US20230073535A1 - Refrigeration system for chilled storage container - Google Patents

Refrigeration system for chilled storage container Download PDF

Info

Publication number
US20230073535A1
US20230073535A1 US18/055,009 US202218055009A US2023073535A1 US 20230073535 A1 US20230073535 A1 US 20230073535A1 US 202218055009 A US202218055009 A US 202218055009A US 2023073535 A1 US2023073535 A1 US 2023073535A1
Authority
US
United States
Prior art keywords
csc
coils
evaporator
cooling liquid
thermal exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/055,009
Inventor
Peter McCauley
Michael Joseph Short
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Better Boating Partners LLC
Original Assignee
Better Boating Partners LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Better Boating Partners LLC filed Critical Better Boating Partners LLC
Priority to US18/055,009 priority Critical patent/US20230073535A1/en
Publication of US20230073535A1 publication Critical patent/US20230073535A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/025Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures using primary and secondary refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/04Stationary cabinets
    • F25D3/045Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B29/00Accommodation for crew or passengers not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2300/00Special arrangements or features for refrigerators; cold rooms; ice-boxes; Cooling or freezing apparatus not covered by any other subclass

Definitions

  • the present invention relates to refrigeration systems for chilled storage containers (CSC), or more particularly, to a refrigeration system for CSC's aboard boats.
  • CSC chilled storage containers
  • a “single-phase system” means that the system operates with a single refrigerant as the cooling agent that is delivered directly to freezer plates in the CSC.
  • the design of these systems usually requires the use of rigid, typically copper, tubing to carry high pressure refrigerant in a liquid form to expansion valves which must be located in close proximity to the freezer plates. This often requires the construction of a compartment within the CSC to contain the expansion valve and other components. This system is prone to failure because in an environment with significant vibration, impact, and other stresses, the rigid lines are susceptible to failure and may leak the coolant out of the system.
  • Single-phase systems also lack cooling capacity, particularly during a “recovery phase” which occurs when heat is added to the CSC, which occurs during normal opening and closing, or the addition of a heat source like a fish or other warm product like beverages.
  • the systems have a low mass of cooling inertia which is a function of the volume and temperature of coolant in the CSC. Since the plates are mounted lower in the box, they often “freeze up,” meaning that ice accumulates rapidly on the plate, but the cooling effect is not evenly distributed across the box.
  • FIG. 1 shows a perspective view of one embodiment of a refrigeration system for chilled storage container (CSC);
  • CSC chilled storage container
  • FIG. 2 shows a detailed perspective view of a CSC
  • FIG. 3 shows a section view of the CSC invention, taken along line 3 - 3 of FIG. 2 ;
  • FIG. 4 shows a schematic view of the a refrigeration system for chilled storage container (CSC).
  • FIG. 5 shows a schematic view of an embodiment of a Control Module (CM).
  • CM Control Module
  • a refrigeration system for a chilled storage container (CSC) in a boat includes an input coolant tube that is configured for communication of a cooling liquid to an interior cavity of the CSC.
  • An output coolant tube is configured for communication of the cooling liquid from the interior cavity of the CSC.
  • a conduit is disposed in a plurality of coils that are configured to be attached to an interior sidewall of the CSC. The plurality of coils are disposed about an upper margin of the interior sidewall.
  • the conduit is in communication with the input coolant tube and the output coolant tube.
  • a circulation pump is provided for circulating the cooling liquid through the input coolant tube, the plurality of coils, and the output coolant tube.
  • a plate is configured for attachment to the interior sidewall of the CSC.
  • the plate holds the plurality of coils in a vertically spaced configuration within the interior cavity.
  • an evaporator has a first channel communicating the cooling fluid and is configured for thermal exchange with a Non-Ozone Depleting Hydrofluorocarbon (NODHFC) refrigerant carried in a second channel of the evaporator.
  • NODHFC Non-Ozone Depleting Hydrofluorocarbon
  • a compressor or series of compressors is/are in communication with the second channel of the evaporator.
  • the compressor is selectively operable to compress the low-pressure gaseous NODHFC refrigerant from the evaporator to a high-pressure gaseous state.
  • a condenser has a first channel that is configured to receive the high-pressure gaseous NODHFC refrigerant from the compressor and deliver high-pressure liquid NODHFC refrigerant to the receiver.
  • a second channel of the condenser is configured for thermal exchange with a circulating water source carried in a second channel of the condenser.
  • the inlet of the second channel of the condenser is in communication with hoses delivering circulating water and the outlet of the condenser is in communication with hoses that expel the circulating water overboard.
  • an outlet of the second channel of the condenser is in communication with the body of water.
  • a two-phase thermal exchange system for extracting thermal energy from a chilled storage container (CSC) in a boat.
  • the two-phase thermal exchange system includes a condenser configured for thermal exchange between a NODHFC refrigerant carried through a first channel of the condenser and a circulating water carried through a second channel of the condenser. Hoses aboard the boat deliver the circulating water from a body of water supporting the boat.
  • An evaporator is configured for thermal exchange between a cooling fluid carried through a first channel of the evaporator and the NODHFC refrigerant that is carried through a second channel of the evaporator.
  • a circulation pump or pumps are configured to circulate the cooling liquid between the evaporator and a plurality of coils installed to plates attached to the interior sidewall of the CSC.
  • a compressor or series of compressors is/are provided for selectively compressing the NODHFC refrigerant between a low-pressure gas upon exiting the evaporator and a high-pressure gaseous state for entering the condenser.
  • an expansion valve is disposed proximal to an inlet to the evaporator.
  • the expansion valve is in communication with the outlet of the receiver and receives high-pressure NODHFC refrigerant liquid from the receiver. It is selectively operable by the solenoid and converts high-pressure liquid NODHFC refrigerant to a low-pressure liquid for delivery to the evaporator.
  • a method of extracting thermal energy from a chilled storage container (CSC) in a boat includes circulating water from a body of water supporting the boat through a second channel of a condenser.
  • the water absorbs heat from a NODHFC refrigerant circulating through a first channel of the condenser.
  • a cooling liquid is also circulated through a first channel of an evaporator for thermal exchange to the NODHFC refrigerant circulating through a second channel of the evaporator.
  • the cooling liquid is circulated through a conduit disposed as a plurality of coils within an interior cavity of the CSC for thermal exchange between the interior cavity of the CSC and the cooling liquid.
  • embodiments of the current invention provide a two-phase refrigeration system 10 for a CSC 12 carried aboard a boat 11 .
  • the two-phase refrigeration system 10 extracts heat from the CSC 12 and chills the interior cavity and airspace in an upper portion of the CSC 12 .
  • a cooling liquid is circulated through a conduit disposed as a plurality of coils 14 within the CSC 12 .
  • the invention takes advantage of thermodynamic properties of air, namely, cold air descends forcing warm air to rise and come in contact with the cooling coils.
  • the plurality of coils 14 are installed above an ice level 24 within the interior cavity of the CSC 12 .
  • the cooling liquid is circulated through an interior heat exchanger formed by the plurality of coils 14 that chills the air and slows or reduces melting of ice 24 carried within the CSC 12 .
  • additional coils are added to the exterior surface of the CSC to further enhance cooling.
  • ice 24 is added to CSC's to further enhance cooling.
  • the greatest cause of ice 24 melting is the temperature differential between the ice 24 and that of the air above it.
  • the cooling liquid circulates within the plurality of coils 14 , advantageously reduces the air temperature, and eliminates the temperature differential across this large surface area.
  • the present invention maintains ice 24 better, is easy to clean, and provides a greater mass of cooling energy within the CSC 12 .
  • the system 10 achieves lower temperatures in the CSC 12 because: the cooling liquid can circulate in the coils at much lower temperatures than the average temperature of Freon in a “single-phase” system, the surface area of cooling coils is much greater than the comparable surface area of the freezer plates, and the thermodynamically advantaged design of the coil location creates a natural air circulation within the CSC which aids cooling.
  • the claimed system is made of high-quality parts, which have demonstrated their ability to be durable at sea.
  • the claimed system confines the use of environmentally friendly hydrofluorocarbons (HFC) to the NODHFC refrigerant in the refrigeration skid 22 which is located in a protected area aboard the boat 11 .
  • HFC hydrofluorocarbons
  • the refrigeration gases used in competitive systems that may contain ozone depleting chlorofluorocarbons (CFC's) are circulated through rigid lines in more vulnerable areas that are susceptible to leaks.
  • FIG. 1 shows a non-limiting embodiment of a two-phase refrigeration system 10 of the present invention installed on a boat 11 .
  • the system may include a starboard side CSC 12 A having a conduit disposed in a plurality of cooling coils 14 A about an upper margin of the CSC 12 A.
  • the conduit is made of a stainless-steel tubing.
  • the plurality of cooling coils 14 A are attached to an interior sidewall of the CSC 12 A and are maintained in a vertically spaced configuration by a plurality of coil support brackets 16 .
  • the starboard CSC 12 A includes an input coolant tube 20 A, and an output coolant tube 18 A extending through a sidewall of the starboard CSC 12 A and connected to a first end and a second end of the conduit, respectively.
  • the port CSC 12 B includes an input coolant tube 20 B, and an output coolant tube 18 B extending through a sidewall of the port CSC 12 B and connected to a first end and a second end of the conduit, respectively.
  • the two-phase refrigeration system 10 may also be configured with a port side CSC 12 B with cooling coils 14 B, a port input cooling tube 20 B, and a port output coolant tube 18 A.
  • the starboard 12 A and port 12 B CSCs may be positioned where they may be conveniently opened to receive one or more fish, such as may be caught during a fishing expedition or charter.
  • the CSCs 12 A, 12 B may also store other items in need of refrigeration.
  • a plurality of insulated flex tubes 54 connect the input of each CSC 12 A and 12 B with a corresponding port circulation pump 36 and a starboard circulation pump 38 .
  • Each of the starboard circulation pump 38 and the port circulation pump 36 may be independently controlled to circulate the cooling liquid through the coils 14 A, 14 B in the CSCs 12 A, 12 B.
  • An Accumulator 40 may be provided proximal in communication with the flex tubes 54 to accommodate the expansion and contraction of the cooling liquid.
  • additional CSC's 12 A & 12 B can be supported by the same refrigeration system using an additional set of insulated flex tubes 54 .
  • the cooling liquid is circulated through a first circulation channel of an evaporator 26 , where thermal energy in the cooling liquid is exchanged with a chilled NODHFC refrigerant carried in a second circulation channel of the evaporator 26 .
  • Thermodynamic air flow in the CSC is the result of cold air, that is denser than warm air, tends to fall and force the warmer air up within the CSC 12 .
  • This brings the warm air toward the plurality of coils 14 A, 14 B where it is cooled by heat exchange with coils containing a circulating cooling liquid.
  • This creates a thermodynamic circulation of air within the chilled storage containers 12 A and 12 B. This effect is enhanced by the large cooling surface area of the coils 14 and the spacing between the coils 14 which optimizes air flow.
  • the claimed system exploits these thermal properties of air to extract heat from the chilled storage containers 12 A and 12 B. If the contents are ice 24 , this cooled air reduces or eliminates the temperature differential across the air/ice interface and slows or eliminates ice 24 melting.
  • the two-phase refrigeration system 10 is illustrated in the schematic view of the refrigeration skid 22 , shown in FIG. 4 .
  • circulating water enters a condenser 34 through flexible hoses from a source of circulating water, typically through an inlet 33 from a body of water supporting the boat 11 .
  • This circulating water flows through the second channel of the condenser 34 and absorbs heat from the warm NODHFC refrigerant which is circulating in a first channel of the condenser 34 .
  • the circulating water extracts heat from the NODHFC refrigerant in the condenser 34 it is routed overboard for discharge from the boat 11 via a discharge port 35 .
  • the NODHFC refrigerant changes state in the condenser 34 as it is cooled by the circulating water and exits the condenser 34 as a high-pressure liquid.
  • the liquid NODHFC refrigerant may be stored in a receiver 30 until it is required for cooling the liquid coolant in the evaporator 26 .
  • the solenoid valve 28 A When energized by a signal from a CM, shown in FIG. 5 , the solenoid valve 28 A opens and the NODHFC refrigerant passes through an expansion valve 28 B, where it is converted into a low-pressure liquid NODHFC refrigerant.
  • low-pressure liquid NODHFC refrigerant from the expansion valve 28 B enters the evaporator 26 where it absorbs heat from the cooling liquid.
  • the NODHFC refrigerant changes state again in the evaporator 26 and exits as a low-pressure gas.
  • the low-pressure NODHFC refrigerant gas moves to the compressor or series of compressors 32 where it increases in temperature and pressure. Then it flows back to the condenser 34 where it is cooled back into a high-pressure liquid as described in Phase 1 .
  • the cooling liquid is a food grade liquid to enhance boater and food safety.
  • the chilled cooling liquid is circulated by the circulation pumps 36 , 38 to be carried from the evaporator 26 and through the plurality of coils 14 A, 14 B in each CSC 12 A, 12 B.
  • the plurality of coils 14 A, 14 B are chilled by the circulating cooling liquid and reduce the air temperature in each CSC 12 A, 12 B so that the temperature across the ice/air interface is optimized.
  • a control module is shown in reference to FIG. 5 .
  • the CM allows the operator to set a desired temperature for the air within each CSC 12 A, 12 B, and operates as a thermostat, which turns the refrigeration skid on and off as needed to maintain the air temperature.
  • the CM may include a starboard pump switch 42 , a port pump switch 44 , a Liquid Line Solenoid (LLS) switch 46 , a compressor switch 48 , a power supply controller 50 , and control module 52 .
  • LLS Liquid Line Solenoid
  • compressor switch 48 a compressor switch 48
  • control module 52 In one embodiment, data from a thermostat, contained within each CSC 12 A, 12 B is processed by the CM it and controls the operation of the system.
  • the claimed system can be used to cool any container, which has access to electrical power.
  • These embodiments can also include flexible radius tubes in lieu of or in combination with coils 14 to conform to irregular spaces and enable after-market installations.
  • the claimed invention better maintains low temperatures, better preserves the ice 24 , is easy to clean, and provides a greater degree of temperature control within the CSC as compared to existing systems.
  • the claimed system can achieve lower temperatures in the CSC because; the cooling liquid circulates at a much lower temperature than existing freezer plates can maintain, the cold surface area of the coils 14 far exceeds that of the freezer plates, and the location of the coils 14 in the upper portion of the CSC exploits the thermodynamic properties of air to create a natural air circulation which aids in the cooling process.
  • the claimed invention contains a greater mass of cooling media, uses cooling media with a higher capacity to absorb heat, and more uniformly distributes cooling energy throughout the storage container 12 .
  • the mass of cooling liquid combined with the significant mass of cooling coils 14 creates a thermal bank of cooling inertia, capable of quickly responding to warm air intrusions from the opening of the container 12 or from adding a heat source like a recently caught fish.
  • the claimed system is made of high-quality parts, which have demonstrated their ability to be durable at sea. As a result, the system has greater reliability and the boater does not have to sacrifice cool space to create a “walled off” area to protect components of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A dual-phase refrigeration system for chilled storage containers (CSC) aboard boats maintains cold temperatures in the CSC by chilling the airspace in the upper portion of the CSC. A cooling liquid is circulated through coils installed on an interior sidewall about an upper margin of the CSC. The cooling liquid chills the air in the upper portion of the CSC which creates a thermodynamic airflow within the CSC which aids in cooling. The temperature of the cooling liquid is maintained by a heat exchange with a Non-Ozone Depleting Hydrofluorocarbon (NODHFC) refrigerant which, in turn, is cooled by a heat exchange with circulating water sourced from the body of water supporting the boat. If ice is added to the CSC, the cooling liquid in the coils reduces the air temperature.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 16/717,238, Filed Dec. 17, 2019, and claims the benefit of priority of U.S. provisional application No. 62/800,623, filed on Feb. 4, 2019, the contents of which are herein incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to refrigeration systems for chilled storage containers (CSC), or more particularly, to a refrigeration system for CSC's aboard boats.
  • Currently, cold temperatures are difficult to maintain in CSC's or other storage containers aboard boats. The natural process of warming is often accelerated by inadequate insulation, frequent opening and closing of the unit, intrusion of saltwater into the box, and the radiant heating from the sun warming the top of CSC. If the CSC contains ice for enhanced cooling, these warming processes can result in the melting of the ice.
  • Current systems use a single-phase cooling system to chill freezer plates, which are inadequate for the task. A “single-phase system” means that the system operates with a single refrigerant as the cooling agent that is delivered directly to freezer plates in the CSC. The design of these systems usually requires the use of rigid, typically copper, tubing to carry high pressure refrigerant in a liquid form to expansion valves which must be located in close proximity to the freezer plates. This often requires the construction of a compartment within the CSC to contain the expansion valve and other components. This system is prone to failure because in an environment with significant vibration, impact, and other stresses, the rigid lines are susceptible to failure and may leak the coolant out of the system. Such leaks can lead to the venting of potentially ozone depleting gases like chlorofluorocarbons (CFC) used in some competitive systems. Additionally, “walling off” this space reduces the size of the chilled storage container available for use by boaters. The “walling off” process does not fully prevent, water, debris, fish blood, slime, and potentially fish meat and entrails from entering and potentially becoming trapped in the “walled-off” area, creating unsanitary conditions. The equipment in the space, including the expansion valve, is exposed to corrosive saltwater and powerful chemicals and cleaners used to try to prevent harmful bacteria growth.
  • “Single-phase” systems also lack cooling capacity, particularly during a “recovery phase” which occurs when heat is added to the CSC, which occurs during normal opening and closing, or the addition of a heat source like a fish or other warm product like beverages. The systems have a low mass of cooling inertia which is a function of the volume and temperature of coolant in the CSC. Since the plates are mounted lower in the box, they often “freeze up,” meaning that ice accumulates rapidly on the plate, but the cooling effect is not evenly distributed across the box.
  • There exists a need for a cooling system that removes heat and maintains any ice in the box, is easy to clean, optimizes thermodynamic effectiveness, is eco-friendly, and improves the ability to achieve low temperatures in the CSC.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective view of one embodiment of a refrigeration system for chilled storage container (CSC);
  • FIG. 2 shows a detailed perspective view of a CSC;
  • FIG. 3 shows a section view of the CSC invention, taken along line 3-3 of FIG. 2 ;
  • FIG. 4 shows a schematic view of the a refrigeration system for chilled storage container (CSC); and
  • FIG. 5 shows a schematic view of an embodiment of a Control Module (CM).
  • SUMMARY OF THE INVENTION
  • In one aspect of the invention, a refrigeration system for a chilled storage container (CSC) in a boat is disclosed. The refrigeration system includes an input coolant tube that is configured for communication of a cooling liquid to an interior cavity of the CSC. An output coolant tube is configured for communication of the cooling liquid from the interior cavity of the CSC. A conduit is disposed in a plurality of coils that are configured to be attached to an interior sidewall of the CSC. The plurality of coils are disposed about an upper margin of the interior sidewall. The conduit is in communication with the input coolant tube and the output coolant tube. A circulation pump is provided for circulating the cooling liquid through the input coolant tube, the plurality of coils, and the output coolant tube.
  • In some embodiments, a plate is configured for attachment to the interior sidewall of the CSC. The plate holds the plurality of coils in a vertically spaced configuration within the interior cavity.
  • In some embodiments, an evaporator has a first channel communicating the cooling fluid and is configured for thermal exchange with a Non-Ozone Depleting Hydrofluorocarbon (NODHFC) refrigerant carried in a second channel of the evaporator.
  • In some embodiments, a compressor or series of compressors is/are in communication with the second channel of the evaporator. The compressor is selectively operable to compress the low-pressure gaseous NODHFC refrigerant from the evaporator to a high-pressure gaseous state.
  • In some embodiments, a condenser has a first channel that is configured to receive the high-pressure gaseous NODHFC refrigerant from the compressor and deliver high-pressure liquid NODHFC refrigerant to the receiver. A second channel of the condenser is configured for thermal exchange with a circulating water source carried in a second channel of the condenser. The inlet of the second channel of the condenser is in communication with hoses delivering circulating water and the outlet of the condenser is in communication with hoses that expel the circulating water overboard.
  • In yet other embodiments, an outlet of the second channel of the condenser is in communication with the body of water.
  • In other aspects of the invention, a two-phase thermal exchange system for extracting thermal energy from a chilled storage container (CSC) in a boat is disclosed. The two-phase thermal exchange system includes a condenser configured for thermal exchange between a NODHFC refrigerant carried through a first channel of the condenser and a circulating water carried through a second channel of the condenser. Hoses aboard the boat deliver the circulating water from a body of water supporting the boat. An evaporator is configured for thermal exchange between a cooling fluid carried through a first channel of the evaporator and the NODHFC refrigerant that is carried through a second channel of the evaporator. A circulation pump or pumps are configured to circulate the cooling liquid between the evaporator and a plurality of coils installed to plates attached to the interior sidewall of the CSC.
  • In other embodiments of the system, a compressor or series of compressors is/are provided for selectively compressing the NODHFC refrigerant between a low-pressure gas upon exiting the evaporator and a high-pressure gaseous state for entering the condenser.
  • In yet other embodiments, an expansion valve is disposed proximal to an inlet to the evaporator. The expansion valve is in communication with the outlet of the receiver and receives high-pressure NODHFC refrigerant liquid from the receiver. It is selectively operable by the solenoid and converts high-pressure liquid NODHFC refrigerant to a low-pressure liquid for delivery to the evaporator.
  • In yet other aspects of the invention, a method of extracting thermal energy from a chilled storage container (CSC) in a boat is disclosed. The method includes circulating water from a body of water supporting the boat through a second channel of a condenser. The water absorbs heat from a NODHFC refrigerant circulating through a first channel of the condenser. A cooling liquid is also circulated through a first channel of an evaporator for thermal exchange to the NODHFC refrigerant circulating through a second channel of the evaporator. The cooling liquid is circulated through a conduit disposed as a plurality of coils within an interior cavity of the CSC for thermal exchange between the interior cavity of the CSC and the cooling liquid.
  • These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following detailed description is of the best currently contemplated modes of carrying out exemplary embodiments of the invention. The description is not to be taken in a limiting sense but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
  • Broadly, embodiments of the current invention provide a two-phase refrigeration system 10 for a CSC 12 carried aboard a boat 11. The two-phase refrigeration system 10 extracts heat from the CSC 12 and chills the interior cavity and airspace in an upper portion of the CSC 12. A cooling liquid is circulated through a conduit disposed as a plurality of coils 14 within the CSC 12. By cooling the air at the top of the CSC, the invention takes advantage of thermodynamic properties of air, namely, cold air descends forcing warm air to rise and come in contact with the cooling coils. Preferably, the plurality of coils 14 are installed above an ice level 24 within the interior cavity of the CSC 12. The cooling liquid is circulated through an interior heat exchanger formed by the plurality of coils 14 that chills the air and slows or reduces melting of ice 24 carried within the CSC 12.
  • In another embodiment, additional coils are added to the exterior surface of the CSC to further enhance cooling.
  • Often boaters add ice 24 to CSC's to further enhance cooling. Typically, the greatest cause of ice 24 melting is the temperature differential between the ice 24 and that of the air above it. The cooling liquid circulates within the plurality of coils 14, advantageously reduces the air temperature, and eliminates the temperature differential across this large surface area. The present invention maintains ice 24 better, is easy to clean, and provides a greater mass of cooling energy within the CSC 12. The system 10 achieves lower temperatures in the CSC 12 because: the cooling liquid can circulate in the coils at much lower temperatures than the average temperature of Freon in a “single-phase” system, the surface area of cooling coils is much greater than the comparable surface area of the freezer plates, and the thermodynamically advantaged design of the coil location creates a natural air circulation within the CSC which aids cooling. Further, the claimed system is made of high-quality parts, which have demonstrated their ability to be durable at sea. The claimed system confines the use of environmentally friendly hydrofluorocarbons (HFC) to the NODHFC refrigerant in the refrigeration skid 22 which is located in a protected area aboard the boat 11. By comparison, the refrigeration gases used in competitive systems, that may contain ozone depleting chlorofluorocarbons (CFC's), are circulated through rigid lines in more vulnerable areas that are susceptible to leaks.
  • FIG. 1 shows a non-limiting embodiment of a two-phase refrigeration system 10 of the present invention installed on a boat 11. The system may include a starboard side CSC 12A having a conduit disposed in a plurality of cooling coils 14A about an upper margin of the CSC 12A. Preferably, the conduit is made of a stainless-steel tubing. The plurality of cooling coils 14A are attached to an interior sidewall of the CSC 12A and are maintained in a vertically spaced configuration by a plurality of coil support brackets 16.
  • The starboard CSC 12A includes an input coolant tube 20A, and an output coolant tube 18A extending through a sidewall of the starboard CSC 12A and connected to a first end and a second end of the conduit, respectively. The port CSC 12B includes an input coolant tube 20B, and an output coolant tube 18B extending through a sidewall of the port CSC 12B and connected to a first end and a second end of the conduit, respectively.
  • In some embodiments, the two-phase refrigeration system 10 may also be configured with a port side CSC 12B with cooling coils 14B, a port input cooling tube 20B, and a port output coolant tube 18A. The starboard 12A and port 12B CSCs may be positioned where they may be conveniently opened to receive one or more fish, such as may be caught during a fishing expedition or charter. As will be appreciated, the CSCs 12A, 12B may also store other items in need of refrigeration.
  • A plurality of insulated flex tubes 54 connect the input of each CSC 12A and 12B with a corresponding port circulation pump 36 and a starboard circulation pump 38. Each of the starboard circulation pump 38 and the port circulation pump 36 may be independently controlled to circulate the cooling liquid through the coils 14A, 14B in the CSCs 12A, 12B. An Accumulator 40 may be provided proximal in communication with the flex tubes 54 to accommodate the expansion and contraction of the cooling liquid.
  • In some embodiments, additional CSC's 12A & 12B can be supported by the same refrigeration system using an additional set of insulated flex tubes 54.
  • The cooling liquid is circulated through a first circulation channel of an evaporator 26, where thermal energy in the cooling liquid is exchanged with a chilled NODHFC refrigerant carried in a second circulation channel of the evaporator 26.
  • Thermodynamic air flow in the CSC is the result of cold air, that is denser than warm air, tends to fall and force the warmer air up within the CSC 12. This brings the warm air toward the plurality of coils 14A, 14B where it is cooled by heat exchange with coils containing a circulating cooling liquid. This creates a thermodynamic circulation of air within the chilled storage containers 12A and 12B. This effect is enhanced by the large cooling surface area of the coils 14 and the spacing between the coils 14 which optimizes air flow.
  • The claimed system exploits these thermal properties of air to extract heat from the chilled storage containers 12A and 12B. If the contents are ice 24, this cooled air reduces or eliminates the temperature differential across the air/ice interface and slows or eliminates ice 24 melting.
  • Having previously described the second phase of the two-phase refrigeration system 10, the two-phase refrigeration system 10 is illustrated in the schematic view of the refrigeration skid 22, shown in FIG. 4 . In the first phase, circulating water enters a condenser 34 through flexible hoses from a source of circulating water, typically through an inlet 33 from a body of water supporting the boat 11. This circulating water flows through the second channel of the condenser 34 and absorbs heat from the warm NODHFC refrigerant which is circulating in a first channel of the condenser 34. After the circulating water extracts heat from the NODHFC refrigerant in the condenser 34 it is routed overboard for discharge from the boat 11 via a discharge port 35.
  • The NODHFC refrigerant changes state in the condenser 34 as it is cooled by the circulating water and exits the condenser 34 as a high-pressure liquid. The liquid NODHFC refrigerant may be stored in a receiver 30 until it is required for cooling the liquid coolant in the evaporator 26.
  • When energized by a signal from a CM, shown in FIG. 5 , the solenoid valve 28A opens and the NODHFC refrigerant passes through an expansion valve 28B, where it is converted into a low-pressure liquid NODHFC refrigerant. In phase 2, low-pressure liquid NODHFC refrigerant from the expansion valve 28B enters the evaporator 26 where it absorbs heat from the cooling liquid. The NODHFC refrigerant changes state again in the evaporator 26 and exits as a low-pressure gas. The low-pressure NODHFC refrigerant gas moves to the compressor or series of compressors 32 where it increases in temperature and pressure. Then it flows back to the condenser 34 where it is cooled back into a high-pressure liquid as described in Phase 1.
  • In a preferred embodiment, the cooling liquid is a food grade liquid to enhance boater and food safety. The chilled cooling liquid is circulated by the circulation pumps 36, 38 to be carried from the evaporator 26 and through the plurality of coils 14A, 14B in each CSC 12A, 12B. The plurality of coils 14A, 14B are chilled by the circulating cooling liquid and reduce the air temperature in each CSC 12A, 12B so that the temperature across the ice/air interface is optimized.
  • A control module (CM) is shown in reference to FIG. 5 . The CM allows the operator to set a desired temperature for the air within each CSC 12A, 12B, and operates as a thermostat, which turns the refrigeration skid on and off as needed to maintain the air temperature. The CM may include a starboard pump switch 42, a port pump switch 44, a Liquid Line Solenoid (LLS) switch 46, a compressor switch 48, a power supply controller 50, and control module 52. In one embodiment, data from a thermostat, contained within each CSC 12A, 12B is processed by the CM it and controls the operation of the system.
  • In additional embodiments, the claimed system can be used to cool any container, which has access to electrical power. These embodiments can also include flexible radius tubes in lieu of or in combination with coils 14 to conform to irregular spaces and enable after-market installations.
  • Advantageously, the claimed invention better maintains low temperatures, better preserves the ice 24, is easy to clean, and provides a greater degree of temperature control within the CSC as compared to existing systems. The claimed system can achieve lower temperatures in the CSC because; the cooling liquid circulates at a much lower temperature than existing freezer plates can maintain, the cold surface area of the coils 14 far exceeds that of the freezer plates, and the location of the coils 14 in the upper portion of the CSC exploits the thermodynamic properties of air to create a natural air circulation which aids in the cooling process. The claimed invention contains a greater mass of cooling media, uses cooling media with a higher capacity to absorb heat, and more uniformly distributes cooling energy throughout the storage container 12. The mass of cooling liquid combined with the significant mass of cooling coils 14 creates a thermal bank of cooling inertia, capable of quickly responding to warm air intrusions from the opening of the container 12 or from adding a heat source like a recently caught fish.
  • In preferred embodiments, the claimed system is made of high-quality parts, which have demonstrated their ability to be durable at sea. As a result, the system has greater reliability and the boater does not have to sacrifice cool space to create a “walled off” area to protect components of this invention.
  • It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.

Claims (13)

What is claimed is:
1. A chilled storage container (CSC) for a refrigeration system in a boat comprising:
a plurality of coils disposed in a spaced apart relation coupled with an interior sidewall of the CSC about an upper margin of the interior sidewall, the plurality of coils positioned above an ice fill level defined in a lower portion of an interior cavity of the CSC;
an input to the plurality of coils configured for communication of a cooling liquid into the plurality of coils;
an output to the plurality of coils configured for communication of the cooling liquid from the plurality of coils, wherein, when the cooling liquid is circulated through the plurality of coils, a thermodynamic airflow of a volume of cold air above the ice fill level is imparted by a thermal exchange between a volume of warm air contained within the upper margin of the CSC and the plurality of coils, with the volume of cold air reducing a temperature differential at an air/ice interface within the CSC.
2. The CSC of claim 1, further comprising:
one or more coil support brackets configured for attachment to the interior sidewall of the CSC, the one or more coil support brackets retaining the plurality of coils in a vertically spaced configuration about the upper margin of the interior sidewall of the CSC.
3. The CSC of claim 2, further comprising:
a thermostat to detect a temperature condition within the CSC.
4. A two-phase thermal exchange system for extracting thermal energy from a chilled storage container (CSC) mounted in a boat, comprising:
a condenser configured for a first thermal exchange between a non-ozone depleting hydrofluorocarbon (NODHFC) refrigerant carried through a first channel of the condenser and a source of circulating water carried through a second channel of the condenser;
an evaporator configured for a second thermal exchange between a cooling liquid carried through a first channel of the evaporator and the NODHFC refrigerant carried through a second channel of the evaporator;
a plurality of coils disposed in a spaced apart relation about an upper margin of an interior sidewall of the CSC, the plurality of coils positioned above an ice containment level defined in a lower portion of an interior cavity of the CSC; and
at least one circulation pump selectively operable to circulate the cooling liquid between the evaporator and the plurality of coils.
5. The two-phase thermal exchange system of claim 4, wherein the source of circulating water is a body of water supporting the boat.
6. The two-phase thermal exchange system of claim 4, further comprising:
a first insulated flex tube interconnecting the circulation pump with the plurality of coils; and
a second insulated flex tube interconnecting the plurality of coils and the evaporator.
7. The two-phase thermal exchange system of claim 4, further comprising:
a compressor for selectively compressing the NODHFC refrigerant between a low-pressure gaseous state upon exiting the evaporator and a high-pressure gaseous state within the condenser.
8. The two-phase thermal exchange system of claim 7, further comprising:
an expansion valve disposed proximal to an inlet to the evaporator and in communication with an outlet of a receiver, the expansion valve selectively operable to convert a high-pressure liquid NODHFC refrigerant to a low-pressure liquid for delivery to the evaporator.
9. The two-phase thermal exchange system of claim 8, further comprising:
a skid mounted in a protected area aboard the boat, the skid configured to contain the evaporator, the compressor, and the condenser.
10. A method of extracting thermal energy from a from a chilled storage container (CSC) in a boat, comprising:
circulating a cooling liquid through a plurality of coils coupled within an upper margin of an interior cavity of the CSC, the plurality of coils disposed in a spaced apart relation above an ice fill level of the CSC; and
inducing a thermodynamic airflow of a volume cold air to the ice fill level by a thermal exchange with a volume of warm air contained within the upper margin of the CSC by a ternal exchange with the plurality of coils to reduce a temperature differential at an air/ice interface within the interior cavity of the CSC.
11. The method of claim 10, further comprising:
circulating the cooling liquid through a first channel of an evaporator; and
circulating a non-ozone depleting hydrofluorocarbon refrigerant through a second channel of the evaporator for thermal exchange with the cooling liquid.
12. The method of claim 11, further comprising:
circulating a non-ozone depleting hydrofluorocarbon (NODHFC) refrigerant through a first channel of a condenser, and
circulating a water source through a second channel of the condenser.
13. The method of claim 12, further comprising:
receiving the water source from a body of water supporting the boat; and
discharging the water source to the body of water after a thermal exchange with the NODHFC in the condenser.
US18/055,009 2019-02-04 2022-11-14 Refrigeration system for chilled storage container Pending US20230073535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/055,009 US20230073535A1 (en) 2019-02-04 2022-11-14 Refrigeration system for chilled storage container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962800623P 2019-02-04 2019-02-04
US16/717,238 US11536493B2 (en) 2019-02-04 2019-12-17 Refrigeration system for chilled storage container
US18/055,009 US20230073535A1 (en) 2019-02-04 2022-11-14 Refrigeration system for chilled storage container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/717,238 Continuation US11536493B2 (en) 2019-02-04 2019-12-17 Refrigeration system for chilled storage container

Publications (1)

Publication Number Publication Date
US20230073535A1 true US20230073535A1 (en) 2023-03-09

Family

ID=71835983

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/717,238 Active 2040-11-26 US11536493B2 (en) 2019-02-04 2019-12-17 Refrigeration system for chilled storage container
US18/055,009 Pending US20230073535A1 (en) 2019-02-04 2022-11-14 Refrigeration system for chilled storage container

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/717,238 Active 2040-11-26 US11536493B2 (en) 2019-02-04 2019-12-17 Refrigeration system for chilled storage container

Country Status (1)

Country Link
US (2) US11536493B2 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746272A (en) 1952-07-24 1956-05-22 Walter H Carpenter Method for holding shrimp
US2931192A (en) 1957-11-15 1960-04-05 Vilter Mfg Co Fishing boat refrigeration
US2982109A (en) 1960-05-12 1961-05-02 Mario J Puretic Method and apparatus for shipboard storage and refrigeration of freshly caught fish
US3159982A (en) * 1962-03-28 1964-12-08 Max H Schachner Refrigerated container having primary and secondary cooling circuits
US3260065A (en) 1964-04-01 1966-07-12 Construcoes Continental Limita Cold storage for chilled products
US3729948A (en) 1970-11-05 1973-05-01 Ovitron Res Corp Method for preserving comestibles
US3696631A (en) 1970-12-09 1972-10-10 Pelayo F Valdes Integrated modular refrigeration system
US3961925A (en) 1974-12-16 1976-06-08 Rhoad John H Refrigerated storage and transportation container for perishable commodities
US4276752A (en) 1978-09-22 1981-07-07 Pax Equipment Management, Inc. Refrigerated air cargo container
TW568254U (en) * 1997-01-06 2003-12-21 Mitsubishi Electric Corp Refrigerant circulating apparatus
US6237361B1 (en) 1999-11-17 2001-05-29 Ken Broussard Collapsible cold storage system
US6272879B1 (en) 2000-08-02 2001-08-14 Oscar-Raul Lopez-Ordaz Liquid chilling system
WO2003006898A1 (en) 2001-06-20 2003-01-23 3L Filters Ltd. Apparatus for producing potable water and slush from sea water or brine
US7024814B1 (en) 2002-11-13 2006-04-11 Mcdougle Frank Oneil Fish or fish bait life preservation apparatus and method
US20050204610A1 (en) * 2004-03-17 2005-09-22 K.M.B. Companies Of Ohio, L.L.C. Livewell apparatus for a marine vessel
KR100962365B1 (en) 2009-10-07 2010-06-10 주식회사 대일 A container for transport of live-fish
US20160187013A1 (en) 2014-12-29 2016-06-30 Hy-Save Limited Air Conditioning with Thermal Storage

Also Published As

Publication number Publication date
US11536493B2 (en) 2022-12-27
US20200248931A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP4680987B2 (en) Improved cooling system for commercial aircraft galleys.
KR101312742B1 (en) A beverage cooler, a refrigerator comprising such a beverage cooler and a method for cooling beverage
EP2278239B1 (en) High efficiency refrigerator
EP2470841B1 (en) Liquid-cooled heat exchanger in a vapor compression refrigeration system
JP2010175106A (en) Refrigerating apparatus
EP3139110A1 (en) Carbon dioxide cooling system with subcooling
CN105637305A (en) Aircraft air chiller with reduced profile
CN205482102U (en) Compressor immersion fluid frozen machine
EP3139111A1 (en) Carbon dioxide cooling system with subcooling
US20050204610A1 (en) Livewell apparatus for a marine vessel
US20230073535A1 (en) Refrigeration system for chilled storage container
GB2466559A (en) Dairy heat reclamation system
CN110171554B (en) Water cooling system of refrigerated container for ship and working method thereof
KR101810674B1 (en) Ship refrigerration unit with a semi-flooded evaporators
TWI539127B (en) Fishing equipment for fishing vessels
EP1939554B1 (en) Container with eutectic plates and refrigerator with such a container
AU2017239161B2 (en) Defrost system
GB2044424A (en) Refrigeration system for plurality of temperature controlled locations
JP3669503B2 (en) Cargo container
KR20140067204A (en) Under water storage method and device of foodstuff
JP2018136075A (en) Ice making device and method for making ice
CN206511097U (en) A kind of fishing boat fresh-keeping system
KR100893812B1 (en) Cooling system of clipper
KR20140052617A (en) Cooling system for refrigeration container and cooling method
JP2016023920A (en) Heat pump hot water supply system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION