US20230066073A1 - High reliability analyte detection device - Google Patents

High reliability analyte detection device Download PDF

Info

Publication number
US20230066073A1
US20230066073A1 US17/800,219 US202017800219A US2023066073A1 US 20230066073 A1 US20230066073 A1 US 20230066073A1 US 202017800219 A US202017800219 A US 202017800219A US 2023066073 A1 US2023066073 A1 US 2023066073A1
Authority
US
United States
Prior art keywords
electrical connection
elastic member
connection ends
signal output
output portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/800,219
Inventor
Cuijun YANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtrum Technologies Inc
Original Assignee
Medtrum Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2020/075966 external-priority patent/WO2021031541A1/en
Application filed by Medtrum Technologies Inc filed Critical Medtrum Technologies Inc
Assigned to MEDTRUM TECHNOLOGIES INC. reassignment MEDTRUM TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YANG, Cuijun
Publication of US20230066073A1 publication Critical patent/US20230066073A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • A61B5/02158Measuring pressure in heart or blood vessels by means inserted into the body provided with two or more sensor elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6879Means for maintaining contact with the body
    • A61B5/688Means for maintaining contact with the body using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/225Connectors or couplings
    • A61B2562/227Sensors with electrical connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric

Definitions

  • the present invention mainly relates to the field of medical device, and in particular, to a high reliability analyte detection device.
  • pancreas in a normal person can automatically monitor the amount of glucose in the blood and automatically secrete the required dosage of insulin/glucagon.
  • the function of the pancreas is abnormal, and the pancreas cannot normally secrete required dosage of insulin. Therefore, diabetes is a metabolic disease caused by abnormal pancreatic function and also a lifelong disease. At present, there is no cure for diabetes, but the onset and development of diabetes and its complications can be controlled by stabilizing blood glucose.
  • CGM Continuous Glucose Monitoring
  • the current detection device is not compact, resulting in greater thickness and larger volume, affecting the user's dressing, stretching, exercise and other daily activities, which can seriously worsen user experience.
  • glucose monitoring can be easily interrupted with such a detection device with poor electrical connection performance because a bulky device can get bumped or caught easily, which may lead to data loss and pose a potential safety hazard to the user.
  • the embodiment of the present invention discloses a high reliability analyte detection device.
  • the signal output portion which has a shape of a polyline or an arc toward the top of the bottom case and one elastic member is contacted with the signal output portion, improving the electrical connection reliability, reducing the number of the structures in the device, avoiding data losing, and enhancing the user experience.
  • the invention discloses a high reliability analyte detection device, including: a bottom case; a sensor, assembled on the bottom case, includes a signal output portion and a detection portion, and the signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case, is provided with at least two first electrical connection ends insulated from each other; a transmitter, fastened with the bottom case, is provided with at least two second electrical connection ends which are insulated from each other and are corresponding to the first electrical connection ends; and one elastic member contacted with the signal output portion.
  • the second electrical connection ends are metal contact pins.
  • the signal output portion is disposed on the top of the elastic member, and one first electrical connection end is directly connected with its corresponding second electrical connection end.
  • the elastic member includes at least two conductive areas and at least one insulation area, and the insulation area is provided between two adjacent conductive areas, and at least two first electrical connection ends, through different conductive areas, are respectively electrically connected to the corresponding second electrical connection ends, and the different first electrical connection ends or the different second electrical connection ends are respectively electrically connected to the different conductive areas.
  • the conductive area and the insulation area expand across the elastic member in the vertical direction, respectively.
  • the signal output portion is embedded inside the elastic member or disposed at the bottom of the elastic member.
  • different first electrical connection ends are provided on different parts of the signal output portion which are independent of each other and do not interfere with each other.
  • the signal output portion is embedded inside the elastic member, and the embedding heights of different parts of the signal output portion in the elastic member are not exactly the same.
  • each part of the signal output portion is embedded inside the elastic member, or disposed on the top of the elastic member, or disposed at the bottom of the elastic member.
  • the number of the first electrical connection end and the number of the second electrical connection end are both three.
  • the bottom case further includes a sensor base where the signal output portion and the elastic member is disposed, and the signal output portion has a shape of a polyline or an arc toward the top of the sensor base.
  • a sensor assembled on the bottom case, includes a signal output portion and a detection portion, and the signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case, is provided with at least two first electrical connection ends insulated from each other, and one elastic member contacted with the signal output portion.
  • the elastic member acts as a conductor, a supporter, or a buffer, improving the reliability of the electrical connection, reducing the number of the structures in the device, and avoiding data loss.
  • the elastic member includes at least two conductive areas and at least one insulation area, and the insulation area is provided between two adjacent conductive areas, and at least two first electrical connection ends, through different conductive areas, are respectively electrically connected to the corresponding second electrical connection ends, and the different first electrical connection ends or the different second electrical connection ends are respectively electrically connected to the different conductive areas.
  • An elastic member simultaneously plays the role of electrical conduction and insulation, which not only reduces the number of internal structures of the detection device, but also serves as a buffer.
  • first electrical connection ends are provided on different parts of the signal output portion which are independent of each other and do not interfere with each other.
  • the thickness of each first electrical connection end will be different.
  • the independent and non-interfering first electrical connection ends can reduce or eliminate the effect of poor contact caused by the above thickness difference, which improves the reliability of the electrical connection among the elastic member, the first electrical connection ends and the second connection ends.
  • FIG. 1 is a schematic diagram of a bottom case according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the assembly of a sensor and a bottom case according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a transmitter according to an embodiment of the present invention.
  • FIG. 4 a - FIG. 4 b are schematic diagrams of a elastic member, the first electrical connection ends, and the second electrical connection ends according to an embodiment of the present invention, and FIG. 4 a is a top view, and FIG. 4 b is a side view of the structure in FIG. 4 a;
  • FIG. 4 c is a top view of a elastic member and first electrical connection ends according to another embodiment of the invention.
  • FIG. 4 d - FIG. 4 e are top views of a elastic member, the first electrical connection ends, and the second electrical connection ends according to different embodiments of the invention.
  • FIG. 5 is a schematic diagram of the elastic member and first electrical connection ends and second electrical connection ends according to still another embodiment of the invention.
  • FIG. 6 a - FIG. 6 b are schematic diagrams of the electrical connection position between the second electrical connection ends and the elastic member according to different embodiments of the present invention.
  • FIG. 7 a - FIG. 7 b are schematic diagrams of the electrical connection among the elastic member, the first electrical connection end and the second electrical connection end according to yet another embodiment of the present invention, and FIG. 7 b is a cross-sectional view taken along the section line A-A′ in FIG. 7 a;
  • FIG. 8 a - FIG. 8 b are schematic diagrams of the electrical connection among the elastic member, the first electrical connection end and the second electrical connection end according to yet another embodiment of the present invention, and FIG. 8 b is a cross-sectional view taken along the section line 8 - 8 ′ in FIG. 8 a;
  • FIG. 9 a is a schematic diagram of the second electrical connection end according to yet another embodiment of the present invention.
  • FIG. 9 b is a schematic diagram of the elastic member and the signal output portion matched with the second electrical connection end in FIG. 9 a;
  • FIG. 10 is a schematic diagram of the signal output portion disposed on the top of the elastic member according to yet another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of different parts of the signal output portion disposed at different locations of the elastic member according to yet another embodiment of the present invention.
  • the body fluid parameter detection device of the prior art is easy to lose detection data, which worsens user experience and brings inconvenience to the patient's life.
  • the present invention provides a high reliability analyte detection device.
  • the signal output portion which has a shape of a polyline or an arc toward the top of the bottom case and one elastic member is contacted with the signal output portion, improving the electrical connection reliability, avoiding data losing, and enhancing the user experience.
  • FIG. 1 is a schematic diagram of a bottom case 10 according to the embodiment of the present invention.
  • the bottom case 10 is used to assemble the sensor 113 and the transmitter 12 .
  • the bottom board of the bottom case 10 is provided with an assembly hole 101 for assisting the installation of the sensor 113
  • a first fastening structure 102 is provided around the assembly hole 101 to help fasten the sensor 113 on the bottom case 10 .
  • the side wall of the bottom case 10 is further provided with a fastening portion (not labeled) for fixing the transmitter 12 .
  • the bottom case 10 may have other different shapes, as long as the condition for fixing the transmitter 12 on the bottom case 10 can be satisfied, which is not specifically limited herein.
  • FIG. 2 is a schematic diagram of the assembly of the sensor 113 and the bottom case 10 according to the embodiment of the invention.
  • the bottom case 10 includes a sensor base 111 .
  • the sensor 113 supported by the sensor base 111 , is assembled on the bottom case 10 , and the second fastening structure 112 is provided around the sensor base 111 .
  • the second fastening structure 112 and the first fastening structure 102 are fastened with each other to install the sensor base 111 in the assembly hole 101 , thus assembling the sensor 113 on the bottom case 10 .
  • the auxiliary mounting structure of the sensor 113 is removed, which means the sensor 113 is directly assembled on the bottom case 10 without the support of the sensor base 111 or other supporting structures.
  • the senor 113 may also be assembled on the bottom case 10 using other assembly methods, which is not specifically limited herein.
  • the sensor base 111 is also provided with a sealing member 130 and a groove 131 where the sealing member 130 is placed.
  • the sensor 113 includes a signal output portion 113 a and a detection portion 113 b .
  • the signal output portion 113 a needs to be electrically connected to the second electrical connection end 122 of the transmitter 12 to transmit the detection signal to the transmitter 12 .
  • the detection portion 113 b is used to penetrate the subcutaneous tissue of the human body to detect the analyte parameter.
  • the signal output portion 113 a is provided with the first electrical connection ends 116 which are insulated from each other.
  • the sensor 113 is further provided with electrodes and/or electrode leads (not labeled here and below) for detecting or transmitting the analyte parameter.
  • the detection signal of the electrode is transmitted through the first electrical connection ends 116 .
  • the embodiment of the present invention does not limit the arrangement method of the first electrical connection ends 116 on the signal output portion 113 a .
  • the first electrical connection ends 116 may be disposed on the surface of the signal output portion 113 a or embedded in the signal output portion 113 a.
  • the sensor 113 At least two detection electrodes are provided on the sensor 113 , that is, the sensor 113 at least includes a working electrode and a counter electrode. Therefore, in the embodiment of the present invention, at least two first electrical connection ends 116 are provided on the surface of the signal output portion 113 a to be electrically connected to different electrodes.
  • the sensor 113 is a three-electrode system. Therefore, the number of the first electrical connection ends 116 is three.
  • the signal output portion 113 a which has a shape of a polyline or an arc toward the top of the bottom case, is attached to the surface of the sensor base 111 or embedded in the sensor base 111 , which reduces the height of the part of the sensor 113 protruding from the bottom case 10 , and thus reduces the thickness of the detection device.
  • the senor 113 may also have other shapes or forms (such as non-curved), which is not specifically limited herein.
  • FIG. 3 is a schematic diagram of a transmitter 12 according to an embodiment of the present invention.
  • the transmitter 12 is provided with the second electrical connection ends 122 which are insulated from each other.
  • the second electrical connection ends 122 are used to electrically connect with the first electrical connection ends 116 , and thus receive the electrical signal from the sensor 113 . Therefore, the second electrical connection ends 122 correspond to the first electrical connection ends 116 .
  • the correspondence means that these two are equal in number and their positions basically correspond.
  • the number of the second electrical connection ends 122 is three, to be compatible with the three-electrode system of the sensor 113 .
  • the second electrical connection ends 122 are exposed and protrude from the transmitter case 121 .
  • the second electrical connection ends 122 are metal contact pins. The small size of the metal contact pins make the internal structure of the detection device more compact, thereby reducing the volume of the detection device.
  • the embodiment of the present invention does not limit the shape and position of the second electrical connection ends 122 .
  • the second electrical connection ends are flush with the surface of the transmitter case 121 instead of protruding from it.
  • the second electrical connection ends 122 are located inside the transmitter case 121 , which will be described in detail below.
  • the cross section of the second electrical connection ends is rectangular or circular.
  • the conductive portion of the second electrical connection ends 122 is coated or plated on the surface of some plugs, or the second electrical connection ends 122 themselves are the plugs. The plugs can be inserted into the same elastic member, which will be described in detail below.
  • FIG. 4 a is a top view of the elastic member, the first electrical connection ends, and the second electrical connection ends according to an embodiment of the present invention.
  • FIG. 4 b is a side view of the elastic member in FIG. 4 a .
  • FIG. 4 c is a top view of a elastic member and first electrical connection ends according to another embodiment of the invention.
  • FIG. 4 d - FIG. 4 e are top views of the elastic member, the first electrical connection ends, and the second electrical connection ends according to other different embodiments of the present invention.
  • the thin dashed line in FIG. 4 a represents the outline of part of the first electrical connection ends covered by the elastic member
  • the thick dashed line represents the outline of part of the signal output portion covered by the elastic member.
  • the thin dashed line and the thick dashed line in the subsequent drawings have the same meanings, which will not be repeated.
  • the elastic member 114 which is contact with the signal output portion 113 a , is disposed in the detection device. Only one elastic member 114 can reduce the number of internal structures of the detection device. In addition, the elastic material will deform after being squeezed, thereby playing a locking role. Therefore, the elastic member 114 , as a conductor or as an auxiliary structure at the electrical connection position, can be connected to each other more tightly, thereby improving the reliability of the electrical connection.
  • the signal output portion 113 a is disposed at the bottom of the elastic member 114 , and the first electrical connection ends 116 and the corresponding second electrical connection ends 122 are indirectly electrically connected.
  • the bottom of the elastic member 114 refers to a portion of the elastic member 114 close to the skin.
  • the elastic member 114 includes at least two conductive areas 114 a and at least one insulation area 114 b .
  • the conductive area 114 a and the insulation area 114 b are used to perform electrical conduction and electrical insulation, respectively.
  • the conductive area 114 a and the insulation area 114 b cannot be separated from each other, that is, the conductive area 114 a and the insulation area 114 b belong to the whole part of the elastic member 114 , respectively.
  • An insulation area 114 b is provided between adjacent conductive areas 114 a .
  • the different first electrical connection ends 116 or the different second electrical connection ends 122 are electrically connected to the different conductive areas 114 a , respectively, thus making any two first electrical connection ends 116 or any two second electrical connection ends 122 insulated from each other.
  • the conductive area 114 a and the insulation area 114 b expand across the elastic member 114 in the vertical direction, as shown in FIG. 4 b .
  • the vertical direction refers to the direction from the first electrical connection end 116 to the corresponding second electrical connection end 122 , or the current direction between them.
  • the elastic member 114 is used for electrically connecting the first electrical connection end 116 and the corresponding second electrical connection end 122 while electrically insulating the different first electrical connection ends 116 or the different second electrical connection ends 122 .
  • the single elastic member 114 can perform electrical conduction and electrical insulation at the same time, thus reducing the complexity of the internal structure of the detection device, making the internal structure more compact, and improving the electrical connection reliability of the detection device.
  • the conductive area 114 a or the insulation area 114 b may also have a certain inclination, or be arranged inside the elastic member 114 in other directions or manners, which is not specifically limited herein, as long as the above-mentioned conditions of electrical conduction and electrical insulation are satisfied.
  • the elastic member 114 has a rectangular structure.
  • the conductive area 114 a and the insulation area 114 b are arranged alternately and both penetrate the elastic member 114 .
  • different conductive areas 114 a are arranged within the same insulation area 114 b , that is, are surrounded by one single insulation area 114 b as shown in FIG. 4 d .
  • the top view of the elastic member 114 may be ring-shaped, as shown in FIG. 4 e .
  • the top view of the elastic member 114 may be round.
  • the elastic member 114 may have other shapes, which is not specifically limited herein, as long as the conditions for achieving the above-mentioned functions of the elastic member 114 can be satisfied.
  • the insulation area 114 b is located between any two first electrical connection ends 116 which are connected to the elastic member 114 .
  • the insulation area 114 b spaced between any two first electrical connection ends 116 includes a portion of an insulation area 114 b (as between 116 a and 116 b shown in FIG. 4 a and FIG. 4 b ), or one insulation area 114 b , or more than one insulation area 114 b (as between 116 c and 116 b in FIG. 4 a and FIG. 4 b ).
  • the insulation area 114 b spaced between any two second electrical connection ends 122 connected to the elastic member 114 includes a portion of one insulation area 114 b , or one insulation area 114 b , or more than one insulation area 114 b .
  • the first electrical connection end and the corresponding second electrical connection end (such as between 116 a and 122 a , 116 b and 122 b , or 116 c and 122 c ) share a common part of the conductive area 114 a to achieve the electrical conductivity.
  • the common part of the conductive area includes a portion of one conductive area 114 a (as between 116 c and 122 c in FIG. 4 a and FIG. 4 b ), or one conductive area 114 a , or more than one conductive area 114 a.
  • one insulation area or conductive area one insulation area or conductive area, and more than one insulation area or conductive area only represents the span range of the first electrical connection end or the second electrical connection end in one dimension in the drawings (such as the arrangement direction of the conductive areas).
  • a portion of one insulation area or one conductive area, one insulation area or one conductive area, and more than one insulation area or conductive area may also represent the range in the two-dimensional direction which is covered by the first electrical connection end or the second electrical connection end, as shown in FIG. 4 c .
  • the first electrical connection end as an example, the dotted line in FIG. 4 c represents a partial outline of the first electrical connection ends.
  • one first electrical connection end 116 can cover a part of one insulation area or one conductive area, or one insulation area or one conductive area, or more than one insulation area or conductive area.
  • the material of the elastic member 114 includes elastic plastic, elastic rubber, and the like.
  • the elastic member 114 can obtain better electrical contact while acting as a buffer at the same time.
  • the elastic member 114 is a conductive rubber strip which not only performs conduction and insulation, but also works as a buffer.
  • the elastic member 114 only needs to include two conductive areas 114 a and one insulation area 114 b disposed between the two conductive areas 114 a . That is, two pairs of different first electrical connection ends and second electrical connection ends are electrically connected through different conductive areas 114 a , respectively, to achieve electrical conduction. At the same time, the two first electrical connection ends or the two second electrical connection ends are separated by the insulation area to achieve electrical insulation.
  • the elastic member 114 includes more conductive areas and insulation areas that are arranged alternately, which makes the electrical connection method more flexible, as shown in FIG. 5 .
  • the senor includes at least three electrodes, that is, the signal output portion 113 a is provided with at least three first electrical connection ends. And at least two of the first electrical connection ends, through different electrical conductive area 114 a , are electrically connected to the corresponding second electrical connection ends, of which the connection method and principle are the same as above. In terms of other first electrical connection ends and second electrical connection ends that are not connected to the elastic member 114 , the embodiments of the present invention do not limit their connection manner or connection principle.
  • the senor is a three-electrode system, in which only the working electrode and the counter electrode are electrically connected to the second electrical connection ends by the corresponding first electrical connection ends through the above-mentioned elastic member, while the reference electrode is connected to the transmitter in other methods.
  • FIG. 6 a - FIG. 6 b are schematic diagrams of the electrical connection position between the second electrical connection ends 122 and the elastic member 114 in different embodiments of the present invention.
  • the second electrical connection ends 122 are protruding metal contact pins with spherical top.
  • the elastic member 114 is provided with concave portions (not labeled) at the positions where it is connected to the protruding metal contact pins to improve contact and connection.
  • the connection between these protruding pins and the concave portions also helps in fixing the position of the elastic member 114 , that is, no matter what external force is applied to the detection device, the position of the elastic member 114 is always fixed without any displacement, ensuring that the elastic member 114 performs normally.
  • the elastic member 114 may not include concave portions. When pressed by the protruding metal contact pins, concave portions will be formed on the surface of the elastic member 114 to match the metal contact pins, ensuring the function of electrical connection or electrical insulation.
  • the second electrical connection ends 122 are disposed inside the transmitter 12 .
  • the elastic member 114 is correspondingly provided with protrusions or square bulges (not labeled), which can enter the interior of the transmitter 12 and be electrically connected to the corresponding second electrical connection ends 122 .
  • FIG. 7 a - FIG. 7 b are schematic diagrams of the electrical connection among the elastic member 214 , the first electrical connection ends and the second electrical connection ends according to another embodiment of the present invention.
  • FIG. 7 b is a cross-sectional view taken along the section line A-A′ in FIG. 7 a.
  • the three second electrical connection ends 222 a , 222 b , and 222 c of the embodiment of the present invention are electrically connected indirectly to the three first electrical connection ends 216 a , 216 b , and 216 c , respectively.
  • the arrangement of the conductive areas 214 a and the insulation areas 214 b in the elastic member 214 is the same as mentioned above.
  • the signal output portion 213 a is embedded inside the elastic member 214 . Therefore, the three first electrical connection ends 216 a , 216 b , and 216 c are all embedded inside the elastic member 214 . In order to fix the position of the sensor, the signal output portion 213 a and the detection portion 231 b are carried by the sensor base 211 .
  • FIG. 8 a - FIG. 8 b are schematic diagrams of the electrical connection among the elastic member, the first electrical connection ends and the second electrical connection ends according to yet another embodiment of the present invention.
  • FIG. 8 a is a top view.
  • FIG. 8 b is a cross-sectional view taken along the section line B-B′ in FIG. 8 a.
  • first electrical connection ends are provided on different parts of the signal output portion which are independent of each other and do not interfere with each other.
  • the three first electrical connection ends are all embedded in the conductive area 314 a and/or the insulation area 314 b of the elastic member. As shown in FIG. 8 b , in the embodiment of the present invention, the embedding heights of the first electrical connection ends in the elastic member are not exactly the same.
  • each first electrical connection end will be different.
  • the independent and non-interfering first electrical connection ends can reduce or eliminate the effect of poor contact caused by the above-mentioned thickness difference, improving the reliability of the electrical connection between the three.
  • FIG. 9 a is a schematic diagram of the second electrical connection ends 422 according to yet another embodiment of the present invention.
  • FIG. 9 b is schematic diagram of the elastic member and the signal output end 413 a matched with the second electrical connection ends 422 in FIG. 9 a.
  • the three second electrical connection ends 422 a , 422 b , and 422 c are plugs that protrude from the transmitter case 412 .
  • the type of plugs is as described above.
  • Three ports 401 are provided in the elastic member to cooperate with the three second electrical connection ends. The three second electrical connection ends can be respectively inserted into corresponding ports 401 .
  • the longitudinal direction of the port 401 is perpendicular to the arrangement direction of the conductive areas 414 a or the insulation areas 414 b .
  • the two directions can be flexibly designed according to requirements.
  • the longitudinal direction of the port is parallel to the arrangement direction of the conductive areas. The principle and method of electrical connection is the same as mentioned above.
  • FIG. 10 is a schematic diagram of the signal output portion disposed on the top of the elastic member 514 according to yet another embodiment of the present invention.
  • the signal output portion is disposed on the top of the elastic member 514 , that is, the signal output portion is disposed between the elastic member 514 and the second electrical connection ends 522 .
  • the second electrical connection ends 522 are directly electrically connected to the corresponding first electrical connection ends 516 .
  • the elastic member 514 may be an ordinary elastic member or the above-mentioned elastic member provided with a conductive areas.
  • the second electrical connection ends 522 are protruding metal contacts. Since the first electrical connection ends 516 is carried or supported by the elastic member 514 , the reliability of the electrical connection between the second electrical connection ends 522 and the first electrical connection ends 516 are high.
  • the shape of the elastic member 514 may be consistent with the above, which will not be described here.
  • the different parts of the signal output portion can be independent of each other and do not interfere with each other.
  • the three first electrical connection ends 516 are respectively disposed at different parts of the signal output portion. So three different parts of the signal output portion are disposed at different positions of the elastic member.
  • the first electrical connection end 516 b is disposed on the top of the elastic member, and the first electrical connection end 516 a is embedded inside the elastic member 514 , while the first electrical connection end 516 c is disposed on the bottom of the elastic member, as shown in FIG. 11 .
  • the positions of different first electrical connection ends can be arbitrarily selected according to requirements.
  • the present invention discloses a high reliability analyte detection device, in which the signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case and one elastic member is contacted with the signal output portion, improving the electrical connection reliability, avoiding data losing, reducing the number of the structures in the device, and enhancing the user experience.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Vascular Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A high reliability analyte detection device includes: a bottom case; a sensor, assembled on the bottom case, including a signal output portion and a detection portion, and the signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case provided with at least two first electrical connection ends insulated from each other; a transmitter, fastened with the bottom case provided with at least two second electrical connection ends which are insulated from each other and correspond to the first electrical connection ends, and one elastic member contacted with signal output portion, improving the electrical connection, thus enhancing the user experience.

Description

    TECHNICAL FIELD
  • The present invention mainly relates to the field of medical device, and in particular, to a high reliability analyte detection device.
  • BACKGROUND
  • The pancreas in a normal person can automatically monitor the amount of glucose in the blood and automatically secrete the required dosage of insulin/glucagon. However, for diabetic patients, the function of the pancreas is abnormal, and the pancreas cannot normally secrete required dosage of insulin. Therefore, diabetes is a metabolic disease caused by abnormal pancreatic function and also a lifelong disease. At present, there is no cure for diabetes, but the onset and development of diabetes and its complications can be controlled by stabilizing blood glucose.
  • Patients with diabetes need to check their blood glucose before injecting insulin into the body. At present, many detection devices can continuously detect blood glucose, and send the blood glucose data to the remote device in real time for the user to view. This detection method is called Continuous Glucose Monitoring (CGM). The method requires the detection device to be attached to the surface of the patient's skin, and the sensor of the device to be inserted into the subcutaneous tissue fluid for testing.
  • However, the current detection device is not compact, resulting in greater thickness and larger volume, affecting the user's dressing, stretching, exercise and other daily activities, which can seriously worsen user experience. Also, glucose monitoring can be easily interrupted with such a detection device with poor electrical connection performance because a bulky device can get bumped or caught easily, which may lead to data loss and pose a potential safety hazard to the user.
  • Accordingly, there is a need in the state of the art for a high reliability analyte detection device with high electrical connection reliability.
  • BRIEF SUMMARY OF THE INVENTION
  • The embodiment of the present invention discloses a high reliability analyte detection device. The signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case and one elastic member is contacted with the signal output portion, improving the electrical connection reliability, reducing the number of the structures in the device, avoiding data losing, and enhancing the user experience.
  • The invention discloses a high reliability analyte detection device, including: a bottom case; a sensor, assembled on the bottom case, includes a signal output portion and a detection portion, and the signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case, is provided with at least two first electrical connection ends insulated from each other; a transmitter, fastened with the bottom case, is provided with at least two second electrical connection ends which are insulated from each other and are corresponding to the first electrical connection ends; and one elastic member contacted with the signal output portion.
  • According to an aspect of the present invention, the second electrical connection ends are metal contact pins.
  • According to an aspect of the present invention, the signal output portion is disposed on the top of the elastic member, and one first electrical connection end is directly connected with its corresponding second electrical connection end.
  • According to one aspect of the present invention, the elastic member includes at least two conductive areas and at least one insulation area, and the insulation area is provided between two adjacent conductive areas, and at least two first electrical connection ends, through different conductive areas, are respectively electrically connected to the corresponding second electrical connection ends, and the different first electrical connection ends or the different second electrical connection ends are respectively electrically connected to the different conductive areas.
  • According to an aspect of the present invention, the conductive area and the insulation area expand across the elastic member in the vertical direction, respectively.
  • According to an aspect of the present invention, the signal output portion is embedded inside the elastic member or disposed at the bottom of the elastic member.
  • According to an aspect of the present invention, different first electrical connection ends are provided on different parts of the signal output portion which are independent of each other and do not interfere with each other.
  • According to an aspect of the present invention, the signal output portion is embedded inside the elastic member, and the embedding heights of different parts of the signal output portion in the elastic member are not exactly the same.
  • According to an aspect of the present invention, each part of the signal output portion is embedded inside the elastic member, or disposed on the top of the elastic member, or disposed at the bottom of the elastic member.
  • According to an aspect of the present invention, the number of the first electrical connection end and the number of the second electrical connection end are both three.
  • According to an aspect of the present invention, the bottom case further includes a sensor base where the signal output portion and the elastic member is disposed, and the signal output portion has a shape of a polyline or an arc toward the top of the sensor base.
  • Compared with the prior art, the technical solution of the present invention has the following advantages:
  • In the high reliability analyte detection device disclosed in the present invention, a sensor, assembled on the bottom case, includes a signal output portion and a detection portion, and the signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case, is provided with at least two first electrical connection ends insulated from each other, and one elastic member contacted with the signal output portion. When the first electrical connection ends and the second electrical connection ends are electrically connected, according to the position of the first electrical connection ends, the elastic member acts as a conductor, a supporter, or a buffer, improving the reliability of the electrical connection, reducing the number of the structures in the device, and avoiding data loss.
  • Furthermore, the elastic member includes at least two conductive areas and at least one insulation area, and the insulation area is provided between two adjacent conductive areas, and at least two first electrical connection ends, through different conductive areas, are respectively electrically connected to the corresponding second electrical connection ends, and the different first electrical connection ends or the different second electrical connection ends are respectively electrically connected to the different conductive areas. An elastic member simultaneously plays the role of electrical conduction and insulation, which not only reduces the number of internal structures of the detection device, but also serves as a buffer.
  • Furthermore, different first electrical connection ends are provided on different parts of the signal output portion which are independent of each other and do not interfere with each other. In the actual manufacturing process, the thickness of each first electrical connection end will be different. When the transmitter is connected to the sensor, the independent and non-interfering first electrical connection ends can reduce or eliminate the effect of poor contact caused by the above thickness difference, which improves the reliability of the electrical connection among the elastic member, the first electrical connection ends and the second connection ends.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a bottom case according to an embodiment of the present invention;
  • FIG. 2 is a schematic diagram of the assembly of a sensor and a bottom case according to an embodiment of the present invention;
  • FIG. 3 is a schematic diagram of a transmitter according to an embodiment of the present invention;
  • FIG. 4 a -FIG. 4 b are schematic diagrams of a elastic member, the first electrical connection ends, and the second electrical connection ends according to an embodiment of the present invention, and FIG. 4 a is a top view, and FIG. 4 b is a side view of the structure in FIG. 4 a;
  • FIG. 4 c is a top view of a elastic member and first electrical connection ends according to another embodiment of the invention;
  • FIG. 4 d -FIG. 4 e are top views of a elastic member, the first electrical connection ends, and the second electrical connection ends according to different embodiments of the invention;
  • FIG. 5 is a schematic diagram of the elastic member and first electrical connection ends and second electrical connection ends according to still another embodiment of the invention;
  • FIG. 6 a -FIG. 6 b are schematic diagrams of the electrical connection position between the second electrical connection ends and the elastic member according to different embodiments of the present invention;
  • FIG. 7 a -FIG. 7 b are schematic diagrams of the electrical connection among the elastic member, the first electrical connection end and the second electrical connection end according to yet another embodiment of the present invention, and FIG. 7 b is a cross-sectional view taken along the section line A-A′ in FIG. 7 a;
  • FIG. 8 a -FIG. 8 b are schematic diagrams of the electrical connection among the elastic member, the first electrical connection end and the second electrical connection end according to yet another embodiment of the present invention, and FIG. 8 b is a cross-sectional view taken along the section line 8-8′ in FIG. 8 a;
  • FIG. 9 a is a schematic diagram of the second electrical connection end according to yet another embodiment of the present invention;
  • FIG. 9 b is a schematic diagram of the elastic member and the signal output portion matched with the second electrical connection end in FIG. 9 a;
  • FIG. 10 is a schematic diagram of the signal output portion disposed on the top of the elastic member according to yet another embodiment of the present invention;
  • FIG. 11 is a schematic diagram of different parts of the signal output portion disposed at different locations of the elastic member according to yet another embodiment of the present invention.
  • DETAILED DESCRIPTION
  • As mentioned above, the body fluid parameter detection device of the prior art is easy to lose detection data, which worsens user experience and brings inconvenience to the patient's life.
  • According to research, it is found that the above-mentioned problems are caused by the multiple conductive components between the transmitter and the sensor, and additional insulation components provided to separate adjacent conductive components. The internal structure of the detection device is complicated and not compact enough, resulting in worse electrical connection.
  • In order to solve this problem, the present invention provides a high reliability analyte detection device. The signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case and one elastic member is contacted with the signal output portion, improving the electrical connection reliability, avoiding data losing, and enhancing the user experience.
  • Various exemplary embodiments of the present invention will now be described in detail with reference to the drawings. The relative arrangement of the components and the steps, numerical expressions and numerical values set forth in the embodiments are not to be construed as limiting the scope of the invention.
  • In addition, it should be understood that, for ease of description, the dimensions of the various components shown in the figures are not necessarily drawn in the actual scale relationship, for example, the thickness, the width, the length or the distance of certain units may be exaggerated relative to other structures.
  • The following description of the exemplary embodiments is merely illustrative, and is not intended to be in any way limiting the invention and its application or use. The techniques, methods and devices that are known to those of ordinary skill in the art may not be discussed in detail, but such techniques, methods and devices should be considered as part of the specification.
  • It should be noted that similar reference numerals and letters indicate similar items in the following figures. Therefore, once an item is defined or illustrated in a drawing, it will not be discussed further in following description of the drawings.
  • FIG. 1 is a schematic diagram of a bottom case 10 according to the embodiment of the present invention.
  • The bottom case 10 is used to assemble the sensor 113 and the transmitter 12. In the embodiment of the present invention, the bottom board of the bottom case 10 is provided with an assembly hole 101 for assisting the installation of the sensor 113, and a first fastening structure 102 is provided around the assembly hole 101 to help fasten the sensor 113 on the bottom case 10. The side wall of the bottom case 10 is further provided with a fastening portion (not labeled) for fixing the transmitter 12.
  • In other embodiments of the present invention, the bottom case 10 may have other different shapes, as long as the condition for fixing the transmitter 12 on the bottom case 10 can be satisfied, which is not specifically limited herein.
  • FIG. 2 is a schematic diagram of the assembly of the sensor 113 and the bottom case 10 according to the embodiment of the invention.
  • There are multiple methods to assemble the sensor 113 on the bottom case 10, which is not specifically limited herein. Preferably, in the embodiment of the present invention, the bottom case 10 includes a sensor base 111. The sensor 113, supported by the sensor base 111, is assembled on the bottom case 10, and the second fastening structure 112 is provided around the sensor base 111. The second fastening structure 112 and the first fastening structure 102 are fastened with each other to install the sensor base 111 in the assembly hole 101, thus assembling the sensor 113 on the bottom case 10.
  • In another embodiment of the present invention, after the sensor 113 is assembled on the bottom case 10, the auxiliary mounting structure of the sensor 113 is removed, which means the sensor 113 is directly assembled on the bottom case 10 without the support of the sensor base 111 or other supporting structures.
  • In other embodiments of the present invention, the sensor 113 may also be assembled on the bottom case 10 using other assembly methods, which is not specifically limited herein.
  • It should be note that in this embodiment of the present invention, the sensor base 111 is also provided with a sealing member 130 and a groove 131 where the sealing member 130 is placed.
  • Referring to FIG. 2 , the sensor 113 includes a signal output portion 113 a and a detection portion 113 b. The signal output portion 113 a needs to be electrically connected to the second electrical connection end 122 of the transmitter 12 to transmit the detection signal to the transmitter 12. The detection portion 113 b is used to penetrate the subcutaneous tissue of the human body to detect the analyte parameter.
  • The signal output portion 113 a is provided with the first electrical connection ends 116 which are insulated from each other. Conventionally, the sensor 113 is further provided with electrodes and/or electrode leads (not labeled here and below) for detecting or transmitting the analyte parameter. The detection signal of the electrode is transmitted through the first electrical connection ends 116.
  • It should be noted that the embodiment of the present invention does not limit the arrangement method of the first electrical connection ends 116 on the signal output portion 113 a. For example, the first electrical connection ends 116 may be disposed on the surface of the signal output portion 113 a or embedded in the signal output portion 113 a.
  • Generally, at least two detection electrodes are provided on the sensor 113, that is, the sensor 113 at least includes a working electrode and a counter electrode. Therefore, in the embodiment of the present invention, at least two first electrical connection ends 116 are provided on the surface of the signal output portion 113 a to be electrically connected to different electrodes. Preferably, in the embodiment of the present invention, the sensor 113 is a three-electrode system. Therefore, the number of the first electrical connection ends 116 is three.
  • As depicted in FIG. 2 , in the embodiment of the present invention, the signal output portion 113 a, which has a shape of a polyline or an arc toward the top of the bottom case, is attached to the surface of the sensor base 111 or embedded in the sensor base 111, which reduces the height of the part of the sensor 113 protruding from the bottom case 10, and thus reduces the thickness of the detection device.
  • In other embodiments of the present invention, the sensor 113 may also have other shapes or forms (such as non-curved), which is not specifically limited herein.
  • FIG. 3 is a schematic diagram of a transmitter 12 according to an embodiment of the present invention.
  • The transmitter 12 is provided with the second electrical connection ends 122 which are insulated from each other. The second electrical connection ends 122 are used to electrically connect with the first electrical connection ends 116, and thus receive the electrical signal from the sensor 113. Therefore, the second electrical connection ends 122 correspond to the first electrical connection ends 116.
  • Here, the correspondence means that these two are equal in number and their positions basically correspond. Obviously, in the embodiment of the present invention, the number of the second electrical connection ends 122 is three, to be compatible with the three-electrode system of the sensor 113.
  • In the embodiment of the present invention, the second electrical connection ends 122 are exposed and protrude from the transmitter case 121. Preferably, in the embodiment of the present invention, the second electrical connection ends 122 are metal contact pins. The small size of the metal contact pins make the internal structure of the detection device more compact, thereby reducing the volume of the detection device.
  • It should be noted that the embodiment of the present invention does not limit the shape and position of the second electrical connection ends 122. In another embodiment of the present invention, the second electrical connection ends are flush with the surface of the transmitter case 121 instead of protruding from it. In still another embodiment of the present invention, the second electrical connection ends 122 are located inside the transmitter case 121, which will be described in detail below. As in yet another embodiment of the present invention, the cross section of the second electrical connection ends is rectangular or circular. In still another embodiment of the present invention, the conductive portion of the second electrical connection ends 122 is coated or plated on the surface of some plugs, or the second electrical connection ends 122 themselves are the plugs. The plugs can be inserted into the same elastic member, which will be described in detail below.
  • FIG. 4 a is a top view of the elastic member, the first electrical connection ends, and the second electrical connection ends according to an embodiment of the present invention. FIG. 4 b is a side view of the elastic member in FIG. 4 a . FIG. 4 c is a top view of a elastic member and first electrical connection ends according to another embodiment of the invention. FIG. 4 d -FIG. 4 e are top views of the elastic member, the first electrical connection ends, and the second electrical connection ends according to other different embodiments of the present invention.
  • Firstly, it should be pointed out that the thin dashed line in FIG. 4 a represents the outline of part of the first electrical connection ends covered by the elastic member, while the thick dashed line represents the outline of part of the signal output portion covered by the elastic member. The thin dashed line and the thick dashed line in the subsequent drawings have the same meanings, which will not be repeated.
  • In the embodiments of the present invention, the elastic member 114, which is contact with the signal output portion 113 a, is disposed in the detection device. Only one elastic member 114 can reduce the number of internal structures of the detection device. In addition, the elastic material will deform after being squeezed, thereby playing a locking role. Therefore, the elastic member 114, as a conductor or as an auxiliary structure at the electrical connection position, can be connected to each other more tightly, thereby improving the reliability of the electrical connection.
  • In one embodiment of the present invention, the signal output portion 113 a is disposed at the bottom of the elastic member 114, and the first electrical connection ends 116 and the corresponding second electrical connection ends 122 are indirectly electrically connected. Here, the bottom of the elastic member 114 refers to a portion of the elastic member 114 close to the skin.
  • The elastic member 114 includes at least two conductive areas 114 a and at least one insulation area 114 b. The conductive area 114 a and the insulation area 114 b are used to perform electrical conduction and electrical insulation, respectively. The conductive area 114 a and the insulation area 114 b cannot be separated from each other, that is, the conductive area 114 a and the insulation area 114 b belong to the whole part of the elastic member 114, respectively.
  • An insulation area 114 b is provided between adjacent conductive areas 114 a. The different first electrical connection ends 116 or the different second electrical connection ends 122 are electrically connected to the different conductive areas 114 a, respectively, thus making any two first electrical connection ends 116 or any two second electrical connection ends 122 insulated from each other.
  • Inside the elastic member 114, the conductive area 114 a and the insulation area 114 b expand across the elastic member 114 in the vertical direction, as shown in FIG. 4 b . Here, the vertical direction refers to the direction from the first electrical connection end 116 to the corresponding second electrical connection end 122, or the current direction between them. After the first electrical connection end 116 and the second electrical connection end 122 are electrically connected, such a design ensures that the elastic member 114 can only conduct electricity in the vertical direction, but not in the longitudinal direction. Therefore, the elastic member 114 is used for electrically connecting the first electrical connection end 116 and the corresponding second electrical connection end 122 while electrically insulating the different first electrical connection ends 116 or the different second electrical connection ends 122. The single elastic member 114 can perform electrical conduction and electrical insulation at the same time, thus reducing the complexity of the internal structure of the detection device, making the internal structure more compact, and improving the electrical connection reliability of the detection device.
  • It should be noted that in other embodiments of the present invention, the conductive area 114 a or the insulation area 114 b may also have a certain inclination, or be arranged inside the elastic member 114 in other directions or manners, which is not specifically limited herein, as long as the above-mentioned conditions of electrical conduction and electrical insulation are satisfied.
  • Referring to FIG. 2 , FIG. 4 a and FIG. 4 b together, preferably, in the embodiment of the present invention, the elastic member 114 has a rectangular structure. The conductive area 114 a and the insulation area 114 b are arranged alternately and both penetrate the elastic member 114. In another embodiment of the present invention, different conductive areas 114 a are arranged within the same insulation area 114 b, that is, are surrounded by one single insulation area 114 b as shown in FIG. 4 d . In still another embodiment of the present invention, the top view of the elastic member 114 may be ring-shaped, as shown in FIG. 4 e . In yet another embodiment of the present invention, the top view of the elastic member 114 may be round.
  • In other embodiments of the present invention, the elastic member 114 may have other shapes, which is not specifically limited herein, as long as the conditions for achieving the above-mentioned functions of the elastic member 114 can be satisfied.
  • Please continue to refer to FIG. 4 a and FIG. 4 b , when the elastic member 114 is electrically connected to the first electrical connection ends 116 and the second electrical connection ends 122 respectively, the insulation area 114 b is located between any two first electrical connection ends 116 which are connected to the elastic member 114. Preferably, in the embodiment of the present invention, the insulation area 114 b spaced between any two first electrical connection ends 116 includes a portion of an insulation area 114 b (as between 116 a and 116 b shown in FIG. 4 a and FIG. 4 b ), or one insulation area 114 b, or more than one insulation area 114 b (as between 116 c and 116 b in FIG. 4 a and FIG. 4 b ). Similarly, the insulation area 114 b spaced between any two second electrical connection ends 122 connected to the elastic member 114 includes a portion of one insulation area 114 b, or one insulation area 114 b, or more than one insulation area 114 b. However, it is obvious that the first electrical connection end and the corresponding second electrical connection end (such as between 116 a and 122 a, 116 b and 122 b, or 116 c and 122 c) share a common part of the conductive area 114 a to achieve the electrical conductivity. The common part of the conductive area includes a portion of one conductive area 114 a (as between 116 c and 122 c in FIG. 4 a and FIG. 4 b ), or one conductive area 114 a, or more than one conductive area 114 a.
  • Referring to FIG. 4 a and FIG. 4 b , those skilled in the art can easily understand that the above-mentioned part of one insulation area or conductive area, one insulation area or conductive area, and more than one insulation area or conductive area only represents the span range of the first electrical connection end or the second electrical connection end in one dimension in the drawings (such as the arrangement direction of the conductive areas).
  • In other embodiments of the present invention, a portion of one insulation area or one conductive area, one insulation area or one conductive area, and more than one insulation area or conductive area may also represent the range in the two-dimensional direction which is covered by the first electrical connection end or the second electrical connection end, as shown in FIG. 4 c . Taking the first electrical connection end as an example, the dotted line in FIG. 4 c represents a partial outline of the first electrical connection ends. Obviously, one first electrical connection end 116 can cover a part of one insulation area or one conductive area, or one insulation area or one conductive area, or more than one insulation area or conductive area.
  • Obviously, when the number of conductive areas or insulation areas between the above structures is large or the range is wide, the reliability of the electrical connection or electrical insulation between the structures will be significantly improved.
  • In the embodiment of the present invention, the material of the elastic member 114 includes elastic plastic, elastic rubber, and the like. The elastic member 114 can obtain better electrical contact while acting as a buffer at the same time. When the material of the elastic member 114 is elastic rubber, the elastic member 114 is a conductive rubber strip which not only performs conduction and insulation, but also works as a buffer.
  • Obviously, when the sensor 113 is a two-electrode system, the number of the first electrical connection ends and the second electrical connection ends are both two. At this time, the elastic member 114 only needs to include two conductive areas 114 a and one insulation area 114 b disposed between the two conductive areas 114 a. That is, two pairs of different first electrical connection ends and second electrical connection ends are electrically connected through different conductive areas 114 a, respectively, to achieve electrical conduction. At the same time, the two first electrical connection ends or the two second electrical connection ends are separated by the insulation area to achieve electrical insulation.
  • Sensors, in other embodiments of the present invention, may also include more electrodes. Therefore, the elastic member 114 includes more conductive areas and insulation areas that are arranged alternately, which makes the electrical connection method more flexible, as shown in FIG. 5 .
  • It should be noted that, in other embodiments of the present invention, the sensor includes at least three electrodes, that is, the signal output portion 113 a is provided with at least three first electrical connection ends. And at least two of the first electrical connection ends, through different electrical conductive area 114 a, are electrically connected to the corresponding second electrical connection ends, of which the connection method and principle are the same as above. In terms of other first electrical connection ends and second electrical connection ends that are not connected to the elastic member 114, the embodiments of the present invention do not limit their connection manner or connection principle. As in an embodiment of the present invention, the sensor is a three-electrode system, in which only the working electrode and the counter electrode are electrically connected to the second electrical connection ends by the corresponding first electrical connection ends through the above-mentioned elastic member, while the reference electrode is connected to the transmitter in other methods.
  • FIG. 6 a -FIG. 6 b are schematic diagrams of the electrical connection position between the second electrical connection ends 122 and the elastic member 114 in different embodiments of the present invention.
  • For ease of labeling and description, the second electrical connection ends 122 and the elastic member 114 in FIG. 6 a and FIG. 6 b will be shown separately.
  • As shown in FIG. 6 a , in the embodiment of the present invention, the second electrical connection ends 122 are protruding metal contact pins with spherical top. Correspondingly, the elastic member 114 is provided with concave portions (not labeled) at the positions where it is connected to the protruding metal contact pins to improve contact and connection. At the same time, the connection between these protruding pins and the concave portions also helps in fixing the position of the elastic member 114, that is, no matter what external force is applied to the detection device, the position of the elastic member 114 is always fixed without any displacement, ensuring that the elastic member 114 performs normally.
  • It should be noted that the elastic member 114 may not include concave portions. When pressed by the protruding metal contact pins, concave portions will be formed on the surface of the elastic member 114 to match the metal contact pins, ensuring the function of electrical connection or electrical insulation.
  • As shown in FIG. 6 b , in another embodiment of the present invention, the second electrical connection ends 122 are disposed inside the transmitter 12. At this time, the elastic member 114 is correspondingly provided with protrusions or square bulges (not labeled), which can enter the interior of the transmitter 12 and be electrically connected to the corresponding second electrical connection ends 122.
  • FIG. 7 a -FIG. 7 b are schematic diagrams of the electrical connection among the elastic member 214, the first electrical connection ends and the second electrical connection ends according to another embodiment of the present invention. FIG. 7 b is a cross-sectional view taken along the section line A-A′ in FIG. 7 a.
  • The three second electrical connection ends 222 a, 222 b, and 222 c of the embodiment of the present invention are electrically connected indirectly to the three first electrical connection ends 216 a, 216 b, and 216 c, respectively. The arrangement of the conductive areas 214 a and the insulation areas 214 b in the elastic member 214 is the same as mentioned above.
  • Preferably, according to FIG. 7 b , in the embodiment of the present invention, the signal output portion 213 a is embedded inside the elastic member 214. Therefore, the three first electrical connection ends 216 a, 216 b, and 216 c are all embedded inside the elastic member 214. In order to fix the position of the sensor, the signal output portion 213 a and the detection portion 231 b are carried by the sensor base 211.
  • In this embodiment of the present invention, the principle and method of electrical connection between the elastic member 214 and the first electrical connection ends or the second electrical connection ends are the same as described above.
  • FIG. 8 a -FIG. 8 b are schematic diagrams of the electrical connection among the elastic member, the first electrical connection ends and the second electrical connection ends according to yet another embodiment of the present invention. FIG. 8 a is a top view. FIG. 8 b is a cross-sectional view taken along the section line B-B′ in FIG. 8 a.
  • In the embodiment of the present invention, different first electrical connection ends are provided on different parts of the signal output portion which are independent of each other and do not interfere with each other. The three first electrical connection ends are all embedded in the conductive area 314 a and/or the insulation area 314 b of the elastic member. As shown in FIG. 8 b , in the embodiment of the present invention, the embedding heights of the first electrical connection ends in the elastic member are not exactly the same.
  • In the actual manufacturing process, the thickness of each first electrical connection end will be different. When the transmitter and the sensor are connected, the independent and non-interfering first electrical connection ends can reduce or eliminate the effect of poor contact caused by the above-mentioned thickness difference, improving the reliability of the electrical connection between the three.
  • Obviously, in other embodiments of the present invention, it is possible that only two out of the three first electrical connection ends are embedded in the elastic member, while the third one is not embedded, or the embedding heights of the first electrical connection ends in the elastic member are exactly the same, which is not specifically limited herein.
  • FIG. 9 a is a schematic diagram of the second electrical connection ends 422 according to yet another embodiment of the present invention. FIG. 9 b is schematic diagram of the elastic member and the signal output end 413 a matched with the second electrical connection ends 422 in FIG. 9 a.
  • The three second electrical connection ends 422 a, 422 b, and 422 c are plugs that protrude from the transmitter case 412. The type of plugs is as described above. Three ports 401 are provided in the elastic member to cooperate with the three second electrical connection ends. The three second electrical connection ends can be respectively inserted into corresponding ports 401.
  • In the embodiment of the present invention, the longitudinal direction of the port 401 is perpendicular to the arrangement direction of the conductive areas 414 a or the insulation areas 414 b. In other embodiments of the present invention, the two directions can be flexibly designed according to requirements. As in one embodiment of the present invention, the longitudinal direction of the port is parallel to the arrangement direction of the conductive areas. The principle and method of electrical connection is the same as mentioned above.
  • FIG. 10 is a schematic diagram of the signal output portion disposed on the top of the elastic member 514 according to yet another embodiment of the present invention.
  • In still another embodiment of the present invention, the signal output portion is disposed on the top of the elastic member 514, that is, the signal output portion is disposed between the elastic member 514 and the second electrical connection ends 522. At this time, the second electrical connection ends 522 are directly electrically connected to the corresponding first electrical connection ends 516. Therefore, the elastic member 514 may be an ordinary elastic member or the above-mentioned elastic member provided with a conductive areas. Preferably, the second electrical connection ends 522 are protruding metal contacts. Since the first electrical connection ends 516 is carried or supported by the elastic member 514, the reliability of the electrical connection between the second electrical connection ends 522 and the first electrical connection ends 516 are high. Similarly, the shape of the elastic member 514 may be consistent with the above, which will not be described here.
  • As mentioned above, the different parts of the signal output portion can be independent of each other and do not interfere with each other. Preferably, in yet another embodiment of the present invention, the three first electrical connection ends 516 are respectively disposed at different parts of the signal output portion. So three different parts of the signal output portion are disposed at different positions of the elastic member. For example, the first electrical connection end 516 b is disposed on the top of the elastic member, and the first electrical connection end 516 a is embedded inside the elastic member 514, while the first electrical connection end 516 c is disposed on the bottom of the elastic member, as shown in FIG. 11 . When there are more independent first electrical connection ends 516, the positions of different first electrical connection ends can be arbitrarily selected according to requirements.
  • In the detection device of prior art, multiple separated conductive components and/or multiple separated insulation components are provided between the transmitter and the sensor, and one component has only one single function, which increases the complexity of the internal structure of the detection device. At the same time, the reliability of the electrical connection between the transmitter and the sensor is poor, which is prone to signal interruption and data loss.
  • In summary, the present invention discloses a high reliability analyte detection device, in which the signal output portion, which has a shape of a polyline or an arc toward the top of the bottom case and one elastic member is contacted with the signal output portion, improving the electrical connection reliability, avoiding data losing, reducing the number of the structures in the device, and enhancing the user experience.
  • While the invention has been described in detail with reference to the specific embodiments of the present invention, it should be understood that it will be appreciated by those skilled in the art that the above embodiments may be modified without departing from the scope and spirit of the invention. The scope of the invention is defined by the appended claims.

Claims (11)

1. A high reliability analyte detection device, characterized in that, comprising:
a bottom case;
a sensor, assembled on the bottom case, wherein the sensor comprises a signal output portion and a detection portion, and the signal output portion, which has a shape of a polyline or an arc toward a top of the bottom case, is provided with at least two first electrical connection ends insulated from each other;
a transmitter, fastened with the bottom case, wherein the transmitter is provided with at least two second electrical connection ends which are insulated from each other and correspond to the first electrical connection ends; and
one elastic member contacted with the signal output portion.
2. A high reliability analyte detection device of claim 1, wherein
the second electrical connection ends are metal contact pins.
3. A high reliability analyte detection device of claim 1, wherein
the signal output portion is disposed on a top of the elastic member, and one of the first electrical connection ends is directly connected with a corresponding second electrical connection end of the second electrical connection ends.
4. A high reliability analyte detection device of claim 1, wherein
the elastic member comprises at least two conductive areas and at least one insulation area, and the insulation area is provided between two adjacent conductive areas of the at least two conductive areas, and the at least two first electrical connection ends, through different conductive areas of the at least two conductive areas, are respectively electrically connected to corresponding second electrical connection ends of the second electrical connection ends, and the first electrical connection ends or the second electrical connection ends are respectively electrically connected to the different conductive areas.
5. A high reliability analyte detection device of claim 4, wherein
the conductive areas and the insulation area expand across the elastic member in a vertical direction, respectively.
6. A high reliability analyte detection device of claim 4, wherein
the signal output portion is embedded inside the elastic member or disposed at a bottom of the elastic member.
7. A high reliability analyte detection device of claim 6, wherein
the first electrical connection ends are provided on different parts of the signal output portion which are independent of each other and do not interfere with each other.
8. A high reliability analyte detection device of claim 7, wherein
the signal output portion is embedded inside the elastic member, and embedding heights of the different parts of the signal output portion in the elastic member are not exactly the same.
9. A high reliability analyte detection device of claim 7, wherein
each of the different parts of the signal output portion is embedded inside the elastic member, or disposed on a top of the elastic member, or disposed at the bottom of the elastic member.
10. A high reliability analyte detection device of claim 1, wherein
a number of the first electrical connection ends and a number of the second electrical connection ends are both three.
11. A high reliability analyte detection device of claim 1, wherein
the bottom case further comprises a sensor base where the signal output portion and the elastic member is disposed, and the signal output portion has a shape of a polyline or an arc toward a top of the sensor base.
US17/800,219 2020-02-20 2020-07-15 High reliability analyte detection device Pending US20230066073A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/075966 WO2021031541A1 (en) 2019-08-19 2020-02-20 Highly integrated analyte detection device
CNPCT/CN2020/075966 2020-02-20
PCT/CN2020/100604 WO2021164185A1 (en) 2019-08-19 2020-07-07 Highly integrated analyte detection device
CNPCT/CN2020/100604 2020-07-07
PCT/CN2020/102017 WO2021164192A1 (en) 2020-02-20 2020-07-15 High reliability analyte detection device

Publications (1)

Publication Number Publication Date
US20230066073A1 true US20230066073A1 (en) 2023-03-02

Family

ID=77275631

Family Applications (3)

Application Number Title Priority Date Filing Date
US17/801,239 Pending US20230068002A1 (en) 2020-02-20 2020-07-07 Highly integrated analyte detection device
US17/800,219 Pending US20230066073A1 (en) 2020-02-20 2020-07-15 High reliability analyte detection device
US18/015,079 Pending US20230210407A1 (en) 2020-07-07 2021-05-31 Body fluid analyte detection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/801,239 Pending US20230068002A1 (en) 2020-02-20 2020-07-07 Highly integrated analyte detection device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/015,079 Pending US20230210407A1 (en) 2020-07-07 2021-05-31 Body fluid analyte detection device

Country Status (4)

Country Link
US (3) US20230068002A1 (en)
EP (3) EP4106627A4 (en)
CN (3) CN113274004B (en)
WO (2) WO2021164192A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220218240A1 (en) * 2019-08-19 2022-07-14 Medtrum Technologies Inc. Sensing device
EP3995163A1 (en) * 2020-11-10 2022-05-11 Fenwal, Inc. Retaining table for fluid processing system

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449774A (en) * 1981-02-05 1984-05-22 Shin-Etsu Polymer Co., Ltd. Electroconductive rubbery member and elastic connector therewith
US4367967A (en) * 1981-06-03 1983-01-11 Preformed Line Marine, Inc. Bending strain relief with bend restricting capability
EP0232444A1 (en) * 1986-02-19 1987-08-19 Yasuo Nakamura A suture needle and its manufacturing processes
JP3145331B2 (en) * 1996-04-26 2001-03-12 日本特殊陶業株式会社 Relay board, method of manufacturing the same, structure including substrate, relay board, and mounting board, connection body of substrate and relay board, and method of manufacturing connection body of relay board and mounting board
US8688188B2 (en) * 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6264476B1 (en) * 1999-12-09 2001-07-24 High Connection Density, Inc. Wire segment based interposer for high frequency electrical connection
US7097637B2 (en) * 2003-08-27 2006-08-29 C. R. Bard, Inc. Safety needle with positive flush
US9247900B2 (en) * 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
EP2335587B1 (en) * 2004-07-13 2014-02-19 DexCom, Inc. Transcutaneous analyte sensor
US7310544B2 (en) * 2004-07-13 2007-12-18 Dexcom, Inc. Methods and systems for inserting a transcutaneous analyte sensor
JP2006318923A (en) * 2006-06-16 2006-11-24 Jsr Corp Conductive rubber sheet, connector using it, electrical inspection jig for circuit board, and manufacturing method of conductive rubber sheet
US7891980B2 (en) * 2008-11-05 2011-02-22 Dialogic Corporation Interconnect device with discrete in-line components
US20100198034A1 (en) * 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
US8932256B2 (en) * 2009-09-02 2015-01-13 Medtronic Minimed, Inc. Insertion device systems and methods
CN201522508U (en) * 2009-11-13 2010-07-07 沁业科技有限公司 Rectangular array conducting module
US10448872B2 (en) * 2010-03-16 2019-10-22 Medtronic Minimed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
EP2552532A1 (en) * 2010-03-24 2013-02-06 Abbott Diabetes Care, Inc. Medical device inserters and processes of inserting and using medical devices
JP5550433B2 (en) * 2010-04-22 2014-07-16 任天堂株式会社 Operating device and information processing system
US20130267812A1 (en) * 2012-04-04 2013-10-10 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
US10548628B2 (en) * 2013-03-15 2020-02-04 Vanderbilt University Steerable surgical needle
TWI518291B (en) * 2013-10-17 2016-01-21 Jjmr Clean Air Solution Tech Services Co Ltd Energy - saving rectification of the windmill diffusion device
US9848779B2 (en) * 2014-02-24 2017-12-26 Medtronic Monitoring, Inc. Separable monitoring device and method
CN203871516U (en) * 2014-02-27 2014-10-08 番禺得意精密电子工业有限公司 Electric connector
CN104887242B (en) * 2014-03-07 2018-08-28 上海移宇科技股份有限公司 Analyte sensing system
CN204121000U (en) * 2014-04-09 2015-01-28 浙江泰德汽车零部件有限公司 A kind of portable inspectiont sensor with radio transmitting device
US10765361B2 (en) * 2015-03-02 2020-09-08 Verily Life Sciences Llc Automated sequential injection and blood draw
MX2018002587A (en) * 2015-09-02 2019-02-07 Metronom Health Inc Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor.
LT3364861T (en) * 2015-10-21 2022-04-25 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
US20170127985A1 (en) * 2015-11-11 2017-05-11 Medtronic Minimed, Inc. Sensor set
GB2545266B (en) * 2015-12-11 2018-08-08 Oval Medical Tech Limited Autoinjector with retracting needle
HUE064082T2 (en) * 2016-01-19 2024-02-28 Hoffmann La Roche Sensor assembly and method for detecting at least one analyte in a body fluid
US10765348B2 (en) * 2016-04-08 2020-09-08 Medtronic Minimed, Inc. Sensor and transmitter product
US20170290535A1 (en) * 2016-04-08 2017-10-12 Medtronic Minimed, Inc. Analyte sensor with indicators
US10765369B2 (en) * 2016-04-08 2020-09-08 Medtronic Minimed, Inc. Analyte sensor
US10413183B2 (en) * 2016-04-08 2019-09-17 Medtronic Minimed, Inc. Insertion device
EP3278729B1 (en) * 2016-08-04 2020-06-24 Roche Diabetes Care GmbH Medical device for detecting at least one analyte in a body fluid
CN106137214A (en) * 2016-08-12 2016-11-23 上海移宇科技股份有限公司 A kind of transcutaneous analyte sensing equipment and installation method thereof
WO2018027940A1 (en) * 2016-08-12 2018-02-15 Medtrum Technologies Inc. Transcutaneous analyte sensing system and methods of installation thereof
CN110418605A (en) * 2017-01-19 2019-11-05 德克斯康公司 Flexible analyte sensor
CN110678117A (en) * 2017-03-01 2020-01-10 梅特罗诺姆保健公司 Analyte sensor and method of manufacturing an analyte sensor
CN207898483U (en) * 2017-05-27 2018-09-25 北京怡唐生物科技有限公司 Dynamic continuous blood sugar monitors the disposable monitoring device sender unit of system
EP3700407A1 (en) * 2017-10-27 2020-09-02 Roche Diabetes Care GmbH A device and a method for detecting at least one analyte in a body fluid of a user
CN208365470U (en) * 2018-07-12 2019-01-11 上海新蕊光电科技有限公司 Casting of electronic device and its applied WiFi light bar controller
KR102200138B1 (en) * 2018-07-31 2021-01-11 주식회사 아이센스 Continuous glucose monitoring system
CN109998555B (en) * 2019-04-30 2023-12-15 苏州百孝医疗科技有限公司 Receptor physiological parameter measurement system
CN109998560B (en) * 2019-04-30 2023-12-22 苏州百孝医疗科技有限公司 Separated power supply dynamic blood glucose monitoring transmitter, system and signal sampling method
CN110584676A (en) * 2019-08-19 2019-12-20 上海移宇科技股份有限公司 Sensing device
CN110881983A (en) * 2019-11-20 2020-03-17 浙江大学 Flexible minimally invasive blood glucose sensor

Also Published As

Publication number Publication date
CN113940670A (en) 2022-01-18
EP4183338A1 (en) 2023-05-24
EP4106612A1 (en) 2022-12-28
US20230068002A1 (en) 2023-03-02
WO2021164192A1 (en) 2021-08-26
EP4106627A4 (en) 2024-05-01
CN113940674B (en) 2024-03-19
EP4106627A1 (en) 2022-12-28
CN113940674A (en) 2022-01-18
CN113940670B (en) 2024-02-23
CN113274004A (en) 2021-08-20
WO2022012186A1 (en) 2022-01-20
CN113274004B (en) 2024-05-14
EP4106612A4 (en) 2024-05-01
EP4183338A4 (en) 2024-08-14
US20230210407A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2021164185A1 (en) Highly integrated analyte detection device
US20230066073A1 (en) High reliability analyte detection device
CN114432537A (en) Paster type drug infusion device
US20240268716A1 (en) Analyte detection device with three-dimensional sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRUM TECHNOLOGIES INC., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YANG, CUIJUN;REEL/FRAME:060863/0606

Effective date: 20220811

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION