserved, provisioned resources in the on-demand compute environment 120. Note that further details regarding the creation and use of VPCs are found in the '852 application. In each case discussed herein where on-demand compute resources are identified, reserved, provisioned and consumed by local environment workload, the means by which this is accomplished can be through the creation of a VPC within the on-demand center. - Also shown in
FIG. 1 are several other components such as anidentity manager 112 and anode provisioner 118 as part of the hostingcenter 102. The hostingmaster 128 can include anidentity manager interface 112 that can coordinate global and local information regarding users, groups, accounts, and classes associated with compute resources. Theidentity manager interface 112 can also allow themanagement module 106 to automatically and dynamically create and modify user accounts and credential attributes according to current workload needs. The hostingmaster 128 allows sites extensive flexibility when it comes to defining credential access, attributes, and relationships. In most cases, use of the USERCFG, GROUPCFG, ACCOUNTCFG, CLASSCFG, and QOSCFG parameters is adequate to specify the needed configuration. However, in certain cases, such as the following, this approach is not ideal or even adequate: environments with very large user sets; environments with very dynamic credential configurations in terms of fairshare targets, priorities, service access constraints, and credential relationships; grid environments with external credential mapping information services; enterprise environments with fairness policies based on multi-cluster usage. - The
modules identity manager 112. Theidentity manager 112 allows the module to exchange information with an external identity management service. As with the module's resource manager interfaces, this service can be a full commercial package designed for this purpose, or something far simpler by which the module obtains the needed information for a web service, text file, or database. - Next, attention is turned to the
node provisioner 118. As an example of its operation, thenode provisioner 118 can enable the allocation of resources in the hostingcenter 102 for workload from alocal compute environment 104. As mentioned above, one aspect of this process can be to create a VPC within the hosting center as directed by themodule 108. Reservations of resources in the hosting center are used to create the VPC, or to reserve resources in the on-demand compute environment that can be provisioned on the VPC. Thecustomer management module 108 will communicate with the hostingmanagement module 106 to begin the provisioning process. In one aspect, theprovisioning module 118 can generate another instance ofnecessary management software nodes new management module 120 is created on the fly, can be associated with a specific request and will preferably be operative on a dedicated node. If thenew management module 120 is associated with a specific request or job, as the job consumes the reserved resources associated with the provisionedcompute nodes management module 120 since it was only created for the specific request. Thenew management module 120 can connect to other modules such asmodule 108. Themodule 120 does not necessarily have to be created but can be generated on the fly as necessary to assist in communication, reservations, and provisioning and use of the resources in theutility environment 102. For example, themodule 106 can go ahead and reserve and allocate nodes within theutility computing environment 102 and connect these nodes directly tomodule 108 but in that case you can lose some batch ability as a tradeoff. The hostingmaster 128 having themanagement module 106,identity manager 112 andnode provisioner 118 preferably is co-located with the utility computing environment but can be distributed. Themanagement module 108 on thelocal environment 104 can then communicate directly with the createdmanagement module 120 in the hostingcenter 102 to manage the transfer of workload and consumption of on-demand center resources. Createdmanagement module 120 can be part of a VPC. - With reference to
FIG. 2 , an exemplary system for implementing the disclosure includes a generalpurpose computing device 200, including a processing unit (CPU) 220, asystem memory 230, and asystem bus 210 that couples various system components including thesystem memory 230 to theprocessing unit 220. Thesystem bus 210 can be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system can also include other memory such as read only memory (ROM) 240. A basic input/output (BIOS), containing the basic routine that helps to transfer information between elements within thecomputing device 200, such as during start-up, is typically stored inROM 240. Thecomputing device 200 further includes storage means such as ahard disk drive 250, a magnetic disk drive, an optical disk drive, tape drive or the like. Thestorage device 260 is connected to thesystem bus 210 by a drive interface. The drives and the associated computer-readable media provide nonvolatile storage of computer readable instructions, data structures, program modules and other data for thecomputing device 200. The basic components are known to those of skill in the art and appropriate variations are contemplated depending on the type of device, such as whether the device is a small, handheld computing device, a desktop computer, or a computer server. - Although the exemplary environment described herein employs the hard disk, it should be appreciated by those skilled in the art that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, memory cartridges, random access memories (RAMs) read only memory (ROM), and the like, can also be used in the exemplary operating environment. The system above provides an example server or computing device that can be utilized and networked with a cluster, clusters or a grid to manage the resources according to the principles set forth herein. It is also recognized that other hardware configurations can be developed in the future upon which the method can be operable.
- As mentioned a concept useful but not necessary for enabling the technology include an easy-to-use capacity on-demand feature and dynamic VPCs. U.S. patent application Ser. No. 11/276,852 filed 16 Mar. 2006 referenced above provide further details regarding VPCs and the capability is enabled in the incorporated source code in the parent provisional application. Regarding the easy-to-use capacity on demand,
FIG. 3 illustrates anexample interface 300 that a user can utilize to connect to an on-demand center by a simple configuration of several parameters on each site. These parameters can be pre-configured and activated in a manner as simple as using an “enable now”button 302. Preferably, license terms and agreement can be prepackaged or accepted with the software's other licenses during an installation process or can be reviewed via a web form as a response to activating the service. The administrator can configure theresource requirements 308 in the on-demand center easily to control how many simultaneous processors, nodes, and so forth can be reserved and used in the on-demand center. Other parameters can be set such as the size of incremental steps, minimum duration and processor hours per month. Theinterface 300 also includes example capabilities such as customizingcapacity limits 304, customizingservice level policies 306 and other outsourcing permissions. For example, the user can vary the permissions of users, groups, classes and accounts with outsourcing permissions. - As can be seen in
interface 300, there are other parameters shown such as maximum capacity and service level limits, and wall time limits and quality of service levels. Thus a user can provide for a customized approach to utilizing the on-demand center. The user can enable service level enforcement policies and apply the policies to various gradations of the workload, such as to all workload with excessive wait times, only high priority workload with excessive wait time and/or only workload with excessive wait time that has the outsource flag applied. Other gradations are also contemplated, such as enabling the user to further define “excessive” wait time or how high the high priority workload is. - The dynamic VPC enables for the packaging, securing, optimizing and guaranteeing of the right resource delivery in cluster, grid and hosting center environments. The VPC is used to virtually partition multiple types of resources (such as different hardware resources, software licenses, VLANs, storage, etc.) into units that can be treated as independent clusters. These independent virtual clusters can have their own policy controls, security, resource guarantees, optimization, billing and reporting. The VPC uses the management software's scheduling, reservation and policy controls to automatically change the virtual boundaries to match the required resources to the associated workload. For example, if a client first needed resources from a traditional Linux compute farm, but then over time had workload that increasingly needed SMP resources, the dynamic VPC could optimally adapt the correct resources to match the workload requirements. The dynamic VPC provides flexibility to manage and modify the resources in the on-demand center. Otherwise, the hosting services are too rigid, causing clients to go through the tasks of redefining and renegotiating which resources are provided or causing them to pay for resources that didn't match their changing needs.
- Other differentiators enabled in the management software include detailed knowledge and fine grained control of workload which includes workload allocation (CPU vs. data intensive workload), optimized data staging, resource affinity, highly optimized resource co-allocation, provisioning integration, and integration security management. Service level enforcement controls relate to guaranteed response times and guaranteed uptime. There are broad management capabilities such as multi-resource manager support and flexibility in management modules such as single system images. More details about these features follow.
- Regarding workload allocation, one of the intelligence capabilities enabled by the detailed knowledge and control over workload is its ability to differentiate between CPU-intensive and data-intensive workload. When the software schedules, via advanced reservations, HPC workload for a hosting center, it can automatically send the more CPU-intensive workload to the hosting site, while focusing the data-intensive workload locally. This means that jobs with large data files do not need to tie up networks, and the approach reduces the total response time of the clients' workload. Clients are more satisfied because their work gets done sooner and the hosting center is more satisfied because it can process workload that is most profitable to the “CPU Hour” billing model.
- Optimized data staging is another aspect of the software's detailed knowledge and control of workload. This technology increases the performance of data-intensive workload by breaking a job's reservation into the two, three (or more) elements of pre-staging data, processing workload and staging results back. Each job in a queue can have its own reservation of resources such that the software has detailed knowledge of resources that will be consumed in the future for jobs in the queue. Other scheduling technologies reserve the processor and other resources on a node for the duration of all three, leaving the CPU idle during data staging and the I/O capacity virtually idle during the processing period. The management software of the present disclosure has an information querying service that analyzes both file and network information services and then intelligently schedules all two or three processes in an optimized manner. The I/O capacity is scheduled, via advanced reservations, to avoid conflict between data staging periods, and CPU scheduling is optimized to allow for the most complete use of the underlying processor. Once again, this assists the end client in getting more accomplished in a shorter period of time, and optimizes the hosting providers' resources to avoid idle CPU time.
FIG. 4 illustrates how intelligent data staging works. Thetop portion 402 of this figure shows the traditional method of reserving an entire node, including the CPU, for the entire data staging, compute time, and staging back. The top row of thetop portion 402 shows CPU usage and blank spaces reporting idle CPU time. The bottom row shows I/O capacity being used for pre-staging and staging back, but idle during CPU usage. As is shown inFIG. 4 , thetop portion 402 only completes three jobs. Thebottom half 404 shows how the management module schedules reservations such that the data staging and processing to overlap and thus optimize workload. The “events” utilize the CPU during the prestaging and stage back periods rather than leaving the CPU idle during those times. Inportion 404, 7.5 jobs are shown as being completed via the reservations and “events,” which can be CPU time reserved for other jobs. This provides efficient use of CPU cycle and network resources. Row 404 illustrates how reservations exist in a compute environment over time (on the horizontal axis). Four reservations are established for four jobs and eight events are shown as also filling in CPU time during prestaging and staging back. Thus, other jobs can fill the CPU available time reserved by the “events.” - Regarding resource affinity, the
management module management modules - The
management modules - Another feature relates to the software's architecture which allows for simultaneous monitoring, reserving, scheduling, and managing of multiple resource types, and can be deployed across different environments or used as a central point of connection for distinct environments. Regarding the broad compatibility, the software's server-side elements work on at least Linux, Unix and Mac OS X environments (it can manage Linux, Unix, Mac OS X, Windows and mainframe environments—depending on what the local resource manager supports). The client-side software works on Linux, Unix, Mac OS X and Windows environments as well as other environments.
- Multi-resource manager support enables the software to work across virtually all mainstream compute resource managers. These compute resource managers include, but are not limited to, LoadLeveler, LSF, PBSPro, TORQUE, OpenPBS and others. Not only does this increase the number of environments in which it can be used to provide capacity on demand capabilities, but it leaves the customer with a larger set of options going forward because it doesn't lock them into one particular vendor's solution. Also, with multi-resource manager support, the software can interoperate with multiple compute resource managers at the same time, thus allowing grid capabilities even in mixed environments.
- Beyond the traditional compute resource manager that manages job submission to compute nodes, the software can integrate with storage resource managers, network resource managers, software license resource managers, etc. It uses this multiplicity of information sources to make its policy decisions more effective. The software can also connect up to hardware monitors such as Ganglia, custom scripts, executables and databases to get additional information that most local compute resource managers would not have available. This additional information can be queried and evaluated by the software or an administrator to be applied to workload reservation and placement decisions and other system policies.
-
FIG. 5 illustrates graphically 500 how the software integrates with other technologies. The items along the bottom are resource types such as storage, licenses, and networks. The items on the left are interface mechanisms for end users and administrators. Items on the right side of the figure are service with which the software can integrate to provide additional extended capabilities such as provisioning, database-centric reporting and allocation management. The example software packages shown inFIG. 5 are primarily IBM products but of course other software can be integrated. - Regarding the flexibility of management models, the software enables providing the capacity on demand capability any supported cluster environment or grid environment. The software can be configured to enable multiple grid types and management models. The two preferable grid types enabled by the software are local area grids and wide area grids, although others are also enabled.
FIG. 6 illustrates 600 examples of various grid types as well as various grid management scenarios. A “Local Area Grid” (LAG) uses one instance of a workload manager WM, such as Moab, within an environment that shares a user and data space across multiple clusters, which can have multiple hardware types, operating systems and compute resource managers (e.g. LoadLeveler, TORQUE, LSF, PBSPro, etc.). The benefits of a LAG are that it is very easy to set up and even easier to manage. In essence all clusters are combined in a LAG using one instance of the WM, eliminating redundant policy management and reporting. The clusters appear to be a mixed set of resources in a single big cluster. A “Wide Area Grid” (WAG) uses multiple WM instances working together within an environment that can have one or more user and data spaces across various clusters, which can have mixed hardware types, operating systems and compute resource managers (e.g. LoadLeveler, TORQUE, LSF, PBSPro, etc.). WAG management rules can be centralized, locally controlled or mixed. The benefit of a WAG is that an organization can maintain the sovereign management of its own local cluster, while still setting strict or relaxed political sharing policies of its resources to the outside grid. Collaboration can be facilitated with a very flexible set of optional policies in the areas of ownership, control, information sharing and privacy. Sites are able to choose how much of their cluster's resources and information they share with the outside grid. - Grids are inherently political in nature and flexibility to manage what information is shared and what information is not is central to establishing such grids. Using the software, administrators can create policies to manage information sharing in difficult political environments.
- Organizations can control information sharing and privacy in at least three different ways: (1) Allow all resource (e.g. nodes, storage, etc.), workload (e.g. jobs, reservations, etc.) and policy (e.g. sharing and prioritization rules) information to be shared to provide full accounting and reporting; (2) Allow other sites to only see resource, workload and policy information that pertains to them so that full resource details can be kept private and more simplified; (3) Allow other sites to only see a single resource block, revealing nothing more than the aggregate volume of resources available for reservation and use by the other site. This allows resources, workload and policy information to be kept private, while still allowing shared relationships to take place. For example, a site that has 1,024 processors can publicly display only 64 processors to other sites on the grid.
- The above mentioned grid types and management scenarios can be combined together with the information sharing and privacy rules to create custom relationships that match the needs of the underlying organizations.
FIG. 7 illustrates an example of how grids can be combined. Many combinations are possible. - The software is able to facilitate virtually any grid relationship such as by joining local area grids into wide area grids; joining wide area grids to other wide area grids (whether they be managed centrally, locally—“peer to peer,” or mixed); sharing resources in one direction (e.g. for use with hosting centers or lease out one's own resources); enabling multiple levels of grid relationships (e.g. conglomerates within conglomerates). As can be appreciated, the local environment can be one of many configurations as discussed by way of example above.
- Various aspects of the disclosure with respect to accessing an on-demand center from a local environment will be discussed next. One aspect relates to enabling the automatic detection of an event such as resource thresholds or service thresholds within the
compute environment 104. For example, if a threshold of 95% of processor consumption is met because 951 processors out of the 1000 processors in the environment are being utilized, then theWM 108 can automatically establish a connection with the on-demand environment 102. A service threshold, a policy-based threshold, a hardware-based threshold or any other type of threshold can trigger the communication to the hostingcenter 102. Other events as well can trigger communication with the hosting center such as a workload backlog having a certain configuration. TheWM 108 then can communicate withWM 106 to reserve resources, and then provision or customize the reserved on-demand resources 102. The creation of a VPC within the on-demand center can occur. The two environments exchange the necessary information to create reservations of resources, provision the resources, manage licensing, and so forth, necessary to enable the automatic transfer of jobs or other workload from thelocal environment 104 to the on-demand environment 102. Nothing about auser job 110 submitted to aWM 108 changes. The physical environment of thelocal compute environment 104 can also be replicated in the on-demand center. The on-demand environment 102 then instantly begins running the job without any change in the job or perhaps even any knowledge of the submitter. - In another aspect, predicted events can also be triggers. For example, a predicted failure of nodes within the local environment, predicted events internal or external to the environment, or predicted meeting of thresholds can trigger communication with the on-demand center. These are all configurable and can either automatically trigger the migration of jobs or workload or can trigger a notification to the user or administrator to make a decision regarding whether to migrate workload or access the on-demand center.
- Regarding the analysis and transfer of backlog workload, the method embodiment provides for determining whether a backlog workload condition exists in the local compute environment. If the backlog workload condition exists, then the system analyzes the backlog workload, communicates information associated with the analysis to the on-demand compute environment, establishes a reservation of resources in the on-demand compute environment to yield reserved resources, provisions the reserved resources in the on-demand compute environment to yield provisional resources in the on-demand compute environment according to the analyzed backlog workload and transfers the backlog workload to the provisioned resources. It is preferable that the provisioning the on-demand compute environment further includes establishing a reservation of resources to create a virtual private cluster within the on-demand compute environment. Analyzing the workload can include determining at least one resource type associated with the backlog workload for provisioning in the on-demand compute environment.
- In another aspect, analyzing the backlog workload, communicating the information associated with analysis to the on-demand compute environment, reserving resources at a future time in the on-demand compute environment to yield reserved resources, provisioning the reserved resources in the on-demand compute environment according to the analyzed backlog workload and transferring the backlog workload to the provisioned resources in the on-demand compute environment occurs in response to a one-click operation from an administrator. However, the process of reserving, provisioning and transferring backlog workload to the on-demand center can begin based on any number of events. For example, a user can interact with a user interface to initiate the transfer of backlog workload. An internal event such as a threshold, for example, a wait time reaching a maximum, can be an event that could trigger the analysis and transfer. An external event can also trigger the transfer of backlog workload such as a terrorist attack, weather conditions, power outages, etc.
- There are several aspects to this disclosure that are shown in the attached source code. One is the ability to exchange information. For example, for the automatic transfer of workload to the on-demand center, the system will import remote classes, configuration policy information, physical hardware information, operating systems and other information from
environment 102 theWM 108 to theslave WM 106 for use by the on-demand environment 102. Information regarding the on-demand compute environment, resources, policies and so forth are also communicated from theslave WM 106 to thelocal WM 108. - A method embodiment can therefore provide a method of managing resources between a local compute environment and an on-demand compute environment. An exemplary method includes detecting an event associated with a local compute environment. As mentioned the event can be any type of trigger or threshold. The software then identifies information about the local compute environment, establishes communication with an on-demand compute environment and transmits the information about the local environment to the on-demand compute environment. With that information, the software establishes at a first time an advanced reservation of resources in the on-demand compute environment to yield reserved resources, and then provisions the reserved resources within the on-demand compute environment to duplicate or substantially duplicate the local compute environment and transfers workload from the local-environment to the provisional resources in the on-demand compute environment. The workload consumes the provisional resources at a second time which is later than the first time. In another aspect, the provisioning does not necessarily duplicate the local environment but specially provisions the on-demand environment for the workload to be migrated to the on-demand center. As an example, the information communicated about the local environment can relate to at least hardware and/or an operating system. But the workload to be transferred to the on-demand center may have an affinity to hardware and/or an operating system that differs from that in the local compute environment. Therefore, the software can request different hardware and/or software in the on-demand center from the configuration of the local compute environment. Establishing communication with the on-demand compute environment and transmitting the information about the local environment to the on-demand compute environment can be performed automatically or manually via a user interface. Using such an interface can enable the user to provide a one-click or one action request to establish the communication and migrate workload to the on-demand center.
- In some cases, as the software seeks to reserve and provision resources, a particular resource cannot be duplicated in the on-demand compute environment. In this scenario, the software will identify and select a substitute resource. This process of identifying and selecting a substitute resource can be accomplished either at the on-demand environment or via negotiation between a
slave workload manager 120 at the on-demand environment and amaster workload manager 108 on the local compute environment. The method further can include identifying a type of workload to transfer to the on-demand environment 102, and wherein transferring workload from the local-environment 104 to the on-demand compute environment 102 further includes only transferring the identified type of workload to the on-demand center. In another aspect, the transferring of the identified type of workload to the on-demand center 102 is based upon different hardware and/or software capabilities between the on-demand environment and the local compute environment. - Another aspect of the disclosure is the ability to automate data management between two sites. This involves the transparent handling of data management between the on-
demand environment 102 and thelocal environment 104 that is transparent to the user. In other words, it can be accomplished without explicit action or configuration by the user. It can also be unknown to the user. Yet another aspect relates to a simple and easy mechanism to enable on-demand center integration. This aspect of the disclosure involves the ability of the user or an administrator to, in a single action like the click of a button, the touching of a touch sensitive screen, motion detection, or other simple action, command the integration of an on-demand center information and capability into thelocal WM 108. In this regard, the system will be able to automatically exchange and integrate all the necessary information and resource knowledge in a single click to broaden the set of resources that can be available to users who have access initially only to thelocal compute environment 104. The information can include the various aspect of available resources at the on-demand center such as time-frame, cost of resources, resource type, etc. - One of the aspects of the integration of an on-
demand environment 102 and alocal compute environment 104 is that the overall data appears locally. In other words, theWM 108 will have access to the resources and knowledge of the on-demand environment 102 but the view of those resources, with the appropriate adherence to local policy requirements, is handled locally and appears locally to users and administrators of thelocal environment 104. - Another aspect is enabled with the attached source code is the ability to specify configuration information associated with the
local environment 104 and feeding it to the hostingcenter 102. For example, the interaction between the compute environments supports static reservations. A static reservation is a reservation that a user or an administrator cannot change, remove or destroy. It is a reservation that is associated with theWM 108 itself. A static reservation blocks out time frames when resources are not available for other uses. For example, if, to enable a compute environment to run (consume) resources, a job takes an hour to provision a resource, then theWM 108 can establish a static reservation of resources for the provisioning process. TheWM 108 will locally create a static reservation for the provisioning component of running the job. TheWM 108 will report on these constraints associated with the created static reservation. - Then, the
WM 108 can communicate with theslave WM 106 if on-demand resources are needed to run a job. TheWM 108 communicates with theslave WM 106 and identifies what resources are needed (20 processors and 512 MB of memory, for example) and inquires when can those resources be available. Assume thatWM 106 responds that the processors and memory will be available in one hour and that theWM 108 can have those resources for 36 hours. The system can establish a normal reservation of the processors and memory in the on-demand center starting in an hour and lasting for 36 hours. Once all the appropriate information has been communicated between theWM 106 andWM 108, thenWM 108 creates a static reservation in the on-demand center to block the first part of the resources which requires the one hour of provisioning. TheWM 108 can also block out the resources with a static reservation from hour 36 to infinity until the resources go away. Therefore, from zero to one hour is blocked out by a static reservation and from the end of the 36 hours to infinity is blocked out with a static reservation. In this way, thescheduler 108 can optimize the on-demand resources and insure that they are available for local workloads. The communication between theWMs - Yet another aspect is the ability to have a single agent such as the
WM 108 or some other software agent detect a parameter, event or configuration in thelocal environment 104. The environment in this sense includes both hardware and software and other aspects of the environment. For example, acluster environment 104 can have, besides the policies and restrictions on users and groups as discussed above, a certain hardware/software configuration such as a certain number of nodes, a certain amount of memory and disk space, operating systems and software loaded onto the nodes and so forth. The agent (which can beWM 108 or some other software module) determines the physical aspects of thecompute environment 104 and communicates with the on-demand hosting center to provide an automatic reservation of and provisioning of reserved resources within thecenter 102 such that the local environment is duplicated. The duplication can match the same hardware/software configuration or can may dynamically or manually substitute alternate components. The communication and transfer of workload to a replicated environment within the hostingcenter 102 can occur automatically (say at the detection of a threshold value) or at the push of a button from an administrator. Therefore information regarding the local environment is examined and theWM 108 or another software agent transfers that information to the hostingcenter 102 for replication. - The replication, therefore, involves providing the same or perhaps similar number of nodes, provisioning operating systems, file system architecture and memory and any other hardware or software aspects of the hosting
center 102 usingWM 106 to replicate thecompute environment 104. Those of skill in the art will understand that other elements that can need to be provisioned to duplicate the environment. Where the exact environment cannot be replicated in the hostingcenter 102, decisions can be made by theWM 106 or via negotiation betweenWM 106 andWM 108 to determine an alternate provisioning. - In another aspect, a user of the
compute environment 104 such as an administrator can configure at the client site 104 a compute environment and when workload is transferred to the hostingcenter 102, the desired compute environment can be provisioned. In other words, the administrator could configure a better or more suited environment than thecompute environment 104 that exists. As an example, a company can want to build acompute environment 104 that will be utilized by processor intensive jobs and memory intensive jobs. It can be cheaper for the administrator of theenvironment 104 to build an environment that is better suited to the processor intensive jobs. The administrator can configure a processor intensive environment at thelocal cluster 104 and when a memoryintensive job 110 is submitted, the memory intensive environment can be reserved and provisioned in the hostingcenter 102 to offload that job. - In this regard, the administrator can generate profiles of various configurations for various “one-click” provisioning on the hosting
center 102. For example, the administrator can have profiles for compute intensive jobs, memory intensive jobs, types of operating system, types of software, any combination of software and hardware requirements and other types of environments. Those of skill in the art will understand the various types of profiles that can be created. Thelocal cluster 104 has a relationship with the hostingcenter 102 where the administrator can transfer workload based on one of the one or more created profiles. This can be done automatically if theWM 108 identifies auser job 110 that matches a profile or can be done manually by the administrator via a user interface that can be graphical. The administrator can be able to, in “one click,” select the option to have resources in the on-demand center reserved and provisioned to receive a memory intensive component of the workload to process according to the memory-intensive profile. - The relationship between the hosting
center 102 and thelocal cluster 104 by way of arranging for managing the workload can be established in advance or dynamically. The example above illustrates the scenario where the arrangement is created in advance where profiles exist for selection by a system or an administrator. The dynamic scenario can occur where the local administrator for theenvironment 104 has a new user with a different desired profile than the profiles already created. The new user wants to utilize theresources 104. Profiles configured for new users or groups can be manually added and/or negotiated between the hostingcenter 102 and thelocal cluster 104 or can be automatic. There can be provisions made for the automatic identification of a different type of profile and WM 108 (or another module) can communicate with WM 106 (or another module) to arrange for the availability/capability of the on-demand center to handle workload according to the new profile and to arrange cost, etc. If no new profile can be created, then a default or generic profile, or the closest previously existing profile to match the needs of the new user's job can be selected. In this manner, the system can easily and dynamically manage the addition of new users or groups to thelocal cluster 104. - In this regard, when
WM 108 submits a query to theWM 106 stating that it needs a certain set of resources, it passes the profile(s) as well. Receiving resource requirement information may be based on user specification, current or predicted workload. The specification of resources may be one of fully explicit, partially explicit, fully implicit based on workload, and based on virtual private cluster (VPC) package concept where VPC package can include aspects of allocated or provisioning support environment and adjustments to resource request timeframes including pre-allocation, allocation duration, and post-allocation timeframe adjustments. The incorporated application above includes the discussion of virtual private clusters which are completely applicable and integrated into this disclosure and capability with on-demand centers. The reserved resources may be associated with provisioning or customizing the delivered compute environment. A reservation may involve the co-allocation of resources including any combination of compute, network, storage, license, or service resources (i.e., parallel database services, security services, provisioning services) as part of a reservation across multiple different resource types. Also, the co-allocation of resources over disjoint timeframes to improve availability and utilization of resources may be part of a reservation or a modification of resources. Resources may also be reserved with automated failure handling and resource recovery.WM 106 identifies when resources are available in static dimensions (such as identifies that a certain amount of memory, nodes and/or other types of architecture are available). This step will identify whether the requestor obtains the raw resources to meet those needs. Then theWM 106 will manage the customer install and provisioning of the software, operating systems, and so forth according to the received profile. In this manner, the entire specification of needs according to the profile can be met. - Another aspect of the disclosure relates to looking at the workload overflowing to the hosting center. The system can customize the environment for the particular overflow workload. This was referenced above. The
agent 108 can examine the workload on thelocal cluster 104 and determine what part of that workload or if all of that workload, can be transferred to the hostingcenter 102. The agent identifies whether the local environment is overloaded with work and what type of work is causing the overload. The agent can preemptively identify workload that would overload the local environment or can dynamically identify overload work being processed. For example, if ajob 110 is submitted that is both memory intensive and processor intensive, theWM 108 will recognize that and intelligently communicate with theWM 106 to transfer the processor intensive portion of the workload to reserve resources in the hostingcenter 102. This can be preferable for several reasons. Perhaps it is cheaper to utilize hostingcenter 102 processing time for processor intensive time. Perhaps thelocal environment 104 is more suited to the memory intensive component of the workload. Also, perhaps restrictions such as bandwidth, user policies, current reservations in the local 104 or hosting 102 environment and so forth can govern where workload is processed. For example, the decision of where to process workload can be in response to the knowledge that theenvironment 104 is not as well suited for the processor intensive component of the workload or due to other jobs running or scheduled to run in theenvironment 104. As mentioned above, theWM 106 manages the proper reservation and provisioning of resources in the hosting center environment for the overflow workload. - Where the agent has identified a certain type of workload that is causing the overload, the system can automatically reserve and provision resources in the hosting center to match the overload workload and then transfer that workload over.
- As another example of how this works, a threshold can be met for work being processed on the
local cluster 104. The threshold can be met by how much processing power is being used, how much memory is available, whether the user has hit a restriction on permissions, and/or a determination that a quality of service has not been met or any other parameter. Once that threshold is met, either automatically or via an administrator, a button can be pressed andWM 108 analyzes the workload on theenvironment 104. TheWM 108 can identify that there is a backlog and determine that more nodes are needed (or more of any specific type of resource is needed). TheWM 108 will communicate withWM 106 to enable, at a first time, the creation of an advanced reservation of resources in the hosting center. TheWM 108/106 autoprovisions the reserved resources within the hosting center to meet the needs of the backlogged jobs. The appropriate resources, hardware, software, permissions and policies can be duplicated exactly or in an acceptable fashion to resolve the backlog. Further, the autoprovisioning can be performed with reference to the backlog workload needs rather than the local environment configuration. In this respect, the overflow workload is identified and analyzed and the reservation and provisioning in the hosting center is matched to the workload itself (in contrast to matching the local environment) for processing when the backlog workload is transferred. The reservation of the resources is for a second time which is later than the first time. Thus, the workload is transferred such that the reservation insures that the reserved resources are available for the workload. Therefore, the reservation and provisioning can be based on a specific resource type that will resolve most efficiently the backlog workload. - One aspect of this disclosure relates to the application of the concepts above to provide a website server with backup computing power via a hosting
center 102. This aspect of the disclosure is shown by thesystem 800 inFIG. 8 . The hostingcenter 102 andWM 106 are configured as discussed above and adjustment as necessary are made to communicate with awebserver 802. A website version of the workload manager (WM) 804 would operate on thewebserver 302. Known adjustments are made to enable the Domain Name Service (DNS) to provide for setting up the overflow of network traffic to be directed to either theweb server 802 or the hostingcenter 102. In another aspect, the webserver would preferably handle all of the rerouting of traffic to the on-demand center once it was reserved and provisioned for overflow web traffic. In another aspect, a separate network service can provide the control of web traffic control directed to either the webserver or the on-demand center. One of skill in the art will understand the basic information about how internet protocol (IP) packets of information are routed between a web browser on a client compute device and aweb server 802. - In this regard, the
WM 804 would monitor theweb traffic 306 and resources on theweb server 802. Theweb server 802 of course can be a cluster or group of servers configured to provide a website. TheWM 804 is configured to treatweb traffic 806 and everything associated with how the web traffic consumes resources within theweb server 802 as a job or a group of jobs. An event such as a threshold is detected byWM 804. If the threshold is passed or the event occurs, theWM 804 communicates with theWM 106 of the hostingcenter 102, theWM 106 establishes an advanced reservation of resources to yield reserved resources and then autoprovisions the reserved resources and enables web traffic to flow to the autoprovisioned resources in the hostingcenter 102 where the requests would be received and webpages and web content is returned. The provisioning of resources can also be performed manually for example in preparation for increased web traffic for some reason. As an example, if an insurance company knows that a hurricane is coming it can provide for and prepare for increased website traffic. - The management of
web traffic 806 to thewebserver 802 and to the hostingcenter 102 can also be coordinated such that a portion of the requests go directly to the hostingcenter 102 or are routed from theweb server 802 to the hostingcenter 102 for response. For example, once the provisioning in the reserved resources in the hostingcenter 102 is complete, an agent (which can communicate with the WM 804) can then intercept web traffic directed to theweb server 302 and direct it to the hostingcenter 102, which can deliver website content directly to the client browser (not shown) requesting the information. Those of skill in the art will recognize that there are several ways in whichweb traffic 806 can be intercepted and routed to the provisioned reserved resources at the hostingcenter 102 such that it is transparent to the client web browser that a hostingcenter 102 rather than theweb server 802 is servicing the web session. - The identification of the threshold can be based on an increase of current traffic or can be identified from another source. For example, if the New York Times or some other major media outlet mentions a website, that event can cause a predictable increase in traffic. In this regard, one aspect of the disclosure is a monitoring of possible triggers to increased web activity. The monitoring can be via a Google (or any type of) automatic search of the website name in outlets like www.nytimes.com, www.washingtonpost.com or www.powerlineblog.com. If the website is identified in these outlets, then an administrator or automatically the provisioning of reserved resources can occur at a predictable time of when the increased traffic would occur.
- Another aspect of the disclosure is illustrated in an example. In one case, a small website (we can call it www.smallsite.com) was referenced in the Google™ search engine page. Because of the large number of users of Google, www.smallsite.com went down. To prevent this from happening, when a high traffic source such as www.google.com or www.nytimes.com links to or references a small or low traffic website, then an automatic reservation and provisioning of reserved resources can be performed. For example, if the link from Google to www.smallsite.com were created, and the system (either Google or a special feature available with any website) identified that such a link was established which is likely to cause an increased amount of traffic, then the necessary reservation, provisioning, mirroring of content, and so forth, could occur between the
web server 802 and the hostingcenter 102 and the necessary DNS modifications to enable the off-loading of some or all of the web traffic to the hosting center. - If some of the traffic is routed to the hosting
center 102, then provisions are made to send that traffic either directly or indirectly to the reserved, provisioned resources in the hostingcenter 102. In one aspect, the data is mirrored to the hostingcenter 102 and the hosting center can exclusively handle the traffic until a certain threshold is met and the web traffic can be automatically transferred back to theweb server 802. - The off-loading of web traffic can be featured as an add-on charge available to websites as well as charges or fees for the services that can be used to identify when traffic can increase. External forces (such as mentioning a website on the news) can trigger the increase as well as internal forces. For example, if a special offer is posted on a website for a reduced price for a product, then the website can expect increased traffic. In this regard, there can be a “one-click” option to identify a time period (1 day offloading) and a starting time (2 hours after the offer is posted) for the offloading to occur.
- As can be appreciated, the principles of the present disclosure enable the average user “surfing” the web to enjoy access and experience websites that can otherwise be unavailable due to large internet traffic. The benefit certainly inures to website owners and operators who will avoid unwanted down time and the negative impact that can have on their business.
-
FIG. 9 illustrates a method aspect of the webserver embodiment of the disclosure. Here, a method of managing resources between a webserver and an on-demand compute environment is disclosed with the method including determining whether web traffic directed to the webserver should be at least partially served via the on-demand compute environment (902), reserving resources in the on-demand compute environment to yield reserved resources, provisioning the reserved resources within the on-demand compute environment to enable it to respond to web traffic for the webserver (904), establishing a routing of at least part of the web traffic from the webserver to the provisioned resources in the on-demand compute environment (906) and communicating data between a client browser and the on-demand compute environment such that the use of the on-demand compute environment for the web traffic is transparent (908). - While the claims below are method claims, it is understood that the steps can be practiced by compute modules in a system embodiment of the disclosure as well as being related to instructions for controlling a compute device stored on a computer-readable medium. The disclosure can also include a
local compute environment 104 and/or an on-demand center 102 configured to operated as described above. A webserver(s) 802 and/or the on-demand center 102 with any other network nodes configured to enable the offloading ofweb traffic 806 can also be an embodiment of the disclosure. This can also involve an additional software alteration on a web browser to enable the offloading of web traffic. Further, any hardware system or network can also be embodied in the disclosure. - Embodiments within the scope of the present disclosure can also include transitory or non-transitory computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions or data structures. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or combination thereof) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of the computer-readable media. Non-transitory computer readable media excludes energy and signals per se.
- Computer-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Computer-executable instructions also include program modules that are executed by computers in stand-alone or network environments. Generally, program modules include routines, programs, objects, components, and data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps.
- Those of skill in the art will appreciate that other embodiments of the disclosure can be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. Embodiments can also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination thereof) through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
- Although the above description can contain specific details, they should not be construed as limiting the claims in any way. Other configurations of the described embodiments of the disclosure are part of the scope of this disclosure. Accordingly, the appended claims and their legal equivalents should only define the disclosure, rather than any specific examples given.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/960,244 US20230103780A1 (en) | 2005-04-07 | 2022-10-05 | On-Demand Access to Compute Resources |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66927805P | 2005-04-07 | 2005-04-07 | |
US11/279,007 US9075657B2 (en) | 2005-04-07 | 2006-04-07 | On-demand access to compute resources |
US14/791,873 US10277531B2 (en) | 2005-04-07 | 2015-07-06 | On-demand access to compute resources |
US16/398,025 US10986037B2 (en) | 2005-04-07 | 2019-04-29 | On-demand access to compute resources |
US17/201,245 US11496415B2 (en) | 2005-04-07 | 2021-03-15 | On-demand access to compute resources |
US17/960,244 US20230103780A1 (en) | 2005-04-07 | 2022-10-05 | On-Demand Access to Compute Resources |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/201,245 Continuation US11496415B2 (en) | 2005-04-07 | 2021-03-15 | On-demand access to compute resources |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230103780A1 true US20230103780A1 (en) | 2023-04-06 |
Family
ID=37074132
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/279,007 Active 2029-12-26 US9075657B2 (en) | 2005-03-11 | 2006-04-07 | On-demand access to compute resources |
US14/791,873 Active 2028-05-25 US10277531B2 (en) | 2005-04-07 | 2015-07-06 | On-demand access to compute resources |
US16/398,025 Active US10986037B2 (en) | 2005-04-07 | 2019-04-29 | On-demand access to compute resources |
US17/201,245 Active US11496415B2 (en) | 2005-04-07 | 2021-03-15 | On-demand access to compute resources |
US17/722,062 Active US11522811B2 (en) | 2005-04-07 | 2022-04-15 | On-demand access to compute resources |
US17/722,037 Active US11533274B2 (en) | 2005-04-07 | 2022-04-15 | On-demand access to compute resources |
US17/960,244 Pending US20230103780A1 (en) | 2005-04-07 | 2022-10-05 | On-Demand Access to Compute Resources |
US17/980,865 Active US11831564B2 (en) | 2005-04-07 | 2022-11-04 | On-demand access to compute resources |
US17/985,252 Active US11765101B2 (en) | 2005-04-07 | 2022-11-11 | On-demand access to compute resources |
US18/234,021 Pending US20230388249A1 (en) | 2005-04-07 | 2023-08-15 | On-Demand Access to Compute Resources |
US18/234,045 Pending US20230388250A1 (en) | 2005-04-07 | 2023-08-15 | On-Demand Access to Compute Resources |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/279,007 Active 2029-12-26 US9075657B2 (en) | 2005-03-11 | 2006-04-07 | On-demand access to compute resources |
US14/791,873 Active 2028-05-25 US10277531B2 (en) | 2005-04-07 | 2015-07-06 | On-demand access to compute resources |
US16/398,025 Active US10986037B2 (en) | 2005-04-07 | 2019-04-29 | On-demand access to compute resources |
US17/201,245 Active US11496415B2 (en) | 2005-04-07 | 2021-03-15 | On-demand access to compute resources |
US17/722,062 Active US11522811B2 (en) | 2005-04-07 | 2022-04-15 | On-demand access to compute resources |
US17/722,037 Active US11533274B2 (en) | 2005-04-07 | 2022-04-15 | On-demand access to compute resources |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/980,865 Active US11831564B2 (en) | 2005-04-07 | 2022-11-04 | On-demand access to compute resources |
US17/985,252 Active US11765101B2 (en) | 2005-04-07 | 2022-11-11 | On-demand access to compute resources |
US18/234,021 Pending US20230388249A1 (en) | 2005-04-07 | 2023-08-15 | On-Demand Access to Compute Resources |
US18/234,045 Pending US20230388250A1 (en) | 2005-04-07 | 2023-08-15 | On-Demand Access to Compute Resources |
Country Status (5)
Country | Link |
---|---|
US (11) | US9075657B2 (en) |
EP (2) | EP1872249B1 (en) |
CA (1) | CA2603577A1 (en) |
ES (1) | ES2614751T3 (en) |
WO (1) | WO2006108187A2 (en) |
Families Citing this family (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8782654B2 (en) | 2004-03-13 | 2014-07-15 | Adaptive Computing Enterprises, Inc. | Co-allocating a reservation spanning different compute resources types |
WO2005089241A2 (en) | 2004-03-13 | 2005-09-29 | Cluster Resources, Inc. | System and method for providing object triggers |
US20070266388A1 (en) | 2004-06-18 | 2007-11-15 | Cluster Resources, Inc. | System and method for providing advanced reservations in a compute environment |
US8176490B1 (en) | 2004-08-20 | 2012-05-08 | Adaptive Computing Enterprises, Inc. | System and method of interfacing a workload manager and scheduler with an identity manager |
US8271980B2 (en) | 2004-11-08 | 2012-09-18 | Adaptive Computing Enterprises, Inc. | System and method of providing system jobs within a compute environment |
US8863143B2 (en) | 2006-03-16 | 2014-10-14 | Adaptive Computing Enterprises, Inc. | System and method for managing a hybrid compute environment |
US8631130B2 (en) | 2005-03-16 | 2014-01-14 | Adaptive Computing Enterprises, Inc. | Reserving resources in an on-demand compute environment from a local compute environment |
US9231886B2 (en) | 2005-03-16 | 2016-01-05 | Adaptive Computing Enterprises, Inc. | Simple integration of an on-demand compute environment |
CA2603577A1 (en) | 2005-04-07 | 2006-10-12 | Cluster Resources, Inc. | On-demand access to compute resources |
US20070083660A1 (en) * | 2005-09-23 | 2007-04-12 | Thornton Barry W | Amorphic Computing |
US8479146B2 (en) * | 2005-09-23 | 2013-07-02 | Clearcube Technology, Inc. | Utility computing system having co-located computer systems for provision of computing resources |
US8555287B2 (en) * | 2006-08-31 | 2013-10-08 | Bmc Software, Inc. | Automated capacity provisioning method using historical performance data |
US8365182B2 (en) * | 2006-10-02 | 2013-01-29 | International Business Machines Corporation | Method and system for provisioning of resources |
US8041773B2 (en) | 2007-09-24 | 2011-10-18 | The Research Foundation Of State University Of New York | Automatic clustering for self-organizing grids |
US7822841B2 (en) * | 2007-10-30 | 2010-10-26 | Modern Grids, Inc. | Method and system for hosting multiple, customized computing clusters |
US8914774B1 (en) | 2007-11-15 | 2014-12-16 | Appcelerator, Inc. | System and method for tagging code to determine where the code runs |
US8954989B1 (en) | 2007-11-19 | 2015-02-10 | Appcelerator, Inc. | Flexible, event-driven JavaScript server architecture |
US8260845B1 (en) | 2007-11-21 | 2012-09-04 | Appcelerator, Inc. | System and method for auto-generating JavaScript proxies and meta-proxies |
US8719451B1 (en) | 2007-11-23 | 2014-05-06 | Appcelerator, Inc. | System and method for on-the-fly, post-processing document object model manipulation |
US8566807B1 (en) | 2007-11-23 | 2013-10-22 | Appcelerator, Inc. | System and method for accessibility of document object model and JavaScript by other platforms |
US8819539B1 (en) | 2007-12-03 | 2014-08-26 | Appcelerator, Inc. | On-the-fly rewriting of uniform resource locators in a web-page |
US8756579B1 (en) | 2007-12-03 | 2014-06-17 | Appcelerator, Inc. | Client-side and server-side unified validation |
US8806431B1 (en) | 2007-12-03 | 2014-08-12 | Appecelerator, Inc. | Aspect oriented programming |
US8527860B1 (en) | 2007-12-04 | 2013-09-03 | Appcelerator, Inc. | System and method for exposing the dynamic web server-side |
US8938491B1 (en) | 2007-12-04 | 2015-01-20 | Appcelerator, Inc. | System and method for secure binding of client calls and server functions |
US8639743B1 (en) | 2007-12-05 | 2014-01-28 | Appcelerator, Inc. | System and method for on-the-fly rewriting of JavaScript |
US8335982B1 (en) | 2007-12-05 | 2012-12-18 | Appcelerator, Inc. | System and method for binding a document object model through JavaScript callbacks |
US8285813B1 (en) | 2007-12-05 | 2012-10-09 | Appcelerator, Inc. | System and method for emulating different user agents on a server |
US20090164471A1 (en) * | 2007-12-19 | 2009-06-25 | Jinmei Shen | Managing Distributed Data |
US8291079B1 (en) * | 2008-06-04 | 2012-10-16 | Appcelerator, Inc. | System and method for developing, deploying, managing and monitoring a web application in a single environment |
US8880678B1 (en) | 2008-06-05 | 2014-11-04 | Appcelerator, Inc. | System and method for managing and monitoring a web application using multiple cloud providers |
US7836185B2 (en) * | 2008-06-27 | 2010-11-16 | International Business Machines Corporation | Common resource management in a server cluster |
US7596620B1 (en) | 2008-11-04 | 2009-09-29 | Aptana, Inc. | System and method for developing, deploying, managing and monitoring a web application in a single environment |
US7882232B2 (en) * | 2008-09-29 | 2011-02-01 | International Business Machines Corporation | Rapid resource provisioning with automated throttling |
US8271974B2 (en) | 2008-10-08 | 2012-09-18 | Kaavo Inc. | Cloud computing lifecycle management for N-tier applications |
US20100091403A1 (en) * | 2008-10-13 | 2010-04-15 | Seagate Technology Llc | Data storage device with maximum capacity increasable through consumption of advertisement material |
US8555381B2 (en) * | 2009-04-01 | 2013-10-08 | Honeywell International Inc. | Cloud computing as a security layer |
US7970830B2 (en) * | 2009-04-01 | 2011-06-28 | Honeywell International Inc. | Cloud computing for an industrial automation and manufacturing system |
US8204717B2 (en) * | 2009-04-01 | 2012-06-19 | Honeywell International Inc. | Cloud computing as a basis for equipment health monitoring service |
US9412137B2 (en) * | 2009-04-01 | 2016-08-09 | Honeywell International Inc. | Cloud computing for a manufacturing execution system |
US9218000B2 (en) | 2009-04-01 | 2015-12-22 | Honeywell International Inc. | System and method for cloud computing |
WO2010123553A1 (en) * | 2009-04-21 | 2010-10-28 | Acp Interactive, Llc | Mobile grid computing |
US8642722B2 (en) * | 2009-05-15 | 2014-02-04 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Preparation method of polybenzimidazole |
US20100306767A1 (en) * | 2009-05-29 | 2010-12-02 | Dehaan Michael Paul | Methods and systems for automated scaling of cloud computing systems |
US11720290B2 (en) | 2009-10-30 | 2023-08-08 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US10877695B2 (en) | 2009-10-30 | 2020-12-29 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
EP2348469A1 (en) * | 2009-12-22 | 2011-07-27 | Siemens Aktiengesellschaft | Defining additional resources in a MES user management system |
US9213574B2 (en) * | 2010-01-30 | 2015-12-15 | International Business Machines Corporation | Resources management in distributed computing environment |
US9075663B2 (en) * | 2010-05-12 | 2015-07-07 | Samsung Electronics Co., Ltd. | Cloud-based web workers and storages |
US20110320233A1 (en) * | 2010-05-30 | 2011-12-29 | Sonian, Inc. | Method and system for arbitraging computing resources in a cloud computing environment |
US20160154673A1 (en) * | 2014-07-23 | 2016-06-02 | Sitting Man, Llc | Methods, systems, and computer program products for providing a minimally complete operating environment |
US10089148B1 (en) * | 2011-06-30 | 2018-10-02 | EMC IP Holding Company LLC | Method and apparatus for policy-based replication |
WO2013043172A1 (en) * | 2011-09-21 | 2013-03-28 | Hewlett-Packard Development Company, L.P. | Sas expander |
US8863141B2 (en) | 2011-12-14 | 2014-10-14 | International Business Machines Corporation | Estimating migration costs for migrating logical partitions within a virtualized computing environment based on a migration cost history |
US8694995B2 (en) | 2011-12-14 | 2014-04-08 | International Business Machines Corporation | Application initiated negotiations for resources meeting a performance parameter in a virtualized computing environment |
US9864669B1 (en) * | 2012-02-22 | 2018-01-09 | Amazon Technologies, Inc. | Managing data center resources |
US9058219B2 (en) * | 2012-11-02 | 2015-06-16 | Amazon Technologies, Inc. | Custom resources in a resource stack |
US10311014B2 (en) * | 2012-12-28 | 2019-06-04 | Iii Holdings 2, Llc | System, method and computer readable medium for offloaded computation of distributed application protocols within a cluster of data processing nodes |
US20150032681A1 (en) * | 2013-07-23 | 2015-01-29 | International Business Machines Corporation | Guiding uses in optimization-based planning under uncertainty |
US9716746B2 (en) * | 2013-07-29 | 2017-07-25 | Sanovi Technologies Pvt. Ltd. | System and method using software defined continuity (SDC) and application defined continuity (ADC) for achieving business continuity and application continuity on massively scalable entities like entire datacenters, entire clouds etc. in a computing system environment |
US9471632B2 (en) | 2013-10-18 | 2016-10-18 | International Business Machines Corporation | Query optimization considering virtual machine mirroring costs |
US9465855B2 (en) * | 2013-10-22 | 2016-10-11 | International Business Machines Corporation | Maintaining two-site configuration for workload availability between sites at unlimited distances for products and services |
US10635316B2 (en) * | 2014-03-08 | 2020-04-28 | Diamanti, Inc. | Methods and systems for data storage using solid state drives |
US20150304414A1 (en) * | 2014-04-17 | 2015-10-22 | Go Daddy Operating Company, LLC | Allocating hosting server resources via migration paths |
US9501211B2 (en) * | 2014-04-17 | 2016-11-22 | GoDaddy Operating Company, LLC | User input processing for allocation of hosting server resources |
US9660933B2 (en) * | 2014-04-17 | 2017-05-23 | Go Daddy Operating Company, LLC | Allocating and accessing hosting server resources via continuous resource availability updates |
US10659523B1 (en) * | 2014-05-23 | 2020-05-19 | Amazon Technologies, Inc. | Isolating compute clusters created for a customer |
US10503145B2 (en) | 2015-03-25 | 2019-12-10 | Honeywell International Inc. | System and method for asset fleet monitoring and predictive diagnostics using analytics for large and varied data sources |
US20170052866A1 (en) * | 2015-08-21 | 2017-02-23 | International Business Machines Corporation | Managing a shared pool of configurable computing resources which uses a set of dynamically-assigned resources |
US10048996B1 (en) * | 2015-09-29 | 2018-08-14 | Amazon Technologies, Inc. | Predicting infrastructure failures in a data center for hosted service mitigation actions |
US9998395B1 (en) * | 2015-09-30 | 2018-06-12 | EMC IP Holding Company LLC | Workload capsule generation and processing |
US9619271B1 (en) | 2015-10-23 | 2017-04-11 | International Business Machines Corporation | Event response for a shared pool of configurable computing resources which uses a set of dynamically-assigned resources |
CN106961345A (en) * | 2016-01-12 | 2017-07-18 | 王新冈 | A kind of method for building up of universal miniature Web server |
US11455190B2 (en) | 2016-02-05 | 2022-09-27 | Sas Institute Inc. | Implicit status in many task computing |
WO2017142560A1 (en) * | 2016-02-19 | 2017-08-24 | Viasat, Inc. | Methods and systems for multi-level network capacity allocation |
US10776706B2 (en) | 2016-02-25 | 2020-09-15 | Honeywell International Inc. | Cost-driven system and method for predictive equipment failure detection |
US10657199B2 (en) | 2016-02-25 | 2020-05-19 | Honeywell International Inc. | Calibration technique for rules used with asset monitoring in industrial process control and automation systems |
US10853482B2 (en) | 2016-06-03 | 2020-12-01 | Honeywell International Inc. | Secure approach for providing combined environment for owners/operators and multiple third parties to cooperatively engineer, operate, and maintain an industrial process control and automation system |
US10310467B2 (en) | 2016-08-30 | 2019-06-04 | Honeywell International Inc. | Cloud-based control platform with connectivity to remote embedded devices in distributed control system |
US10609130B2 (en) | 2017-04-28 | 2020-03-31 | Microsoft Technology Licensing, Llc | Cluster resource management in distributed computing systems |
EP3514704A1 (en) * | 2018-01-18 | 2019-07-24 | Vestel Elektronik Sanayi ve Ticaret A.S. | Method, device and computer program for sharing processing of data |
US11237550B2 (en) | 2018-03-28 | 2022-02-01 | Honeywell International Inc. | Ultrasonic flow meter prognostics with near real-time condition based uncertainty analysis |
US10791168B1 (en) * | 2018-05-21 | 2020-09-29 | Rafay Systems, Inc. | Traffic aware network workload management system |
US10911367B2 (en) * | 2018-06-27 | 2021-02-02 | Oracle International Corporation | Computerized methods and systems for managing cloud computer services |
US11086675B2 (en) * | 2019-03-06 | 2021-08-10 | The Toronto-Dominion Bank | Processing future-dated resource reservation requests |
US11943285B2 (en) * | 2019-03-22 | 2024-03-26 | International Business Machines Corporation | Metering computing resources in cloud computing environments |
EP3959675A1 (en) * | 2019-04-25 | 2022-03-02 | Liveperson, Inc. | Smart capacity for workload routing |
US11966781B2 (en) * | 2020-04-02 | 2024-04-23 | Jpmorgan Chase Bank, N.A. | System and method for implementing a standalone application module |
US11329517B2 (en) * | 2020-04-13 | 2022-05-10 | University Of Florida Research Foundation, Inc. | Metamaterial-inspired dual-function loop antenna |
EP3902097B1 (en) * | 2020-04-21 | 2023-12-13 | Siemens Aktiengesellschaft | Method and arrangement for detecting a topology in a low voltage network |
US20220036272A1 (en) * | 2020-07-29 | 2022-02-03 | Mythics, Inc. | Migration evaluation system and method |
CN113641503B (en) * | 2021-09-01 | 2024-05-14 | 上海联蔚盘云科技有限公司 | Multi-cloud multi-cluster Kubernetes management system, method and equipment |
US11805177B2 (en) * | 2021-11-24 | 2023-10-31 | Sap Se | On-demand start and stop of managed systems |
WO2023140855A1 (en) * | 2022-01-21 | 2023-07-27 | Hewlett-Packard Development Company, L.P. | Computing resource allocations |
US11956306B1 (en) * | 2022-03-30 | 2024-04-09 | Nvidia Corporation | Multicast-reduction assisted by network devices |
US11936757B1 (en) | 2022-04-29 | 2024-03-19 | Rafay Systems, Inc. | Pull-based on-demand application deployment to edge node |
US20240037067A1 (en) * | 2022-07-29 | 2024-02-01 | Hewlett Packard Enterprise Development Lp | File system provisioning for workload |
US11985076B1 (en) * | 2022-12-14 | 2024-05-14 | Red Hat, Inc. | Configuring cluster nodes for sharing network resources |
US11973694B1 (en) * | 2023-03-30 | 2024-04-30 | Mellanox Technologies, Ltd. | Ad-hoc allocation of in-network compute-resources |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6771661B1 (en) * | 1999-07-21 | 2004-08-03 | Cisco Technology, Inc. | Apparatus and methods for providing event-based data communications device configuration |
US20050027865A1 (en) * | 2003-07-28 | 2005-02-03 | Erol Bozak | Grid organization |
US20050165925A1 (en) * | 2004-01-22 | 2005-07-28 | International Business Machines Corporation | System and method for supporting transaction and parallel services across multiple domains based on service level agreenments |
US20060182119A1 (en) * | 2003-01-16 | 2006-08-17 | Huawei Technologies Co., Ltd. Ntellectual Property Department | System and method for realizing the resource distribution in the communication network |
US20060224740A1 (en) * | 2005-03-31 | 2006-10-05 | Henrique Sievers-Tostes | Allocating resources based on rules and events |
US7757033B1 (en) * | 2004-02-13 | 2010-07-13 | Habanero Holdings, Inc. | Data exchanges among SMP physical partitions and I/O interfaces enterprise servers |
US8078708B1 (en) * | 2004-01-15 | 2011-12-13 | Nortel Networks Limited | Grid proxy architecture for network resources |
Family Cites Families (1655)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215406A (en) | 1972-08-22 | 1980-07-29 | Westinghouse Electric Corp. | Digital computer monitored and/or operated system or process which is structured for operation with an improved automatic programming process and system |
US4412288A (en) | 1980-04-01 | 1983-10-25 | Michael Herman | Experiment-machine |
US4525780A (en) | 1981-05-22 | 1985-06-25 | Data General Corporation | Data processing system having a memory using object-based information and a protection scheme for determining access rights to such information |
US4553202A (en) | 1982-05-06 | 1985-11-12 | International Business Machines Corporation | User controlled dialog resource switching in a multi-tasking word processor |
JPS58203558A (en) | 1982-05-21 | 1983-11-28 | Hitachi Ltd | Method for assigning file to computer and storage device |
US4532893A (en) | 1982-09-30 | 1985-08-06 | Cummins Engine Company, Inc. | Electronically controlled fuel pump |
US4677614A (en) | 1983-02-15 | 1987-06-30 | Emc Controls, Inc. | Data communication system and method and communication controller and method therefor, having a data/clock synchronizer and method |
JP2533495B2 (en) | 1986-07-25 | 1996-09-11 | 株式会社日立製作所 | Work scheduling method and apparatus |
US4811214A (en) | 1986-11-14 | 1989-03-07 | Princeton University | Multinode reconfigurable pipeline computer |
US4943932A (en) | 1986-11-25 | 1990-07-24 | Cimflex Teknowledge Corporation | Architecture for composing computational modules uniformly across diverse developmental frameworks |
US5175800A (en) | 1987-03-23 | 1992-12-29 | Case Group Plc | Expert and data base system and method for communications network |
US5257374A (en) | 1987-11-18 | 1993-10-26 | International Business Machines Corporation | Bus flow control mechanism |
US4850891A (en) | 1988-04-04 | 1989-07-25 | Augat Inc. | Memory module socket |
US5146561A (en) | 1988-06-02 | 1992-09-08 | Sears Communications Network, Inc. | Communication network data manager system |
US4975840A (en) | 1988-06-17 | 1990-12-04 | Lincoln National Risk Management, Inc. | Method and apparatus for evaluating a potentially insurable risk |
US4992958A (en) | 1988-06-27 | 1991-02-12 | Hitachi, Ltd. | Method and apparatus for controlling printer |
US5299115A (en) * | 1989-09-12 | 1994-03-29 | Mrs. Fields Software Group Inc. | Product demand system and method |
US5377332A (en) | 1989-10-02 | 1994-12-27 | Data General Corporation | Bus arbitration algorithm and apparatus |
US5594908A (en) | 1989-12-27 | 1997-01-14 | Hyatt; Gilbert P. | Computer system having a serial keyboard, a serial display, and a dynamic memory with memory refresh |
US5179702A (en) * | 1989-12-29 | 1993-01-12 | Supercomputer Systems Limited Partnership | System and method for controlling a highly parallel multiprocessor using an anarchy based scheduler for parallel execution thread scheduling |
US5652841A (en) | 1990-02-06 | 1997-07-29 | Nemirovsky; Paul | Method and apparatus for aggregating terminals into clusters to assist in the construction of a distributed data communication network |
US5355508A (en) | 1990-05-07 | 1994-10-11 | Mitsubishi Denki Kabushiki Kaisha | Parallel data processing system combining a SIMD unit with a MIMD unit and sharing a common bus, memory, and system controller |
US5168441A (en) | 1990-05-30 | 1992-12-01 | Allen-Bradley Company, Inc. | Methods for set up and programming of machine and process controllers |
US5396635A (en) | 1990-06-01 | 1995-03-07 | Vadem Corporation | Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system |
US5132625A (en) | 1990-10-01 | 1992-07-21 | Actron Manufacturing Company | Distributorless ignition adapter for diagnostic oscilloscopes |
US5276877A (en) | 1990-10-17 | 1994-01-04 | Friedrich Karl S | Dynamic computer system performance modeling interface |
US5451936A (en) | 1991-06-20 | 1995-09-19 | The Johns Hopkins University | Non-blocking broadcast network |
EP0523617B1 (en) | 1991-07-15 | 1997-10-01 | Hitachi, Ltd. | Teleconference terminal equipment |
WO1994009595A1 (en) * | 1991-09-20 | 1994-04-28 | Shaw Venson M | Method and apparatus including system architecture for multimedia communications |
US6400996B1 (en) | 1999-02-01 | 2002-06-04 | Steven M. Hoffberg | Adaptive pattern recognition based control system and method |
US7006881B1 (en) | 1991-12-23 | 2006-02-28 | Steven Hoffberg | Media recording device with remote graphic user interface |
US6850252B1 (en) | 1999-10-05 | 2005-02-01 | Steven M. Hoffberg | Intelligent electronic appliance system and method |
JPH05173989A (en) | 1991-12-24 | 1993-07-13 | Kawasaki Steel Corp | Computer and multiprocessor computation device |
US5349682A (en) | 1992-01-31 | 1994-09-20 | Parallel Pcs, Inc. | Dynamic fault-tolerant parallel processing system for performing an application function with increased efficiency using heterogeneous processors |
US5469566A (en) | 1992-03-12 | 1995-11-21 | Emc Corporation | Flexible parity generation circuit for intermittently generating a parity for a plurality of data channels in a redundant array of storage units |
US6021425A (en) | 1992-04-03 | 2000-02-01 | International Business Machines Corporation | System and method for optimizing dispatch latency of tasks in a data processing system |
US5504894A (en) | 1992-04-30 | 1996-04-02 | International Business Machines Corporation | Workload manager for achieving transaction class response time goals in a multiprocessing system |
US5325526A (en) * | 1992-05-12 | 1994-06-28 | Intel Corporation | Task scheduling in a multicomputer system |
JPH0659906A (en) | 1992-08-10 | 1994-03-04 | Hitachi Ltd | Method for controlling execution of parallel |
EP0605106A1 (en) | 1992-12-03 | 1994-07-06 | Data Security, Inc. | Computer security metapolicy system |
JP2551312B2 (en) | 1992-12-28 | 1996-11-06 | 日本電気株式会社 | Job step parallel execution method |
US5689678A (en) | 1993-03-11 | 1997-11-18 | Emc Corporation | Distributed storage array system having a plurality of modular control units |
JP3072452B2 (en) | 1993-03-19 | 2000-07-31 | ヤマハ株式会社 | Karaoke equipment |
US6269398B1 (en) | 1993-08-20 | 2001-07-31 | Nortel Networks Limited | Method and system for monitoring remote routers in networks for available protocols and providing a graphical representation of information received from the routers |
US6256704B1 (en) | 1993-09-16 | 2001-07-03 | International Business Machines Corporation | Task management for data accesses to multiple logical partitions on physical disk drives in computer systems |
CA2131406C (en) | 1993-09-21 | 2002-11-12 | David D'souza | Preemptive multi-tasking with cooperative groups of tasks |
US5765146A (en) | 1993-11-04 | 1998-06-09 | International Business Machines Corporation | Method of performing a parallel relational database query in a multiprocessor environment |
US5408663A (en) * | 1993-11-05 | 1995-04-18 | Adrem Technologies, Inc. | Resource allocation methods |
JPH0836513A (en) | 1993-12-29 | 1996-02-06 | Xerox Corp | Data management method and restoration method of data-management error |
KR0128271B1 (en) | 1994-02-22 | 1998-04-15 | 윌리암 티. 엘리스 | Remote data duplexing |
US5729754A (en) | 1994-03-28 | 1998-03-17 | Estes; Mark D. | Associative network method and apparatus |
US5761484A (en) | 1994-04-01 | 1998-06-02 | Massachusetts Institute Of Technology | Virtual interconnections for reconfigurable logic systems |
US5473773A (en) | 1994-04-04 | 1995-12-05 | International Business Machines Corporation | Apparatus and method for managing a data processing system workload according to two or more distinct processing goals |
US5495533A (en) | 1994-04-29 | 1996-02-27 | International Business Machines Corporation | Personal key archive |
US6662202B1 (en) | 1994-05-10 | 2003-12-09 | Siemens Aktiengesellschaft | Data management system of a real-time system |
US6496872B1 (en) | 1994-05-16 | 2002-12-17 | Apple Computer, Inc. | Computer system for automatically instantiating tasks designated by a user |
US5666293A (en) | 1994-05-27 | 1997-09-09 | Bell Atlantic Network Services, Inc. | Downloading operating system software through a broadcast channel |
US5781187A (en) | 1994-05-31 | 1998-07-14 | Advanced Micro Devices, Inc. | Interrupt transmission via specialized bus cycle within a symmetrical multiprocessing system |
JP3521955B2 (en) | 1994-06-14 | 2004-04-26 | 株式会社日立製作所 | Hierarchical network management system |
US5884028A (en) * | 1994-07-29 | 1999-03-16 | International Business Machines Corporation | System for the management of multiple time-critical data streams |
US5598536A (en) * | 1994-08-09 | 1997-01-28 | Shiva Corporation | Apparatus and method for providing remote users with the same unique IP address upon each network access |
FR2723652B1 (en) | 1994-08-11 | 1996-09-13 | Cegelec | METHOD FOR SCHEDULING SUCCESSIVE TASKS |
DE69427347T2 (en) | 1994-08-15 | 2001-10-31 | International Business Machines Corp., Armonk | Process and system for improved access control based on the roles in distributed and centralized computer systems |
US5550970A (en) | 1994-08-31 | 1996-08-27 | International Business Machines Corporation | Method and system for allocating resources |
US6330583B1 (en) | 1994-09-09 | 2001-12-11 | Martin Reiffin | Computer network of interactive multitasking computers for parallel processing of network subtasks concurrently with local tasks |
JPH08123763A (en) | 1994-10-26 | 1996-05-17 | Nec Corp | Memory assigning system for distributed processing system |
US5799174A (en) | 1994-12-08 | 1998-08-25 | The Regents Of The University Of California | Staggered striping in multimedia information systems |
JP3315844B2 (en) | 1994-12-09 | 2002-08-19 | 株式会社東芝 | Scheduling device and scheduling method |
US5956715A (en) | 1994-12-13 | 1999-09-21 | Microsoft Corporation | Method and system for controlling user access to a resource in a networked computing environment |
US5761475A (en) | 1994-12-15 | 1998-06-02 | Sun Microsystems, Inc. | Computer processor having a register file with reduced read and/or write port bandwidth |
US5623672A (en) | 1994-12-23 | 1997-04-22 | Cirrus Logic, Inc. | Arrangement and method of arbitration for a resource with shared user request signals and dynamic priority assignment |
JPH08212084A (en) | 1995-02-02 | 1996-08-20 | Hitachi Ltd | Information processor |
US5675739A (en) | 1995-02-03 | 1997-10-07 | International Business Machines Corporation | Apparatus and method for managing a distributed data processing system workload according to a plurality of distinct processing goal types |
US6948070B1 (en) | 1995-02-13 | 2005-09-20 | Intertrust Technologies Corporation | Systems and methods for secure transaction management and electronic rights protection |
US7069451B1 (en) | 1995-02-13 | 2006-06-27 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
CN1912885B (en) | 1995-02-13 | 2010-12-22 | 英特特拉斯特技术公司 | Systems and methods for secure transaction management and electronic rights protection |
US5749937A (en) * | 1995-03-14 | 1998-05-12 | Lockheed Idaho Technologies Company | Fast quench reactor and method |
FI97927C (en) | 1995-05-09 | 1997-03-10 | Nokia Telecommunications Oy | Non-transparent data transmission in a digital communication system |
US5701451A (en) | 1995-06-07 | 1997-12-23 | International Business Machines Corporation | Method for fulfilling requests of a web browser |
US5603029A (en) | 1995-06-07 | 1997-02-11 | International Business Machines Corporation | System of assigning work requests based on classifying into an eligible class where the criteria is goal oriented and capacity information is available |
US5774668A (en) | 1995-06-07 | 1998-06-30 | Microsoft Corporation | System for on-line service in which gateway computer uses service map which includes loading condition of servers broadcasted by application servers for load balancing |
US6097882A (en) | 1995-06-30 | 2000-08-01 | Digital Equipment Corporation | Method and apparatus of improving network performance and network availability in a client-server network by transparently replicating a network service |
JP3088269B2 (en) | 1995-07-26 | 2000-09-18 | 日本電気通信システム株式会社 | Computer network system and operating system version management method |
US5801985A (en) | 1995-07-28 | 1998-09-01 | Micron Technology, Inc. | Memory system having programmable control parameters |
US5862478A (en) | 1995-07-31 | 1999-01-19 | Cutler, Jr.; Victor Hawes | Method and system for managing the initiation of new traffic in a resource limited communication system |
US6151598A (en) | 1995-08-14 | 2000-11-21 | Shaw; Venson M. | Digital dictionary with a communication system for the creating, updating, editing, storing, maintaining, referencing, and managing the digital dictionary |
US6055618A (en) | 1995-10-31 | 2000-04-25 | Cray Research, Inc. | Virtual maintenance network in multiprocessing system having a non-flow controlled virtual maintenance channel |
US6317775B1 (en) * | 1995-11-03 | 2001-11-13 | Cisco Technology, Inc. | System for distributing load over multiple servers at an internet site |
US5732077A (en) | 1995-11-13 | 1998-03-24 | Lucent Technologies Inc. | Resource allocation system for wireless networks |
US5761433A (en) | 1995-11-13 | 1998-06-02 | Billings; Roger E. | System for communicating data in a network using both a daisy chain link and separate broadcast links |
US5757771A (en) | 1995-11-14 | 1998-05-26 | Yurie Systems, Inc. | Queue management to serve variable and constant bit rate traffic at multiple quality of service levels in a ATM switch |
US6003061A (en) | 1995-12-07 | 1999-12-14 | Microsoft Corporation | Method and system for scheduling the use of a computer system resource using a resource planner and a resource provider |
US6282561B1 (en) | 1995-12-07 | 2001-08-28 | Microsoft Corporation | Method and system for resource management with independent real-time applications on a common set of machines |
US5781624A (en) | 1996-02-16 | 1998-07-14 | Lucent Technologies Inc. | Method for sharing network resources by virtual partitioning |
US5958003A (en) | 1996-02-21 | 1999-09-28 | International Business Machines Corporation | Method and computer system for improving the response time of a computer system to a user request |
US5737009A (en) * | 1996-04-04 | 1998-04-07 | Hughes Electronics | On-demand digital information delivery system and method using signal fragmentation and linear/fractal sequencing. |
JP3719545B2 (en) * | 1996-04-05 | 2005-11-24 | 三菱化学株式会社 | Method for producing aromatic carbonate |
US6085238A (en) | 1996-04-23 | 2000-07-04 | Matsushita Electric Works, Ltd. | Virtual LAN system |
JPH09330356A (en) | 1996-06-11 | 1997-12-22 | Hitachi Ltd | Reservation managing method for facility |
FR2750517B1 (en) | 1996-06-27 | 1998-08-14 | Bull Sa | METHOD FOR MONITORING A PLURALITY OF OBJECT TYPES OF A PLURALITY OF NODES FROM A ADMINISTRATION NODE IN A COMPUTER SYSTEM |
US5826082A (en) | 1996-07-01 | 1998-10-20 | Sun Microsystems, Inc. | Method for reserving resources |
US5913921A (en) | 1996-07-12 | 1999-06-22 | Glenayre Electronics, Inc. | System for communicating information about nodes configuration by generating advertisements having era values for identifying time reference for which the configuration is operative |
US6185601B1 (en) * | 1996-08-02 | 2001-02-06 | Hewlett-Packard Company | Dynamic load balancing of a network of client and server computers |
US6886035B2 (en) | 1996-08-02 | 2005-04-26 | Hewlett-Packard Development Company, L.P. | Dynamic load balancing of a network of client and server computer |
US6182139B1 (en) | 1996-08-05 | 2001-01-30 | Resonate Inc. | Client-side resource-based load-balancing with delayed-resource-binding using TCP state migration to WWW server farm |
US5774660A (en) | 1996-08-05 | 1998-06-30 | Resonate, Inc. | World-wide-web server with delayed resource-binding for resource-based load balancing on a distributed resource multi-node network |
US5918017A (en) | 1996-08-23 | 1999-06-29 | Internatioinal Business Machines Corp. | System and method for providing dynamically alterable computer clusters for message routing |
US6393581B1 (en) | 1996-08-29 | 2002-05-21 | Cornell Research Foundation, Inc. | Reliable time delay-constrained cluster computing |
US6195678B1 (en) * | 1996-09-03 | 2001-02-27 | Fujitsu Limited | Remote resource management system for automatically downloading required files from application server depending on contents of selected files on requesting computer |
US6025843A (en) | 1996-09-06 | 2000-02-15 | Peter Sklar | Clustering user interface |
AU4184697A (en) | 1996-09-10 | 1998-04-02 | Accrue Software, Inc. | Apparatus and methods for capturing, analyzing and viewing live network information |
US5867382A (en) | 1996-09-10 | 1999-02-02 | Mclaughlin; Michael G. | Generic control systems using a virtual rack module |
US6304549B1 (en) | 1996-09-12 | 2001-10-16 | Lucent Technologies Inc. | Virtual path management in hierarchical ATM networks |
US6185575B1 (en) | 1996-09-19 | 2001-02-06 | Powerquest Corporation | In-place disk partition canonization and storage optimization |
US5961599A (en) | 1996-10-15 | 1999-10-05 | Lucent Technologies Inc. | Apparatus and method for computing the processing delay of adaptive applications network terminals and applications thereof |
US6842430B1 (en) | 1996-10-16 | 2005-01-11 | Koninklijke Philips Electronics N.V. | Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same |
US6578005B1 (en) | 1996-11-22 | 2003-06-10 | British Telecommunications Public Limited Company | Method and apparatus for resource allocation when schedule changes are incorporated in real time |
GB2319862A (en) | 1996-11-28 | 1998-06-03 | Ibm | Performing computer-based on-line commerce using an intelligent agent |
US6032224A (en) | 1996-12-03 | 2000-02-29 | Emc Corporation | Hierarchical performance system for managing a plurality of storage units with different access speeds |
US6094712A (en) | 1996-12-04 | 2000-07-25 | Giganet, Inc. | Computer network interface for direct mapping of data transferred between applications on different host computers from virtual addresses to physical memory addresses application data |
US6212542B1 (en) | 1996-12-16 | 2001-04-03 | International Business Machines Corporation | Method and system for executing a program within a multiscalar processor by processing linked thread descriptors |
JP3662378B2 (en) | 1996-12-17 | 2005-06-22 | 川崎マイクロエレクトロニクス株式会社 | Network repeater |
US5826239A (en) | 1996-12-17 | 1998-10-20 | Hewlett-Packard Company | Distributed workflow resource management system and method |
EP0859314A3 (en) | 1996-12-18 | 2001-12-19 | Sun Microsystems, Inc. | Distributed make methods, apparatus, and computer program products |
US6487390B1 (en) | 1996-12-18 | 2002-11-26 | Clubcom, Inc. | System and method for interactive on-demand information |
US6393569B1 (en) | 1996-12-18 | 2002-05-21 | Alexander S. Orenshteyn | Secured system for accessing application services from a remote station |
US6353844B1 (en) | 1996-12-23 | 2002-03-05 | Silicon Graphics, Inc. | Guaranteeing completion times for batch jobs without static partitioning |
US5987611A (en) | 1996-12-31 | 1999-11-16 | Zone Labs, Inc. | System and methodology for managing internet access on a per application basis for client computers connected to the internet |
US6317774B1 (en) | 1997-01-09 | 2001-11-13 | Microsoft Corporation | Providing predictable scheduling of programs using a repeating precomputed schedule |
US5908468A (en) | 1997-10-24 | 1999-06-01 | Advanced Micro Devices, Inc. | Data transfer network on a chip utilizing a multiple traffic circle topology |
US6571215B1 (en) | 1997-01-21 | 2003-05-27 | Microsoft Corporation | System and method for generating a schedule based on resource assignments |
US6247056B1 (en) | 1997-02-03 | 2001-06-12 | Oracle Corporation | Method and apparatus for handling client request with a distributed web application server |
US6151688A (en) * | 1997-02-21 | 2000-11-21 | Novell, Inc. | Resource management in a clustered computer system |
US6330008B1 (en) | 1997-02-24 | 2001-12-11 | Torrent Systems, Inc. | Apparatuses and methods for monitoring performance of parallel computing |
US7580919B1 (en) | 1997-03-10 | 2009-08-25 | Sonicwall, Inc. | Query interface to policy server |
US6006192A (en) | 1997-03-12 | 1999-12-21 | International Business Machines Corporation | Method for production planning in an uncertain demand environment |
JPH10276196A (en) | 1997-03-28 | 1998-10-13 | Ando Electric Co Ltd | Communication monitor |
US6189111B1 (en) | 1997-03-28 | 2001-02-13 | Tandem Computers Incorporated | Resource harvesting in scalable, fault tolerant, single system image clusters |
US5978356A (en) | 1997-04-09 | 1999-11-02 | Lucent Technologies Inc. | Traffic shaper for network nodes and method thereof |
CA2236285C (en) | 1997-05-08 | 2003-09-16 | Hitachi Ltd. | Network and switching node in which resource can be reserved |
US5950190A (en) | 1997-05-13 | 1999-09-07 | Aptek, Inc. | Dynamic, self-modifying graphical user interface for relational database applications |
US6263359B1 (en) | 1997-05-22 | 2001-07-17 | International Business Machines Corporation | Computer resource proportional utilization and response time scheduling |
US6366945B1 (en) * | 1997-05-23 | 2002-04-02 | Ibm Corporation | Flexible dynamic partitioning of resources in a cluster computing environment |
JP3996236B2 (en) * | 1997-05-27 | 2007-10-24 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Information processing method, server, system, and recording medium storing information processing program |
US6816903B1 (en) | 1997-05-27 | 2004-11-09 | Novell, Inc. | Directory enabled policy management tool for intelligent traffic management |
US5968176A (en) | 1997-05-29 | 1999-10-19 | 3Com Corporation | Multilayer firewall system |
US6351775B1 (en) * | 1997-05-30 | 2002-02-26 | International Business Machines Corporation | Loading balancing across servers in a computer network |
US5920863A (en) | 1997-05-31 | 1999-07-06 | International Business Machines Corporation | System and method for supporting transactions for a thin client lacking a persistent store in a distributed object-oriented environment |
US5933417A (en) | 1997-06-16 | 1999-08-03 | General Datacomm, Inc. | Multimedia multipoint telecommunications reservation acceptance systems and controllers |
US5943501A (en) | 1997-06-27 | 1999-08-24 | Wisconsin Alumni Research Foundation | Multiple processor, distributed memory computer with out-of-order processing |
US5971804A (en) | 1997-06-30 | 1999-10-26 | Emc Corporation | Backplane having strip transmission line ethernet bus |
US6105117A (en) | 1997-06-30 | 2000-08-15 | Intel Corporation | Source oriented data block relocation methodology and applications |
JP2001511555A (en) | 1997-07-25 | 2001-08-14 | ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー | Generate software system |
US5930167A (en) | 1997-07-30 | 1999-07-27 | Sandisk Corporation | Multi-state non-volatile flash memory capable of being its own two state write cache |
US6067545A (en) | 1997-08-01 | 2000-05-23 | Hewlett-Packard Company | Resource rebalancing in networked computer systems |
US6101508A (en) | 1997-08-01 | 2000-08-08 | Hewlett-Packard Company | Clustered file management for network resources |
JPH1188862A (en) | 1997-09-05 | 1999-03-30 | Hitachi Ltd | Method and device for controlling web server |
US6665869B1 (en) | 1997-09-05 | 2003-12-16 | United Video Properties, Inc. | Program guide application interface system |
US6098090A (en) | 1997-09-05 | 2000-08-01 | Novell, Inc. | Methods and system for providing a background processing thread which manages the background tasks of external threads |
US6405234B2 (en) | 1997-09-11 | 2002-06-11 | International Business Machines Corporation | Full time operating system |
US6507586B1 (en) | 1997-09-18 | 2003-01-14 | International Business Machines Corporation | Multicast data transmission over a one-way broadband channel |
WO1999015999A1 (en) | 1997-09-24 | 1999-04-01 | Microsoft Corporation | System and method for designing responses for electronic billing statements |
US7225249B1 (en) | 1997-09-26 | 2007-05-29 | Mci, Llc | Integrated systems for providing communications network management services and interactive generating invoice documents |
KR100286375B1 (en) | 1997-10-02 | 2001-04-16 | 윤종용 | Radiator of electronic system and computer system having the same |
US6252878B1 (en) | 1997-10-30 | 2001-06-26 | Cisco Technology, Inc. | Switched architecture access server |
US6334114B1 (en) | 1997-10-31 | 2001-12-25 | Oracle Corporation | Method and apparatus for performing transactions in a stateless web environment which supports a declarative paradigm |
US6272127B1 (en) | 1997-11-10 | 2001-08-07 | Ehron Warpspeed Services, Inc. | Network for providing switched broadband multipoint/multimedia intercommunication |
DE19749836A1 (en) | 1997-11-11 | 1999-05-20 | Forschungszentrum Juelich Gmbh | Freezing out a gas component from a gas mixture |
US6201611B1 (en) * | 1997-11-19 | 2001-03-13 | International Business Machines Corporation | Providing local printing on a thin client |
US6345287B1 (en) * | 1997-11-26 | 2002-02-05 | International Business Machines Corporation | Gang scheduling for resource allocation in a cluster computing environment |
JP3405159B2 (en) | 1997-12-05 | 2003-05-12 | 富士ゼロックス株式会社 | Printing equipment |
US6202080B1 (en) * | 1997-12-11 | 2001-03-13 | Nortel Networks Limited | Apparatus and method for computer job workload distribution |
US5901048A (en) | 1997-12-11 | 1999-05-04 | International Business Machines Corporation | Printed circuit board with chip collar |
KR100250437B1 (en) | 1997-12-26 | 2000-04-01 | 정선종 | Path control device for round robin arbitration and adaptation |
US6078953A (en) | 1997-12-29 | 2000-06-20 | Ukiah Software, Inc. | System and method for monitoring quality of service over network |
US6370154B1 (en) | 1997-12-30 | 2002-04-09 | Alcatel Usa Sourcing, L.P. | Telecommunications system craft interface device with broadband end-to-end cross-connect capability |
US6370584B1 (en) * | 1998-01-13 | 2002-04-09 | Trustees Of Boston University | Distributed routing |
SE511584C2 (en) | 1998-01-15 | 1999-10-25 | Ericsson Telefon Ab L M | information Routing |
US6012052A (en) | 1998-01-15 | 2000-01-04 | Microsoft Corporation | Methods and apparatus for building resource transition probability models for use in pre-fetching resources, editing resource link topology, building resource link topology templates, and collaborative filtering |
US6088718A (en) | 1998-01-15 | 2000-07-11 | Microsoft Corporation | Methods and apparatus for using resource transition probability models for pre-fetching resources |
US6192414B1 (en) | 1998-01-27 | 2001-02-20 | Moore Products Co. | Network communications system manager |
US6690647B1 (en) | 1998-01-30 | 2004-02-10 | Intel Corporation | Method and apparatus for characterizing network traffic |
US6076174A (en) | 1998-02-19 | 2000-06-13 | United States Of America | Scheduling framework for a heterogeneous computer network |
NO310585B1 (en) | 1998-03-25 | 2001-07-23 | Reslink As | Pipe connection for connection of double walled pipes |
US6529932B1 (en) | 1998-04-01 | 2003-03-04 | Microsoft Corporation | Method and system for distributed transaction processing with asynchronous message delivery |
US6446206B1 (en) | 1998-04-01 | 2002-09-03 | Microsoft Corporation | Method and system for access control of a message queue |
US6175869B1 (en) * | 1998-04-08 | 2001-01-16 | Lucent Technologies Inc. | Client-side techniques for web server allocation |
US20050027870A1 (en) | 1998-04-14 | 2005-02-03 | Trebes Harold Herman | System and method for providing peer-oriented control of telecommunication services |
US7401114B1 (en) | 1998-04-20 | 2008-07-15 | Sun Microsystems, Inc. | Method and apparatus for making a computational service highly available |
US6333936B1 (en) | 1998-04-29 | 2001-12-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for allocating processing resources |
WO1999057660A1 (en) | 1998-05-06 | 1999-11-11 | Iweb Ltd. | Content enhancement system |
US6108662A (en) | 1998-05-08 | 2000-08-22 | Allen-Bradley Company, Llc | System method and article of manufacture for integrated enterprise-wide control |
RU2127809C1 (en) * | 1998-05-12 | 1999-03-20 | Руслан Борисович Юн | Method for opencast development of deposits |
GB2337429B (en) | 1998-05-15 | 2003-10-29 | Northern Telecom Ltd | Telecommunications system |
US6154778A (en) | 1998-05-19 | 2000-11-28 | Hewlett-Packard Company | Utility-based multi-category quality-of-service negotiation in distributed systems |
GB2337672B (en) | 1998-05-20 | 2002-12-18 | 3Com Technologies Ltd | Monitoring of connection between an ethernet hub and an end station |
GB9810843D0 (en) | 1998-05-21 | 1998-07-22 | 3Com Technologies Ltd | Method for storing data in network devices |
US6058416A (en) | 1998-05-22 | 2000-05-02 | International Business Machines Corportion | Flexible state sharing and consistency mechanism for interactive applications |
US6223202B1 (en) | 1998-06-05 | 2001-04-24 | International Business Machines Corp. | Virtual machine pooling |
US6418459B1 (en) | 1998-06-09 | 2002-07-09 | Advanced Micro Devices, Inc. | Isochronous task scheduling structure for a non-real-time operating system |
US6914893B2 (en) | 1998-06-22 | 2005-07-05 | Statsignal Ipc, Llc | System and method for monitoring and controlling remote devices |
US6373841B1 (en) | 1998-06-22 | 2002-04-16 | Agilent Technologies, Inc. | Integrated LAN controller and web server chip |
US8108508B1 (en) | 1998-06-22 | 2012-01-31 | Hewlett-Packard Development Company, L.P. | Web server chip for network manageability |
US6404768B1 (en) | 1998-06-23 | 2002-06-11 | Marconi Communications, Inc. | Method and apparatus for serving ATM packets/cells |
US6314114B1 (en) | 1998-06-23 | 2001-11-06 | Oracle Corporation | Distributed resource management |
US6401133B1 (en) | 1998-06-24 | 2002-06-04 | Unisys Corporation | System for high speed continuous file transfer processing of data files |
US6633544B1 (en) | 1998-06-24 | 2003-10-14 | At&T Corp. | Efficient precomputation of quality-of-service routes |
US6549940B1 (en) | 1998-06-29 | 2003-04-15 | Sbc Technology Resources, Inc. | Graphical user interface for providing and facilitating user for searching and accessing information with options of selecting one of carrier circuit, facility reroute, customer and cable |
US6446109B2 (en) * | 1998-06-29 | 2002-09-03 | Sun Microsystems, Inc. | Application computing environment |
US6338085B1 (en) * | 1998-06-29 | 2002-01-08 | Philips Electronics North America Corporation | Telephone activated web server |
US6181699B1 (en) | 1998-07-01 | 2001-01-30 | National Semiconductor Corporation | Apparatus and method of assigning VLAN tags |
US6526442B1 (en) | 1998-07-07 | 2003-02-25 | Compaq Information Technologies Group, L.P. | Programmable operational system for managing devices participating in a network |
US6571391B1 (en) | 1998-07-09 | 2003-05-27 | Lucent Technologies Inc. | System and method for scheduling on-demand broadcasts for heterogeneous workloads |
US6182142B1 (en) | 1998-07-10 | 2001-01-30 | Encommerce, Inc. | Distributed access management of information resources |
JP2000032048A (en) | 1998-07-14 | 2000-01-28 | Fujitsu Ltd | Network system |
US6615218B2 (en) | 1998-07-17 | 2003-09-02 | Sun Microsystems, Inc. | Database for executing policies for controlling devices on a network |
US6226788B1 (en) | 1998-07-22 | 2001-05-01 | Cisco Technology, Inc. | Extensible network management system |
US6505228B1 (en) | 1998-07-22 | 2003-01-07 | Cisco Technology, Inc. | Dynamic determination of execution sequence |
US6205465B1 (en) | 1998-07-22 | 2001-03-20 | Cisco Technology, Inc. | Component extensible parallel execution of multiple threads assembled from program components specified with partial inter-component sequence information |
US6298352B1 (en) | 1998-07-23 | 2001-10-02 | Mci Communications Corporation | Apparatus and method for managing number sources |
US6314501B1 (en) | 1998-07-23 | 2001-11-06 | Unisys Corporation | Computer system and method for operating multiple operating systems in different partitions of the computer system and for allowing the different partitions to communicate with one another through shared memory |
US6483912B1 (en) | 1998-08-04 | 2002-11-19 | At&T Corp. | Method for allocating network resources |
US6317787B1 (en) * | 1998-08-11 | 2001-11-13 | Webtrends Corporation | System and method for analyzing web-server log files |
CA2245367A1 (en) | 1998-08-19 | 2000-02-19 | Newbridge Networks Corporation | Two-component bandwidth scheduler having application in multi-class digital communication systems |
US6574238B1 (en) | 1998-08-26 | 2003-06-03 | Intel Corporation | Inter-switch link header modification |
US6742111B2 (en) | 1998-08-31 | 2004-05-25 | Stmicroelectronics, Inc. | Reservation stations to increase instruction level parallelism |
US7769620B1 (en) | 1998-09-01 | 2010-08-03 | Dennis Fernandez | Adaptive direct transaction for networked client group |
US20020062451A1 (en) | 1998-09-01 | 2002-05-23 | Scheidt Edward M. | System and method of providing communication security |
US6092178A (en) | 1998-09-03 | 2000-07-18 | Sun Microsystems, Inc. | System for responding to a resource request |
KR20010086381A (en) | 1998-09-09 | 2001-09-10 | 썬 마이크로시스템즈, 인코포레이티드 | Method and apparatus for transparently processing DNS traffic |
US6738974B1 (en) | 1998-09-10 | 2004-05-18 | International Business Machines Corporation | Apparatus and method for system resource object deallocation in a multi-threaded environment |
US6721288B1 (en) * | 1998-09-16 | 2004-04-13 | Openwave Systems Inc. | Wireless mobile devices having improved operation during network unavailability |
US6253230B1 (en) | 1998-09-22 | 2001-06-26 | International Business Machines Corporation | Distributed scalable device for selecting a server from a server cluster and a switched path to the selected server |
US6529499B1 (en) | 1998-09-22 | 2003-03-04 | Lucent Technologies Inc. | Method for providing quality of service for delay sensitive traffic over IP networks |
US6438652B1 (en) | 1998-10-09 | 2002-08-20 | International Business Machines Corporation | Load balancing cooperating cache servers by shifting forwarded request |
WO2000025485A1 (en) | 1998-10-23 | 2000-05-04 | Caly Corporation | Broadband wireless mesh topology network |
US6167445A (en) | 1998-10-26 | 2000-12-26 | Cisco Technology, Inc. | Method and apparatus for defining and implementing high-level quality of service policies in computer networks |
US6502135B1 (en) | 1998-10-30 | 2002-12-31 | Science Applications International Corporation | Agile network protocol for secure communications with assured system availability |
US6522875B1 (en) | 1998-11-17 | 2003-02-18 | Eric Morgan Dowling | Geographical web browser, methods, apparatus and systems |
US20030069873A1 (en) | 1998-11-18 | 2003-04-10 | Kevin L. Fox | Multiple engine information retrieval and visualization system |
US6330605B1 (en) | 1998-11-19 | 2001-12-11 | Volera, Inc. | Proxy cache cluster |
CN1700657A (en) * | 1998-11-24 | 2005-11-23 | 尼克桑公司 | Apparatus and method for collecting and analyzing communications data |
US6226677B1 (en) | 1998-11-25 | 2001-05-01 | Lodgenet Entertainment Corporation | Controlled communications over a global computer network |
US7200804B1 (en) | 1998-12-08 | 2007-04-03 | Yodlee.Com, Inc. | Method and apparatus for providing automation to an internet navigation application |
US6327364B1 (en) | 1998-12-15 | 2001-12-04 | Siemens Information And Communication Networks, Inc. | Reducing resource consumption by ACD systems |
US7386586B1 (en) | 1998-12-22 | 2008-06-10 | Computer Associates Think, Inc. | System for scheduling and monitoring computer processes |
US6415188B1 (en) | 1998-12-23 | 2002-07-02 | Dennis Sunga Fernandez | Method and apparatus for multi-sensor processing |
JP2000194674A (en) | 1998-12-28 | 2000-07-14 | Nec Corp | Decentralized job integration management system |
US6349295B1 (en) | 1998-12-31 | 2002-02-19 | Walker Digital, Llc | Method and apparatus for performing supplemental searches over a network |
US6631134B1 (en) | 1999-01-15 | 2003-10-07 | Cisco Technology, Inc. | Method for allocating bandwidth in an optical network |
US6438125B1 (en) | 1999-01-22 | 2002-08-20 | Nortel Networks Limited | Method and system for redirecting web page requests on a TCP/IP network |
JP2000224213A (en) * | 1999-01-28 | 2000-08-11 | Mitsubishi Electric Corp | Communication network, master set, slave set, multiplexer and exchange configuring the communication network |
US6330562B1 (en) * | 1999-01-29 | 2001-12-11 | International Business Machines Corporation | System and method for managing security objects |
US8321457B2 (en) | 2000-09-08 | 2012-11-27 | Oracle International Corporation | Techniques for automatically developing a web site |
US7966078B2 (en) | 1999-02-01 | 2011-06-21 | Steven Hoffberg | Network media appliance system and method |
US6434230B1 (en) | 1999-02-02 | 2002-08-13 | Avaya Technology Corp. | Rules-based queuing of calls to call-handling resources |
US6522628B1 (en) | 1999-03-01 | 2003-02-18 | Cisco Technology, Inc. | Method and system for managing transmission resources in a wireless communication network |
US6760775B1 (en) | 1999-03-05 | 2004-07-06 | At&T Corp. | System, method and apparatus for network service load and reliability management |
US6738971B2 (en) | 1999-03-10 | 2004-05-18 | Oracle International Corporation | Using a resource manager to coordinate the comitting of a distributed transaction |
US6453383B1 (en) | 1999-03-15 | 2002-09-17 | Powerquest Corporation | Manipulation of computer volume segments |
US6185272B1 (en) | 1999-03-15 | 2001-02-06 | Analogic Corporation | Architecture for CT scanning system |
DE19911988C2 (en) | 1999-03-17 | 2003-07-31 | Siemens Ag | Medical magnetic resonance system |
US6990677B1 (en) | 1999-03-18 | 2006-01-24 | Microsoft Corporation | Application program interfaces for electronic program guide data services |
GB2348306B (en) | 1999-03-25 | 2003-07-30 | Ibm | Data processing systems and method for processing tasks in such systems |
US6363434B1 (en) | 1999-03-30 | 2002-03-26 | Sony Corporation Of Japan | Method of managing resources within a network of consumer electronic devices |
AU755189B2 (en) | 1999-03-31 | 2002-12-05 | British Telecommunications Public Limited Company | Progressive routing in a communications network |
EP1166525A1 (en) | 1999-04-02 | 2002-01-02 | Infolibria Inc. | Connection pass-through to optimize server performance |
US7299294B1 (en) | 1999-11-10 | 2007-11-20 | Emc Corporation | Distributed traffic controller for network data |
GB2348985A (en) | 1999-04-15 | 2000-10-18 | Ibm | Centralized affinity maintenance in a workload managed client/server system |
US6345294B1 (en) | 1999-04-19 | 2002-02-05 | Cisco Technology, Inc. | Methods and apparatus for remote configuration of an appliance on a network |
US20120296974A1 (en) | 1999-04-27 | 2012-11-22 | Joseph Akwo Tabe | Social network for media topics of information relating to the science of positivism |
US6618820B1 (en) | 2000-01-10 | 2003-09-09 | Imagex.Com, Inc. | Method for configuring an application server system |
US8346971B2 (en) | 1999-05-04 | 2013-01-01 | At&T Intellectual Property I, Lp | Data transfer, synchronising applications, and low latency networks |
US6763519B1 (en) | 1999-05-05 | 2004-07-13 | Sychron Inc. | Multiprogrammed multiprocessor system with lobally controlled communication and signature controlled scheduling |
US6704489B1 (en) | 1999-05-06 | 2004-03-09 | Matsushita Electric Industrial Co., Ltd. | Resource management system and digital video reproducing/recording apparatus |
US6564261B1 (en) | 1999-05-10 | 2003-05-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Distributed system to intelligently establish sessions between anonymous users over various networks |
US6384842B1 (en) | 1999-05-13 | 2002-05-07 | Lsi Logic Corporation | User interface to provide a physical view of movable physical entities |
US6711691B1 (en) | 1999-05-13 | 2004-03-23 | Apple Computer, Inc. | Power management for computer systems |
US7970929B1 (en) | 2002-03-19 | 2011-06-28 | Dunti Llc | Apparatus, system, and method for routing data to and from a host that is moved from one location on a communication system to another location on the communication system |
US7233569B1 (en) | 1999-05-19 | 2007-06-19 | Cisco Technology, Inc. | Tunnel reroute |
US6442137B1 (en) | 1999-05-24 | 2002-08-27 | Advanced Micro Devices, Inc. | Apparatus and method in a network switch for swapping memory access slots between gigabit port and expansion port |
US6519571B1 (en) | 1999-05-27 | 2003-02-11 | Accenture Llp | Dynamic customer profile management |
US7020695B1 (en) | 1999-05-28 | 2006-03-28 | Oracle International Corporation | Using a cluster-wide shared repository to provide the latest consistent definition of the cluster (avoiding the partition-in time problem) |
US6446192B1 (en) | 1999-06-04 | 2002-09-03 | Embrace Networks, Inc. | Remote monitoring and control of equipment over computer networks using a single web interfacing chip |
US6466935B1 (en) | 1999-06-04 | 2002-10-15 | International Business Machines Corporation | Applying relational database technology to process control in manufacturing processes |
US6978310B1 (en) | 1999-06-11 | 2005-12-20 | Scientific-Atlanta, Inc | Media-on-demand catalog viewing preference system |
US6460082B1 (en) | 1999-06-17 | 2002-10-01 | International Business Machines Corporation | Management of service-oriented resources across heterogeneous media servers using homogenous service units and service signatures to configure the media servers |
US6463454B1 (en) | 1999-06-17 | 2002-10-08 | International Business Machines Corporation | System and method for integrated load distribution and resource management on internet environment |
US6466980B1 (en) | 1999-06-17 | 2002-10-15 | International Business Machines Corporation | System and method for capacity shaping in an internet environment |
US6374254B1 (en) * | 1999-06-30 | 2002-04-16 | International Business Machines Corporation | Scalable, distributed, asynchronous data collection mechanism |
US7346677B1 (en) | 1999-07-02 | 2008-03-18 | Cisco Technology, Inc. | Method and apparatus for creating policies for policy-based management of quality of service treatments of network data traffic flows |
US7058716B1 (en) | 1999-07-02 | 2006-06-06 | Covad Communications Group, Inc. | Automatic configuration and provisioning of virtual circuits for initial installation of high bandwidth connections |
US6697359B1 (en) | 1999-07-02 | 2004-02-24 | Ancor Communications, Inc. | High performance switch fabric element and switch systems |
US6584499B1 (en) | 1999-07-09 | 2003-06-24 | Lsi Logic Corporation | Methods and apparatus for performing mass operations on a plurality of managed devices on a network |
US6445968B1 (en) | 1999-07-12 | 2002-09-03 | Maharaj K. Jalla | Task manager |
US20040010550A1 (en) * | 1999-07-23 | 2004-01-15 | Bhaskarpillai Gopinath | On-demand provisioning of a set of services to interconnect a group of participants |
WO2001009791A2 (en) | 1999-07-30 | 2001-02-08 | Accenture Llp | A system, method and article of manufacture for resource administration in an e-commerce technical architecture |
US6687257B1 (en) | 1999-08-12 | 2004-02-03 | Rockwell Automation Technologies, Inc. | Distributed real-time operating system providing dynamic guaranteed mixed priority scheduling for communications and processing |
US6374297B1 (en) | 1999-08-16 | 2002-04-16 | International Business Machines Corporation | Method and apparatus for load balancing of web cluster farms |
US8032634B1 (en) * | 1999-08-23 | 2011-10-04 | Oracle America, Inc. | Approach for allocating resources to an apparatus based on resource requirements |
US6779016B1 (en) * | 1999-08-23 | 2004-08-17 | Terraspring, Inc. | Extensible computing system |
WO2001015397A1 (en) | 1999-08-24 | 2001-03-01 | Leighton Hanna King | On-demand connection system for internet services |
US6735188B1 (en) * | 1999-08-27 | 2004-05-11 | Tachyon, Inc. | Channel encoding and decoding method and apparatus |
US7219160B1 (en) | 1999-08-27 | 2007-05-15 | At&T Corp. | Method for fast network-aware clustering |
US6629148B1 (en) | 1999-08-27 | 2003-09-30 | Platform Computing Corporation | Device and method for balancing loads between different paths in a computer system |
US6636853B1 (en) | 1999-08-30 | 2003-10-21 | Morphism, Llc | Method and apparatus for representing and navigating search results |
US6606660B1 (en) | 1999-08-31 | 2003-08-12 | Accenture Llp | Stream-based communication in a communication services patterns environment |
US7139999B2 (en) | 1999-08-31 | 2006-11-21 | Accenture Llp | Development architecture framework |
US6636242B2 (en) * | 1999-08-31 | 2003-10-21 | Accenture Llp | View configurer in a presentation services patterns environment |
US6578068B1 (en) | 1999-08-31 | 2003-06-10 | Accenture Llp | Load balancer in environment services patterns |
US6434568B1 (en) | 1999-08-31 | 2002-08-13 | Accenture Llp | Information services patterns in a netcentric environment |
US6438594B1 (en) | 1999-08-31 | 2002-08-20 | Accenture Llp | Delivering service to a client via a locally addressable interface |
US6601234B1 (en) | 1999-08-31 | 2003-07-29 | Accenture Llp | Attribute dictionary in a business logic services environment |
US6640238B1 (en) | 1999-08-31 | 2003-10-28 | Accenture Llp | Activity component in a presentation services patterns environment |
US6289382B1 (en) * | 1999-08-31 | 2001-09-11 | Andersen Consulting, Llp | System, method and article of manufacture for a globally addressable interface in a communication services patterns environment |
US6477580B1 (en) | 1999-08-31 | 2002-11-05 | Accenture Llp | Self-described stream in a communication services patterns environment |
US6785704B1 (en) | 1999-12-20 | 2004-08-31 | Fastforward Networks | Content distribution system for operation over an internetwork including content peering arrangements |
US6405212B1 (en) | 1999-09-27 | 2002-06-11 | Oracle Corporation | Database system event triggers |
US6735716B1 (en) | 1999-09-27 | 2004-05-11 | Cisco Technology, Inc. | Computerized diagnostics and failure recovery |
US6651125B2 (en) | 1999-09-28 | 2003-11-18 | International Business Machines Corporation | Processing channel subsystem pending I/O work queues based on priorities |
US6741983B1 (en) | 1999-09-28 | 2004-05-25 | John D. Birdwell | Method of indexed storage and retrieval of multidimensional information |
US6587938B1 (en) | 1999-09-28 | 2003-07-01 | International Business Machines Corporation | Method, system and program products for managing central processing unit resources of a computing environment |
US6690400B1 (en) | 1999-09-29 | 2004-02-10 | Flash Vos, Inc. | Graphic user interface for resources management of super operating system based computers |
US7020697B1 (en) * | 1999-10-01 | 2006-03-28 | Accenture Llp | Architectures for netcentric computing systems |
US7610289B2 (en) | 2000-10-04 | 2009-10-27 | Google Inc. | System and method for monitoring and analyzing internet traffic |
WO2001025920A1 (en) | 1999-10-05 | 2001-04-12 | Ejasent, Inc. | Virtual resource id mapping |
US6735630B1 (en) | 1999-10-06 | 2004-05-11 | Sensoria Corporation | Method for collecting data using compact internetworked wireless integrated network sensors (WINS) |
US6826607B1 (en) | 1999-10-06 | 2004-11-30 | Sensoria Corporation | Apparatus for internetworked hybrid wireless integrated network sensors (WINS) |
US6832251B1 (en) | 1999-10-06 | 2004-12-14 | Sensoria Corporation | Method and apparatus for distributed signal processing among internetworked wireless integrated network sensors (WINS) |
US6859831B1 (en) | 1999-10-06 | 2005-02-22 | Sensoria Corporation | Method and apparatus for internetworked wireless integrated network sensor (WINS) nodes |
US7904569B1 (en) | 1999-10-06 | 2011-03-08 | Gelvin David C | Method for remote access of vehicle components |
US6738736B1 (en) | 1999-10-06 | 2004-05-18 | Accenture Llp | Method and estimator for providing capacacity modeling and planning |
US7020701B1 (en) | 1999-10-06 | 2006-03-28 | Sensoria Corporation | Method for collecting and processing data using internetworked wireless integrated network sensors (WINS) |
US6947982B1 (en) | 1999-10-11 | 2005-09-20 | I2 Technologies Us, Inc. | Distributed session services |
US20070011224A1 (en) | 1999-10-22 | 2007-01-11 | Jesus Mena | Real-time Internet data mining system and method for aggregating, routing, enhancing, preparing, and analyzing web databases |
US6628649B1 (en) | 1999-10-29 | 2003-09-30 | Cisco Technology, Inc. | Apparatus and methods providing redundant routing in a switched network device |
US6785724B1 (en) | 1999-11-02 | 2004-08-31 | Walchem Corporation | On-demand web server |
US6724733B1 (en) * | 1999-11-02 | 2004-04-20 | Sun Microsystems, Inc. | Method and apparatus for determining approximate network distances using reference locations |
US7801132B2 (en) | 1999-11-09 | 2010-09-21 | Synchrodyne Networks, Inc. | Interface system and methodology having scheduled connection responsive to common time reference |
US7464147B1 (en) | 1999-11-10 | 2008-12-09 | International Business Machines Corporation | Managing a cluster of networked resources and resource groups using rule - base constraints in a scalable clustering environment |
AU1764501A (en) | 1999-11-16 | 2001-05-30 | 01, Inc. | Method and system for executing financial transactions via communication medium |
US7590739B2 (en) | 1999-11-22 | 2009-09-15 | Akamai Technologies, Inc. | Distributed on-demand computing system |
AU1786501A (en) | 1999-11-23 | 2001-06-04 | Infolibria, Inc. | Optimal request routing by exploiting packet routers topology information |
US6725456B1 (en) | 1999-11-29 | 2004-04-20 | Lucent Technologies Inc. | Methods and apparatus for ensuring quality of service in an operating system |
US6917626B1 (en) | 1999-11-30 | 2005-07-12 | Cisco Technology, Inc. | Apparatus and method for automatic cluster network device address assignment |
US7003414B1 (en) | 1999-11-30 | 2006-02-21 | Agilent Technologies, Inc. | Monitoring system and method implementing failure time spectrum scan |
US6590587B1 (en) | 1999-11-30 | 2003-07-08 | Agilent Technologies, Inc. | Monitoring system and method implementing navigation interface logic |
WO2001040903A2 (en) * | 1999-12-06 | 2001-06-07 | Warp Solutions, Inc. | System and method for enhancing operation of a web server cluster |
US7441045B2 (en) | 1999-12-13 | 2008-10-21 | F5 Networks, Inc. | Method and system for balancing load distribution on a wide area network |
US6857026B1 (en) | 1999-12-14 | 2005-02-15 | Nortel Networks Limited | Using alternate routes for fail-over in a communication network |
MXPA02006028A (en) | 1999-12-15 | 2004-08-23 | Cubist Pharm Inc | Daptomycin analogs and their use as antibacterial agents. |
US6662219B1 (en) | 1999-12-15 | 2003-12-09 | Microsoft Corporation | System for determining at subgroup of nodes relative weight to represent cluster by obtaining exclusive possession of quorum resource |
US6859927B2 (en) | 1999-12-21 | 2005-02-22 | Lockheed Martin Corporation | Apparatus and method for controlling allocation of resources and task execution |
US6629081B1 (en) | 1999-12-22 | 2003-09-30 | Accenture Llp | Account settlement and financing in an e-commerce environment |
US6745262B1 (en) | 2000-01-06 | 2004-06-01 | International Business Machines Corporation | Method, system, program, and data structure for queuing requests having different priorities |
US8171204B2 (en) | 2000-01-06 | 2012-05-01 | Super Talent Electronics, Inc. | Intelligent solid-state non-volatile memory device (NVMD) system with multi-level caching of multiple channels |
US20040010592A1 (en) | 2000-01-14 | 2004-01-15 | Carver Andrew Richard | Resource allocation |
JP2001202669A (en) | 2000-01-18 | 2001-07-27 | Sony Corp | Information processing device and method, medium |
US6668304B1 (en) | 2000-01-18 | 2003-12-23 | International Business Machines Corporation | Transaction support on logical disks |
US6938256B2 (en) | 2000-01-18 | 2005-08-30 | Galactic Computing Corporation | System for balance distribution of requests across multiple servers using dynamic metrics |
US7366719B2 (en) | 2000-01-21 | 2008-04-29 | Health Discovery Corporation | Method for the manipulation, storage, modeling, visualization and quantification of datasets |
US7886023B1 (en) | 2000-01-21 | 2011-02-08 | Cisco Technology, Inc. | Method and apparatus for a minimalist approach to implementing server selection |
US7349348B1 (en) | 2000-01-24 | 2008-03-25 | Cisco Technologies, Inc. | Method and apparatus for determining a network topology in the presence of network address translation |
US6608564B2 (en) | 2000-01-25 | 2003-08-19 | Hewlett-Packard Development Company, L.P. | Removable memory cartridge system for use with a server or other processor-based device |
US7117273B1 (en) | 2000-01-25 | 2006-10-03 | Cisco Technology, Inc. | Methods and apparatus for maintaining a map of node relationships for a network |
US20020035605A1 (en) | 2000-01-26 | 2002-03-21 | Mcdowell Mark | Use of presence and location information concerning wireless subscribers for instant messaging and mobile commerce |
US20010034752A1 (en) | 2000-01-26 | 2001-10-25 | Prompt2U Inc. | Method and system for symmetrically distributed adaptive matching of partners of mutual interest in a computer network |
US6745246B1 (en) | 2000-01-28 | 2004-06-01 | Advanced Micro Devices, Inc. | Apparatus and method in a network switch for modifying a bandwidth request between a requestor and a router |
US7140020B2 (en) | 2000-01-28 | 2006-11-21 | Hewlett-Packard Development Company, L.P. | Dynamic management of virtual partition computer workloads through service level optimization |
WO2001055878A1 (en) * | 2000-01-28 | 2001-08-02 | Ibeam Broadcasting Corporation | A system and method for rewriting a media resource request and/or response between origin server and client |
US6823377B1 (en) | 2000-01-28 | 2004-11-23 | International Business Machines Corporation | Arrangements and methods for latency-sensitive hashing for collaborative web caching |
US7970898B2 (en) | 2001-01-24 | 2011-06-28 | Telecommunication Systems, Inc. | System and method to publish information from servers to remote monitor devices |
US6820133B1 (en) | 2000-02-07 | 2004-11-16 | Netli, Inc. | System and method for high-performance delivery of web content using high-performance communications protocol between the first and second specialized intermediate nodes to optimize a measure of communications performance between the source and the destination |
US6415018B1 (en) * | 2000-02-08 | 2002-07-02 | Lucent Technologies Inc. | Telecommunication system and method for handling special number calls having geographic sensitivity |
US7146233B2 (en) | 2000-02-11 | 2006-12-05 | Sun Microsystems, Inc. | Request queue management |
US6651098B1 (en) | 2000-02-17 | 2003-11-18 | International Business Machines Corporation | Web site management in a world wide web communication network through reassignment of the server computers designated for respective web documents based upon user hit rates for the documents |
JP2001236744A (en) | 2000-02-18 | 2001-08-31 | Hitachi Ltd | Information recording/reproducing method and device |
US6725272B1 (en) | 2000-02-18 | 2004-04-20 | Netscaler, Inc. | Apparatus, method and computer program product for guaranteed content delivery incorporating putting a client on-hold based on response time |
US20010037311A1 (en) | 2000-02-18 | 2001-11-01 | Mccoy James | Efficient internet service cost recovery system and method |
US6594799B1 (en) | 2000-02-28 | 2003-07-15 | Cadence Design Systems, Inc. | Method and system for facilitating electronic circuit and chip design using remotely located resources |
US6757897B1 (en) | 2000-02-29 | 2004-06-29 | Cisco Technology, Inc. | Apparatus and methods for scheduling and performing tasks |
US20020174227A1 (en) | 2000-03-03 | 2002-11-21 | Hartsell Neal D. | Systems and methods for prioritization in information management environments |
US20020107903A1 (en) | 2000-11-07 | 2002-08-08 | Richter Roger K. | Methods and systems for the order serialization of information in a network processing environment |
US20030236745A1 (en) | 2000-03-03 | 2003-12-25 | Hartsell Neal D | Systems and methods for billing in information management environments |
US20020120741A1 (en) | 2000-03-03 | 2002-08-29 | Webb Theodore S. | Systems and methods for using distributed interconnects in information management enviroments |
US20020059274A1 (en) | 2000-03-03 | 2002-05-16 | Hartsell Neal D. | Systems and methods for configuration of information management systems |
US7428540B1 (en) | 2000-03-03 | 2008-09-23 | Intel Corporation | Network storage system |
US20020152305A1 (en) | 2000-03-03 | 2002-10-17 | Jackson Gregory J. | Systems and methods for resource utilization analysis in information management environments |
US20020065864A1 (en) | 2000-03-03 | 2002-05-30 | Hartsell Neal D. | Systems and method for resource tracking in information management environments |
US6952737B1 (en) | 2000-03-03 | 2005-10-04 | Intel Corporation | Method and apparatus for accessing remote storage in a distributed storage cluster architecture |
US20020049608A1 (en) * | 2000-03-03 | 2002-04-25 | Hartsell Neal D. | Systems and methods for providing differentiated business services in information management environments |
US6990063B1 (en) | 2000-03-07 | 2006-01-24 | Cisco Technology, Inc. | Distributing fault indications and maintaining and using a data structure indicating faults to route traffic in a packet switching system |
US7720908B1 (en) | 2000-03-07 | 2010-05-18 | Microsoft Corporation | System and method for multi-layered network communications |
US7320025B1 (en) * | 2002-03-18 | 2008-01-15 | Music Choice | Systems and methods for providing a broadcast entertainment service and an on-demand entertainment service |
US20010054020A1 (en) | 2000-03-22 | 2001-12-20 | Barth Brian E. | Method and apparatus for dynamic information connection engine |
US7020719B1 (en) * | 2000-03-24 | 2006-03-28 | Netli, Inc. | System and method for high-performance delivery of Internet messages by selecting first and second specialized intermediate nodes to optimize a measure of communications performance between the source and the destination |
US20020147663A1 (en) | 2000-03-31 | 2002-10-10 | Walker Jay S. | Systems and methods for facilitating a transaction by use of third party subsidies |
US20050021862A1 (en) * | 2000-03-31 | 2005-01-27 | Dickens Coal Llc | Automatic selection of content-delivery provider using link mapping database |
US6622168B1 (en) | 2000-04-10 | 2003-09-16 | Chutney Technologies, Inc. | Dynamic page generation acceleration using component-level caching |
US20010032109A1 (en) | 2000-04-13 | 2001-10-18 | Gonyea Richard Jeremiah | System and method for predicting a maintenance schedule and costs for performing future service events of a product |
AU2001259075A1 (en) * | 2000-04-17 | 2001-10-30 | Circadence Corporation | System and method for web serving |
US6978252B2 (en) | 2000-04-18 | 2005-12-20 | Ideaflood, Inc. | Method and system for transacting with network traffic |
US20020103631A1 (en) | 2000-04-21 | 2002-08-01 | Anja Feldmann | Traffic engineering system and method |
US7979880B2 (en) | 2000-04-21 | 2011-07-12 | Cox Communications, Inc. | Method and system for profiling iTV users and for providing selective content delivery |
AU2001255611A1 (en) | 2000-04-25 | 2001-11-07 | Icplanet Acquisition Corporation | System and method for scheduling execution of cross-platform computer processes |
US7054943B1 (en) | 2000-04-28 | 2006-05-30 | International Business Machines Corporation | Method and apparatus for dynamically adjusting resources assigned to plurality of customers, for meeting service level agreements (slas) with minimal resources, and allowing common pools of resources to be used across plural customers on a demand basis |
US7058947B1 (en) | 2000-05-02 | 2006-06-06 | Microsoft Corporation | Resource manager architecture utilizing a policy manager |
US6799208B1 (en) | 2000-05-02 | 2004-09-28 | Microsoft Corporation | Resource manager architecture |
US6556952B1 (en) | 2000-05-04 | 2003-04-29 | Advanced Micro Devices, Inc. | Performance monitoring and optimizing of controller parameters |
US7080078B1 (en) | 2000-05-09 | 2006-07-18 | Sun Microsystems, Inc. | Mechanism and apparatus for URI-addressable repositories of service advertisements and other content in a distributed computing environment |
US7577834B1 (en) | 2000-05-09 | 2009-08-18 | Sun Microsystems, Inc. | Message authentication using message gates in a distributed computing environment |
US7386512B1 (en) * | 2000-05-11 | 2008-06-10 | Thomson Licensing | Method and system for controlling and auditing content/service systems |
US6985937B1 (en) | 2000-05-11 | 2006-01-10 | Ensim Corporation | Dynamically modifying the resources of a virtual server |
JP2001326151A (en) | 2000-05-16 | 2001-11-22 | Nec Corp | Semiconductor integrated circuit manufacturing system |
EP1156424A2 (en) | 2000-05-17 | 2001-11-21 | Matsushita Electric Industrial Co., Ltd. | Information recommendation apparatus and information recommendation system |
JP2001325124A (en) | 2000-05-17 | 2001-11-22 | Fujitsu Ltd | Computer, system management aiding device and management method |
JP2001331333A (en) | 2000-05-18 | 2001-11-30 | Hitachi Ltd | Computer system and method for controlling computer system |
US7143153B1 (en) | 2000-11-09 | 2006-11-28 | Ciena Corporation | Internal network device dynamic health monitoring |
US6922685B2 (en) | 2000-05-22 | 2005-07-26 | Mci, Inc. | Method and system for managing partitioned data resources |
US7401131B2 (en) | 2000-05-22 | 2008-07-15 | Verizon Business Global Llc | Method and system for implementing improved containers in a global ecosystem of interrelated services |
JP2001333091A (en) | 2000-05-23 | 2001-11-30 | Fujitsu Ltd | Communication equipment |
US7171654B2 (en) * | 2000-05-25 | 2007-01-30 | The United States Of America As Represented By The Secretary Of The Navy | System specification language for resource management architecture and corresponding programs therefore |
US7251688B2 (en) | 2000-05-26 | 2007-07-31 | Akamai Technologies, Inc. | Method for generating a network map |
US6975609B1 (en) | 2000-05-30 | 2005-12-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic call admission |
US7423971B1 (en) | 2000-05-31 | 2008-09-09 | Cisco Technology, Inc. | Method and apparatus providing automatic RESV message generation for non-RESV-capable network devices |
US7103664B1 (en) | 2000-05-31 | 2006-09-05 | International Business Machines Corporation | Method, system and program products for ordering lists of service addresses to provide load balancing of a clustered environment |
US7213062B1 (en) | 2000-06-01 | 2007-05-01 | General Instrument Corporation | Self-publishing network directory |
US6836806B1 (en) | 2000-06-01 | 2004-12-28 | Aerocast, Inc. | System for network addressing |
US6904460B1 (en) | 2000-06-01 | 2005-06-07 | Aerocast.Com, Inc. | Reverse content harvester |
US7685602B1 (en) | 2000-06-05 | 2010-03-23 | Teradata Us, Inc. | Controlling software components in a multi-node processing system |
US6925431B1 (en) | 2000-06-06 | 2005-08-02 | Microsoft Corporation | Method and system for predicting communication delays of detailed application workloads |
JP2001350855A (en) | 2000-06-09 | 2001-12-21 | Nec Corp | On-demand service developing device and service providing system |
US6816750B1 (en) | 2000-06-09 | 2004-11-09 | Cirrus Logic, Inc. | System-on-a-chip |
US6668308B2 (en) | 2000-06-10 | 2003-12-23 | Hewlett-Packard Development Company, L.P. | Scalable architecture based on single-chip multiprocessing |
WO2001099344A2 (en) | 2000-06-14 | 2001-12-27 | Williams Communications, Llc | Route selection within a network with peering connections |
JP3666365B2 (en) | 2000-06-15 | 2005-06-29 | 日本電気株式会社 | Online time zone reservation system and online time zone reservation method |
US6392989B1 (en) | 2000-06-15 | 2002-05-21 | Cplane Inc. | High speed protection switching in label switched networks through pre-computation of alternate routes |
US7216177B1 (en) | 2000-06-16 | 2007-05-08 | Palm, Inc. | Apparatus and method for supplying electronic content to network appliances |
JP2002007364A (en) | 2000-06-22 | 2002-01-11 | Fujitsu Ltd | Scheduling device for performing job scheduling of parallel-computer system |
US9444785B2 (en) | 2000-06-23 | 2016-09-13 | Cloudshield Technologies, Inc. | Transparent provisioning of network access to an application |
US8204082B2 (en) | 2000-06-23 | 2012-06-19 | Cloudshield Technologies, Inc. | Transparent provisioning of services over a network |
AU2000270865A1 (en) | 2000-06-30 | 2002-01-14 | Internap Network Services | Distributed network management system and method |
US7693976B2 (en) | 2000-07-11 | 2010-04-06 | Ciena Corporation | Granular management of network resources |
US7099933B1 (en) | 2000-07-11 | 2006-08-29 | Nortel Networks Limited | System and method for regulating web site access |
US7013316B1 (en) * | 2000-07-13 | 2006-03-14 | Microsoft Corporation | System and method for synchronizing multiple database files |
US8538843B2 (en) | 2000-07-17 | 2013-09-17 | Galactic Computing Corporation Bvi/Bc | Method and system for operating an E-commerce service provider |
US6452809B1 (en) | 2000-11-10 | 2002-09-17 | Galactic Computing Corporation | Scalable internet engine |
US6816905B1 (en) | 2000-11-10 | 2004-11-09 | Galactic Computing Corporation Bvi/Bc | Method and system for providing dynamic hosted service management across disparate accounts/sites |
US7496652B2 (en) | 2000-07-17 | 2009-02-24 | Teleservices Solutions, Inc. | Intelligent network providing network access services (INP-NAS) |
US7574499B1 (en) | 2000-07-19 | 2009-08-11 | Akamai Technologies, Inc. | Global traffic management system using IP anycast routing and dynamic load-balancing |
US7716367B1 (en) | 2000-07-20 | 2010-05-11 | Akamai Technologies, Inc. | Network performance monitoring in a content delivery service |
KR20040041082A (en) | 2000-07-24 | 2004-05-13 | 비브콤 인코포레이티드 | System and method for indexing, searching, identifying, and editing portions of electronic multimedia files |
US6963537B2 (en) | 2000-07-27 | 2005-11-08 | Corrigent Systems Ltd. | Resource reservation in a ring network |
US7788354B2 (en) | 2000-07-28 | 2010-08-31 | Siddhartha Nag | End-to-end service quality in a voice over Internet Protocol (VoIP) Network |
US20020087699A1 (en) | 2000-07-31 | 2002-07-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic QoS management in differentiated services using bandwidth brokers, RSVP aggregation and load control protocols |
CA2415888C (en) | 2000-08-04 | 2008-10-21 | Avaya Technology Corporation | Intelligent demand driven recognition of url objects in connection oriented transactions |
JP2002057645A (en) | 2000-08-10 | 2002-02-22 | Ntt Docomo Inc | Method for data transfer and mobile unit server |
US6775701B1 (en) | 2000-08-15 | 2004-08-10 | Nortel Networks Limited | Oversubscribing network resources |
US6954784B2 (en) | 2000-08-17 | 2005-10-11 | International Business Machines Corporation | Systems, method and computer program products for cluster workload distribution without preconfigured port identification by utilizing a port of multiple ports associated with a single IP address |
US7216149B1 (en) | 2000-08-18 | 2007-05-08 | International Business Machines Corporation | Gathering enriched web server activity data of cached web content |
WO2002017082A1 (en) | 2000-08-22 | 2002-02-28 | Akamai Technologies, Inc. | Dynamic content assembly on edge-of-network servers in a content delivery network |
US20020052909A1 (en) | 2000-08-24 | 2002-05-02 | Glen Seeds | Efficient assignment of processing resources in a fair queuing system |
US7278142B2 (en) | 2000-08-24 | 2007-10-02 | Veritas Operating Corporation | Dynamic computing environment using remotely allocable resources |
US7089294B1 (en) | 2000-08-24 | 2006-08-08 | International Business Machines Corporation | Methods, systems and computer program products for server based type of service classification of a communication request |
US7403994B1 (en) | 2000-08-29 | 2008-07-22 | International Business Machines Corporation | Method of doing business over a network by transmission and retransmission of digital information on a network during time slots |
JP2002074123A (en) | 2000-08-31 | 2002-03-15 | Sony Corp | Server user reservation method, reservation managing device and program storage medium |
US7146416B1 (en) | 2000-09-01 | 2006-12-05 | Yahoo! Inc. | Web site activity monitoring system with tracking by categories and terms |
US6600898B1 (en) * | 2000-09-07 | 2003-07-29 | Clix Network, Inc. | Method and apparatus for generating a number audio element in an audio system |
US7512894B1 (en) | 2000-09-11 | 2009-03-31 | International Business Machines Corporation | Pictorial-based user interface management of computer hardware components |
JP2002092366A (en) | 2000-09-11 | 2002-03-29 | Nec Corp | Cpu time-division purchase-and-sale method and control server in cpu time-division purchase-and-sale system |
US7596784B2 (en) * | 2000-09-12 | 2009-09-29 | Symantec Operating Corporation | Method system and apparatus for providing pay-per-use distributed computing resources |
US6477575B1 (en) | 2000-09-12 | 2002-11-05 | Capital One Financial Corporation | System and method for performing dynamic Web marketing and advertising |
US6625406B2 (en) | 2000-09-14 | 2003-09-23 | Konica Corporation | Image forming system wherein an image input to one of the plurality of image forming apparatus is output by the plurality of image forming apparatus |
US6490432B1 (en) | 2000-09-21 | 2002-12-03 | Command Audio Corporation | Distributed media on-demand information service |
US7890571B1 (en) | 2000-09-22 | 2011-02-15 | Xcelera Inc. | Serving dynamic web-pages |
US20110213869A1 (en) | 2000-09-25 | 2011-09-01 | Yevgeny Korsunsky | Processing data flows with a data flow processor |
US20110231564A1 (en) | 2000-09-25 | 2011-09-22 | Yevgeny Korsunsky | Processing data flows with a data flow processor |
US20110238855A1 (en) | 2000-09-25 | 2011-09-29 | Yevgeny Korsunsky | Processing data flows with a data flow processor |
US9800608B2 (en) | 2000-09-25 | 2017-10-24 | Symantec Corporation | Processing data flows with a data flow processor |
US20070192863A1 (en) | 2005-07-01 | 2007-08-16 | Harsh Kapoor | Systems and methods for processing data flows |
US9130954B2 (en) | 2000-09-26 | 2015-09-08 | Brocade Communications Systems, Inc. | Distributed health check for global server load balancing |
US6760306B1 (en) | 2000-09-27 | 2004-07-06 | Nortel Networks Limited | Method for reserving network resources using a hierarchical/segment tree for starting and ending times of request |
US7032119B2 (en) | 2000-09-27 | 2006-04-18 | Amphus, Inc. | Dynamic power and workload management for multi-server system |
US6816817B1 (en) | 2000-09-28 | 2004-11-09 | Rockwell Automation Technologies, Inc. | Networked control system with real time monitoring |
US7117208B2 (en) | 2000-09-28 | 2006-10-03 | Oracle Corporation | Enterprise web mining system and method |
US6760861B2 (en) | 2000-09-29 | 2004-07-06 | Zeronines Technology, Inc. | System, method and apparatus for data processing and storage to provide continuous operations independent of device failure or disaster |
US6496566B1 (en) | 2000-09-29 | 2002-12-17 | Lucent Technologies Inc. | Metallic testing of a subscriber loop that provides both voice and digital subscriber line services |
US7274705B2 (en) | 2000-10-03 | 2007-09-25 | Broadcom Corporation | Method and apparatus for reducing clock speed and power consumption |
US20020040391A1 (en) | 2000-10-04 | 2002-04-04 | David Chaiken | Server farm formed of systems on a chip |
US6968323B1 (en) | 2000-10-05 | 2005-11-22 | International Business Machines Corporation | Dynamic allocation and pricing of resources of web server farm |
US7165120B1 (en) | 2000-10-11 | 2007-01-16 | Sun Microsystems, Inc. | Server node with interated networking capabilities |
US7860999B1 (en) | 2000-10-11 | 2010-12-28 | Avaya Inc. | Distributed computation in network devices |
US6748559B1 (en) | 2000-10-19 | 2004-06-08 | International Business Machines Corporation | Method and system for reliably defining and determining timeout values in unreliable datagrams |
US6963917B1 (en) | 2000-10-20 | 2005-11-08 | International Business Machines Corporation | Methods, systems and computer program products for policy based distribution of workload to subsets of potential servers |
US6965930B1 (en) | 2000-10-20 | 2005-11-15 | International Business Machines Corporation | Methods, systems and computer program products for workload distribution based on end-to-end quality of service |
US20030097439A1 (en) | 2000-10-23 | 2003-05-22 | Strayer William Timothy | Systems and methods for identifying anomalies in network data streams |
EP1548541A3 (en) | 2000-10-24 | 2006-04-12 | Seiko Epson Corporation | System and method for digital content distribution |
DE10053854A1 (en) | 2000-10-30 | 2002-05-08 | Philips Corp Intellectual Pty | Network with several sub-networks for the determination of bridge terminals |
DE10053809A1 (en) | 2000-10-30 | 2002-05-08 | Philips Corp Intellectual Pty | Ad hoc network with several terminals for determining terminals as controllers of sub-networks |
US7124289B1 (en) | 2000-10-31 | 2006-10-17 | Opsware Inc. | Automated provisioning framework for internet site servers |
JP2002140202A (en) | 2000-11-01 | 2002-05-17 | Hitachi Ltd | Information delivery system and load distribution method therefor |
AU2002220116A1 (en) | 2000-11-01 | 2002-05-15 | International Carbon Bank And Exchange | Method and system for banking and exchanging emission reduction credits |
CN1258712C (en) | 2000-11-06 | 2006-06-07 | 皇家菲利浦电子有限公司 | Method and system for allocation of budget to task |
US20020107962A1 (en) | 2000-11-07 | 2002-08-08 | Richter Roger K. | Single chassis network endpoint system with network processor for load balancing |
DE10055250A1 (en) | 2000-11-08 | 2002-06-06 | Siemens Ag | Software tool for monitoring an automation device for faults |
US7929562B2 (en) | 2000-11-08 | 2011-04-19 | Genesis Telecommunications Laboratories, Inc. | Method and apparatus for optimizing response time to events in queue |
US7249179B1 (en) | 2000-11-09 | 2007-07-24 | Hewlett-Packard Development Company, L.P. | System for automatically activating reserve hardware component based on hierarchical resource deployment scheme or rate of resource consumption |
US7231445B1 (en) | 2000-11-16 | 2007-06-12 | Nortel Networks Limited | Technique for adaptively distributing web server requests |
JP2002156418A (en) | 2000-11-17 | 2002-05-31 | Nec Corp | Lsi failure analyzer and its analysis method |
US6857020B1 (en) * | 2000-11-20 | 2005-02-15 | International Business Machines Corporation | Apparatus, system, and method for managing quality-of-service-assured e-business service systems |
US20020062377A1 (en) | 2000-11-20 | 2002-05-23 | Hillman Matthew F. | Scalable directory, master and slave server based architecture for hosting application services |
US20020103886A1 (en) | 2000-12-04 | 2002-08-01 | International Business Machines Corporation | Non-local aggregation of system management data |
US6954463B1 (en) | 2000-12-11 | 2005-10-11 | Cisco Technology, Inc. | Distributed packet processing architecture for network access servers |
US7203746B1 (en) | 2000-12-11 | 2007-04-10 | Agilent Technologies, Inc. | System and method for adaptive resource management |
US7991633B2 (en) | 2000-12-12 | 2011-08-02 | On Time Systems, Inc. | System and process for job scheduling to minimize construction costs |
US7398216B2 (en) | 2000-12-12 | 2008-07-08 | Lockheed Martin Corporation | Network dynamic service availability |
US7616646B1 (en) | 2000-12-12 | 2009-11-10 | Cisco Technology, Inc. | Intraserver tag-switched distributed packet processing for network access servers |
US6691287B2 (en) | 2000-12-14 | 2004-02-10 | Tharas Systems Inc. | Functional verification system |
AU2002230824A1 (en) | 2000-12-15 | 2002-07-01 | The Johns Hopkins University | Dynamic-content web crawling through traffic monitoring |
US7296268B2 (en) | 2000-12-18 | 2007-11-13 | Microsoft Corporation | Dynamic monitor and controller of availability of a load-balancing cluster |
US6738870B2 (en) * | 2000-12-22 | 2004-05-18 | International Business Machines Corporation | High speed remote storage controller |
JP3532153B2 (en) | 2000-12-22 | 2004-05-31 | 沖電気工業株式会社 | Level shifter control circuit |
US7035240B1 (en) | 2000-12-27 | 2006-04-25 | Massachusetts Institute Of Technology | Method for low-energy adaptive clustering hierarchy |
JP2002202959A (en) * | 2000-12-28 | 2002-07-19 | Hitachi Ltd | Virtual computer system for performing dynamic resource distribution |
JP2004519770A (en) | 2000-12-29 | 2004-07-02 | キュ、ミン | Server array hardware architecture and system |
US7706017B2 (en) | 2001-01-11 | 2010-04-27 | Sharp Laboratories Of America, Inc. | Systems and methods for providing load balance rendering for direct printing |
US7188145B2 (en) | 2001-01-12 | 2007-03-06 | Epicrealm Licensing Llc | Method and system for dynamic distributed data caching |
US7035911B2 (en) | 2001-01-12 | 2006-04-25 | Epicrealm, Licensing Llc | Method and system for community data caching |
US7206819B2 (en) * | 2001-01-18 | 2007-04-17 | Sun Microsystems, Inc. | Method and apparatus for providing virtual namespaces for active computing environments |
US7209479B2 (en) * | 2001-01-18 | 2007-04-24 | Science Application International Corp. | Third party VPN certification |
US7191244B2 (en) | 2001-01-19 | 2007-03-13 | Streamworks Technologies, Inc. | System and method for routing media |
US20020097732A1 (en) | 2001-01-19 | 2002-07-25 | Tom Worster | Virtual private network protocol |
WO2002057917A2 (en) | 2001-01-22 | 2002-07-25 | Sun Microsystems, Inc. | Peer-to-peer network computing platform |
US7165107B2 (en) | 2001-01-22 | 2007-01-16 | Sun Microsystems, Inc. | System and method for dynamic, transparent migration of services |
US7275102B2 (en) | 2001-01-22 | 2007-09-25 | Sun Microsystems, Inc. | Trust mechanisms for a peer-to-peer network computing platform |
US7197565B2 (en) | 2001-01-22 | 2007-03-27 | Sun Microsystems, Inc. | System and method of using a pipe advertisement for a peer-to-peer network entity in peer-to-peer presence detection |
US6977939B2 (en) | 2001-01-26 | 2005-12-20 | Microsoft Corporation | Method and apparatus for emulating ethernet functionality over a serial bus |
US6985955B2 (en) | 2001-01-29 | 2006-01-10 | International Business Machines Corporation | System and method for provisioning resources to users based on roles, organizational information, attributes and third-party information or authorizations |
US6990667B2 (en) | 2001-01-29 | 2006-01-24 | Adaptec, Inc. | Server-independent object positioning for load balancing drives and servers |
US20020116721A1 (en) | 2001-02-16 | 2002-08-22 | Gemini Networks, Inc. | Method and system of expanding a customer base of a data services provider |
JP2002245282A (en) | 2001-02-19 | 2002-08-30 | Hitachi Ltd | Method for providing information processing service, and method for controlling information processing resource |
DE10107991A1 (en) | 2001-02-19 | 2002-08-29 | Philips Corp Intellectual Pty | Network with an adaptation of the frame structure of sub-networks |
AU2002240510A1 (en) | 2001-02-20 | 2002-09-04 | American Skandia Life Assurance Corporation | System, method and program for providing stabilized annuity payments and control of investments in a variable annuity |
US6606690B2 (en) | 2001-02-20 | 2003-08-12 | Hewlett-Packard Development Company, L.P. | System and method for accessing a storage area network as network attached storage |
US6978447B1 (en) | 2001-02-28 | 2005-12-20 | Cisco Technology, Inc. | Method and system for efficiently interpreting a computer program |
WO2002069174A1 (en) | 2001-02-28 | 2002-09-06 | Fujitsu Limited | Method for executing parallel process, and multi-processor computer |
US7058562B2 (en) | 2001-03-03 | 2006-06-06 | Hewlett-Packard Development Company, L.P. | Apparatus and method for performing event processing in a mixed-language simulator |
US7339786B2 (en) | 2001-03-05 | 2008-03-04 | Intel Corporation | Modular server architecture with Ethernet routed across a backplane utilizing an integrated Ethernet switch module |
US20020133821A1 (en) * | 2001-03-08 | 2002-09-19 | Koninklijke Philips Electronics N.V. | Activity schedule controls personalized electronic content guide |
US20020129274A1 (en) | 2001-03-08 | 2002-09-12 | International Business Machines Corporation | Inter-partition message passing method, system and program product for a security server in a partitioned processing environment |
US20020137565A1 (en) | 2001-03-09 | 2002-09-26 | Blanco Victor K. | Uniform media portal for a gaming system |
US20020133537A1 (en) | 2001-03-12 | 2002-09-19 | Whizz Technology Ltd. | Server cluster and server-side cooperative caching method for use with same |
WO2002073898A2 (en) | 2001-03-12 | 2002-09-19 | Hrl Laboratories, Llc | Priority-based dynamic resource allocation method and apparatus for supply-demand systems |
WO2002073889A1 (en) | 2001-03-13 | 2002-09-19 | British Telecommunications Public Limited Company | Communications network |
US7154621B2 (en) | 2001-03-20 | 2006-12-26 | Lightsurf Technologies, Inc. | Internet delivery of digitized photographs |
US6985461B2 (en) | 2001-03-22 | 2006-01-10 | Symbol Technologies, Inc. | Software for installation and configuration management of network nodes |
US7085825B1 (en) | 2001-03-26 | 2006-08-01 | Freewebs Corp. | Apparatus, method and system for improving application performance across a communications network |
US20020138635A1 (en) | 2001-03-26 | 2002-09-26 | Nec Usa, Inc. | Multi-ISP controlled access to IP networks, based on third-party operated untrusted access stations |
US7197561B1 (en) | 2001-03-28 | 2007-03-27 | Shoregroup, Inc. | Method and apparatus for maintaining the status of objects in computer networks using virtual state machines |
JP3636307B2 (en) | 2001-03-30 | 2005-04-06 | 松下電器産業株式会社 | Packet data processing decision device |
US7093280B2 (en) | 2001-03-30 | 2006-08-15 | Juniper Networks, Inc. | Internet security system |
US20040030741A1 (en) | 2001-04-02 | 2004-02-12 | Wolton Richard Ernest | Method and apparatus for search, visual navigation, analysis and retrieval of information from networks with remote notification and content delivery |
WO2002082271A1 (en) | 2001-04-05 | 2002-10-17 | Audible Magic Corporation | Copyright detection and protection system and method |
US7315887B1 (en) | 2001-04-11 | 2008-01-01 | Alcatel Lucent | Facilitating integration of communications network equipment inventory management |
US20030196126A1 (en) | 2002-04-11 | 2003-10-16 | Fung Henry T. | System, method, and architecture for dynamic server power management and dynamic workload management for multi-server environment |
US6948171B2 (en) | 2001-04-16 | 2005-09-20 | International Business Machines Corporation | Apparatus, system and method for active scheduling of time based event-driven long running processes |
US7426546B2 (en) | 2001-04-18 | 2008-09-16 | International Business Machines Corporation | Method for selecting an edge server computer |
US7171476B2 (en) | 2001-04-20 | 2007-01-30 | Motorola, Inc. | Protocol and structure for self-organizing network |
US7743147B2 (en) | 2001-04-20 | 2010-06-22 | Hewlett-Packard Development Company, L.P. | Automated provisioning of computing networks using a network database data model |
US20020156699A1 (en) | 2001-04-20 | 2002-10-24 | Joseph Gray | System of upselling in a computer network environment |
US6975595B2 (en) | 2001-04-24 | 2005-12-13 | Atttania Ltd. | Method and apparatus for monitoring and logging the operation of a distributed processing system |
ATE367724T1 (en) | 2001-04-26 | 2007-08-15 | Nokia Corp | METHOD AND NETWORK ELEMENT FOR HANDOVER CONTROL |
US20020159458A1 (en) | 2001-04-27 | 2002-10-31 | Foster Michael S. | Method and system for reserved addressing in a communications network |
US6889253B2 (en) | 2001-04-30 | 2005-05-03 | International Business Machines Corporation | Cluster resource action in clustered computer system incorporation prepare operation |
US20020161917A1 (en) | 2001-04-30 | 2002-10-31 | Shapiro Aaron M. | Methods and systems for dynamic routing of data in a network |
US7058070B2 (en) | 2001-05-01 | 2006-06-06 | Integrated Device Technology, Inc. | Back pressure control system for network switch port |
US7082606B2 (en) | 2001-05-01 | 2006-07-25 | The Regents Of The University Of California | Dedicated heterogeneous node scheduling including backfill scheduling |
US7171415B2 (en) | 2001-05-04 | 2007-01-30 | Sun Microsystems, Inc. | Distributed information discovery through searching selected registered information providers |
US6950821B2 (en) | 2001-05-04 | 2005-09-27 | Sun Microsystems, Inc. | System and method for resolving distributed network search queries to information providers |
US7013303B2 (en) | 2001-05-04 | 2006-03-14 | Sun Microsystems, Inc. | System and method for multiple data sources to plug into a standardized interface for distributed deep search |
US6934702B2 (en) | 2001-05-04 | 2005-08-23 | Sun Microsystems, Inc. | Method and system of routing messages in a distributed search network |
US7099871B2 (en) | 2001-05-04 | 2006-08-29 | Sun Microsystems, Inc. | System and method for distributed real-time search |
US6928471B2 (en) | 2001-05-07 | 2005-08-09 | Quest Software, Inc. | Method and apparatus for measurement, analysis, and optimization of content delivery |
DE10122042A1 (en) | 2001-05-07 | 2002-11-14 | Philips Corp Intellectual Pty | Network with prioritized data forwarding between sub-networks |
US7161901B2 (en) | 2001-05-07 | 2007-01-09 | Vitesse Semiconductor Corporation | Automatic load balancing in switch fabrics |
DE10122044A1 (en) | 2001-05-07 | 2002-11-14 | Philips Corp Intellectual Pty | Network with sub-networks that can be connected via bridge terminals |
US8009569B2 (en) | 2001-05-07 | 2011-08-30 | Vitesse Semiconductor Corporation | System and a method for maintaining quality of service through a congested network |
US7197559B2 (en) * | 2001-05-09 | 2007-03-27 | Mercury Interactive Corporation | Transaction breakdown feature to facilitate analysis of end user performance of a server system |
US20020184327A1 (en) * | 2001-05-11 | 2002-12-05 | Major Robert Drew | System and method for partitioning address space in a proxy cache server cluster |
US7251222B2 (en) | 2001-05-15 | 2007-07-31 | Motorola, Inc. | Procedures for merging the mediation device protocol with a network layer protocol |
US6714778B2 (en) | 2001-05-15 | 2004-03-30 | Nokia Corporation | Context sensitive web services |
JP3807250B2 (en) | 2001-05-18 | 2006-08-09 | 日本電気株式会社 | Cluster system, computer and program |
US6766389B2 (en) | 2001-05-18 | 2004-07-20 | Broadcom Corporation | System on a chip for networking |
US7102996B1 (en) | 2001-05-24 | 2006-09-05 | F5 Networks, Inc. | Method and system for scaling network traffic managers |
CA2349086C (en) | 2001-05-30 | 2011-02-01 | Ibm Canada Limited-Ibm Canada Limitee | Selection and configuration of servers |
US7281043B1 (en) | 2001-05-31 | 2007-10-09 | Cisco Technology, Inc. | System for sharing resources among RSVP sessions |
US7386850B2 (en) | 2001-06-01 | 2008-06-10 | Avaya Technology Corp. | Arrangement for scheduling tasks based on probability of availability of resources at a future point in time |
US7197549B1 (en) * | 2001-06-04 | 2007-03-27 | Cisco Technology, Inc. | On-demand address pools |
US6950833B2 (en) | 2001-06-05 | 2005-09-27 | Silicon Graphics, Inc. | Clustered filesystem |
DE10127198A1 (en) | 2001-06-05 | 2002-12-19 | Infineon Technologies Ag | Physical address provision method for processor system with virtual addressing uses hierarchy mapping process for conversion of virtual address |
JP4496673B2 (en) | 2001-06-07 | 2010-07-07 | 株式会社デンソー | OFDM transceiver |
US7237243B2 (en) | 2001-06-11 | 2007-06-26 | Microsoft Corporation | Multiple device management method and system |
US7216173B2 (en) | 2001-06-12 | 2007-05-08 | Varian Medical Systems Technologies, Inc. | Virtual private network software system |
US20030014539A1 (en) * | 2001-06-12 | 2003-01-16 | Reznick Josh L. | System and method for traffic management |
US6950895B2 (en) | 2001-06-13 | 2005-09-27 | Intel Corporation | Modular server architecture |
US20040015579A1 (en) * | 2001-06-14 | 2004-01-22 | Geoffrey Cooper | Method and apparatus for enterprise management |
US6944678B2 (en) | 2001-06-18 | 2005-09-13 | Transtech Networks Usa, Inc. | Content-aware application switch and methods thereof |
US6501660B1 (en) | 2001-06-22 | 2002-12-31 | Sun Microsystems, Inc. | Reliable card detection in a CPCI system |
US6993763B2 (en) | 2001-06-26 | 2006-01-31 | International Business Machines Corporation | Technique for scheduling execution of jobs for or by network-connected devices |
US6971098B2 (en) | 2001-06-27 | 2005-11-29 | Intel Corporation | Method and apparatus for managing transaction requests in a multi-node architecture |
US8234156B2 (en) | 2001-06-28 | 2012-07-31 | Jpmorgan Chase Bank, N.A. | System and method for characterizing and selecting technology transition options |
US8782254B2 (en) | 2001-06-28 | 2014-07-15 | Oracle America, Inc. | Differentiated quality of service context assignment and propagation |
US7159017B2 (en) | 2001-06-28 | 2007-01-02 | Fujitsu Limited | Routing mechanism for static load balancing in a partitioned computer system with a fully connected network |
US7225442B2 (en) * | 2001-06-29 | 2007-05-29 | International Business Machines Corporation | Method and system for dynamic utilization mechanisms for facilities whose reservation status can change dynamically |
US20030005130A1 (en) | 2001-06-29 | 2003-01-02 | Cheng Doreen Yining | Audio-video management in UPnP |
US7200662B2 (en) | 2001-07-06 | 2007-04-03 | Juniper Networks, Inc. | Integrated rule network management system |
US7035230B1 (en) | 2001-07-11 | 2006-04-25 | Cisco Technology, Inc. | System and method for bandwidth and conference resource reservation |
US7213050B1 (en) | 2001-07-11 | 2007-05-01 | Cisco Technology, Inc. | System and method for reserving conference resources for a multipoint conference using a priority scheme |
US20030014524A1 (en) | 2001-07-11 | 2003-01-16 | Alexander Tormasov | Balancing shared servers in virtual environments |
EP1278112B1 (en) * | 2001-07-12 | 2003-05-28 | Castify Networks SA | A process for providing access of a client to a content provider server under control of a resource locator server |
US7065764B1 (en) | 2001-07-20 | 2006-06-20 | Netrendered, Inc. | Dynamically allocated cluster system |
US6813676B1 (en) | 2001-07-27 | 2004-11-02 | Lsi Logic Corporation | Host interface bypass on a fabric based array controller |
US7203753B2 (en) | 2001-07-31 | 2007-04-10 | Sun Microsystems, Inc. | Propagating and updating trust relationships in distributed peer-to-peer networks |
US7328264B2 (en) | 2001-07-31 | 2008-02-05 | Tandberg Telecom As | System and method for fractional resource scheduling for video teleconferencing resources |
US6912533B1 (en) | 2001-07-31 | 2005-06-28 | Oracle International Corporation | Data mining agents for efficient hardware utilization |
US7308496B2 (en) | 2001-07-31 | 2007-12-11 | Sun Microsystems, Inc. | Representing trust in distributed peer-to-peer networks |
US7383433B2 (en) | 2001-07-31 | 2008-06-03 | Sun Microsystems, Inc. | Trust spectrum for certificate distribution in distributed peer-to-peer networks |
US7222187B2 (en) | 2001-07-31 | 2007-05-22 | Sun Microsystems, Inc. | Distributed trust mechanism for decentralized networks |
US6996822B1 (en) | 2001-08-01 | 2006-02-07 | Unisys Corporation | Hierarchical affinity dispatcher for task management in a multiprocessor computer system |
US7174379B2 (en) | 2001-08-03 | 2007-02-06 | International Business Machines Corporation | Managing server resources for hosted applications |
EP1283466A1 (en) | 2001-08-06 | 2003-02-12 | Hewlett-Packard Company (a Delaware corporation) | Management system for a cluster |
JP3959516B2 (en) | 2001-08-06 | 2007-08-15 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Network system, CPU resource provider, client device, processing service providing method, and program |
US7092997B1 (en) * | 2001-08-06 | 2006-08-15 | Digital River, Inc. | Template identification with differential caching |
US6968470B2 (en) | 2001-08-07 | 2005-11-22 | Hewlett-Packard Development Company, L.P. | System and method for power management in a server system |
US6724635B2 (en) | 2001-08-07 | 2004-04-20 | Hewlett-Packard Development Company, L.P. | LCD panel for a server system |
US7185079B1 (en) | 2001-08-08 | 2007-02-27 | Cisco Technology, Inc. | Automated management of network addresses in a broadband managed access environment |
US7236915B2 (en) | 2001-08-09 | 2007-06-26 | Hewlett-Packard Development Company, L.P. | Technique and interface for computer system resource assignment |
US20030036820A1 (en) | 2001-08-16 | 2003-02-20 | International Business Machines Corporation | Method for optimizing energy consumption and cost |
US7366134B2 (en) | 2001-08-17 | 2008-04-29 | Comsat Corporation | Dynamic allocation of network resources in a multiple-user communication system |
US6839662B2 (en) | 2001-08-17 | 2005-01-04 | Lockheed Martin Corporation | Command and control system architecture for convenient upgrading |
US6950398B2 (en) * | 2001-08-22 | 2005-09-27 | Nokia, Inc. | IP/MPLS-based transport scheme in 3G radio access networks |
JP2003067331A (en) | 2001-08-28 | 2003-03-07 | Matsushita Electric Ind Co Ltd | Schedule preparing method, schedule preparing device and schedule preparing program |
US20030046330A1 (en) | 2001-09-04 | 2003-03-06 | Hayes John W. | Selective offloading of protocol processing |
US8024395B1 (en) | 2001-09-04 | 2011-09-20 | Gary Odom | Distributed processing multiple tier task allocation |
US7660887B2 (en) | 2001-09-07 | 2010-02-09 | Sun Microsystems, Inc. | Systems and methods for providing dynamic quality of service for a distributed system |
JP2003084979A (en) | 2001-09-07 | 2003-03-20 | Internatl Business Mach Corp <Ibm> | Method for starting electronic device, electronic device, and program |
FR2829655B1 (en) * | 2001-09-10 | 2003-12-26 | Digigram | AUDIO DATA TRANSMISSION SYSTEM, BETWEEN A MASTER MODULE AND SLAVE MODULES, THROUGH A DIGITAL COMMUNICATION NETWORK |
US7412492B1 (en) | 2001-09-12 | 2008-08-12 | Vmware, Inc. | Proportional share resource allocation with reduction of unproductive resource consumption |
DE10145596A1 (en) | 2001-09-15 | 2003-04-03 | Philips Corp Intellectual Pty | Network with several sub-networks |
US7325050B2 (en) | 2001-09-19 | 2008-01-29 | Dell Products L.P. | System and method for strategic power reduction in a computer system |
US7337333B2 (en) | 2001-09-19 | 2008-02-26 | Dell Products L.P. | System and method for strategic power supply sequencing in a computer system with multiple processing resources and multiple power supplies |
US7107578B1 (en) | 2001-09-24 | 2006-09-12 | Oracle International Corporation | Techniques for debugging computer programs involving multiple programming languages |
US20030061262A1 (en) | 2001-09-25 | 2003-03-27 | Hahn Stephen C. | Method and apparatus for partitioning resources within a computer system |
US20030061260A1 (en) | 2001-09-25 | 2003-03-27 | Timesys Corporation | Resource reservation and priority management |
US6952828B2 (en) | 2001-09-26 | 2005-10-04 | The Boeing Company | System, method and computer program product for dynamic resource management |
US20030074090A1 (en) | 2001-09-28 | 2003-04-17 | Zdenek Becka | System and method for improving operational efficiency through process automation |
US7107589B1 (en) | 2001-09-28 | 2006-09-12 | Siebel Systems, Inc. | Infrastructure for the automation of the assembly of schema maintenance scripts |
US7225260B2 (en) | 2001-09-28 | 2007-05-29 | Symbol Technologies, Inc. | Software method for maintaining connectivity between applications during communications by mobile computer terminals operable in wireless networks |
US6966033B1 (en) | 2001-09-28 | 2005-11-15 | Emc Corporation | Methods and apparatus for graphically managing resources |
US7373644B2 (en) | 2001-10-02 | 2008-05-13 | Level 3 Communications, Llc | Automated server replication |
US7155478B2 (en) | 2001-10-03 | 2006-12-26 | International Business Machines Corporation | Selectively handling data processing requests in a computer communications network |
US20030069949A1 (en) * | 2001-10-04 | 2003-04-10 | Chan Michele W. | Managing distributed network infrastructure services |
US20030069828A1 (en) | 2001-10-04 | 2003-04-10 | Eastman Kodak Company | System for and managing assets using priority tokens |
US20030069974A1 (en) | 2001-10-08 | 2003-04-10 | Tommy Lu | Method and apparatus for load balancing web servers and virtual web servers |
US6779086B2 (en) | 2001-10-16 | 2004-08-17 | International Business Machines Corporation | Symmetric multiprocessor systems with an independent super-coherent cache directory |
US7200144B2 (en) | 2001-10-18 | 2007-04-03 | Qlogic, Corp. | Router and methods using network addresses for virtualization |
US7447197B2 (en) | 2001-10-18 | 2008-11-04 | Qlogic, Corporation | System and method of providing network node services |
US8325716B2 (en) | 2001-10-22 | 2012-12-04 | Broadcom Corporation | Data path optimization algorithm |
CA2410172A1 (en) | 2001-10-29 | 2003-04-29 | Jose Alejandro Rueda | Content routing architecture for enhanced internet services |
US7194492B2 (en) | 2001-10-29 | 2007-03-20 | Emc Corporation | Method and apparatus for efficiently copying distributed data files |
US7424527B2 (en) | 2001-10-30 | 2008-09-09 | Sipco, Llc | System and method for transmitting pollution information over an integrated wireless network |
US6990662B2 (en) | 2001-10-31 | 2006-01-24 | Hewlett-Packard Development Company, L.P. | Method and system for offloading execution and resources for resource-constrained networked devices |
US6963948B1 (en) | 2001-11-01 | 2005-11-08 | Advanced Micro Devices, Inc. | Microcomputer bridge architecture with an embedded microcontroller |
AU2002343594A1 (en) | 2001-11-01 | 2003-05-12 | Thomson Licensing S.A. | Specific internet user target advertising replacement method and system |
US7310319B2 (en) | 2001-11-02 | 2007-12-18 | Intel Corporation | Multiple-domain processing system using hierarchically orthogonal switching fabric |
US7191143B2 (en) | 2001-11-05 | 2007-03-13 | Keli Sev K H | Preference information-based metrics |
US7177823B2 (en) | 2001-11-06 | 2007-02-13 | International Business Machines Corporation | In-queue jobs information monitoring and filtering |
US7213065B2 (en) | 2001-11-08 | 2007-05-01 | Racemi, Inc. | System and method for dynamic server allocation and provisioning |
US7464016B2 (en) | 2001-11-09 | 2008-12-09 | Sun Microsystems, Inc. | Hot plug and hot pull system simulation |
EP1461679A4 (en) | 2001-11-12 | 2006-01-18 | Worldcom Inc | System and method for implementing frictionless micropayments for consumable services |
US7127633B1 (en) | 2001-11-15 | 2006-10-24 | Xiotech Corporation | System and method to failover storage area network targets from one interface to another |
JP2005509976A (en) | 2001-11-19 | 2005-04-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and system for allocating budget surplus to tasks |
JP2003157381A (en) | 2001-11-20 | 2003-05-30 | Pioneer Electronic Corp | Facility reservation system, facility reservation method, facility reservation management server, facility reservation management method, program for facility reservation management and information recording medium |
TW544601B (en) | 2001-11-20 | 2003-08-01 | Ind Tech Res Inst | Method and structure for forming web server cluster by conversion and dispatching of web page documents |
US7296061B2 (en) | 2001-11-21 | 2007-11-13 | Blue Titan Software, Inc. | Distributed web services network architecture |
US7899047B2 (en) | 2001-11-27 | 2011-03-01 | Microsoft Corporation | Virtual network with adaptive dispatcher |
US7502747B1 (en) | 2001-11-29 | 2009-03-10 | Microsoft Corporation | Automated job scheduling based on resource availability |
US20030103413A1 (en) | 2001-11-30 | 2003-06-05 | Jacobi James J. | Portable universal interface device |
US7209657B1 (en) | 2001-12-03 | 2007-04-24 | Cheetah Omni, Llc | Optical routing using a star switching fabric |
US7085837B2 (en) | 2001-12-04 | 2006-08-01 | International Business Machines Corporation | Dynamic resource allocation using known future benefits |
US7308415B2 (en) | 2001-12-04 | 2007-12-11 | International Business Machines Corporation | Dynamic resource allocation using projected future benefits |
EP1318453A1 (en) | 2001-12-07 | 2003-06-11 | Hewlett-Packard Company | Scheduling system, method and apparatus for a cluster |
DE10160607A1 (en) | 2001-12-10 | 2003-06-26 | Oce Printing Systems Gmbh | Production of printed document such as newspaper, from multiple files containing page data, by creating cluster file from associated input files and storing in memory before transmission to printer |
US6954456B2 (en) | 2001-12-14 | 2005-10-11 | At & T Corp. | Method for content-aware redirection and content renaming |
US6931611B2 (en) | 2001-12-19 | 2005-08-16 | Freescale Semiconductor, Inc. | Design verification system for avoiding false failures and method therefor |
US7093259B2 (en) * | 2001-12-20 | 2006-08-15 | Cadence Design Systems, Inc. | Hierarchically structured logging for computer work processing |
US7299466B2 (en) * | 2001-12-20 | 2007-11-20 | Cadence Design Systems, Inc. | Mechanism for managing execution environments for aggregated processes |
US7487254B2 (en) | 2001-12-20 | 2009-02-03 | Nokia Corporation | Fixed length filtering to filter clusters of discrete segments of data |
CA2365729A1 (en) | 2001-12-20 | 2003-06-20 | Platform Computing (Barbados) Inc. | Topology aware scheduling for a multiprocessor system |
CA2365730A1 (en) | 2001-12-20 | 2003-06-20 | Platform Computing (Barbados) Inc. | Method and device to assist in the execution of tasks of parallel jobs |
US6752931B2 (en) | 2001-12-21 | 2004-06-22 | Texas Instruments Incorporated | Method for using DRIE with reduced lateral etching |
US7310673B2 (en) | 2001-12-21 | 2007-12-18 | Hewlett-Packard Development Company, L.P. | Network resource assignment system and method |
US7171344B2 (en) * | 2001-12-21 | 2007-01-30 | Caterpillar Inc | Method and system for providing end-user visualization |
US7599360B2 (en) | 2001-12-26 | 2009-10-06 | Cisco Technology, Inc. | Methods and apparatus for encapsulating a frame for transmission in a storage area network |
KR100724438B1 (en) * | 2001-12-26 | 2007-06-04 | 엘지전자 주식회사 | Memory control apparatus for bsae station modem |
US6898472B2 (en) | 2001-12-27 | 2005-05-24 | Manugistics, Inc. | System and method for order group planning with attribute based planning |
US20030126013A1 (en) | 2001-12-28 | 2003-07-03 | Shand Mark Alexander | Viewer-targeted display system and method |
US20030126283A1 (en) | 2001-12-31 | 2003-07-03 | Ramkrishna Prakash | Architectural basis for the bridging of SAN and LAN infrastructures |
US20030135615A1 (en) | 2001-12-31 | 2003-07-17 | Wyatt David A. | Method for rebalancing resources within a global resource namespace |
US7233669B2 (en) | 2002-01-02 | 2007-06-19 | Sony Corporation | Selective encryption to enable multiple decryption keys |
US7124410B2 (en) | 2002-01-09 | 2006-10-17 | International Business Machines Corporation | Distributed allocation of system hardware resources for multiprocessor systems |
AU2003212792A1 (en) | 2002-01-09 | 2003-07-30 | Agilquest Corporation | System and method for managing workplace real estate and other resources |
US6801940B1 (en) * | 2002-01-10 | 2004-10-05 | Networks Associates Technology, Inc. | Application performance monitoring expert |
US20030135509A1 (en) | 2002-01-11 | 2003-07-17 | Davis Andrew Thomas | Edge server java application framework having application server instance resource monitoring and management |
US20030140190A1 (en) | 2002-01-23 | 2003-07-24 | Sun Microsystems, Inc. | Auto-SCSI termination enable in a CPCI hot swap system |
EP1331564A1 (en) | 2002-01-24 | 2003-07-30 | Siemens Aktiengesellschaft | Fuzzy logic based intelligent load control for distributed environment |
US7889675B2 (en) | 2003-01-31 | 2011-02-15 | Tellabs Operations, Inc. | Method and system for multi-layer network routing |
US7093004B2 (en) | 2002-02-04 | 2006-08-15 | Datasynapse, Inc. | Using execution statistics to select tasks for redundant assignment in a distributed computing platform |
AU2003202356A1 (en) | 2002-02-07 | 2003-09-02 | Thinkdynamics Inc. | Method and system for managing resources in a data center |
US7640547B2 (en) | 2002-02-08 | 2009-12-29 | Jpmorgan Chase & Co. | System and method for allocating computing resources of a distributed computing system |
US7376693B2 (en) | 2002-02-08 | 2008-05-20 | Jp Morgan Chase & Company | System architecture for distributed computing and method of using the system |
US6781990B1 (en) | 2002-02-11 | 2004-08-24 | Extreme Networks | Method and system for managing traffic in a packet network environment |
US7340777B1 (en) | 2003-03-31 | 2008-03-04 | Symantec Corporation | In memory heuristic system and method for detecting viruses |
EP1337097A1 (en) | 2002-02-19 | 2003-08-20 | Siemens Aktiengesellschaft | Efficient utilisation of an IVR resource within a telecommunications switch |
US7284067B2 (en) * | 2002-02-20 | 2007-10-16 | Hewlett-Packard Development Company, L.P. | Method for integrated load balancing among peer servers |
US7266823B2 (en) | 2002-02-21 | 2007-09-04 | International Business Machines Corporation | Apparatus and method of dynamically repartitioning a computer system in response to partition workloads |
DE10208432B4 (en) | 2002-02-22 | 2006-06-01 | Siemens Ag | A method of server-based data processing for a plurality of clients |
US20030172191A1 (en) | 2002-02-22 | 2003-09-11 | Williams Joel R. | Coupling of CPU and disk drive to form a server and aggregating a plurality of servers into server farms |
US7127613B2 (en) | 2002-02-25 | 2006-10-24 | Sun Microsystems, Inc. | Secured peer-to-peer network data exchange |
US20030182425A1 (en) | 2002-03-01 | 2003-09-25 | Docomo Communications Laboratories Usa, Inc. | Communication system capable of executing a communication task in a manner adaptable to available distributed resources |
US6919896B2 (en) | 2002-03-11 | 2005-07-19 | Sony Computer Entertainment Inc. | System and method of optimizing graphics processing |
US20030177334A1 (en) * | 2002-03-14 | 2003-09-18 | International Business Machines Corporation | Address mapping for disk drive to accommodate multiple operating systems |
US7552481B2 (en) | 2002-03-18 | 2009-06-23 | Sun Microsystems, Inc. | Method of assessing an organization's network identity capability |
KR100610354B1 (en) | 2002-03-19 | 2006-08-09 | 삼성전자주식회사 | Controlling apparatus and method for information process system of mobile terminal apparatus using flash memory |
US7296074B2 (en) * | 2002-03-20 | 2007-11-13 | Scientific-Atlanta, Inc. | Media on demand session re-use |
US7512649B2 (en) | 2002-03-22 | 2009-03-31 | Sun Microsytems, Inc. | Distributed identities |
US7631066B1 (en) | 2002-03-25 | 2009-12-08 | Symantec Operating Corporation | System and method for preventing data corruption in computer system clusters |
US7096377B2 (en) | 2002-03-27 | 2006-08-22 | Intel Corporation | Method and apparatus for setting timing parameters |
US7009991B2 (en) | 2002-03-28 | 2006-03-07 | Matisse Networks | Reservation-based media access controller and reservation-based optical network |
AU2003228411A1 (en) | 2002-03-29 | 2003-10-13 | Network Genomics, Inc. | Forward looking infrastructure re-provisioning |
JP3922070B2 (en) | 2002-03-29 | 2007-05-30 | 株式会社デンソー | Distributed control method and apparatus |
BR0201115A (en) * | 2002-04-02 | 2005-02-22 | Coppe Ufrj | Collapsed distributed cooperative memory for scalable interactive media-on-demand systems |
US20040034873A1 (en) | 2002-04-04 | 2004-02-19 | Ian Zenoni | Event driven interactive television notification |
US7577722B1 (en) | 2002-04-05 | 2009-08-18 | Vmware, Inc. | Provisioning of computer systems using virtual machines |
US7136924B2 (en) | 2002-04-16 | 2006-11-14 | Dean Dauger | Method and system for parallel operation and control of legacy computer clusters |
JP2003308213A (en) | 2002-04-17 | 2003-10-31 | Hitachi Ltd | Method and apparatus for job processing and storage management system |
US7483945B2 (en) * | 2002-04-19 | 2009-01-27 | Akamai Technologies, Inc. | Method of, and system for, webcasting with just-in-time resource provisioning, automated telephone signal acquisition and streaming, and fully-automated event archival |
US7035854B2 (en) | 2002-04-23 | 2006-04-25 | International Business Machines Corporation | Content management system and methodology employing non-transferable access tokens to control data access |
US7171481B2 (en) | 2002-04-23 | 2007-01-30 | Intel Corporation | Validating a data link before its access |
US7164797B2 (en) | 2002-04-25 | 2007-01-16 | Microsoft Corporation | Clustering |
US20030202520A1 (en) | 2002-04-26 | 2003-10-30 | Maxxan Systems, Inc. | Scalable switch fabric system and apparatus for computer networks |
US7003659B2 (en) | 2002-04-29 | 2006-02-21 | Intel Corporation | Method and/or apparatus for reliably booting a computer system |
US6973586B2 (en) | 2002-04-29 | 2005-12-06 | International Business Machines Corporation | System and method for automatic dynamic address switching |
US7139925B2 (en) | 2002-04-29 | 2006-11-21 | Sun Microsystems, Inc. | System and method for dynamic cluster adjustment to node failures in a distributed data system |
US20030216951A1 (en) | 2002-05-02 | 2003-11-20 | Roman Ginis | Automating resource management for distributed business processes |
US7095738B1 (en) | 2002-05-07 | 2006-08-22 | Cisco Technology, Inc. | System and method for deriving IPv6 scope identifiers and for mapping the identifiers into IPv6 addresses |
US7451199B2 (en) | 2002-05-10 | 2008-11-11 | International Business Machines Corporation | Network attached storage SNMP single system image |
US20030212738A1 (en) | 2002-05-10 | 2003-11-13 | Wookey Michael J. | Remote services system message system to support redundancy of data flow |
US7353530B1 (en) | 2002-05-10 | 2008-04-01 | At&T Corp. | Method and apparatus for assigning communication nodes to CMTS cards |
JP2005525638A (en) | 2002-05-10 | 2005-08-25 | シリコン グラフィクス, インコーポレイテッド | Cross-reference of real-time storage area network related applications. This is related to US Patent Provisional Application No. 60 / 378,941 “Real-time Storage Area Network” filed on May 10, 2002 by Michael A. Raymond, and claims priority based on this. Therefore, the entire text is cited in this specification. |
US20030217129A1 (en) | 2002-05-15 | 2003-11-20 | Lucent Technologies Inc. | Self-organizing intelligent network architecture and methodology |
US6785794B2 (en) | 2002-05-17 | 2004-08-31 | International Business Machines Corporation | Differentiated storage resource provisioning |
US7716334B2 (en) | 2002-05-17 | 2010-05-11 | Oracle America, Inc. | Computer system with dynamically configurable capacity |
US20030216927A1 (en) | 2002-05-17 | 2003-11-20 | V. Sridhar | System and method for automated safe reprogramming of software radios |
US7080378B1 (en) | 2002-05-17 | 2006-07-18 | Storage Technology Corporation | Workload balancing using dynamically allocated virtual servers |
US20050060608A1 (en) | 2002-05-23 | 2005-03-17 | Benoit Marchand | Maximizing processor utilization and minimizing network bandwidth requirements in throughput compute clusters |
EP1365545A1 (en) | 2002-05-24 | 2003-11-26 | Siemens Aktiengesellschaft | Method and system for modelling elastic network traffic |
US7076781B2 (en) | 2002-05-31 | 2006-07-11 | International Business Machines Corporation | Resource reservation for large-scale job scheduling |
US7161904B2 (en) | 2002-06-04 | 2007-01-09 | Fortinet, Inc. | System and method for hierarchical metering in a virtual router based network switch |
US7376125B1 (en) | 2002-06-04 | 2008-05-20 | Fortinet, Inc. | Service processing switch |
US7782813B2 (en) | 2002-06-07 | 2010-08-24 | Ember Corporation | Monitoring network traffic |
GB2389479B (en) | 2002-06-07 | 2005-12-28 | Hewlett Packard Co | Method of serving out video over a network of video servers |
GB0213073D0 (en) | 2002-06-07 | 2002-07-17 | Hewlett Packard Co | Method of maintaining availability of requested network resources |
GB2389431A (en) * | 2002-06-07 | 2003-12-10 | Hewlett Packard Co | An arrangement for delivering resources over a network in which a demand director server is aware of the content of resource servers |
WO2003105353A2 (en) | 2002-06-11 | 2003-12-18 | Meshnetworks, Inc. | System and method for multicast media access using broadcast transmissions with multiple acknowledgments in an ad-hoc communications network |
US7415723B2 (en) | 2002-06-11 | 2008-08-19 | Pandya Ashish A | Distributed network security system and a hardware processor therefor |
US7453870B2 (en) | 2002-06-12 | 2008-11-18 | Intel Corporation | Backplane for switch fabric |
US20030233446A1 (en) | 2002-06-12 | 2003-12-18 | Earl William J. | System and method for managing a distributed computing system |
US20030233378A1 (en) | 2002-06-13 | 2003-12-18 | International Business Machines Corporation | Apparatus and method for reconciling resources in a managed region of a resource management system |
US7155502B1 (en) | 2002-06-17 | 2006-12-26 | Packeteer, Inc. | Methods, apparatuses and systems facilitating distribution of updated traffic identification functionality to bandwidth management devices |
US7020706B2 (en) | 2002-06-17 | 2006-03-28 | Bmc Software, Inc. | Method and system for automatically updating multiple servers |
US7168049B2 (en) | 2002-06-18 | 2007-01-23 | Silicon Graphics, Inc. | System and method for allocating computing resources |
US20050193103A1 (en) | 2002-06-18 | 2005-09-01 | John Drabik | Method and apparatus for automatic configuration and management of a virtual private network |
US8037181B2 (en) | 2002-06-28 | 2011-10-11 | Microsoft Corporation | Re-partitioning directories |
US7010596B2 (en) | 2002-06-28 | 2006-03-07 | International Business Machines Corporation | System and method for the allocation of grid computing to network workstations |
US8321048B1 (en) | 2002-06-28 | 2012-11-27 | Advanced Micro Devices, Inc. | Associating data with workpieces and correlating the data with yield data |
GB0215118D0 (en) | 2002-06-28 | 2002-08-07 | Hewlett Packard Co | Dynamic resource allocation in a multimodal system |
AU2003255702B2 (en) | 2002-07-02 | 2008-06-05 | Amadeus S.A.S | Method of allocating seats to customers in a computer reservation system |
US7180866B1 (en) | 2002-07-11 | 2007-02-20 | Nortel Networks Limited | Rerouting in connection-oriented communication networks and communication systems |
US7065367B2 (en) | 2002-07-11 | 2006-06-20 | Oliver Michaelis | Interface selection in a wireless communication network |
US7313793B2 (en) * | 2002-07-11 | 2007-12-25 | Microsoft Corporation | Method for forking or migrating a virtual machine |
US7039018B2 (en) | 2002-07-17 | 2006-05-02 | Intel Corporation | Technique to improve network routing using best-match and exact-match techniques |
JP4133068B2 (en) | 2002-07-23 | 2008-08-13 | 株式会社日立製作所 | Computer system |
US7286544B2 (en) | 2002-07-25 | 2007-10-23 | Brocade Communications Systems, Inc. | Virtualized multiport switch |
IL150911A0 (en) | 2002-07-25 | 2003-02-12 | Sphera Technologies Ltd | A method and apparatus for dynamically allocating and managing resources in a computerized system having multiple consumers |
US7286527B2 (en) | 2002-07-26 | 2007-10-23 | Brocade Communications Systems, Inc. | Method and apparatus for round trip delay measurement in a bi-directional, point-to-point, serial data channel |
US8295288B2 (en) | 2002-07-30 | 2012-10-23 | Brocade Communications System, Inc. | Registered state change notification for a fibre channel network |
US7017186B2 (en) | 2002-07-30 | 2006-03-21 | Steelcloud, Inc. | Intrusion detection system using self-organizing clusters |
US7275249B1 (en) | 2002-07-30 | 2007-09-25 | Unisys Corporation | Dynamically generating masks for thread scheduling in a multiprocessor system |
US7287254B2 (en) | 2002-07-30 | 2007-10-23 | Unisys Corporation | Affinitizing threads in a multiprocessor system |
US7487509B2 (en) | 2002-08-08 | 2009-02-03 | Sun Microsystems, Inc. | System and method for providing multiple embodiments of abstract software modules in peer-to-peer network environments |
US7533161B2 (en) | 2002-08-08 | 2009-05-12 | Sun Microsystems, Inc. | System and method for multiplatform implementation of abstract software modules in peer-to-peer network environments |
US7484225B2 (en) | 2002-08-08 | 2009-01-27 | Sun Microsystems, Inc. | System and method for describing and identifying abstract software modules in peer-to-peer network environments |
US7055044B2 (en) | 2002-08-12 | 2006-05-30 | Hewlett-Packard Development Company, L.P. | System and method for voltage management of a processor to optimize performance and power dissipation |
US7480312B2 (en) | 2002-08-19 | 2009-01-20 | Tehuti Networks Ltd. | Network traffic accelerator system and method |
US20040039815A1 (en) | 2002-08-20 | 2004-02-26 | Compaq Information Technologies Group, L.P. | Dynamic provisioning system for a network of computers |
JP4206707B2 (en) | 2002-08-27 | 2009-01-14 | 株式会社日立製作所 | Communication quality setting apparatus, method and program |
US7185046B2 (en) | 2002-08-28 | 2007-02-27 | Sun Microsystems, Inc. | Submitting jobs in a distributed computing environment |
EP1394985A1 (en) | 2002-08-28 | 2004-03-03 | Siemens Aktiengesellschaft | Test method for network path between network elements in communication networks |
US7570943B2 (en) | 2002-08-29 | 2009-08-04 | Nokia Corporation | System and method for providing context sensitive recommendations to digital services |
US7765521B2 (en) | 2002-08-29 | 2010-07-27 | Jeffrey F Bryant | Configuration engine |
US7849140B2 (en) | 2002-08-29 | 2010-12-07 | Oracle America, Inc. | Peer-to-peer email messaging |
US7263560B2 (en) | 2002-08-30 | 2007-08-28 | Sun Microsystems, Inc. | Decentralized peer-to-peer advertisement |
US7167916B2 (en) | 2002-08-30 | 2007-01-23 | Unisys Corporation | Computer OS dispatcher operation with virtual switching queue and IP queues |
US7639838B2 (en) | 2002-08-30 | 2009-12-29 | Jerry C Nims | Multi-dimensional images system for digital image input and output |
US7305464B2 (en) | 2002-09-03 | 2007-12-04 | End Ii End Communications, Inc. | Systems and methods for broadband network optimization |
US6882718B1 (en) | 2002-09-06 | 2005-04-19 | Bellsouth Intellectual Property Corp. | Real time customer service data manipulation to allow multiple services per trigger type |
US7433304B1 (en) | 2002-09-06 | 2008-10-07 | Packeteer, Inc. | Classification data structure enabling multi-dimensional network traffic classification and control schemes |
GB0220846D0 (en) | 2002-09-07 | 2002-10-16 | Ibm | Remote dynamic configuration of a web server to facilitate capacity on demand |
US7379959B2 (en) | 2002-09-07 | 2008-05-27 | Appistry, Inc. | Processing information using a hive of computing engines including request handlers and process handlers |
US7363346B2 (en) | 2002-09-07 | 2008-04-22 | Appistry, Inc. | Reliably storing information across multiple computers such as in a hive of computers |
US7197071B1 (en) | 2002-09-09 | 2007-03-27 | Warner Bros. Entertainment Inc. | Film resource manager |
US7613796B2 (en) | 2002-09-11 | 2009-11-03 | Microsoft Corporation | System and method for creating improved overlay network with an efficient distributed data structure |
US7370092B2 (en) | 2002-09-12 | 2008-05-06 | Computer Sciences Corporation | System and method for enhanced software updating and revision |
US7765299B2 (en) | 2002-09-16 | 2010-07-27 | Hewlett-Packard Development Company, L.P. | Dynamic adaptive server provisioning for blade architectures |
US7171469B2 (en) | 2002-09-16 | 2007-01-30 | Network Appliance, Inc. | Apparatus and method for storing data in a proxy cache in a network |
US7496494B2 (en) | 2002-09-17 | 2009-02-24 | International Business Machines Corporation | Method and system for multiprocessor emulation on a multiprocessor host system |
US7657779B2 (en) | 2002-09-18 | 2010-02-02 | International Business Machines Corporation | Client assisted autonomic computing |
US7412703B2 (en) | 2002-09-19 | 2008-08-12 | Sedna Patent Services, Llc | Low cost, highly accurate video server bit-rate compensation |
JP3797966B2 (en) | 2002-09-20 | 2006-07-19 | 富士通株式会社 | Resource management method in label switch network |
US20110090633A1 (en) | 2002-09-23 | 2011-04-21 | Josef Rabinovitz | Modular sata data storage device assembly |
US20040066782A1 (en) * | 2002-09-23 | 2004-04-08 | Nassar Ayman Esam | System, method and apparatus for sharing and optimizing packet services nodes |
US8204992B2 (en) | 2002-09-26 | 2012-06-19 | Oracle America, Inc. | Presence detection using distributed indexes in peer-to-peer networks |
US7206934B2 (en) | 2002-09-26 | 2007-04-17 | Sun Microsystems, Inc. | Distributed indexing of identity information in a peer-to-peer network |
US7657597B2 (en) | 2002-09-26 | 2010-02-02 | Sun Microsystems, Inc. | Instant messaging using distributed indexes |
TWI318831B (en) | 2002-09-27 | 2009-12-21 | Panasonic Corp | Resource management system |
US7640342B1 (en) | 2002-09-27 | 2009-12-29 | Emc Corporation | System and method for determining configuration of one or more data storage systems |
US6874031B2 (en) * | 2002-10-07 | 2005-03-29 | Qualcomm Inc. | Method and apparatus for sharing authentication session state in a global distributed network |
US6829762B2 (en) | 2002-10-10 | 2004-12-07 | International Business Machnies Corporation | Method, apparatus and system for allocating and accessing memory-mapped facilities within a data processing system |
US7133915B2 (en) | 2002-10-10 | 2006-11-07 | International Business Machines Corporation | Apparatus and method for offloading and sharing CPU and RAM utilization in a network of machines |
US7136922B2 (en) | 2002-10-15 | 2006-11-14 | Akamai Technologies, Inc. | Method and system for providing on-demand content delivery for an origin server |
US7080283B1 (en) | 2002-10-15 | 2006-07-18 | Tensilica, Inc. | Simultaneous real-time trace and debug for multiple processing core systems on a chip |
US6626077B1 (en) * | 2002-10-16 | 2003-09-30 | Mark David Gilbert | Intercept vehicle for airborne nuclear, chemical and biological weapons of mass destruction |
US8199636B1 (en) | 2002-10-18 | 2012-06-12 | Alcatel Lucent | Bridged network system with traffic resiliency upon link failure |
US7792113B1 (en) | 2002-10-21 | 2010-09-07 | Cisco Technology, Inc. | Method and system for policy-based forwarding |
US7398525B2 (en) | 2002-10-21 | 2008-07-08 | International Business Machines Corporation | Resource scheduling in workflow management systems |
US20040083287A1 (en) | 2002-10-25 | 2004-04-29 | Xia Gao | Terminal-based resource reservation protocol |
CN100463469C (en) | 2002-10-25 | 2009-02-18 | 国际商业机器公司 | Method, device and system for sharing applied program conversation information on multichannels |
US8037202B2 (en) | 2002-10-31 | 2011-10-11 | Oracle America, Inc. | Presence detection using mobile agents in peer-to-peer networks |
US7328243B2 (en) | 2002-10-31 | 2008-02-05 | Sun Microsystems, Inc. | Collaborative content coherence using mobile agents in peer-to-peer networks |
US7213047B2 (en) | 2002-10-31 | 2007-05-01 | Sun Microsystems, Inc. | Peer trust evaluation using mobile agents in peer-to-peer networks |
US7254608B2 (en) | 2002-10-31 | 2007-08-07 | Sun Microsystems, Inc. | Managing distribution of content using mobile agents in peer-topeer networks |
US8108455B2 (en) | 2002-10-31 | 2012-01-31 | Oracle America, Inc. | Mobile agents in peer-to-peer networks |
US8172740B2 (en) * | 2002-11-06 | 2012-05-08 | National Oilwell Varco L.P. | Controlled centrifuge systems |
US7395536B2 (en) | 2002-11-14 | 2008-07-01 | Sun Microsystems, Inc. | System and method for submitting and performing computational tasks in a distributed heterogeneous networked environment |
US7617273B2 (en) | 2002-11-15 | 2009-11-10 | Sun Microsystems, Inc. | Method and apparatus for providing a unified component architecture for client-side and server-side components |
US7603300B2 (en) | 2002-11-18 | 2009-10-13 | Sap Aktiengesellschaft | Collection and analysis of trading data in an electronic marketplace |
US8489741B2 (en) | 2002-11-21 | 2013-07-16 | International Business Machines Corporation | Policy enabled grid architecture |
US7203720B2 (en) | 2002-11-27 | 2007-04-10 | Bea Systems, Inc. | Web server hit multiplier and redirector |
US7870241B2 (en) | 2002-11-27 | 2011-01-11 | International Business Machines Corporation | Automated power control policies based on application-specific redundancy characteristics |
US6661671B1 (en) | 2002-11-27 | 2003-12-09 | International Business Machines Corporation | Apparatus, method and article of manufacture for determining power permission for a blade spanning power back planes |
US7243352B2 (en) | 2002-11-27 | 2007-07-10 | Sun Microsystems, Inc. | Distributed process runner |
US20040111307A1 (en) | 2002-12-04 | 2004-06-10 | International Business Machines Corporation | Electronic calendar management of privately owned resources |
US20040109428A1 (en) | 2002-12-09 | 2004-06-10 | Srikanth Krishnamurthy | Method and apparatus for resource allocation for multiple traffic classes in wireless ad-hoc networks |
US7512788B2 (en) | 2002-12-10 | 2009-03-31 | International Business Machines Corporation | Method and apparatus for anonymous group messaging in a distributed messaging system |
US7386611B2 (en) | 2002-12-10 | 2008-06-10 | International Business Machines Corporation | Apparatus and methods for co-location and offloading of web site traffic based on traffic pattern recognition |
US7131113B2 (en) | 2002-12-12 | 2006-10-31 | International Business Machines Corporation | System and method on generating multi-dimensional trace files and visualizing them using multiple Gantt charts |
US7093256B2 (en) | 2002-12-13 | 2006-08-15 | Equator Technologies, Inc. | Method and apparatus for scheduling real-time and non-real-time access to a shared resource |
US6857938B1 (en) | 2002-12-16 | 2005-02-22 | Cypress Semiconductor Corporation | Lot-to-lot feed forward CMP process |
US20060294238A1 (en) | 2002-12-16 | 2006-12-28 | Naik Vijay K | Policy-based hierarchical management of shared resources in a grid environment |
US8516470B1 (en) | 2002-12-16 | 2013-08-20 | Symantec Corporation | Version upgrade via viral infection |
US7263596B1 (en) | 2002-12-17 | 2007-08-28 | Advanced Digital Information Corporation | Logical library architecture for data storage applications and methods of use |
US6993649B2 (en) * | 2002-12-17 | 2006-01-31 | John Alan Hensley | Method of altering a computer operating system to boot and run from protected media |
US7243351B2 (en) | 2002-12-17 | 2007-07-10 | International Business Machines Corporation | System and method for task scheduling based upon the classification value and probability |
US20050192771A1 (en) | 2002-12-20 | 2005-09-01 | International Business Machines Corporation | System and method for dynamically integrating remote portal fragments into a local portal |
JP4119239B2 (en) | 2002-12-20 | 2008-07-16 | 株式会社日立製作所 | Computer resource allocation method, resource management server and computer system for executing the method |
US7383550B2 (en) | 2002-12-23 | 2008-06-03 | International Business Machines Corporation | Topology aware grid services scheduler architecture |
US7962545B2 (en) | 2002-12-27 | 2011-06-14 | Intel Corporation | Dynamic service registry for virtual machines |
US7188174B2 (en) | 2002-12-30 | 2007-03-06 | Hewlett-Packard Development Company, L.P. | Admission control for applications in resource utility environments |
US7017039B2 (en) * | 2002-12-31 | 2006-03-21 | John Alan Hensley | Method of booting a computer operating system to run from a normally unsupported system device |
GB0230331D0 (en) | 2002-12-31 | 2003-02-05 | British Telecomm | Method and apparatus for operating a computer network |
US7421500B2 (en) | 2003-01-10 | 2008-09-02 | Hewlett-Packard Development Company, L.P. | Grid computing control system |
EP1584045A2 (en) | 2003-01-13 | 2005-10-12 | Innovative Systems Design Inc. | Apparatus, method, and article of manufacture for visualizing status in a compute environment |
US7222343B2 (en) | 2003-01-16 | 2007-05-22 | International Business Machines Corporation | Dynamic allocation of computer resources based on thread type |
US8626820B1 (en) | 2003-01-21 | 2014-01-07 | Peer Fusion, Inc. | Peer to peer code generator and decoder for digital systems |
US7917658B2 (en) | 2003-01-21 | 2011-03-29 | Emulex Design And Manufacturing Corporation | Switching apparatus and method for link initialization in a shared I/O environment |
US7349980B1 (en) | 2003-01-24 | 2008-03-25 | Blue Titan Software, Inc. | Network publish/subscribe system incorporating Web services network routing architecture |
US7533141B2 (en) | 2003-01-24 | 2009-05-12 | Sun Microsystems, Inc. | System and method for unique naming of resources in networked environments |
FR2850476A1 (en) | 2003-01-28 | 2004-07-30 | Cit Alcatel | Method for managing a resource calendar, comprises choice of time intervals and duration and memorization in the form of a tree structure with different level nodes indicating varying time spans |
US20050021371A1 (en) | 2003-01-31 | 2005-01-27 | Basone Michael A. | System for facilitating weight control incorporating hand-held computing device |
US7231609B2 (en) | 2003-02-03 | 2007-06-12 | Microsoft Corporation | System and method for accessing remote screen content |
EP1453243B1 (en) | 2003-02-03 | 2014-01-15 | NTT DoCoMo, Inc. | An apparatus and a method for optimizing network resources in data communication |
WO2004070547A2 (en) | 2003-02-03 | 2004-08-19 | Captus Networks Corp. | Method and device for monitoring data traffic and preventing unauthorized access to a network |
US7872991B2 (en) | 2003-02-04 | 2011-01-18 | Alcatel-Lucent Usa Inc. | Methods and systems for providing MPLS-based layer-2 virtual private network services |
US20040158637A1 (en) | 2003-02-12 | 2004-08-12 | Lee Timothy Charles | Gated-pull load balancer |
US7774495B2 (en) | 2003-02-13 | 2010-08-10 | Oracle America, Inc, | Infrastructure for accessing a peer-to-peer network environment |
US7353276B2 (en) * | 2003-02-13 | 2008-04-01 | Microsoft Corporation | Bi-directional affinity |
US8024548B2 (en) | 2003-02-18 | 2011-09-20 | Christopher Joseph Daffron | Integrated circuit microprocessor that constructs, at run time, integrated reconfigurable logic into persistent finite state machines from pre-compiled machine code instruction sequences |
US7827283B2 (en) | 2003-02-19 | 2010-11-02 | International Business Machines Corporation | System for managing and controlling storage access requirements |
JP4593078B2 (en) * | 2003-02-28 | 2010-12-08 | 株式会社日立製作所 | Job execution method and program in different computer environments |
US7353495B2 (en) | 2003-02-28 | 2008-04-01 | Bea Systems, Inc. | Method for protection against interleaving transactions using a transaction manager |
US7447147B2 (en) | 2003-02-28 | 2008-11-04 | Cisco Technology, Inc. | Ethernet switch with configurable alarms |
US7583607B2 (en) | 2003-03-06 | 2009-09-01 | Hewlett-Packard Development Company, L.P. | Method and apparatus for designating and implementing support level agreements |
US7072807B2 (en) | 2003-03-06 | 2006-07-04 | Microsoft Corporation | Architecture for distributed computing system and automated design, deployment, and management of distributed applications |
US7039559B2 (en) | 2003-03-10 | 2006-05-02 | International Business Machines Corporation | Methods and apparatus for performing adaptive and robust prediction |
US7150044B2 (en) | 2003-03-10 | 2006-12-12 | Mci, Llc | Secure self-organizing and self-provisioning anomalous event detection systems |
US7039771B1 (en) | 2003-03-10 | 2006-05-02 | Marvell International Ltd. | Method and system for supporting multiple external serial port devices using a serial port controller in embedded disk controllers |
US8578130B2 (en) | 2003-03-10 | 2013-11-05 | International Business Machines Corporation | Partitioning of node into more than one partition |
US7350186B2 (en) * | 2003-03-10 | 2008-03-25 | International Business Machines Corporation | Methods and apparatus for managing computing deployment in presence of variable workload |
US7924874B2 (en) | 2003-03-11 | 2011-04-12 | Hewlett-Packard Development Company, L.P. | Evaluating and allocating system resources to improve resource utilization |
WO2004081762A2 (en) | 2003-03-12 | 2004-09-23 | Lammina Systems Corporation | Method and apparatus for executing applications on a distributed computer system |
US8018860B1 (en) | 2003-03-12 | 2011-09-13 | Sprint Communications Company L.P. | Network maintenance simulator with path re-route prediction |
US20040181476A1 (en) | 2003-03-13 | 2004-09-16 | Smith William R. | Dynamic network resource brokering |
US8671132B2 (en) | 2003-03-14 | 2014-03-11 | International Business Machines Corporation | System, method, and apparatus for policy-based data management |
US7324555B1 (en) * | 2003-03-20 | 2008-01-29 | Infovalue Computing, Inc. | Streaming while fetching broadband video objects using heterogeneous and dynamic optimized segmentation size |
US7173635B2 (en) * | 2003-03-25 | 2007-02-06 | Nvidia Corporation | Remote graphical user interface support using a graphics processing unit |
US7216123B2 (en) | 2003-03-28 | 2007-05-08 | Board Of Trustees Of The Leland Stanford Junior University | Methods for ranking nodes in large directed graphs |
US7334230B2 (en) * | 2003-03-31 | 2008-02-19 | International Business Machines Corporation | Resource allocation in a NUMA architecture based on separate application specified resource and strength preferences for processor and memory resources |
JP4597488B2 (en) | 2003-03-31 | 2010-12-15 | 株式会社日立製作所 | Program placement method, execution system thereof, and processing program thereof |
JP4077352B2 (en) | 2003-03-31 | 2008-04-16 | 株式会社日立製作所 | Load balancing method, execution system thereof, and processing program thereof |
JP3951949B2 (en) * | 2003-03-31 | 2007-08-01 | 日本電気株式会社 | Distributed resource management system, distributed resource management method and program |
US8135795B2 (en) | 2003-04-03 | 2012-03-13 | International Business Machines Corporation | Method to provide on-demand resource access |
US7331048B2 (en) | 2003-04-04 | 2008-02-12 | International Business Machines Corporation | Backfill scheduling of applications based on data of the applications |
US7607093B2 (en) | 2003-04-04 | 2009-10-20 | Agilent Technologies, Inc. | Displaying network segment decode information in diagrammatic form |
US20040199621A1 (en) | 2003-04-07 | 2004-10-07 | Michael Lau | Systems and methods for characterizing and fingerprinting a computer data center environment |
US20040215650A1 (en) | 2003-04-09 | 2004-10-28 | Ullattil Shaji | Interfaces and methods for group policy management |
US7284054B2 (en) | 2003-04-11 | 2007-10-16 | Sun Microsystems, Inc. | Systems, methods, and articles of manufacture for aligning service containers |
US20040205162A1 (en) | 2003-04-11 | 2004-10-14 | Parikh Jay G. | Method of executing an edge-enabled application in a content delivery network (CDN) |
US8473620B2 (en) | 2003-04-14 | 2013-06-25 | Riverbed Technology, Inc. | Interception of a cloud-based communication connection |
US20040210663A1 (en) | 2003-04-15 | 2004-10-21 | Paul Phillips | Object-aware transport-layer network processing engine |
US7047372B2 (en) | 2003-04-15 | 2006-05-16 | Newisys, Inc. | Managing I/O accesses in multiprocessor systems |
US7805448B2 (en) | 2003-04-18 | 2010-09-28 | Hewlett-Packard Development Company, L.P. | Storing attribute values of computing resources in a peer-to-peer network |
US20040215991A1 (en) | 2003-04-23 | 2004-10-28 | Dell Products L.P. | Power-up of multiple processors when a voltage regulator module has failed |
WO2004095304A1 (en) | 2003-04-23 | 2004-11-04 | Dot Hill Systems Corporation | Network storage appliance with integrated redundant servers and storage controllers |
US7047337B2 (en) | 2003-04-24 | 2006-05-16 | International Business Machines Corporation | Concurrent access of shared resources utilizing tracking of request reception and completion order |
US20040215864A1 (en) | 2003-04-28 | 2004-10-28 | International Business Machines Corporation | Non-disruptive, dynamic hot-add and hot-remove of non-symmetric data processing system resources |
US7796515B2 (en) | 2003-04-29 | 2010-09-14 | Hewlett-Packard Development Company, L.P. | Propagation of viruses through an information technology network |
US7720968B2 (en) | 2003-04-30 | 2010-05-18 | International Business Machines Corporation | Method and system of configuring elements of a distributed computing system for optimized value |
US7356655B2 (en) * | 2003-05-15 | 2008-04-08 | International Business Machines Corporation | Methods, systems, and media for managing dynamic storage |
US7783019B2 (en) | 2003-05-15 | 2010-08-24 | Verizon Business Global Llc | Method and apparatus for providing fraud detection using geographically differentiated connection duration thresholds |
US8347313B2 (en) | 2003-05-21 | 2013-01-01 | Resilient Networks, Inc. | Method and apparatus for automating organization of processes |
US7454467B2 (en) | 2003-05-22 | 2008-11-18 | International Business Machines Corporation | Method for managing email messages |
FR2855634B1 (en) | 2003-05-27 | 2005-07-08 | France Telecom | METHOD OF AUTOMATICALLY LEARNING CHRONIC FREQUENCIES IN AN ALARM JOURNAL FOR SUPERVISION OF DYNAMIC SYSTEMS |
US20040260701A1 (en) | 2003-05-27 | 2004-12-23 | Juha Lehikoinen | System and method for weblog and sharing in a peer-to-peer environment |
US7590984B2 (en) | 2003-05-29 | 2009-09-15 | International Business Machines Corporation | System and method for balancing a computing load among computing resources in a distributed computing problem |
US7451197B2 (en) | 2003-05-30 | 2008-11-11 | Intel Corporation | Method, system, and article of manufacture for network protocols |
US7577108B2 (en) | 2003-06-03 | 2009-08-18 | Palo Alto Research Center Incorporated | Learning-based strategies for message-initiated constraint-based routing |
US20070050777A1 (en) * | 2003-06-09 | 2007-03-01 | Hutchinson Thomas W | Duration of alerts and scanning of large data stores |
US7685254B2 (en) | 2003-06-10 | 2010-03-23 | Pandya Ashish A | Runtime adaptable search processor |
WO2004112302A2 (en) | 2003-06-12 | 2004-12-23 | Camiant, Inc. | Dynamic service delivery with topology discovery for communication networks |
US7076717B2 (en) | 2003-06-13 | 2006-07-11 | Microsoft Corporation | Time-aware best-effort hole-filling retry method and system for network communications |
KR20040107934A (en) | 2003-06-16 | 2004-12-23 | 김광태 | The providing system serviced by on-line for process-progressing of orderer's request and the methode of that |
US7107363B2 (en) | 2003-06-19 | 2006-09-12 | International Business Machines Corporation | Microprocessor having bandwidth management for computing applications and related method of managing bandwidth allocation |
US20050021839A1 (en) | 2003-06-23 | 2005-01-27 | Russell Thomas C. | Method and apparatus for providing a selectively isolated equipment area network for machine elements with data communication therebetween and with remote sites |
US20040267897A1 (en) | 2003-06-24 | 2004-12-30 | Sychron Inc. | Distributed System Providing Scalable Methodology for Real-Time Control of Server Pools and Data Centers |
US7937091B2 (en) * | 2003-06-25 | 2011-05-03 | Ntt Docomo, Inc. | Method and apparatus for resource sharing over handset terminals |
US7400996B2 (en) | 2003-06-26 | 2008-07-15 | Benjamin Thomas Percer | Use of I2C-based potentiometers to enable voltage rail variation under BMC control |
JP4343901B2 (en) | 2003-06-26 | 2009-10-14 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for use in a wireless communication system |
US7475108B2 (en) * | 2003-06-26 | 2009-01-06 | International Business Machines Corporation | Slow-dynamic load balancing method |
JP3953986B2 (en) | 2003-06-27 | 2007-08-08 | 株式会社日立製作所 | Storage device and storage device control method |
US7185320B2 (en) | 2003-06-27 | 2007-02-27 | Hewlett-Packard Development Company, L.P. | System and method for processing breakpoint events in a child process generated by a parent process |
US7562154B2 (en) | 2003-06-30 | 2009-07-14 | International Business Machines Corporation | System and method for filtering stale messages resulting from membership changes in a distributed computing environment |
US7366101B1 (en) | 2003-06-30 | 2008-04-29 | Packeteer, Inc. | Network traffic synchronization mechanism |
JP2005031771A (en) | 2003-07-08 | 2005-02-03 | Hitachi Ltd | Job scheduling management method, system, and program |
US20050010465A1 (en) | 2003-07-09 | 2005-01-13 | Stepp Foundation | System and method for matching user indentified environmental projects with resource providers |
US20070083899A1 (en) * | 2003-07-10 | 2007-04-12 | Compton Charles L | Distributed and scalable architecture for on demand session and resource manangement |
EP1652042A4 (en) * | 2003-07-11 | 2009-03-04 | Computer Ass Think Inc | San/storage self-healing/capacity planning system and method |
US20050015621A1 (en) | 2003-07-17 | 2005-01-20 | International Business Machines Corporation | Method and system for automatic adjustment of entitlements in a distributed data processing environment |
US7477655B2 (en) | 2003-07-21 | 2009-01-13 | Qlogic, Corporation | Method and system for power control of fibre channel switches |
US7646767B2 (en) | 2003-07-21 | 2010-01-12 | Qlogic, Corporation | Method and system for programmable data dependant network routing |
US7512067B2 (en) | 2003-07-21 | 2009-03-31 | Qlogic, Corporation | Method and system for congestion control based on optimum bandwidth allocation in a fibre channel switch |
US7894348B2 (en) | 2003-07-21 | 2011-02-22 | Qlogic, Corporation | Method and system for congestion control in a fibre channel switch |
US7146353B2 (en) | 2003-07-22 | 2006-12-05 | Hewlett-Packard Development Company, L.P. | Resource allocation for multiple applications |
JP2005041127A (en) | 2003-07-23 | 2005-02-17 | Brother Ind Ltd | Status information notification system, network terminal device and communication processing device |
US7739541B1 (en) | 2003-07-25 | 2010-06-15 | Symantec Operating Corporation | System and method for resolving cluster partitions in out-of-band storage virtualization environments |
US7412588B2 (en) | 2003-07-25 | 2008-08-12 | International Business Machines Corporation | Network processor system on chip with bridge coupling protocol converting multiprocessor macro core local bus to peripheral interfaces coupled system bus |
US7353362B2 (en) | 2003-07-25 | 2008-04-01 | International Business Machines Corporation | Multiprocessor subsystem in SoC with bridge between processor clusters interconnetion and SoC system bus |
US7546553B2 (en) | 2003-07-28 | 2009-06-09 | Sap Ag | Grid landscape component |
US7568199B2 (en) * | 2003-07-28 | 2009-07-28 | Sap Ag. | System for matching resource request that freeing the reserved first resource and forwarding the request to second resource if predetermined time period expired |
US7644153B2 (en) * | 2003-07-31 | 2010-01-05 | Hewlett-Packard Development Company, L.P. | Resource allocation management in interactive grid computing systems |
US7170315B2 (en) | 2003-07-31 | 2007-01-30 | Actel Corporation | Programmable system on a chip |
US20050044226A1 (en) | 2003-07-31 | 2005-02-24 | International Business Machines Corporation | Method and apparatus for validating and ranking resources for geographic mirroring |
US7111188B2 (en) | 2003-07-31 | 2006-09-19 | International Business Machines Corporation | Dynamically configurable fault tolerance in autonomic computing with multiple service points |
US7028125B2 (en) | 2003-08-04 | 2006-04-11 | Inventec Corporation | Hot-pluggable peripheral input device coupling system |
US7620736B2 (en) | 2003-08-08 | 2009-11-17 | Cray Canada Corporation | Network topology having nodes interconnected by extended diagonal links |
US7437460B2 (en) | 2003-08-14 | 2008-10-14 | Oracle International Corporation | Service placement for enforcing performance and availability levels in a multi-node system |
WO2005017783A2 (en) | 2003-08-14 | 2005-02-24 | Oracle International Corporation | Hierarchical management of the dynamic allocation of resourses in a multi-node system |
US7516221B2 (en) * | 2003-08-14 | 2009-04-07 | Oracle International Corporation | Hierarchical management of the dynamic allocation of resources in a multi-node system |
US8365193B2 (en) | 2003-08-14 | 2013-01-29 | Oracle International Corporation | Recoverable asynchronous message driven processing in a multi-node system |
US8260741B2 (en) | 2003-08-15 | 2012-09-04 | Intel Corporation | System and method for utilizing a modular operating system (OS) resident agent allowing an out-of-band server management |
US8296771B2 (en) | 2003-08-18 | 2012-10-23 | Cray Inc. | System and method for mapping between resource consumers and resource providers in a computing system |
US7698398B1 (en) | 2003-08-18 | 2010-04-13 | Sun Microsystems, Inc. | System and method for generating Web Service architectures using a Web Services structured methodology |
US8776050B2 (en) | 2003-08-20 | 2014-07-08 | Oracle International Corporation | Distributed virtual machine monitor for managing multiple virtual resources across multiple physical nodes |
US7877754B2 (en) * | 2003-08-21 | 2011-01-25 | International Business Machines Corporation | Methods, systems, and media to expand resources available to a logical partition |
US20050050057A1 (en) * | 2003-08-25 | 2005-03-03 | Microsoft Corporation | System and method for integrating management of resources between application services and applications |
US7543296B2 (en) * | 2003-08-26 | 2009-06-02 | International Business Machines Corporation | Time based multi-tiered management of resource systems |
US7287121B2 (en) | 2003-08-27 | 2007-10-23 | Aristos Logic Corporation | System and method of establishing and reconfiguring volume profiles in a storage system |
US20050080891A1 (en) * | 2003-08-28 | 2005-04-14 | Cauthron David M. | Maintenance unit architecture for a scalable internet engine |
US8244828B2 (en) | 2003-08-28 | 2012-08-14 | International Business Machines Corporation | Digital guide system |
US8166204B2 (en) | 2003-08-29 | 2012-04-24 | Raytheon Bbn Technologies Corp. | Systems and methods for automatically placing nodes in an ad hoc network |
US7386888B2 (en) | 2003-08-29 | 2008-06-10 | Trend Micro, Inc. | Network isolation techniques suitable for virus protection |
US20050050200A1 (en) | 2003-09-02 | 2005-03-03 | Kabushiki Kaisha Toshiba | Computer system and cluster system program |
US20050055694A1 (en) * | 2003-09-04 | 2005-03-10 | Hewlett-Packard Development Company, Lp | Dynamic load balancing resource allocation |
US7516455B2 (en) | 2003-09-05 | 2009-04-07 | Microsoft Corporation | Probabilistic scheduling |
US7934005B2 (en) | 2003-09-08 | 2011-04-26 | Koolspan, Inc. | Subnet box |
US7480913B2 (en) | 2003-09-09 | 2009-01-20 | International Business Machines Corporation | Method, apparatus, and program for scheduling resources in a penalty-based environment |
US7783777B1 (en) | 2003-09-09 | 2010-08-24 | Oracle America, Inc. | Peer-to-peer content sharing/distribution networks |
US20050055698A1 (en) * | 2003-09-10 | 2005-03-10 | Sap Aktiengesellschaft | Server-driven data synchronization method and system |
US7085893B2 (en) | 2003-09-11 | 2006-08-01 | International Business Machines Corporation | Negotiated distribution of cache content |
US20050060360A1 (en) * | 2003-09-15 | 2005-03-17 | International Business Machines Corporation | Method, system and program product for managing system resources |
US7475419B1 (en) | 2003-09-19 | 2009-01-06 | Hewlett-Packard Development Company, L.P. | System and method for controlling access in an interactive grid environment |
US20050066302A1 (en) | 2003-09-22 | 2005-03-24 | Codito Technologies Private Limited | Method and system for minimizing thread switching overheads and memory usage in multithreaded processing using floating threads |
US20050081210A1 (en) | 2003-09-25 | 2005-04-14 | International Business Machines Corporation | Dynamic adjustment of system resource allocation during query execution in a database management system |
US7769004B2 (en) * | 2003-09-26 | 2010-08-03 | Surgient, Inc. | Network abstraction and isolation layer for masquerading machine identity of a computer |
JP4057989B2 (en) | 2003-09-26 | 2008-03-05 | 株式会社東芝 | Scheduling method and information processing system |
US7451201B2 (en) | 2003-09-30 | 2008-11-11 | International Business Machines Corporation | Policy driven autonomic computing-specifying relationships |
US20060008256A1 (en) | 2003-10-01 | 2006-01-12 | Khedouri Robert K | Audio visual player apparatus and system and method of content distribution using the same |
JPWO2005034446A1 (en) | 2003-10-03 | 2006-12-14 | 富士通株式会社 | Policy rule application network system |
US7631100B2 (en) | 2003-10-07 | 2009-12-08 | Microsoft Corporation | Supporting point-to-point intracluster communications between replicated cluster nodes |
US20070067366A1 (en) | 2003-10-08 | 2007-03-22 | Landis John A | Scalable partition memory mapping system |
WO2005036367A2 (en) | 2003-10-08 | 2005-04-21 | Unisys Corporation | Virtual data center that allocates and manages system resources across multiple nodes |
US20070061441A1 (en) | 2003-10-08 | 2007-03-15 | Landis John A | Para-virtualized computer system with I/0 server partitions that map physical host hardware for access by guest partitions |
US7174470B2 (en) | 2003-10-14 | 2007-02-06 | Hewlett-Packard Development Company, L.P. | Computer data bus interface control |
US20050080930A1 (en) | 2003-10-14 | 2005-04-14 | International Business Machines Corporation | Method and apparatus for processing service requests in a service-oriented architecture |
JP2007507990A (en) | 2003-10-14 | 2007-03-29 | ラプター・ネツトワークス・テクノロジー・インコーポレイテツド | Switching system with distributed switching structure |
US20050086356A1 (en) | 2003-10-15 | 2005-04-21 | Shah Mehul Y. | Systems and methods for scheduled recording of multimedia content streams |
US8051420B2 (en) | 2003-10-31 | 2011-11-01 | Hewlett-Packard Development Company, L.P. | Method and system for governing access to computing utilities |
US8589517B2 (en) | 2003-11-04 | 2013-11-19 | Verizon Business Global Llc | Systems and methods for providing self-compiling, peer-to-peer on-line gaming |
JP2005141441A (en) | 2003-11-06 | 2005-06-02 | Hitachi Ltd | Load distribution system |
US7412709B2 (en) | 2003-11-07 | 2008-08-12 | International Business Machines Corporation | Method and apparatus for managing multiple data processing systems using existing heterogeneous systems management software |
JP4066932B2 (en) * | 2003-11-10 | 2008-03-26 | 株式会社日立製作所 | Computer resource allocation method based on prediction |
US7415543B2 (en) | 2003-11-12 | 2008-08-19 | Lsi Corporation | Serial port initialization in storage system controllers |
US7437730B2 (en) | 2003-11-14 | 2008-10-14 | International Business Machines Corporation | System and method for providing a scalable on demand hosting system |
US20050108703A1 (en) | 2003-11-18 | 2005-05-19 | Hellier Charles R. | Proactive policy-driven service provisioning framework |
US7779415B2 (en) | 2003-11-21 | 2010-08-17 | International Business Machines Corporation | Adaptive load distribution in managing dynamic and transient data for distributed applications |
US7284109B1 (en) | 2003-11-21 | 2007-10-16 | Symantec Corporation | Partition creation |
AU2003304680A1 (en) | 2003-11-24 | 2005-06-08 | Zte Corporation | A method device and system of realizing qos (quality of service) guarantee in mpls network |
US6929577B2 (en) | 2003-11-24 | 2005-08-16 | Magna Drivetrain Of America, Inc. | Clutch actuation system for two-speed active transfer case |
US7761514B2 (en) | 2003-11-26 | 2010-07-20 | International Business Machines Corporation | Method and apparatus for providing dynamic group management for distributed interactive applications |
US20050125537A1 (en) | 2003-11-26 | 2005-06-09 | Martins Fernando C.M. | Method, apparatus and system for resource sharing in grid computing networks |
US7526765B2 (en) | 2003-11-26 | 2009-04-28 | International Business Machines Corporation | Method and apparatus for on-demand resource allocation and job management |
US7975035B2 (en) | 2003-12-01 | 2011-07-05 | International Business Machines Corporation | Method and apparatus to support application and network awareness of collaborative applications using multi-attribute clustering |
JP4603256B2 (en) | 2003-12-01 | 2010-12-22 | 日本電気株式会社 | User authentication system |
US7376945B1 (en) | 2003-12-02 | 2008-05-20 | Cisco Technology, Inc. | Software change modeling for network devices |
US20050125538A1 (en) | 2003-12-03 | 2005-06-09 | Dell Products L.P. | Assigning logical storage units to host computers |
US8726278B1 (en) | 2004-07-21 | 2014-05-13 | The Mathworks, Inc. | Methods and system for registering callbacks and distributing tasks to technical computing works |
US20050125213A1 (en) | 2003-12-04 | 2005-06-09 | Yin Chen | Apparatus, system, and method for modeling and analyzing a plurality of computing workloads |
US7631307B2 (en) | 2003-12-05 | 2009-12-08 | Intel Corporation | User-programmable low-overhead multithreading |
US7873724B2 (en) | 2003-12-05 | 2011-01-18 | Microsoft Corporation | Systems and methods for guiding allocation of computational resources in automated perceptual systems |
US7395537B1 (en) | 2003-12-08 | 2008-07-01 | Teradata, Us Inc. | Administering the workload of a database system using feedback |
US20050144315A1 (en) | 2003-12-08 | 2005-06-30 | International Business Machines Corporation | Method and structure to analyze web client dialogs |
CN100508641C (en) | 2003-12-09 | 2009-07-01 | 艾利森电话股份有限公司 | Method and device for managing resources shared by different operators in a communication system |
US20050132379A1 (en) | 2003-12-11 | 2005-06-16 | Dell Products L.P. | Method, system and software for allocating information handling system resources in response to high availability cluster fail-over events |
US7680933B2 (en) | 2003-12-15 | 2010-03-16 | International Business Machines Corporation | Apparatus, system, and method for on-demand control of grid system resources |
US7810090B2 (en) | 2003-12-17 | 2010-10-05 | Sap Ag | Grid compute node software application deployment |
US7171593B1 (en) | 2003-12-19 | 2007-01-30 | Unisys Corporation | Displaying abnormal and error conditions in system state analysis |
US7543052B1 (en) | 2003-12-22 | 2009-06-02 | Packeteer, Inc. | Automatic network traffic discovery and classification mechanism including dynamic discovery thresholds |
US7529835B1 (en) | 2003-12-22 | 2009-05-05 | The Weather Channel, Inc. | Website changes to scalability, capacity, server impact, bandwidth and end-user presentation based on a triggered event |
EP2733656A1 (en) | 2003-12-23 | 2014-05-21 | Trust Digital, LLC | System and method for enforcing a security policy on mobile devices using dynamically generated security profiles |
US7916638B2 (en) | 2003-12-24 | 2011-03-29 | Alcatel Lucent | Time-independent deficit round robin method and system |
US7380039B2 (en) | 2003-12-30 | 2008-05-27 | 3Tera, Inc. | Apparatus, method and system for aggregrating computing resources |
US7526479B2 (en) | 2003-12-30 | 2009-04-28 | Sap Ag | Configuration manager in enterprise computing system |
US7581003B2 (en) | 2003-12-31 | 2009-08-25 | Microsoft Corporation | System and method for automatic recovery from fault conditions in networked computer services |
US20050149940A1 (en) | 2003-12-31 | 2005-07-07 | Sychron Inc. | System Providing Methodology for Policy-Based Resource Allocation |
US7109760B1 (en) | 2004-01-05 | 2006-09-19 | Integrated Device Technology, Inc. | Delay-locked loop (DLL) integrated circuits that support efficient phase locking of clock signals having non-unity duty cycles |
US7738242B2 (en) | 2004-01-08 | 2010-06-15 | Hewlett-Packard Development Company, L.P. | System and method for displaying chassis component information |
US7797393B2 (en) | 2004-01-08 | 2010-09-14 | Agency For Science, Technology And Research | Shared storage network system and a method for operating a shared storage network system |
US7448037B2 (en) | 2004-01-13 | 2008-11-04 | International Business Machines Corporation | Method and data processing system having dynamic profile-directed feedback at runtime |
US7562143B2 (en) | 2004-01-13 | 2009-07-14 | International Business Machines Corporation | Managing escalating resource needs within a grid environment |
US7464159B2 (en) | 2004-01-14 | 2008-12-09 | International Business Machines Corporation | Managing analysis of a degraded service in a grid environment |
US7552437B2 (en) | 2004-01-14 | 2009-06-23 | International Business Machines Corporation | Maintaining application operations within a suboptimal grid environment |
JP2005208707A (en) | 2004-01-20 | 2005-08-04 | Fujitsu Ltd | Abnormality monitoring device, abnormality search support method, abnormality search support program |
CN1906573B (en) | 2004-01-20 | 2011-01-05 | 美国博通公司 | System and method for supporting multiple users |
US7701948B2 (en) | 2004-01-20 | 2010-04-20 | Nortel Networks Limited | Metro ethernet service enhancements |
US20050160424A1 (en) | 2004-01-21 | 2005-07-21 | International Business Machines Corporation | Method and system for grid-enabled virtual machines with distributed management of applications |
US7526515B2 (en) | 2004-01-21 | 2009-04-28 | International Business Machines Corporation | Method and system for a grid-enabled virtual machine with movable objects |
AU2005208847B2 (en) | 2004-01-23 | 2010-12-02 | Camiant, Inc. | Policy-based admission control and bandwidth reservation for future sessions |
US7558864B2 (en) | 2004-01-27 | 2009-07-07 | International Business Machines Corporation | Method, system and product for identifying, reserving, and logically provisioning resources in provisioning data processing systems |
US8688708B2 (en) | 2004-01-28 | 2014-04-01 | Pointofdata Corporation | Storing and retrieving objects on a computer network in a distributed database |
US7334108B1 (en) | 2004-01-30 | 2008-02-19 | Nvidia Corporation | Multi-client virtual address translation system with translation units of variable-range size |
WO2005081672A2 (en) | 2004-01-30 | 2005-09-09 | International Business Machines Corporation | Componentized automatic provisioning and management of computing environments for computing utilities |
US20050172291A1 (en) | 2004-01-30 | 2005-08-04 | Rajarshi Das | Method and apparatus for utility-based dynamic resource allocation in a distributed computing system |
CN1906600A (en) | 2004-01-30 | 2007-01-31 | 国际商业机器公司 | Hierarchical resource management for a computing utility |
US7278008B1 (en) | 2004-01-30 | 2007-10-02 | Nvidia Corporation | Virtual address translation system with caching of variable-range translation clusters |
US7577091B2 (en) | 2004-02-04 | 2009-08-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Cluster-based network provisioning |
JP4248420B2 (en) | 2004-02-06 | 2009-04-02 | 日本電信電話株式会社 | Handover control method for mobile communication network |
US7664110B1 (en) | 2004-02-07 | 2010-02-16 | Habanero Holdings, Inc. | Input/output controller for coupling the processor-memory complex to the fabric in fabric-backplane interprise servers |
US7594011B2 (en) | 2004-02-10 | 2009-09-22 | Narus, Inc. | Network traffic monitoring for search popularity analysis |
US20050177600A1 (en) | 2004-02-11 | 2005-08-11 | International Business Machines Corporation | Provisioning of services based on declarative descriptions of a resource structure of a service |
US7685281B1 (en) * | 2004-02-13 | 2010-03-23 | Habanero Holdings, Inc. | Programmatic instantiation, provisioning and management of fabric-backplane enterprise servers |
JP4426333B2 (en) | 2004-02-18 | 2010-03-03 | 株式会社日立製作所 | Disk array device |
EP1566940A1 (en) | 2004-02-20 | 2005-08-24 | Alcatel Alsthom Compagnie Generale D'electricite | A method, a service system, and a computer software product of self-organizing distributing services in a computing network |
US8584129B1 (en) | 2004-02-20 | 2013-11-12 | Oracle America, Inc. | Dispenser determines responses to resource requests for a single respective one of consumable resource using resource management policy |
US20050188089A1 (en) | 2004-02-24 | 2005-08-25 | Lichtenstein Walter D. | Managing reservations for resources |
US7373524B2 (en) | 2004-02-24 | 2008-05-13 | Covelight Systems, Inc. | Methods, systems and computer program products for monitoring user behavior for a server application |
JP3797669B2 (en) | 2004-02-27 | 2006-07-19 | キヤノン株式会社 | Image forming apparatus and image forming method |
US7574708B2 (en) | 2004-03-04 | 2009-08-11 | International Business Machines Corporation | Mechanism for enabling the distribution of operating system resources in a multi-node computer system |
US8484348B2 (en) | 2004-03-05 | 2013-07-09 | Rockstar Consortium Us Lp | Method and apparatus for facilitating fulfillment of web-service requests on a communication network |
US7583661B2 (en) | 2004-03-05 | 2009-09-01 | Sid Chaudhuri | Method and apparatus for improved IP networks and high-quality services |
US20050197877A1 (en) | 2004-03-08 | 2005-09-08 | Ken Kalinoski | System and method for scheduling heterogeneous resources |
US7665090B1 (en) | 2004-03-08 | 2010-02-16 | Swsoft Holdings, Ltd. | System, method, and computer program product for group scheduling of computer resources |
US7975270B2 (en) | 2004-03-10 | 2011-07-05 | International Business Machines Corporation | Facilitating allocation of resources in a heterogeneous computing environment |
US6955627B2 (en) | 2004-03-10 | 2005-10-18 | Ford Global Technologies, Llc | Multi-speed transmission and integrated drive transfer mechanism |
US7890629B2 (en) | 2004-03-13 | 2011-02-15 | Adaptive Computing Enterprises, Inc. | System and method of providing reservation masks within a compute environment |
US9778959B2 (en) | 2004-03-13 | 2017-10-03 | Iii Holdings 12, Llc | System and method of performing a pre-reservation analysis to yield an improved fit of workload with the compute environment |
EP2341432A1 (en) | 2004-03-13 | 2011-07-06 | Adaptive Computing Enterprises, Inc. | System and method of co-allocating a reservation spanning different compute resources types |
WO2005089241A2 (en) | 2004-03-13 | 2005-09-29 | Cluster Resources, Inc. | System and method for providing object triggers |
US8782654B2 (en) | 2004-03-13 | 2014-07-15 | Adaptive Computing Enterprises, Inc. | Co-allocating a reservation spanning different compute resources types |
CA2559603A1 (en) | 2004-03-13 | 2005-09-29 | Cluster Resources, Inc. | System and method for providing advanced reservations in a compute environment |
US7386744B2 (en) | 2004-03-15 | 2008-06-10 | Hewlett-Packard Development Company, L.P. | Rack equipment power pricing plan control system and method |
US20060168107A1 (en) | 2004-03-16 | 2006-07-27 | Balan Rajesh K | Generalized on-demand service architecture for interactive applications |
US7783786B1 (en) | 2004-03-16 | 2010-08-24 | Oracle America Inc. | Replicated service architecture |
US20050209892A1 (en) | 2004-03-19 | 2005-09-22 | Miller Jonathan K | [Automated system and method for providing accurate, non-invasive insurance status verification] |
US7865582B2 (en) | 2004-03-24 | 2011-01-04 | Hewlett-Packard Development Company, L.P. | System and method for assigning an application component to a computing resource |
US20050256942A1 (en) | 2004-03-24 | 2005-11-17 | Mccardle William M | Cluster management system and method |
US20050213507A1 (en) * | 2004-03-25 | 2005-09-29 | International Business Machines Corporation | Dynamically provisioning computer system resources |
ITMI20040600A1 (en) | 2004-03-26 | 2004-06-26 | Atmel Corp | DSP SYSTEM ON DOUBLE PROCESSOR WITH MOBILE COMB IN THE COMPLEX DOMAIN |
US8041797B2 (en) | 2004-03-31 | 2011-10-18 | International Business Machines Corporation | Apparatus and method for allocating resources based on service level agreement predictions and associated costs |
US8417499B2 (en) | 2004-03-31 | 2013-04-09 | International Business Machines Corporation | Enabling real-time testing of on-demand infrastructure to predict service level agreement compliance |
US7900206B1 (en) | 2004-03-31 | 2011-03-01 | Symantec Operating Corporation | Information technology process workflow for data centers |
US8190714B2 (en) | 2004-04-15 | 2012-05-29 | Raytheon Company | System and method for computer cluster virtualization using dynamic boot images and virtual disk |
US7289985B2 (en) | 2004-04-15 | 2007-10-30 | Microsoft Corporation | Enhanced document retrieval |
US20050259683A1 (en) | 2004-04-15 | 2005-11-24 | International Business Machines Corporation | Control service capacity |
US20050235150A1 (en) | 2004-04-19 | 2005-10-20 | Kaler Christopher G | Bi-directionally verifying measurable aspects associated with modules, pre-computing solutions to configuration challenges, and using configuration challenges along with other authentication mechanisms |
US20050235137A1 (en) | 2004-04-20 | 2005-10-20 | Barr Andrew H | Rack equipment capacity on demand system and method |
EP1592015A3 (en) | 2004-04-27 | 2005-11-09 | Deutsche Thomson-Brandt Gmbh | Method and device for recording or playing back a data stream |
EP1591906A1 (en) | 2004-04-27 | 2005-11-02 | Texas Instruments Incorporated | Efficient data transfer from an ASIC to a host using DMA |
US7340578B1 (en) | 2004-04-28 | 2008-03-04 | Sun Microsystems, Inc. | Method and apparatus for maintaining an accurate inventory of storage capacity in a clustered data processing system |
US7200716B1 (en) | 2004-04-30 | 2007-04-03 | Network Appliance, Inc. | Method and apparatus to offload operations in a networked storage system |
US7328406B2 (en) | 2004-04-30 | 2008-02-05 | Tandberg Telecom As | System, method and software for managing and publishing resource availability data |
US7401355B2 (en) | 2004-04-30 | 2008-07-15 | Sun Microsystems | Firewall load balancing using a single physical device |
US7424018B2 (en) | 2004-05-05 | 2008-09-09 | Gigamon Systems Llc | Asymmetric packet switch and a method of use |
US8230095B2 (en) * | 2004-05-07 | 2012-07-24 | Wyse Technology, Inc. | System and method for integrated on-demand delivery of operating system and applications |
US20060048157A1 (en) * | 2004-05-18 | 2006-03-02 | International Business Machines Corporation | Dynamic grid job distribution from any resource within a grid environment |
US20050262495A1 (en) | 2004-05-18 | 2005-11-24 | Bea Systems, Inc. | Administration mode for server applications |
US7203063B2 (en) | 2004-05-21 | 2007-04-10 | Hewlett-Packard Development Company, L.P. | Small form factor liquid loop cooling system |
US7346401B2 (en) | 2004-05-25 | 2008-03-18 | International Business Machines Corporation | Systems and methods for providing constrained optimization using adaptive regulatory control |
US20050278760A1 (en) * | 2004-06-01 | 2005-12-15 | Don Dewar | Method and system for controlling streaming in an on-demand server |
US8010985B2 (en) | 2004-06-01 | 2011-08-30 | General Instrument Corporation | Method and system for resource management in a video on-demand server |
ES2246702B2 (en) | 2004-06-02 | 2007-06-16 | L & M DATA COMMUNICATIONS, S.A. | ETHERNET UNIVERSAL TELECOMMUNICATIONS SERVICE. |
US7467358B2 (en) | 2004-06-03 | 2008-12-16 | Gwangju Institute Of Science And Technology | Asynchronous switch based on butterfly fat-tree for network on chip application |
US20050283822A1 (en) | 2004-06-09 | 2005-12-22 | International Business Machines Corporation | System and method for policy-enabling electronic utilities |
JP4073943B2 (en) | 2004-06-15 | 2008-04-09 | 富士通コンポーネント株式会社 | Transceiver module |
US7584274B2 (en) | 2004-06-15 | 2009-09-01 | International Business Machines Corporation | Coordinating use of independent external resources within requesting grid environments |
US7505463B2 (en) | 2004-06-15 | 2009-03-17 | Sun Microsystems, Inc. | Rule set conflict resolution |
WO2006007415A2 (en) | 2004-06-16 | 2006-01-19 | Regents Of The University Of Colorado | Nonlinear adaptive control of resource-distribution dynamics |
US7844969B2 (en) | 2004-06-17 | 2010-11-30 | Platform Computing Corporation | Goal-oriented predictive scheduling in a grid environment |
US7861246B2 (en) | 2004-06-17 | 2010-12-28 | Platform Computing Corporation | Job-centric scheduling in a grid environment |
US20060069774A1 (en) | 2004-06-17 | 2006-03-30 | International Business Machine Corporation | Method and apparatus for managing data center using Web services |
US7464160B2 (en) | 2004-06-17 | 2008-12-09 | International Business Machines Corporation | Provisioning grid services to maintain service level agreements |
US20070266388A1 (en) | 2004-06-18 | 2007-11-15 | Cluster Resources, Inc. | System and method for providing advanced reservations in a compute environment |
US7460549B1 (en) * | 2004-06-18 | 2008-12-02 | Honeywell International Inc. | Resource management for ad hoc wireless networks with cluster organizations |
US7577959B2 (en) | 2004-06-24 | 2009-08-18 | International Business Machines Corporation | Providing on-demand capabilities using virtual machines and clustering processes |
CN101432767A (en) | 2004-06-28 | 2009-05-13 | 伊普拉斯资产公司 | Method for a server-less office architecture |
US7757236B1 (en) | 2004-06-28 | 2010-07-13 | Oracle America, Inc. | Load-balancing framework for a cluster |
JP4334419B2 (en) | 2004-06-30 | 2009-09-30 | 富士通株式会社 | Transmission equipment |
US7702779B1 (en) | 2004-06-30 | 2010-04-20 | Symantec Operating Corporation | System and method for metering of application services in utility computing environments |
US8484308B2 (en) | 2004-07-02 | 2013-07-09 | MatrixStream Technologies, Inc. | System and method for transferring content via a network |
US8260893B1 (en) | 2004-07-06 | 2012-09-04 | Symantec Operating Corporation | Method and system for automated management of information technology |
US7533385B1 (en) | 2004-07-07 | 2009-05-12 | Sprint Communications Company Lp | Virtualization and server imaging system for allocation of computer hardware and software |
US7617501B2 (en) | 2004-07-09 | 2009-11-10 | Quest Software, Inc. | Apparatus, system, and method for managing policies on a computer having a foreign operating system |
US7930422B2 (en) | 2004-07-14 | 2011-04-19 | International Business Machines Corporation | Apparatus and method for supporting memory management in an offload of network protocol processing |
US7586904B2 (en) | 2004-07-15 | 2009-09-08 | Broadcom Corp. | Method and system for a gigabit Ethernet IP telephone chip with no DSP core, which uses a RISC core with instruction extensions to support voice processing |
US7895264B2 (en) | 2004-07-15 | 2011-02-22 | Yhc Corporation | Storage cluster server network |
US20060015773A1 (en) * | 2004-07-16 | 2006-01-19 | Dell Products L.P. | System and method for failure recovery and load balancing in a cluster network |
US9264384B1 (en) * | 2004-07-22 | 2016-02-16 | Oracle International Corporation | Resource virtualization mechanism including virtual host bus adapters |
US20060031813A1 (en) * | 2004-07-22 | 2006-02-09 | International Business Machines Corporation | On demand data center service end-to-end service provisioning and management |
US7937455B2 (en) | 2004-07-28 | 2011-05-03 | Oracle International Corporation | Methods and systems for modifying nodes in a cluster environment |
US7853880B2 (en) | 2004-07-28 | 2010-12-14 | Hewlett-Packard Development Company, L.P. | Displaying network properties in a graphical user interface |
JP4455206B2 (en) | 2004-07-29 | 2010-04-21 | キヤノン株式会社 | Image forming apparatus and control method thereof |
US7398471B1 (en) | 2004-07-29 | 2008-07-08 | Emc Corporation | System and method for the administration of resource groups |
US7466712B2 (en) | 2004-07-30 | 2008-12-16 | Brocade Communications Systems, Inc. | System and method for providing proxy and translation domains in a fibre channel router |
US7965626B2 (en) * | 2004-08-03 | 2011-06-21 | Hewlett-Packard Development Company, L.P. | System and method for transferring data on a data network using multiple paths |
US8954584B1 (en) | 2004-08-18 | 2015-02-10 | Oracle America, Inc. | Policy engine for automating management of scalable distributed persistent applications in a grid |
US20060039246A1 (en) * | 2004-08-19 | 2006-02-23 | Dcard, Inc. | Adaptive system to allow multiple update and correction sessions on an optical data storage card |
US7421402B2 (en) * | 2004-08-19 | 2008-09-02 | International Business Machines Corp. | Tier-based dynamic incentive arbitration in an on-demand computing environment |
US8176490B1 (en) | 2004-08-20 | 2012-05-08 | Adaptive Computing Enterprises, Inc. | System and method of interfacing a workload manager and scheduler with an identity manager |
US7746998B2 (en) * | 2004-08-23 | 2010-06-29 | International Business Machines Corporation | Integrating enterprise and provider contact center resources to handle workload on-demand |
US7398348B2 (en) | 2004-08-24 | 2008-07-08 | Sandisk 3D Llc | Method and apparatus for using a one-time or few-time programmable memory with a host device designed for erasable/rewritable memory |
US7281045B2 (en) | 2004-08-26 | 2007-10-09 | International Business Machines Corporation | Provisioning manager for optimizing selection of available resources |
US20060242024A1 (en) | 2004-09-02 | 2006-10-26 | Welcomemat Services, Inc. | Business method for promoting goods and services of providers |
US20060053216A1 (en) | 2004-09-07 | 2006-03-09 | Metamachinix, Inc. | Clustered computer system with centralized administration |
US20060053215A1 (en) | 2004-09-07 | 2006-03-09 | Metamachinix, Inc. | Systems and methods for providing users with access to computer resources |
MX2007002793A (en) | 2004-09-08 | 2007-04-23 | Procter & Gamble | Laundry treatment compositions with improved odor. |
US7953000B2 (en) | 2004-09-10 | 2011-05-31 | Cisco Technology, Inc. | Mechanism to improve preemption behavior of resource reservations |
US8166005B2 (en) | 2004-09-21 | 2012-04-24 | Emc Corporation | Pathname caching and protection of the root directory in a nested multilayer directory structure |
US8464250B1 (en) | 2004-09-23 | 2013-06-11 | Transcontinental Events, Llc | System and method for on-demand cloning of virtual machines |
US20070271375A1 (en) | 2004-09-27 | 2007-11-22 | Symphoniq Corporation | Method and apparatus for monitoring real users experience with a website capable of using service providers and network appliances |
US20060069671A1 (en) * | 2004-09-29 | 2006-03-30 | Conley James W | Methodology, system and computer readable medium for analyzing target web-based applications |
CA2577144C (en) | 2004-09-30 | 2011-06-21 | Boehringer Ingelheim International Gmbh | Alkynyl compounds as non-nucleoside reverse transcriptase inhibitors |
US8185776B1 (en) | 2004-09-30 | 2012-05-22 | Symantec Operating Corporation | System and method for monitoring an application or service group within a cluster as a resource of another cluster |
US7657535B2 (en) * | 2004-10-01 | 2010-02-02 | International Business Machines Corporation | Technique for data mining using a web service |
US20060090136A1 (en) * | 2004-10-01 | 2006-04-27 | Microsoft Corporation | Methods and apparatus for implementing a virtualized computer system |
WO2006041882A2 (en) * | 2004-10-04 | 2006-04-20 | American Express Travel Related Services Company, Inc. | Financial institution portal system and method |
US20060074940A1 (en) | 2004-10-05 | 2006-04-06 | International Business Machines Corporation | Dynamic management of node clusters to enable data sharing |
US8230426B2 (en) | 2004-10-06 | 2012-07-24 | Digipede Technologies, Llc | Multicore distributed processing system using selection of available workunits based on the comparison of concurrency attributes with the parallel processing characteristics |
US7657756B2 (en) | 2004-10-08 | 2010-02-02 | International Business Machines Corporaiton | Secure memory caching structures for data, integrity and version values |
US7257655B1 (en) | 2004-10-13 | 2007-08-14 | Altera Corporation | Embedded PCI-Express implementation |
TWI321414B (en) | 2004-10-15 | 2010-03-01 | Sony Computer Entertainment Inc | Methods and apparatus for supporting multiple configurations in a multi-processor system |
US7620057B1 (en) | 2004-10-19 | 2009-11-17 | Broadcom Corporation | Cache line replacement with zero latency |
US7694305B2 (en) | 2004-10-21 | 2010-04-06 | Hewlett-Packard Development Company, L.P. | Method of controlling access to computing resource within shared computing environment |
US20060097863A1 (en) | 2004-10-21 | 2006-05-11 | Eric Horowitz | Tracking equipment |
US7827361B1 (en) | 2004-10-21 | 2010-11-02 | Hewlett-Packard Development Company, L.P. | Method of controlling access to computing resource within shared computing environment |
US20060090003A1 (en) | 2004-10-22 | 2006-04-27 | Microsoft Corporation | Rendezvousing resource requests with corresponding resources |
US8392515B2 (en) | 2004-10-22 | 2013-03-05 | Microsoft Corporation | Subfederation creation and maintenance in a federation infrastructure |
US8095601B2 (en) | 2004-10-22 | 2012-01-10 | Microsoft Corporation | Inter-proximity communication within a rendezvous federation |
US8095600B2 (en) | 2004-10-22 | 2012-01-10 | Microsoft Corporation | Inter-proximity communication within a rendezvous federation |
US20080288659A1 (en) | 2006-11-09 | 2008-11-20 | Microsoft Corporation | Maintaining consistency within a federation infrastructure |
US7730220B2 (en) | 2004-10-22 | 2010-06-01 | Microsoft Corporation | Broadcasting communication within a rendezvous federation |
US8014321B2 (en) | 2004-10-22 | 2011-09-06 | Microsoft Corporation | Rendezvousing resource requests with corresponding resources |
US20110082928A1 (en) | 2004-10-22 | 2011-04-07 | Microsoft Corporation | Maintaining consistency within a federation infrastructure |
US7958262B2 (en) | 2004-10-22 | 2011-06-07 | Microsoft Corporation | Allocating and reclaiming resources within a rendezvous federation |
US20060090025A1 (en) | 2004-10-25 | 2006-04-27 | Tufford Robert C | 9U payload module configurations |
US7788671B2 (en) | 2004-11-01 | 2010-08-31 | International Business Machines Corporation | On-demand application resource allocation through dynamic reconfiguration of application cluster size and placement |
US7356770B1 (en) * | 2004-11-08 | 2008-04-08 | Cluster Resources, Inc. | System and method of graphically managing and monitoring a compute environment |
US8271980B2 (en) | 2004-11-08 | 2012-09-18 | Adaptive Computing Enterprises, Inc. | System and method of providing system jobs within a compute environment |
US7624336B2 (en) | 2004-11-08 | 2009-11-24 | International Business Machines Corporation | Selection of status data from synchronous redundant devices |
US7760720B2 (en) | 2004-11-09 | 2010-07-20 | Cisco Technology, Inc. | Translating native medium access control (MAC) addresses to hierarchical MAC addresses and their use |
US7644215B2 (en) | 2004-11-10 | 2010-01-05 | Tekelec | Methods and systems for providing management in a telecommunications equipment shelf assembly using a shared serial bus |
US20060117317A1 (en) | 2004-11-12 | 2006-06-01 | International Business Machines Corporation | On-demand utility services utilizing yield management |
US7698386B2 (en) | 2004-11-16 | 2010-04-13 | Qurio Holdings, Inc. | Serving content from an off-line peer server in a photosharing peer-to-peer network in response to a guest request |
EP1825388A4 (en) | 2004-11-17 | 2010-07-28 | Univ California | System and method for providing a web page |
US8244882B2 (en) | 2004-11-17 | 2012-08-14 | Raytheon Company | On-demand instantiation in a high-performance computing (HPC) system |
US7461134B2 (en) | 2004-11-19 | 2008-12-02 | W.A. Krapf, Inc. | Bi-directional communication between a web client and a web server |
US20060112184A1 (en) | 2004-11-22 | 2006-05-25 | International Business Machines Corporation | Adapter card for on-demand formatting of data transfers between network devices |
JP2006150679A (en) | 2004-11-26 | 2006-06-15 | Canon Inc | Liquid container |
US20060165040A1 (en) | 2004-11-30 | 2006-07-27 | Rathod Yogesh C | System, method, computer program products, standards, SOA infrastructure, search algorithm and a business method thereof for AI enabled information communication and computation (ICC) framework (NetAlter) operated by NetAlter Operating System (NOS) in terms of NetAlter Service Browser (NSB) to device alternative to internet and enterprise & social communication framework engrossing universally distributed grid supercomputing and peer to peer framework |
US7278582B1 (en) | 2004-12-03 | 2007-10-09 | Sun Microsystems, Inc. | Hardware security module (HSM) chip card |
US7596618B2 (en) | 2004-12-07 | 2009-09-29 | Hewlett-Packard Development Company, L.P. | Splitting a workload of a node |
US7793288B2 (en) | 2004-12-09 | 2010-09-07 | International Business Machines Corporation | Automatic resource management of a guest operating system using information in data set indicating minimum system requirement |
US7477653B2 (en) | 2004-12-10 | 2009-01-13 | Microsoft Corporation | Accelerated channel change in rate-limited environments |
US20060129667A1 (en) | 2004-12-10 | 2006-06-15 | Eric Anderson | Method of and system for sharing access to cluster of computers |
US7635987B1 (en) | 2004-12-13 | 2009-12-22 | Massachusetts Institute Of Technology | Configuring circuitry in a parallel processing environment |
US7551614B2 (en) | 2004-12-14 | 2009-06-23 | Hewlett-Packard Development Company, L.P. | Aggregation over multiple processing nodes of network resources each providing offloaded connections between applications over a network |
US7668809B1 (en) * | 2004-12-15 | 2010-02-23 | Kayak Software Corporation | Method and apparatus for dynamic information connection search engine |
US7747451B2 (en) | 2004-12-16 | 2010-06-29 | International Business Machines Corporation | Dynamic grid paths |
US7779410B2 (en) | 2004-12-17 | 2010-08-17 | Sap Ag | Control interfaces for distributed system applications |
US7343467B2 (en) | 2004-12-20 | 2008-03-11 | Emc Corporation | Method to perform parallel data migration in a clustered storage environment |
US7466810B1 (en) | 2004-12-20 | 2008-12-16 | Neltura Technology, Inc. | Distributed system for sharing of communication service resources between devices and users |
US7979862B2 (en) | 2004-12-21 | 2011-07-12 | Hewlett-Packard Development Company, L.P. | System and method for replacing an inoperable master workload management process |
US7752624B2 (en) | 2004-12-21 | 2010-07-06 | Hewlett-Packard Development Company, L.P. | System and method for associating workload management definitions with computing containers |
EP1834294A2 (en) | 2004-12-21 | 2007-09-19 | BMC Software, Inc. | System and method for business service management and building business service model |
TWM270514U (en) | 2004-12-27 | 2005-07-11 | Quanta Comp Inc | Blade server system |
US8533777B2 (en) | 2004-12-29 | 2013-09-10 | Intel Corporation | Mechanism to determine trust of out-of-band management agents |
US7814072B2 (en) | 2004-12-30 | 2010-10-12 | International Business Machines Corporation | Management of database statistics |
US7761557B2 (en) | 2005-01-06 | 2010-07-20 | International Business Machines Corporation | Facilitating overall grid environment management by monitoring and distributing grid activity |
US7533170B2 (en) | 2005-01-06 | 2009-05-12 | International Business Machines Corporation | Coordinating the monitoring, management, and prediction of unintended changes within a grid environment |
US7463587B2 (en) | 2005-01-11 | 2008-12-09 | Alcatel Lucent | System and method for identifying pre-computed paths in a policy-based routing network |
US7562035B2 (en) | 2005-01-12 | 2009-07-14 | International Business Machines Corporation | Automating responses by grid providers to bid requests indicating criteria for a grid job |
US7934215B2 (en) | 2005-01-12 | 2011-04-26 | Microsoft Corporation | Smart scheduler |
US20060155912A1 (en) | 2005-01-12 | 2006-07-13 | Dell Products L.P. | Server cluster having a virtual server |
US7571120B2 (en) | 2005-01-12 | 2009-08-04 | International Business Machines Corporation | Computer implemented method for estimating future grid job costs by classifying grid jobs and storing results of processing grid job microcosms |
US20060155740A1 (en) | 2005-01-13 | 2006-07-13 | International Business Machines Corporation | Method, System and Program Product for Locating Remote Source Files |
US7953794B2 (en) | 2005-01-14 | 2011-05-31 | Microsoft Corporation | Method and system for transitioning between synchronous and asynchronous communication modes |
GB2422272A (en) | 2005-01-14 | 2006-07-19 | King S College London | Network mobility |
WO2006078953A2 (en) | 2005-01-21 | 2006-07-27 | Internap Network Services Corporation | System and method for application acceleration on a distributed computer network |
US20060253570A1 (en) | 2005-01-25 | 2006-11-09 | Pratik Biswas | Self-organizing sensor node network |
US20060173730A1 (en) | 2005-01-31 | 2006-08-03 | International Business Machines Corporation | Adjusting resource activation based on a manufactured date of a computer |
US7676841B2 (en) | 2005-02-01 | 2010-03-09 | Fmr Llc | Network intrusion mitigation |
US20060248197A1 (en) | 2005-04-27 | 2006-11-02 | Evans Scott C | Adaptive connectionless scheduling protocol |
WO2006082985A2 (en) | 2005-02-07 | 2006-08-10 | Sony Computer Entertainment Inc. | Methods and apparatus for providing a secure booting sequence in a processor |
US8140770B2 (en) | 2005-02-10 | 2012-03-20 | International Business Machines Corporation | Data processing system and method for predictively selecting a scope of broadcast of an operation |
JP3942617B2 (en) | 2005-02-10 | 2007-07-11 | 株式会社日立製作所 | Computer resource management method for distributed processing system |
US7827435B2 (en) | 2005-02-15 | 2010-11-02 | International Business Machines Corporation | Method for using a priority queue to perform job scheduling on a cluster based on node rank and performance |
US7953703B2 (en) | 2005-02-17 | 2011-05-31 | International Business Machines Corporation | Creation of highly available pseudo-clone standby servers for rapid failover provisioning |
US20060189349A1 (en) | 2005-02-24 | 2006-08-24 | Memory Matrix, Inc. | Systems and methods for automatic uploading of cell phone images |
US20060190975A1 (en) * | 2005-02-24 | 2006-08-24 | Carlos Gonzalez | Method and apparatus for providing video on-demand |
US7457835B2 (en) | 2005-03-08 | 2008-11-25 | Cisco Technology, Inc. | Movement of data in a distributed database system to a storage location closest to a center of activity for the data |
US7467306B2 (en) | 2005-03-08 | 2008-12-16 | Hewlett-Packard Development Company, L.P. | Methods and systems for allocating power to an electronic device |
US7996455B2 (en) | 2005-06-17 | 2011-08-09 | Adaptive Computing Enterprises, Inc. | System and method for providing dynamic roll-back reservations in time |
US8863143B2 (en) | 2006-03-16 | 2014-10-14 | Adaptive Computing Enterprises, Inc. | System and method for managing a hybrid compute environment |
US8631130B2 (en) | 2005-03-16 | 2014-01-14 | Adaptive Computing Enterprises, Inc. | Reserving resources in an on-demand compute environment from a local compute environment |
US9015324B2 (en) | 2005-03-16 | 2015-04-21 | Adaptive Computing Enterprises, Inc. | System and method of brokering cloud computing resources |
US9231886B2 (en) | 2005-03-16 | 2016-01-05 | Adaptive Computing Enterprises, Inc. | Simple integration of an on-demand compute environment |
US7778234B2 (en) | 2005-03-30 | 2010-08-17 | Cisco Technology, Inc. | Local provisioning of bandwidth and other network resources |
US7881332B2 (en) | 2005-04-01 | 2011-02-01 | International Business Machines Corporation | Configurable ports for a host ethernet adapter |
US9160792B2 (en) | 2005-04-05 | 2015-10-13 | International Business Machines Corporation | On-demand global server load balancing system and method of use |
JP4843987B2 (en) | 2005-04-05 | 2011-12-21 | ソニー株式会社 | Information processing apparatus, information processing method, and program |
US20130312006A1 (en) | 2005-04-07 | 2013-11-21 | Adaptive Computing Enterprises, Inc. | System and method of managing job preemption |
CA2603577A1 (en) | 2005-04-07 | 2006-10-12 | Cluster Resources, Inc. | On-demand access to compute resources |
US8782120B2 (en) | 2005-04-07 | 2014-07-15 | Adaptive Computing Enterprises, Inc. | Elastic management of compute resources between a web server and an on-demand compute environment |
US7957413B2 (en) | 2005-04-07 | 2011-06-07 | International Business Machines Corporation | Method, system and program product for outsourcing resources in a grid computing environment |
US8565095B2 (en) | 2005-04-19 | 2013-10-22 | Alcatel Lucent | Context controlled data tap utilizing parallel logic for integrated link monitoring |
US7283838B2 (en) | 2005-04-22 | 2007-10-16 | Wei Lu | Open baseband processing architecture for next generation wireless and mobile communication terminal design |
JP2006309439A (en) | 2005-04-27 | 2006-11-09 | Fujitsu Ltd | Flexible cluster system |
JP4591185B2 (en) | 2005-04-28 | 2010-12-01 | 株式会社日立製作所 | Server device |
US20060265508A1 (en) | 2005-05-02 | 2006-11-23 | Angel Franklin J | System for administering a multiplicity of namespaces containing state information and services |
US7565310B2 (en) | 2005-05-04 | 2009-07-21 | International Business Machines Corporation | Method and system and program product for a design pattern for automating service provisioning |
US7363463B2 (en) | 2005-05-13 | 2008-04-22 | Microsoft Corporation | Method and system for caching address translations from multiple address spaces in virtual machines |
WO2006124971A2 (en) | 2005-05-17 | 2006-11-23 | The Board Of Trustees Of The University Of Illinois | Method and system for managing a network of sensors |
ATE537644T1 (en) | 2005-05-20 | 2011-12-15 | Agency Science Tech & Res | VIRTUAL GRID |
US7610266B2 (en) | 2005-05-25 | 2009-10-27 | International Business Machines Corporation | Method for vertical integrated performance and environment monitoring |
US20060271552A1 (en) | 2005-05-26 | 2006-11-30 | Venture Capital & Consulting Group, Llc. | Targeted delivery of content |
US7894372B2 (en) | 2005-05-31 | 2011-02-22 | Iac Search & Media, Inc. | Topology-centric resource management for large scale service clusters |
US7586841B2 (en) | 2005-05-31 | 2009-09-08 | Cisco Technology, Inc. | System and method for protecting against failure of a TE-LSP tail-end node |
US20060277278A1 (en) | 2005-06-06 | 2006-12-07 | International Business Machines Corporation | Distributing workload among DNS servers |
US7596144B2 (en) | 2005-06-07 | 2009-09-29 | Broadcom Corp. | System-on-a-chip (SoC) device with integrated support for ethernet, TCP, iSCSI, RDMA, and network application acceleration |
US20070003051A1 (en) | 2005-06-13 | 2007-01-04 | Nokia Corporation | System, network entity, terminal, method, and computer program product for presence publication |
US7949766B2 (en) | 2005-06-22 | 2011-05-24 | Cisco Technology, Inc. | Offload stack for network, block and file input and output |
WO2006136193A1 (en) | 2005-06-23 | 2006-12-28 | Telefonaktiebolaget L M Ericsson (Publ) | Arrangement and method relating to load distribution |
JP2007012000A (en) | 2005-07-04 | 2007-01-18 | Hitachi Ltd | Storage controller and storage system |
WO2007006146A1 (en) | 2005-07-12 | 2007-01-18 | Advancedio Systems Inc. | System and method of offloading protocol functions |
WO2007015822A1 (en) | 2005-07-20 | 2007-02-08 | Firetide, Inc. | Route optimization for on-demand routing protocols for mesh networks |
US20070043591A1 (en) | 2005-08-03 | 2007-02-22 | Attila Meretei | Systems and methods for sensing physiologic parameters of the human body and achieving a therapeutic effect |
US8824429B2 (en) | 2005-08-19 | 2014-09-02 | Riverbed Technology, Inc. | Automatic estimation of node location based on trace information |
US7307837B2 (en) | 2005-08-23 | 2007-12-11 | International Business Machines Corporation | Method and apparatus for enforcing of power control in a blade center chassis |
US7461274B2 (en) | 2005-08-23 | 2008-12-02 | International Business Machines Corporation | Method for maximizing server utilization in a resource constrained environment |
US7315456B2 (en) | 2005-08-29 | 2008-01-01 | Hewlett-Packard Development Company, L.P. | Configurable IO subsystem |
US8982778B2 (en) | 2005-09-19 | 2015-03-17 | Qualcomm Incorporated | Packet routing in a wireless communications environment |
US7580382B1 (en) | 2005-09-27 | 2009-08-25 | Rockwell Collins, Inc. | System and method for distributed channelized group formation in a mobile wireless communication network |
US7382154B2 (en) | 2005-10-03 | 2008-06-03 | Honeywell International Inc. | Reconfigurable network on a chip |
US7548964B2 (en) | 2005-10-11 | 2009-06-16 | International Business Machines Corporation | Performance counters for virtualized network interfaces of communications networks |
US7716193B2 (en) | 2005-10-13 | 2010-05-11 | Oracle International Corporation | Ensuring timely servicing of desired transactions in a database server |
US8516165B2 (en) | 2005-10-19 | 2013-08-20 | Nvidia Corporation | System and method for encoding packet header to enable higher bandwidth efficiency across bus links |
US20070094691A1 (en) * | 2005-10-24 | 2007-04-26 | Gazdzinski Robert F | Method and apparatus for on-demand content transmission and control over networks |
US7574590B2 (en) | 2005-10-26 | 2009-08-11 | Sigmatel, Inc. | Method for booting a system on a chip integrated circuit |
CN100417118C (en) | 2005-10-28 | 2008-09-03 | 华为技术有限公司 | System and method for renewing network mobile node position in wireless net-like network |
US7899864B2 (en) | 2005-11-01 | 2011-03-01 | Microsoft Corporation | Multi-user terminal services accelerator |
US20070118496A1 (en) | 2005-11-21 | 2007-05-24 | Christof Bornhoevd | Service-to-device mapping for smart items |
US8055788B1 (en) | 2005-11-21 | 2011-11-08 | Hong Kong University Of Science And Technology | Efficient person search mechanism in peer-to-peer networks |
US8554920B2 (en) | 2005-11-22 | 2013-10-08 | Telcordia Technologies, Inc. | Linked equivalent cell header-based approach and protocol for organizing an ad-hoc network |
US20070124344A1 (en) | 2005-11-29 | 2007-05-31 | International Business Machines Corporation | Method, apparatus and program storage device for providing web services-based data replication for Heterogeneous storage systems |
CN2852260Y (en) | 2005-12-01 | 2006-12-27 | 华为技术有限公司 | Server |
TW200746161A (en) | 2005-12-21 | 2007-12-16 | Nxp Bv | Power partitioning memory banks |
US7873584B2 (en) | 2005-12-22 | 2011-01-18 | Oren Asher | Method and system for classifying users of a computer network |
US7620404B2 (en) | 2005-12-22 | 2009-11-17 | Pascal Chesnais | Methods and apparatus for organizing and presenting contact information in a mobile communication system |
EP1808994A1 (en) | 2006-01-12 | 2007-07-18 | Alcatel Lucent | Universal switch for transporting packet data frames |
EP1977635A2 (en) | 2006-01-13 | 2008-10-08 | Sun Microsystems, Inc. | Modular blade server |
EP1977311A2 (en) | 2006-01-13 | 2008-10-08 | Sun Microsystems, Inc. | Compact rackmount storage server |
WO2007084735A2 (en) | 2006-01-20 | 2007-07-26 | Avise Partners | Customer service management |
US7991817B2 (en) | 2006-01-23 | 2011-08-02 | California Institute Of Technology | Method and a circuit using an associative calculator for calculating a sequence of non-associative operations |
US20070180310A1 (en) | 2006-02-02 | 2007-08-02 | Texas Instruments, Inc. | Multi-core architecture with hardware messaging |
US7606225B2 (en) | 2006-02-06 | 2009-10-20 | Fortinet, Inc. | Integrated security switch |
US20070226795A1 (en) | 2006-02-09 | 2007-09-27 | Texas Instruments Incorporated | Virtual cores and hardware-supported hypervisor integrated circuits, systems, methods and processes of manufacture |
EP1818746A1 (en) | 2006-02-10 | 2007-08-15 | ALSTOM Technology Ltd | Method of condition monitoring |
US9177176B2 (en) | 2006-02-27 | 2015-11-03 | Broadcom Corporation | Method and system for secure system-on-a-chip architecture for multimedia data processing |
US20090133129A1 (en) | 2006-03-06 | 2009-05-21 | Lg Electronics Inc. | Data transferring method |
US7536541B2 (en) | 2006-03-07 | 2009-05-19 | Novell Inc. | Parallelizing multiple boot images with virtual machines |
EP1999871A2 (en) | 2006-03-10 | 2008-12-10 | Peerant Inc. | Peer to peer inbound contact center |
JP4469010B2 (en) | 2006-03-10 | 2010-05-26 | ソニー株式会社 | Bridge, information processing system, and access control method |
FR2898753B1 (en) | 2006-03-16 | 2008-04-18 | Commissariat Energie Atomique | SEMI-DISTRIBUTED CONTROL CHIP SYSTEM |
US20070233866A1 (en) | 2006-03-28 | 2007-10-04 | Karen Appleby | Method and system for dynamically allocating servers to compute-resources using capacity thresholds |
US20070233828A1 (en) | 2006-03-31 | 2007-10-04 | Jeremy Gilbert | Methods and systems for providing data storage and retrieval |
KR100789425B1 (en) | 2006-04-10 | 2007-12-28 | 삼성전자주식회사 | Method for sharing contents using digital living network alliance network |
US7640353B2 (en) | 2006-04-27 | 2009-12-29 | Microsoft Corporation | Guided random seek support for media streaming |
US8223358B2 (en) | 2006-04-28 | 2012-07-17 | Ricoh Production Print Solutions LLC | Printer output coverage estimation system |
US7555666B2 (en) | 2006-05-04 | 2009-06-30 | Dell Products L.P. | Power profiling application for managing power allocation in an information handling system |
US8645514B2 (en) | 2006-05-08 | 2014-02-04 | Xerox Corporation | Method and system for collaborative self-organization of devices |
JP2007304687A (en) | 2006-05-09 | 2007-11-22 | Hitachi Ltd | Cluster constitution and its control means |
US7660922B2 (en) | 2006-05-12 | 2010-02-09 | Intel Corporation | Mechanism to flexibly support multiple device numbers on point-to-point interconnect upstream ports |
US7483978B2 (en) | 2006-05-15 | 2009-01-27 | Computer Associates Think, Inc. | Providing a unified user interface for managing a plurality of heterogeneous computing environments |
US20070280230A1 (en) | 2006-05-31 | 2007-12-06 | Motorola, Inc | Method and system for service discovery across a wide area network |
US7522468B2 (en) | 2006-06-08 | 2009-04-21 | Unity Semiconductor Corporation | Serial memory interface |
WO2007144611A1 (en) | 2006-06-12 | 2007-12-21 | Enigmatec Corporation | Self-managed distributed mediation networks |
US7657626B1 (en) | 2006-09-19 | 2010-02-02 | Enquisite, Inc. | Click fraud detection |
US20070299950A1 (en) | 2006-06-21 | 2007-12-27 | General Electric Company | System for creating optimally-sized clusters |
CN101094125A (en) | 2006-06-23 | 2007-12-26 | 华为技术有限公司 | Exchange structure in ATCA / ATCA300 expanded exchange bandwidth |
US7742425B2 (en) | 2006-06-26 | 2010-06-22 | The Boeing Company | Neural network-based mobility management for mobile ad hoc radio networks |
US7848262B2 (en) | 2006-06-26 | 2010-12-07 | The Boeing Company | Neural network-based mobility management for healing mobile ad hoc radio networks |
US7693072B2 (en) | 2006-07-13 | 2010-04-06 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a network topology with alternative communication paths |
US7624118B2 (en) | 2006-07-26 | 2009-11-24 | Microsoft Corporation | Data processing over very large databases |
US8510430B2 (en) | 2006-08-03 | 2013-08-13 | International Business Machines Corporation | Intelligent performance monitoring based on resource threshold |
US7742476B2 (en) | 2006-08-04 | 2010-06-22 | International Business Machines Corporation | Synchronous peer to peer deployed application propagation for large clusters |
US7428629B2 (en) | 2006-08-08 | 2008-09-23 | International Business Machines Corporation | Memory request / grant daemons in virtual nodes for moving subdivided local memory space from VN to VN in nodes of a massively parallel computer system |
US20080040463A1 (en) | 2006-08-08 | 2008-02-14 | International Business Machines Corporation | Communication System for Multiple Chassis Computer Systems |
CN101127696B (en) | 2006-08-15 | 2012-06-27 | 华为技术有限公司 | Data forwarding method for layer 2 network and network and node devices |
EP1892913A1 (en) | 2006-08-24 | 2008-02-27 | Siemens Aktiengesellschaft | Method and arrangement for providing a wireless mesh network |
US20080052437A1 (en) | 2006-08-28 | 2008-02-28 | Dell Products L.P. | Hot Plug Power Policy for Modular Chassis |
US7802082B2 (en) | 2006-08-31 | 2010-09-21 | Intel Corporation | Methods and systems to dynamically configure computing apparatuses |
US8108512B2 (en) | 2006-09-01 | 2012-01-31 | Massively Parallel Technologies, Inc. | System and method for accessing and using a supercomputer |
US20080065835A1 (en) | 2006-09-11 | 2008-03-13 | Sun Microsystems, Inc. | Offloading operations for maintaining data coherence across a plurality of nodes |
US7627542B2 (en) | 2006-09-22 | 2009-12-01 | Microsoft Corporation | Group identification in large-scaled networks via hierarchical clustering through refraction over edges of networks |
US8599685B2 (en) | 2006-09-26 | 2013-12-03 | Cisco Technology, Inc. | Snooping of on-path IP reservation protocols for layer 2 nodes |
US7685266B2 (en) | 2006-09-28 | 2010-03-23 | Intel Corporation | Management of tools that process data to describe a physical layout of a circuit |
US7853752B1 (en) | 2006-09-29 | 2010-12-14 | Tilera Corporation | Caching in multicore and multiprocessor architectures |
US7707185B1 (en) | 2006-10-19 | 2010-04-27 | Vmware, Inc. | Accessing virtual data storage units to offload operations from a computer system hosting a virtual machine to an offload server |
US8684802B1 (en) | 2006-10-27 | 2014-04-01 | Oracle America, Inc. | Method and apparatus for balancing thermal variations across a set of computer systems |
US8086710B2 (en) | 2006-10-30 | 2011-12-27 | Quest Software, Inc. | Identity migration apparatus and method |
US8447872B2 (en) | 2006-11-01 | 2013-05-21 | Intel Corporation | Load balancing in a storage system |
US8751605B1 (en) | 2006-11-15 | 2014-06-10 | Conviva Inc. | Accounting for network traffic |
US7992151B2 (en) | 2006-11-30 | 2011-08-02 | Intel Corporation | Methods and apparatuses for core allocations |
US20080140724A1 (en) | 2006-12-06 | 2008-06-12 | David Flynn | Apparatus, system, and method for servicing object requests within a storage controller |
US20080140930A1 (en) | 2006-12-08 | 2008-06-12 | Emulex Design & Manufacturing Corporation | Virtual drive mapping |
US20080140771A1 (en) | 2006-12-08 | 2008-06-12 | Sony Computer Entertainment Inc. | Simulated environment computing framework |
US7844787B2 (en) * | 2006-12-18 | 2010-11-30 | Novell, Inc. | Techniques for data replication with snapshot capabilities |
US10142013B2 (en) | 2006-12-20 | 2018-11-27 | The Boeing Company | Method of optimizing an interplanetary communications network |
US9632827B2 (en) | 2006-12-21 | 2017-04-25 | International Business Machines Corporation | Resource manager for managing the sharing of resources among multiple workloads in a distributed computing environment |
CN100579072C (en) | 2006-12-22 | 2010-01-06 | 华为技术有限公司 | Method and system for communication between IP devices |
CN101212345A (en) | 2006-12-31 | 2008-07-02 | 联想(北京)有限公司 | Blade server management system |
US7840810B2 (en) | 2007-01-18 | 2010-11-23 | Panasonic Electric Works Co., Ltd. | Systems and methods for rejoining a second group of nodes with a first group of nodes using a shared group key |
US8504791B2 (en) | 2007-01-26 | 2013-08-06 | Hicamp Systems, Inc. | Hierarchical immutable content-addressable memory coprocessor |
US8407428B2 (en) | 2010-05-20 | 2013-03-26 | Hicamp Systems, Inc. | Structured memory coprocessor |
US20080184248A1 (en) | 2007-01-29 | 2008-07-31 | Yahoo! Inc. | Optimization of job scheduling for resource clusters with access control and usage reporting |
US7788477B1 (en) | 2007-01-31 | 2010-08-31 | Hewlett-Packard Development Company, L.P. | Methods, apparatus and articles of manufacture to control operating system images for diskless servers |
US20080196043A1 (en) | 2007-02-08 | 2008-08-14 | David Feinleib | System and method for host and virtual machine administration |
US7865614B2 (en) | 2007-02-12 | 2011-01-04 | International Business Machines Corporation | Method and apparatus for load balancing with server state change awareness |
US7912847B2 (en) | 2007-02-20 | 2011-03-22 | Wright State University | Comparative web search system and method |
FI120088B (en) | 2007-03-01 | 2009-06-30 | Kone Corp | Arrangement and method of monitoring the security circuit |
US7870907B2 (en) | 2007-03-08 | 2011-01-18 | Weatherford/Lamb, Inc. | Debris protection for sliding sleeve |
JP4370336B2 (en) | 2007-03-09 | 2009-11-25 | 株式会社日立製作所 | Low power consumption job management method and computer system |
US7929418B2 (en) | 2007-03-23 | 2011-04-19 | Hewlett-Packard Development Company, L.P. | Data packet communication protocol offload method and system |
US20080239649A1 (en) | 2007-03-29 | 2008-10-02 | Bradicich Thomas M | Design structure for an interposer for expanded capability of a blade server chassis system |
US7783910B2 (en) | 2007-03-30 | 2010-08-24 | International Business Machines Corporation | Method and system for associating power consumption of a server with a network address assigned to the server |
WO2008127672A2 (en) | 2007-04-11 | 2008-10-23 | Slt Logic Llc | Modular blade for providing scalable mechanical, electrical and environmental functionality in the enterprise using advanced tca boards |
JP4815385B2 (en) | 2007-04-13 | 2011-11-16 | 株式会社日立製作所 | Storage device |
US8706914B2 (en) | 2007-04-23 | 2014-04-22 | David D. Duchesneau | Computing infrastructure |
US7515412B2 (en) | 2007-04-26 | 2009-04-07 | Enermax Technology Corporation | Cooling structure for power supply |
US7715400B1 (en) | 2007-04-26 | 2010-05-11 | 3 Leaf Networks | Node identification for distributed shared memory system |
DE102007020296A1 (en) | 2007-04-30 | 2008-11-13 | Philip Behrens | Device and method for the wireless production of a contact |
US7925795B2 (en) | 2007-04-30 | 2011-04-12 | Broadcom Corporation | Method and system for configuring a plurality of network interfaces that share a physical interface |
US7849139B2 (en) | 2007-05-02 | 2010-12-07 | Ouri Wolfson | Adaptive search in mobile peer-to-peer databases |
WO2008141305A1 (en) | 2007-05-11 | 2008-11-20 | The Trustees Of Columbia University In The City Of New York | Systems and methods for implementing reliable neighborcast protocol |
PT103744A (en) | 2007-05-16 | 2008-11-17 | Coreworks S A | ARCHITECTURE OF ACCESS TO THE NETWORK CORE. |
US8396881B2 (en) | 2007-05-17 | 2013-03-12 | Research In Motion Limited | Method and system for automatically generating web page transcoding instructions |
US7552241B2 (en) | 2007-05-18 | 2009-06-23 | Tilera Corporation | Method and system for managing a plurality of I/O interfaces with an array of multicore processor resources in a semiconductor chip |
US7693167B2 (en) | 2007-05-22 | 2010-04-06 | Rockwell Collins, Inc. | Mobile nodal based communication system, method and apparatus |
WO2008147926A1 (en) | 2007-05-25 | 2008-12-04 | Venkat Konda | Fully connected generalized butterfly fat tree networks |
US7941613B2 (en) | 2007-05-31 | 2011-05-10 | Broadcom Corporation | Shared memory architecture |
US8141143B2 (en) | 2007-05-31 | 2012-03-20 | Imera Systems, Inc. | Method and system for providing remote access to resources in a secure data center over a network |
GB0710845D0 (en) | 2007-06-06 | 2007-07-18 | Crisp Thinking Ltd | Communication system |
US8161391B2 (en) | 2007-06-12 | 2012-04-17 | Hewlett-Packard Development Company, L.P. | On-board input and management device for a computing system |
US7783813B2 (en) | 2007-06-14 | 2010-08-24 | International Business Machines Corporation | Multi-node configuration of processor cards connected via processor fabrics |
US8060775B1 (en) | 2007-06-14 | 2011-11-15 | Symantec Corporation | Method and apparatus for providing dynamic multi-pathing (DMP) for an asymmetric logical unit access (ALUA) based storage system |
JP4962152B2 (en) | 2007-06-15 | 2012-06-27 | 日立電線株式会社 | Opto-electric composite transmission assembly |
US8671179B2 (en) | 2007-06-19 | 2014-03-11 | International Business Machines Corporation | Dynamically adding best suited servers into clusters of application servers |
US8140719B2 (en) | 2007-06-21 | 2012-03-20 | Sea Micro, Inc. | Dis-aggregated and distributed data-center architecture using a direct interconnect fabric |
US9495152B2 (en) | 2007-06-22 | 2016-11-15 | Red Hat, Inc. | Automatic baselining of business application service groups comprised of virtual machines |
US9727440B2 (en) | 2007-06-22 | 2017-08-08 | Red Hat, Inc. | Automatic simulation of virtual machine performance |
US9354960B2 (en) | 2010-12-27 | 2016-05-31 | Red Hat, Inc. | Assigning virtual machines to business application service groups based on ranking of the virtual machines |
EP2009554A1 (en) | 2007-06-25 | 2008-12-31 | Stmicroelectronics SA | Method for transferring data from a source target to a destination target, and corresponding network interface |
US7761687B2 (en) | 2007-06-26 | 2010-07-20 | International Business Machines Corporation | Ultrascalable petaflop parallel supercomputer |
US8488444B2 (en) | 2007-07-03 | 2013-07-16 | Cisco Technology, Inc. | Fast remote failure notification |
US8060760B2 (en) | 2007-07-13 | 2011-11-15 | Dell Products L.P. | System and method for dynamic information handling system prioritization |
US7688578B2 (en) | 2007-07-19 | 2010-03-30 | Hewlett-Packard Development Company, L.P. | Modular high-density computer system |
WO2009023563A1 (en) | 2007-08-10 | 2009-02-19 | Smith Robert B | Path redundant hardware efficient communications interconnect system |
US7840703B2 (en) | 2007-08-27 | 2010-11-23 | International Business Machines Corporation | System and method for dynamically supporting indirect routing within a multi-tiered full-graph interconnect architecture |
US8621573B2 (en) | 2007-08-28 | 2013-12-31 | Cisco Technology, Inc. | Highly scalable application network appliances with virtualized services |
EP2031816B1 (en) | 2007-08-29 | 2012-02-22 | NTT DoCoMo, Inc. | Optimal operation of hierarchical peer-to-peer networks |
US8209687B2 (en) * | 2007-08-31 | 2012-06-26 | Cirba Inc. | Method and system for evaluating virtualized environments |
US20090063690A1 (en) | 2007-09-05 | 2009-03-05 | Motorola, Inc. | Continuing an application session using a different device from one that originally initiated the application session while preserving session while preserving session state and data |
US20090187425A1 (en) | 2007-09-17 | 2009-07-23 | Arthur Solomon Thompson | PDA software robots leveraging past history in seconds with software robots |
US8041773B2 (en) | 2007-09-24 | 2011-10-18 | The Research Foundation Of State University Of New York | Automatic clustering for self-organizing grids |
US20090080428A1 (en) | 2007-09-25 | 2009-03-26 | Maxxan Systems, Inc. | System and method for scalable switch fabric for computer network |
US8954562B2 (en) | 2007-09-28 | 2015-02-10 | Intel Corporation | Entropy-based (self-organizing) stability management |
US7996510B2 (en) | 2007-09-28 | 2011-08-09 | Intel Corporation | Virtual clustering for scalable network control and management |
US20090251867A1 (en) | 2007-10-09 | 2009-10-08 | Sharma Viswa N | Reconfigurable, modularized fpga-based amc module |
US8244671B2 (en) | 2007-10-11 | 2012-08-14 | Microsoft Corporation | Replica placement and repair strategies in multinode storage systems |
EP2215770B1 (en) | 2007-10-18 | 2013-03-20 | Telefonaktiebolaget L M Ericsson (publ) | Merging of overlay networks in distributed data structures |
US7881340B2 (en) * | 2007-10-22 | 2011-02-01 | The Johns Hopkins University | Decentralized media access control for ad-hoc mobile wireless network |
US7739475B2 (en) | 2007-10-24 | 2010-06-15 | Inventec Corporation | System and method for updating dirty data of designated raw device |
US7822841B2 (en) | 2007-10-30 | 2010-10-26 | Modern Grids, Inc. | Method and system for hosting multiple, customized computing clusters |
US8230070B2 (en) | 2007-11-09 | 2012-07-24 | Manjrasoft Pty. Ltd. | System and method for grid and cloud computing |
US8275866B2 (en) | 2007-11-13 | 2012-09-25 | At&T Intellectual Property I, L.P. | Assigning telecommunications nodes to community of interest clusters |
US7363329B1 (en) * | 2007-11-13 | 2008-04-22 | International Business Machines Corporation | Method for duplicate detection on web-scale data in supercomputing environments |
EP2061191A1 (en) | 2007-11-13 | 2009-05-20 | STMicroelectronics (Grenoble) SAS | Buffering architecture for packet injection and extraction in on-chip networks. |
US8068433B2 (en) | 2007-11-26 | 2011-11-29 | Microsoft Corporation | Low power operation of networked devices |
US7877622B2 (en) | 2007-12-13 | 2011-01-25 | International Business Machines Corporation | Selecting between high availability redundant power supply modes for powering a computer system |
EP2073118A1 (en) | 2007-12-17 | 2009-06-24 | Nokia Siemens Networks Oy | Load distribution in distributed database system |
EP2073505B1 (en) | 2007-12-17 | 2012-04-04 | Nokia Siemens Networks Oy | Query routing in distributed database system |
US8417715B1 (en) | 2007-12-19 | 2013-04-09 | Tilmann Bruckhaus | Platform independent plug-in methods and systems for data mining and analytics |
US7962771B2 (en) | 2007-12-31 | 2011-06-14 | Intel Corporation | Method, system, and apparatus for rerouting interrupts in a multi-core processor |
US8345431B2 (en) | 2008-01-02 | 2013-01-01 | Microelectronics Assembly Technologies, Inc. | Thin multi-chip flex module |
US20090178131A1 (en) * | 2008-01-08 | 2009-07-09 | Microsoft Corporation | Globally distributed infrastructure for secure content management |
US8805949B2 (en) | 2008-01-16 | 2014-08-12 | Netapp, Inc. | System and method for populating a cache using behavioral adaptive policies |
US7830820B2 (en) | 2008-01-21 | 2010-11-09 | The Boeing Company | Method and apparatus for directional networking topology management |
US7779148B2 (en) | 2008-02-01 | 2010-08-17 | International Business Machines Corporation | Dynamic routing based on information of not responded active source requests quantity received in broadcast heartbeat signal and stored in local data structure for other processor chips |
US20090204837A1 (en) | 2008-02-11 | 2009-08-13 | Udaykumar Raval | Power control system and method |
US20090204834A1 (en) | 2008-02-11 | 2009-08-13 | Nvidia Corporation | System and method for using inputs as wake signals |
US8854831B2 (en) | 2012-04-10 | 2014-10-07 | Arnouse Digital Devices Corporation | Low power, high density server and portable device for use with same |
US8719881B2 (en) | 2008-02-25 | 2014-05-06 | Time Warner Cable Enterprises Llc | Methods and apparatus for enabling synchronized content presentations using dynamically updated playlists |
US8082400B1 (en) | 2008-02-26 | 2011-12-20 | Hewlett-Packard Development Company, L.P. | Partitioning a memory pool among plural computing nodes |
JP5328177B2 (en) | 2008-03-07 | 2013-10-30 | キヤノン株式会社 | Information processing apparatus, data processing method for information processing apparatus, storage medium, and program |
US8156362B2 (en) | 2008-03-11 | 2012-04-10 | Globalfoundries Inc. | Hardware monitoring and decision making for transitioning in and out of low-power state |
TWI354213B (en) | 2008-04-01 | 2011-12-11 | Inventec Corp | Server |
US8762759B2 (en) | 2008-04-10 | 2014-06-24 | Nvidia Corporation | Responding to interrupts while in a reduced power state |
US20090259864A1 (en) | 2008-04-10 | 2009-10-15 | Nvidia Corporation | System and method for input/output control during power down mode |
WO2009126815A2 (en) | 2008-04-11 | 2009-10-15 | Hoodiny Entertainment Group Llc | Diversified, self-organizing map system and method |
JP5350461B2 (en) | 2008-04-16 | 2013-11-27 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Enhanced traffic indication in connection failure management |
US7742844B2 (en) | 2008-04-21 | 2010-06-22 | Dell Products, Lp | Information handling system including cooling devices and methods of use thereof |
JP5075727B2 (en) | 2008-04-25 | 2012-11-21 | 株式会社日立製作所 | Stream distribution system and failure detection method |
US7725603B1 (en) | 2008-04-30 | 2010-05-25 | Network Appliance, Inc. | Automatic network cluster path management |
US7861110B2 (en) | 2008-04-30 | 2010-12-28 | Egenera, Inc. | System, method, and adapter for creating fault-tolerant communication busses from standard components |
US20090282419A1 (en) | 2008-05-09 | 2009-11-12 | International Business Machines Corporation | Ordered And Unordered Network-Addressed Message Control With Embedded DMA Commands For A Network On Chip |
US7921315B2 (en) | 2008-05-09 | 2011-04-05 | International Business Machines Corporation | Managing power consumption in a data center based on monitoring circuit breakers |
CN102090029A (en) | 2008-05-12 | 2011-06-08 | 爱立信电话股份有限公司 | Re-routing traffic in a communications network |
US7756658B2 (en) | 2008-05-14 | 2010-07-13 | Kla-Tencor Corp. | Systems and methods for detecting defects on a wafer and generating inspection results for the wafer |
US8180996B2 (en) | 2008-05-15 | 2012-05-15 | Calxeda, Inc. | Distributed computing system with universal address system and method |
US20100008038A1 (en) | 2008-05-15 | 2010-01-14 | Giovanni Coglitore | Apparatus and Method for Reliable and Efficient Computing Based on Separating Computing Modules From Components With Moving Parts |
US8386622B2 (en) | 2008-05-16 | 2013-02-26 | Palo Alto Research Center Incorporated | Method and apparatus for facilitating communication in a content centric network |
US8775718B2 (en) | 2008-05-23 | 2014-07-08 | Netapp, Inc. | Use of RDMA to access non-volatile solid-state memory in a network storage system |
US8943497B2 (en) | 2008-05-29 | 2015-01-27 | Red Hat, Inc. | Managing subscriptions for cloud-based virtual machines |
US7519843B1 (en) | 2008-05-30 | 2009-04-14 | International Business Machines Corporation | Method and system for dynamic processor speed control to always maximize processor performance based on processing load and available power |
US7904345B2 (en) | 2008-06-10 | 2011-03-08 | The Go Daddy Group, Inc. | Providing website hosting overage protection by transference to an overflow server |
US8244918B2 (en) | 2008-06-11 | 2012-08-14 | International Business Machines Corporation | Resource sharing expansion card |
IL192140A0 (en) | 2008-06-12 | 2009-02-11 | Ethos Networks Ltd | Method and system for transparent lan services in a packet network |
US20090327079A1 (en) | 2008-06-25 | 2009-12-31 | Cnet Networks, Inc. | System and method for a delivery network architecture |
US7751401B2 (en) | 2008-06-30 | 2010-07-06 | Oracle America, Inc. | Method and apparatus to provide virtual toe interface with fail-over |
US8886985B2 (en) | 2008-07-07 | 2014-11-11 | Raritan Americas, Inc. | Automatic discovery of physical connectivity between power outlets and IT equipment |
CN102150103A (en) | 2008-07-14 | 2011-08-10 | 加利福尼亚大学董事会 | Architecture to enable energy savings in networked computers |
US20100026408A1 (en) | 2008-07-30 | 2010-02-04 | Jeng-Jye Shau | Signal transfer for ultra-high capacity circuits |
US8031703B2 (en) | 2008-08-14 | 2011-10-04 | Dell Products, Lp | System and method for dynamic maintenance of fabric subsets in a network |
US20100049931A1 (en) * | 2008-08-20 | 2010-02-25 | Jacobson Michael B | Copying Logical Disk Mappings Between Arrays |
US8132034B2 (en) | 2008-08-28 | 2012-03-06 | Dell Products L.P. | System and method for managing information handling system power supply capacity utilization based on load sharing power loss |
US8804710B2 (en) | 2008-12-29 | 2014-08-12 | Juniper Networks, Inc. | System architecture for a scalable and distributed multi-stage switch fabric |
JP5428267B2 (en) | 2008-09-26 | 2014-02-26 | 富士通株式会社 | Power supply control system and power supply control method |
US8166146B2 (en) | 2008-09-29 | 2012-04-24 | International Business Machines Corporation | Providing improved message handling performance in computer systems utilizing shared network devices |
US7870044B2 (en) * | 2008-10-02 | 2011-01-11 | Verizon Patent And Licensing Inc. | Methods, systems and computer program products for a cloud computing spot market platform |
US8225074B2 (en) | 2008-10-02 | 2012-07-17 | Nec Laboratories America, Inc. | Methods and systems for managing computations on a hybrid computing platform including a parallel accelerator |
WO2010042733A1 (en) | 2008-10-08 | 2010-04-15 | Citrix Systems, Inc. | Systems and methods for connection management for asynchronous messaging over http |
US8484493B2 (en) | 2008-10-29 | 2013-07-09 | Dell Products, Lp | Method for pre-chassis power multi-slot blade identification and inventory |
US8103480B2 (en) | 2008-10-31 | 2012-01-24 | Hewlett-Packard Development Company, L.P. | Evaluating service level agreement violations |
US8341262B2 (en) | 2008-11-07 | 2012-12-25 | Dell Products L.P. | System and method for managing the offload type for offload protocol processing |
US8068482B2 (en) | 2008-11-13 | 2011-11-29 | Qlogic, Corporation | Method and system for network switch element |
US8365170B2 (en) | 2008-11-13 | 2013-01-29 | International Business Machines Corporation | Realizing jumps in an executing process instance |
US10255463B2 (en) | 2008-11-17 | 2019-04-09 | International Business Machines Corporation | Secure computer architecture |
JP5151924B2 (en) | 2008-11-19 | 2013-02-27 | 富士通株式会社 | Power management proxy device, server device, server power management method using proxy device, proxy device power management program, server device power management program |
US9037692B2 (en) | 2008-11-26 | 2015-05-19 | Red Hat, Inc. | Multiple cloud marketplace aggregation |
US9870541B2 (en) | 2008-11-26 | 2018-01-16 | Red Hat, Inc. | Service level backup using re-cloud network |
US20100161909A1 (en) | 2008-12-18 | 2010-06-24 | Lsi Corporation | Systems and Methods for Quota Management in a Memory Appliance |
US20100158005A1 (en) | 2008-12-23 | 2010-06-24 | Suvhasis Mukhopadhyay | System-On-a-Chip and Multi-Chip Systems Supporting Advanced Telecommunication Functions |
US20100169479A1 (en) | 2008-12-26 | 2010-07-01 | Electronics And Telecommunications Research Institute | Apparatus and method for extracting user information using client-based script |
US7996525B2 (en) | 2008-12-31 | 2011-08-09 | Sap Ag | Systems and methods for dynamically provisioning cloud computing resources |
US8122269B2 (en) | 2009-01-07 | 2012-02-21 | International Business Machines Corporation | Regulating power consumption in a multi-core processor by dynamically distributing power and processing requests by a managing core to a configuration of processing cores |
US9344401B2 (en) | 2009-02-04 | 2016-05-17 | Citrix Systems, Inc. | Methods and systems for providing translations of data retrieved from a storage system in a cloud computing environment |
US8510744B2 (en) | 2009-02-24 | 2013-08-13 | Siemens Product Lifecycle Management Software Inc. | Using resource defining attributes to enhance thread scheduling in processors |
GB2468137A (en) | 2009-02-25 | 2010-09-01 | Advanced Risc Mach Ltd | Blade server with on board battery power |
JP5816407B2 (en) | 2009-02-27 | 2015-11-18 | ルネサスエレクトロニクス株式会社 | Semiconductor integrated circuit device |
US8484382B2 (en) | 2009-03-11 | 2013-07-09 | Qualcomm Incorporated | Methods and apparatus for merging peer-to-peer overlay networks |
US8725946B2 (en) | 2009-03-23 | 2014-05-13 | Ocz Storage Solutions, Inc. | Mass storage system and method of using hard disk, solid-state media, PCIe edge connector, and raid controller |
US8140871B2 (en) | 2009-03-27 | 2012-03-20 | International Business Machines Corporation | Wake on Lan for blade server |
US7970830B2 (en) | 2009-04-01 | 2011-06-28 | Honeywell International Inc. | Cloud computing for an industrial automation and manufacturing system |
TWI358016B (en) | 2009-04-17 | 2012-02-11 | Inventec Corp | Server |
US8560639B2 (en) | 2009-04-24 | 2013-10-15 | Microsoft Corporation | Dynamic placement of replica data |
US8127128B2 (en) | 2009-05-04 | 2012-02-28 | International Business Machines Corporation | Synchronization of swappable module in modular system |
TWM377621U (en) | 2009-05-25 | 2010-04-01 | Advantech Co Ltd | Interface card with hardware monitor and function extension, computer device and single board |
EP2256619A1 (en) | 2009-05-27 | 2010-12-01 | Bernardo Kastrup | System for generating and displaying images |
US8004922B2 (en) | 2009-06-05 | 2011-08-23 | Nxp B.V. | Power island with independent power characteristics for memory and logic |
US9001846B2 (en) | 2009-06-09 | 2015-04-07 | Broadcom Corporation | Physical layer device with dual medium access controller path |
US8321688B2 (en) | 2009-06-12 | 2012-11-27 | Microsoft Corporation | Secure and private backup storage and processing for trusted computing and data services |
EP2270665B1 (en) | 2009-06-22 | 2023-07-26 | Citrix Systems, Inc. | Systems and methods for web logging of trace data in a multi-core system |
US8073978B2 (en) | 2009-06-24 | 2011-12-06 | Microsoft Corporation | Proximity guided data discovery |
US8244559B2 (en) | 2009-06-26 | 2012-08-14 | Microsoft Corporation | Cloud computing resource broker |
US20100333116A1 (en) | 2009-06-30 | 2010-12-30 | Anand Prahlad | Cloud gateway system for managing data storage to cloud storage sites |
CN102473157B (en) | 2009-07-17 | 2015-12-16 | 惠普开发有限公司 | Virtual thermal in share I/O environment inserts function |
CN101989212B (en) | 2009-07-31 | 2015-01-07 | 国际商业机器公司 | Method and device for providing virtual machine management program for starting blade server |
US8458324B2 (en) | 2009-08-25 | 2013-06-04 | International Business Machines Corporation | Dynamically balancing resources in a server farm |
US9537957B2 (en) | 2009-09-02 | 2017-01-03 | Lenovo (Singapore) Pte. Ltd. | Seamless application session reconstruction between devices |
US8340120B2 (en) | 2009-09-04 | 2012-12-25 | Brocade Communications Systems, Inc. | User selectable multiple protocol network interface device |
CN102025483B (en) | 2009-09-17 | 2012-07-04 | 国基电子(上海)有限公司 | Wireless router and method for preventing malicious scanning by using same |
US9054990B2 (en) | 2009-10-30 | 2015-06-09 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US20130107444A1 (en) | 2011-10-28 | 2013-05-02 | Calxeda, Inc. | System and method for flexible storage and networking provisioning in large scalable processor installations |
US9876735B2 (en) | 2009-10-30 | 2018-01-23 | Iii Holdings 2, Llc | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US8599863B2 (en) | 2009-10-30 | 2013-12-03 | Calxeda, Inc. | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US9465771B2 (en) | 2009-09-24 | 2016-10-11 | Iii Holdings 2, Llc | Server on a chip and node cards comprising one or more of same |
US20110103391A1 (en) | 2009-10-30 | 2011-05-05 | Smooth-Stone, Inc. C/O Barry Evans | System and method for high-performance, low-power data center interconnect fabric |
US9069929B2 (en) | 2011-10-31 | 2015-06-30 | Iii Holdings 2, Llc | Arbitrating usage of serial port in node card of scalable and modular servers |
US9077654B2 (en) | 2009-10-30 | 2015-07-07 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging managed server SOCs |
US20140359323A1 (en) | 2009-09-24 | 2014-12-04 | Smooth-Stone, Inc. C/O Barry Evans | System and method for closed loop physical resource control in large, multiple-processor installations |
TW201112936A (en) | 2009-09-29 | 2011-04-01 | Inventec Corp | Electronic device |
US20110080829A1 (en) | 2009-10-05 | 2011-04-07 | Vss Monitoring, Inc. | Method, apparatus and system for monitoring network conditions via a stacked topology of network captured traffic distribution devices |
US8194659B2 (en) | 2009-10-06 | 2012-06-05 | Red Hat, Inc. | Mechanism for processing messages using logical addresses |
US8571031B2 (en) | 2009-10-07 | 2013-10-29 | Intel Corporation | Configurable frame processing pipeline in a packet switch |
US9680770B2 (en) | 2009-10-30 | 2017-06-13 | Iii Holdings 2, Llc | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US9311269B2 (en) | 2009-10-30 | 2016-04-12 | Iii Holdings 2, Llc | Network proxy for high-performance, low-power data center interconnect fabric |
US10877695B2 (en) | 2009-10-30 | 2020-12-29 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9648102B1 (en) | 2012-12-27 | 2017-05-09 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US11720290B2 (en) | 2009-10-30 | 2023-08-08 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9767070B2 (en) | 2009-11-06 | 2017-09-19 | Hewlett Packard Enterprise Development Lp | Storage system with a memory blade that generates a computational result for a storage device |
US9110860B2 (en) | 2009-11-11 | 2015-08-18 | Mellanox Technologies Tlv Ltd. | Topology-aware fabric-based offloading of collective functions |
US20110119344A1 (en) | 2009-11-17 | 2011-05-19 | Susan Eustis | Apparatus And Method For Using Distributed Servers As Mainframe Class Computers |
US20110145393A1 (en) | 2009-12-13 | 2011-06-16 | Tami Ben-Zvi | Method for dynamic reservation of cloud and on premises computing resources for software execution |
US9389895B2 (en) | 2009-12-17 | 2016-07-12 | Microsoft Technology Licensing, Llc | Virtual storage target offload techniques |
US8161494B2 (en) | 2009-12-21 | 2012-04-17 | Unisys Corporation | Method and system for offloading processing tasks to a foreign computing environment |
US20110153953A1 (en) | 2009-12-23 | 2011-06-23 | Prakash Khemani | Systems and methods for managing large cache services in a multi-core system |
US9021046B2 (en) | 2010-01-15 | 2015-04-28 | Joyent, Inc | Provisioning server resources in a cloud resource |
US20110191514A1 (en) | 2010-01-29 | 2011-08-04 | Inventec Corporation | Server system |
JP5648926B2 (en) | 2010-02-01 | 2015-01-07 | 日本電気株式会社 | Network system, controller, and network control method |
TW201128395A (en) | 2010-02-08 | 2011-08-16 | Hon Hai Prec Ind Co Ltd | Computer motherboard |
US20110210975A1 (en) | 2010-02-26 | 2011-09-01 | Xgi Technology, Inc. | Multi-screen signal processing device and multi-screen system |
US8826270B1 (en) | 2010-03-16 | 2014-09-02 | Amazon Technologies, Inc. | Regulating memory bandwidth via CPU scheduling |
US8397092B2 (en) | 2010-03-24 | 2013-03-12 | Emulex Design & Manufacturing Corporation | Power management for input/output devices by creating a virtual port for redirecting traffic |
US9158589B2 (en) | 2010-04-05 | 2015-10-13 | Futurewei Technologies, Inc. | Method for dynamic migration of a process or services from one control plane processor to another |
KR101641108B1 (en) | 2010-04-30 | 2016-07-20 | 삼성전자주식회사 | Target device providing debugging functionality and test system comprising the same |
US8045328B1 (en) | 2010-05-04 | 2011-10-25 | Chenbro Micom Co., Ltd. | Server and cooler moduel arrangement |
US8493851B2 (en) | 2010-05-07 | 2013-07-23 | Broadcom Corporation | Method and system for offloading tunnel packet processing in cloud computing |
CN102255933B (en) | 2010-05-20 | 2016-03-30 | 中兴通讯股份有限公司 | Cloud service intermediary, cloud computing method and cloud system |
US8839238B2 (en) | 2010-06-11 | 2014-09-16 | International Business Machines Corporation | Dynamic virtual machine shutdown without service interruptions |
WO2011159842A2 (en) | 2010-06-15 | 2011-12-22 | Nimbula, Inc. | Virtual computing infrastructure |
US8656387B2 (en) | 2010-06-17 | 2014-02-18 | Gridcentric Inc. | Method and system for workload distributing and processing across a network of replicated virtual machines |
US8285800B2 (en) | 2010-06-25 | 2012-10-09 | Compuware Corporation | Service model creation using monitored data of the performance management tool |
CN107608755A (en) | 2010-07-01 | 2018-01-19 | 纽戴纳公司 | Split process between cluster by process type to optimize the use of cluster particular configuration |
US8958292B2 (en) | 2010-07-06 | 2015-02-17 | Nicira, Inc. | Network control apparatus and method with port security controls |
US8812400B2 (en) | 2010-07-09 | 2014-08-19 | Hewlett-Packard Development Company, L.P. | Managing a memory segment using a memory virtual appliance |
WO2012023604A1 (en) | 2010-08-20 | 2012-02-23 | 日本電気株式会社 | Communication system, control apparatus, communication method and program |
CN102385417B (en) | 2010-08-25 | 2013-02-20 | 英业达股份有限公司 | Rack-mounted server |
JP2012053504A (en) | 2010-08-31 | 2012-03-15 | Hitachi Ltd | Blade server device |
US8601288B2 (en) | 2010-08-31 | 2013-12-03 | Sonics, Inc. | Intelligent power controller |
WO2012037494A1 (en) | 2010-09-16 | 2012-03-22 | Calxeda, Inc. | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US10055745B2 (en) | 2010-09-21 | 2018-08-21 | Visa International Service Association | Systems and methods to modify interaction rules during run time |
US20120081850A1 (en) | 2010-09-30 | 2012-04-05 | Dell Products L.P. | Rack Assembly for Housing and Providing Power to Information Handling Systems |
US8941981B2 (en) | 2010-10-22 | 2015-01-27 | Xplore Technologies Corp. | Computer with high intensity screen |
US8738860B1 (en) | 2010-10-25 | 2014-05-27 | Tilera Corporation | Computing in parallel processing environments |
US8676739B2 (en) | 2010-11-11 | 2014-03-18 | International Business Machines Corporation | Determining a preferred node in a classification and regression tree for use in a predictive analysis |
US8924560B2 (en) | 2010-11-29 | 2014-12-30 | At&T Intellectual Property I, L.P. | Optimized game server relocation environment |
US9329886B2 (en) | 2010-12-10 | 2016-05-03 | Amazon Technologies, Inc. | Virtual machine morphing for heterogeneous migration environments |
KR101786871B1 (en) | 2010-12-17 | 2017-11-15 | 한국전자통신연구원 | Apparatus for processing remote page fault and method thereof |
DE102011056141A1 (en) | 2010-12-20 | 2012-06-21 | Samsung Electronics Co., Ltd. | A negative voltage generator, decoder, non-volatile memory device and memory system using a negative voltage |
US8788327B2 (en) | 2011-01-19 | 2014-07-22 | Google Inc. | Local ad serving |
US8886742B2 (en) | 2011-01-28 | 2014-11-11 | Level 3 Communications, Llc | Content delivery network with deep caching infrastructure |
US20120198252A1 (en) | 2011-02-01 | 2012-08-02 | Kirschtein Phillip M | System and Method for Managing and Detecting Server Power Connections |
WO2012114398A1 (en) | 2011-02-24 | 2012-08-30 | Nec Corporation | Network system, controller, and flow control method |
US8533720B2 (en) | 2011-02-25 | 2013-09-10 | International Business Machines Corporation | Offloading work from one type to another type of processor based on the count of each type of service call instructions in the work unit |
US10438299B2 (en) | 2011-03-15 | 2019-10-08 | Visa International Service Association | Systems and methods to combine transaction terminal location data and social networking check-in |
US9565074B2 (en) | 2011-04-26 | 2017-02-07 | Openet Telecom Ltd. | Systems, devices, and methods of orchestrating resources and services across multiple heterogeneous domains |
US9641403B2 (en) | 2011-04-26 | 2017-05-02 | Openet Telecom Ltd. | Systems, devices and methods of decomposing service requests into domain-specific service requests |
US9450766B2 (en) | 2011-04-26 | 2016-09-20 | Openet Telecom Ltd. | Systems, devices and methods of distributing telecommunications functionality across multiple heterogeneous domains |
US8670450B2 (en) | 2011-05-13 | 2014-03-11 | International Business Machines Corporation | Efficient software-based private VLAN solution for distributed virtual switches |
US20120324005A1 (en) | 2011-05-27 | 2012-12-20 | Gargi Nalawade | Dynamic avatar provisioning |
US8701121B2 (en) | 2011-06-27 | 2014-04-15 | Khalifa University Of Science, Technology And Research | Method and system for reactive scheduling |
US8547825B2 (en) | 2011-07-07 | 2013-10-01 | International Business Machines Corporation | Switch fabric management |
US20130036236A1 (en) | 2011-08-01 | 2013-02-07 | Xerox Corporation | Method and system for creating peer-to-peer geographical routing and multi-attribute similarity routing |
US9086923B2 (en) | 2011-09-16 | 2015-07-21 | Rutgers, The State University Of New Jersey | Autonomic workflow management in dynamically federated, hybrid cloud infrastructures |
US9450875B1 (en) | 2011-09-23 | 2016-09-20 | Google Inc. | Cooperative fault tolerance and load balancing |
US20130086298A1 (en) | 2011-10-04 | 2013-04-04 | International Business Machines Corporation | Live Logical Partition Migration with Stateful Offload Connections Using Context Extraction and Insertion |
US8683125B2 (en) | 2011-11-01 | 2014-03-25 | Hewlett-Packard Development Company, L.P. | Tier identification (TID) for tiered memory characteristics |
US20130124417A1 (en) | 2011-11-16 | 2013-05-16 | Visa International Service Association | Systems and methods to provide generalized notifications |
US9565132B2 (en) | 2011-12-27 | 2017-02-07 | Intel Corporation | Multi-protocol I/O interconnect including a switching fabric |
US9135741B2 (en) | 2012-01-23 | 2015-09-15 | Nec Laboratories America, Inc. | Interference-driven resource management for GPU-based heterogeneous clusters |
US8782321B2 (en) | 2012-02-08 | 2014-07-15 | Intel Corporation | PCI express tunneling over a multi-protocol I/O interconnect |
US8954698B2 (en) | 2012-04-13 | 2015-02-10 | International Business Machines Corporation | Switching optically connected memory |
US20130290650A1 (en) | 2012-04-30 | 2013-10-31 | Jichuan Chang | Distributed active data storage system |
US20130290643A1 (en) | 2012-04-30 | 2013-10-31 | Kevin T. Lim | Using a cache in a disaggregated memory architecture |
US8862727B2 (en) | 2012-05-14 | 2014-10-14 | International Business Machines Corporation | Problem determination and diagnosis in shared dynamic clouds |
US9495308B2 (en) | 2012-05-22 | 2016-11-15 | Xockets, Inc. | Offloading of computation for rack level servers and corresponding methods and systems |
US9558351B2 (en) | 2012-05-22 | 2017-01-31 | Xockets, Inc. | Processing structured and unstructured data using offload processors |
US11023088B2 (en) | 2012-06-18 | 2021-06-01 | Hewlett-Packard Development Company, L.P. | Composing the display of a virtualized web browser |
EP2867769A4 (en) | 2012-06-29 | 2016-12-21 | Intel Corp | Methods and systems to identify and migrate threads among system nodes based on system performance metrics |
US9135048B2 (en) | 2012-09-20 | 2015-09-15 | Amazon Technologies, Inc. | Automated profiling of resource usage |
US8764555B2 (en) | 2012-10-02 | 2014-07-01 | Nextbit Systems Inc. | Video game application state synchronization across multiple devices |
GB2508161A (en) | 2012-11-21 | 2014-05-28 | Ibm | Monitoring applications executing on a virtual machine and allocating the required resources to the virtual machine. |
US10311014B2 (en) | 2012-12-28 | 2019-06-04 | Iii Holdings 2, Llc | System, method and computer readable medium for offloaded computation of distributed application protocols within a cluster of data processing nodes |
US9250954B2 (en) | 2013-01-17 | 2016-02-02 | Xockets, Inc. | Offload processor modules for connection to system memory, and corresponding methods and systems |
US20140348182A1 (en) | 2013-05-22 | 2014-11-27 | Iii Holdings 2, Llc | Time synchronization between nodes of a switched interconnect fabric |
US9459957B2 (en) | 2013-06-25 | 2016-10-04 | Mellanox Technologies Ltd. | Offloading node CPU in distributed redundant storage systems |
US20150012679A1 (en) | 2013-07-03 | 2015-01-08 | Iii Holdings 2, Llc | Implementing remote transaction functionalities between data processing nodes of a switched interconnect fabric |
US9304896B2 (en) | 2013-08-05 | 2016-04-05 | Iii Holdings 2, Llc | Remote memory ring buffers in a cluster of data processing nodes |
US9262257B2 (en) | 2014-04-21 | 2016-02-16 | Netapp, Inc. | Providing boot data in a cluster network environment |
US9825860B2 (en) | 2014-05-30 | 2017-11-21 | Futurewei Technologies, Inc. | Flow-driven forwarding architecture for information centric networks |
US9417968B2 (en) | 2014-09-22 | 2016-08-16 | Commvault Systems, Inc. | Efficiently restoring execution of a backed up virtual machine based on coordination with virtual-machine-file-relocation operations |
US10257089B2 (en) | 2014-10-30 | 2019-04-09 | At&T Intellectual Property I, L.P. | Distributed customer premises equipment |
JP6278203B2 (en) | 2014-12-09 | 2018-02-14 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus |
US20160378570A1 (en) | 2015-06-25 | 2016-12-29 | Igor Ljubuncic | Techniques for Offloading Computational Tasks between Nodes |
US10306808B2 (en) | 2015-10-28 | 2019-05-28 | International Business Machines Corporation | Rack housings having an adjustable air volume |
US9965255B2 (en) | 2016-07-14 | 2018-05-08 | International Business Machines Corporation | Code origination data management for code assembly |
US20220317692A1 (en) | 2022-06-23 | 2022-10-06 | Intel Corporation | Computational task offloading |
-
2006
- 2006-04-07 CA CA002603577A patent/CA2603577A1/en not_active Abandoned
- 2006-04-07 WO PCT/US2006/013677 patent/WO2006108187A2/en active Search and Examination
- 2006-04-07 EP EP06749901.2A patent/EP1872249B1/en active Active
- 2006-04-07 EP EP16202515.9A patent/EP3203374B1/en active Active
- 2006-04-07 US US11/279,007 patent/US9075657B2/en active Active
- 2006-04-07 ES ES06749901.2T patent/ES2614751T3/en active Active
-
2015
- 2015-07-06 US US14/791,873 patent/US10277531B2/en active Active
-
2019
- 2019-04-29 US US16/398,025 patent/US10986037B2/en active Active
-
2021
- 2021-03-15 US US17/201,245 patent/US11496415B2/en active Active
-
2022
- 2022-04-15 US US17/722,062 patent/US11522811B2/en active Active
- 2022-04-15 US US17/722,037 patent/US11533274B2/en active Active
- 2022-10-05 US US17/960,244 patent/US20230103780A1/en active Pending
- 2022-11-04 US US17/980,865 patent/US11831564B2/en active Active
- 2022-11-11 US US17/985,252 patent/US11765101B2/en active Active
-
2023
- 2023-08-15 US US18/234,021 patent/US20230388249A1/en active Pending
- 2023-08-15 US US18/234,045 patent/US20230388250A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6771661B1 (en) * | 1999-07-21 | 2004-08-03 | Cisco Technology, Inc. | Apparatus and methods for providing event-based data communications device configuration |
US20060182119A1 (en) * | 2003-01-16 | 2006-08-17 | Huawei Technologies Co., Ltd. Ntellectual Property Department | System and method for realizing the resource distribution in the communication network |
US20050027865A1 (en) * | 2003-07-28 | 2005-02-03 | Erol Bozak | Grid organization |
US8078708B1 (en) * | 2004-01-15 | 2011-12-13 | Nortel Networks Limited | Grid proxy architecture for network resources |
US20050165925A1 (en) * | 2004-01-22 | 2005-07-28 | International Business Machines Corporation | System and method for supporting transaction and parallel services across multiple domains based on service level agreenments |
US7757033B1 (en) * | 2004-02-13 | 2010-07-13 | Habanero Holdings, Inc. | Data exchanges among SMP physical partitions and I/O interfaces enterprise servers |
US20060224740A1 (en) * | 2005-03-31 | 2006-10-05 | Henrique Sievers-Tostes | Allocating resources based on rules and events |
Also Published As
Publication number | Publication date |
---|---|
US20230147352A1 (en) | 2023-05-11 |
US20150326500A1 (en) | 2015-11-12 |
US20220239606A1 (en) | 2022-07-28 |
EP1872249A4 (en) | 2009-07-29 |
ES2614751T3 (en) | 2017-06-01 |
US20230388250A1 (en) | 2023-11-30 |
EP3203374B1 (en) | 2021-11-24 |
US11522811B2 (en) | 2022-12-06 |
US20210306284A1 (en) | 2021-09-30 |
CA2603577A1 (en) | 2006-10-12 |
US11496415B2 (en) | 2022-11-08 |
US20220239607A1 (en) | 2022-07-28 |
US20060230149A1 (en) | 2006-10-12 |
US11831564B2 (en) | 2023-11-28 |
US10277531B2 (en) | 2019-04-30 |
WO2006108187A3 (en) | 2008-05-29 |
US9075657B2 (en) | 2015-07-07 |
EP1872249A2 (en) | 2008-01-02 |
US20230388249A1 (en) | 2023-11-30 |
US20230108828A1 (en) | 2023-04-06 |
US20190260689A1 (en) | 2019-08-22 |
EP3203374A1 (en) | 2017-08-09 |
US11765101B2 (en) | 2023-09-19 |
US10986037B2 (en) | 2021-04-20 |
US11533274B2 (en) | 2022-12-20 |
EP1872249B1 (en) | 2016-12-07 |
WO2006108187A2 (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11765101B2 (en) | On-demand access to compute resources | |
US8782120B2 (en) | Elastic management of compute resources between a web server and an on-demand compute environment | |
US11658916B2 (en) | Simple integration of an on-demand compute environment | |
US20130312006A1 (en) | System and method of managing job preemption | |
US20110258320A1 (en) | Elastic management of compute resources between a web server and an on-demand compute environment | |
US9961013B2 (en) | Simple integration of on-demand compute environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CLUSTER RESOURCES, INC., UTAH Free format text: CONFIRMATORY ASSIGNMENT;ASSIGNOR:JACKSON, DAVID B.;REEL/FRAME:061766/0393 Effective date: 20161031 Owner name: ADAPTIVE COMPUTING ENTERPRISES, INC., UTAH Free format text: CHANGE OF NAME;ASSIGNOR:CLUSTER RESOURCES, INC.;REEL/FRAME:061318/0101 Effective date: 20090827 Owner name: III HOLDINGS 12, LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAPTIVE COMPUTING ENTERPRISES, INC.;REEL/FRAME:061607/0843 Effective date: 20161122 Owner name: ADAPTIVE COMPUTING ENTERPRISES, INC., UTAH Free format text: CHANGE OF NAME;ASSIGNOR:CLUSTER RESOURCES, INC.;REEL/FRAME:061607/0814 Effective date: 20090313 Owner name: CLUSTER RESOURCES, INC., UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JACKSON, DAVID B.;REEL/FRAME:061607/0644 Effective date: 20060406 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: SENT TO CLASSIFICATION CONTRACTOR |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |