US20230020362A1 - Infectious disease vaccines - Google Patents

Infectious disease vaccines Download PDF

Info

Publication number
US20230020362A1
US20230020362A1 US17/737,532 US202217737532A US2023020362A1 US 20230020362 A1 US20230020362 A1 US 20230020362A1 US 202217737532 A US202217737532 A US 202217737532A US 2023020362 A1 US2023020362 A1 US 2023020362A1
Authority
US
United States
Prior art keywords
denv
chikv
zikv
vaccine
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/737,532
Inventor
Giuseppe Ciaramella
Eric Yi-Chun Huang
Kapil Bahl
Tal Zaks
Sunny Himansu
Sayda Mahgoub Elbashir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ModernaTx Inc
Original Assignee
ModernaTx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57834776&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20230020362(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US16/898,268 external-priority patent/US11364292B2/en
Application filed by ModernaTx Inc filed Critical ModernaTx Inc
Priority to US17/737,532 priority Critical patent/US20230020362A1/en
Assigned to MODERNATX, INC. reassignment MODERNATX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELBASHIR, SAYDA MAHGOUB, HIMANSU, Sunny, ZAKS, Tal, HUANG, ERIC YI-CHUN, CIARAMELLA, GIUSEPPE, BAHL, Kapil
Publication of US20230020362A1 publication Critical patent/US20230020362A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/18Togaviridae; Flaviviridae
    • C07K14/1816Flaviviridae, e.g. pestivirus, mucosal disease virus, bovine viral diarrhoea virus, classical swine fever virus (hog cholera virus), border disease virus
    • C07K14/1825Flaviviruses or Group B arboviruses, e.g. yellow fever virus, japanese encephalitis, tick-borne encephalitis, dengue
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1081Togaviridae, e.g. flavivirus, rubella virus, hog cholera virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6056Antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24123Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36123Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Chikungunya virus is a mosquito-borne virus belonging to the Alphavirus genus of the Togaviridae family that was first isolated in 1953 in Africa, where the virus was endemic. Outbreaks occur repeatedly in west, central, and southern Africa and have caused several human epidemics in those areas since that time. The virus is passed to humans by two species of mosquito of the genus Aedes: A. albopictus and A. aegypti . There are several Chikungunya genotypes: Indian Ocean, East/Central/South African (ECSA), Asian, West African, and Brazilian.
  • ECSA East/Central/South African
  • Asian West African
  • CHIKV Chikungunya virus
  • the African strain remains enzootic by cycling between mosquitoes and monkeys, but the Asian strain is transmitted directly between mosquitoes and humans. This cycle of transmission may have allowed the virus to become more pathogenic as the reservoir host was eliminated.
  • CHIKV causes a debilitating disease characterized by fever, headache, nausea, vomiting, fatigue, rash, muscle pain and joint pain. Following the acute phase of the illness, patients develop severe chronic symptoms lasting from several weeks to months, including fatigue, incapacitating joint pain and polyarthritis.
  • CHIKV CHIKV
  • India, Indonesia, Maldives, Vietnamese and Thailand have reported over 1.9 million cases since 2005.
  • human CHIKV epidemics from 2004-2011 have resulted in 1.4-6.5 million reported cases, including a number of deaths.
  • CHIKV remains a public threat that constitutes a major public health problem with severe social and economic impact.
  • CHIKV vaccine Despite significant morbidity and some cases of mortality associated with CHIKV infection and its growing prevalence and geographic distribution, there is currently no licensed CHIKV vaccine or antiviral approved for human use. Several potential CHIKV vaccine candidates have been tested in humans and animals with varying success.
  • Dengue virus is a mosquito-borne ( Aedes aegypti/Aedes albopictus ) member of the family Flaviviridae (positive-sense, single-stranded RNA virus).
  • Dengue virus is a positive-sense RNA virus of the Flavivirus genus of the Flaviviridae family, which also includes West Nile virus, Yellow Fever Virus, and Japanese Encephalitis virus. It is transmitted to humans through Stegomyia aegypti (formerly Aedes ) mosquito vectors and is mainly found in the tropical and semitropical areas of the world, where it is endemic in Asia, the Pacific region, Africa, Latin America, and the Caribbean. The incidence of infections has increased 30-fold over the last 50 years (WHO, Dengue: Guidelines for diagnosis, treatment, prevention, and control (2009)) and Dengue virus is the second most common tropical infectious disease worldwide after malaria.
  • Dengvaxia (CYD-TDV) by Sanofi Pasteur
  • CYD-TDV Dengvaxia
  • Issues with the vaccine include (1) weak protection against DENV1 and DENV2 ( ⁇ 60% efficacy); (2) relative risk of dengue hospitalization among children ⁇ 9 years old (7.5 ⁇ higher than placebo); (3) immunogenicity not sustained after 1-2 years (implying the need for a 4 th dose booster); and (4) lowest efficacy against DENV2, which often causes more severe conditions. This latter point is a major weakness with the Dengvaxia vaccine, signaling the need of a new, more effective vaccine effective against DENV2.
  • Zika virus Zika virus
  • Zika virus is a member of the Flaviviridae virus family and the flavivirus genus. In humans, it causes a disease known as Zika fever. It is related to dengue, yellow fever, West Nile and Japanese encephalitis, viruses that are also members of the virus family Flaviviridae. ZIKV is spread to people through mosquito bites. The most common symptoms of ZIKV disease (Zika) are fever, rash, joint pain, and red eye. The illness is usually mild with symptoms lasting from several days to a week. There is no vaccine to prevent, or medicine to treat, Zika virus.
  • Deoxyribonucleic acid (DNA) vaccination is one technique used to stimulate humoral and cellular immune responses to foreign antigens, such as ZIKV antigens.
  • the direct injection of genetically engineered DNA e.g., naked plasmid DNA
  • this technique comes potential problems, including the possibility of insertional mutagenesis, which could lead to the activation of oncogenes or the inhibition of tumor suppressor genes.
  • RNA vaccine e.g., messenger RNA (mRNA)
  • mRNA messenger RNA
  • the RNA vaccines of the present disclosure may be used to induce a balanced immune response against a single virus or multiple viruses, including Chikungunya virus (CHIKV), Zika Virus (ZIKV) and Dengue virus (DENV), comprising both cellular and humoral immunity, without the associated safety concerns, e.g., risking the possibility of insertional mutagenesis.
  • CHIKV Chikungunya virus
  • ZIKV Zika Virus
  • DEV Dengue virus
  • RNA polynucleotides comprising one or more RNA polynucleotides, e.g., mRNA.
  • the RNA polynucleotide(s) encode a CHIKV antigen, a ZIKV antigen, a DENV antigen, or any combination of two or three of the foregoing (e.g., CHIKV antigen/ZIKV antigen, CHIKV antigen/DENV antigen, ZIKV antigen/DENV antigen, or CHIKV/DENV/ZIKV) on either the same polynucleotide or different polynucleotides.
  • the RNA polynucleotide(s) encode a ZIKV antigen and a DENV antigen, on either the same polynucleotide or different polynucleotides.
  • a CHIKV, DENV and/or ZIKV is intended to encompass each individual virus in the alternative (CHIKV or DENV or ZIKV) as well as the individual combinations of CHIKV and DENV (CHIKV/DENV), CHIKV and ZIKV (CHIKV/ZIKV), ZIKV and DENV (ZIKV/DENV), and CHIKV, DENV and ZIKV (CHIKV/DENV/ZIKV).
  • the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one CHIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one DENV antigenic polypeptide, or a combination of any two or three of the foregoing, and a pharmaceutically acceptable carrier or excipient.
  • the RNA polynucleotides encoding the DENV antigenic polypeptide, the ZIKV antigenic polypeptide and/or the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides.
  • the RNA polynucleotide encoding the DENV antigenic polypeptide, the ZIKV antigenic polypeptide and/or the CHIKV antigenic polypeptide is a poly-cistronic. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.
  • the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient.
  • the RNA polynucleotides encoding the ZIKV antigenic polypeptide and the DENV antigenic polypeptide are mono-cistronic RNA polynucleotides.
  • the RNA polynucleotide encoding the ZIKV antigenic polypeptide and the DENV antigenic polypeptide is a poly-cistronic RNA polynucleotide.
  • the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.
  • the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one ZIKV antigenic polypeptide and at least one CHIKV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient.
  • the RNA polynucleotides encoding the ZIKV antigenic polypeptide and the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides.
  • the RNA polynucleotide encoding the ZIKV antigenic polypeptide and the CHIKV antigenic polypeptide is a poly-cistronic RNA polynucleotide.
  • the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.
  • the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one DENV antigenic polypeptide and at least one CHIKV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient.
  • the RNA polynucleotides encoding the DENV antigenic polypeptide and the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides.
  • the RNA polynucleotide encoding the DENV antigenic polypeptide and the CHIKV antigenic polypeptide is a poly-cistronic RNA polynucleotide.
  • the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.
  • the at least one RNA polynucleotide in some embodiments, encodes two or more CHIKV antigenic polypeptides, two or more ZIKV antigenic polypeptides or two or more DENV antigenic polypeptides.
  • the at least one RNA polynucleotide, e.g., mRNA in some embodiments, encodes two or more CHIKV antigenic polypeptides, two or more ZIKV antigenic polypeptides and two or more DENV antigenic polypeptides.
  • the at least one RNA polynucleotide e.g., mRNA
  • the at least one RNA polynucleotide encodes two or more ZIKV antigenic polypeptides and two or more DENV antigenic polypeptides.
  • the at least one RNA polynucleotide, e.g., mRNA encodes two or more ZIKV antigenic polypeptides and two or more CHIKV antigenic polypeptides.
  • the at least one RNA polynucleotide, e.g., mRNA encodes two or more CHIKV antigenic polypeptides and two or more DENV antigenic polypeptides.
  • the CHIKV antigenic polypeptide may be a Chikungunya structural protein or an antigenic fragment or epitope thereof.
  • the DENV antigenic polypeptide may be a Dengue virus (DENV) structural protein or an antigenic fragment or epitope thereof.
  • the ZIKV antigenic polypeptide may be a Zika virus (ZIKV) structural protein (e.g., polyprotein) or an antigenic fragment or epitope thereof.
  • the antigenic polypeptide is a CHIKV structural protein or an antigenic fragment thereof.
  • a CHIKV structural protein may be an envelope protein (E), a 6K protein, or a capsid (C) protein.
  • the CHIKV structural protein is an envelope protein selected from E1, E2, and E3.
  • the CHIKV structural protein is E1 or E2.
  • the CHIKV structural protein is a capsid protein.
  • the antigenic polypeptide is a fragment or epitope of a CHIKV structural protein.
  • At least one antigenic polypeptide is a ZIKV polyprotein. In some embodiments, at least one antigenic polypeptide is a ZIKV structural polyprotein. In some embodiments, at least one antigenic polypeptide is a ZIKV nonstructural polyprotein.
  • At least one antigenic polypeptide is a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.
  • At least one antigenic polypeptide is a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.
  • the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein, a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein, and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.
  • the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein.
  • the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.
  • the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.
  • the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.
  • the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.
  • the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.
  • the at least one antigenic polypeptide comprises a combination of any two or more of a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.
  • the at least one ZIKV antigenic polypeptide is fused to signal peptide having a sequence set forth as SEQ ID NO: 125, 126, 128 or 131.
  • the signal peptide is fused to the N-terminus of the at least one ZIKV antigenic polypeptide.
  • the antigenic polypeptide comprises two or more CHIKV structural proteins.
  • the two or more CHIKV structural proteins are envelope proteins.
  • the two or more CHIKV structural proteins are E1 and E2.
  • the two or more CHIKV structural proteins are E1 and E3.
  • the two or more CHIKV structural proteins are E2 and E3.
  • the two or more CHIKV structural proteins are E1, E2, and E3.
  • the two or more CHIKV structural proteins are envelope and capsid proteins.
  • the two or more CHIKV structural proteins are E1 and C.
  • the two or more CHIKV structural proteins are E2 and C.
  • the two or more CHIKV structural proteins are E3 and C. In some embodiments, the two or more CHIKV structural proteins are E1, E2, and C. In some embodiments, the two or more CHIKV structural proteins are E1, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E2, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E1, E2, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E1, 6K, and E2. In some embodiments, the two or more CHIKV structural proteins are E2, 6K, and E3. In some embodiments, the two or more CHIKV structural proteins are E1, 6K, and E3.
  • the two or more CHIKV structural proteins are E1, E2, E3, 6K, and C.
  • the antigenic polypeptide comprises the CHIKV structural polyprotein comprising C, E3, E2, 6K, and E1.
  • the antigenic polypeptide is a fragment or epitope of two or more CHIKV structural proteins or a fragment or epitope of the polyprotein.
  • the at least one antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity.
  • the at least one CHIKV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity.
  • the at least one DENV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, 162-298 and has membrane fusion activity.
  • the at least one ZIKV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • the at least one antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity.
  • the at least one CHIKV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity.
  • the at least one DENV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity.
  • the at least one ZIKV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • the at least one antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity.
  • the at least one CHIKV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity.
  • the at least one DENV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity.
  • the at least one ZIKV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • the at least one antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity.
  • the at least one CHIKV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity.
  • the at least one DENV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • the at least one antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity.
  • the at least one CHIKV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity.
  • the at least one DENV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity.
  • the at least one ZIKV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • the at least one antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity.
  • the at least one CHIKV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity.
  • the at least one DENV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity.
  • the at least one ZIKV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • the at least one antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity.
  • the at least one CHIKV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity.
  • the at least one DENV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity.
  • the at least one ZIKV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • the at least one antigenic polypeptides encode an antigenic polypeptide having an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide is codon optimized mRNA.
  • the at least one antigenic polypeptide has an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide has less than 80% identity to wild-type mRNA sequence.
  • the at least one antigenic polypeptide has an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide has greater than 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.
  • the DENV antigen is a concatemeric DENV antigen.
  • the DENV concatemeric antigen comprises between 2-100 DENV peptide epitopes connected directly to one another or interspersed by linkers.
  • the DENV vaccine's peptide epitopes are T cell epitopes and/or B cell epitopes.
  • the DENV vaccine's peptide epitopes comprise a combination of T cell epitopes and B cell epitopes.
  • at least one of the peptide epitopes of the DENV vaccine is a T cell epitope.
  • At least one of the peptide epitopes of the DENV vaccine is a B cell epitope.
  • the T cell epitope of the DENV vaccine comprises between 8-11 amino acids.
  • the B cell epitope of the DENV vaccine comprises between 13-17 amino acids.
  • the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the nucleotide sequences of Tables 1-4, 13, 15, 31, 34 or 38, or any one of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).
  • the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the CHIKV nucleotide sequences of SEQ ID NO: 1-13.
  • the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the DENV nucleotide sequences of SEQ ID NO: 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212.
  • the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the ZIKV nucleotide sequences of SEQ ID NO: 67-134.
  • the RNA polynucleotide comprises a polynucleotide sequence derived from an Asian strain, Brazilian strain, West African strain, ECSA strain, and Indian Ocean strain of Chikungunya.
  • At least one antigenic polypeptide is a ZIKV envelope protein.
  • At least one antigenic polypeptide is a Spondweni virus Polyprotein.
  • At least one antigenic polypeptide is a polyprotein obtained from ZIKV strain MR 766, ACD75819 or SPH2015.
  • At least one antigenic polypeptide has an amino acid sequence of any one of the sequences listed in Table 32.
  • At least one antigenic polypeptide has at least 95% identity to an antigenic polypeptide having an amino acid sequence of any one of the sequences listed in Table 32.
  • the at least one RNA polynucleotide encodes at least one antigenic polypeptide having a sequence of listed in Table 31.
  • the at least one RNA polynucleotide encodes at least one protein variant having at least 95% identity to an antigenic polypeptide having a sequence of listed in Table 31.
  • Tables herein provide National Center for Biotechnology Information (NCBI) accession numbers of interest.
  • NCBI National Center for Biotechnology Information
  • an amino acid sequence of Table X refers to an amino acid sequence identified by one or more NCBI accession numbers listed in Table X.
  • Each of the amino acid sequences, and variants having greater than 95% identity to each of the amino acid sequences encompassed by the accession numbers of Table X are included within the constructs of the present disclosure.
  • At least one RNA polynucleotide encodes an antigenic polypeptide having at least 90% identity to an amino acid sequence of Table 32 or 33 Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 95% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 96% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity.
  • At least one RNA polynucleotide encodes an antigenic polypeptide having at least 97% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 98% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 99% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having 95-99% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity.
  • At least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and is codon optimized mRNA.
  • At least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has less than 75%, 85% or 95% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence.
  • At least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 40-85%, 50-85%, 60-85%, 30-85%, 70-85%, 75-85%, or 80-85% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.
  • At least one RNA polynucleotide is encoded by a nucleic acid having at least 90% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 95% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 96% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 97% identity to a nucleic acid sequence of Table 31.
  • At least one RNA polynucleotide is encoded by a nucleic acid having at least 98% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 99% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having 95-99% identity to a nucleic acid sequence of Table 31.
  • At least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 75%, 85% or 95% identity to a wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence.
  • At least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 40-85%, 50-85%, 60-85%, 30-85%, 70-85%, 75-85% or 80-85% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.
  • At least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and having at least 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.
  • At least one RNA polynucleotide encodes an antigenic polypeptide that attaches to cell receptors.
  • At least one RNA polynucleotide encodes an antigenic polypeptide that causes fusion of viral and cellular membranes.
  • At least one RNA polynucleotide encodes an antigenic polypeptide that is responsible for binding of the ZIKV to a cell being infected.
  • Some embodiments of the present disclosure provide a CHIKV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a CHIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV vaccine includes a 5′ terminal cap.
  • Some embodiments of the present disclosure provide a DENV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a DENV antigenic polypeptides, in which the RNA polynucleotide of the DENV vaccine includes a 5′ terminal cap.
  • Some embodiments of the present disclosure provide a ZIKV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a ZIKV antigenic polypeptides, in which the RNA polynucleotide of the ZIKV vaccine includes a 5′ terminal cap.
  • Some embodiments of the present disclosure provide a CHIKV/DENV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV, DENV, and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV, DENV, and ZIKV RNA vaccine includes a 5′ terminal cap.
  • Some embodiments of the present disclosure provide a DENV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of DENV and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the DENV, and ZIKV RNA vaccine includes a 5′ terminal cap.
  • Some embodiments of the present disclosure provide a CHIKV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV and ZIKV RNA vaccine includes a 5′ terminal cap.
  • a CHIKV/DENV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV and DENV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV and DENV RNA vaccine includes a 5′ terminal cap.
  • the 5′ terminal cap is 7mG(5′)ppp(5′)NlmpNp.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the ZIKV RNA vaccine includes at least one chemical modification.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/DENV/ZIKV combination RNA vaccine includes at least one chemical modification.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/DENV combination RNA vaccine includes at least one chemical modification.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/ZIKV combination RNA vaccine includes at least one chemical modification.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the DENV/ZIKV combination RNA vaccine includes at least one chemical modification.
  • the chemical modification is selected from pseudouridine, N1-methylpseudouridine, 2-thiouridine, 4′-thiouridine, 5-methylcytosine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine, 5-methyluridine, and 2′-O-methyl uridine.
  • the RNA polynucleotide e.g., mRNA including at least one chemical modification further includes a 5′ terminal cap.
  • the 5′ terminal cap is 7mG(5′)ppp(5′)NlmpNp.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, and at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification.
  • 100% of the uracil in the open reading frame have a chemical modification.
  • the chemical modification is in the 5-position of the uracil.
  • the chemical modification is a N1-methyl pseudouridine.
  • the RNA polynucleotide of the RNA vaccine is formulated in a lipid nanoparticle (LNP) carrier.
  • the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid.
  • the lipid nanoparticle carrier comprising a molar ratio of about 20-60% cationic lipid: 5-25% non-cationic lipid: 25-55% sterol; and 0.5-15% PEG-modified lipid.
  • the cationic lipid is an ionizable cationic lipid.
  • the non-cationic lipid is a neutral lipid.
  • the sterol is a cholesterol.
  • the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319).
  • the lipid nanoparticle has a polydispersity value of less than 0.4. In some embodiments, the lipid nanoparticle has a net neutral charge at a neutral pH. In some embodiments, the lipid nanoparticle has a mean diameter of 50-200 nm.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized.
  • Some embodiments of the present disclosure provide methods of inducing an antigen specific immune response in a subject, comprising administering to the subject a combination RNA vaccine in an amount effective to produce an antigen specific immune response against CHIKV, against DENV, against ZIKV, against CHIKV and DENV, against CHIKV and ZIKV, against DENV and ZIKV, or against CHIKV, DENV and ZIKV.
  • an antigen specific immune response comprises a T cell response.
  • an antigen specific immune response comprises a B cell response.
  • an antigen specific immune response comprises both a T cell response and a B cell response.
  • a method of producing an antigen specific immune response involves a single administration of the vaccine. In other embodiments, the method further comprises administering to the subject a second dose or a booster dose of the vaccine. In other embodiments the method comprises administering more than one dose of the vaccine, for example, 2, 3, 4 or more doses of the vaccine. In some embodiments, the vaccine is administered to the subject by intradermal or intramuscular injection.
  • vaccines such as any of the vaccines described herein, for use in a method of inducing an antigen specific immune response in a subject, the method comprising administering the vaccine to the subject in an effective amount to produce an antigen specific immune response.
  • CHIKV, DENV or ZIKV RNA vaccines and CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV or CHIKV/DENV/ZIKV combination RNA vaccines in the manufacture of a medicament for use in a method of inducing an antigen specific immune response in a subject, the method comprising administering the vaccine to the subject in an amount effective to produce an antigen specific immune response.
  • a method of preventing or treating a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV infection comprising administering to a subject any of the vaccines described herein.
  • a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject.
  • an anti-CHIKV, an anti-DENV, an anti-ZIKV, an anti-CHIKV/anti-DENV, an anti-CHIKV/anti-ZIKV, an anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 5 times relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased 2-10 times relative to a control.
  • control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered a combination (or any other) vaccine.
  • control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV, vaccine.
  • control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine.
  • the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, or anti-
  • the effective amount is a dose equivalent to an at least 4-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, or anti-
  • the effective amount is a dose equivalent to an at least 10-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, or anti-
  • the effective amount is a dose equivalent to an at least 100-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, or anti
  • the effective amount is a dose equivalent to an at least 1000-fold reduction in the standard of care dose of a recombinant CHIKV/DENV/ZIKV, or DENV/ZIKV, protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombin
  • the effective amount is a dose equivalent to a 2-1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, or anti
  • the effective amount is a total dose of 50-1000 ⁇ g. In some embodiments, the effective amount is a total dose of 100 ⁇ g. In some embodiments, the effective amount is a dose of 25 ⁇ g administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 ⁇ g administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 ⁇ g administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 ⁇ g administered to the subject a total of two times.
  • a method of inducing an antigen specific immune response in a subject including administering to a subject the CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine in an effective amount to produce an antigen specific immune response in a subject.
  • anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control.
  • an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased at least 5 times relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control.
  • the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased 2-10 times relative to a control.
  • control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered CHIKV/DENV/ZIKV, or DENV/ZIKV, vaccine.
  • control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine.
  • the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, or anti-
  • the effective amount is a dose equivalent to an at least 4-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV anti
  • the effective amount is a dose equivalent to an at least 10-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-DENV, anti-CHI
  • the effective amount is a dose equivalent to an at least 100-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, or anti
  • the effective amount is a dose equivalent to an at least 1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, or anti
  • the effective amount is a dose equivalent to a 2-1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine
  • an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV/anti-ZI
  • the effective amount is a total dose of 50-1000 ⁇ g. In some embodiments, the effective amount is a total dose of 100 ⁇ g. In some embodiments, the effective amount is a dose of 25 ⁇ g administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 ⁇ g administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 ⁇ g administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 ⁇ g administered to the subject a total of two times.
  • a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine which includes a signal peptide linked to a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein.
  • the signal peptide is a IgE signal peptide.
  • the signal peptide is an IgE HC (Ig heavy chain epsilon-1) signal peptide.
  • CHIKV CHIKV/DENV
  • CHIKV/DENV/ZIKV vaccine a nucleic acid encoding CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine which includes at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding a signal peptide linked to a CHIKV, DENV, and/or ZIKV antigenic peptide.
  • RNA ribonucleic acid
  • the CHIKV, DENV, and/or ZIKV antigenic peptide is a CHIKV, DENV, and/or ZIKV envelope protein.
  • the signal peptide is a IgE signal peptide. In some embodiments, the signal peptide is an IgE HC (Ig heavy chain epsilon-1) signal peptide. In some embodiments, the signal peptide has the sequence MDWTWILFLVAAATRVHS (SEQ ID NO: 126). In some embodiments, the signal peptide is an IgGI ⁇ signal peptide. In some embodiments, the signal peptide has the sequence METPAQLLFLLLLWLPDTTG (SEQ ID NO: 125).
  • the combination vaccine is a CHIKV/DENV/ZIKV, CHIKV/DENV, CHIKV/ZIKV, and/or DENV/ZIKV vaccine.
  • FIG. 1 A shows a schematic depiction of the post-translational process of CHIKV structural proteins.
  • FIG. 1 B shows a schematic depiction of the E1/E2 heterodimer that associates as a trimeric spike on the CHIKV viral surface.
  • FIG. 2 shows a phylogenetic tree of chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins. E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus are shown on the right.
  • CAR Central African republic
  • ECSA East/Central/South Africa.
  • FIG. 3 shows CHIKV envelope protein detection of lysate in HeLa cells 16 hours post-transfection.
  • FIG. 4 A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.
  • FIG. 4 B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.
  • FIG. 4 C is a graph showing the health scores of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.
  • FIG. 5 A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.
  • FIG. 5 B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.
  • FIG. 5 C is a graph showing the health scores of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.
  • FIG. 6 A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • FIG. 6 B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • FIG. 6 A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • 6 C is a graph showing the health scores of AG129 mice vaccinated with a single 2 ⁇ g dose or two 2 ⁇ g doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • FIG. 7 shows the study design, schedule of injection/bleeding, readout, and survival data for the 2 ⁇ g dose study of the CHIKV E1, CHIKV E2, and CHIKV E1/E2/E3/6K/C vaccines.
  • FIG. 8 A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.
  • FIG. 8 B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.
  • FIG. 8 C is a graph showing the health scores of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.
  • FIG. 9 A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.
  • FIG. 9 B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.
  • FIG. 9 C is a graph showing the health scores of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.
  • FIG. 10 A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • FIG. 10 B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • FIG. 10 A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • 10 C is a graph showing the health scores of AG129 mice vaccinated with a single 10 ⁇ g dose or two 10 ⁇ g doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • FIG. 11 shows the study design, schedule of injection/bleeding, readout, and survival data for the 10 ⁇ g dose study of the CHIKV E1, CHIKV E2, and CHIKV C-E3-E2-6K-E1 vaccines.
  • FIG. 12 shows the results of an in vitro transfection of mRNA encoded CHIKV structural proteins. Protein detection in HeLa cell lysate 16 h post transfection is detected.
  • FIGS. 13 A and 13 B are schematics of an exemplary DENV peptide epitope.
  • the polypeptide of FIG. 13 A includes two or more epitopes.
  • the epitopes can be of the same sequence or different sequence and can be all T-cell epitopes, all B-cell epitopes or a combination of both.
  • the schematic of FIG. 13 B shows the peptide epitope with various end units for enhancing MHC processing of the peptides.
  • FIG. 14 is a schematic of a dengue viral genome including structural and nonstructural components.
  • FIG. 15 shows exemplary dengue peptide epitopes identified using a database screen.
  • FIGS. 16 A- 16 C show Dengue Virus MHC I T cell epitopes.
  • FIGS. 17 A- 17 C show Dengue Virus MHC II T cell epitopes.
  • FIG. 18 is a graph depicting the results of an ELISPOT assay of dengue-specific peptides.
  • FIG. 19 is a graph depicting the results of an ELISPOT assay of dengue-specific peptides.
  • FIG. 20 is a schematic of a bone marrow/liver/thymus (BLT) mouse and data on human CD8 T cells stimulated with Dengue peptide epitope.
  • BLT bone marrow/liver/thymus
  • FIG. 21 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus DAPI was performed. The arrows indicate V5-MHC1 colocalization (bottom right).
  • FIG. 22 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus DAPI was performed. The arrows indicate regions where V5 preferentially colocalizes with MHC1 and not with Mitotracker.
  • FIG. 23 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus Dapi was performed. V5 has homogeneous cytoplasmic distribution preferentially colocalizes with MHC1 and not with Mitotracker.
  • FIGS. 24 A and 24 B shows the results of an Intracellular Cytokine Staining assay performed in PBMC cells.
  • FIG. 25 shows a schematic of a genomic polyprotein obtained from Zika virus, Flaviridiaie.
  • the ZIKV genome encodes a polyprotein with three structural proteins (capsid (C), premembrane/membrane (prM), and envelope (E, a glycosylation motif previously associated with virulence)), and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5).
  • the polyprotein may be cleaved by several host peptidase or proteases to generate structural or functional proteins for the virus. The respective cleavage sites of the peptidases or proteases are indicated by arrows.
  • FIG. 26 A shows a schematic of a ZIKV vaccine that comprises a RNA polynucleotide encoding a signal peptide fused to Zika prM protein fused to Zika E protein.
  • FIG. 26 B shows a schematic of a ZIKV vaccine that comprises a RNA polynucleotide encoding a signal peptide fused to Zika E protein. The cleavage junction is located between the signal peptide and the Zika prM protein and is conserved between Dengue and Zika.
  • FIG. 27 shows a sequence alignment of currently circulating Zika Virus strains.
  • FIG. 28 shows fluorescent staining of non-reduced mammalian cell lysates.
  • Tube 1 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with secondary antibody only (negative control).
  • Tube 2 contains lysed cell precipitate obtained from untransfected 293T cells and stained with anti-ZIKV human serum (1:20) and goat anti-human Alexa Fluor 647 (negative control).
  • Tube 3 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with anti-ZIKV human serum (1:20) and goat anti-human Alexa Fluor 647.
  • Tube 4 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with anti-ZIKV human serum (1:200) and goat anti-human Alexa Fluor 647.
  • the antibodies in anti-ZIKV human serum can detect non-reduced proteins expressed by prME mRNA constructs.
  • FIG. 29 shows a histogram indicating intracellular detection of ZIKA prME protein using human anti-ZIKV serum.
  • FIGS. 30 A- 30 B show the results of detecting prME protein expression in mammalian cells with fluorescence-activated cell sorting (FACS) using a flow cytometer. Cells expressing prME showed higher fluorescence intensity when stained with anti-ZIKV human serum.
  • FACS fluorescence-activated cell sorting
  • FIG. 31 shows a graph of neutralizing titers from Balb/c mice immunized with ZIKV mRNA vaccine encoding prME.
  • FIG. 32 shows negative stain images for Hela samples.
  • FIG. 33 A shows a reducing SDS-PAGE gel of Zika VLP.
  • FIG. 33 B shows a graph of neutralizing titers obtained from Balb/c mice immunized with a ZIKV mRNA vaccine.
  • FIG. 34 A shows FACS analyses of cells expressing DENV2 prMEs using different antibodies against Dengue envelope protein. Numbers in the upper right corner of each plot indicate mean fluorescent intensity.
  • FIG. 34 B shows a repeat of staining in triplicate and in two different cell lines (HeLa and 293T).
  • FIG. 35 shows an in vitro antigen presentation assays using OVA (peptide epitope of ovalbumin) multitopes to test different DENV mRNA vaccine construct configurations.
  • OVA peptide epitope of ovalbumin
  • FIG. 36 is a graph showing the kinetics of OVA peptide presentation in Jawsii cells. All mRNAs tested are formulated in MC3 lipid nanoparticles.
  • FIG. 37 is a graph showing the Mean Fluorescent Intensity (MFI) of antibody binding to DENV-1, 2, 3, and 4 prME epitopes presented on the cell surface.
  • MFI Mean Fluorescent Intensity
  • FIGS. 38 A- 38 D are graphs showing the design and the results of a challenge study in AG129 mice.
  • FIG. 38 A shows the immunization, challenge, and serum collection schedules.
  • FIG. 38 B shows the survival of the AG129 mice challenged with Dengue D2Y98P virus after being immunized with the indicated DENV mRNA vaccines. All immunized mice survived 11 days post infection, while the unimmunized (control) mice died.
  • FIGS. 38 C and 38 D show the weight loss of the AG129 mice post infection. Vaccine 1, 7, 8, or 9 correspond to DENV vaccine construct 22, 21, 23, or 24 of the present disclosure, respectively.
  • FIG. 39 is a graph showing the results of an in vitro neutralization assay using serum from mice immunized with the DENV mRNA vaccines in FIGS. 39 A- 39 D .
  • FIGS. 40 A- 40 I are graphs showing the results of a challenge study in AG129 mice. The challenge study design is shown in Table 40.
  • FIGS. 40 A- 40 F show the survival, weight loss, and heath score of the AG129 mice challenged with D2Y98P virus after being immunized with the DENV mRNA vaccine groups 1-12 in Table 40.
  • FIGS. 40 G- 40 I show the survival, weight loss, and heath score of the AG129 mice challenged with D2Y98P virus after being immunized with the DENV mRNA vaccine groups 13-19 in Table 40.
  • FIG. 41 is a negative-stain electron microscopy image of the virus-like particles (VLPs) assembled from the antigens (prME) encoded by the DENV mRNA vaccines.
  • DENV mRNA vaccine constructs 21-24 in Table 38 were tested.
  • Construct 23 is the vaccine construct used by Sanofi in its DENV vaccines.
  • Constructs 21, 22, and 24 produced more uniform VLPs, suggesting that these VLPs may be more superior in their immunogenicity than the VLPs produced from construct 23.
  • FIG. 42 A shows the survival curve of mice groups 1 ⁇ 4 and 7-9 challenged on day 56 post immunization.
  • FIG. 42 B shows the survival curve of mice groups 10-16 challenged on day 112 post immunization. Survival curves were plotted as “percent survival” versus “days post infection.” See also Table 45 for survival percentage.
  • FIGS. 43 A- 43 B are graphs showing the weight changes post challenge in AG129 mice immunized with CHIKV mRNA vaccines.
  • FIG. 43 A shows the weight change of mice groups 1-4 and 7-9 challenged on day 56 post immunization.
  • FIG. 43 B shows the weight changes of mice groups 10-16 challenged on day 112 post immunization.
  • Initial weights were assessed on individual mice on study Day 0 and daily thereafter. The mean percent weights for each group compared to their percent weight on Day 0 (baseline) were plotted against “days post-infection”. Error bars represent the standard deviation (SD).
  • FIGS. 44 A- 44 B are graphs showing the post challenge heath scores of AG129 mice immunized with CHIKV mRNA vaccines.
  • FIG. 44 A shows the health scores of mice groups 1-4 and 7-9 challenged on day 56 post immunization.
  • FIG. 44 B shows the health score of mice groups 10-16 challenged on day 112 post immunization. The mean health scores for each group were plotted against “days post infection” and error bars represent the SD. Mean health scores were calculated based on observations described in Table 5.
  • FIGS. 45 A- 45 C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 1-4 and 7-9) 28 days post immunization with CHIKV mRNA vaccines.
  • FIG. 45 A shows the serum antibody titers against CHIKV E1 protein.
  • FIG. 45 B shows the serum antibody titers against CHIKV E2 protein.
  • FIG. 45 C shows the serum antibody titers against CHIKV lysate.
  • FIGS. 46 A- 46 C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 28 days post immunization with CHIKV mRNA vaccine.
  • FIG. 45 A shows the serum antibody titers against CHIKV E1 protein.
  • FIG. 46 B shows the serum antibody titers against CHIKV E2 protein.
  • FIG. 46 C shows the serum antibody titers against CHIKV lysate.
  • FIGS. 47 A- 47 C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 56 days post immunization with CHIKV mRNA vaccine.
  • FIG. 47 A shows the serum antibody titers against CHIKV E1 protein.
  • FIG. 47 B shows the serum antibody titers against CHIKV E2 protein.
  • FIG. 47 C shows the serum antibody titers against CHIKV lysate.
  • FIGS. 48 A- 48 C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 112 days post immunization with CHIKV mRNA vaccine.
  • FIG. 48 A shows the serum antibody titers against CHIKV E1 protein.
  • FIG. 48 B shows the serum antibody titers against CHIKV E2 protein.
  • FIG. 48 C shows the serum antibody titers against CHIKV lysate.
  • FIG. 49 shows different antigens based on the Chikungunya structural protein from three different genotypes.
  • FIG. 50 shows a set of graphs depicting results of an ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 ⁇ g or 2 ⁇ g at 28 days post immunization.
  • FIG. 51 shows a set of graphs depicting results of an ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 ⁇ g or 2 ⁇ g at 28 days post immunization.
  • the two panels depict different studies.
  • FIG. 52 is a graph depicting comparison of ELISA titers from the data of FIG. 50 to survival in the data of FIG. 51 left panel.
  • FIG. 53 shows a set of graphs depicting efficacy results in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 ⁇ g (left panels), 2 ⁇ g (middle panels) or 0.4 ⁇ g (right panels) at 56 days (top panels) or 112 days (bottom panels) post immunization.
  • FIG. 54 shows a set of graphs depicting amount of neutralizing antibody produced in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 ⁇ g, 2 ⁇ g, or 0.4 ⁇ g at 56 days post immunization.
  • FIG. 55 shows a set of graphs depicting binding antibody produced in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 ⁇ g, 2 ⁇ g, or 0.4 ⁇ g at 56 days post immunization (top panels) and the corresponding correlation between binding and neutralizing antibodies (bottom panels).
  • FIG. 56 shows a set of graphs depicting amount of neutralizing antibody produced in A129 mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 ⁇ g, 2 ⁇ g, or 0.4 ⁇ g at 56 days post immunization against three different strains of CHIKV, African-Senegal (left panel), La Reunion (middle panel) and CDC CAR (right panel).
  • FIG. 57 shows a graph depicting neutralizing antibodies against CHIKV S27 strain.
  • FIG. 58 is a graph depicting antibody titer against CHIKV lysate post 3rd vaccination 10 with the mRNA vaccine in Sprague Dawley rats.
  • FIG. 59 shows a set of graphs depicting antibody titers following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1).
  • FIG. 60 shows a set of plots depicting cytokine secretion and T-cell activation following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13).
  • FIGS. 61 A- 61 B show a set of graphs depicting CD8+ T cell activation following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13).
  • Embodiments of the present disclosure provide RNA (e.g., mRNA) vaccines that are useful for vaccinating against one or multiple viruses.
  • the vaccines, including combination vaccines, of the invention encode antigens from chikungunya virus (CHIKV), Zika virus (ZIKV), Dengue virus (DENV), or any combination of two or three of the foregoing viruses.
  • a balanced immune response comprising both cellular and humoral immunity, can be generated against CHIKV, against DENV, against ZIKV, against CHIKV and DENV, against CHIKV and ZIKV, against DENV and ZIKV, or against CHIKV, DENV and ZIKV, using the constructs of the invention without many of the risks associated with DNA vaccines and live attenuated vaccines.
  • the various RNA vaccines disclosed herein produced surprising efficacy in animal models of Chikungunya infection, and Dengue infection, the results of which are discussed in detail in the Examples section.
  • RNA polynucleotide vaccines having an open reading frame encoding for a variety of Chikungunya antigens produced significant immunity, whereas traditional Chikungunya vaccines have not (e.g. attenuated chikungunya viruses).
  • the CHIKV RNA polynucleotide vaccines disclosed herein encoding either CHIKV-E1, CHIKV-E2 or CHIKV-C-E3-E2-6K-E1 demonstrated a survival rate of 60%-100% after two administrations.
  • two injections of CHIKV E1 mRNA vaccine provided nearly full protection against infection when administered intramuscularly (IM) (60% survival) or intradermally (ID) (80% survival).
  • IM intramuscularly
  • ID intradermally
  • CHIKV E2 mRNA vaccine or CHIKV C-E3-E2-6K-E1 vaccine provided full protection (100% survival) against infection when administered via IM or ID.
  • a single injection (no booster dose) of CHIKV C-E3-E2-6K-E1 vaccine provided full protection (100% survival) against infection when administered via IM or ID.
  • DENV RNA vaccines and ZIKV vaccines are also disclosed herein as well as combination DENV and CHIKV, CHIKV and ZIKV, and DENV and ZIKV vaccines.
  • the combination vaccines of CHIKV, DENV and ZIKV, DENV and ZIKV, CHIKV and ZIKV, or CHIKV and DENV can provide a means for protecting against two or more viral infections in a single vaccine.
  • Chikungunya virus is a small (about 60-70 nm-diameter), spherical, enveloped, positive-strand RNA virus having a capsid with icosahedral symmetry.
  • the virion consists of an envelope and a nucleocapsid.
  • the virion RNA is infectious and serves as both genome and viral messenger RNA.
  • the genome is a linear, ssRNA(+) genome of 11,805 nucleotides which encodes for two polyproteins that are processed by host and viral proteases into non-structural proteins (nsP1, nsP2, nsP3, and RdRpnsP4) necessary for RNA synthesis (replication and transcription) and structural proteins (capsid and envelope proteins C, E3, E2, 6K, and E1) which attach to host receptors and mediate endocytosis of virus into the host cell. ( FIG. 1 ).
  • the E1 and E2 glycoproteins form heterodimers that associate as 80 trimeric spikes on the viral surface covering the surface evenly.
  • the envelope glycoproteins play a role in attachment to cells.
  • the capsid protein possesses a protease activity that results in its self-cleavage from the nascent structural protein. Following its cleavage, the capsid protein binds to viral RNA and rapidly assembles into icosahedric core particles. The resulting nucleocapsid eventually associates with the cytoplasmic domain of E2 at the cell membrane, leading to budding and formation of mature virions.
  • E2 is an envelope glycoprotein responsible for viral attachment to target host cell, by binding to the cell receptor.
  • E2 is synthesized as a p62 precursor which is processed at the cell membrane prior to virion budding, giving rise to an E2-E1 heterodimer.
  • the C-terminus of E2 is involved in budding by interacting with capsid proteins.
  • E1 is an envelope glycoprotein with fusion activity, which fusion activity is inactive as long as E1 is bound to E2 in the mature virion. Following virus attachment to target cell and endocytosis, acidification of the endosome induces dissociation of the E1/E2 heterodimer and concomitant trimerization of the E1 subunits.
  • the E1 trimer is fusion active and promotes the release of the viral nucleocapsid in the cytoplasm after endosome and viral membrane fusion.
  • E3 is an accessory protein that functions as a membrane translocation/transport signal for E1 and E2.
  • 6K is another accessory protein involved in virus glycoprotein processing, cell permeabilization, and the budding of viral particles. Like E3, it functions as a membrane transport signal for E1 and E2.
  • CHIKV structural proteins have been shown to be antigenic, which proteins, fragments, and epitopes thereof are encompassed within the invention.
  • a phylogenetic tree of Chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins shows key envelope glycoprotein E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus .
  • E1 and E2 membrane-bound and secreted forms of E1 and E2 as well as the full length polyprotein antigen (C-E3-E2-6K-E1), which retains the protein's native conformation.
  • the different Chikungunya genotypes, strains and isolates can also yield different antigens, which are functional in the constructs of the invention.
  • Chikungunya genotypes Indian Ocean, East/Central/South African (ECSA), Asian, West African, and the Brazilian isolates (ECSA/Asian).
  • ECSA Indian Ocean, East/Central/South African
  • Asian Asian
  • West African Asian
  • Brazilian isolates ECSA/Asian
  • Dengue virus is a mosquito-borne ( Aedes aegypti/Aedes albopictus ) member of the family Flaviviridae (positive-sense, single-stranded RNA virus).
  • the dengue virus genome encodes ten genes and is translated as a single polypeptide which is cut into ten proteins: the capsid, envelope, membrane, and nonstructural proteins (NS1, NS2A, NS2B, NS3, SN4A, NS4B, and NS5 proteins).
  • the virus' main antigen is DENe, which is a component of the viral surface and is thought to facilitate the binding of the virus to cellular receptors (Heinz et al., Virology. 1983, 126:525).
  • the dengue virus E protein includes a serotype-specific antigenic determinant and determinants necessary for virus neutralization (Mason et al., J Gen Virol. 1990, 71:2107-2114).
  • the dendritic cells After inoculation, the dendritic cells become infected and travel to lymph nodes. Monocytes and macrophages are also targeted shortly thereafter. Generally, the infected individual will be protected against homotypic reinfection for life; however, the individual will only be protected against other serotypes for a few weeks or months (Sabin, Am J Trop Med Hyg. 1952, 1:30-50). In fact, DHF/DSS is generally found in children and adults infected with a dengue virus serotype differing from their respective primary infection. Thus, it is necessary to develop a vaccine that provides immunity to all four serotypes.
  • Zika virus is enveloped and icosahedral with a non-segmented, single-stranded, positive sense RNA genome. It is most closely related to the Spondweni virus and is one of the two viruses in the Spondweni virus Glade.
  • the virus was first isolated in 1947 from a rhesus monkey in the Zika Forest of Kenya, Africa and was isolated for the first time from humans in 1968 in Nigeria. From 1951 through 1981, evidence of human infection was reported from other African countries such as Philippine, Indonesia, Central African Republic, Sierra Leone and Gabon, as well as in parts of Asia including India, Malaysia, the Philippines, Thailand, Vietnam and Indonesia.
  • mosquitoes It is transmitted by mosquitoes and has been isolated from a number of species in the genus Aedes—Aedes aegypti, Aedes africanus, Aedes apicoargenteus, Aedes furcifer, Aedes luteocephalus and Aedes vitattus . Studies show that the extrinsic incubation period in mosquitoes is about 10 days.
  • the vertebrate hosts of the virus include monkeys and humans.
  • the Zika virus was first linked with newborn microcephaly during the Brazil Zika virus outbreak.
  • 2017. there were 2,782 cases of microcephaly compared with 147 in 2014 and 167 in 2013.
  • the Brazilian Health Ministry has reported 4783 cases of suspected microcephaly as of January 30, an increase of more than 1000 cases from a week earlier. Confirmation of many of the recent cases is pending, and it is difficult to estimate how many cases went unreported before the recent awareness of the risk of virus infections.
  • Zika virus has also been associated with an increase in a rare condition known as Guillain-Barre, where the infected individual becomes essentially paralyzed.
  • a rare condition known as Guillain-Barre where the infected individual becomes essentially paralyzed.
  • French Polynesia 74 patients which had had Zika symptoms—out of them, 42 were diagnosed as Guillain-Barré syndrome.
  • GBS Guillain-Barré syndrome
  • ZIKV vaccines comprise RNA (e.g., mRNA) encoding a ZIKV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with ZIKV polyprotein and having ZIKV polyprotein activity, respectively.
  • the ZIKV polyprotein is cleaved into capsid, precursor membrane, envelope, and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5).
  • a protein is considered to have ZIKV polyprotein activity if, for example, it facilitates the attachment of the viral envelope to host receptors, mediates internalization into the host cell, and aids in fusion of the virus membrane with the host's endosomal membrane.
  • the RNA vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need.
  • the RNA vaccines may be utilized to treat and/or prevent a CHIKV, DENV and/or ZIKV infection of various genotypes, strains, and isolates.
  • the RNA vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-viral therapeutic treatments. While not wishing to be bound by theory, it is believed that the RNA vaccines, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation as the RNA vaccines co-opt natural cellular machinery. Unlike traditional vaccines which are manufactured ex vivo and may trigger unwanted cellular responses, the RNA vaccines are presented to the cellular system in a more native fashion.
  • Vaccines comprising at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one DENV antigenic polypeptide, at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide, or at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide.
  • RNA ribonucleic acid
  • the vaccine including combination vaccines, comprise at least one RNA polynucleotide, e.g., mRNA, having an open reading frame encoding two or more different CHIKV antigenic polypeptides, ZIKV antigenic polypeptides, and/or DENV antigenic polypeptides (e.g., two, three, four, five or more different antigenic polypeptides).
  • RNA polynucleotide e.g., mRNA
  • DENV antigenic polypeptides e.g., two, three, four, five or more different antigenic polypeptides.
  • the combination vaccine comprises at least one RNA polynucleotide having an open reading frame encoding a CHIKV antigenic polypeptide or epitope, a ZIKV antigenic polypeptide or epitope, a DENV antigenic polypeptide or epitope, or a combination of any two or three of the forgoing.
  • nucleic acid in its broadest sense, includes any compound and/or substance that comprises a polymer of nucleotides. These polymers are referred to as polynucleotides.
  • polypeptide refers to full-length proteins, protein fragments, variants, and epitopes.
  • an RNA polynucleotide e.g., mRNA
  • a combination vaccine encodes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 antigenic polypeptides.
  • an RNA polynucleotide comprises 30 to 12,000 or more nucleotides.
  • a polynucleotide may include 30 to 100, 101 to 200, 200 to 500, 200 to 1000, 200 to 1500, 200 to 2000, 200 to 3000, 500 to 1000, 500 to 1500, 500 to 2000, 500 to 3000, 1000 to 1500, 1000 to 2000, 1000 to 3000, 1500 to 3000, 1500 to 4000, 1500 to 5000, 2000 to 3000, 2000 to 4000, 2000 to 5000, 5000 to 7500, 7500 to 10,000, or 10,000 to 12,000 nucleotides.
  • the combination vaccine comprises at least one RNA polynucleotide having an open reading frame encoding a Chikungunya structural protein or an antigenic fragment or an antigenic epitope thereof.
  • the RNA polynucleotide has an open reading frame encoding a Chikungunya envelope and/or capsid antigenic polypeptide selected from a CHIKV E1, E2, E3, 6K, and capsid (C) antigenic polypeptide.
  • the RNA polynucleotide has an open reading frame encoding any combination of CHIKV E1, E2, E3, 6K, and capsid (C) antigenic polypeptides, for example, a combination selected from CHIKV E1 and E2 antigens, CHIKV E1 and E3 antigens, CHIKV E2 and E3 antigens, CHIKV E1, E2, and E3 antigens, CHIKV E1, E2, E3, and C antigens, CHIKV E1, E2, and 6K antigens, CHIKV E2, E3 and 6K antigens, CHIKV E1, E3, and 6K antigens, and CHIKV E1, E2, E3, 6K, and C antigens.
  • C capsid
  • Some embodiments of the present disclosure provide DENV vaccines that include at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide DENV vaccines that include at least one RNA polynucleotide having an open reading frame encoding two or more DENV antigenic polypeptides or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide DENV vaccines that include two or more RNA polynucleotides having an open reading frame encoding two or more DENV antigenic polypeptides or immunogenic fragments or epitopes thereof. The one or more DENV antigenic polypeptides may be encoded on a single RNA polynucleotide or may be encoded individually on multiple (e.g., two or more) RNA polynucleotides.
  • the at least one RNA polynucleotide may encode at least one DENV antigenic polypeptide.
  • the dengue viral antigenic polypeptide is an intact dengue virus peptide or other large antigen (i.e. greater than 25 amino acids in length).
  • the at least one RNA polynucleotide encodes a DENV capsid protein or immunogenic fragment or epitope thereof.
  • the at least one RNA polynucleotide encodes a DENV envelope protein or immunogenic fragment or epitope thereof.
  • the at least one RNA polynucleotide encodes a DENV membrane protein or immunogenic fragment or epitope thereof.
  • the at least one RNA polynucleotide encodes a DENV nonstructural protein or immunogenic fragment or epitope thereof. Large gene segments in non-structural genes, in particular may be used for antigens.
  • the DENV non-structural protein is selected from NS1, NS2A, NS2B, NS3, SN4A, NS4B, and NS5 proteins, or immunogenic fragments or epitopes thereof.
  • the DENV non-structural protein is NS3.
  • the at least one RNA polynucleotide encodes DENe, which is a component of the viral surface and is thought to facilitate the binding of the virus to cellular receptors.
  • the at least one RNA polynucleotide encodes a DENV polypeptide from a DENV serotype selected from DENV-1, DENV-2, DENV-3, and DENV-4.
  • the DENV polypeptide may be one or more polypeptides encoded by SEQ ID NO: 15 (DENV1), SEQ ID NO: 17 (DENV2), SEQ ID NO: 19 (DENV3), and SEQ ID NO: 21 (DENV4),
  • the DENV polypeptide is a polypeptide found in SEQ ID NO: 14 (DENV1), SEQ ID NO: 16 (DENV2), SEQ ID NO: 18 DENV3), and/or SEQ ID NO: 20 (DENV4).
  • the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 23 or an immunogenic fragment or epitope thereof. In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 26 or an immunogenic fragment or epitope thereof.
  • the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 29 or an immunogenic fragment or epitope thereof. In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 32 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 25 (or is encoded by SEQ ID NO: 24) or a fragment thereof.
  • the DENV RNA polynucleotide comprises SEQ ID NO: 28 (or is encoded by SEQ ID NO: 27) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 31 (or is encoded by SEQ ID NO: 30) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 34 (or is encoded by SEQ ID NO: 33) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO:23 or an immunogenic fragment or epitope thereof.
  • the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 26 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 29 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 32 or an immunogenic fragment or epitope thereof.
  • Dengue virus (DENV) vaccine antigens comprise at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide.
  • the DENV antigenic polypeptide is longer than 25 amino acids and shorter than 50 amino acids.
  • polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing.
  • a polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer.
  • Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides.
  • polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.
  • the antigen is a concatemeric peptide antigen composed of multiple peptide epitopes.
  • a RNA polynucleotide of a DENV vaccine encodes 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9 or 9-10 antigenic polypeptides.
  • a RNA polynucleotide of a DENV vaccine encodes at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 antigenic polypeptides. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes at least 100 or at least 200 antigenic polypeptides. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes 1-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, 1-50, 1-100, 2-50 or 2-100 antigenic polypeptides.
  • the IEDB is a free database offering searching of experimental data characterizing antibody and T cell epitopes and assisting in the prediction and analysis of B cell and T cell epitopes.
  • the Dengue peptides identified by database may be confirmed using peptides in MHC allele binding assays (such as those described in the Examples provided herein) and/or restimulation assays during the acute phase of Dengue infection (i.e. Day 7).
  • MHC allele binding assays such as those described in the Examples provided herein
  • restimulation assays during the acute phase of Dengue infection (i.e. Day 7).
  • Some embodiments of the present disclosure provide ZIKV vaccines, including combination vaccines, that include at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide or an immunogenic fragment or epitope thereof.
  • RNA ribonucleic acid
  • Some embodiments of the present disclosure provide ZIKV combination vaccines that include at least one RNA polynucleotide having an open reading frame encoding two or more ZIKV antigenic polypeptides or an immunogenic fragment or epitope thereof.
  • Some embodiments of the present disclosure provide ZIKV vaccines that include two or more RNA polynucleotides having an open reading frame encoding two or more ZIKV antigenic polypeptides or immunogenic fragments or epitopes thereof.
  • the one or more ZIKV antigenic polypeptides may be encoded on a single RNA polynucleotide or may be encoded individually on multiple (e.g., two or more) RNA polynucleotides.
  • the at least one RNA polynucleotide may encode at least one ZIKV antigenic polypeptide.
  • the ZIKV antigenic polypeptide is an intact ZIKV peptide or other large antigen (i.e. greater than 25 amino acids in length).
  • the at least one RNA polynucleotide encodes a ZIKV polypeptide from a ZIKV serotype selected from MR 766, SPH2015 or ACD75819.
  • the ZIKV polypeptide may be one or more polypeptides encoded by SEQ ID NO: 67-134 or an immunogenic fragment or epitope thereof.
  • Zika virus (ZIKV) vaccines comprising at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide.
  • the ZIKV antigenic polypeptide is longer than 25 amino acids and shorter than 50 amino acids.
  • polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing.
  • a polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer.
  • Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides.
  • polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.
  • the generation of antigens that elicit a desired immune response (e.g. B and/or T-cell responses) against targeted polypeptide sequences in vaccine development remains a challenging task.
  • the invention involves technology that overcome hurdles associated with vaccine development. Through the use of the technology of the invention, it is possible to tailor the desired immune response by selecting appropriate T or B cell epitopes which, by virtue of the fact that they are processed intra-cellularly, are able to be presented more effectively on MHC-1 or MHC-2 molecules (depending on whether they are T or B-cell epitope, respectively).
  • the invention involves the generation of DENV concatemers of epitopes (particularly T cell epitopes) preferably interspersed with cleavage sites by proteases that are abundant in Antigen Presenting Cells (APCs). These methods mimic antigen processing and may lead to a more effective antigen presentation than can be achieved with peptide antigens.
  • APCs Antigen Presenting Cells
  • RNA is delivered intra-cellularly and expresses the epitopes in proximity to the appropriate cellular machinery for processing the epitopes such that they will be recognized by the appropriate immune cells. Additionally, a targeting sequence will allow more specificity in the delivery of the peptide epitopes.
  • the DENV mRNA vaccine of the invention is a poly-epitopic RNA.
  • Poly-epitopes consist of strings of epitopes on the same mRNA.
  • the RNA sequences that code for the peptide epitopes may be interspersed by sequences that code for amino acid sequences recognized by proteolytic enzymes, by other linkers or linked directly.
  • a concatemeric peptide as used herein is a series of at least two peptide epitopes linked together to form the propeptide.
  • a concatemeric peptide is composed of 3 or more, 4 or more, 5 or more 6 or more 7 or more, 8 or more, 9 or more peptide epitopes.
  • the concatemeric peptide is composed of 1000 or less, 900 or less, 500 or less, 100 or less, 75 or less, 50 or less, 40 or less, 30 or less, 20 or less or 100 or less peptide epitopes.
  • a concatemeric peptide has 3-100, 5-100, 10-100, 15-100, 20-100, 25-100, 30-100, 35-100, 40-100, 45-100, 50-100, 55-100, 60-100, 65-100, 70-100, 75-100, 80-100, 90-100, 5-50, 10-50, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 100-150, 100-200, 100-300, 100-400, 100-500, 50-500, 50-800, 50-1,000, or 100-1,000 peptide epitopes.
  • An epitope also known as an antigenic determinant, as used herein is a portion of an antigen that is recognized by the immune system in the appropriate context, specifically by antibodies, B cells, or T cells.
  • Epitopes include B cell epitopes and T cell epitopes.
  • B-cell epitopes are peptide sequences which are required for recognition by specific antibody producing B-cells.
  • B cell epitopes refer to a specific region of the antigen that is recognized by an antibody.
  • the portion of an antibody that binds to the epitope is called a paratope.
  • An epitope may be a conformational epitope or a linear epitope, based on the structure and interaction with the paratope.
  • a linear, or continuous, epitope is defined by the primary amino acid sequence of a particular region of a protein.
  • the sequences that interact with the antibody are situated next to each other sequentially on the protein, and the epitope can usually be mimicked by a single peptide.
  • Conformational epitopes are epitopes that are defined by the conformational structure of the native protein. These epitopes may be continuous or discontinuous, i.e. components of the epitope can be situated on disparate parts of the protein, which are brought close to each other in the folded native protein structure.
  • T-cell epitopes are peptide sequences which, in association with proteins on APC, are required for recognition by specific T-cells. T cell epitopes are processed intracellularly and presented on the surface of APCs, where they are bound to MHC molecules including MHC class II and MHC class I.
  • the present disclosure in some aspects, relates to a process of developing T or B cell concatemeric epitopes or concatemeric epitopes composed of both B and T cell epitopes.
  • epitopes can be identified using a free or commercial database (Lonza Epibase, antitope for example). Such tools are useful for predicting the most immunogenic epitopes within a target antigen protein.
  • the selected peptides may then be synthesized and screened in human HLA panels, and the most immunogenic sequences are used to construct the mRNA polynucleotides encoding the concatemeric antigens.
  • the peptide epitope may be any length that is reasonable for an epitope.
  • the peptide epitope is 9-30 amino acids.
  • the length is 9-22, 9-29, 9-28, 9-27, 9-26, 9-25, 9-24, 9-23, 9-21, 9-20, 9-19, 9-18, 10-22, 10-21, 10-20, 11-22, 22-21, 11-20, 12-22, 12-21, 12-20, 13-22, 13-21, 13-20, 14-19, 15-18, or 16-17 amino acids.
  • the optimal length of a peptide epitope may be obtained through the following procedure: synthesizing a V5 tag concatemer-test protease site, introducing it into DC cells (for example, using an RNA Squeeze procedure, lysing the cells, and then running an anti-V5 Western blot to assess the cleavage at protease sites.
  • the RNA polynucleotide of the combination vaccine is encoded by at least one nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), and 48-66 (ZIKV). In some embodiments, the RNA polynucleotide of the combination vaccine is encoded by at least one fragment of a nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), and 48-66 (ZIKV).
  • the RNA polynucleotide of the combination vaccine is encoded by at least one epitope sequence of a nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).
  • the RNA polynucleotide is encoded by any of SEQ ID NO: 1, 5, 10, and 12. In particular embodiments, the RNA polynucleotide is encoded by any of SEQ ID NO: 2, 4, 6 and 11. In particular embodiments, the RNA polynucleotide is encoded by any of SEQ ID NO: 7-9. In a particular embodiment, the RNA polynucleotide is encoded by SEQ ID NO: 3. In a particular embodiment, the RNA polynucleotide is encoded by SEQ ID NO: 13.
  • Nucleic acids may be or may include, for example, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a ⁇ -D-ribo configuration, ⁇ -LNA having an ⁇ -L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino- ⁇ -LNA having a 2′-amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) or chimeras or combinations thereof.
  • RNAs ribonucleic acids
  • DNAs deoxyribonucleic acids
  • TAAs threose nucleic acids
  • GNAs glycol nucle
  • polynucleotides of the present disclosure is or functions as a messenger RNA (mRNA).
  • mRNA messenger RNA
  • the term “messenger RNA” (mRNA) refers to any polynucleotide that encodes at least one polypeptide (a naturally-occurring, non-naturally-occurring, or modified polymer of amino acids) and can be translated to produce the encoded polypeptide in vitro, in vivo, in situ or ex vivo.
  • the basic components of an mRNA molecule include at least one coding region, a 5′ untranslated region (UTR), and a 3′ UTR.
  • the mRNA molecules further includes a 5′ cap.
  • the mRNA further includes a polyA tail.
  • Polynucleotides of the present disclosure may function as mRNA but are distinguished from wild-type mRNA in their functional and/or structural design features which serve to overcome existing problems of effective polypeptide production using nucleic-acid based therapeutics.
  • Antigenic polypeptides (antigens) of the present disclosure may be encoded by polynucleotides translated in vitro, referred to as “in vitro translated” (IVT) polynucleotides.
  • RNA polynucleotides of the present disclosure may be or comprise variant or mutant sequence.
  • polynucleotide variant refers to a nucleotide molecule which differs in its nucleotide sequence from a native, wildtype, or reference sequence.
  • the nucleotide sequence variants may possess substitutions, deletions, and/or insertions at certain positions within the nucleotide sequence, as compared to the corresponding native, wildtype or reference sequence.
  • the nucleotide variants possess at least 80% identity (homology) to a native, wildtype or reference sequence, for example, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity (homology) to a native, wildtype or reference sequence.
  • the RNA polynucleotide is encoded by a nucleic acid sequence having at least 80%-85% sequence identity to any of SEQ ID NO: 1-14 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 86%-90% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).
  • the RNA polynucleotide is encoded by a nucleic acid sequence having at least 91%-95% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 96%-98% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).
  • the RNA polynucleotide is encoded by a nucleic acid sequence having at least 99% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).
  • a polynucleotide of the present disclosure e.g., polynucleotide variants
  • have less than 80% identity (homology) to a native, wildtype or reference sequence for example, less than 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, 60% or less identity (homology) to a native, wildtype or reference sequence.
  • polynucleotide of the invention e.g., polynucleotide variants
  • polynucleotide of the invention have about 65% to about 85% identity to a native, wildtype or reference sequence, e.g., 65%-82%, 67%-81%, or 66%-80% identity to a native, wildtype or reference sequence.
  • Codon optimization methods are known in the art and may be used as provided herein. Codon optimization, in some embodiments, may be used to match codon frequencies in target and host organisms to ensure proper folding; bias GC content to increase mRNA stability or reduce secondary structures; minimize tandem repeat codons or base runs that may impair gene construction or expression; customize transcriptional and translational control regions; insert or remove protein trafficking sequences; remove/add post translation modification sites in encoded protein (e.g.
  • Codon optimization tools, algorithms and services are known in the art. Non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.) and/or proprietary methods. In some embodiments, the open reading frame (ORF) sequence is optimized using optimization algorithms.
  • a codon optimized sequence shares less than 95% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.
  • a codon optimized sequence shares less than 90% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.
  • a codon optimized sequence shares less than 85% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 80% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.
  • a codon optimized sequence shares less than 75% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.
  • a codon optimized sequence shares between 65% and 85% (e.g., between about 67% and about 85% or between about 67% and about 80%) sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.
  • a codon optimized sequence shares between 65% and 75 or about 80% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.
  • RNA polynucleotides of the present disclosure may further comprise sequence comprising or encoding additional sequence, for example, one or more functional domain(s), one or more further regulatory sequence(s), an engineered 5′ cap.
  • the RNA vaccines comprise a 5′UTR element, an optionally codon optimized open reading frame, and a 3′UTR element, a poly(A) sequence and/or a polyadenylation signal wherein the RNA is not chemically modified.
  • RNA e.g., mRNA
  • the combination vaccine of the present disclosure comprise at least one RNA polynucleotide, such as a mRNA (e.g., modified mRNA).
  • mRNA for example, is transcribed in vitro from template DNA, referred to as an “in vitro transcription template.”
  • an in vitro transcription template encodes a 5′ untranslated (UTR) region, contains an open reading frame, and encodes a 3′ UTR and a polyA tail.
  • UTR untranslated
  • a “5′ untranslated region” refers to a region of an mRNA that is directly upstream (i.e., 5′) from the start codon (i.e., the first codon of an mRNA transcript translated by a ribosome) that does not encode a polypeptide.
  • a “3′ untranslated region” refers to a region of an mRNA that is directly downstream (i.e., 3′) from the stop codon (i.e., the codon of an mRNA transcript that signals a termination of translation) that does not encode a polypeptide.
  • An “open reading frame” is a continuous stretch of codons beginning with a start codon (e.g., methionine (ATG)), and ending with a stop codon (e.g., TAA, TAG or TGA) that encodes a polypeptide.
  • a start codon e.g., methionine (ATG)
  • a stop codon e.g., TAA, TAG or TGA
  • a “polyA tail” is a region of mRNA that is downstream, e.g., directly downstream (i.e., 3′), from the 3′ UTR that contains multiple, consecutive adenosine monophosphates.
  • a polyA tail may contain 10 to 300 adenosine monophosphates.
  • a polyA tail may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 adenosine monophosphates.
  • a polyA tail contains 50 to 250 adenosine monophosphates.
  • the poly(A) tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus and translation.
  • a codon optimized RNA may, for instance, be one in which the levels of G/C are enhanced.
  • the G/C-content of nucleic acid molecules may influence the stability of the RNA.
  • RNA having an increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than nucleic acids containing a large amount of adenine (A) and thymine (T) or uracil (U) nucleotides.
  • WO02/098443 discloses a pharmaceutical composition containing an mRNA stabilized by sequence modifications in the translated region. Due to the degeneracy of the genetic code, the modifications work by substituting existing codons for those that promote greater RNA stability without changing the resulting amino acid. The approach is limited to coding regions of the RNA.
  • the Chikungunya antigenic polypeptide is a Chikungunya structural protein.
  • the Chikungunya structural protein can be a CHIKV envelope (E) protein or a CHIKV capsid (C) protein.
  • the Chikungunya structural protein can be a CHIKV E1, E2, E3, 6K, or capsid (C) protein.
  • the Chikungunya structural protein is CHIKV E1.
  • the Chikungunya structural protein is CHIKV E2.
  • the Chikungunya structural protein is CHIKV E3.
  • the Chikungunya structural protein is CHIKV C.
  • the Chikungunya structural protein is CHIKV 6K.
  • the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural proteins selected from E1, E2, E3, 6K, and C.
  • the antigenic polypeptide can comprise the sequence of any combination of CHIKV structural proteins, including, for example, CHIKV E1 and E2; CHIKV E2 and E3; CHIKV E1 and E3; CHIKV E1, E2, and E3; CHIKV E1, E2, E3, and C; CHIKV E1, E2, E3, 6K, and C; CHIKV E1, 6K, E2; CHIKV E2, 6K, E3; CHIKV E1, 6K, E3; and CHIKV E1, E2, E3, and 6K proteins.
  • the Chikungunya antigenic polypeptide comprises the sequence of the Chikungunya structural polyprotein: C-E3-E2-6K-E1.
  • the Chikungunya antigenic polypeptide is a fragment of a Chikungunya structural protein.
  • the Chikungunya structural protein fragment can be a CHIKV envelope (E) protein fragment or a CHIKV capsid (C) protein fragment.
  • the Chikungunya structural protein fragment can be a CHIKV E1, E2, E3, 6K, or capsid (C) protein fragment.
  • the Chikungunya structural protein fragment is CHIKV E1 fragment.
  • the Chikungunya structural protein fragment is CHIKV E2 fragment.
  • the Chikungunya structural protein fragment is CHIKV E3 fragment.
  • the Chikungunya structural protein fragment is a CHIKV C fragment.
  • the Chikungunya structural protein fragment is a CHIKV 6K fragment.
  • the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural protein fragments selected from E1, E2, E3, 6K, and C protein fragments.
  • the antigenic polypeptide can comprise the sequence of any combination of CHIKV structural protein fragments, including, for example, CHIKV E1 and E2 protein fragments; CHIKV E2 and E3 protein fragments; CHIKV E1 and E3 protein fragments; CHIKV E1, E2, and E3 protein fragments; CHIKV E1, E2, E3, and C protein fragments; CHIKV E1, E2, E3, 6K, and C protein fragments; CHIKV E1, 6K, and E2 protein fragments; CHIKV E2, 6K, and E3 protein fragments; CHIKV E1, 6K, and E2 protein fragments; CHIKV E2, 6K, and E3 protein fragments; CHIKV E1, 6K, and E3 protein fragments; and CHIKV E1, E2,
  • the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural proteins in which the proteins are a combination of full-length protein(s) and fragment(s) selected from E1, E2, E3, 6K, and C full-length protein(s) and fragment(s).
  • the Chikungunya antigenic polypeptide may comprise the sequence of any combination of full-length protein(s) and fragment(s) including, for example, CHIKV E1 and E2 full-length protein(s) and fragment(s); CHIKV E2 and E3 full-length protein(s) and fragment(s); CHIKV E1 and E3 full-length protein(s) and fragment(s); CHIKV E1, E2, and E3 full-length protein(s) and fragment(s); CHIKV E1, E2, E3, and C full-length protein(s) and fragments; CHIKV E1, E2, E3, and 6K full-length protein(s) and fragment(s); CHIKV E1, E2, E3, 6K, and C full-length protein(s) and fragment(s); CHIKV E1, 6K, and E2 full-length protein(s) and fragment(s); CHIKV E2, 6K, and E3 full-length protein(s) and fragment(s); and CHIKV E1, 6
  • the Chikungunya antigenic polypeptide comprises the sequence of the Chikungunya structural polyprotein: C-E3-E2-6K-E1 in which the proteins are a combination of full-length protein(s) and fragment(s).
  • the polypeptide antigens of the present disclosure can be one or more full-length CHIKV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof.
  • the CHIKV antigenic polypeptide comprises 10-25 amino acids.
  • the CHIKV antigenic polypeptide comprises 26-50 amino acids.
  • the CHIKV antigenic polypeptide comprises 51-100 amino acids.
  • the CHIKV antigenic polypeptide comprises 101-200 amino acids.
  • the CHIKV antigenic polypeptide comprises 201-400 amino acids.
  • the CHIKV antigenic polypeptide comprises 401-500 amino acids.
  • the CHIKV antigenic polypeptide comprises 501-750 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 2001-4000 amino acids.
  • the polypeptide antigens of the present disclosure can be one or more full-length DENV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof.
  • the DENV antigenic polypeptide comprises 10-25 amino acids.
  • the DENV antigenic polypeptide comprises 26-50 amino acids.
  • the DENV antigenic polypeptide comprises 51-100 amino acids.
  • the DENV antigenic polypeptide comprises 101-200 amino acids.
  • the DENV antigenic polypeptide comprises 201-400 amino acids.
  • the DENV antigenic polypeptide comprises 401-500 amino acids.
  • the DENV antigenic polypeptide comprises 501-750 amino acids.
  • the DENV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 2001-4000 amino acids.
  • the polypeptide antigens of the present disclosure can be one or more full-length ZIKV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof.
  • the ZIKV antigenic polypeptide comprises 10-25 amino acids.
  • the ZIKV antigenic polypeptide comprises 26-50 amino acids.
  • the ZIKV antigenic polypeptide comprises 51-100 amino acids.
  • the ZIKV antigenic polypeptide comprises 101-200 amino acids.
  • the ZIKV antigenic polypeptide comprises 201-400 amino acids.
  • the ZIKV antigenic polypeptide comprises 401-500 amino acids.
  • the ZIKV antigenic polypeptide comprises 501-750 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 2001-4000 amino acids.
  • the antigenic polypeptides include gene products, naturally occurring polypeptides, synthetic or engineered polypeptides, mutant polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing.
  • a polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer.
  • Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides.
  • the term polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.
  • polypeptide variant refers to molecules which differ in their amino acid sequence from a native, wildtype, or reference sequence.
  • the amino acid sequence variants may possess substitutions, deletions, and/or insertions at certain positions within the amino acid sequence, as compared to a native, wildtype, or reference sequence.
  • variants possess at least 50% identity (homology) to a native, wildtype, or reference sequence.
  • variants possess at least 80%, or at least 90% identical (homologous) to a native, wildtype, or reference sequence.
  • Examples of natural variants that are encompassed by the present disclosure include CHIKV, DENV, and ZIKV structural polypeptides from different CHIKV genotypes, lineages, strains, and isolates.
  • a phylogenetic tree of Chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins shows key envelope glycoprotein E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus .
  • There are membrane-bound and secreted forms of E1 and E2 as well as the full length polyprotein antigen, which retains the protein's native conformation.
  • the different Chikungunya genotypes can also yield different antigens, which are functional in the constructs of the invention.
  • Chikungunya genotypes Indian Ocean, East/Central/South African (ECSA), Asian, West African, and the Brazilian isolates (ECSA/Asian).
  • natural variants that are encompassed by the present disclosure include, but is not limited to, CHIKV structural polypeptides from the following strains and isolates: TA53, SA76, UG82, 37997, IND-06, Ross, S27, M-713424, E1-A226V, E1-T98, IND-63-WB1, Gibbs 63-263, TH35, 1-634029, AF15561, IND-73-MHS, 653496, C0392-95, P0731460, MY0211MR/06/BP, SV0444-95, K0146-95, TSI-GSD-218-VR1, TSI-GSD-218, M127, M125, 6441-88, MY003IMR/06/BP, MY002IMR/06/BP, TR206/H804187, MY/06/37348, MY/06/37350, NC/2011-568, 1455-75, RSU1, 0706aT
  • variant mimics are provided.
  • the term “variant mimic” is one which contains at least one amino acid that would mimic an activated sequence.
  • glutamate may serve as a mimic for phosphoro-threonine and/or phosphoro-serine.
  • variant mimics may result in deactivation or in an inactivated product containing the mimic, for example, phenylalanine may act as an inactivating substitution for tyrosine; or alanine may act as an inactivating substitution for serine.
  • “Homology” as it applies to amino acid sequences is defined as the percentage of residues in the candidate amino acid sequence that are identical with the residues in the amino acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. It is understood that homology depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation. By “homologs” as it applies to polypeptide sequences means the corresponding sequence of other species having substantial identity to a second sequence of a second species.
  • Analogs is meant to include polypeptide variants which differ by one or more amino acid alterations, for example, substitutions, additions or deletions of amino acid residues that still maintain one or more of the properties of the parent or starting polypeptide.
  • compositions that are polypeptide based, including variants and derivatives. These include, for example, substitutional, insertional, deletion and covalent variants and derivatives.
  • derivative is used synonymously with the term “variant” but generally refers to a molecule that has been modified and/or changed in any way relative to a reference molecule or starting molecule.
  • substitutional variants when referring to polypeptides are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position. Substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule.
  • conservative amino acid substitution refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity.
  • conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue.
  • conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine.
  • substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions.
  • non-conservative substitutions include the substitution of a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.
  • Features when referring to polypeptide or polynucleotide are defined as distinct amino acid sequence-based or nucleotide-based components of a molecule respectively.
  • Features of the polypeptides encoded by the polynucleotides include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, termini or any combination thereof.
  • domain refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions).
  • site As used herein when referring to polypeptides the terms “site” as it pertains to amino acid based embodiments is used synonymously with “amino acid residue” and “amino acid side chain.” As used herein when referring to polynucleotides the terms “site” as it pertains to nucleotide based embodiments is used synonymously with “nucleotide.” A site represents a position within a peptide or polypeptide or polynucleotide that may be modified, manipulated, altered, derivatized or varied within the polypeptide or polynucleotide based molecules.
  • terminal refers to an extremity of a polypeptide or polynucleotide respectively. Such extremity is not limited only to the first or final site of the polypeptide or polynucleotide but may include additional amino acids or nucleotides in the terminal regions.
  • Polypeptide-based molecules may be characterized as having both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C-terminus (terminated by an amino acid with a free carboxyl group (COOH)).
  • Proteins are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non-covalent forces (multimers, oligomers). These proteins have multiple N- and C-termini. Alternatively, the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.
  • protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of polypeptides of interest.
  • any protein fragment meaning a polypeptide sequence at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical
  • a reference protein 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or greater than 100 amino acids in length.
  • any protein that includes a stretch of 20, 30, 40, 50, or 100 amino acids which are 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% identical to any of the sequences described herein can be utilized in accordance with the disclosure.
  • a polypeptide includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences provided or referenced herein.
  • Reference molecules may share a certain identity with the designed molecules (polypeptides or polynucleotides).
  • identity refers to a relationship between the sequences of two or more peptides, polypeptides or polynucleotides, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between them as determined by the number of matches between strings of two or more amino acid residues or nucleosides. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (e.g., “algorithms”).
  • variants of a particular polynucleotide or polypeptide have at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art.
  • tools for alignment include those of the BLAST suite (Stephen F. Altschul, et al (1997), “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res.
  • a general global alignment technique based on dynamic programming is the Needleman-Wunsch algorithm. More recently a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA) has been developed that purportedly produces global alignment of nucleotide and protein sequences faster than other optimal global alignment methods, including the Needleman-Wunsch algorithm. Other tools are described herein, specifically in the definition of “identity” below.
  • FOGSAA Fast Optimal Global Sequence Alignment Algorithm
  • homology refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules.
  • polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical or similar.
  • homologous necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences).
  • homologous polynucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids.
  • Two protein sequences are considered homologous if the proteins are at least 50%, 60%, 70%, 80%, or 90% identical for at least one stretch of at least 20 amino acids.
  • identity refers to the overall relatedness between polymeric molecules, for example, between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of the percent identity of two polynucleotide sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-identical sequences can be disregarded for comparison purposes).
  • the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence.
  • the nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
  • the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • the percent identity between two nucleotide sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M.
  • the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
  • the percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix.
  • Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference. Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Altschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).
  • the polypeptides further comprise additional sequences or functional domains.
  • the CHIKV polypeptides of the present disclosure may comprise one or more linker sequences.
  • the CHIKV of the present invention may comprise a polypeptide tag, such as an affinity tag (chitin binding protein (CBP), maltose binding protein (MBP), glutathione-S-transferase (GST), SBP-tag, Strep-tag, AviTag, Calmodulin-tag); solubilization tag; chromatography tag (polyanionic amino acid tag, such as FLAG-tag); epitope tag (short peptide sequences that bind to high-affinity antibodies, such as V5-tag, Myc-tag, VSV-tag, Xpress tag, E-tag, S-tag, and HA-tag); fluorescence tag (e.g., GFP).
  • CBP chitin binding protein
  • MBP maltose binding protein
  • GST glutathione-S-transferase
  • the CHIKV of the present invention may comprise an amino acid tag, such as one or more lysines, histidines, or glutamates, which can be added to the polypeptide sequences (e.g., at the N-terminal or C-terminal ends). Lysines can be used to increase peptide solubility or to allow for biotinylation.
  • Protein and amino acid tags are peptide sequences genetically grafted onto a recombinant protein. Sequence tags are attached to proteins for various purposes, such as peptide purification, identification, or localization, for use in various applications including, for example, affinity purification, protein array, western blotting, immunofluorescence, and immunoprecipitation. Such tags are subsequently removable by chemical agents or by enzymatic means, such as by specific proteolysis or intein splicing.
  • amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences.
  • Certain amino acids e.g., C-terminal or N-terminal residues
  • CHIKV vaccines comprising one or multiple RNA (e.g., mRNA) polynucleotides, each encoding a single antigenic polypeptide, as well as vaccines comprising a single RNA polynucleotide encoding more than one antigenic polypeptide (e.g., as a fusion polypeptide).
  • RNA e.g., mRNA
  • a vaccine composition comprising a RNA polynucleotide having an open reading frame encoding a first antigenic polypeptide and a RNA polynucleotide having an open reading frame encoding a second antigenic polypeptide encompasses (a) vaccines that comprise a first RNA polynucleotide encoding a first antigenic polypeptide and a second RNA polynucleotide encoding a second antigenic polypeptide, and (b) vaccines that comprise a single RNA polynucleotide encoding a first and second antigenic polypeptide (e.g., as a fusion polypeptide).
  • RNA vaccines of the present disclosure comprise 2-10 (e.g., 2, 3, 4, 5, 6, 7, 8, 9 or 10), or more, RNA polynucleotides having an open reading frame, each of which encodes a different antigenic polypeptide (or a single RNA polynucleotide encoding 2-10, or more, different antigenic polypeptides).
  • a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein, a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein, and a RNA polynucleotide having an open reading frame encoding a envelope protein.
  • a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein and a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein. In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein and a RNA polynucleotide having an open reading frame encoding a envelope protein.
  • a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein and a RNA polynucleotide having an open reading frame encoding a envelope protein.
  • a RNA polynucleotide encodes an antigenic polypeptide fused to a signal peptide (e.g., SEQ ID NO: 125, 126, 128 or 131).
  • the signal peptide may be fused at the N-terminus or the C-terminus of the antigenic polypeptide.
  • antigenic polypeptides encoded by CHIKV, DENV and/or ZIKV nucleic acids comprise a signal peptide.
  • Signal peptides, comprising the N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and thus universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway.
  • Signal peptides generally include of three regions: an N-terminal region of differing length, which usually comprises positively charged amino acids; a hydrophobic region; and a short carboxy-terminal peptide region.
  • pre-protein nascent precursor protein
  • ER endoplasmic reticulum
  • Signal peptide is not responsible for the final destination of the mature protein, however.
  • Secretory proteins devoid of further address tags in their sequence are by default secreted to the external environment.
  • Signal peptides are cleaved from precursor proteins by an endoplasmic reticulum (ER)-resident signal peptidase or they remain uncleaved and function as a membrane anchor.
  • ER endoplasmic reticulum
  • Signal peptides are cleaved from precursor proteins by an endoplasmic reticulum (ER)-resident signal peptidase or they remain uncleaved and function as a membrane anchor.
  • ER endoplasmic reticulum
  • Proteins encoded by the ZIKV genome e.g., the ZIKV Envelope protein, contain a signal peptide at the N-terminus to facilitate protein targeting to the ER for processing.
  • ER processing produces a mature Envelope protein, wherein the signal peptide is cleaved, typically by a signal peptidase of the host cell.
  • a signal peptide may also facilitate the targeting of the protein to the cell membrane.
  • CHIKV vaccines, DENV vaccines, ZIKV vaccines, CHIKV/DENV vaccines, CHIKV/ZIKV vaccines, ZIKV/DENV vaccines, and CHIKV/DENV/ZIKV vaccines of the present disclosure may comprise, for example, RNA polynucleotides encoding an artificial signal peptide, wherein the signal peptide coding sequence is operably linked to and is in frame with the coding sequence of the CHIKV, DENV and/or ZIKV antigenic polypeptide.
  • CHIKV vaccines, DENV vaccines, ZIKV vaccines, CHIKV/DENV vaccines, CHIKV/ZIKV vaccines, ZIKV/DENV vaccines, and CHIKV/DENV/ZIKV vaccines of the present disclosure in some embodiments, produce an antigenic polypeptide comprising a CHIKV, DENV and/or ZIKV antigenic polypeptide fused to a signal peptide.
  • a signal peptide is fused to the N-terminus of the CHIKV, DENV and/or ZIKV antigenic polypeptide.
  • a signal peptide is fused to the C-terminus of the CHIKV, DENV and/or ZIKV antigenic polypeptide.
  • the signal peptide fused to an antigenic polypeptide is an artificial signal peptide.
  • an artificial signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine is obtained from an immunoglobulin protein, e.g., an IgE signal peptide or an IgG signal peptide.
  • a signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine is an Ig heavy chain epsilon-1 signal peptide (IgE HC SP) having the sequence of: MDWTWILFLVAAATRVHS (SEQ ID NO: 126).
  • a signal peptide fused to a ZIKV antigenic polypeptide encoded by the ZIKV RNA vaccine is an IgG k chain V-III region HAH signal peptide (IgG k SP) having the sequence of METPAQLLFLLLLWLPDTTG (SEQ ID NO: 125).
  • a signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine has an amino acid sequence set forth in SEQ ID NO: 125, 126, 128 or 131.
  • the examples disclosed herein are not meant to be limiting and any signal peptide that is known in the art to facilitate targeting of a protein to ER for processing and/or targeting of a protein to the cell membrane may be used in accordance with the present disclosure.
  • a signal peptide may have a length of 15-60 amino acids.
  • a signal peptide may have a length of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids.
  • a signal peptide may have a length of 20-60, 25-60, 30-60, 35-60, 40-60, 45-60, 50-60, 55-60, 15-55, 20-55, 25-55, 30-55, 35-55, 40-55, 45-55, 50-55, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 15-45, 20-45, 25-45, 30-45, 35-45, 40-45, 15-40, 20-40, 25-40, 30-40, 35-40, 15-35, 20-35, 25-35, 30-35, 15-30, 20-30, 25-30, 15-25, 20-25, or 15-20 amino acids.
  • Non-limiting examples of antigenic polypeptides fused to signal peptides, which are encoded by a ZIKV RNA vaccine of the present disclosure, may be found in Table 31, SEQ ID NO: 48-59.
  • a signal peptide is typically cleaved from the nascent polypeptide at the cleavage junction during ER processing, as illustrated in FIG. 26 .
  • the mature ZIKV antigenic polypeptide produce by a ZIKV RNA vaccine typically does not comprise a signal peptide.
  • the RNA vaccines of the present disclosure comprise at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide that comprises at least one chemical modification.
  • RNA ribonucleic acid
  • RNA polynucleotides as provided herein, are also considered “modified” of they contain amino acid substitutions, insertions or a combination of substitutions and insertions.
  • Polynucleotides e.g., RNA polynucleotides, such as mRNA polynucleotides
  • RNA polynucleotides such as mRNA polynucleotides
  • a particular region of a polynucleotide contains one, two or more (optionally different) nucleoside or nucleotide modifications.
  • a modified RNA polynucleotide e.g., a modified mRNA polynucleotide
  • introduced to a cell or organism exhibits reduced degradation in the cell or organism, respectively, relative to an unmodified polynucleotide.
  • a modified RNA polynucleotide e.g., a modified mRNA polynucleotide
  • introduced into a cell or organism may exhibit reduced immunogenicity in the cell or organism, respectively (e.g., a reduced innate response).
  • Polynucleotides may comprise modifications that are naturally-occurring, non-naturally-occurring or the polynucleotide may comprise a combination of naturally-occurring and non-naturally-occurring modifications.
  • Polynucleotides may include any useful modification, for example, of a sugar, a nucleobase, or an internucleoside linkage (e.g., to a linking phosphate, to a phosphodiester linkage or to the phosphodiester backbone).
  • Polynucleotides e.g., RNA polynucleotides, such as mRNA polynucleotides
  • RNA polynucleotides such as mRNA polynucleotides
  • polynucleotides in some embodiments, comprise non-natural modified nucleotides that are introduced during synthesis or post-synthesis of the polynucleotides to achieve desired functions or properties.
  • the modifications may be present on an internucleotide linkages, purine or pyrimidine bases, or sugars.
  • the modification may be introduced with chemical synthesis or with a polymerase enzyme at the terminal of a chain or anywhere else in the chain. Any of the regions of a polynucleotide may be chemically modified.
  • nucleosides and nucleotides of a polynucleotide e.g., RNA polynucleotides, such as mRNA polynucleotides.
  • a “nucleoside” refers to a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as “nucleobase”).
  • a nucleotide refers to a nucleoside, including a phosphate group.
  • Modified nucleotides may by synthesized by any useful method, such as, for example, chemically, enzymatically, or recombinantly, to include one or more modified or non-natural nucleosides.
  • Polynucleotides may comprise a region or regions of linked nucleosides. Such regions may have variable backbone linkages. The linkages may be standard phosphodiester linkages, in which case the polynucleotides would comprise regions of nucleotides.
  • Modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures.
  • non-standard base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine or uracil. Any combination of base/sugar or linker may be incorporated into polynucleotides of the present disclosure.
  • RNA polynucleotides e.g., RNA polynucleotides, such as mRNA polynucleotides
  • modifications of polynucleotides include, but are not limited to the following: 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine; 2-methylthio-N6-methyladenosine; 2-methylthio-N6-threonyl carbamoyladenosine; N6-glycinylcarbamoyladenosine; N6-isopentenyladenosine; N6-methyladenosine; N6-threonylcarbamoyladeno sine; 1,2′-O-dimethyladenosine; 1-methyladenosine; 2′-O-methyladenosine; 2′-O-ribosyladenosine (phosphate); 2-methyladenosine; 2-methylthio-N6 isopentenyladenosine;
  • the polynucleotide e.g., RNA polynucleotide, such as mRNA polynucleotide
  • the polynucleotide includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.
  • modified nucleobases in the polynucleotide are selected from the group consisting of pseudouridine ( ⁇ ), N1-methylpseudouridine (m1 ⁇ ), 2-thiouridine, 4′-thiouridine, 5-methylcytosine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine
  • the polynucleotide e.g., RNA polynucleotide, such as mRNA polynucleotide
  • the polynucleotide includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.
  • modified nucleobases in the polynucleotide are selected from the group consisting of 1-methyl-pseudouridine (m1 ⁇ ), 5-methoxy-uridine (mo5U), 5-methyl-cytidine (m5C), pseudouridine ( ⁇ ), ⁇ -thio-guanosine and ⁇ -thio-adenosine.
  • the polynucleotide includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.
  • the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises pseudouridine ( ⁇ ) and 5-methyl-cytidine (m5C).
  • the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 1-methyl-pseudouridine (m1 ⁇ ).
  • the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 1-methyl-pseudouridine (m1 ⁇ ) and 5-methyl-cytidine (m5C).
  • the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2-thiouridine (s2U). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2-thiouridine and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises methoxy-uridine (mo5U).
  • the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 5-methoxy-uridine (mo5U) and 5-methyl-cytidine (m5C).
  • the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2′-O-methyl uridine.
  • the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2′-O-methyl uridine and 5-methyl-cytidine (m5C).
  • the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises N6-methyl-adenosine (m6A). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises N6-methyl-adenosine (m6A) and 5-methyl-cytidine (m5C).
  • m6A N6-methyl-adenosine
  • m5C 5-methyl-cytidine
  • the polynucleotide e.g., RNA polynucleotide, such as mRNA polynucleotide
  • RNA polynucleotide is uniformly modified (e.g., fully modified, modified throughout the entire sequence) for a particular modification.
  • a polynucleotide can be uniformly modified with 5-methyl-cytidine (m5C), meaning that all cytosine residues in the mRNA sequence are replaced with 5-methyl-cytidine (m5C).
  • m5C 5-methyl-cytidine
  • a polynucleotide can be uniformly modified for any type of nucleoside residue present in the sequence by replacement with a modified residue such as any of those set forth above.
  • the modified nucleobase is a modified cytosine.
  • nucleobases and nucleosides having a modified cytosine include N4-acetyl-cytidine (ac4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, 2-thio-cytidine (s2C), 2-thio-5-methyl-cytidine.
  • a modified nucleobase is a modified uridine.
  • Example nucleobases and nucleosides having a modified uridine include 5-cyano uridine or 4′-thio uridine.
  • a modified nucleobase is a modified adenine.
  • Example nucleobases and nucleosides having a modified adenine include 7-deaza-adenine, 1-methyl-adenosine (m1A), 2-methyl-adenine (m2A), N6-methyl-adenosine (m6A), and 2,6-Diaminopurine.
  • a modified nucleobase is a modified guanine.
  • Example nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (mil), wyosine (imG), methylwyosine (mimG), 7-deaza-guanosine, 7-cyano-7-deaza-guanosine (preQ0), 7-aminomethyl-7-deaza-guanosine (preQ1), 7-methyl-guanosine (m7G), 1-methyl-guanosine (m1G), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine.
  • the modified nucleobase is a modified uracil.
  • Exemplary nucleobases and nucleosides having a modified uracil include pseudouridine ( ⁇ ), pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s 2 U), 4-thio-uridine (s 4 U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho 5 U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridineor 5-bromo-uridine), 3-methyl-uridine (m 3 U), 5-methoxy-uridine (mo 5 U), uridine 5-oxyacetic acid (cmo 5 U), uridine 5-oxyacetic acid methyl ester (mcmo 5 U), 5-carboxymethyl-uridine (cm 5 U), 1-car
  • the modified nucleobase is a modified cytosine.
  • exemplary nucleobases and nucleosides having a modified cytosine include 5-aza-cytidine, 6-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine (m 3 C), N4-acetyl-cytidine (ac 4 C), 5-formylcytidine (f 5 C), N4-methyl-cytidine (m 4 C), 5-methyl-cytidine (m 5 C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm 5 C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s 2 C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocyt
  • the modified nucleobase is a modified adenine.
  • exemplary nucleobases and nucleosides having a modified adenine include 2-amino-purine, 2, 6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m 1 A), 2-methyl-adenine (m 2 A), N6-methyl-adenosine (m
  • the modified nucleobase is a modified guanine.
  • exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m 1 I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine (yW), peroxywybutosine (o 2 yW), hydroxywybutosine (OhyW), undermodified hydroxywybutosine (OhyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ 0 ), 7-aminomethyl-7-deaza-guanosine (
  • compositions e.g., pharmaceutical compositions
  • methods, kits and reagents for prevention and/or treatment of CHIKV, DENV, ZIKV, CHIKV/DENV the combination of CHIKV and DENV, CHIKV/ZIKV (the combination of CHIKV and ZIKV), ZIKV and DENV (the combination of ZIKV and DENV), and CHIKV/DENV/ZIKV (the combination of CHIKV, DENV and ZIKV) in humans and other mammals.
  • CHIKV RNA e.g. mRNA
  • DENV RNA e.g. mRNA
  • ZIKV RNA e.g.
  • CHIKV/DENV RNA e.g. mRNA
  • CHIKV/ZIKV RNA e.g. mRNA
  • ZIKV/DENV RNA e.g. mRNA
  • CHIKV/DENV/ZIKV RNA e.g. mRNA
  • CHIKV/DENV/ZIKV RNA e.g. mRNA
  • CHIKV/DENV/ZIKV RNA e.g. mRNA
  • CHIKV/DENV/ZIKV RNA e.g. mRNA
  • CHIKV/DENV/ZIKV RNA e.g. mRNA
  • CHIKV/DENV/ZIKV RNA e.g. mRNA
  • CHIKV/DENV/ZIKV RNA e.g. mRNA
  • CHIKV/DENV/ZIKV RNA e.g. mRNA
  • Prophylactic protection from CHIKV, DENV and/or ZIKV can be achieved following administration of a CHIKV, DENV and/or ZIKV vaccine or combination vaccine, of the present disclosure.
  • Vaccines (including combination vaccines) can be administered once, twice, three times, four times or more but it is likely sufficient to administer the vaccine once (optionally followed by a single booster). It is possible, although less desirable, to administer the vaccine to an infected individual to achieve a therapeutic response. Dosing may need to be adjusted accordingly.
  • RNA therapeutic vaccines are particularly amenable to combination vaccination approaches due to a number of factors including, but not limited to, speed of manufacture, ability to rapidly tailor vaccines to accommodate perceived geographical threat, and the like.
  • the vaccines utilize the human body to produce the antigenic protein, the vaccines are amenable to the production of larger, more complex antigenic proteins, allowing for proper folding, surface expression, antigen presentation, etc. in the human subject.
  • a vaccine (including a combination vaccine) can be administered that includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a first CHIKV, DENV and/or ZIKV and further includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a second CHIKV, DENV and/or ZIKV.
  • RNAs mRNAs
  • LNP lipid nanoparticle
  • a method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV is provided in aspects of the invention.
  • the method involves administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein anti-antigenic polypeptide antibody titer in the subject is increased following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • An “anti-antigenic polypeptide antibody” is a serum antibody the binds
  • a prophylactically effective dose is a therapeutically effective dose that prevents infection with the virus at a clinically acceptable level.
  • the therapeutically effective dose is a dose listed in a package insert for the vaccine.
  • a traditional vaccine refers to a vaccine other than the mRNA vaccines of the invention.
  • a traditional vaccine includes but is not limited to live microorganism vaccines, killed microorganism vaccines, subunit vaccines, protein antigen vaccines, DNA vaccines, etc.
  • the anti-antigenic polypeptide antibody titer in the subject is increased 1 log to 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • the anti-antigenic polypeptide antibody titer in the subject is increased 1 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • the anti-antigenic polypeptide antibody titer in the subject is increased 2 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • the anti-antigenic polypeptide antibody titer in the subject is increased 3 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • the anti-antigenic polypeptide antibody titer in the subject is increased 5 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • the anti-antigenic polypeptide antibody titer in the subject is increased 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • a method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV is provided in other aspects of the invention.
  • the method involves administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine against the CHIKV, DENV and/or ZIKV at 2 times to 100 times the dosage level relative to the RNA vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at twice the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at three times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 4 times the dosage level relative to the CHIKV, DENV and/or ZIKV vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 5 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 50 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 100 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10 times to 1000 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 100 times to 1000 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine
  • the immune response is assessed by determining [protein] antibody titer in the subject.
  • the present disclosure is a method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV by administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is induced 2 days to 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • the immune response in the subject is induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine at 2 times
  • the immune response in the subject is induced 2 days earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • the immune response in the subject is induced 3 days earlier relative to an immune response induced in a subject vaccinated a prophylactically effective dose of a traditional vaccine.
  • the immune response in the subject is induced 1 week earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • the immune response in the subject is induced 2 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • the immune response in the subject is induced 3 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • the immune response in the subject is induced 5 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • the immune response in the subject is induced 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • compositions, methods, kits and reagents for the prevention, treatment or diagnosis of Chikungunya virus in humans and other mammals for example.
  • the active therapeutic agents of the present disclosure include the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines), cells containing CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines), and antigenic polypeptides translated from the polynucleotides comprising the RNA vaccines.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines can be used as therapeutic or prophylactic agents. They may be used in medicine and/or for the priming of immune effector cells, for example, to activate peripheral blood mononuclear cells (PBMCs) ex vivo, which are then infused (re-infused) into a subject.
  • PBMCs peripheral blood mononuclear cells
  • a vaccines including a combination vaccine, containing RNA polynucleotides, e.g., mRNA, as described herein can be administered to a subject (e.g., a mammalian subject, such as a human subject), and the RNA polynucleotides are translated in vivo to produce an antigenic polypeptide.
  • a subject e.g., a mammalian subject, such as a human subject
  • the CHIKV, DENV and/or ZIKV RNA vaccines may be induced for translation of a polypeptide (e.g., antigen or immunogen) in a cell, tissue or organism. Such translation can be in vivo, ex vivo, in culture or in vitro.
  • the cell, tissue or organism is contacted with an effective amount of a composition containing a CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, that contains a polynucleotide that has at least one a translatable region encoding an antigenic polypeptide.
  • an “effective amount” of the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines is provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the polynucleotide (e.g., size, and extent of modified nucleosides) and other components of the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, and other determinants.
  • CHIKV, DENV and/or ZIKV RNA vaccines provides an induced or boosted immune response as a function of antigen production in the cell, preferably more efficient than a composition containing a corresponding unmodified polynucleotide encoding the same antigen or a peptide antigen.
  • Increased antigen production may be demonstrated by increased cell transfection (the percentage of cells transfected with the RNA vaccine), increased protein translation from the polynucleotide, decreased nucleic acid degradation (as demonstrated, for example, by increased duration of protein translation from a modified polynucleotide), or altered antigen specific immune response of the host cell.
  • RNA vaccines including polynucleotides and their encoded polypeptides
  • cells comprising the RNA vaccines in accordance with the present disclosure may be used for the treatment of Chikungunya virus, Dengue virus, Zika virus, or any combination of two or three of the foregoing viruses.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered prophylactically or therapeutically as part of an active immunization scheme to healthy individuals or early in infection during the incubation phase or during active infection after onset of symptoms.
  • the amount of RNA vaccine of the present disclosure provided to a cell, a tissue or a subject may be an amount effective for immune prophylaxis.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered with other prophylactic or therapeutic compounds.
  • a prophylactic or therapeutic compound may be an adjuvant or a booster.
  • the term “booster” refers to an extra administration of the prophylactic (vaccine) composition.
  • a booster or booster vaccine may be given after an earlier administration of the prophylactic composition.
  • the time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 10 days, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 15 months, 18 months, 21 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered intramuscularly or intradermally, similarly to the administration of inactivated vaccines known in the art.
  • RNA vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need.
  • the RNA vaccines may be utilized to treat and/or prevent infectious disease caused by Chikungunya virus.
  • RNA vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-virals.
  • compositions including CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines and RNA vaccine compositions and/or complexes optionally in combination with one or more pharmaceutically acceptable excipients.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be formulated or administered alone or in conjunction with one or more other components.
  • CHIKV, DENV and/or ZIKV RNA vaccines including combination RNA vaccines (vaccine compositions) may comprise other components including, but not limited to, adjuvants.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines do not include an adjuvant (they are adjuvant free).
  • CHIKV, DENV and/or ZIKV RNA vaccines may be formulated or administered in combination with one or more pharmaceutically-acceptable excipients.
  • vaccine compositions comprise at least one additional active substance, such as, for example, a therapeutically-active substance, a prophylactically-active substance, or a combination of both.
  • Vaccine compositions may be sterile, pyrogen-free or both sterile and pyrogen-free.
  • General considerations in the formulation and/or manufacture of pharmaceutical agents, such as vaccine compositions may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference in its entirety).
  • CHIKV, DENV and/or ZIKV RNA vaccines are administered to humans, human patients or subjects.
  • active ingredient generally refers to the RNA vaccines or the polynucleotides contained therein, for example, RNA polynucleotides (e.g., mRNA polynucleotides) encoding CHIKV, DENV and/or ZIKV antigenic polypeptides.
  • Formulations of the vaccine compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology.
  • preparatory methods include the step of bringing the active ingredient (e.g., mRNA polynucleotide) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.
  • compositions in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered.
  • the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.
  • CHIKV, DENV and/or ZIKV RNA vaccines can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation); (4) alter the biodistribution (e.g., target to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein (antigen) in vivo.
  • excipients can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof.
  • Naturally-occurring eukaryotic mRNA molecules have been found to contain stabilizing elements, including, but not limited to untranslated regions (UTR) at their 5′-end (5′UTR) and/or at their 3′-end (3′UTR), in addition to other structural features, such as a 5′-cap structure or a 3′-poly(A) tail.
  • UTR untranslated regions
  • 3′UTR 3′-end
  • Both the 5′UTR and the 3′UTR are typically transcribed from the genomic DNA and are elements of the premature mRNA.
  • Characteristic structural features of mature mRNA, such as the 5′-cap and the 3′-poly(A) tail are usually added to the transcribed (premature) mRNA during mRNA processing.
  • the 3′-poly(A) tail is typically a stretch of adenine nucleotides added to the 3′-end of the transcribed mRNA. It can comprise up to about 400 adenine nucleotides. In some embodiments the length of the 3′-poly(A) tail may be an essential element with respect to the stability of the individual mRNA.
  • the RNA vaccine may include one or more stabilizing elements.
  • Stabilizing elements may include for instance a histone stem-loop.
  • a stem-loop binding protein (SLBP) a 32 kDa protein has been identified. It is associated with the histone stem-loop at the 3′-end of the histone messages in both the nucleus and the cytoplasm. Its expression level is regulated by the cell cycle; it is peaks during the S-phase, when histone mRNA levels are also elevated.
  • the protein has been shown to be essential for efficient 3′-end processing of histone pre-mRNA by the U7 snRNP.
  • SLBP continues to be associated with the stem-loop after processing, and then stimulates the translation of mature histone mRNAs into histone proteins in the cytoplasm.
  • the RNA binding domain of SLBP is conserved through metazoa and protozoa; its binding to the histone stem-loop depends on the structure of the loop.
  • the minimum binding site includes at least three nucleotides 5′ and two nucleotides 3′ relative to the stem-loop.
  • the RNA vaccines include a coding region, at least one histone stem-loop, and optionally, a poly(A) sequence or polyadenylation signal.
  • the poly(A) sequence or polyadenylation signal generally should enhance the expression level of the encoded protein.
  • the encoded protein in some embodiments, is not a histone protein, a reporter protein (e.g. Luciferase, GFP, EGFP, ⁇ -Galactosidase, EGFP), or a marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)).
  • a reporter protein e.g. Luciferase, GFP, EGFP, ⁇ -Galactosidase, EGFP
  • a marker or selection protein e.g. alpha-Globin, Galactokinase and Xanthine:guanine
  • the combination of a poly(A) sequence or polyadenylation signal and at least one histone stem-loop acts synergistically to increase the protein expression beyond the level observed with either of the individual elements. It has been found that the synergistic effect of the combination of poly(A) and at least one histone stem-loop does not depend on the order of the elements or the length of the poly(A) sequence.
  • the RNA vaccine does not comprise a histone downstream element (HDE).
  • Histone downstream element includes a purine-rich polynucleotide stretch of approximately 15 to 20 nucleotides 3′ of naturally occurring stem-loops, representing the binding site for the U7 snRNA, which is involved in processing of histone pre-mRNA into mature histone mRNA.
  • the inventive nucleic acid does not include an intron.
  • the RNA vaccine may or may not contain a enhancer and/or promoter sequence, which may be modified or unmodified or which may be activated or inactivated.
  • the histone stem-loop is generally derived from histone genes, and includes an intramolecular base pairing of two neighbored partially or entirely reverse complementary sequences separated by a spacer, consisting of a short sequence, which forms the loop of the structure. The unpaired loop region is typically unable to base pair with either of the stem loop elements. It occurs more often in RNA, as is a key component of many RNA secondary structures, but may be present in single-stranded DNA as well.
  • the Stability of the stem-loop structure generally depends on the length, number of mismatches or bulges, and base composition of the paired region.
  • wobble base pairing non-Watson-Crick base pairing
  • the at least one histone stem-loop sequence comprises a length of 15 to 45 nucleotides.
  • the RNA vaccine may have one or more AU-rich sequences removed. These sequences, sometimes referred to as AURES are destabilizing sequences found in the 3′UTR.
  • the AURES may be removed from the RNA vaccines. Alternatively the AURES may remain in the RNA vaccine.
  • CHIKV, DENV and/or ZIKV RNA vaccines are formulated in a nanoparticle.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines are formulated in a lipid nanoparticle.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines are formulated in a lipid-polycation complex, referred to as a cationic lipid nanoparticle.
  • the formation of the lipid nanoparticle may be accomplished by methods known in the art and/or as described in U.S. Pub. No.
  • the cationic lipid nanoparticle may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine and the cationic peptides described in International Pub. No. WO2012013326 or US Patent Pub. No. US20130142818; each of which is herein incorporated by reference in its entirety.
  • CHIKV, DENV and/or ZIKV RNA vaccines are formulated in a lipid nanoparticle that includes a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).
  • a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).
  • DOPE dioleoyl phosphatidylethanolamine
  • a lipid nanoparticle formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size.
  • the lipid nanoparticle formulation may be composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA. (Semple et al., Nature Biotech. 2010 28:172-176; herein incorporated by reference in its entirety). Altering the composition of the cationic lipid can more effectively deliver RNA to various antigen presenting cells (Basha et al. Mol Ther. 2011 19:2186-2200; herein incorporated by reference in its entirety).
  • lipid nanoparticle formulations may comprise 35 to 45% cationic lipid, 40% to 50% cationic lipid, 50% to 60% cationic lipid and/or 55% to 65% cationic lipid.
  • the ratio of lipid to RNA (e.g., mRNA) in lipid nanoparticles may be 5:1 to 20:1, 10:1 to 25:1, 15:1 to 30:1 and/or at least 30:1.
  • the ratio of PEG in the lipid nanoparticle formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the lipid nanoparticle formulations.
  • lipid nanoparticle formulations may contain 0.5% to 3.0%, 1.0% to 3.5%, 1.5% to 4.0%, 2.0% to 4.5%, 2.5% to 5.0% and/or 3.0% to 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[( ⁇ -methoxy-poly(ethyleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3-amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol.
  • PEG-c-DOMG R-3-[( ⁇ -methoxy-poly(ethyleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3-amine
  • the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol).
  • the cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.
  • the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccine formulation is a nanoparticle that comprises at least one lipid.
  • the lipid may be selected from, but is not limited to, DLin-DMA, Dlin-K-DMA, 98N12-5, C12-200, Dlin-MC3-DMA, Dlin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids.
  • the lipid may be a cationic lipid such as, but not limited to, Dlin-DMA, Dlin-D-DMA, Dlin-MC3-DMA, Dlin-KC2-DMA, DODMA and amino alcohol lipids.
  • the amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in US Patent Publication No. US20130150625, herein incorporated by reference in its entirety.
  • the cationic lipid may be 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2- ⁇ [(9Z,2Z)-octadeca-9,12-dien-1-yloxy]methyl ⁇ propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2- ⁇ [(9Z)-octadec-9-en-1-yloxy]methyl ⁇ propan-1-ol (Compound 2 in US20130150625); 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)-3-[(9Z,12Z)-octadeca-9
  • Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.
  • an ionizable cationic lipid for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dl
  • a lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEG-cDMA, in a molar ratio of 20-60% cationic lipid:
  • a lipid nanoparticle formulation includes 25% to 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., 35 to 65%, 45 to 65%, 60%, 57.5%, 50% or 40% on a molar basis.
  • a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4
  • a lipid nanoparticle formulation includes 0.5% to 15% on a molar basis of the neutral lipid, e.g., 3 to 12%, 5 to 10% or 15%, 10%, or 7.5% on a molar basis.
  • neutral lipids include, without limitation, DSPC, POPC, DPPC, DOPE and SM.
  • the formulation includes 5% to 50% on a molar basis of the sterol (e.g., 15 to 45%, 20 to 40%, 40%, 38.5%, 35%, or 31% on a molar basis.
  • a non-limiting example of a sterol is cholesterol.
  • a lipid nanoparticle formulation includes 0.5% to 20% on a molar basis of the PEG or PEG-modified lipid (e.g., 0.5 to 10%, 0.5 to 5%, 1.5%, 0.5%, 1.5%, 3.5%, or 5% on a molar basis.
  • a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da.
  • a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or around 500 Da.
  • PEG-modified lipids include PEG-distearoyl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEG-cDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are herein incorporated by reference in its entirety).
  • PEG-DMG PEG-distearoyl glycerol
  • PEG-cDMA further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are herein incorporated by reference in its entirety.
  • lipid nanoparticle formulations include 25-75% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.
  • a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4
  • lipid nanoparticle formulations include 35-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.
  • a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-
  • lipid nanoparticle formulations include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.
  • a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4
  • lipid nanoparticle formulations include 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.5% of the neutral lipid, 31% of the sterol, and 1.5% of the PEG or PEG-modified lipid on a molar basis.
  • Dlin-KC2-DMA 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane
  • Dlin-MC3-DMA dilinoleyl-methyl-4-dimethylaminobut
  • lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 38.5% of the sterol, and 1.5% of the PEG or PEG-modified lipid on a molar basis.
  • a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobut
  • lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 35% of the sterol, 4.5% or 5% of the PEG or PEG-modified lipid, and 0.5% of the targeting lipid on a molar basis.
  • a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-
  • lipid nanoparticle formulations include 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 15% of the neutral lipid, 40% of the sterol, and 5% of the PEG or PEG-modified lipid on a molar basis.
  • Dlin-KC2-DMA 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane
  • Dlin-MC3-DMA dilinoleyl-methyl-4-dimethylaminobut
  • lipid nanoparticle formulations include 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.1% of the neutral lipid, 34.3% of the sterol, and 1.4% of the PEG or PEG-modified lipid on a molar basis.
  • a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-d
  • lipid nanoparticle formulations include 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in its entirety), 7.5% of the neutral lipid, 31.5% of the sterol, and 3.5% of the PEG or PEG-modified lipid on a molar basis.
  • PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in its entirety)
  • 7.5% of the neutral lipid 31.5% of the sterol
  • 3.5% of the PEG or PEG-modified lipid on a molar basis PEG or PEG-modified lipid on a molar basis.
  • lipid nanoparticle formulations consists essentially of a lipid mixture in molar ratios of 20-70% cationic lipid: 5-45% neutral lipid: 20-55% cholesterol: 0.5-15% PEG-modified lipid. In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% cholesterol: 0.5-15% PEG-modified lipid.
  • the molar lipid ratio is 50/10/38.5/1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid
  • Non-limiting examples of lipid nanoparticle compositions and methods of making them are described, for example, in Semple et al. (2010) Nat. Biotechnol. 28:172-176; Jayarama et al. (2012), Angew. Chem. Int. Ed., 51: 8529-8533; and Maier et al. (2013) Molecular Therapy 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).
  • lipid nanoparticle formulations may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid.
  • a lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid.
  • the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid.
  • a lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid.
  • the cationic lipid may be any cationic lipid described herein such as, but not limited to, Dlin-KC2-DMA, Dlin-MC3-DMA and L319.
  • the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles.
  • the lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid.
  • the lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid.
  • the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid.
  • the lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid.
  • the cationic lipid may be any cationic lipid described herein such as, but not limited to, Dlin-KC2-DMA, Dlin-MC3-DMA and L319.
  • the lipid nanoparticle formulations described herein may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid.
  • the lipid nanoparticle comprise 50% of the cationic lipid Dlin-KC2-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol.
  • the lipid nanoparticle comprise 50% of the cationic lipid Dlin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol.
  • the lipid nanoparticle comprise 50% of the cationic lipid Dlin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DMG and 38.5% of the structural lipid cholesterol.
  • the lipid nanoparticle comprise 55% of the cationic lipid L319, 10% of the non-cationic lipid DSPC, 2.5% of the PEG lipid PEG-DMG and 32.5% of the structural lipid cholesterol.
  • Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a vaccine composition may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered.
  • the composition may comprise between 0.1% and 99% (w/w) of the active ingredient.
  • the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.
  • the RNA vaccine composition may comprise the polynucleotide described herein, formulated in a lipid nanoparticle comprising MC3, Cholesterol, DSPC and PEG2000-DMG, the buffer trisodium citrate, sucrose and water for injection.
  • the composition comprises: 2.0 mg/mL of drug substance (e.g., polynucleotides encoding H10N8 influenza virus), 21.8 mg/mL of MC3, 10.1 mg/mL of cholesterol, 5.4 mg/mL of DSPC, 2.7 mg/mL of PEG2000-DMG, 5.16 mg/mL of trisodium citrate, 71 mg/mL of sucrose and 1.0 mL of water for injection.
  • a nanoparticle e.g., a lipid nanoparticle
  • a nanoparticle has a mean diameter of 10-500 nm, 20-400 nm, 30-300 nm, 40-200 nm.
  • a nanoparticle e.g., a lipid nanoparticle
  • the RNA vaccines of the invention may be formulated in lipid nanoparticles having a diameter from about 10 to about 100 nm such as, but not limited to, about 10 to about 20 nm, about 10 to about 30 nm, about 10 to about 40 nm, about 10 to about 50 nm, about 10 to about 60 nm, about 10 to about 70 nm, about 10 to about 80 nm, about 10 to about 90 nm, about 20 to about 30 nm, about 20 to about 40 nm, about 20 to about 50 nm, about 20 to about 60 nm, about 20 to about 70 nm, about 20 to about 80 nm, about 20 to about 90 nm, about 20 to about 100 nm, about 30 to about 40 nm, about 30 to about 50 nm, about 30 to about 60 nm, about 30 to about 70 nm, about 30 to about 80 nm, about 30 to about 90 nm, about 30 to about 100 nm, about 40 to about
  • the lipid nanoparticles may have a diameter from about 10 to 500 nm.
  • the lipid nanoparticle may have a diameter greater than 100 nm, greater than 150 nm, greater than 200 nm, greater than 250 nm, greater than 300 nm, greater than 350 nm, greater than 400 nm, greater than 450 nm, greater than 500 nm, greater than 550 nm, greater than 600 nm, greater than 650 nm, greater than 700 nm, greater than 750 nm, greater than 800 nm, greater than 850 nm, greater than 900 nm, greater than 950 nm or greater than 1000 nm.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered by any route which results in a therapeutically effective outcome. These include, but are not limited, to intradermal, intramuscular, and/or subcutaneous administration.
  • the present disclosure provides methods comprising administering RNA vaccines to a subject in need thereof. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, compositions are typically formulated in dosage unit form for ease of administration and uniformity of dosage.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, compositions may be decided by the attending physician within the scope of sound medical judgment.
  • the specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect (see e.g., the range of unit doses described in International Publication No WO2013078199, herein incorporated by reference in its entirety).
  • the desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks.
  • the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations).
  • multiple administrations e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations.
  • split dosing regimens such as those described herein may be used.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight per day, one or more times a day, per week, per month, etc.
  • the desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, every four weeks, every 2 months, every three months, every 6 months, etc.
  • the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered at dosage levels sufficient to deliver 0.0005 mg/kg to 0.01 mg/kg, e.g., about 0.0005 mg/kg to about 0.0075 mg/kg, e.g., about 0.0005 mg/kg, about 0.001 mg/kg, about 0.002 mg/kg, about 0.003 mg/kg, about 0.004 mg/kg or about 0.005 mg/kg.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered once or twice (or more) at dosage levels sufficient to deliver 0.025 mg/kg to 0.250 mg/kg, 0.025 mg/kg to 0.500 mg/kg, 0.025 mg/kg to 0.750 mg/kg, or 0.025 mg/kg to 1.0 mg/kg.
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.0100 mg, 0.025 mg, 0.050 mg, 0.075 mg, 0.100 mg, 0.125 mg, 0.150 mg, 0.175 mg, 0.200 mg, 0.225 mg, 0.250 mg, 0.275 mg, 0.300 mg, 0.325 mg, 0.350 mg, 0.375 mg, 0.400
  • CHIKV, DENV and/or ZIKV RNA vaccines may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.010 mg, 0.025 mg, 0.100 mg or 0.400 mg.
  • twice e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day
  • the RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of between 10 ⁇ g/kg and 400 ⁇ g/kg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments the RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of between 10 ⁇ g and 400 ⁇ g of the nucleic acid vaccine in an effective amount to vaccinate the subject.
  • RNA vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).
  • injectable e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous.
  • a RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of 10 ⁇ g of the nucleic acid vaccine in an effective amount to vaccinate the subject.
  • a RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of 2 ⁇ g of the nucleic acid vaccine in an effective amount to vaccinate the subject.
  • a vaccine for use in a method of vaccinating a subject is administered the subject two dosages of 10 ⁇ g of the nucleic acid vaccine in an effective amount to vaccinate the subject.
  • a RNA vaccine for use in a method of vaccinating a subject is administered the subject two dosages of 2 ⁇ g of the nucleic acid vaccine in an effective amount to vaccinate the subject.
  • RNA (e.g. mRNA) vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).
  • injectable e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous.
  • RNA vaccine e.g., mRNA
  • an effective amount is a dose of an RNA (e.g., mRNA) vaccine effective to produce an antigen-specific immune response.
  • methods of inducing an antigen-specific immune response in a subject are also provided herein.
  • the antigen-specific immune response is characterized by measuring an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered a RNA (e.g., mRNA) vaccine as provided herein.
  • RNA e.g., mRNA
  • An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen or epitope of an antigen.
  • Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result.
  • Enzyme-linked immunosorbent assay is a common assay for determining antibody titers, for example.
  • an antibody titer is used to assess whether a subject has had an infection or to determine whether immunizations are required. In some embodiments, an antibody titer is used to determine the strength of an autoimmune response, to determine whether a booster immunization is needed, to determine whether a previous vaccine was effective, and to identify any recent or prior infections. In accordance with the present disclosure, an antibody titer may be used to determine the strength of an immune response induced in a subject by the RNA vaccine.
  • an anti-ZIKV antigenic polypeptide antibody titer produced in a subject is increased by at least 1 log relative to a control.
  • antibody titer produced in a subject may be increased by at least 1.5, at least 2, at least 2.5, or at least 3 log relative to a control.
  • the antibody titer produced in the subject is increased by 1, 1.5, 2, 2.5 or 3 log relative to a control.
  • the antibody titer produced in the subject is increased by 1-3 log relative to a control.
  • the antibody titer produced in a subject may be increased by 1-1.5, 1-2, 1-2.5, 1-3, 1.5-2, 1.5-2.5, 1.5-3, 2-2.5, 2-3, or 2.5-3 log relative to a control.
  • the antibody titer produced in a subject is increased at least 2 times relative to a control.
  • the antibody titer produced in a subject may be increased at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or at least 10 times relative to a control.
  • the antibody titer produced in the subject is increased 2, 3, 4, 5, 6, 7, 8, 9, or 10 times relative to a control.
  • the anti antibody titer produced in a subject is increased 2-10 times relative to a control.
  • the antibody titer produced in a subject may be increased 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9, or 9-10 times relative to a control.
  • a control in some embodiments, is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered a RNA (e.g., mRNA) vaccine.
  • a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antibody titer produced in a subject who has been administered a live attenuated CHIKV, DENV and/or ZIKV vaccine.
  • An attenuated vaccine is a vaccine produced by reducing the virulence of a viable (live). An attenuated virus is altered in a manner that renders it harmless or less virulent relative to live, unmodified virus.
  • a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered inactivated CHIKV, DENV and/or ZIKV vaccine.
  • a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine.
  • Recombinant protein vaccines typically include protein antigens that either have been produced in a heterologous expression system (e.g., bacteria or yeast) or purified from large amounts of the pathogenic organism.
  • an effective amount of a RNA (e.g., mRNA) vaccine is a dose that is reduced compared to the standard of care dose of a recombinant CHIKV, DENV and/or ZIKV protein vaccine.
  • a “standard of care,” as provided herein, refers to a medical or psychological treatment guideline and can be general or specific. “Standard of care” specifies appropriate treatment based on scientific evidence and collaboration between medical professionals involved in the treatment of a given condition. It is the diagnostic and treatment process that a physician/clinician should follow for a certain type of patient, illness or clinical circumstance.
  • a “standard of care dose,” as provided herein, refers to the dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine, or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine, that a physician/clinician or other medical professional would administer to a subject to treat or prevent CHIKV, DENV and/or ZIKV or a related condition, while following the standard of care guideline for treating or preventing CHIKV, DENV and/or ZIKV, or a related condition.
  • the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered an effective amount of a ZIKV RNA vaccine is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.
  • an effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to an at least 2-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine.
  • an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine may be a dose equivalent to an at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine.
  • an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is a dose equivalent to an at least at least 100-fold, at least 500-fold, or at least 1000-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine.
  • an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is a dose equivalent to a 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 50-, 100-, 250-, 500-, or 1000-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine.
  • the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or protein CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.
  • an effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-fold to 1000-fold (e.g., 2-fold to 100-fold, 10-fold to 1000-fold) reduction in the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine, wherein the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.
  • a 2-fold to 1000-fold e.g., 2-fold to 100-fold, 10-fold to 1000-fold
  • the effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to a 2 to 1000-, 2 to 900-, 2 to 800-, 2 to 700-, 2 to 600-, 2 to 500-, 2 to 400-, 2 to 300-, 2 to 200-, 2 to 100-, 2 to 90-, 2 to 80-, 2 to 70-, 2 to 60-, 2 to 50-, 2 to 40-, 2 to 30-, 2 to 20-, 2 to 10-, 2 to 9-, 2 to 8-, 2 to 7-, 2 to 6-, 2 to 5-, 2 to 4-, 2 to 3-, 3 to 1000-, 3 to 900-, 3 to 800-, 3 to 700-, 3 to 600-, 3 to 500-, 3 to 400-, 3 to 3 to 00-, 3 to 200-, 3 to 100-, 3 to 90-, 3 to 80-, 3 to 70-, 3 to 60-, 3 to 50-, 3 to 40-, 3 to 30-, 3 to 20-, 3 to 10-, 3 to 9
  • the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.
  • the effective amount is a dose equivalent to (or equivalent to an at least) 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 110-, 120-, 130-, 140-, 150-, 160-, 170-, 1280-, 190-, 200-, 210-, 220-, 230-, 240-, 250-, 260-, 270-, 280-, 290-, 300-, 310-, 320-, 330-, 340-, 350-, 360-, 370-, 380-, 390-, 400-, 410-, 420-, 430-, 440-, 450-, 4360-, 470-, 480-, 490-, 500-, 510-, 520-, 530-, 540-, 550-, 560-, 5760-, 580-, 590-, 600-, 610-,
  • an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.
  • the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50-1000 ⁇ g. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50-1000, 50-900, 50-800, 50-700, 50-600, 50-500, 50-400, 50-300, 50-200, 50-100, 50-90, 50-80, 50-70, 50-60, 60-1000, 60-900, 60-800, 60-700, 60-600, 60-500, 60-400, 60-300, 60-200, 60-100, 60-90, 60-80, 60-70, 70-1000, 70-900, 70-800, 70-700, 70-600, 70-500, 70-400, 70-300, 70-200, 70-100, 70-90, 70-80, 80-1000, 80-900, 80-800, 80-700, 80-600, 80-500, 80-400, 80-300, 80, 80-1000
  • the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 ⁇ g. In some embodiments, the effective amount is a dose of 25-500 ⁇ g administered to the subject a total of two times.
  • the effective amount of a RNA (e.g., mRNA) vaccine is a dose of 25-500, 25-400, 25-300, 25-200, 25-100, 25-50, 50-500, 50-400, 50-300, 50-200, 50-100, 100-500, 100-400, 100-300, 100-200, 150-500, 150-400, 150-300, 150-200, 200-500, 200-400, 200-300, 250-500, 250-400, 250-300, 300-500, 300-400, 350-500, 350-400, 400-500 or 450-500 ⁇ g administered to the subject a total of two times.
  • a RNA e.g., mRNA
  • the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 ⁇ g administered to the subject a total of two times.
  • manufacture of polynucleotides and or parts or regions thereof may be accomplished utilizing the methods taught in International Application WO2014/152027 entitled “Manufacturing Methods for Production of RNA Transcripts”, the contents of which is incorporated herein by reference in its entirety.
  • Detection and characterization methods of the polynucleotides may be performed as taught in WO2014/144039, which is incorporated herein by reference in its entirety.
  • Characterization of the polynucleotides of the disclosure may be accomplished using a procedure selected from the group consisting of polynucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, and detection of RNA impurities, wherein characterizing comprises determining the RNA transcript sequence, determining the purity of the RNA transcript, or determining the charge heterogeneity of the RNA transcript.
  • a procedure selected from the group consisting of polynucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, and detection of RNA impurities wherein characterizing comprises determining the RNA transcript sequence, determining the purity of the RNA transcript, or determining the charge heterogeneity of the RNA transcript.
  • two regions or parts of a chimeric polynucleotide may be joined or ligated using triphosphate chemistry.
  • a first region or part of 100 nucleotides or less is chemically synthesized with a 5′ monophosphate and terminal 3′-desOH or blocked OH. If the region is longer than 80 nucleotides, it may be synthesized as two strands for ligation.
  • first region or part is synthesized as a non-positionally modified region or part using in vitro transcription (IVT)
  • IVT in vitro transcription
  • Monophosphate protecting groups may be selected from any of those known in the art.
  • the second region or part of the chimeric polynucleotide may be synthesized using either chemical synthesis or IVT methods.
  • IVT methods may include an RNA polymerase that can utilize a primer with a modified cap.
  • a cap of up to 130 nucleotides may be chemically synthesized and coupled to the IVT region or part.
  • the entire chimeric polynucleotide need not be manufactured with a phosphate-sugar backbone. If one of the regions or parts encodes a polypeptide, then it is preferable that such region or part comprise a phosphate-sugar backbone.
  • Ligation is then performed using any known click chemistry, orthoclick chemistry, solulink, or other bioconjugate chemistries known to those in the art.
  • the chimeric polynucleotide is made using a series of starting segments.
  • Such segments include:
  • Segment 2 (SEG. 2) is then ligated to SEG. 3 using RNA ligase.
  • the ligated polynucleotide is then purified and treated with pyrophosphatase to cleave the diphosphate.
  • the treated SEG. 2-SEG. 3 construct is then purified and SEG. 1 is ligated to the 5′ terminus.
  • a further purification step of the chimeric polynucleotide may be performed.
  • the ligated or joined segments may be represented as: 5′UTR (SEG. 1), open reading frame or ORF (SEG. 2) and 3′UTR+PolyA (SEG. 3).
  • the yields of each step may be as much as 90-95%.
  • PCR procedures for the preparation of cDNA are performed using 2 ⁇ KAPA HIFITM HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes 2 ⁇ KAPA ReadyMix12.5 ⁇ l; Forward Primer (10 ⁇ M) 0.75 ⁇ l; Reverse Primer (10 PM) 0.75 ⁇ l; Template cDNA —100 ng; and dH20 diluted to 25.0 ⁇ l.
  • the reaction conditions are at 95° C. for 5 min. and 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° C. for 45 sec, then 72° C. for 5 min. then 4° C. to termination.
  • the reaction is cleaned up using Invitrogen's PURELINKTM PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to 5 ⁇ g). Larger reactions will require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA is quantified using the NANODROPTM and analyzed by agarose gel electrophoresis to confirm the cDNA is the expected size. The cDNA is then submitted for sequencing analysis before proceeding to the in vitro transcription reaction.
  • the in vitro transcription reaction generates polynucleotides containing uniformly modified polynucleotides.
  • Such uniformly modified polynucleotides may comprise a region or part of the polynucleotides of the disclosure.
  • the input nucleotide triphosphate (NTP) mix is made in-house using natural and un-natural NTPs.
  • a typical in vitro transcription reaction includes the following:
  • Template cDNA 1.0 ⁇ g 2 10 ⁇ transcription buffer (400 mM Tris-HCl pH 8.0, 190 mM MgCl2, 50 mM DTT, 10 mM Spermidine) 2.0 ⁇ l 3 Custom NTPs (25 mM each) 7.2 ⁇ l
  • the crude IVT mix may be stored at 4° C. overnight for cleanup the next day. 1 U of RNase-free DNase is then used to digest the original template. After 15 minutes of incubation at 37° C., the mRNA is purified using Ambion's MEGACLEARTM Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 ag of RNA. Following the cleanup, the RNA is quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA is the proper size and that no degradation of the RNA has occurred.
  • Example 5 Exemplary Nucleic Acids Encoding CHIKV E1 RNA Polynucleotides for Use in a RNA Vaccine
  • sequences are exemplary sequences that can be used to encode CHIKV E1 RNA polynucleotides for use in the CHIKV RNA vaccine:
  • CHIKV E1 RNA polynucleotides SEQ ID Name Sequence NO ChiK.secE1 TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 1 HS3UPCRfree ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAGAC (CHIKV ACCTGCACAGCTGTTGTTTCTGCTGCTGCTTTGGTTGCCCGATACCACCG secreted E1 GTGACTACAAAGACGACGACGATAAATACGAGCACGTGACGGTAATACCA antigen) AACACTGTGGGGGTGCCATACAAGACCCTGGTAAATCGCCCAGGCTACTC TCCCATGGTGCTGGAGATGGAGCTCCAGTCTGTGACCTTAGAGCCAACCC TCTCACTCGACTATATCACCTGTGAATACAAAACAGTGATCCCATCCCCC TACGTGAAATGTTGCGGAACTGCAGAGTGTAAGGATAAGTCTGCCCGA TTACAGCTGCAAGGT
  • Example 6 Exemplary Nucleic Acids Encoding CHIKV E2 RNA Polynucleotides for Use in a RNA Vaccine
  • sequences are exemplary sequences that can be used to encode CHIKV E2 RNA polynucleotides for use in a RNA vaccine:
  • CHIKV E2 RNA polynucleotides SEQ ID Name Sequence NO ChiK.secE2 ATGGAGACCCCAGCTCAGCTTCTGTTTCTTCTCCTTCTATGGCTGCCTGA 5 HS3UPCRfree CACGACTGGACATCACCACCATCATCATAGTACAAAAGACAATTTCAATG (CHIKV TGTACAAGGCCACCCGCCCTTATTTAGCACACTGTCCAGATTGCGGTGAG secreted E2 GGGCACTCCTGTCACTCTCCTATCGCCTTGGAGCGGATCCGGAATGAGGC antigen): GACCGATGGAACACTGAAAATCCAGGTAAGCTTGCAGATTGGCATCAAGA CTGACGATAGCCATGATTGGACCAAACTACGGTATATGGATAGCCATACA CCTGCCGATGCTGAACGGGCCGGTCTGCTTGTGAGAACTAGCGCTCCATG CACCATCACGGGGACAATGGGACATTTTATCCTGGCTAGATGCCCAAAGG GCGAAACCCTCACCGTCGGATTC
  • Example 7 Exemplary Nucleic Acids Encoding CHIKV E1-E2 RNA Polynucleotides for Use in a RNA Vaccine
  • sequences are exemplary sequences that can be used to encode CHIKV E1-E2 RNA polynucleotides for use in a RNA vaccine:
  • CHIKV E1-E2 RNA polynucleotides SEQ ID Name Sequence NO chikv- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 9 Brazillian- ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAC E2-E1 CAAGGACAACTTCAATGTCTATAAAGCCACAAGACCGTACTTAGCTCACT (CHIKV E1- GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCATTAGAA E2 Antigen- CGCATCAGAAATGAAGCGACAGACGGGACGCTGAAAATCCAGGTCTCCTT Brazilian GCAAATCGGAATAAAGACGGATGATAGCCACGATTGGACCAAGCTGCGTT strain) : ACATGGACAACCACACGCCAGCGGACGCAGAGAGGGCGGGGCTATTTGTA AGAACATCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATCCT GACCCGAT
  • Example 8 Exemplary Nucleic Acids Encoding CHIKV C-E3-E2-6K-E1 RNA Polynucleotides for Use in a RNA Vaccine
  • the following sequence is an exemplary sequence that can be used to encode an CHIKV, DENV and/or ZIKV RNA polynucleotide C-E3-E2-6K-E1 for use in a RNA vaccine:
  • FIG. 2 shows a phylogenetic tree of chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins. E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus are shown on the right.
  • CAR Central African republic
  • ECSA East/Central/South Africa
  • Chikungunya has a polycistronic genome and different antigens, based on the Chikungunya structural protein, are possible. There are membrane-bound and secreted forms of E1 and E2, as well as the full length polyprotein antigen, which retains the protein's native conformation. Additionally, the different CHIKV genotypes can also yield different antigens.
  • the tested vaccines included: MC3-LNP formulated mRNA encoded CHIKV-E1, MC3-LNP formulated mRNA encoded CHIKV-E2, and MC3-LNP formulated mRNA encoded CHIKV-E1/E2/E3/C.
  • Fifteen groups of five AG129 mice were vaccinated via intradermal (ID) or intramuscular (IM) injection with either 2 ⁇ g or 10 ⁇ g of the candidate vaccine.
  • the vaccines were given to AG129 mice as single or two doses (second dose provided 28 days after the first dose).
  • the positive control group was vaccinated via intranasal instillation (20 ⁇ L volume) with heat-inactivated CHIKV.
  • PBS Phosphate-buffered saline
  • mice were challenged with 1 ⁇ 10 4 PFU of CHIKV via ID injection in 50 ⁇ L volume and monitored for 10 days for weight loss, morbidity, and mortality. Mice that displayed severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis were euthanized. Notably, mice “vaccinated” with heat-inactivated CHIKV (positive control group) became morbid and were euthanized following the second dose of HI-CHIKV (they were not included in the challenge portion of the study).
  • the AG129 mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery.
  • the survival curve, percent weight loss, and health status of the mice vaccinated with 2 ⁇ g CHIKV E1 mRNA are shown in FIGS. 4 A-C .
  • the survival results are tabulated in Table 6 below.
  • the survival curve, percent weight loss, and health status of the mice vaccinated with 10 ⁇ g CHIKV E1 mRNA are shown in FIGS. 8 A-C .
  • the survival results are tabulated in Table 7 below.
  • the 2 ⁇ g dose of CHIKV E1 mRNA vaccine gave no protection post-CHIKV infection challenge when administered via IM or ID with either a single dose or two doses.
  • the single dose of 10 ⁇ g CHIKV E1 vaccine provided little to no protection when administered via IM or ID.
  • the 10 ⁇ g dose of CHIKV E1 mRNA vaccine provided 60% protection post-CHIKV challenge when administered via IM using two doses and provided 80% protection post-CHIKV challenge when administered via ID using two doses.
  • mice had a ⁇ 0% survival rate, as did the positive control mice (heat-inactivated CHIKV), which died before CHIKV challenge. Some mice died during the vaccination period.
  • the mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery.
  • the survival curve, percent weight loss, and health status of the mice vaccinated with 2 ⁇ g CHIKV E2 mRNA are shown in FIGS. 5 A-C .
  • the survival results are tabulated in Table 8 below.
  • the survival curve, percent weight loss, and health status of the mice vaccinated with 10 ⁇ g CHIKV E2 mRNA are shown in FIGS. 9 A-C .
  • the survival results are tabulated in Table 9 below.
  • the 2 ⁇ g dose of CHIKV E2 mRNA vaccine gave no protection post-CHIKV infection challenge when administered via IM or ID in a single dose.
  • the 2 ⁇ g dose of CHIKV E2 mRNA vaccine provided 80% protection when administered via IM and 100% protection when administered via ID post-CHIKV challenge.
  • the 10 ⁇ g dose of CHIKV E2 mRNA mouse provided no protection post-CHIKV challenge when administered via IM or ID in a single dose.
  • administration of CHIKV E2 mRNA via IM or ID using two doses provided 100% protection post-CHIKV challenge.
  • mice had a ⁇ 0% survival rate, as did the positive control mice (heat-inactivated CHIKV) which died prior to CHIKV challenge. Some mice died during the vaccination period.
  • Example 12 Efficacy of Chikungunya C-E3-E2-6K-E1 Antigen mRNA Vaccine Candidate
  • the AG129 mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery.
  • the survival curve, percent weight loss, and health status of the mice vaccinated with 2 ⁇ g CHIKV C-E3-E2-6K-E1 mRNA are shown in FIGS. 6 A-C .
  • the survival results are tabulated in Table 10 below.
  • the survival curve, percent weight loss, and health status of the mice vaccinated with 10 ⁇ g CHIKV C-E3-E2-6K-E1/E2/E3/C mRNA are shown in FIGS. 10 A-C .
  • the survival results are tabulated in Table 11 below.
  • the 2 ⁇ g dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV challenge when administered via IM in a single dose and provided 80% protection post-CHIKV challenge when administered via ID in a single dose.
  • the 2 ⁇ g dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV challenge when administered via IM or ID in two doses.
  • the 10 ⁇ g dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV infection challenge when administered via IM or ID in either a single dose or in two doses.
  • mice had a ⁇ 0% survival rate, as did the positive control mice (heat-inactivated CHIKV) which died prior to CHIKV challenge. Some mice died during the vaccination period.
  • Table 12 shows the survival data of the mice vaccinated with the CHIKV mRNA antigens used in the studies reported in Examples 10-12.
  • Example 15 Detection of Immunity (Mouse IgG) Against Either Chikungunya-Specific E1, Chikungunya-Specific E2, or Chikungunya-Specific E1 and E2 Proteins
  • Serum samples from mice vaccinated with the CHIKV E1, E2, or E1-E2-E3-C vaccine described in Examples 11-13 were tested using a semi-quantitative ELISA for the detection of mouse IgG against either Chikungunya-specific E1, Chikungunya-specific E2, or Chikungunya-specific E1 and E2 proteins.
  • mice Fifteen groups of five mice were vaccinated via intradermal (ID) or intramuscular (IM) injection with either 2 ⁇ g or 10 ⁇ g of the candidate vaccine.
  • the vaccines were given to AG129 mice as single or two doses (second dose provided 28 days after the first dose).
  • mice On day 56, mice were challenged with 1 ⁇ 104 PFU of CHIKV via ID injection in 50 ⁇ L volume and monitored for 10 days for weight loss, morbidity, and mortality. Mice were bled on day 7 and day 28 post-vaccination via the peri-orbital sinus (retro-orbital bleed). In addition, mice surviving the CHIKV challenge were bled 10 days post-challenge.
  • FIGS. 50 - 51 The data depicting the results of the ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 ⁇ g or 2 ⁇ g at 28 days post immunization is shown in FIGS. 50 - 51 .
  • the 10 ⁇ g of mRNA encoding CHIKV polyprotein produced significant levels of antibody in both studies.
  • FIG. 52 The data depicting a comparison of ELISA titers from the data of FIG. 50 to survival in the data of FIG. 51 left panel is shown in FIG. 52 . As shown in the survival results, the animals vaccinated with either dose (single or double administration) of mRNA encoding CHIKV polyprotein had 100% survival rates.
  • Example 16 Efficacy of Chikungunya Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate
  • the survival curve, percent weight loss, and health status of the mice vaccinated with 10 ⁇ g, 2 ⁇ g or 0.4 ⁇ g mRNA were determined as described previously in Examples 10-12. The survival rates, neutralizing antibodies and binding antibodies were assessed. Neutralizing antibodies were also identified against three different strains of CHIKV.
  • the survival rates of the mice vaccinated with mRNA encoding CHIKV C-E3-E2-6k-E1 is shown in FIG. 53 .
  • the data depicts vaccination at a dose of 10 ⁇ g (left panels), 2 ⁇ g (middle panels) or 0.4 ⁇ g (right panels) at 56 days (top panels) or 112 days (bottom panels) post immunization.
  • These data demonstrate that a single 2 ⁇ g dose of the mRNA vaccine afforded 100% protection for at least 112 days (16 weeks.)
  • the data demonstrated that a single 2 ⁇ g dose of the mRNA vaccine afforded 100% protection for at least 140 days (20 weeks.)
  • the neutralizing antibody and binding antibody produced in treated mice is shown in FIGS. 54 and 55 respectively.
  • the levels of neutralizing Ab were dependent or dose and regimen with the highest titers evident with 10 ⁇ g dosed twice (days 0 and 28).
  • Plaque reduction neutralization tests PRNT50 and PRNT80 were used to quantify the titer of neutralizing antibody for the virus.
  • Antigen binding Ab was determined by ELISA.
  • the corresponding correlation between binding Ab and neutralizing antibodies is shown in the bottom panels of FIG. 55 . Following the study out to 16 weeks showed that the highest E1 titers were achieved when 10 ⁇ g mRNA vaccine was dosed twice.
  • FIG. 56 The data depicting neutralizing antibodies against three different strains of CHIKV is shown in FIG. 56 .
  • the neutralizing antibodies were tested against three different strains of CHIKV, African-Senegal (left panel), La Reunion (middle panel) and CDC CAR (right panel).
  • FIG. 56 shows that the polyprotein-encoding mRNA vaccine elicited broadly neutralizing antibodies against the three strains tested.
  • Sera were further tested against Chik S27 strain (Chikungunya virus (strain S27-African prototype).
  • FIG. 57 These data collectively show that the polyprotein encoding mRNA vaccine elicited broadly neutralizing antibodies against all four strains tested.
  • the vaccine induced neutralizing antibodies against multiple strains of Chikungunya.
  • the prime and boost with the 10 ⁇ g dose produced the most robust neutralizing antibody response followed by the single dose with 10 ⁇ g.
  • FIG. 12 show the results of the assay. mRNA encoded CHIKV structural proteins. Protein production in the HeLa cell lysate 16 h post transfection was detected.
  • nucleic acid SEQ ID NO: 16, 18, 20, and 22
  • amino acid SEQ ID NO: 15, 17, 19, and 21 sequences for each of DEN-1, DEN-2, DEN-3, and DEN-4.
  • TFLRVLSIPPTAGILKRWGQLKKNKAIKILIGFRKEIGRMLNILNGRKRS 1 TITLLCLIPTVMAFSLSTRDGEPLMIVAKHERGRPLLFKTTEGINKCTLI AMDLGEMCEDTVTYKCPLLVNTEPEDIDCWCNLTSTWVMYGTCTQSGERR REKRSVALTPHSGMGLETRAETWMSSEGAWKHAQRVESWILRNPGFALLA GFMAYMIGQTGIQRTVFFVLMMLVAPSYGMRCVGVGNRDFVEGVSGGAWV DLVLEHGGCVTTMAQGKPTLDFELTKTTAKEVALLRTYCIEASISNITTA TRCPTQGEPYLKEEQDQQYICRRDVVDRGWGNGCGLFGKGGVVTCAKFSC SGKITGNLVQIENLEYTVVVTVHNGDTHAVGNDTSNHGVTAMITPRSPSV EVKLPDYGELTLDCEPRSGIDFNEMILMKMKKKTWLVHKQWFLDLPW
  • This study provides a preliminary analysis of the immunogenicity of a nucleic acid mRNA vaccine using a dengue virus (DENV) serotype 2 antigen in BALB/c mice.
  • the study utilizes 44 groups of 10 BALB/c female (5) and male (5) mice (440 total, 6-8 weeks of age at study initiation, see Table 10 for design summary).
  • construct numbers used are referenced and found in Table 14.
  • mice were vaccinated on weeks 0 and 3 via intramuscular (IM) or intradermal (ID) routes.
  • IM intramuscular
  • ID intradermal
  • PFU plaque-forming units
  • IV intravenous
  • Serum was collected from each mouse on weeks 1, 3, and 5; bleeds on weeks 1 and 3 were in-life samples (tail vein or submandibular bleeds) and week 5 will be a terminal (intracardiac) bleed.
  • Individual serum samples were stored at ⁇ 80° C. until analysis by neutralization or microneutralization assay. Pooled samples from each group at the week 5 time points were tested by Western blot for reactivity with viral lysate.
  • RNA vaccines for concatemeric antigens were designed and tested according to the invention. These vaccines, which have significantly enhanced activity, in comparison to the single protein antigens described herein, are described below.
  • peptide epitopes from Dengue virus were generated and tested for antigenic activity.
  • the peptide epitopes are designed to maximize MHC presentation. In general the process of MHC class I presentation is quite inefficient, with only 1 peptide of 10,000 degraded molecules actually being presented. Additionally the priming of CD8 T cell with APCs having insufficient densities of surface peptide/MHC class I complexes results in weak responders exhibiting impaired cytokine secretion and a decrease memory pool. Thus, the process of designing highly effective peptide epitopes is important to the immunogenicity of the ultimate vaccine.
  • T cell epitopes e.g., MHC peptide binding
  • MHC peptide binding for the various alleles shown in Table 17 were determined using Rapid Epitope Discovery System (ProImmune REVEAL & ProVE®). This system is used to identify those candidate epitopes that actually cause relevant immune responses from the numerous other potential candidates identified using algorithms to predict MHC-peptide binding.
  • the REVEAL binding assay determines the ability of each candidate peptide to bind to one or more MHC I class alleles and stabilize the MHC-peptide complex.
  • the assay identifies the most likely immunogenic peptides in a protein sequence by comparing the binding to that of a high affinity T cell epitope and detecting the presence or absence of the native conformation of the MHC-peptide complex.
  • the epitope peptides are further tested using the assays described herein to confirm their immunogenic activity.
  • Exemplary peptide epitopes selected using the methods described above were further characterized. These peptide epitopes were confirmed to have activity using in vitro HLA binding assays (human lymphocyte binding assays). Peptides (9 aa peptides from the dengue antigen) were screened for their ability to bind to HLA. The analysis of the homology, affinity, frequency and design of these peptides is shown in FIGS. 16 A- 16 C and 17 A- 17 C .
  • Mouse IFN ⁇ ELISpot assays were performed using IFN ⁇ coated Millipore IP Opaque plates according to the manufacturer's mouse IFN ⁇ ELISPOT guidelines. Briefly, the plates were blocked using complete RPMI (R10) and incubated for 30 minutes prior to plating cells. Peptides (284-292, 408-419 or 540-548) were diluted to 5 different concentrations for stimulation at 5, ⁇ 6, ⁇ 7, ⁇ 8, or ⁇ 9 from an original stock concentration of 10 mM ( ⁇ 2). Mouse splenocytes (200,000-250,000 cells) were plated in appropriate wells with peptide, PMA+Ionomycin or R10 media alone. Cells were stimulated in a total volume of 125 ⁇ L per well.
  • Plates were then incubated at 37° C., 5% CO 2 for 18-24 hrs. Plates were developed following the manufacturer's instructions. Plates were counted and quality controlled using the automated ELISPOT reader CTL ImmunoSpot/FluoroSpot.
  • Intracellular Cytokine Staining Intracellular Cytokine Staining (ICS).
  • ICS Intracellular Cytokine Staining
  • individual splenocytes were resuspended at a concentration of 1.5 ⁇ 106 cells per mL.
  • Peptides (284-292, 408-419 or 540-548) were made into 5 dilutions from a stock concentration of 10 mM ( ⁇ 2) .
  • the final concentrations of each peptide were ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8, or ⁇ 9 in their respective wells.
  • Cells were stimulated in a final volume of 200 uL within a 96 well culture plate.
  • the exemplary peptide epitopes selected using the methods described herein were used to produce tests mouse mimectopes of the predicted human epitopes. These mimectopes were analyzed for in vivo activity using restimulation assays during the acute phase of Dengue infection (Day 7). The methods were performed on dengue-infected IFN ⁇ / ⁇ -receptor-deficient mice (AG129). Seven days post infection splenocytes were harvested and subjected to an ELISPOT assay to quantify secretion of cytokines by T cells (CD8) as described above. Briefly, the isolated splenocytes were stimulated with the test peptides and tested for T cell activation. If the peptide is an appropriate antigen, some cells would be present antigen during infection and would be capable of stimulating T cells. The methods for analyzing the T cell activation were performed as follows:
  • T cells (at a known concentration) were incubated with a specific antigen in a cell culture well the activated T cells were transferred to ELISPOT plates (precoated with anti-cytokine antibody) the cells were incubated such that cytokines could be secreted the cells were washed off the plate and enzyme coupled secondary Ig was added the plates were washed and substrate was added positive spots were scored under microscope.
  • ELISPOT plates precoated with anti-cytokine antibody
  • FIGS. 18 - 19 are graphs depicting the results of an ELISPOT assay of dengue-specific peptides measuring IFN- ⁇ (spots per million splenocytes).
  • FIG. 20 A schematic of an assay on a BLT Mouse Model (Bone Marrow/Liver/Thymus) is shown in FIG. 20 .
  • the results of a histogram analysis of human CD8 T cells stimulated with peptide epitope is also shown in FIG. 20 .
  • Example 24 AG129 Mouse Challenge of Mimectopes of Predicted Human Epitopes from DENV2
  • the immunogenicity of the peptide epitopes is determined in AG129 mice against challenge with a lethal dose of mouse-adapted DENV 2 strain D2Y98P.
  • AG129 mice, which lack IFN ⁇ / ⁇ and receptor signaling, injected intradermally in the footpad with 10 4 PFU of DENV do not survive past day 5 post-injection.
  • AG129 mice are vaccinated via intramuscular (IM) injection with either 2 ⁇ g or 10 ⁇ g of a cocktail of 2 peptide epitopes.
  • the vaccines are given to AG129 mice with a prime and a boost (day 0 and day 28).
  • the positive control group is vaccinated with heat-inactivated DENV 2.
  • Phosphate-buffered saline PBS
  • mice are challenged with mouse-adapted DENV 2 and monitored for 10 days for weight loss, morbidity, and mortality. Mice that display severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis are euthanized.
  • a study analyzing immunogenicity of the peptide epitopes on humanized mice is performed.
  • a single-dose cocktail (30 ⁇ g) containing 3 different peptide epitopes are delivered by IM route of immunization with prime and boost (day 0, day 28).
  • a T cell (ELISPOT and ICS) characterization may be performed on Day 7, Day 28, and Day 56.
  • Non-human primate (NHP) mimectopes to the human epitopes may also be developed and tested for activity in NHP assays.
  • the NHP mimectopes are designed based on the human antigen sequence. These mimectopes may be analyzed for in vivo activity in an NHP model using, for instance, restimulation assays. Once the NHPs have been infected, immune cells may be isolated and tested for sensitivity of activation by the particular mimectopes.
  • FIGS. 21 - 23 show MHC-1_V5 concatemer constructs. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus Dapi was performed. The data is shown in FIGS. 21 - 23 .
  • FIG. 21 shows MHC-1_V5 concatemer transfection in HeLa cells. The arrows indicate V5-MHC1 colocalization (bottom right).
  • FIG. 22 shows MHC-1_V5 concatemer transfection. The arrows indicate regions where V5 preferentially colocalizes with MHC1 and not with Mitotracker.
  • FIG. 23 shows V5 concatemer transfection in HeLa cells.
  • V5 has homogeneous cytoplasmic distribution preferentially colocalizes with MHC1 and not with Mitotracker.
  • Example 28 In Vivo Analysis of DENV Concatemeric mRNA Epitope Construct
  • the immunogenicity of the peptide concatemeric candidate vaccines were determined in AG129 mice against challenge with a lethal dose of DENV strain D2Y98P.
  • AG129 mice which lack IFN ⁇ / ⁇ and receptor signaling, injected intradermally in the footpad with 10 4 PFU of DENV do not survive past day 5 post-injection. (In this study, the mice died due to a problem with the heat-attenuation).
  • the tested vaccines included constructs (1)-(8) disclosed above.
  • AG129 mice were vaccinated via intramuscular (IM) injection with either 2 ⁇ g or 10 ⁇ g of the candidate vaccine.
  • the vaccines were given to AG129 mice as a prime and a boost (second dose provided 28 days after the first dose).
  • the positive control group was vaccinated with heat-inactivated DENV 2.
  • Phosphate-buffered saline (PBS) was used as a negative control.
  • mice were challenged with mouse-adapted DENV 2 and monitored for 10 days for weight loss, morbidity, and mortality. Mice that displayed severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis were euthanized. Notably, mice “vaccinated” with heat-inactivated DENV (positive control group) became morbid and died (they were not included in the challenge portion of the study).
  • the AG129 mice PBMCs were thawed and stimulated with TALGATEI (SEQ ID NO: 299) peptide for 5 hours in a standard intracellular cytokine assay.
  • TALGATEI SEQ ID NO: 299
  • PBMCs were thawed and suspended in media.
  • the TALGATEI (SEQ ID NO: 299) peptide was administered to stimulate the cells.
  • Golgi plug cells were incubated at 37° C., 5% CO2 for 5 hours. Following stimulation, cells were surface stained, fixed, washed and put at 4° C. overnight.
  • Intracellular staining was performed the following day and assayed via ELISPOT assay to quantify secretion of cytokines by T cells (CD8) as described above to determine T cell activation. If the peptide is an appropriate antigen, some cells would be present antigen during infection and would be capable of stimulating T cells. The results are shown in FIGS. 24 A and 24 B , which demonstrate that each of the peptides (1)-(6) stimulate T cell activation.
  • any exemplary antigenic peptide described herein includes a flag tag or V5, or a polynucleotide encodes a flag tag or V5, the skilled artisan understands that such flag tag or V5 is excluded from the antigenic polynucleotide in a vaccine formulation.
  • any of the polynucleotides encoding proteins described herein are encompassed within the compositions of the invention without the flag tag or V5 sequence.
  • the design of preferred Zika vaccine mRNA constructs of the invention encode prME proteins from the Zika virus intended to produce significant immunogenicity.
  • the open reading frame comprises a signal peptide (to optimize expression into the endoplasmic reticulum) followed by the Zika prME polyprotein sequence.
  • the particular prME sequence used is from a Micronesian strain (2007) that most closely represents a consensus of contemporary strain prMEs. This construct has 99% prME sequence identity to the current Brazilian isolates.
  • the prM/M and E proteins of ZIKV have a very high level (99%) of sequence conservation between the currently circulating Asiatic and Brazilian viral strains.
  • the sequence alignment of the prM/M and E proteins is shown in FIG. 27 .
  • the M and E proteins are on the surface of the viral particle.
  • Neutralizing antibodies predominantly bind to the E protein, the preM/M protein functions as a chaperone for proper folding of E protein and prevent premature fusion of E protein within acidic compartments along the cellular secretory pathway.
  • FIGS. 26 A and 26 B depict examples of ZIKV vaccine designs comprising mRNA encoding the both prM/M and E proteins or E protein alone.
  • FIG. 26 A depicts mRNA encoding an artificial signal peptide fused to prM protein fused to E protein.
  • FIG. 2 B depicts mRNA encoding an artificial signal peptide fused to E protein.
  • ZIKV vaccine constructs can encode the prME or E proteins from different strains, for example, Brazil_isolate_ZikaSPH2015 or ACD75819_Micronesia, having a signal peptide fused to the N-termini of the antigenic protein(s).
  • ZIKV vaccines comprise mRNAs encoding antigenic polypeptides having amino acid sequences of SEQ ID NO: 50-59. The examples are not meant to be limiting.
  • Example 31 Expression of ZIKV prME Protein in Mammalian Cells Using ZIKV mRNA Vaccine Construct
  • the ZIKV prME mRNA vaccine construct were tested in mammalian cells (239T cells) for the expression of ZIKV prME protein.
  • 293T cells were plated in 24-well plates and were transfected with 2 ⁇ g of ZIKV prME mRNA using a Lipofectamine transfection reagent. The cells were incubated for the expression of the ZIKV prME proteins before they were lysed in an immunoprecipitation buffer containing protease inhibitor cocktails. Reducing agent was not added to the lysis buffer to ensure that the cellular proteins were in a non-reduced state.
  • Cell lysates were centrifuged at 8,000 ⁇ g for 20 mins to collect lysed cell precipitate. The cell precipitates were then stained with anti ZIKV human serum and goat anti-human Alexa Fluor 647. Fluorescence was detected as an indication of prME expression ( FIG. 28 ).
  • ZIKV prME protein was also detected by fluorescence-activated cell sorting (FACS) using a flow cytometer.
  • 293F cells (2 ⁇ 10 6 cells/ml, 30 ml) were transfected with 120 ⁇ g PEI, 1 ml of 150 mM NaCl, and 60 ⁇ g prME mRNA.
  • Transfected cells were incubated for 48 hours at 37° C. in a shaker at 130 rpm and under 5% CO 2 . The cells were then washed with PBS buffer containing 2% FBS and fixed in a fixation buffer (PBS buffer containing formalin) for 20 minutes at room temperature.
  • PBS buffer containing 2% FBS fixation buffer
  • the fixed cells were permeabilized in a permeabilization buffer (PBS+1% Triton X100+1 ⁇ l of Golgi plug/ml of cells).
  • the permeabilized cells were then stained with anti-ZIKV human serum (1:20 dilution) and goat anti-human Alexa Fluor 647 secondary antibody, before they were sorted on a flow cytometer.
  • FIG. 29 , FIG. 30 A and FIG. 30 B cells transfected with prME mRNA and stained with the anti-ZIKA human serum shifted to higher fluorescent intensity, indicating that prME expressed from the ZIKV mRNA vaccine constructs in the transfected cells.
  • VLPs were made in HeLa cells and in HEK293t cells and purified via PEG precipitation or ultracentrifugation, respectively. Cells were cultured in culture media. Prior to transfection, cells were passaged twice in virus growth media+10% FBS to media adaptation.
  • VLP's were concentrated using Biovision PEG precipitation kit as per manufacturer's protocol. In brief, supernatant with VLP's was mixed with PEG8000 and incubated at 4° C. for 16 hours. After incubation, mixture was centrifuged at 3000 ⁇ g for 30 mins. Pellet containing concentrated VLP's was collected and suspended into PBS. VLP's were further buffer exchanged into PBS (1:500) using amicon ultra 100MWCO filter. Purified samples were negative stained ( FIG. 32 ).
  • FIG. 32 shows negative stain electron micrographs of supernatants from HeLa cells transfected with mRNA encoding Zika prME.
  • the virus-like particles (VLPs) purified by PEG precipitation, have highly uniform size ( ⁇ 35-40 nm) and morphology.
  • the bumpy appearance of the VLP surface appears to reflect mostly immature morphology due to expression from HeLa cells, which have very low expression of furin, a host protease that is required for maturation the viral envelope.
  • these VLPs will have an exterior structure essentially identical to wild type viral particles, thus eliciting a broad immune response to future Zika virus exposure.
  • VLP purification via ultracentrifugation 293T cells were transfected with Zika prME mRNA as described herein. Supernatant was collected 24 hours after changing the media as described herein. (30 hours post transfection) VLP's were concentrated using Biovision PEG virus precipitation kit into 500 ⁇ L volume. VLP were further purified using a 10-50% sucrose gradient. Sample layer was seen between 20-30% sucrose layers and collected. VLP's were buffered exchanged into PBS by 1:1000 dilution using a 100MWCO amicon ultra filter. VLP's concentrated after PEG precipitation and ultracentrifuge purified VLP were analyzed on a reducing SDS-PAGE gel for purity ( FIG. 33 ).
  • IM intramuscularly
  • PBS intramuscularly
  • All mice were administered an initial dose of vaccine (Groups 1-4) or PBS (Group 5) on Day 0, and then the mice in Groups 1 and 3 were administered a boost dose on Day 21, while the mice in Group 5 were administered PBS on Day 21. All mice were bled on Day 41. See Table 29.
  • Anti-Zika neutralization IgG titer was determined on Day ⁇ 1, Day 28 and Day 41 ( FIG. 33 B ).
  • Control serum in this experiment was from naturally infected immunocompromised mice (Ifnar1 ⁇ / ⁇ , derived from B/6 lineage) in which high viral loads would be achieved.
  • the instant study is designed to test the immunogenicity in mice of candidate ZIKV vaccines comprising a mRNA polynucleotide encoding ZIKV polyprotein.
  • Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Up to three immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against ZIKV polyprotein are determined by ELISA.
  • the instant study was designed to test the efficacy in AG129 mice of candidate ZIKV vaccines against a lethal challenge using a ZIKV vaccine comprising mRNA encoding ZIKV prME.
  • ZIKV vaccine comprising mRNA encoding ZIKV prME.
  • One group of mice was administered PBS intramuscularly as a control. All mice were administered an initial dose of vaccine (Groups 1-4) or PBS (Group 5) on Day 0, and then the mice in Groups 1 and 3 were administered a boost dose on Day 21, while the mice in Group 5 were administered PBS on Day 21. All mice were challenged with a lethal dose of ZIKV in Day 42. All mice were then monitored for survival and weight loss.
  • Anti-Zika neutralization IgG titer was determined on Day ⁇ 1, Day 28 and Day
  • the instant study is designed to test the efficacy in AG129 mice of candidate ZIKV vaccines against a lethal challenge using a ZIKV vaccine comprising mRNA encoding ZIKV polyprotein.
  • Animals are challenged with a lethal dose of the ZIKV.
  • Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate ZIKV vaccines with and without adjuvant.
  • the animals are then challenged with a lethal dose of ZIKV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.
  • the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5.
  • the cationic lipid is DLin-KC2-DMA or DLin-MC3-DMA (50 mol %)
  • the non-cationic lipid is DSPC (10 mol %)
  • the PEG lipid is PEG-DOMG or PEG-DMG (1.5 mol %)
  • the structural lipid is cholesterol (38.5 mol %), for example.
  • the DENV2 prME polypeptide antigen sequences provided in Table 34 were tested to confirm that the DENV prME protein antigen is translated, properly folded and expressed on the surface of cells.
  • the bolded sequence is Dengue signal sequence
  • the underlined sequence is DENV2 precursor membrane sequence
  • the unmarked sequence is DENV2 envelope sequence.
  • the sequences encoding the polypeptides are codon-optimized.
  • HeLa cells were transfected with DNA encoding the prMEs from nine different Dengue 2 isolates. After 24 hours, surface expression of the prME was detected using three different antibodies followed by goat-anti-human AF700 secondary antibody and subjecting the cells to FACS analyses.
  • Each of the three antibodies are broadly neutralizing DENV2 prME antibodies that have in vivo efficacy against Dengue virus.
  • D88 binds to DIII of Envelope protein for all 4 Dengue serotypes (US20150225474).
  • 2D22 binds to DIII of Envelope protein for Dengue 2 serotype.
  • 5J7 binds to 3 domains of Envelope protein for Dengue 3 serotype.
  • FIG. 34 B shows that two of the DENV2 prME antigens are recognized by the D88 and 2D22 antibodies.
  • FIG. 34 B shows a repeat of staining in triplicate and in two different cell lines (HeLa and 293T).
  • antigen surface presentation is an inefficient process in the antigen presenting cells (APC). Peptides generated from proteasome degradation of the antigens are presented with low efficiency (only 1 peptide of 10000 degraded molecules is actually presented). Thus, priming of CD8 T cells with APCs provides insufficient densities of surface peptide/MHC I complexes, resulting in weak responders exhibiting impaired cytokine secretion and decreased memory pool.
  • APC antigen presenting cells
  • mRNA constructs encoding one or more OVA epitopes were configured with different linker sequences, protease cleavage sites, and antigen presentation enhancer sequences. Their respective sequences were as shown in Table 37.
  • 200 ng of each MC3-formulated mRNA construct was transfected into JAWSII cells in a 24-well plate. Cells were isolated at 6, 24, and 48 hours post transfection and stained with fluorescently-labeled Anti-Mouse OVA257-264 (SIINFEKL) peptide bound to H-2Kb. Staining was analyzed on a LSRFortessa flow cytometer. Samples were run in triplicate.
  • Constructs 2, 3, 7, 9, and 10 showed enhanced surface presentation of the OVA epitope, indicating that the configurations of these constructs may be used for DENV mRNA vaccine.
  • Construct 5 comprises a single OVA peptide and a KDEL sequence that is known to prevent the secretion of a protein. Construct 5 showed little surface antigen presentation because the secretion of the peptide was inhibited.
  • DENV mRNA vaccines encoding concatemeric antigen epitopes were tested for binding to antibodies known to recognize one or more DENV serotypes.
  • 200 ng of DENV mRNA vaccines encoding different Dengue prME epitopes were transfected into HeLa cells in 24-well plates using the TransitIT-mRNA Transfection Kit (Mirus Bio).
  • the DENV mRNA vaccine constructs are shown in Table 34. Transfections were done in triplicate. After 24 hours, surface expression was detected using four different antibodies (10 ⁇ g/mL) followed by either goat-anti-human or anti-mouse AF700 secondary antibody (1/500). Signal generated from antibody binding are shown as Mean Fluorescent Intensity (MFI) ( FIG.
  • MFI Mean Fluorescent Intensity
  • Antibody D88 is known to recognize all 4 serotypes and bound to all antigen epitopes encoded by the DENV mRNA vaccine constructs tested.
  • Antibody 2D22 is known to recognize only DENV 2 and preferentially bound to construct 21, which encodes DENV 2 antigen epitopes.
  • Antibody 2D22 also showed weak binding to epitopes of other DENV serotypes.
  • Antibody 5J7 is known to recognize only DENV 3 and only bound to antigen epitopes encoded by constructs 13, 19, and 20, which encode DENV 3 antigen epitopes.
  • Antibody 1-11 is known to bind strongly to DENV 1 and 2, to bind weakly to DENV 3 and to bind little DENV 4.
  • Antibody 1-11 bound to DENV 1, 2, and 3, and binding to DENV 3 antigen epitopes was stronger than binding to DENV 1 or 2 ( FIG. 37 ).
  • Table 39 Shown in Table 39 is the design of DENV prME challenge study in cynomolgus (cyno) money.
  • Indicated DENV mRNA vaccine encoding prME antigen epitopes, or vaccines thereof, are used to immunize cyno.
  • the vaccines are formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the cyno monkeys intramuscularly on day 0, 21, and 42. Dosages of the vaccines are 250 ⁇ g or 5 ⁇ g per immunization. In experiments where a combination of different DENV mRNA vaccines are used, 250 ⁇ g or 5 ⁇ g of each mRNA vaccine is used.
  • FLAG-tagged H10N8 flu vaccine is used as control at a dosage of 250 ⁇ g per immunization.
  • Na ⁇ ve cyno monkeys without immunization are also used as control.
  • Cyno monkey sera are collected on days 20, 41, 62, and 92 post initial immunization and used for serotype-specific neutralization assays.
  • Immunized cyno monkeys are challenged on day 63 post initial immunization with indicated DENV viruses. Cyno monkey sera are collected on days 62 (pre-challenge), 63-66, 68, 70, 72, 76, and 92 (end of life) to determine serum viral load.
  • the instant study was designed to evaluate the efficacy of four DENV mRNA vaccine constructs (constructs 21-24 in Table 38) in AG129 mice challenge assays.
  • the schedule of the challenge study was shown in FIG. 38 A .
  • the DENV mRNA vaccines were formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the AG129 mice intramuscularly on days 0 and 21. Dosage of the vaccines were 2 ag or 10 ag per immunization. Heat inactivated D2Y98P strain was used as a negative control to vaccinate the mice. Na ⁇ ve AG129 mice without immunization were also used as control.
  • mice sera collected from mice immunized with 2 ⁇ g of the DENV mRNA vaccines were able to neutralize several DENV 2 strains and variations in the neutralization ability between the tested mRNA vaccines and between different DENV 2 strains were observed ( FIG. 39 ).
  • Table 40 Shown in Table 40 is the design of a DENV prME challenge study in AG129 mice, including the mRNA constructs tested, the vaccination schedule, the dosage, the challenge strains, and the serum collection schedule.
  • Indicated DENV mRNA vaccine encoding prME antigen epitopes, or vaccines thereof, were used to immunize AG129 mice.
  • the vaccines were formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the mice intramuscularly on days 0 and 21. Dosages of the vaccines were 2 ⁇ g or 10 ⁇ g per immunization. In experiments where a combination of different DENV mRNA vaccines were used, 2 ⁇ g of each mRNA vaccine was used. Na ⁇ ve AG129 mice without immunization were used as control. AG129 mice sera were collected on days 20 and 41 post initial immunization and used for serotype-specific neutralization assays.
  • mice were challenged on day 42 post initial immunization with Dengue D2Y98P virus (s.c., 1e5 PFU per mouse). The weights and health of the mice were monitored for 14 days post infection and the results were plotted in FIGS. 40 A- 40 I .
  • VLPs virus-like particles
  • the antigens produced from the DENV prME mRNA vaccines of the present disclosure when expressed, are able to assemble into virus-like particles (VLPs).
  • the instant study was designed to evaluate the immunogenicity of the VLPs by negative stain electron microscope imaging. As shown in FIG. 41 , DENV mRNA vaccine constructs 21-24 were expressed and VLPs were assembled an isolated. The VLPs were visualized under negative stain electron microscopy. Construct 23 is the vaccine construct used by Sanofi in its DENV vaccines. Constructs 21, 22, and 24 produced more uniform VLPs, suggesting that these VLPs may be more superior in their immunogenicity than the VLPs produced from construct 23.
  • Chikungunya virus (CHIKV) 181/25 strain is an attenuated vaccine strain that was developed by the US Army via multiple plaque-to-plaque passages of the 15561 Southeast Asian human isolate (Levitt et al.). It is well tolerated in humans and is highly immunogenic. It produces small plaques and has decreased virulence in infant mice and nonhuman primates.
  • the attenuated virus is administered to immunodeficient AG129 mice (lacking the IFN- ⁇ / ⁇ and ⁇ receptors) the mice succumb to a lethal disease within 3-4 days with ruffled fur and weight loss (Partidos, et al. 2011 Vaccine).
  • CHIK Chikungunya
  • ID intradermal
  • mice displaying severe illness as determined by >30% weight loss, a health score of higher than 5, extreme lethargy, and/or paralysis were euthanized with a study endpoint of day 10 post virus challenge.
  • Test bleeds via retro-orbital (RO) collection were performed on mice from all groups on Days ⁇ 3, 28, and 56.
  • Mice from Groups 10-16 were also bled on Days 84 & 112. Mice that survived challenge were also terminally bled on Day 10 post challenge.
  • mice Serum samples from mice (Days ⁇ 3, 28, 56, 84, 112 and surviving mice) were kept frozen ( ⁇ 80° C.) and stored until they were tested for reactivity in a semi quantitative ELISA for mouse IgG against either E1, E2 or CHIKV lysate.
  • the injection site may be massaged gently to disperse the injected material.
  • Lumbar area is the most common site for ID injections in all species, but other areas can be used as well.
  • mice Place the mice in the anesthesia chamber and open oxygen line and set to 2.5% purge. Start flow of anesthesia at 5% isoflurane.
  • mice were observed through 10 days post infection (11 days total, 0-10 days post infection).
  • mice were weighed daily on an Ohause scale and the weights are recorded.
  • mice On either Day 56 (Groups 1-4, 7-9) or Day 112 (Groups 10-16) groups of 5 female 6-8 week old AG129 mice were infected via intradermal injection with 1 ⁇ 10 4 PFU/mouse of the 181/25 strain of Chikungunya diluted in PBS. The total inoculation volume was 0.05 mL administered in the rear footpad of each animal. Mice were anesthetized lightly using 2-5% v/v of isoflurane at ⁇ 2.5 L/min of 02 (VetEquip IMPAC6) immediately prior to infection.
  • mice were administered 0.04 ⁇ g, 2 ⁇ g, or 10 ⁇ g of various formulations of the CHIKV vaccine X or vehicle alone (PBS) on either Day 0 or on Days 0 and 28 via the intramuscular route (0.05 mL).
  • the material was pre-formulated by the Client and diluted in PBS by IBT prior to dosing as per instructions provided by the Client.
  • mice were immunized once (Day 0) or twice (Days 0 & 28) with either 0.04 ⁇ g, 2 ⁇ g, or 10 ⁇ g of Chikungunya vaccine X and were challenged with CHIKV strain 181/25 on either Day 56 (Groups 1-4, 7-9) or on Day 112 (Groups 10-16). Mice were monitored for a total of 10 days post infection for health and weight changes. Mice that received either 2 ⁇ g or 10 ⁇ g of the CHIKV vaccine X either once (Day 0) or twice (Days 0 and 28) were fully protected (100%) regardless of whether the mice were challenged 56 days or 112 days after the initial vaccination ( FIGS. 42 A- 42 B , Table 44).
  • mice receiving 0.04 ⁇ g of the CHIKV vaccine were not protected at all from lethal CHIKV infection. This efficacy data is supported by the health scores observed in the vaccinated mice in that the protected mice displayed little to no adverse health effects of a CHIKV infection ( FIGS. 44 A- 44 B ). Weight loss is not a strong indicator of disease progression in the CHIKV AG129 mouse model ( FIGS. 43 A- 43 B ).
  • mice immunized with the CHIKV vaccine X showed increased antibody titers against CHIKV E1, E2 and CHIKV lysate as compared to the vehicle only (PBS) treated groups. Serum binding against the virus lysate yielded the highest antibody titers for all vaccinated groups ( FIGS. 45 A- 45 C, 46 A- 46 C, 47 A- 47 C, 48 A- 48 C ). Overall, the antibody titers were dose dependent with the highest titers observed in serum from mice vaccinated with 10 ⁇ g of CHIKV vaccine X while the lowest titers were observed in serum from mice vaccinated with 0.04 ⁇ g of the CHIKV vaccine X.
  • Serum from mice groups 10-16, 112 days post immunization were also tested in a Plaque Reduction Neutralization Test (PRNT). Serum from each mice was diluted from 1/20 to 1/40960 and assessed for its ability to reduce CHIKV plaque formation. The results were shown in Table 46.
  • PRNT Plaque Reduction Neutralization Test
  • CHIKV Plaque Reduction Neutralization Test Serum dilutions from 1/20 to 1/40960 Expt info Vaccination
  • Example 43 Immunogenicity of Chikungunya Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate in Rats
  • FIG. 58 demonstrated that there was at least a two log increase in antibody titer against CHIKV lysate post 3rd vaccination with the mRNA vaccine in normal rats.
  • Example 44 Evaluation of T Cell Activation of Chikungunya P 5 Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate
  • spleens were removed, cells isolated, and stimulated in vitro with immunogenic peptides found within either C, E1, or E2 region of CHIKV that are known to be CD8 epitopes in B6 mice.
  • the readout for this assay was cytokine secretion (IFN-gamma and TNF-alpha), which reveals whether the vaccine induced antigen-specific T cell responses.
  • No CD8 T cell responses were detected using the E2 or C peptide (baseline levels of IFN-gamma and TNF-alpha), whereas there was a response to the E1-corresponding peptide (average of about 0.4% IFN-gamma and 0.1% TNF).
  • FIG. 59 shows that the polyprotein-encoding CHIKV polyprotein vaccine elicited high antibody titers against the CHIKV glycoproteins.
  • FIGS. 60 and 61 A- 61 B show T cell activation by E1 peptide.

Abstract

Aspects of the disclosure relate to nucleic acid vaccines. The vaccines include one or more RNA polynucleotides having an open reading frame encoding one or more Chikungunya antigen(s), one or more Zika virus antigens, and one or more Dengue antigens. Methods for preparing and using such vaccines are also described.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 16/009,880, filed Jun. 15, 2018, which is a continuation of U.S. application Ser. No. 15/746,286, filed Jan. 19, 2018, which is a national stage filing under 35 U.S.C. § 371 of international application number PCT/US2016/043348, filed Jul. 21, 2016, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/357,806, filed Jul. 1, 2016, U.S. provisional application No. 62/351,200, filed Jun. 16, 2016, U.S. provisional application No. 62/351,244, filed Jun. 16, 2016, U.S. provisional application No. 62/351,267, filed Jun. 16, 2016, U.S. provisional application No. 62/351,148, filed Jun. 16, 2016, U.S. provisional application No. 62/351,206, filed Jun. 16, 2016, U.S. provisional application No. 62/303,666, filed Mar. 4, 2016, U.S. provisional application No. 62/303,405, filed Mar. 4, 2016, U.S. provisional application No. 62/247,551, filed Oct. 28, 2015, U.S. provisional application No. 62/247,527, filed Oct. 28, 2015, U.S. provisional application No. 62/247,660, filed Oct. 28, 2015, U.S. provisional application No. 62/247,644, filed Oct. 28, 2015, U.S. provisional application No. 62/247,581, filed Oct. 28, 2015, U.S. provisional application No. 62/245,179, filed Oct. 22, 2015, U.S. provisional application No. 62/244,995, filed Oct. 22, 2015, U.S. provisional application No. 62/244,855, filed Oct. 22, 2015, U.S. provisional application No. 62/244,859, filed Oct. 22, 2015, U.S. provisional application No. 62/245,233, filed Oct. 22, 2015, U.S. provisional application No. 62/241,699, filed Oct. 14, 2015, U.S. provisional application No. 62/199,204, filed Jul. 30, 2015, and U.S. provisional application No. 62/195,263, filed Jul. 21, 2015, each of which is incorporated by reference herein in its entirety.
  • BACKGROUND OF INVENTION
  • Chikungunya virus (CHIKV) is a mosquito-borne virus belonging to the Alphavirus genus of the Togaviridae family that was first isolated in 1953 in Tanzania, where the virus was endemic. Outbreaks occur repeatedly in west, central, and southern Africa and have caused several human epidemics in those areas since that time. The virus is passed to humans by two species of mosquito of the genus Aedes: A. albopictus and A. aegypti. There are several Chikungunya genotypes: Indian Ocean, East/Central/South African (ECSA), Asian, West African, and Brazilian.
  • Presently, CHIKV is a re-emerging human pathogen that has now established itself in Southeast Asia and has more recently spread to Europe. The Chikungunya virus (CHIKV) was introduced into Asia around 1958, and sites of endemic transmission within Southeastern Asia, including the Indian Ocean, were observed through 1996. The CHIKV epidemic moved throughout Asia, reaching Europe and Africa in the early 2000s, and was imported via travelers to North America and South America from 2005 to 2007. Sporadic outbreaks are still occurring in several countries, such as Italy, inflicting naive populations. Singapore, for instance, experienced two successive waves of Chikungunya virus outbreaks in January and August 2008. Of the two strain lineages of CHIKV, the African strain remains enzootic by cycling between mosquitoes and monkeys, but the Asian strain is transmitted directly between mosquitoes and humans. This cycle of transmission may have allowed the virus to become more pathogenic as the reservoir host was eliminated.
  • In humans, CHIKV causes a debilitating disease characterized by fever, headache, nausea, vomiting, fatigue, rash, muscle pain and joint pain. Following the acute phase of the illness, patients develop severe chronic symptoms lasting from several weeks to months, including fatigue, incapacitating joint pain and polyarthritis.
  • The re-emergence of CHIKV has caused millions of cases throughout countries around the Indian Ocean and in Southeast Asia. Specifically, India, Indonesia, Maldives, Myanmar and Thailand have reported over 1.9 million cases since 2005. Globally, human CHIKV epidemics from 2004-2011 have resulted in 1.4-6.5 million reported cases, including a number of deaths. Thus, CHIKV remains a public threat that constitutes a major public health problem with severe social and economic impact.
  • Despite significant morbidity and some cases of mortality associated with CHIKV infection and its growing prevalence and geographic distribution, there is currently no licensed CHIKV vaccine or antiviral approved for human use. Several potential CHIKV vaccine candidates have been tested in humans and animals with varying success.
  • Dengue virus (DENV) is a mosquito-borne (Aedes aegypti/Aedes albopictus) member of the family Flaviviridae (positive-sense, single-stranded RNA virus). Dengue virus is a positive-sense RNA virus of the Flavivirus genus of the Flaviviridae family, which also includes West Nile virus, Yellow Fever Virus, and Japanese Encephalitis virus. It is transmitted to humans through Stegomyia aegypti (formerly Aedes) mosquito vectors and is mainly found in the tropical and semitropical areas of the world, where it is endemic in Asia, the Pacific region, Africa, Latin America, and the Caribbean. The incidence of infections has increased 30-fold over the last 50 years (WHO, Dengue: Guidelines for diagnosis, treatment, prevention, and control (2009)) and Dengue virus is the second most common tropical infectious disease worldwide after malaria.
  • There is no specific treatment for DENV infection, and control of DENV by vaccination has proved elusive, in part, because the pathogenesis of DHF/DSS is not completely understood. While infection with one serotype confers lifelong homotypic immunity, it confers only short term (approximately three to six months) cross protection against heterotypic serotypes. Also, there is evidence that prior infection with one type can produce an antibody response that can intensify, or enhance, the course of disease during a subsequent infection with a different serotype. The possibility that vaccine components could elicit enhancing antibody responses, as opposed to protective responses, has been a major concern in designing and testing vaccines to protect against dengue infections.
  • In late 2015 and early 2016, the first dengue vaccine, Dengvaxia (CYD-TDV) by Sanofi Pasteur, was registered in several countries for use in individuals 9-45 years of age living in endemic areas. Issues with the vaccine include (1) weak protection against DENV1 and DENV2 (<60% efficacy); (2) relative risk of dengue hospitalization among children <9 years old (7.5× higher than placebo); (3) immunogenicity not sustained after 1-2 years (implying the need for a 4th dose booster); and (4) lowest efficacy against DENV2, which often causes more severe conditions. This latter point is a major weakness with the Dengvaxia vaccine, signaling the need of a new, more effective vaccine effective against DENV2. Other tetravalent live-attenuated vaccines are under development in phase II and phase III clinical trials, and other vaccine candidates (based on subunit, DNA and purified inactivated virus platforms) are at earlier stages of clinical development, although the ability of these vaccine candidates to provide broad serotype protection has not been demonstrated.
  • Zika virus (ZIKV) is a member of the Flaviviridae virus family and the flavivirus genus. In humans, it causes a disease known as Zika fever. It is related to dengue, yellow fever, West Nile and Japanese encephalitis, viruses that are also members of the virus family Flaviviridae. ZIKV is spread to people through mosquito bites. The most common symptoms of ZIKV disease (Zika) are fever, rash, joint pain, and red eye. The illness is usually mild with symptoms lasting from several days to a week. There is no vaccine to prevent, or medicine to treat, Zika virus.
  • Deoxyribonucleic acid (DNA) vaccination is one technique used to stimulate humoral and cellular immune responses to foreign antigens, such as ZIKV antigens. The direct injection of genetically engineered DNA (e.g., naked plasmid DNA) into a living host results in a small number of its cells directly producing an antigen, resulting in a protective immunological response. With this technique, however, comes potential problems, including the possibility of insertional mutagenesis, which could lead to the activation of oncogenes or the inhibition of tumor suppressor genes.
  • SUMMARY OF INVENTION
  • Provided herein is a ribonucleic acid (RNA) vaccine (e.g., messenger RNA (mRNA)) that can safely direct the body's cellular machinery to produce nearly any protein of interest, from native proteins to antibodies and other entirely novel protein constructs that can have therapeutic activity inside and outside of cells. The RNA vaccines of the present disclosure may be used to induce a balanced immune response against a single virus or multiple viruses, including Chikungunya virus (CHIKV), Zika Virus (ZIKV) and Dengue virus (DENV), comprising both cellular and humoral immunity, without the associated safety concerns, e.g., risking the possibility of insertional mutagenesis.
  • Some embodiments of the present disclosure provide vaccines and/or combination vaccines comprising one or more RNA polynucleotides, e.g., mRNA. In some embodiments, the RNA polynucleotide(s) encode a CHIKV antigen, a ZIKV antigen, a DENV antigen, or any combination of two or three of the foregoing (e.g., CHIKV antigen/ZIKV antigen, CHIKV antigen/DENV antigen, ZIKV antigen/DENV antigen, or CHIKV/DENV/ZIKV) on either the same polynucleotide or different polynucleotides. In some embodiments, the RNA polynucleotide(s) encode a ZIKV antigen and a DENV antigen, on either the same polynucleotide or different polynucleotides.
  • Thus, it should be understood the phrase “a CHIKV, DENV and/or ZIKV” is intended to encompass each individual virus in the alternative (CHIKV or DENV or ZIKV) as well as the individual combinations of CHIKV and DENV (CHIKV/DENV), CHIKV and ZIKV (CHIKV/ZIKV), ZIKV and DENV (ZIKV/DENV), and CHIKV, DENV and ZIKV (CHIKV/DENV/ZIKV).
  • In some aspects, the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one CHIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one DENV antigenic polypeptide, or a combination of any two or three of the foregoing, and a pharmaceutically acceptable carrier or excipient. In some embodiments, the RNA polynucleotides encoding the DENV antigenic polypeptide, the ZIKV antigenic polypeptide and/or the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides. In other embodiments, the RNA polynucleotide encoding the DENV antigenic polypeptide, the ZIKV antigenic polypeptide and/or the CHIKV antigenic polypeptide is a poly-cistronic. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.
  • In some aspects, the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient. In some embodiments, the RNA polynucleotides encoding the ZIKV antigenic polypeptide and the DENV antigenic polypeptide are mono-cistronic RNA polynucleotides. In other embodiments, the RNA polynucleotide encoding the ZIKV antigenic polypeptide and the DENV antigenic polypeptide is a poly-cistronic RNA polynucleotide. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.
  • In some aspects, the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one ZIKV antigenic polypeptide and at least one CHIKV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient. In some embodiments, the RNA polynucleotides encoding the ZIKV antigenic polypeptide and the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides. In other embodiments, the RNA polynucleotide encoding the ZIKV antigenic polypeptide and the CHIKV antigenic polypeptide is a poly-cistronic RNA polynucleotide. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.
  • In some aspects, the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one DENV antigenic polypeptide and at least one CHIKV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient. In some embodiments, the RNA polynucleotides encoding the DENV antigenic polypeptide and the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides.
  • In other embodiments, the RNA polynucleotide encoding the DENV antigenic polypeptide and the CHIKV antigenic polypeptide is a poly-cistronic RNA polynucleotide. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.
  • The at least one RNA polynucleotide, e.g., mRNA, in some embodiments, encodes two or more CHIKV antigenic polypeptides, two or more ZIKV antigenic polypeptides or two or more DENV antigenic polypeptides. The at least one RNA polynucleotide, e.g., mRNA, in some embodiments, encodes two or more CHIKV antigenic polypeptides, two or more ZIKV antigenic polypeptides and two or more DENV antigenic polypeptides. In some embodiments, the at least one RNA polynucleotide, e.g., mRNA, encodes two or more ZIKV antigenic polypeptides and two or more DENV antigenic polypeptides. In some embodiments, the at least one RNA polynucleotide, e.g., mRNA, encodes two or more ZIKV antigenic polypeptides and two or more CHIKV antigenic polypeptides. In some embodiments, the at least one RNA polynucleotide, e.g., mRNA, encodes two or more CHIKV antigenic polypeptides and two or more DENV antigenic polypeptides.
  • The CHIKV antigenic polypeptide may be a Chikungunya structural protein or an antigenic fragment or epitope thereof. The DENV antigenic polypeptide may be a Dengue virus (DENV) structural protein or an antigenic fragment or epitope thereof. The ZIKV antigenic polypeptide may be a Zika virus (ZIKV) structural protein (e.g., polyprotein) or an antigenic fragment or epitope thereof.
  • In some embodiments, the antigenic polypeptide is a CHIKV structural protein or an antigenic fragment thereof. For example, a CHIKV structural protein may be an envelope protein (E), a 6K protein, or a capsid (C) protein. In some embodiments, the CHIKV structural protein is an envelope protein selected from E1, E2, and E3. In some embodiments, the CHIKV structural protein is E1 or E2. In some embodiments, the CHIKV structural protein is a capsid protein. In some embodiments, the antigenic polypeptide is a fragment or epitope of a CHIKV structural protein.
  • In some embodiments, at least one antigenic polypeptide is a ZIKV polyprotein. In some embodiments, at least one antigenic polypeptide is a ZIKV structural polyprotein. In some embodiments, at least one antigenic polypeptide is a ZIKV nonstructural polyprotein.
  • In some embodiments, at least one antigenic polypeptide is a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.
  • In some embodiments, at least one antigenic polypeptide is a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.
  • In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein, a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein, and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.
  • In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein.
  • In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.
  • In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.
  • In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.
  • In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.
  • In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.
  • In some embodiments, the at least one antigenic polypeptide comprises a combination of any two or more of a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.
  • In some embodiments, the at least one ZIKV antigenic polypeptide is fused to signal peptide having a sequence set forth as SEQ ID NO: 125, 126, 128 or 131. In some embodiments, the signal peptide is fused to the N-terminus of the at least one ZIKV antigenic polypeptide.
  • In some embodiments, the antigenic polypeptide comprises two or more CHIKV structural proteins. In some embodiments, the two or more CHIKV structural proteins are envelope proteins. In some embodiments, the two or more CHIKV structural proteins are E1 and E2. In some embodiments, the two or more CHIKV structural proteins are E1 and E3. In some embodiments, the two or more CHIKV structural proteins are E2 and E3. In some embodiments, the two or more CHIKV structural proteins are E1, E2, and E3. In some embodiments, the two or more CHIKV structural proteins are envelope and capsid proteins. In some embodiments, the two or more CHIKV structural proteins are E1 and C. In some embodiments, the two or more CHIKV structural proteins are E2 and C. In some embodiments, the two or more CHIKV structural proteins are E3 and C. In some embodiments, the two or more CHIKV structural proteins are E1, E2, and C. In some embodiments, the two or more CHIKV structural proteins are E1, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E2, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E1, E2, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E1, 6K, and E2. In some embodiments, the two or more CHIKV structural proteins are E2, 6K, and E3. In some embodiments, the two or more CHIKV structural proteins are E1, 6K, and E3. In some embodiments, the two or more CHIKV structural proteins are E1, E2, E3, 6K, and C. In some embodiments, the antigenic polypeptide comprises the CHIKV structural polyprotein comprising C, E3, E2, 6K, and E1. In some embodiments, the antigenic polypeptide is a fragment or epitope of two or more CHIKV structural proteins or a fragment or epitope of the polyprotein.
  • In some embodiments the at least one antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • In some embodiments the at least one antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • In some embodiments the at least one antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • In some embodiments the at least one antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • In some embodiments the at least one antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • In some embodiments the at least one antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • In some embodiments the at least one antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.
  • In other embodiments the at least one antigenic polypeptides encode an antigenic polypeptide having an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide is codon optimized mRNA. In yet other embodiments the at least one antigenic polypeptide has an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide has less than 80% identity to wild-type mRNA sequence. According to some embodiments the at least one antigenic polypeptide has an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide has greater than 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.
  • In some embodiments, the DENV antigen is a concatemeric DENV antigen. In some embodiments, the DENV concatemeric antigen comprises between 2-100 DENV peptide epitopes connected directly to one another or interspersed by linkers. In some embodiments, the DENV vaccine's peptide epitopes are T cell epitopes and/or B cell epitopes. In other embodiments, the DENV vaccine's peptide epitopes comprise a combination of T cell epitopes and B cell epitopes. In some embodiments, at least one of the peptide epitopes of the DENV vaccine is a T cell epitope. In some embodiments, at least one of the peptide epitopes of the DENV vaccine is a B cell epitope. In some embodiments, the T cell epitope of the DENV vaccine comprises between 8-11 amino acids. In some embodiments, the B cell epitope of the DENV vaccine comprises between 13-17 amino acids.
  • In some embodiments, the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the nucleotide sequences of Tables 1-4, 13, 15, 31, 34 or 38, or any one of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the CHIKV nucleotide sequences of SEQ ID NO: 1-13. In some embodiments, the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the DENV nucleotide sequences of SEQ ID NO: 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212. In some embodiments, the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the ZIKV nucleotide sequences of SEQ ID NO: 67-134.
  • In other embodiments, the RNA polynucleotide comprises a polynucleotide sequence derived from an Asian strain, Brazilian strain, West African strain, ECSA strain, and Indian Ocean strain of Chikungunya.
  • In some embodiments, at least one antigenic polypeptide is a ZIKV envelope protein.
  • In some embodiments, at least one antigenic polypeptide is a Spondweni virus Polyprotein.
  • In some embodiments, at least one antigenic polypeptide is a polyprotein obtained from ZIKV strain MR 766, ACD75819 or SPH2015.
  • In some embodiments, at least one antigenic polypeptide has an amino acid sequence of any one of the sequences listed in Table 32.
  • In some embodiments, at least one antigenic polypeptide has at least 95% identity to an antigenic polypeptide having an amino acid sequence of any one of the sequences listed in Table 32.
  • In some embodiments, the at least one RNA polynucleotide encodes at least one antigenic polypeptide having a sequence of listed in Table 31.
  • In some embodiments, the at least one RNA polynucleotide encodes at least one protein variant having at least 95% identity to an antigenic polypeptide having a sequence of listed in Table 31.
  • Tables herein provide National Center for Biotechnology Information (NCBI) accession numbers of interest. It should be understood that the phrase “an amino acid sequence of Table X” (e.g., Table 33 or Table 35) refers to an amino acid sequence identified by one or more NCBI accession numbers listed in Table X. Each of the amino acid sequences, and variants having greater than 95% identity to each of the amino acid sequences encompassed by the accession numbers of Table X (e.g., Table 33 or Table 35) are included within the constructs of the present disclosure.
  • In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 90% identity to an amino acid sequence of Table 32 or 33 Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 95% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 96% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 97% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 98% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 99% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having 95-99% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity.
  • In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and is codon optimized mRNA.
  • In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has less than 75%, 85% or 95% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 40-85%, 50-85%, 60-85%, 30-85%, 70-85%, 75-85%, or 80-85% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.
  • In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 90% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 95% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 96% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 97% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 98% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 99% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having 95-99% identity to a nucleic acid sequence of Table 31.
  • In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 75%, 85% or 95% identity to a wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 40-85%, 50-85%, 60-85%, 30-85%, 70-85%, 75-85% or 80-85% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.
  • In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and having at least 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.
  • In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide that attaches to cell receptors.
  • In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide that causes fusion of viral and cellular membranes.
  • In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide that is responsible for binding of the ZIKV to a cell being infected.
  • Some embodiments of the present disclosure provide a CHIKV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a CHIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a DENV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a DENV antigenic polypeptides, in which the RNA polynucleotide of the DENV vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a ZIKV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a ZIKV antigenic polypeptides, in which the RNA polynucleotide of the ZIKV vaccine includes a 5′ terminal cap.
  • Some embodiments of the present disclosure provide a CHIKV/DENV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV, DENV, and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV, DENV, and ZIKV RNA vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a DENV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of DENV and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the DENV, and ZIKV RNA vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a CHIKV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV and ZIKV RNA vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a CHIKV/DENV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV and DENV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV and DENV RNA vaccine includes a 5′ terminal cap. In some embodiments, the 5′ terminal cap is 7mG(5′)ppp(5′)NlmpNp.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide in which the RNA polynucleotide of the CHIKV RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide in which the RNA polynucleotide of the DENV RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the ZIKV RNA vaccine includes at least one chemical modification.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/DENV/ZIKV combination RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/DENV combination RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/ZIKV combination RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the DENV/ZIKV combination RNA vaccine includes at least one chemical modification.
  • In some embodiments, the chemical modification is selected from pseudouridine, N1-methylpseudouridine, 2-thiouridine, 4′-thiouridine, 5-methylcytosine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine, 5-methyluridine, and 2′-O-methyl uridine.
  • In some embodiments, the RNA polynucleotide, e.g., mRNA including at least one chemical modification further includes a 5′ terminal cap. In some embodiments, the 5′ terminal cap is 7mG(5′)ppp(5′)NlmpNp.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, and at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. In some embodiments, 100% of the uracil in the open reading frame have a chemical modification. In some embodiments, the chemical modification is in the 5-position of the uracil. In some embodiments, the chemical modification is a N1-methyl pseudouridine.
  • In some embodiments of any of the combination RNA vaccines described herein, the RNA polynucleotide of the RNA vaccine is formulated in a lipid nanoparticle (LNP) carrier. In some embodiments, the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid. In some embodiments, the lipid nanoparticle carrier comprising a molar ratio of about 20-60% cationic lipid: 5-25% non-cationic lipid: 25-55% sterol; and 0.5-15% PEG-modified lipid. In some embodiments, the cationic lipid is an ionizable cationic lipid. In some embodiments, the non-cationic lipid is a neutral lipid. In some embodiments, the sterol is a cholesterol. In some embodiments, the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319). In some embodiments, the lipid nanoparticle has a polydispersity value of less than 0.4. In some embodiments, the lipid nanoparticle has a net neutral charge at a neutral pH. In some embodiments, the lipid nanoparticle has a mean diameter of 50-200 nm.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.
  • Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized.
  • Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, and at least one ZIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized.
  • Some embodiments of the present disclosure provide methods of inducing an antigen specific immune response in a subject, comprising administering to the subject a combination RNA vaccine in an amount effective to produce an antigen specific immune response against CHIKV, against DENV, against ZIKV, against CHIKV and DENV, against CHIKV and ZIKV, against DENV and ZIKV, or against CHIKV, DENV and ZIKV. In some embodiments, an antigen specific immune response comprises a T cell response. In some embodiments, an antigen specific immune response comprises a B cell response. In some embodiments, an antigen specific immune response comprises both a T cell response and a B cell response. In some embodiments, a method of producing an antigen specific immune response involves a single administration of the vaccine. In other embodiments, the method further comprises administering to the subject a second dose or a booster dose of the vaccine. In other embodiments the method comprises administering more than one dose of the vaccine, for example, 2, 3, 4 or more doses of the vaccine. In some embodiments, the vaccine is administered to the subject by intradermal or intramuscular injection.
  • Further provided herein are vaccines, such as any of the vaccines described herein, for use in a method of inducing an antigen specific immune response in a subject, the method comprising administering the vaccine to the subject in an effective amount to produce an antigen specific immune response.
  • Further provided herein are uses of CHIKV, DENV or ZIKV RNA vaccines and CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV or CHIKV/DENV/ZIKV combination RNA vaccines in the manufacture of a medicament for use in a method of inducing an antigen specific immune response in a subject, the method comprising administering the vaccine to the subject in an amount effective to produce an antigen specific immune response.
  • In other aspects of the invention is a method of preventing or treating a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV infection comprising administering to a subject any of the vaccines described herein. In yet other aspects of the invention is a method of preventing or treating CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV
  • In some embodiments, a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine, is formulated in an effective amount to produce an antigen specific immune response in a subject.
  • In some embodiments, an anti-CHIKV, an anti-DENV, an anti-ZIKV, an anti-CHIKV/anti-DENV, an anti-CHIKV/anti-ZIKV, an anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 5 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased 2-10 times relative to a control.
  • In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered a combination (or any other) vaccine. In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV, vaccine. In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 4-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 10-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 100-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 1000-fold reduction in the standard of care dose of a recombinant CHIKV/DENV/ZIKV, or DENV/ZIKV, protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to a 2-1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a total dose of 50-1000 μg. In some embodiments, the effective amount is a total dose of 100 μg. In some embodiments, the effective amount is a dose of 25 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 μg administered to the subject a total of two times.
  • Further provided herein is a method of inducing an antigen specific immune response in a subject, the method including administering to a subject the CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine in an effective amount to produce an antigen specific immune response in a subject. In some embodiments, anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control. In some embodiments, an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased at least 5 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased 2-10 times relative to a control.
  • In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered CHIKV/DENV/ZIKV, or DENV/ZIKV, vaccine. In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine. In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 4-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 10-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHI
  • KV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 100-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a dose equivalent to an at least 1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, wherein the effective amount is a dose equivalent to a 2-1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV, protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • In some embodiments, the effective amount is a total dose of 50-1000 μg. In some embodiments, the effective amount is a total dose of 100 μg. In some embodiments, the effective amount is a dose of 25 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 μg administered to the subject a total of two times.
  • Other aspects of the present disclosure provide a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine, which includes a signal peptide linked to a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein. In some embodiments, the signal peptide is a IgE signal peptide. In some embodiments, the signal peptide is an IgE HC (Ig heavy chain epsilon-1) signal peptide.
  • Further provided herein, is a nucleic acid encoding CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.
  • Another aspect of the present disclosure provides a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine, which includes at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding a signal peptide linked to a CHIKV, DENV, and/or ZIKV antigenic peptide. In some embodiments, the CHIKV, DENV, and/or ZIKV antigenic peptide is a CHIKV, DENV, and/or ZIKV envelope protein.
  • In some embodiments, the signal peptide is a IgE signal peptide. In some embodiments, the signal peptide is an IgE HC (Ig heavy chain epsilon-1) signal peptide. In some embodiments, the signal peptide has the sequence MDWTWILFLVAAATRVHS (SEQ ID NO: 126). In some embodiments, the signal peptide is an IgGIκ signal peptide. In some embodiments, the signal peptide has the sequence METPAQLLFLLLLWLPDTTG (SEQ ID NO: 125).
  • In any of the aspects and embodiments described herein the combination vaccine is a CHIKV/DENV/ZIKV, CHIKV/DENV, CHIKV/ZIKV, and/or DENV/ZIKV vaccine.
  • Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention. This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
  • FIG. 1A shows a schematic depiction of the post-translational process of CHIKV structural proteins. FIG. 1B shows a schematic depiction of the E1/E2 heterodimer that associates as a trimeric spike on the CHIKV viral surface.
  • FIG. 2 shows a phylogenetic tree of chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins. E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus are shown on the right. CAR: Central African republic; ECSA: East/Central/South Africa.
  • FIG. 3 shows CHIKV envelope protein detection of lysate in HeLa cells 16 hours post-transfection.
  • FIG. 4A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally. FIG. 4B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally. FIG. 4C is a graph showing the health scores of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.
  • FIG. 5A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally. FIG. 5B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally. FIG. 5C is a graph showing the health scores of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.
  • FIG. 6A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally. FIG. 6B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally. FIG. 6C is a graph showing the health scores of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • FIG. 7 shows the study design, schedule of injection/bleeding, readout, and survival data for the 2 μg dose study of the CHIKV E1, CHIKV E2, and CHIKV E1/E2/E3/6K/C vaccines.
  • FIG. 8A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally. FIG. 8B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally. FIG. 8C is a graph showing the health scores of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.
  • FIG. 9A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally. FIG. 9B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally. FIG. 9C is a graph showing the health scores of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.
  • FIG. 10A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally. FIG. 10B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally. FIG. 10C is a graph showing the health scores of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.
  • FIG. 11 shows the study design, schedule of injection/bleeding, readout, and survival data for the 10 μg dose study of the CHIKV E1, CHIKV E2, and CHIKV C-E3-E2-6K-E1 vaccines.
  • FIG. 12 shows the results of an in vitro transfection of mRNA encoded CHIKV structural proteins. Protein detection in HeLa cell lysate 16 h post transfection is detected.
  • FIGS. 13A and 13B are schematics of an exemplary DENV peptide epitope. The polypeptide of FIG. 13A includes two or more epitopes. The epitopes can be of the same sequence or different sequence and can be all T-cell epitopes, all B-cell epitopes or a combination of both. The schematic of FIG. 13B shows the peptide epitope with various end units for enhancing MHC processing of the peptides.
  • FIG. 14 is a schematic of a dengue viral genome including structural and nonstructural components.
  • FIG. 15 shows exemplary dengue peptide epitopes identified using a database screen.
  • FIGS. 16A-16C show Dengue Virus MHC I T cell epitopes.
  • FIGS. 17A-17C show Dengue Virus MHC II T cell epitopes.
  • FIG. 18 is a graph depicting the results of an ELISPOT assay of dengue-specific peptides.
  • FIG. 19 is a graph depicting the results of an ELISPOT assay of dengue-specific peptides.
  • FIG. 20 is a schematic of a bone marrow/liver/thymus (BLT) mouse and data on human CD8 T cells stimulated with Dengue peptide epitope.
  • FIG. 21 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus DAPI was performed. The arrows indicate V5-MHC1 colocalization (bottom right).
  • FIG. 22 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus DAPI was performed. The arrows indicate regions where V5 preferentially colocalizes with MHC1 and not with Mitotracker.
  • FIG. 23 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus Dapi was performed. V5 has homogeneous cytoplasmic distribution preferentially colocalizes with MHC1 and not with Mitotracker.
  • FIGS. 24A and 24B shows the results of an Intracellular Cytokine Staining assay performed in PBMC cells.
  • FIG. 25 shows a schematic of a genomic polyprotein obtained from Zika virus, Flaviridiaie. The ZIKV genome encodes a polyprotein with three structural proteins (capsid (C), premembrane/membrane (prM), and envelope (E, a glycosylation motif previously associated with virulence)), and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5). The polyprotein may be cleaved by several host peptidase or proteases to generate structural or functional proteins for the virus. The respective cleavage sites of the peptidases or proteases are indicated by arrows.
  • FIG. 26A shows a schematic of a ZIKV vaccine that comprises a RNA polynucleotide encoding a signal peptide fused to Zika prM protein fused to Zika E protein. FIG. 26B shows a schematic of a ZIKV vaccine that comprises a RNA polynucleotide encoding a signal peptide fused to Zika E protein. The cleavage junction is located between the signal peptide and the Zika prM protein and is conserved between Dengue and Zika.
  • FIG. 27 shows a sequence alignment of currently circulating Zika Virus strains.
  • FIG. 28 shows fluorescent staining of non-reduced mammalian cell lysates. Tube 1 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with secondary antibody only (negative control). Tube 2 contains lysed cell precipitate obtained from untransfected 293T cells and stained with anti-ZIKV human serum (1:20) and goat anti-human Alexa Fluor 647 (negative control). Tube 3 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with anti-ZIKV human serum (1:20) and goat anti-human Alexa Fluor 647. Tube 4 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with anti-ZIKV human serum (1:200) and goat anti-human Alexa Fluor 647. The antibodies in anti-ZIKV human serum can detect non-reduced proteins expressed by prME mRNA constructs.
  • FIG. 29 shows a histogram indicating intracellular detection of ZIKA prME protein using human anti-ZIKV serum.
  • FIGS. 30A-30B show the results of detecting prME protein expression in mammalian cells with fluorescence-activated cell sorting (FACS) using a flow cytometer. Cells expressing prME showed higher fluorescence intensity when stained with anti-ZIKV human serum.
  • FIG. 31 shows a graph of neutralizing titers from Balb/c mice immunized with ZIKV mRNA vaccine encoding prME.
  • FIG. 32 shows negative stain images for Hela samples.
  • FIG. 33A shows a reducing SDS-PAGE gel of Zika VLP. FIG. 33B shows a graph of neutralizing titers obtained from Balb/c mice immunized with a ZIKV mRNA vaccine.
  • FIG. 34A shows FACS analyses of cells expressing DENV2 prMEs using different antibodies against Dengue envelope protein. Numbers in the upper right corner of each plot indicate mean fluorescent intensity. FIG. 34B shows a repeat of staining in triplicate and in two different cell lines (HeLa and 293T).
  • FIG. 35 shows an in vitro antigen presentation assays using OVA (peptide epitope of ovalbumin) multitopes to test different DENV mRNA vaccine construct configurations.
  • FIG. 36 is a graph showing the kinetics of OVA peptide presentation in Jawsii cells. All mRNAs tested are formulated in MC3 lipid nanoparticles.
  • FIG. 37 is a graph showing the Mean Fluorescent Intensity (MFI) of antibody binding to DENV-1, 2, 3, and 4 prME epitopes presented on the cell surface.
  • FIGS. 38A-38D are graphs showing the design and the results of a challenge study in AG129 mice. FIG. 38A shows the immunization, challenge, and serum collection schedules.
  • FIG. 38B shows the survival of the AG129 mice challenged with Dengue D2Y98P virus after being immunized with the indicated DENV mRNA vaccines. All immunized mice survived 11 days post infection, while the unimmunized (control) mice died. FIGS. 38C and 38D show the weight loss of the AG129 mice post infection. Vaccine 1, 7, 8, or 9 correspond to DENV vaccine construct 22, 21, 23, or 24 of the present disclosure, respectively.
  • FIG. 39 is a graph showing the results of an in vitro neutralization assay using serum from mice immunized with the DENV mRNA vaccines in FIGS. 39A-39D.
  • FIGS. 40A-40I are graphs showing the results of a challenge study in AG129 mice. The challenge study design is shown in Table 40. FIGS. 40A-40F show the survival, weight loss, and heath score of the AG129 mice challenged with D2Y98P virus after being immunized with the DENV mRNA vaccine groups 1-12 in Table 40. FIGS. 40G-40I show the survival, weight loss, and heath score of the AG129 mice challenged with D2Y98P virus after being immunized with the DENV mRNA vaccine groups 13-19 in Table 40.
  • FIG. 41 is a negative-stain electron microscopy image of the virus-like particles (VLPs) assembled from the antigens (prME) encoded by the DENV mRNA vaccines. DENV mRNA vaccine constructs 21-24 in Table 38 were tested. Construct 23 is the vaccine construct used by Sanofi in its DENV vaccines. Constructs 21, 22, and 24 produced more uniform VLPs, suggesting that these VLPs may be more superior in their immunogenicity than the VLPs produced from construct 23.
  • FIGS. 42A-42B are graphs showing the survival curves from a CHIKV challenge study in AG129 mice immunized with CHIKV mRNA vaccines in 10 μg, 2 μg, or 0.04 μg doses. Mice were divided into 14 groups (1-4 and 7-16, n=5). FIG. 42A shows the survival curve of mice groups 1˜4 and 7-9 challenged on day 56 post immunization. FIG. 42B shows the survival curve of mice groups 10-16 challenged on day 112 post immunization. Survival curves were plotted as “percent survival” versus “days post infection.” See also Table 45 for survival percentage.
  • FIGS. 43A-43B are graphs showing the weight changes post challenge in AG129 mice immunized with CHIKV mRNA vaccines. FIG. 43A shows the weight change of mice groups 1-4 and 7-9 challenged on day 56 post immunization. FIG. 43B shows the weight changes of mice groups 10-16 challenged on day 112 post immunization. Initial weights were assessed on individual mice on study Day 0 and daily thereafter. The mean percent weights for each group compared to their percent weight on Day 0 (baseline) were plotted against “days post-infection”. Error bars represent the standard deviation (SD).
  • FIGS. 44A-44B are graphs showing the post challenge heath scores of AG129 mice immunized with CHIKV mRNA vaccines. FIG. 44A shows the health scores of mice groups 1-4 and 7-9 challenged on day 56 post immunization. FIG. 44B shows the health score of mice groups 10-16 challenged on day 112 post immunization. The mean health scores for each group were plotted against “days post infection” and error bars represent the SD. Mean health scores were calculated based on observations described in Table 5.
  • FIGS. 45A-45C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 1-4 and 7-9) 28 days post immunization with CHIKV mRNA vaccines. FIG. 45A shows the serum antibody titers against CHIKV E1 protein. FIG. 45B shows the serum antibody titers against CHIKV E2 protein. FIG. 45C shows the serum antibody titers against CHIKV lysate.
  • FIGS. 46A-46C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 28 days post immunization with CHIKV mRNA vaccine. FIG. 45A shows the serum antibody titers against CHIKV E1 protein. FIG. 46B shows the serum antibody titers against CHIKV E2 protein. FIG. 46C shows the serum antibody titers against CHIKV lysate.
  • FIGS. 47A-47C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 56 days post immunization with CHIKV mRNA vaccine. FIG. 47A shows the serum antibody titers against CHIKV E1 protein. FIG. 47B shows the serum antibody titers against CHIKV E2 protein. FIG. 47C shows the serum antibody titers against CHIKV lysate.
  • FIGS. 48A-48C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 112 days post immunization with CHIKV mRNA vaccine. FIG. 48A shows the serum antibody titers against CHIKV E1 protein. FIG. 48B shows the serum antibody titers against CHIKV E2 protein. FIG. 48C shows the serum antibody titers against CHIKV lysate.
  • FIG. 49 shows different antigens based on the Chikungunya structural protein from three different genotypes.
  • FIG. 50 shows a set of graphs depicting results of an ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg or 2 μg at 28 days post immunization.
  • FIG. 51 shows a set of graphs depicting results of an ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg or 2 μg at 28 days post immunization. The two panels depict different studies.
  • FIG. 52 is a graph depicting comparison of ELISA titers from the data of FIG. 50 to survival in the data of FIG. 51 left panel.
  • FIG. 53 shows a set of graphs depicting efficacy results in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg (left panels), 2 μg (middle panels) or 0.4 μg (right panels) at 56 days (top panels) or 112 days (bottom panels) post immunization.
  • FIG. 54 shows a set of graphs depicting amount of neutralizing antibody produced in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg, 2 μg, or 0.4 μg at 56 days post immunization.
  • FIG. 55 shows a set of graphs depicting binding antibody produced in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg, 2 μg, or 0.4 μg at 56 days post immunization (top panels) and the corresponding correlation between binding and neutralizing antibodies (bottom panels).
  • FIG. 56 shows a set of graphs depicting amount of neutralizing antibody produced in A129 mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg, 2 μg, or 0.4 μg at 56 days post immunization against three different strains of CHIKV, African-Senegal (left panel), La Reunion (middle panel) and CDC CAR (right panel).
  • FIG. 57 shows a graph depicting neutralizing antibodies against CHIKV S27 strain.
  • FIG. 58 is a graph depicting antibody titer against CHIKV lysate post 3rd vaccination 10 with the mRNA vaccine in Sprague Dawley rats.
  • FIG. 59 shows a set of graphs depicting antibody titers following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1).
  • FIG. 60 shows a set of plots depicting cytokine secretion and T-cell activation following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13).
  • FIGS. 61A-61B show a set of graphs depicting CD8+ T cell activation following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13).
  • DETAILED DESCRIPTION
  • Embodiments of the present disclosure provide RNA (e.g., mRNA) vaccines that are useful for vaccinating against one or multiple viruses. The vaccines, including combination vaccines, of the invention encode antigens from chikungunya virus (CHIKV), Zika virus (ZIKV), Dengue virus (DENV), or any combination of two or three of the foregoing viruses. A balanced immune response, comprising both cellular and humoral immunity, can be generated against CHIKV, against DENV, against ZIKV, against CHIKV and DENV, against CHIKV and ZIKV, against DENV and ZIKV, or against CHIKV, DENV and ZIKV, using the constructs of the invention without many of the risks associated with DNA vaccines and live attenuated vaccines. The various RNA vaccines disclosed herein produced surprising efficacy in animal models of Chikungunya infection, and Dengue infection, the results of which are discussed in detail in the Examples section. Specifically, RNA polynucleotide vaccines having an open reading frame encoding for a variety of Chikungunya antigens produced significant immunity, whereas traditional Chikungunya vaccines have not (e.g. attenuated chikungunya viruses). The CHIKV RNA polynucleotide vaccines disclosed herein encoding either CHIKV-E1, CHIKV-E2 or CHIKV-C-E3-E2-6K-E1 demonstrated a survival rate of 60%-100% after two administrations. Specifically, two injections of CHIKV E1 mRNA vaccine provided nearly full protection against infection when administered intramuscularly (IM) (60% survival) or intradermally (ID) (80% survival). Two injections of CHIKV E2 mRNA vaccine or CHIKV C-E3-E2-6K-E1 vaccine provided full protection (100% survival) against infection when administered via IM or ID. Importantly, a single injection (no booster dose) of CHIKV C-E3-E2-6K-E1 vaccine provided full protection (100% survival) against infection when administered via IM or ID.
  • DENV RNA vaccines and ZIKV vaccines are also disclosed herein as well as combination DENV and CHIKV, CHIKV and ZIKV, and DENV and ZIKV vaccines. The combination vaccines of CHIKV, DENV and ZIKV, DENV and ZIKV, CHIKV and ZIKV, or CHIKV and DENV can provide a means for protecting against two or more viral infections in a single vaccine.
  • Chikungunya virus is a small (about 60-70 nm-diameter), spherical, enveloped, positive-strand RNA virus having a capsid with icosahedral symmetry. The virion consists of an envelope and a nucleocapsid. The virion RNA is infectious and serves as both genome and viral messenger RNA. The genome is a linear, ssRNA(+) genome of 11,805 nucleotides which encodes for two polyproteins that are processed by host and viral proteases into non-structural proteins (nsP1, nsP2, nsP3, and RdRpnsP4) necessary for RNA synthesis (replication and transcription) and structural proteins (capsid and envelope proteins C, E3, E2, 6K, and E1) which attach to host receptors and mediate endocytosis of virus into the host cell. (FIG. 1 ). The E1 and E2 glycoproteins form heterodimers that associate as 80 trimeric spikes on the viral surface covering the surface evenly. The envelope glycoproteins play a role in attachment to cells. The capsid protein possesses a protease activity that results in its self-cleavage from the nascent structural protein. Following its cleavage, the capsid protein binds to viral RNA and rapidly assembles into icosahedric core particles. The resulting nucleocapsid eventually associates with the cytoplasmic domain of E2 at the cell membrane, leading to budding and formation of mature virions.
  • E2 is an envelope glycoprotein responsible for viral attachment to target host cell, by binding to the cell receptor. E2 is synthesized as a p62 precursor which is processed at the cell membrane prior to virion budding, giving rise to an E2-E1 heterodimer. The C-terminus of E2 is involved in budding by interacting with capsid proteins.
  • E1 is an envelope glycoprotein with fusion activity, which fusion activity is inactive as long as E1 is bound to E2 in the mature virion. Following virus attachment to target cell and endocytosis, acidification of the endosome induces dissociation of the E1/E2 heterodimer and concomitant trimerization of the E1 subunits. The E1 trimer is fusion active and promotes the release of the viral nucleocapsid in the cytoplasm after endosome and viral membrane fusion.
  • E3 is an accessory protein that functions as a membrane translocation/transport signal for E1 and E2.
  • 6K is another accessory protein involved in virus glycoprotein processing, cell permeabilization, and the budding of viral particles. Like E3, it functions as a membrane transport signal for E1 and E2.
  • The CHIKV structural proteins have been shown to be antigenic, which proteins, fragments, and epitopes thereof are encompassed within the invention. A phylogenetic tree of Chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins shows key envelope glycoprotein E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus. There are membrane-bound and secreted forms of E1 and E2, as well as the full length polyprotein antigen (C-E3-E2-6K-E1), which retains the protein's native conformation. Additionally, the different Chikungunya genotypes, strains and isolates can also yield different antigens, which are functional in the constructs of the invention. For example, there are several different Chikungunya genotypes: Indian Ocean, East/Central/South African (ECSA), Asian, West African, and the Brazilian isolates (ECSA/Asian). There are three main Chikungunya genotype. These are ESCA (East-South-Central Africa); Asia; and West Africa. While sometimes names differ in publications all belong to these three geographical strains.
  • Dengue virus is a mosquito-borne (Aedes aegypti/Aedes albopictus) member of the family Flaviviridae (positive-sense, single-stranded RNA virus). The dengue virus genome encodes ten genes and is translated as a single polypeptide which is cut into ten proteins: the capsid, envelope, membrane, and nonstructural proteins (NS1, NS2A, NS2B, NS3, SN4A, NS4B, and NS5 proteins). The virus' main antigen is DENe, which is a component of the viral surface and is thought to facilitate the binding of the virus to cellular receptors (Heinz et al., Virology. 1983, 126:525). There are four similar but distinct serotypes of dengue virus (DEN-1, DEN-2, DEN-3, and DEN-4), which result annually in an estimated 50-100 million cases of dengue fever and 500,000 cases of the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) (Gubler et al., Adv Virus Res. 1999, 53:35-70). The four serotypes show immunological cross-reactivity, but are distinguishable in plaque reduction neutralization tests and by their respective monoclonal antibodies. The dengue virus E protein includes a serotype-specific antigenic determinant and determinants necessary for virus neutralization (Mason et al., J Gen Virol. 1990, 71:2107-2114).
  • After inoculation, the dendritic cells become infected and travel to lymph nodes. Monocytes and macrophages are also targeted shortly thereafter. Generally, the infected individual will be protected against homotypic reinfection for life; however, the individual will only be protected against other serotypes for a few weeks or months (Sabin, Am J Trop Med Hyg. 1952, 1:30-50). In fact, DHF/DSS is generally found in children and adults infected with a dengue virus serotype differing from their respective primary infection. Thus, it is necessary to develop a vaccine that provides immunity to all four serotypes.
  • Along with other viruses in the Flaviviridae family, Zika virus is enveloped and icosahedral with a non-segmented, single-stranded, positive sense RNA genome. It is most closely related to the Spondweni virus and is one of the two viruses in the Spondweni virus Glade. The virus was first isolated in 1947 from a rhesus monkey in the Zika Forest of Uganda, Africa and was isolated for the first time from humans in 1968 in Nigeria. From 1951 through 1981, evidence of human infection was reported from other African countries such as Uganda, Tanzania, Egypt, Central African Republic, Sierra Leone and Gabon, as well as in parts of Asia including India, Malaysia, the Philippines, Thailand, Vietnam and Indonesia. It is transmitted by mosquitoes and has been isolated from a number of species in the genus Aedes—Aedes aegypti, Aedes africanus, Aedes apicoargenteus, Aedes furcifer, Aedes luteocephalus and Aedes vitattus. Studies show that the extrinsic incubation period in mosquitoes is about 10 days. The vertebrate hosts of the virus include monkeys and humans.
  • As of early 2016, the most widespread outbreak of Zika fever, caused by the Zika virus, is ongoing primarily in the Americas. The outbreak began in April 2015 in Brazil, and subsequently spread to other countries in South America, Central America, and the Caribbean.
  • The Zika virus was first linked with newborn microcephaly during the Brazil Zika virus outbreak. In 2015, there were 2,782 cases of microcephaly compared with 147 in 2014 and 167 in 2013. The Brazilian Health Ministry has reported 4783 cases of suspected microcephaly as of January 30, an increase of more than 1000 cases from a week earlier. Confirmation of many of the recent cases is pending, and it is difficult to estimate how many cases went unreported before the recent awareness of the risk of virus infections.
  • What is important is not only the number of cases but also the clinical manifestation of the cases. Brazil is seeing severe cases of microcephaly, which are more likely to be paired with greater developmental delays. Most of what is being reported out of Brazil is microcephaly with other associated abnormalities. The potential consequence of this is the fact that there are likely to be subclinical cases where the neurological sequelae will only become evident as the children grow.
  • Zika virus has also been associated with an increase in a rare condition known as Guillain-Barre, where the infected individual becomes essentially paralyzed. During the Zika virus outbreak in French Polynesia, 74 patients which had had Zika symptoms—out of them, 42 were diagnosed as Guillain-Barré syndrome. In Brazil, 121 cases of neurological manifestations and Guillain-Barré syndrome (GBS) were reported, all cases with a history of Zika-like symptoms.
  • In some embodiments, ZIKV vaccines comprise RNA (e.g., mRNA) encoding a ZIKV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with ZIKV polyprotein and having ZIKV polyprotein activity, respectively. The ZIKV polyprotein is cleaved into capsid, precursor membrane, envelope, and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5).
  • A protein is considered to have ZIKV polyprotein activity if, for example, it facilitates the attachment of the viral envelope to host receptors, mediates internalization into the host cell, and aids in fusion of the virus membrane with the host's endosomal membrane.
  • The RNA vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. The RNA vaccines may be utilized to treat and/or prevent a CHIKV, DENV and/or ZIKV infection of various genotypes, strains, and isolates. The RNA vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-viral therapeutic treatments. While not wishing to be bound by theory, it is believed that the RNA vaccines, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation as the RNA vaccines co-opt natural cellular machinery. Unlike traditional vaccines which are manufactured ex vivo and may trigger unwanted cellular responses, the RNA vaccines are presented to the cellular system in a more native fashion.
  • The entire contents of International Application No. PCT/US2015/02740 is incorporated herein by reference.
  • Nucleic Acids/Polynucleotides
  • Vaccines, including combination vaccines, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one DENV antigenic polypeptide, at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide, or at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide. In some embodiments, the vaccine, including combination vaccines, comprise at least one RNA polynucleotide, e.g., mRNA, having an open reading frame encoding two or more different CHIKV antigenic polypeptides, ZIKV antigenic polypeptides, and/or DENV antigenic polypeptides (e.g., two, three, four, five or more different antigenic polypeptides). In some embodiments, the combination vaccine comprises at least one RNA polynucleotide having an open reading frame encoding a CHIKV antigenic polypeptide or epitope, a ZIKV antigenic polypeptide or epitope, a DENV antigenic polypeptide or epitope, or a combination of any two or three of the forgoing. The term “nucleic acid,” in its broadest sense, includes any compound and/or substance that comprises a polymer of nucleotides. These polymers are referred to as polynucleotides. As used herein the term polypeptide refers to full-length proteins, protein fragments, variants, and epitopes.
  • In some embodiments, an RNA polynucleotide, e.g., mRNA, of a combination vaccine encodes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 antigenic polypeptides. In some embodiments, an RNA polynucleotide comprises 30 to 12,000 or more nucleotides. For example, a polynucleotide may include 30 to 100, 101 to 200, 200 to 500, 200 to 1000, 200 to 1500, 200 to 2000, 200 to 3000, 500 to 1000, 500 to 1500, 500 to 2000, 500 to 3000, 1000 to 1500, 1000 to 2000, 1000 to 3000, 1500 to 3000, 1500 to 4000, 1500 to 5000, 2000 to 3000, 2000 to 4000, 2000 to 5000, 5000 to 7500, 7500 to 10,000, or 10,000 to 12,000 nucleotides.
  • In some embodiments, the combination vaccine comprises at least one RNA polynucleotide having an open reading frame encoding a Chikungunya structural protein or an antigenic fragment or an antigenic epitope thereof. In some embodiments, the RNA polynucleotide has an open reading frame encoding a Chikungunya envelope and/or capsid antigenic polypeptide selected from a CHIKV E1, E2, E3, 6K, and capsid (C) antigenic polypeptide. In some embodiments, the RNA polynucleotide has an open reading frame encoding any combination of CHIKV E1, E2, E3, 6K, and capsid (C) antigenic polypeptides, for example, a combination selected from CHIKV E1 and E2 antigens, CHIKV E1 and E3 antigens, CHIKV E2 and E3 antigens, CHIKV E1, E2, and E3 antigens, CHIKV E1, E2, E3, and C antigens, CHIKV E1, E2, and 6K antigens, CHIKV E2, E3 and 6K antigens, CHIKV E1, E3, and 6K antigens, and CHIKV E1, E2, E3, 6K, and C antigens.
  • Some embodiments of the present disclosure provide DENV vaccines that include at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide DENV vaccines that include at least one RNA polynucleotide having an open reading frame encoding two or more DENV antigenic polypeptides or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide DENV vaccines that include two or more RNA polynucleotides having an open reading frame encoding two or more DENV antigenic polypeptides or immunogenic fragments or epitopes thereof. The one or more DENV antigenic polypeptides may be encoded on a single RNA polynucleotide or may be encoded individually on multiple (e.g., two or more) RNA polynucleotides.
  • In some embodiments, the at least one RNA polynucleotide may encode at least one DENV antigenic polypeptide. In some instances the dengue viral antigenic polypeptide is an intact dengue virus peptide or other large antigen (i.e. greater than 25 amino acids in length). In some embodiments, the at least one RNA polynucleotide encodes a DENV capsid protein or immunogenic fragment or epitope thereof. In some embodiments, the at least one RNA polynucleotide encodes a DENV envelope protein or immunogenic fragment or epitope thereof. In some embodiments, the at least one RNA polynucleotide encodes a DENV membrane protein or immunogenic fragment or epitope thereof. In some embodiments, the at least one RNA polynucleotide encodes a DENV nonstructural protein or immunogenic fragment or epitope thereof. Large gene segments in non-structural genes, in particular may be used for antigens. In some embodiments, the DENV non-structural protein is selected from NS1, NS2A, NS2B, NS3, SN4A, NS4B, and NS5 proteins, or immunogenic fragments or epitopes thereof. In some embodiments, the DENV non-structural protein is NS3. In some embodiments, the at least one RNA polynucleotide encodes DENe, which is a component of the viral surface and is thought to facilitate the binding of the virus to cellular receptors. In any of these embodiments, the at least one RNA polynucleotide encodes a DENV polypeptide from a DENV serotype selected from DENV-1, DENV-2, DENV-3, and DENV-4. For example, the DENV polypeptide may be one or more polypeptides encoded by SEQ ID NO: 15 (DENV1), SEQ ID NO: 17 (DENV2), SEQ ID NO: 19 (DENV3), and SEQ ID NO: 21 (DENV4), In some embodiments, the DENV polypeptide is a polypeptide found in SEQ ID NO: 14 (DENV1), SEQ ID NO: 16 (DENV2), SEQ ID NO: 18 DENV3), and/or SEQ ID NO: 20 (DENV4). In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 23 or an immunogenic fragment or epitope thereof. In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 26 or an immunogenic fragment or epitope thereof. In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 29 or an immunogenic fragment or epitope thereof. In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 32 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 25 (or is encoded by SEQ ID NO: 24) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 28 (or is encoded by SEQ ID NO: 27) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 31 (or is encoded by SEQ ID NO: 30) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 34 (or is encoded by SEQ ID NO: 33) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO:23 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 26 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 29 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 32 or an immunogenic fragment or epitope thereof.
  • Dengue virus (DENV) vaccine antigens, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide. In some embodiments, the DENV antigenic polypeptide is longer than 25 amino acids and shorter than 50 amino acids. Thus, polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides. The term polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.
  • In other embodiments the antigen is a concatemeric peptide antigen composed of multiple peptide epitopes. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9 or 9-10 antigenic polypeptides. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 antigenic polypeptides. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes at least 100 or at least 200 antigenic polypeptides. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes 1-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, 1-50, 1-100, 2-50 or 2-100 antigenic polypeptides.
  • In order to design useful epitopes, publically available databases, such as the Immune Epitope Database (IEDB), may be used to predict immunogenic Dengue T cell epitopes showing strong homology across all 4 Dengue serotypes. For instance, the IEDB is a free database offering searching of experimental data characterizing antibody and T cell epitopes and assisting in the prediction and analysis of B cell and T cell epitopes. The Dengue peptides identified by database may be confirmed using peptides in MHC allele binding assays (such as those described in the Examples provided herein) and/or restimulation assays during the acute phase of Dengue infection (i.e. Day 7). Some examples of epitopes are shown in FIG. 15 . These epitopes may be evaluated in test mice and using an assay such as that shown in FIG. 18 .
  • Some embodiments of the present disclosure provide ZIKV vaccines, including combination vaccines, that include at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide ZIKV combination vaccines that include at least one RNA polynucleotide having an open reading frame encoding two or more ZIKV antigenic polypeptides or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide ZIKV vaccines that include two or more RNA polynucleotides having an open reading frame encoding two or more ZIKV antigenic polypeptides or immunogenic fragments or epitopes thereof. The one or more ZIKV antigenic polypeptides may be encoded on a single RNA polynucleotide or may be encoded individually on multiple (e.g., two or more) RNA polynucleotides.
  • In some embodiments, the at least one RNA polynucleotide may encode at least one ZIKV antigenic polypeptide. In some instances the ZIKV antigenic polypeptide is an intact ZIKV peptide or other large antigen (i.e. greater than 25 amino acids in length). In any of these embodiments, the at least one RNA polynucleotide encodes a ZIKV polypeptide from a ZIKV serotype selected from MR 766, SPH2015 or ACD75819. For example, the ZIKV polypeptide may be one or more polypeptides encoded by SEQ ID NO: 67-134 or an immunogenic fragment or epitope thereof.
  • Zika virus (ZIKV) vaccines, including combination vaccines, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide. In some embodiments, the ZIKV antigenic polypeptide is longer than 25 amino acids and shorter than 50 amino acids. Thus, polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides. The term polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.
  • The generation of antigens that elicit a desired immune response (e.g. B and/or T-cell responses) against targeted polypeptide sequences in vaccine development remains a challenging task. The invention involves technology that overcome hurdles associated with vaccine development. Through the use of the technology of the invention, it is possible to tailor the desired immune response by selecting appropriate T or B cell epitopes which, by virtue of the fact that they are processed intra-cellularly, are able to be presented more effectively on MHC-1 or MHC-2 molecules (depending on whether they are T or B-cell epitope, respectively). In particular, the invention involves the generation of DENV concatemers of epitopes (particularly T cell epitopes) preferably interspersed with cleavage sites by proteases that are abundant in Antigen Presenting Cells (APCs). These methods mimic antigen processing and may lead to a more effective antigen presentation than can be achieved with peptide antigens.
  • The fact that the peptide epitopes of the invention are expressed from RNA as intracellular peptides provides advantages over prior art peptides that are delivered as exogenous peptides or as DNA. The RNA is delivered intra-cellularly and expresses the epitopes in proximity to the appropriate cellular machinery for processing the epitopes such that they will be recognized by the appropriate immune cells. Additionally, a targeting sequence will allow more specificity in the delivery of the peptide epitopes.
  • In some embodiments the DENV mRNA vaccine of the invention is a poly-epitopic RNA. Poly-epitopes consist of strings of epitopes on the same mRNA. The RNA sequences that code for the peptide epitopes may be interspersed by sequences that code for amino acid sequences recognized by proteolytic enzymes, by other linkers or linked directly.
  • A concatemeric peptide as used herein is a series of at least two peptide epitopes linked together to form the propeptide. In some embodiments a concatemeric peptide is composed of 3 or more, 4 or more, 5 or more 6 or more 7 or more, 8 or more, 9 or more peptide epitopes.
  • In other embodiments the concatemeric peptide is composed of 1000 or less, 900 or less, 500 or less, 100 or less, 75 or less, 50 or less, 40 or less, 30 or less, 20 or less or 100 or less peptide epitopes. In yet other embodiments a concatemeric peptide has 3-100, 5-100, 10-100, 15-100, 20-100, 25-100, 30-100, 35-100, 40-100, 45-100, 50-100, 55-100, 60-100, 65-100, 70-100, 75-100, 80-100, 90-100, 5-50, 10-50, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 100-150, 100-200, 100-300, 100-400, 100-500, 50-500, 50-800, 50-1,000, or 100-1,000 peptide epitopes.
  • An epitope, also known as an antigenic determinant, as used herein is a portion of an antigen that is recognized by the immune system in the appropriate context, specifically by antibodies, B cells, or T cells. Epitopes include B cell epitopes and T cell epitopes. B-cell epitopes are peptide sequences which are required for recognition by specific antibody producing B-cells. B cell epitopes refer to a specific region of the antigen that is recognized by an antibody. The portion of an antibody that binds to the epitope is called a paratope. An epitope may be a conformational epitope or a linear epitope, based on the structure and interaction with the paratope. A linear, or continuous, epitope is defined by the primary amino acid sequence of a particular region of a protein. The sequences that interact with the antibody are situated next to each other sequentially on the protein, and the epitope can usually be mimicked by a single peptide. Conformational epitopes are epitopes that are defined by the conformational structure of the native protein. These epitopes may be continuous or discontinuous, i.e. components of the epitope can be situated on disparate parts of the protein, which are brought close to each other in the folded native protein structure.
  • T-cell epitopes are peptide sequences which, in association with proteins on APC, are required for recognition by specific T-cells. T cell epitopes are processed intracellularly and presented on the surface of APCs, where they are bound to MHC molecules including MHC class II and MHC class I.
  • The present disclosure, in some aspects, relates to a process of developing T or B cell concatemeric epitopes or concatemeric epitopes composed of both B and T cell epitopes. Several tools exist for identifying various peptide epitopes. For instance, epitopes can be identified using a free or commercial database (Lonza Epibase, antitope for example). Such tools are useful for predicting the most immunogenic epitopes within a target antigen protein. The selected peptides may then be synthesized and screened in human HLA panels, and the most immunogenic sequences are used to construct the mRNA polynucleotides encoding the concatemeric antigens. One strategy for mapping epitopes of Cytotoxic T-Cells based on generating equimolar mixtures of the four C-terminal peptides for each nominal 11-mer across your an protein. This strategy would produce a library antigen containing all the possible active CTL epitopes.
  • The peptide epitope may be any length that is reasonable for an epitope. In some embodiments the peptide epitope is 9-30 amino acids. In other embodiments the length is 9-22, 9-29, 9-28, 9-27, 9-26, 9-25, 9-24, 9-23, 9-21, 9-20, 9-19, 9-18, 10-22, 10-21, 10-20, 11-22, 22-21, 11-20, 12-22, 12-21, 12-20, 13-22, 13-21, 13-20, 14-19, 15-18, or 16-17 amino acids. In some embodiments, the optimal length of a peptide epitope may be obtained through the following procedure: synthesizing a V5 tag concatemer-test protease site, introducing it into DC cells (for example, using an RNA Squeeze procedure, lysing the cells, and then running an anti-V5 Western blot to assess the cleavage at protease sites.
  • In some embodiments, the RNA polynucleotide of the combination vaccine is encoded by at least one nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), and 48-66 (ZIKV). In some embodiments, the RNA polynucleotide of the combination vaccine is encoded by at least one fragment of a nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), and 48-66 (ZIKV). In some embodiments, the RNA polynucleotide of the combination vaccine is encoded by at least one epitope sequence of a nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).
  • In particular embodiments, the RNA polynucleotide is encoded by any of SEQ ID NO: 1, 5, 10, and 12. In particular embodiments, the RNA polynucleotide is encoded by any of SEQ ID NO: 2, 4, 6 and 11. In particular embodiments, the RNA polynucleotide is encoded by any of SEQ ID NO: 7-9. In a particular embodiment, the RNA polynucleotide is encoded by SEQ ID NO: 3. In a particular embodiment, the RNA polynucleotide is encoded by SEQ ID NO: 13.
  • Nucleic acids (also referred to as polynucleotides) may be or may include, for example, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β-D-ribo configuration, α-LNA having an α-L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino-α-LNA having a 2′-amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) or chimeras or combinations thereof.
  • In some embodiments, polynucleotides of the present disclosure is or functions as a messenger RNA (mRNA). As used herein the term “messenger RNA” (mRNA) refers to any polynucleotide that encodes at least one polypeptide (a naturally-occurring, non-naturally-occurring, or modified polymer of amino acids) and can be translated to produce the encoded polypeptide in vitro, in vivo, in situ or ex vivo.
  • Traditionally, the basic components of an mRNA molecule include at least one coding region, a 5′ untranslated region (UTR), and a 3′ UTR. In some embodiments, the mRNA molecules further includes a 5′ cap. In some embodiments, the mRNA further includes a polyA tail. Polynucleotides of the present disclosure may function as mRNA but are distinguished from wild-type mRNA in their functional and/or structural design features which serve to overcome existing problems of effective polypeptide production using nucleic-acid based therapeutics. Antigenic polypeptides (antigens) of the present disclosure may be encoded by polynucleotides translated in vitro, referred to as “in vitro translated” (IVT) polynucleotides.
  • The RNA polynucleotides of the present disclosure may be or comprise variant or mutant sequence. The term “polynucleotide variant” refers to a nucleotide molecule which differs in its nucleotide sequence from a native, wildtype, or reference sequence. The nucleotide sequence variants may possess substitutions, deletions, and/or insertions at certain positions within the nucleotide sequence, as compared to the corresponding native, wildtype or reference sequence. In some embodiments, the nucleotide variants possess at least 80% identity (homology) to a native, wildtype or reference sequence, for example, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity (homology) to a native, wildtype or reference sequence.
  • In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 80%-85% sequence identity to any of SEQ ID NO: 1-14 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 86%-90% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 91%-95% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 96%-98% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 99% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).
  • In some embodiments, a polynucleotide of the present disclosure, e.g., polynucleotide variants, have less than 80% identity (homology) to a native, wildtype or reference sequence, for example, less than 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, 60% or less identity (homology) to a native, wildtype or reference sequence. In some embodiments, polynucleotide of the invention, e.g., polynucleotide variants, have about 65% to about 85% identity to a native, wildtype or reference sequence, e.g., 65%-82%, 67%-81%, or 66%-80% identity to a native, wildtype or reference sequence.
  • Polynucleotides of the present disclosure, in some embodiments, are codon optimized. Codon optimization methods are known in the art and may be used as provided herein. Codon optimization, in some embodiments, may be used to match codon frequencies in target and host organisms to ensure proper folding; bias GC content to increase mRNA stability or reduce secondary structures; minimize tandem repeat codons or base runs that may impair gene construction or expression; customize transcriptional and translational control regions; insert or remove protein trafficking sequences; remove/add post translation modification sites in encoded protein (e.g. glycosylation sites); add, remove or shuffle protein domains; insert or delete restriction sites; modify ribosome binding sites and mRNA degradation sites; adjust translational rates to allow the various domains of the protein to fold properly; or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art. Non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.) and/or proprietary methods. In some embodiments, the open reading frame (ORF) sequence is optimized using optimization algorithms.
  • In some embodiments, a codon optimized sequence shares less than 95% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 90% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 85% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 80% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 75% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.
  • In some embodiments, a codon optimized sequence shares between 65% and 85% (e.g., between about 67% and about 85% or between about 67% and about 80%) sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares between 65% and 75 or about 80% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.
  • In some embodiments, the RNA polynucleotides of the present disclosure may further comprise sequence comprising or encoding additional sequence, for example, one or more functional domain(s), one or more further regulatory sequence(s), an engineered 5′ cap.
  • Thus, in some embodiments, the RNA vaccines comprise a 5′UTR element, an optionally codon optimized open reading frame, and a 3′UTR element, a poly(A) sequence and/or a polyadenylation signal wherein the RNA is not chemically modified.
  • In Vitro Transcription of RNA (e.g., mRNA)
  • The combination vaccine of the present disclosure comprise at least one RNA polynucleotide, such as a mRNA (e.g., modified mRNA). mRNA, for example, is transcribed in vitro from template DNA, referred to as an “in vitro transcription template.” In some embodiments, an in vitro transcription template encodes a 5′ untranslated (UTR) region, contains an open reading frame, and encodes a 3′ UTR and a polyA tail. The particular nucleotide sequence composition and length of an in vitro transcription template will depend on the mRNA encoded by the template.
  • A “5′ untranslated region” (UTR) refers to a region of an mRNA that is directly upstream (i.e., 5′) from the start codon (i.e., the first codon of an mRNA transcript translated by a ribosome) that does not encode a polypeptide.
  • A “3′ untranslated region” (UTR) refers to a region of an mRNA that is directly downstream (i.e., 3′) from the stop codon (i.e., the codon of an mRNA transcript that signals a termination of translation) that does not encode a polypeptide.
  • An “open reading frame” is a continuous stretch of codons beginning with a start codon (e.g., methionine (ATG)), and ending with a stop codon (e.g., TAA, TAG or TGA) that encodes a polypeptide.
  • A “polyA tail” is a region of mRNA that is downstream, e.g., directly downstream (i.e., 3′), from the 3′ UTR that contains multiple, consecutive adenosine monophosphates. A polyA tail may contain 10 to 300 adenosine monophosphates. For example, a polyA tail may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 adenosine monophosphates. In some embodiments, a polyA tail contains 50 to 250 adenosine monophosphates. In a relevant biological setting (e.g., in cells, in vivo) the poly(A) tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus and translation.
  • In some embodiments a codon optimized RNA may, for instance, be one in which the levels of G/C are enhanced. The G/C-content of nucleic acid molecules may influence the stability of the RNA. RNA having an increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than nucleic acids containing a large amount of adenine (A) and thymine (T) or uracil (U) nucleotides. WO02/098443 discloses a pharmaceutical composition containing an mRNA stabilized by sequence modifications in the translated region. Due to the degeneracy of the genetic code, the modifications work by substituting existing codons for those that promote greater RNA stability without changing the resulting amino acid. The approach is limited to coding regions of the RNA.
  • Antigens/Antigenic Polypeptides
  • In some embodiments, the Chikungunya antigenic polypeptide is a Chikungunya structural protein. The Chikungunya structural protein can be a CHIKV envelope (E) protein or a CHIKV capsid (C) protein. In some embodiments, the Chikungunya structural protein can be a CHIKV E1, E2, E3, 6K, or capsid (C) protein. In one embodiment, the Chikungunya structural protein is CHIKV E1. In another embodiment, the Chikungunya structural protein is CHIKV E2. In another embodiment, the Chikungunya structural protein is CHIKV E3. In another embodiment, the Chikungunya structural protein is CHIKV C. In another embodiment, the Chikungunya structural protein is CHIKV 6K.
  • In some embodiments, the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural proteins selected from E1, E2, E3, 6K, and C. The antigenic polypeptide can comprise the sequence of any combination of CHIKV structural proteins, including, for example, CHIKV E1 and E2; CHIKV E2 and E3; CHIKV E1 and E3; CHIKV E1, E2, and E3; CHIKV E1, E2, E3, and C; CHIKV E1, E2, E3, 6K, and C; CHIKV E1, 6K, E2; CHIKV E2, 6K, E3; CHIKV E1, 6K, E3; and CHIKV E1, E2, E3, and 6K proteins. In one particular embodiment, the Chikungunya antigenic polypeptide comprises the sequence of the Chikungunya structural polyprotein: C-E3-E2-6K-E1.
  • In some embodiments, the Chikungunya antigenic polypeptide is a fragment of a Chikungunya structural protein. The Chikungunya structural protein fragment can be a CHIKV envelope (E) protein fragment or a CHIKV capsid (C) protein fragment. In some embodiments, the Chikungunya structural protein fragment can be a CHIKV E1, E2, E3, 6K, or capsid (C) protein fragment. In one embodiment, the Chikungunya structural protein fragment is CHIKV E1 fragment. In another embodiment, the Chikungunya structural protein fragment is CHIKV E2 fragment. In another embodiment, the Chikungunya structural protein fragment is CHIKV E3 fragment. In another embodiment, the Chikungunya structural protein fragment is a CHIKV C fragment. In another embodiment, the Chikungunya structural protein fragment is a CHIKV 6K fragment.
  • In some embodiments, the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural protein fragments selected from E1, E2, E3, 6K, and C protein fragments. The antigenic polypeptide can comprise the sequence of any combination of CHIKV structural protein fragments, including, for example, CHIKV E1 and E2 protein fragments; CHIKV E2 and E3 protein fragments; CHIKV E1 and E3 protein fragments; CHIKV E1, E2, and E3 protein fragments; CHIKV E1, E2, E3, and C protein fragments; CHIKV E1, E2, E3, 6K, and C protein fragments; CHIKV E1, 6K, and E2 protein fragments; CHIKV E2, 6K, and E3 protein fragments; CHIKV E1, 6K, and E3 protein fragments; and CHIKV E1, E2, E3, and 6K protein fragments. In one particular embodiment, the Chikungunya antigenic polypeptide comprises the sequence of a fragment of the Chikungunya structural polyprotein: C-E3-E2-6K-E1.
  • In some embodiments, the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural proteins in which the proteins are a combination of full-length protein(s) and fragment(s) selected from E1, E2, E3, 6K, and C full-length protein(s) and fragment(s). The Chikungunya antigenic polypeptide may comprise the sequence of any combination of full-length protein(s) and fragment(s) including, for example, CHIKV E1 and E2 full-length protein(s) and fragment(s); CHIKV E2 and E3 full-length protein(s) and fragment(s); CHIKV E1 and E3 full-length protein(s) and fragment(s); CHIKV E1, E2, and E3 full-length protein(s) and fragment(s); CHIKV E1, E2, E3, and C full-length protein(s) and fragments; CHIKV E1, E2, E3, and 6K full-length protein(s) and fragment(s); CHIKV E1, E2, E3, 6K, and C full-length protein(s) and fragment(s); CHIKV E1, 6K, and E2 full-length protein(s) and fragment(s); CHIKV E2, 6K, and E3 full-length protein(s) and fragment(s); and CHIKV E1, 6K, and E3 full-length protein(s) and fragment(s). In one particular embodiment, the Chikungunya antigenic polypeptide comprises the sequence of the Chikungunya structural polyprotein: C-E3-E2-6K-E1 in which the proteins are a combination of full-length protein(s) and fragment(s).
  • The polypeptide antigens of the present disclosure can be one or more full-length CHIKV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof. In some embodiments, the CHIKV antigenic polypeptide comprises 10-25 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 26-50 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 51-100 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 101-200 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 201-400 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 401-500 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 501-750 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 2001-4000 amino acids.
  • The polypeptide antigens of the present disclosure can be one or more full-length DENV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof. In some embodiments, the DENV antigenic polypeptide comprises 10-25 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 26-50 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 51-100 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 101-200 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 201-400 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 401-500 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 501-750 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 2001-4000 amino acids.
  • The polypeptide antigens of the present disclosure can be one or more full-length ZIKV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof. In some embodiments, the ZIKV antigenic polypeptide comprises 10-25 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 26-50 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 51-100 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 101-200 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 201-400 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 401-500 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 501-750 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 2001-4000 amino acids.
  • The antigenic polypeptides include gene products, naturally occurring polypeptides, synthetic or engineered polypeptides, mutant polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides. The term polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.
  • The term “polypeptide variant” refers to molecules which differ in their amino acid sequence from a native, wildtype, or reference sequence. The amino acid sequence variants may possess substitutions, deletions, and/or insertions at certain positions within the amino acid sequence, as compared to a native, wildtype, or reference sequence. Ordinarily, variants possess at least 50% identity (homology) to a native, wildtype, or reference sequence. In some embodiments, variants possess at least 80%, or at least 90% identical (homologous) to a native, wildtype, or reference sequence.
  • Examples of natural variants that are encompassed by the present disclosure include CHIKV, DENV, and ZIKV structural polypeptides from different CHIKV genotypes, lineages, strains, and isolates. A phylogenetic tree of Chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins shows key envelope glycoprotein E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus. There are membrane-bound and secreted forms of E1 and E2, as well as the full length polyprotein antigen, which retains the protein's native conformation. Additionally, the different Chikungunya genotypes can also yield different antigens, which are functional in the constructs of the invention. There are several Chikungunya genotypes: Indian Ocean, East/Central/South African (ECSA), Asian, West African, and the Brazilian isolates (ECSA/Asian). Thus, for example, natural variants that are encompassed by the present disclosure include, but is not limited to, CHIKV structural polypeptides from the following strains and isolates: TA53, SA76, UG82, 37997, IND-06, Ross, S27, M-713424, E1-A226V, E1-T98, IND-63-WB1, Gibbs 63-263, TH35, 1-634029, AF15561, IND-73-MHS, 653496, C0392-95, P0731460, MY0211MR/06/BP, SV0444-95, K0146-95, TSI-GSD-218-VR1, TSI-GSD-218, M127, M125, 6441-88, MY003IMR/06/BP, MY002IMR/06/BP, TR206/H804187, MY/06/37348, MY/06/37350, NC/2011-568, 1455-75, RSU1, 0706aTw, InDRE51CHIK, PR-S4, AMA2798/H804298, Hu/85/NR/001, PhH15483, 0706aTw, 0802aTw, MY019IMR/06/BP, PR-S6, PER160/H803609, 99659, JKT23574, 0811aTw, CHIK/SBY6/10, 2001908323-BDG E1, 2001907981-BDG E1, 2004904899-BDG E1, 2004904879-BDG E1, 2003902452-BDG E1, DH130003, 0804aTw, 2002918310-BDG E1, JC2012, chik-sy, 3807, 3462, Yap 13-2148, PR-S5, 0802aTw, MY0191MR/06/Bp, 0706aTw, PhH15483, Hu/85/NR/001, CHIKV-13-112A, InDRE 4CHIK, 0806aTw, 0712aTw, 3412-78, Yap 13-2039, LEIV-CHIKV/Moscow/1, DH130003, and 20039.
  • In some embodiments “variant mimics” are provided. As used herein, the term “variant mimic” is one which contains at least one amino acid that would mimic an activated sequence. For example, glutamate may serve as a mimic for phosphoro-threonine and/or phosphoro-serine. Alternatively, variant mimics may result in deactivation or in an inactivated product containing the mimic, for example, phenylalanine may act as an inactivating substitution for tyrosine; or alanine may act as an inactivating substitution for serine.
  • “Homology” as it applies to amino acid sequences is defined as the percentage of residues in the candidate amino acid sequence that are identical with the residues in the amino acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. It is understood that homology depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation. By “homologs” as it applies to polypeptide sequences means the corresponding sequence of other species having substantial identity to a second sequence of a second species.
  • “Analogs” is meant to include polypeptide variants which differ by one or more amino acid alterations, for example, substitutions, additions or deletions of amino acid residues that still maintain one or more of the properties of the parent or starting polypeptide.
  • The present disclosure provides several types of compositions that are polypeptide based, including variants and derivatives. These include, for example, substitutional, insertional, deletion and covalent variants and derivatives. The term “derivative” is used synonymously with the term “variant” but generally refers to a molecule that has been modified and/or changed in any way relative to a reference molecule or starting molecule.
  • As such, polynucleotides encoding peptides or polypeptides containing substitutions, insertions and/or additions, deletions and covalent modifications with respect to reference sequences, in particular the polypeptide sequences disclosed herein, are included within the scope of this disclosure. “Substitutional variants” when referring to polypeptides are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position. Substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule.
  • As used herein the term “conservative amino acid substitution” refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of non-conservative substitutions include the substitution of a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.
  • “Features” when referring to polypeptide or polynucleotide are defined as distinct amino acid sequence-based or nucleotide-based components of a molecule respectively. Features of the polypeptides encoded by the polynucleotides include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, termini or any combination thereof.
  • As used herein when referring to polypeptides the term “domain” refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions).
  • As used herein when referring to polypeptides the terms “site” as it pertains to amino acid based embodiments is used synonymously with “amino acid residue” and “amino acid side chain.” As used herein when referring to polynucleotides the terms “site” as it pertains to nucleotide based embodiments is used synonymously with “nucleotide.” A site represents a position within a peptide or polypeptide or polynucleotide that may be modified, manipulated, altered, derivatized or varied within the polypeptide or polynucleotide based molecules.
  • As used herein the terms “termini” or “terminus” when referring to polypeptides or polynucleotides refers to an extremity of a polypeptide or polynucleotide respectively. Such extremity is not limited only to the first or final site of the polypeptide or polynucleotide but may include additional amino acids or nucleotides in the terminal regions. Polypeptide-based molecules may be characterized as having both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C-terminus (terminated by an amino acid with a free carboxyl group (COOH)). Proteins are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non-covalent forces (multimers, oligomers). These proteins have multiple N- and C-termini. Alternatively, the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.
  • As recognized by those skilled in the art, protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of polypeptides of interest. For example, provided herein is any protein fragment (meaning a polypeptide sequence at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical) of a reference protein 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or greater than 100 amino acids in length. In another example, any protein that includes a stretch of 20, 30, 40, 50, or 100 amino acids which are 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% identical to any of the sequences described herein can be utilized in accordance with the disclosure. In some embodiments, a polypeptide includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences provided or referenced herein.
  • Reference molecules (polypeptides or polynucleotides) may share a certain identity with the designed molecules (polypeptides or polynucleotides). The term “identity” as known in the art, refers to a relationship between the sequences of two or more peptides, polypeptides or polynucleotides, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between them as determined by the number of matches between strings of two or more amino acid residues or nucleosides. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (e.g., “algorithms”). Identity of related peptides can be readily calculated by known methods. Generally, variants of a particular polynucleotide or polypeptide have at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen F. Altschul, et al (1997), “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res. 25:3389-3402). A general global alignment technique based on dynamic programming is the Needleman-Wunsch algorithm. More recently a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA) has been developed that purportedly produces global alignment of nucleotide and protein sequences faster than other optimal global alignment methods, including the Needleman-Wunsch algorithm. Other tools are described herein, specifically in the definition of “identity” below.
  • As used herein, the term “homology” refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. In some embodiments, polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical or similar. The term “homologous” necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences). Two polynucleotide sequences are considered homologous if the polypeptides they encode are at least 50%, 60%, 70%, 80%, 90%, 95%, or even 99% for at least one stretch of at least 20 amino acids. In some embodiments, homologous polynucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. Two protein sequences are considered homologous if the proteins are at least 50%, 60%, 70%, 80%, or 90% identical for at least one stretch of at least 20 amino acids.
  • The term “identity” refers to the overall relatedness between polymeric molecules, for example, between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of the percent identity of two polynucleotide sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-identical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleotide sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; each of which is incorporated herein by reference. For example, the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference. Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Altschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).
  • In some embodiments, the polypeptides further comprise additional sequences or functional domains. For example, the CHIKV polypeptides of the present disclosure may comprise one or more linker sequences. In some embodiments, the CHIKV of the present invention may comprise a polypeptide tag, such as an affinity tag (chitin binding protein (CBP), maltose binding protein (MBP), glutathione-S-transferase (GST), SBP-tag, Strep-tag, AviTag, Calmodulin-tag); solubilization tag; chromatography tag (polyanionic amino acid tag, such as FLAG-tag); epitope tag (short peptide sequences that bind to high-affinity antibodies, such as V5-tag, Myc-tag, VSV-tag, Xpress tag, E-tag, S-tag, and HA-tag); fluorescence tag (e.g., GFP). In some embodiments, the CHIKV of the present invention may comprise an amino acid tag, such as one or more lysines, histidines, or glutamates, which can be added to the polypeptide sequences (e.g., at the N-terminal or C-terminal ends). Lysines can be used to increase peptide solubility or to allow for biotinylation. Protein and amino acid tags are peptide sequences genetically grafted onto a recombinant protein. Sequence tags are attached to proteins for various purposes, such as peptide purification, identification, or localization, for use in various applications including, for example, affinity purification, protein array, western blotting, immunofluorescence, and immunoprecipitation. Such tags are subsequently removable by chemical agents or by enzymatic means, such as by specific proteolysis or intein splicing.
  • Alternatively, amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences. Certain amino acids (e.g., C-terminal or N-terminal residues) may alternatively be deleted depending on the use of the sequence, as for example, expression of the sequence as part of a larger sequence which is soluble, or linked to a solid support.
  • Multiprotein and Multicomponent Vaccines
  • The present disclosure encompasses CHIKV vaccines, DENV vaccines, ZIKV vaccines, CHIKV/DENV vaccines, CHIKV/ZIKV vaccines, ZIKV/DENV vaccines, and CHIKV/DENV/ZIKV vaccines comprising one or multiple RNA (e.g., mRNA) polynucleotides, each encoding a single antigenic polypeptide, as well as vaccines comprising a single RNA polynucleotide encoding more than one antigenic polypeptide (e.g., as a fusion polypeptide). Thus, it should be understood that a vaccine composition comprising a RNA polynucleotide having an open reading frame encoding a first antigenic polypeptide and a RNA polynucleotide having an open reading frame encoding a second antigenic polypeptide encompasses (a) vaccines that comprise a first RNA polynucleotide encoding a first antigenic polypeptide and a second RNA polynucleotide encoding a second antigenic polypeptide, and (b) vaccines that comprise a single RNA polynucleotide encoding a first and second antigenic polypeptide (e.g., as a fusion polypeptide). RNA vaccines of the present disclosure, in some embodiments, comprise 2-10 (e.g., 2, 3, 4, 5, 6, 7, 8, 9 or 10), or more, RNA polynucleotides having an open reading frame, each of which encodes a different antigenic polypeptide (or a single RNA polynucleotide encoding 2-10, or more, different antigenic polypeptides). In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein, a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein, and a RNA polynucleotide having an open reading frame encoding a envelope protein. In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein and a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein. In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein and a RNA polynucleotide having an open reading frame encoding a envelope protein. In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein and a RNA polynucleotide having an open reading frame encoding a envelope protein.
  • Signal Peptides
  • In some embodiments, a RNA polynucleotide encodes an antigenic polypeptide fused to a signal peptide (e.g., SEQ ID NO: 125, 126, 128 or 131). The signal peptide may be fused at the N-terminus or the C-terminus of the antigenic polypeptide. In some embodiments, antigenic polypeptides encoded by CHIKV, DENV and/or ZIKV nucleic acids comprise a signal peptide. Signal peptides, comprising the N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and thus universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway. Signal peptides generally include of three regions: an N-terminal region of differing length, which usually comprises positively charged amino acids; a hydrophobic region; and a short carboxy-terminal peptide region. In eukaryotes, the signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the rough endoplasmic reticulum (ER) membrane and initiates the transport of the growing peptide chain across it. The signal peptide is not responsible for the final destination of the mature protein, however. Secretory proteins devoid of further address tags in their sequence are by default secreted to the external environment. Signal peptides are cleaved from precursor proteins by an endoplasmic reticulum (ER)-resident signal peptidase or they remain uncleaved and function as a membrane anchor. During recent years, a more advanced view of signal peptides has evolved, showing that the functions and immunodominance of certain signal peptides are much more versatile than previously anticipated.
  • Proteins encoded by the ZIKV genome, e.g., the ZIKV Envelope protein, contain a signal peptide at the N-terminus to facilitate protein targeting to the ER for processing. ER processing produces a mature Envelope protein, wherein the signal peptide is cleaved, typically by a signal peptidase of the host cell. A signal peptide may also facilitate the targeting of the protein to the cell membrane.
  • CHIKV vaccines, DENV vaccines, ZIKV vaccines, CHIKV/DENV vaccines, CHIKV/ZIKV vaccines, ZIKV/DENV vaccines, and CHIKV/DENV/ZIKV vaccines of the present disclosure may comprise, for example, RNA polynucleotides encoding an artificial signal peptide, wherein the signal peptide coding sequence is operably linked to and is in frame with the coding sequence of the CHIKV, DENV and/or ZIKV antigenic polypeptide. Thus, CHIKV vaccines, DENV vaccines, ZIKV vaccines, CHIKV/DENV vaccines, CHIKV/ZIKV vaccines, ZIKV/DENV vaccines, and CHIKV/DENV/ZIKV vaccines of the present disclosure, in some embodiments, produce an antigenic polypeptide comprising a CHIKV, DENV and/or ZIKV antigenic polypeptide fused to a signal peptide. In some embodiments, a signal peptide is fused to the N-terminus of the CHIKV, DENV and/or ZIKV antigenic polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of the CHIKV, DENV and/or ZIKV antigenic polypeptide.
  • In some embodiments, the signal peptide fused to an antigenic polypeptide is an artificial signal peptide. In some embodiments, an artificial signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine is obtained from an immunoglobulin protein, e.g., an IgE signal peptide or an IgG signal peptide. In some embodiments, a signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine is an Ig heavy chain epsilon-1 signal peptide (IgE HC SP) having the sequence of: MDWTWILFLVAAATRVHS (SEQ ID NO: 126). In some embodiments, a signal peptide fused to a ZIKV antigenic polypeptide encoded by the ZIKV RNA vaccine is an IgGk chain V-III region HAH signal peptide (IgGk SP) having the sequence of METPAQLLFLLLLWLPDTTG (SEQ ID NO: 125). In some embodiments, a signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine has an amino acid sequence set forth in SEQ ID NO: 125, 126, 128 or 131. The examples disclosed herein are not meant to be limiting and any signal peptide that is known in the art to facilitate targeting of a protein to ER for processing and/or targeting of a protein to the cell membrane may be used in accordance with the present disclosure.
  • A signal peptide may have a length of 15-60 amino acids. For example, a signal peptide may have a length of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids. In some embodiments, a signal peptide may have a length of 20-60, 25-60, 30-60, 35-60, 40-60, 45-60, 50-60, 55-60, 15-55, 20-55, 25-55, 30-55, 35-55, 40-55, 45-55, 50-55, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 15-45, 20-45, 25-45, 30-45, 35-45, 40-45, 15-40, 20-40, 25-40, 30-40, 35-40, 15-35, 20-35, 25-35, 30-35, 15-30, 20-30, 25-30, 15-25, 20-25, or 15-20 amino acids.
  • Non-limiting examples of antigenic polypeptides fused to signal peptides, which are encoded by a ZIKV RNA vaccine of the present disclosure, may be found in Table 31, SEQ ID NO: 48-59.
  • A signal peptide is typically cleaved from the nascent polypeptide at the cleavage junction during ER processing, as illustrated in FIG. 26 . The mature ZIKV antigenic polypeptide produce by a ZIKV RNA vaccine, for example, typically does not comprise a signal peptide.
  • Chemical Modifications
  • In some embodiments, the RNA vaccines of the present disclosure, in some embodiments, comprise at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide that comprises at least one chemical modification.
  • The terms “chemical modification” and “chemically modified” refer to modification with respect to adenosine (A), guanosine (G), uridine (U), thymidine (T) or cytidine (C) ribonucleosides or deoxyribnucleosides in at least one of their position, pattern, percent or population. Generally, these terms do not refer to the ribonucleotide modifications in naturally occurring 5′-terminal mRNA cap moieties. With respect to a polypeptide, the term “modification” refers to a modification relative to the canonical set 20 amino acids. RNA polynucleotides, as provided herein, are also considered “modified” of they contain amino acid substitutions, insertions or a combination of substitutions and insertions.
  • Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise various (more than one) different modifications. In some embodiments, a particular region of a polynucleotide contains one, two or more (optionally different) nucleoside or nucleotide modifications. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced to a cell or organism, exhibits reduced degradation in the cell or organism, respectively, relative to an unmodified polynucleotide. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced into a cell or organism, may exhibit reduced immunogenicity in the cell or organism, respectively (e.g., a reduced innate response).
  • Modifications of polynucleotides include, without limitation, those described herein. Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) may comprise modifications that are naturally-occurring, non-naturally-occurring or the polynucleotide may comprise a combination of naturally-occurring and non-naturally-occurring modifications. Polynucleotides may include any useful modification, for example, of a sugar, a nucleobase, or an internucleoside linkage (e.g., to a linking phosphate, to a phosphodiester linkage or to the phosphodiester backbone).
  • Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise non-natural modified nucleotides that are introduced during synthesis or post-synthesis of the polynucleotides to achieve desired functions or properties. The modifications may be present on an internucleotide linkages, purine or pyrimidine bases, or sugars. The modification may be introduced with chemical synthesis or with a polymerase enzyme at the terminal of a chain or anywhere else in the chain. Any of the regions of a polynucleotide may be chemically modified.
  • The present disclosure provides for modified nucleosides and nucleotides of a polynucleotide (e.g., RNA polynucleotides, such as mRNA polynucleotides). A “nucleoside” refers to a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as “nucleobase”). A nucleotide” refers to a nucleoside, including a phosphate group. Modified nucleotides may by synthesized by any useful method, such as, for example, chemically, enzymatically, or recombinantly, to include one or more modified or non-natural nucleosides. Polynucleotides may comprise a region or regions of linked nucleosides. Such regions may have variable backbone linkages. The linkages may be standard phosphodiester linkages, in which case the polynucleotides would comprise regions of nucleotides.
  • Modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures. One example of such non-standard base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine or uracil. Any combination of base/sugar or linker may be incorporated into polynucleotides of the present disclosure.
  • The skilled artisan will appreciate that, except where otherwise noted, polynucleotide sequences set forth in the instant application will recite “T”s in a representative DNA sequence but where the sequence represents RNA, the “T”s would be substituted for “U”s.
  • Modifications of polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) that are useful in the vaccines of the present disclosure include, but are not limited to the following: 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine; 2-methylthio-N6-methyladenosine; 2-methylthio-N6-threonyl carbamoyladenosine; N6-glycinylcarbamoyladenosine; N6-isopentenyladenosine; N6-methyladenosine; N6-threonylcarbamoyladeno sine; 1,2′-O-dimethyladenosine; 1-methyladenosine; 2′-O-methyladenosine; 2′-O-ribosyladenosine (phosphate); 2-methyladenosine; 2-methylthio-N6 isopentenyladenosine; 2-methylthio-N6-hydroxynorvalyl carbamoyladenosine; 2′-O-methyladenosine; 2′-O-ribosyladenosine (phosphate); Isopentenyladenosine; N6-(cis-hydroxyisopentenyl)adenosine; N6,2′-O-dimethyladenosine; N6,2′-O-dimethyladenosine; N6,N6,2′-O-trimethyladenosine; N6,N6-dimethyladenosine; N6-acetyladenosine; N6-hydroxynorvalylcarbamoyladenosine; N6-methyl-N6-threonylcarbamoyladenosine; 2-methyladenosine; 2-methylthio-N6-isopentenyladenosine; 7-deaza-adenosine; N1-methyl-adenosine; N6,N6 (dimethyl)adenine; N6-cis-hydroxy-isopentenyl-adenosine; α-thio-adenosine; 2 (amino)adenine; 2 (aminopropyl)adenine; 2 (methylthio) N6 (isopentenyl)adenine; 2-(alkyl)adenine; 2-(aminoalkyl)adenine; 2-(aminopropyl)adenine; 2-(halo)adenine; 2-(halo)adenine; 2-(propyl)adenine; 2′-Amino-2′-deoxy-ATP; 2′-Azido-2′-deoxy-ATP; 2′-Deoxy-2′-a-aminoadenosine TP; 2′-Deoxy-2′-a-azidoadenosine TP; 6 (alkyl)adenine; 6 (methyl)adenine; 6-(alkyl)adenine; 6-(methyl)adenine; 7 (deaza)adenine; 8 (alkenyl)adenine; 8 (alkynyl)adenine; 8 (amino)adenine; 8 (thioalkyl)adenine; 8-(alkenyl)adenine; 8-(alkyl)adenine; 8-(alkynyl)adenine; 8-(amino)adenine; 8-(halo)adenine; 8-(hydroxyl)adenine; 8-(thioalkyl)adenine; 8-(thiol)adenine; 8-azido-adenosine; aza adenine; deaza adenine; N6 (methyl)adenine; N6-(isopentyl)adenine; 7-deaza-8-aza-adenosine; 7-methyladenine; 1-Deazaadenosine TP; 2′Fluoro-N6-Bz-deoxyadenosine TP; 2′-OMe-2-Amino-ATP; 2′O-methyl-N6-Bz-deoxyadenosine TP; 2′-a-Ethynyladenosine TP; 2-aminoadenine; 2-Aminoadenosine TP; 2-Amino-ATP; 2′-a-Trifluoromethyladenosine TP; 2-Azidoadenosine TP; 2′-b-Ethynyladenosine TP; 2-Bromoadenosine TP; 2′-b-Trifluoromethyladenosine TP; 2-Chloroadenosine TP; 2′-Deoxy-2′,2′-difluoroadenosine TP; 2′-Deoxy-2′-a-mercaptoadenosine TP; 2′-Deoxy-2′-a-thiomethoxyadenosine TP; 2′-Deoxy-2′-b-aminoadenosine TP; 2′-Deoxy-2′-b-azidoadenosine TP; 2′-Deoxy-2′-b-bromoadenosine TP; 2′-Deoxy-2′-b-chloroadenosine TP; 2′-Deoxy-2′-b-fluoroadenosine TP; 2′-Deoxy-2′-b-iodoadenosine TP; 2′-Deoxy-2′-b-mercaptoadenosine TP; 2′-Deoxy-2′-b-thiomethoxyadenosine TP; 2-Fluoroadenosine TP; 2-Iodoadenosine TP; 2-Mercaptoadenosine TP; 2-methoxy-adenine; 2-methylthio-adenine; 2-Trifluoromethyladenosine TP; 3-Deaza-3-bromoadenosine TP; 3-Deaza-3-chloroadenosine TP; 3-Deaza-3-fluoroadenosine TP; 3-Deaza-3-iodoadenosine TP; 3-Deazaadenosine TP; 4′-Azidoadenosine TP; 4′-Carbocyclic adenosine TP; 4′-Ethynyladenosine TP; 5′-Homo-adenosine TP; 8-Aza-ATP; 8-bromo-adenosine TP; 8-Trifluoromethyladenosine TP; 9-Deazaadenosine TP; 2-aminopurine; 7-deaza-2,6-diaminopurine; 7-deaza-8-aza-2,6-diaminopurine; 7-deaza-8-aza-2-aminopurine; 2,6-diaminopurine; 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine; 2-thiocytidine; 3-methylcytidine; 5-formylcytidine; 5-hydroxymethylcytidine; 5-methylcytidine; N4-acetylcytidine; 2′-O-methylcytidine; 2′-O-methylcytidine; 5,2′-O-dimethylcytidine; 5-formyl-2′-O-methylcytidine; Lysidine; N4,2′-O-dimethylcytidine; N4-acetyl-2′-O-methylcytidine; N4-methylcytidine; N4,N4-Dimethyl-2′-OMe-Cytidine TP; 4-methylcytidine; 5-aza-cytidine; Pseudo-iso-cytidine; pyrrolo-cytidine; α-thio-cytidine; 2-(thio)cytosine; 2′-Amino-2′-deoxy-CTP; 2′-Azido-2′-deoxy-CTP; 2′-Deoxy-2′-a-aminocytidine TP; 2′-Deoxy-2′-a-azidocytidine TP; 3 (deaza) 5 (aza)cytosine; 3 (methyl)cytosine; 3-(alkyl)cytosine; 3-(deaza) 5 (aza)cytosine; 3-(methyl)cytidine; 4,2′-O-dimethylcytidine; 5 (halo)cytosine; 5 (methyl)cytosine; 5 (propynyl)cytosine; 5 (trifluoromethyl)cytosine; 5-(alkyl)cytosine; 5-(alkynyl)cytosine; 5-(halo)cytosine; 5-(propynyl)cytosine; 5-(trifluoromethyl)cytosine; 5-bromo-cytidine; 5-iodo-cytidine; 5-propynyl cytosine; 6-(azo)cytosine; 6-aza-cytidine; aza cytosine; deaza cytosine; N4 (acetyl)cytosine; 1-methyl-1-deaza-pseudoisocytidine; 1-methyl-pseudoisocytidine; 2-methoxy-5-methyl-cytidine; 2-methoxy-cytidine; 2-thio-5-methyl-cytidine; 4-methoxy-1-methyl-pseudoisocytidine; 4-methoxy-pseudoisocytidine; 4-thio-1-methyl-1-deaza-pseudoisocytidine; 4-thio-1-methyl-pseudoisocytidine; 4-thio-pseudoisocytidine; 5-aza-zebularine; 5-methyl-zebularine; pyrrolo-pseudoisocytidine; Zebularine; (E)-5-(2-Bromo-vinyl)cytidine TP; 2,2′-anhydro-cytidine TP hydrochloride; 2′Fluor-N4-Bz-cytidine TP; 2′Fluoro-N4-Acetyl-cytidine TP; 2′-O-Methyl-N4-Acetyl-cytidine TP; 2′O-methyl-N4-Bz-cytidine TP; 2′-a-Ethynylcytidine TP; 2′-a-Trifluoromethylcytidine TP; 2′-b-Ethynylcytidine TP; 2′-b-Trifluoromethylcytidine TP; 2′-Deoxy-2′,2′-difluorocytidine TP; 2′-Deoxy-2′-a-mercaptocytidine TP; 2′-Deoxy-2′-a-thiomethoxycytidine TP; 2′-Deoxy-2′-b-aminocytidine TP; 2′-Deoxy-2′-b-azidocytidine TP; 2′-Deoxy-2′-b-bromocytidine TP; 2′-Deoxy-2′-b-chlorocytidine TP; 2′-Deoxy-2′-b-fluorocytidine TP; 2′-Deoxy-2′-b-iodocytidine TP; 2′-Deoxy-2′-b-mercaptocytidine TP; 2′-Deoxy-2′-b-thiomethoxycytidine TP; 2′-O-Methyl-5-(1-propynyl)cytidine TP; 3′-Ethynylcytidine TP; 4′-Azidocytidine TP; 4′-Carbocyclic cytidine TP; 4′-Ethynylcytidine TP; 5-(1-Propynyl)ara-cytidine TP; 5-(2-Chloro-phenyl)-2-thiocytidine TP; 5-(4-Amino-phenyl)-2-thiocytidine TP; 5-Aminoallyl-CTP; 5-Cyanocytidine TP; 5-Ethynylara-cytidine TP; 5-Ethynylcytidine TP; 5′-Homo-cytidine TP; 5-Methoxycytidine TP; 5-Trifluoromethyl-Cytidine TP; N4-Amino-cytidine TP; N4-Benzoyl-cytidine TP; Pseudoisocytidine; 7-methylguanosine; N2,2′-O-dimethylguanosine; N2-methylguanosine; Wyosine; 1,2′-O-dimethylguanosine; 1-methylguanosine; 2′-O-methylguanosine; 2′-O-ribosylguanosine (phosphate); 2′-O-methylguanosine; 2′-O-ribosylguanosine (phosphate); 7-aminomethyl-7-deazaguanosine; 7-cyano-7-deazaguanosine; Archaeosine; Methylwyo sine; N2,7-dimethylguanosine; N2,N2,2′-O-trimethylguanosine; N2,N2,7-trimethylguanosine; N2,N2-dimethylguanosine; N2,7,2′-O-trimethylguanosine; 6-thio-guanosine; 7-deaza-guanosine; 8-oxo-guanosine; N1-methyl-guanosine; α-thio-guanosine; 2 (propyl)guanine; 2-(alkyl)guanine; 2′-Amino-2′-deoxy-GTP; 2′-Azido-2′-deoxy-GTP; 2′-Deoxy-2′-a-aminoguanosine TP; 2′-Deoxy-2′-a-azidoguanosine TP; 6 (methyl)guanine; 6-(alkyl)guanine; 6-(methyl)guanine; 6-methyl-guanosine; 7 (alkyl)guanine; 7 (deaza)guanine; 7 (methyl)guanine; 7-(alkyl)guanine; 7-(deaza)guanine; 7-(methyl)guanine; 8 (alkyl)guanine; 8 (alkynyl)guanine; 8 (halo)guanine; 8 (thioalkyl)guanine; 8-(alkenyl)guanine; 8-(alkyl)guanine; 8-(alkynyl)guanine; 8-(amino)guanine; 8-(halo)guanine; 8-(hydroxyl)guanine; 8-(thioalkyl)guanine; 8-(thiol)guanine; aza guanine; deaza guanine; N (methyl)guanine; N-(methyl)guanine; 1-methyl-6-thio-guanosine; 6-methoxy-guanosine; 6-thio-7-deaza-8-aza-guanosine; 6-thio-7-deaza-guanosine; 6-thio-7-methyl-guanosine; 7-deaza-8-aza-guanosine; 7-methyl-8-oxo-guanosine; N2,N2-dimethyl-6-thio-guanosine; N2-methyl-6-thio-guanosine; 1-Me-GTP; 2′Fluoro-N2-isobutyl-guanosine TP; 2′O-methyl-N2-isobutyl-guanosine TP; 2′-a-Ethynylguanosine TP; 2′-a-Trifluoromethylguanosine TP; 2′-b-Ethynylguano sine TP; 2′-b-Trifluoromethylguanosine TP; 2′-Deoxy-2′,2′-difluoroguanosine TP; 2′-Deoxy-2′-a-mercaptoguanosine TP; 2′-Deoxy-2′-a-thiomethoxyguanosine TP; 2′-Deoxy-2′-b-aminoguanosine TP; 2′-Deoxy-2′-b-azidoguanosine TP; 2′-Deoxy-2′-b-bromoguanosine TP; 2′-Deoxy-2′-b-chloroguanosine TP; 2′-Deoxy-2′-b-fluoroguanosine TP; 2′-Deoxy-2′-b-iodoguanosine TP; 2′-Deoxy-2′-b-mercaptoguanosine TP; 2′-Deoxy-2′-b-thiomethoxyguanosine TP; 4′-Azidoguanosine TP; 4′-Carbocyclic guanosine TP; 4′-Ethynylguanosine TP; 5′-Homo-guanosine TP; 8-bromo-guanosine TP; 9-Deazaguanosine TP; N2-isobutyl-guanosine TP; 1-methylinosine; Inosine; 1,2′-O-dimethylinosine; 2′-O-methylinosine; 7-methylinosine; 2′-O-methylinosine; Epoxyqueuosine; galactosyl-queuosine; Mannosylqueuosine; Queuosine; allyamino-thymidine; aza thymidine; deaza thymidine; deoxy-thymidine; 2′-O-methyluridine; 2-thiouridine; 3-methyluridine; 5-carboxymethyluridine; 5-hydroxyuridine; 5-methyluridine; 5-taurinomethyl-2-thiouridine; 5-taurinomethyluridine; Dihydrouridine; Pseudouridine; (3-(3-amino-3-carboxypropyl)uridine; 1-methyl-3-(3-amino-5-carboxypropyl)pseudouridine; 1-methylpseduouridine; 1-methyl-pseudouridine; 2′-O-methyluridine; 2′-O-methylpseudouridine; 2′-O-methyluridine; 2-thio-2′-O-methyluridine; 3-(3-amino-3-carboxypropyl)uridine; 3,2′-O-dimethyluridine; 3-Methyl-pseudo-Uridine TP; 4-thiouridine; 5-(carboxyhydroxymethyl)uridine; 5-(carboxyhydroxymethyl)uridine methyl ester; 5,2′-O-dimethyluridine; 5,6-dihydro-uridine; 5-aminomethyl-2-thiouridine; 5-carbamoylmethyl-2′-O-methyluridine; 5-carbamoylmethyluridine; 5-carboxyhydroxymethyluridine; 5-carboxyhydroxymethyluridine methyl ester; 5-carboxymethylaminomethyl-2′-O-methyluridine; 5-carboxymethylaminomethyl-2-thiouridine; 5-carboxymethylaminomethyl-2-thiouridine; 5-carboxymethylaminomethyluridine; 5-carboxymethylaminomethyluridine; 5-Carbamoylmethyluridine TP; 5-methoxycarbonylmethyl-2′-O-methyluridine; 5-methoxycarbonylmethyl-2-thiouridine; 5-methoxycarbonylmethyluridine; 5-methoxyuridine; 5-methyluridine, 5-methyl-2-thiouridine; 5-methylaminomethyl-2-selenouridine; 5-methylaminomethyl-2-thiouridine; 5-methylaminomethyluridine; 5-Methyldihydrouridine; 5-Oxyacetic acid-Uridine TP; 5-Oxyacetic acid-methyl ester-Uridine TP; N1-methyl-pseudo-uridine; uridine 5-oxyacetic acid; uridine 5-oxyacetic acid methyl ester; 3-(3-Amino-3-carboxypropyl)-Uridine TP; 5-(iso-Pentenylaminomethyl)-2-thiouridine TP; 5-(iso-Pentenylaminomethyl)-2′-O-methyluridine TP; 5-(iso-Pentenylaminomethyl)uridine TP; 5-propynyl uracil; α-thio-uridine; 1 (aminoalkylamino-carbonylethylenyl)-2(thio)-pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-4 (thio)pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-pseudouracil; 1 (aminocarbonylethylenyl)-2(thio)-pseudouracil; 1 (aminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminocarbonylethylenyl)-4 (thio)pseudouracil; 1 (aminocarbonylethylenyl)-pseudouracil; 1 substituted 2(thio)-pseudouracil; 1 substituted 2,4-(dithio)pseudouracil; 1 substituted 4 (thio)pseudouracil; 1 substituted pseudouracil; 1-(aminoalkylamino-carbonylethylenyl)-2-(thio)-pseudouracil; 1-Methyl-3-(3-amino-3-carboxypropyl) pseudouridine TP; 1-Methyl-3-(3-amino-3-carboxypropyl)pseudo-UTP; 1-Methyl-pseudo-UTP; 2 (thio)pseudouracil; 2′ deoxy uridine; 2′ fluorouridine; 2-(thio)uracil; 2,4-(dithio)psuedouracil; 2′ methyl, 2′-amino, 2′-azido, 2′-fluro-guanosine; 2′-Amino-2′-deoxy-UTP; 2′-Azido-2′-deoxy-UTP; 2′-Azido-deoxyuridine TP; 2′-O-methylpseudouridine; 2′ deoxy uridine; 2′ fluorouridine; 2′-Deoxy-2′-a-aminouridine TP; 2′-Deoxy-T-a-azidouridine TP; 2-methylpseudouridine; 3 (3 amino-3 carboxypropyl)uracil; 4 (thio)pseudouracil; 4-(thio)pseudouracil; 4-(thio)uracil; 4-thiouracil; 5 (1,3-diazole-1-alkyl)uracil; 5 (2-aminopropyl)uracil; 5 (aminoalkyl)uracil; 5 (dimethylaminoalkyl)uracil; 5 (guanidiniumalkyl)uracil; 5 (methoxycarbonylmethyl)-2-(thio)uracil; 5 (methoxycarbonyl-methyl)uracil; 5 (methyl) 2 (thio)uracil; 5 (methyl) 2,4 (dithio)uracil; 5 (methyl) 4 (thio)uracil; 5 (methylaminomethyl)-2 (thio)uracil; 5 (methylaminomethyl)-2,4 (dithio)uracil; 5 (methylaminomethyl)-4 (thio)uracil; 5 (propynyl)uracil; 5 (trifluoromethyl)uracil; 5-(2-aminopropyl)uracil; 5-(alkyl)-2-(thio)pseudouracil; 5-(alkyl)-2,4 (dithio)pseudouracil; 5-(alkyl)-4 (thio)pseudouracil; 5-(alkyl)pseudouracil; 5-(alkyl)uracil; 5-(alkynyl)uracil; 5-(allylamino)uracil; 5-(cyanoalkyl)uracil; 5-(dialkylaminoalkyl)uracil; 5-(dimethylaminoalkyl)uracil; 5-(guanidiniumalkyl)uracil; 5-(halo)uracil; 5-(1,3-diazole-1-alkyl)uracil; 5-(methoxy)uracil; 5-(methoxycarbonylmethyl)-2-(thio)uracil; 5-(methoxycarbonyl-methyl)uracil; 5-(methyl) 2(thio)uracil; 5-(methyl) 2,4 (dithio)uracil; 5-(methyl) 4 (thio)uracil; 5-(methyl)-2-(thio)pseudouracil; 5-(methyl)-2,4 (dithio)pseudouracil; 5-(methyl)-4 (thio)pseudouracil; 5-(methyl)pseudouracil; 5-(methylaminomethyl)-2 (thio)uracil; 5-(methylaminomethyl)-2,4(dithio)uracil; 5-(methylaminomethyl)-4-(thio)uracil; 5-(propynyl)uracil; 5-(trifluoromethyl)uracil; 5-aminoallyl-uridine; 5-bromo-uridine; 5-iodo-uridine; 5-uracil; 6 (azo)uracil; 6-(azo)uracil; 6-aza-uridine; allyamino-uracil; aza uracil; deaza uracil; N3 (methyl)uracil; Pseudo-UTP-1-2-ethanoic acid; Pseudouracil; 4-Thio-pseudo-UTP; 1-carboxymethyl-pseudouridine; 1-methyl-1-deaza-pseudouridine; 1-propynyl-uridine; 1-taurinomethyl-1-methyl-uridine; 1-taurinomethyl-4-thio-uridine; 1-taurinomethyl-pseudouridine; 2-methoxy-4-thio-pseudouridine; 2-thio-1-methyl-1-deaza-pseudouridine; 2-thio-1-methyl-pseudouridine; 2-thio-5-aza-uridine; 2-thio-dihydropseudouridine; 2-thio-dihydrouridine; 2-thio-pseudouridine; 4-methoxy-2-thio-pseudouridine; 4-methoxy-pseudouridine; 4-thio-1-methyl-pseudouridine; 4-thio-pseudouridine; 5-aza-uridine; Dihydropseudouridine; (±)1-(2-Hydroxypropyl)pseudouridine TP; (2R)-1-(2-Hydroxypropyl)pseudouridine TP; (2S)-1-(2-Hydroxypropyl)pseudouridine TP; (E)-5-(2-Bromo-vinyl)ara-uridine TP; (E)-5-(2-Bromo-vinyl)uridine TP; (Z)-5-(2-Bromo-vinyl)ara-uridine TP; (Z)-5-(2-Bromo-vinyl)uridine TP; 1-(2,2,2-Trifluoroethyl)-pseudo-UTP; 1-(2,2,3,3,3-Pentafluoropropyl)pseudouridine TP; 1-(2,2-Diethoxyethyl)pseudouridine TP; 1-(2,4,6-Trimethylbenzyl)pseudouridine TP; 1-(2,4,6-Trimethyl-benzyl)pseudo-UTP; 1-(2,4,6-Trimethyl-phenyl)pseudo-UTP; 1-(2-Amino-2-carboxyethyl)pseudo-UTP; 1-(2-Amino-ethyl)pseudo-UTP; 1-(2-Hydroxyethyl)pseudouridine TP; 1-(2-Methoxyethyl)pseudouridine TP; 1-(3,4-Bis-trifluoromethoxybenzyl)pseudouridine TP; 1-(3,4-Dimethoxybenzyl)pseudouridine TP; 1-(3-Amino-3-carboxypropyl)pseudo-UTP; 1-(3-Amino-propyl)pseudo-UTP; 1-(3-Cyclopropyl-prop-2-ynyl)pseudouridine TP; 1-(4-Amino-4-carboxybutyl)pseudo-UTP; 1-(4-Amino-benzyl)pseudo-UTP; 1-(4-Amino-butyl)pseudo-UTP; 1-(4-Amino-phenyl)pseudo-UTP; 1-(4-Azidobenzyl)pseudouridine TP; 1-(4-Bromobenzyl)pseudouridine TP; 1-(4-Chlorobenzyl)pseudouridine TP; 1-(4-Fluorobenzyl)pseudouridine TP; 1-(4-Iodobenzyl)pseudouridine TP; 1-(4-Methanesulfonylbenzyl)pseudouridine TP; 1-(4-Methoxybenzyl)pseudouridine TP; 1-(4-Methoxy-benzyl)pseudo-UTP; 1-(4-Methoxy-phenyl)pseudo-UTP; 1-(4-Methylbenzyl)pseudouridine TP; 1-(4-Methyl-benzyl)pseudo-UTP; 1-(4-Nitrobenzyl)pseudouridine TP; 1-(4-Nitro-benzyl)pseudo-UTP; 1(4-Nitro-phenyl)pseudo-UTP; 1-(4-Thiomethoxybenzyl)pseudouridine TP; 1-(4-Trifluoromethoxybenzyl)pseudouridine TP; 1-(4-Trifluoromethylbenzyl)pseudouridine TP; 1-(5-Amino-pentyl)pseudo-UTP; 1-(6-Amino-hexyl)pseudo-UTP; 1,6-Dimethyl-pseudo-UTP; 1-[3-(2-{2-[2-(2-Aminoethoxy)-ethoxy]-ethoxy}-ethoxy)-propionyl]pseudouridine TP; 1-{3-[2-(2-Aminoethoxy)-ethoxy]-propionyl} pseudouridine TP; 1-Acetylpseudouridine TP; 1-Alkyl-6-(1-propynyl)-pseudo-UTP; 1-Alkyl-6-(2-propynyl)-pseudo-UTP; 1-Alkyl-6-allyl-pseudo-UTP; 1-Alkyl-6-ethynyl-pseudo-UTP; 1-Alkyl-6-homoallyl-pseudo-UTP; 1-Alkyl-6-vinyl-pseudo-UTP; 1-Allylpseudouridine TP; 1-Aminomethyl-pseudo-UTP; 1-Benzoylpseudouridine TP; 1-Benzyloxymethylpseudouridine TP; 1-Benzyl-pseudo-UTP; 1-Biotinyl-PEG2-pseudouridine TP; 1-Biotinylpseudouridine TP; 1-Butyl-pseudo-UTP; 1-Cyanomethylpseudouridine TP; 1-Cyclobutylmethyl-pseudo-UTP; 1-Cyclobutyl-pseudo-UTP; 1-Cycloheptylmethyl-pseudo-UTP; 1-Cycloheptyl-pseudo-UTP; 1-Cyclohexylmethyl-pseudo-UTP; 1-Cyclohexyl-pseudo-UTP; 1-Cyclooctylmethyl-pseudo-UTP; 1-Cyclooctyl-pseudo-UTP; 1-Cyclopentylmethyl-pseudo-UTP; 1-Cyclopentyl-pseudo-UTP; 1-Cyclopropylmethyl-pseudo-UTP; 1-Cyclopropyl-pseudo-UTP; 1-Ethyl-pseudo-UTP; 1-Hexyl-pseudo-UTP; 1-Homoallylpseudouridine TP; 1-Hydroxymethylpseudouridine TP; 1-iso-propyl-pseudo-UTP; 1-Me-2-thio-pseudo-UTP; 1-Me-4-thio-pseudo-UTP; 1-Me-alpha-thio-pseudo-UTP; 1-Methanesulfonylmethylpseudouridine TP; 1-Methoxymethylpseudouridine TP; 1-Methyl-6-(2,2,2-Trifluoroethyl)pseudo-UTP; 1-Methyl-6-(4-morpholino)-pseudo-UTP; 1-Methyl-6-(4-thiomorpholino)-pseudo-UTP; 1-Methyl-6-(substituted phenyl)pseudo-UTP; 1-Methyl-6-amino-pseudo-UTP; 1-Methyl-6-azido-pseudo-UTP; 1-Methyl-6-bromo-pseudo-UTP; 1-Methyl-6-butyl-pseudo-UTP; 1-Methyl-6-chloro-pseudo-UTP; 1-Methyl-6-cyano-pseudo-UTP; 1-Methyl-6-dimethylamino-pseudo-UTP; 1-Methyl-6-ethoxy-pseudo-UTP; 1-Methyl-6-ethylcarboxylate-pseudo-UTP; 1-Methyl-6-ethyl-pseudo-UTP; 1-Methyl-6-fluoro-pseudo-UTP; 1-Methyl-6-formyl-pseudo-UTP; 1-Methyl-6-hydroxyamino-pseudo-UTP; 1-Methyl-6-hydroxy-pseudo-UTP; 1-Methyl-6-iodo-pseudo-UTP; 1-Methyl-6-iso-propyl-pseudo-UTP; 1-Methyl-6-methoxy-pseudo-UTP; 1-Methyl-6-methylamino-pseudo-UTP; 1-Methyl-6-phenyl-pseudo-UTP; 1-Methyl-6-propyl-pseudo-UTP; 1-Methyl-6-tert-butyl-pseudo-UTP; 1-Methyl-6-trifluoromethoxy-pseudo-UTP; 1-Methyl-6-trifluoromethyl-pseudo-UTP; 1-Morpholinomethylpseudouridine TP; 1-Pentyl-pseudo-UTP; 1-Phenyl-pseudo-UTP; 1-Pivaloylpseudouridine TP; 1-Propargylpseudouridine TP; 1-Propyl-pseudo-UTP; 1-propynyl-pseudouridine; 1-p-tolyl-pseudo-UTP; 1-tert-Butyl-pseudo-UTP; 1-Thiomethoxymethylpseudouridine TP; 1-Thiomorpholinomethylpseudouridine TP; 1-Trifluoroacetylpseudouridine TP; 1-Trifluoromethyl-pseudo-UTP; 1-Vinylpseudouridine TP; 2,2′-anhydro-uridine TP; 2′-bromo-deoxyuridine TP; 2′-F-5-Methyl-2′-deoxy-UTP; 2′-OMe-5-Me-UTP; 2′-OMe-pseudo-UTP; 2′-a-Ethynyluridine TP; 2′-a-Trifluoromethyluridine TP; 2′-b-Ethynyluridine TP; 2′-b-Trifluoromethyluridine TP; 2′-Deoxy-2′,2′-difluorouridine TP; 2′-Deoxy-T-a-mercaptouridine TP; 2′-Deoxy-T-a-thiomethoxyuridine TP; 2′-Deoxy-T-b-aminouridine TP; 2′-Deoxy-T-b-azidouridine TP; 2′-Deoxy-T-b-bromouridine TP; 2′-Deoxy-T-b-chlorouridine TP; 2′-Deoxy-2′-b-fluorouridine TP; 2′-Deoxy-T-b-iodouridine TP; 2′-Deoxy-T-b-mercaptouridine TP; 2′-Deoxy-T-b-thiomethoxyuridine TP; 2-methoxy-4-thio-uridine; 2-methoxyuridine; 2′-O-Methyl-5-(1-propynyl)uridine TP; 3-Alkyl-pseudo-UTP; 4′-Azidouridine TP; 4′-Carbocyclic uridine TP; 4′-Ethynyluridine TP; 5-(1-Propynyl)ara-uridine TP; 5-(2-Furanyl)uridine TP; 5-Cyanouridine TP; 5-Dimethylaminouridine TP; 5′-Homo-uridine TP; 5-iodo-2′-fluoro-deoxyuridine TP; 5-Phenylethynyluridine TP; 5-Trideuteromethyl-6-deuterouridine TP; 5-Trifluoromethyl-Uridine TP; 5-Vinylarauridine TP; 6-(2,2,2-Trifluoroethyl)-pseudo-UTP; 6-(4-Morpholino)-pseudo-UTP; 6-(4-Thiomorpholino)-pseudo-UTP; 6-(Substituted-Phenyl)-pseudo-UTP; 6-Amino-pseudo-UTP; 6-Azido-pseudo-UTP; 6-Bromo-pseudo-UTP; 6-Butyl-pseudo-UTP; 6-Chloro-pseudo-UTP; 6-Cyano-pseudo-UTP; 6-Dimethylamino-pseudo-UTP; 6-Ethoxy-pseudo-UTP; 6-Ethylcarboxylate-pseudo-UTP; 6-Ethyl-pseudo-UTP; 6-Fluoro-pseudo-UTP; 6-Formyl-pseudo-UTP; 6-Hydroxyamino-pseudo-UTP; 6-Hydroxy-pseudo-UTP; 6-Iodo-pseudo-UTP; 6-iso-Propyl-pseudo-UTP; 6-Methoxy-pseudo-UTP; 6-Methylamino-pseudo-UTP; 6-Methyl-pseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Propyl-pseudo-UTP; 6-tert-Butyl-pseudo-UTP; 6-Trifluoromethoxy-pseudo-UTP; 6-Trifluoromethyl-pseudo-UTP; Alpha-thio-pseudo-UTP; Pseudouridine 1-(4-methylbenzenesulfonic acid) TP; Pseudouridine 1-(4-methylbenzoic acid) TP; Pseudouridine TP 1-[3-(2-ethoxy)]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-(2-ethoxy)-ethoxy]-ethoxy)-ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-{2(2-ethoxy)-ethoxy}-ethoxy]-ethoxy)-ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-ethoxy]-ethoxy)-ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2-ethoxy)-ethoxy}] propionic acid; Pseudouridine TP 1-methylphosphonic acid; Pseudouridine TP 1-methylphosphonic acid diethyl ester; Pseudo-UTP-N1-3-propionic acid; Pseudo-UTP-N1-4-butanoic acid; Pseudo-UTP-N1-5-pentanoic acid; Pseudo-UTP-N1-6-hexanoic acid; Pseudo-UTP-N1-7-heptanoic acid; Pseudo-UTP-N1-methyl-p-benzoic acid; Pseudo-UTP-N1-p-benzoic acid; Wybutosine; Hydroxywybutosine; Isowyosine; Peroxywybutosine; undermodified hydroxywybutosine; 4-demethylwyosine; 2,6-(diamino)purine; 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl: 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 1,3,5-(triaza)-2,6-(dioxa)-naphthalene; 2 (amino)purine; 2,4,5-(trimethyl)phenyl; 2′ methyl, 2′ amino, 2′ azido, 2′-fluro-cytidine; 2′ methyl, 2′ amino, 2′ azido, 2′-fluro-adenine; 2′-methyl, 2′ amino, 2′ azido, 2′-fluro-uridine; 2′-amino-2′-deoxyribose; 2-amino-6-Chloro-purine; 2-aza-inosinyl; 2′-azido-2′-deoxyribose; 2′-fluoro-2′-deoxyribose; 2′-fluoro-modified bases; 2′-O-methyl-ribose; 2-oxo-7-aminopyridopyrimidin-3-yl; 2-oxo-pyridopyrimidine-3-yl; 2-pyridinone; 3 nitropyrrole; 3-(methyl)-7-(propynyl)isocarbostyrilyl; 3-(methyl)isocarbostyrilyl; 4-(fluoro)-6-(methyl)benzimidazole; 4-(methyl)benzimidazole; 4-(methyl)indolyl; 4,6-(dimethyl)indolyl; 5 nitroindole; 5 substituted pyrimidines; 5-(methyl)isocarbostyrilyl; 5-nitroindole; 6-(aza)pyrimidine; 6-(azo)thymine; 6-(methyl)-7-(aza)indolyl; 6-chloro-purine; 6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(aza)indolyl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazinl-yl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(guanidiniumalkyl-hydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(propynyl)isocarbostyrilyl; 7-(propynyl)isocarbostyrilyl, propynyl-7-(aza)indolyl; 7-deaza-inosinyl; 7-substituted 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-substituted 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 9-(methyl)-imidizopyridinyl; Aminoindolyl; Anthracenyl; bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; bis-ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Difluorotolyl; Hypoxanthine; Imidizopyridinyl; Inosinyl; Isocarbostyrilyl; Isoguanisine; N2-substituted purines; N6-methyl-2-amino-purine; N6-substituted purines; N-alkylated derivative; Napthalenyl; Nitrobenzimidazolyl; Nitroimidazolyl; Nitroindazolyl; Nitropyrazolyl; Nubularine; 06-substituted purines; O-alkylated derivative; ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Oxoformycin TP; para-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Pentacenyl; Phenanthracenyl; Phenyl; propynyl-7-(aza)indolyl; Pyrenyl; pyridopyrimidin-3-yl; pyridopyrimidin-3-yl, 2-oxo-7-amino-pyridopyrimidin-3-yl; pyrrolo-pyrimidin-2-on-3-yl; Pyrrolopyrimidinyl; Pyrrolopyrizinyl; Stilbenzyl; substituted 1,2,4-triazoles; Tetracenyl; Tubercidine; Xanthine; Xanthosine-5′-TP; 2-thio-zebularine; 5-aza-2-thio-zebularine; 7-deaza-2-amino-purine; pyridin-4-one ribonucleoside; 2-Amino-riboside-TP; Formycin A TP; Formycin B TP; Pyrrolosine TP; 2′-OH-ara-adenosine TP; 2′-OH-ara-cytidine TP; 2′-OH-ara-uridine TP; 2′-OH-ara-guanosine TP; 5-(2-carbomethoxyvinyl)uridine TP; and N6-(19-Amino-pentaoxanonadecyl)adenosine TP.
  • In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.
  • In some embodiments, modified nucleobases in the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) are selected from the group consisting of pseudouridine (ψ), N1-methylpseudouridine (m1ψ), 2-thiouridine, 4′-thiouridine, 5-methylcytosine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine5-methyluridine, and 2′-O-methyl uridine. In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.
  • In some embodiments, modified nucleobases in the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) are selected from the group consisting of 1-methyl-pseudouridine (m1ψ), 5-methoxy-uridine (mo5U), 5-methyl-cytidine (m5C), pseudouridine (ψ), α-thio-guanosine and α-thio-adenosine. In some embodiments, the polynucleotide includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.
  • In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises pseudouridine (ψ) and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 1-methyl-pseudouridine (m1ψ). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 1-methyl-pseudouridine (m1ψ) and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2-thiouridine (s2U). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2-thiouridine and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises methoxy-uridine (mo5U). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 5-methoxy-uridine (mo5U) and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2′-O-methyl uridine. In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2′-O-methyl uridine and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises N6-methyl-adenosine (m6A). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises N6-methyl-adenosine (m6A) and 5-methyl-cytidine (m5C).
  • In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) is uniformly modified (e.g., fully modified, modified throughout the entire sequence) for a particular modification. For example, a polynucleotide can be uniformly modified with 5-methyl-cytidine (m5C), meaning that all cytosine residues in the mRNA sequence are replaced with 5-methyl-cytidine (m5C). Similarly, a polynucleotide can be uniformly modified for any type of nucleoside residue present in the sequence by replacement with a modified residue such as any of those set forth above.
  • In some embodiments, the modified nucleobase is a modified cytosine. Examples of nucleobases and nucleosides having a modified cytosine include N4-acetyl-cytidine (ac4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, 2-thio-cytidine (s2C), 2-thio-5-methyl-cytidine.
  • In some embodiments, a modified nucleobase is a modified uridine. Example nucleobases and nucleosides having a modified uridine include 5-cyano uridine or 4′-thio uridine.
  • In some embodiments, a modified nucleobase is a modified adenine. Example nucleobases and nucleosides having a modified adenine include 7-deaza-adenine, 1-methyl-adenosine (m1A), 2-methyl-adenine (m2A), N6-methyl-adenosine (m6A), and 2,6-Diaminopurine.
  • In some embodiments, a modified nucleobase is a modified guanine. Example nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (mil), wyosine (imG), methylwyosine (mimG), 7-deaza-guanosine, 7-cyano-7-deaza-guanosine (preQ0), 7-aminomethyl-7-deaza-guanosine (preQ1), 7-methyl-guanosine (m7G), 1-methyl-guanosine (m1G), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine.
  • In some embodiments, the modified nucleobase is a modified uracil. Exemplary nucleobases and nucleosides having a modified uracil include pseudouridine (ψ), pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s2U), 4-thio-uridine (s4U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho5U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridineor 5-bromo-uridine), 3-methyl-uridine (m3U), 5-methoxy-uridine (mo5U), uridine 5-oxyacetic acid (cmo5U), uridine 5-oxyacetic acid methyl ester (mcmo5U), 5-carboxymethyl-uridine (cm5U), 1-carboxymethyl-pseudouridine, 5-carboxyhydroxymethyl-uridine (chm5U), 5-carboxyhydroxymethyl-uridine methyl ester (mchm5U), 5-methoxycarbonylmethyl-uridine (mcm5U), 5-methoxycarbonylmethyl-2-thio-uridine (mcm5s2U), 5-aminomethyl-2-thio-uridine (nm5s2U), 5-methylaminomethyl-uridine (mnm5U), 5-methylaminomethyl-2-thio-uridine (mnm5s2U), 5-methylaminomethyl-2-seleno-uridine (mnm5se2U), 5-carbamoylmethyl-uridine (ncm5U), 5-carboxymethylaminomethyl-uridine (cmnm5U), 5-carboxymethylaminomethyl-2-thio-uridine (cmnm5s2U), 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyl-uridine (τm5U), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine (τm5s2U), 1-taurinomethyl-4-thio-pseudouridine, 5-methyl-uridine (m5U, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine (m1ψ), 5-methyl-2-thio-uridine (m5s2U), 1-methyl-4-thio-pseudouridine (m1s4ψ), 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine (m3ψ), 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine (D), dihydropseudouridine, 5,6-dihydrouridine, 5-methyl-dihydrouridine (m5D), 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxy-uridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl-pseudouridine, 3-(3-amino-3-carboxypropyl)uridine (acp3U), 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine (acp3ψ), 5-(isopentenylaminomethyl)uridine (inm5U), 5-(isopentenylaminomethyl)-2-thio-uridine (inm5s2U), α-thio-uridine, 2′-O-methyl-uridine (Um), 5,2′-O-dimethyl-uridine (m5Um), 2′-O-methyl-pseudouridine (ψm), 2-thio-2′-O-methyl-uridine (s2Um), 5-methoxycarbonylmethyl-2′-O-methyl-uridine (mcm5Um), 5-carbamoylmethyl-2′-O-methyl-uridine (ncm5Um), 5-carboxymethylaminomethyl-2′-O-methyl-uridine (cmnm5Um), 3,2′-O-dimethyl-uridine (m3Um), and 5-(isopentenylaminomethyl)-2′-O-methyl-uridine (inm5Um), 1-thio-uridine, deoxythymidine, 2′-F-ara-uridine, 2′-F-uridine, 2′-OH-ara-uridine, 5-(2-carbomethoxyvinyl) uridine, and 5-[3-(1-E-propenylamino)]uridine.
  • In some embodiments, the modified nucleobase is a modified cytosine. Exemplary nucleobases and nucleosides having a modified cytosine include 5-aza-cytidine, 6-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine (m3C), N4-acetyl-cytidine (ac4C), 5-formylcytidine (f5C), N4-methyl-cytidine (m4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s2C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, lysidine (k2C), α-thio-cytidine, 2′-O-methyl-cytidine (Cm), 5,2′-O-dimethylcytidine (m5Cm), N4-acetyl-2′-O-methyl-cytidine (ac4Cm), N4,2′-O-dimethylcytidine (m4Cm), 5-formyl-2′-O-methyl-cytidine (f5Cm), N4,N4,2′-O-trimethyl-cytidine (m42 Cm), 1-thio-cytidine, 2′-F-ara-cytidine, 2′-F-cytidine, and 2′-0H-ara-cytidine.
  • In some embodiments, the modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 2-amino-purine, 2, 6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m1A), 2-methyl-adenine (m2A), N6-methyl-adenosine (m6A), 2-methylthio-N6-methyl-adenosine (ms2 m6A), N6-isopentenyl-adenosine (i6A), 2-methylthio-N6-isopentenyl-adenosine (ms2i6A), N6-(cis-hydroxyisopentenyl)adenosine (io6A), 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine (ms2io6A), N6-glycinylcarbamoyl-adenosine (g6A), N6-threonylcarbamoyl-adenosine (t6A), N6-methyl-N6-threonylcarbamoyl-adenosine (m6t6A), 2-methylthio-N6-threonylcarbamoyl-adenosine (ms2g6A), N6,N6-dimethyl-adenosine (m6 2A), N6-hydroxynorvalylcarbamoyl-adenosine (hn6A), 2-methylthio-N6-hydroxynorvalylcarbamoyl-adenosine (ms2hn6A), N6-acetyl-adenosine (ac6A), 7-methyl-adenine, 2-methylthio-adenine, 2-methoxy-adenine, α-thio-adenosine, 2′-O-methyl-adenosine (Am), N6,2′-O-dimethyl-adenosine (m6Am), N6,N6,2′-O-trimethyl-adenosine (m62 Am), 1,2′-O-dimethyl-adenosine (m1Am), 2′-O-ribosyladenosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8-azido-adenosine, 2′-F-ara-adenosine, 2′-F-adenosine, 2′-0H-ara-adenosine, and N6-(19-amino-pentaoxanonadecyl)-adenosine.
  • In some embodiments, the modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine (yW), peroxywybutosine (o2yW), hydroxywybutosine (OhyW), undermodified hydroxywybutosine (OhyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ0), 7-aminomethyl-7-deaza-guanosine (preQ1), archaeosine (G+), 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine (m7G), 6-thio-7-methyl-guanosine, 7-methyl-inosine, 6-methoxy-guanosine, 1-methyl-guanosine (m1G), N2-methyl-guanosine (m2G), N2,N2-dimethyl-guanosine (m2 2G), N2,7-dimethyl-guanosine (m2,7G), N2,N2,7-dimethyl-guanosine (m2,2,7G), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, N2,N2-dimethyl-6-thio-guanosine, a-thio-guanosine, 2′-O-methyl-guanosine (Gm), N2-methyl-2′-O-methyl-guanosine (m2Gm), N2,N2-dimethyl-2′-O-methyl-guanosine (m2 2Gm), 1-methyl-2′-O-methyl-guanosine (m1Gm), N2,7-dimethyl-2′-O-methyl-guanosine (m2,7Gm), 2′-O-methyl-inosine (Im), 1,2′-O-dimethyl-inosine (m1Im), 2′-O-ribosylguanosine (phosphate) (Gr(p)), 1-thio-guanosine, 06-methyl-guanosine, 2′-F-ara-guanosine, and 2′-F-guanosine.
  • Methods of Treatment
  • Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention and/or treatment of CHIKV, DENV, ZIKV, CHIKV/DENV (the combination of CHIKV and DENV, CHIKV/ZIKV (the combination of CHIKV and ZIKV), ZIKV and DENV (the combination of ZIKV and DENV), and CHIKV/DENV/ZIKV (the combination of CHIKV, DENV and ZIKV) in humans and other mammals. CHIKV RNA (e.g. mRNA) vaccines, DENV RNA (e.g. mRNA) vaccines, ZIKV RNA (e.g. mRNA) vaccines, CHIKV/DENV RNA (e.g. mRNA) vaccines, CHIKV/ZIKV RNA (e.g. mRNA) vaccines, ZIKV/DENV RNA (e.g. mRNA) vaccines, and CHIKV/DENV/ZIKV RNA (e.g. mRNA) vaccines can be used as therapeutic or prophylactic agents. They may be used in medicine to prevent and/or treat infectious disease. In exemplary aspects, the vaccines, of the present disclosure are used to provide prophylactic protection from CHIKV, DENV, ZIKV or any combination of two or three of the foregoing viruses. Prophylactic protection from CHIKV, DENV and/or ZIKV can be achieved following administration of a CHIKV, DENV and/or ZIKV vaccine or combination vaccine, of the present disclosure. Vaccines (including combination vaccines) can be administered once, twice, three times, four times or more but it is likely sufficient to administer the vaccine once (optionally followed by a single booster). It is possible, although less desirable, to administer the vaccine to an infected individual to achieve a therapeutic response. Dosing may need to be adjusted accordingly.
  • Broad Spectrum Vaccines
  • It is envisioned that there may be situations where persons are at risk for infection with more than one strain of CHIKV, DENV and/or ZIKV (e.g., more than one strain of CHIKV, more than one strain of DENV, and/or more than one strain of ZIKV). RNA (e.g., mRNA) therapeutic vaccines are particularly amenable to combination vaccination approaches due to a number of factors including, but not limited to, speed of manufacture, ability to rapidly tailor vaccines to accommodate perceived geographical threat, and the like. Moreover, because the vaccines utilize the human body to produce the antigenic protein, the vaccines are amenable to the production of larger, more complex antigenic proteins, allowing for proper folding, surface expression, antigen presentation, etc. in the human subject. To protect against more than one strain of CHIKV, DENV and/or ZIKV, a vaccine (including a combination vaccine) can be administered that includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a first CHIKV, DENV and/or ZIKV and further includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a second CHIKV, DENV and/or ZIKV. RNAs (mRNAs) can be coformulated, for example, in a single lipid nanoparticle (LNP) or can be formulated in separate LNPs destined for co-administration.
  • A method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV is provided in aspects of the invention. The method involves administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein anti-antigenic polypeptide antibody titer in the subject is increased following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV. An “anti-antigenic polypeptide antibody” is a serum antibody the binds specifically to the antigenic polypeptide.
  • A prophylactically effective dose is a therapeutically effective dose that prevents infection with the virus at a clinically acceptable level. In some embodiments the therapeutically effective dose is a dose listed in a package insert for the vaccine. A traditional vaccine, as used herein, refers to a vaccine other than the mRNA vaccines of the invention. For instance, a traditional vaccine includes but is not limited to live microorganism vaccines, killed microorganism vaccines, subunit vaccines, protein antigen vaccines, DNA vaccines, etc.
  • In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 1 log to 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 1 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 2 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 3 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 5 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.
  • A method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV is provided in other aspects of the invention. The method involves administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine against the CHIKV, DENV and/or ZIKV at 2 times to 100 times the dosage level relative to the RNA vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at twice the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at three times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 4 times the dosage level relative to the CHIKV, DENV and/or ZIKV vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 5 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 50 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 100 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10 times to 1000 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.
  • In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 100 times to 1000 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine
  • In other embodiments the immune response is assessed by determining [protein] antibody titer in the subject.
  • In other aspects the present disclosure is a method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV by administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is induced 2 days to 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV. In some embodiments the immune response in the subject is induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine at 2 times to 100 times the dosage level relative to the RNA vaccine.
  • In some embodiments the immune response in the subject is induced 2 days earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • In some embodiments the immune response in the subject is induced 3 days earlier relative to an immune response induced in a subject vaccinated a prophylactically effective dose of a traditional vaccine.
  • In some embodiments the immune response in the subject is induced 1 week earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • In some embodiments the immune response in the subject is induced 2 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • In some embodiments the immune response in the subject is induced 3 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • In some embodiments the immune response in the subject is induced 5 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • In some embodiments the immune response in the subject is induced 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.
  • Also provided herein are methods of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV by administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not coformulated or co-administered with the vaccine.
  • Therapeutic and Prophylactic Compositions
  • Provided herein are compositions, methods, kits and reagents for the prevention, treatment or diagnosis of Chikungunya virus in humans and other mammals, for example. The active therapeutic agents of the present disclosure include the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines), cells containing CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines), and antigenic polypeptides translated from the polynucleotides comprising the RNA vaccines. CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines) can be used as therapeutic or prophylactic agents. They may be used in medicine and/or for the priming of immune effector cells, for example, to activate peripheral blood mononuclear cells (PBMCs) ex vivo, which are then infused (re-infused) into a subject.
  • In some embodiments, a vaccines, including a combination vaccine, containing RNA polynucleotides, e.g., mRNA, as described herein can be administered to a subject (e.g., a mammalian subject, such as a human subject), and the RNA polynucleotides are translated in vivo to produce an antigenic polypeptide.
  • The CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be induced for translation of a polypeptide (e.g., antigen or immunogen) in a cell, tissue or organism. Such translation can be in vivo, ex vivo, in culture or in vitro. The cell, tissue or organism is contacted with an effective amount of a composition containing a CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, that contains a polynucleotide that has at least one a translatable region encoding an antigenic polypeptide.
  • An “effective amount” of the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, is provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the polynucleotide (e.g., size, and extent of modified nucleosides) and other components of the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, and other determinants. In general, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, provides an induced or boosted immune response as a function of antigen production in the cell, preferably more efficient than a composition containing a corresponding unmodified polynucleotide encoding the same antigen or a peptide antigen. Increased antigen production may be demonstrated by increased cell transfection (the percentage of cells transfected with the RNA vaccine), increased protein translation from the polynucleotide, decreased nucleic acid degradation (as demonstrated, for example, by increased duration of protein translation from a modified polynucleotide), or altered antigen specific immune response of the host cell.
  • In some embodiments, RNA vaccines (including polynucleotides and their encoded polypeptides) and cells comprising the RNA vaccines in accordance with the present disclosure may be used for the treatment of Chikungunya virus, Dengue virus, Zika virus, or any combination of two or three of the foregoing viruses.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered prophylactically or therapeutically as part of an active immunization scheme to healthy individuals or early in infection during the incubation phase or during active infection after onset of symptoms. In some embodiments, the amount of RNA vaccine of the present disclosure provided to a cell, a tissue or a subject may be an amount effective for immune prophylaxis.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered with other prophylactic or therapeutic compounds. As a non-limiting example, a prophylactic or therapeutic compound may be an adjuvant or a booster. As used herein, when referring to a prophylactic composition, such as a vaccine, the term “booster” refers to an extra administration of the prophylactic (vaccine) composition. A booster (or booster vaccine) may be given after an earlier administration of the prophylactic composition. The time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 10 days, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 15 months, 18 months, 21 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 25 years, 30 years, 35 years, 40 years, 45 years, 50 years, 55 years, 60 years, 65 years, 70 years, 75 years, 80 years, 85 years, 90 years, 95 years or more than 99 years, and any time period in-between.
  • In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered intramuscularly or intradermally, similarly to the administration of inactivated vaccines known in the art.
  • The CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. As a non-limiting example, the RNA vaccines may be utilized to treat and/or prevent infectious disease caused by Chikungunya virus. RNA vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-virals.
  • Provided herein are pharmaceutical compositions including CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines and RNA vaccine compositions and/or complexes optionally in combination with one or more pharmaceutically acceptable excipients.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be formulated or administered alone or in conjunction with one or more other components. For instance, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines (vaccine compositions) may comprise other components including, but not limited to, adjuvants. In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, do not include an adjuvant (they are adjuvant free).
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be formulated or administered in combination with one or more pharmaceutically-acceptable excipients. In some embodiments, vaccine compositions comprise at least one additional active substance, such as, for example, a therapeutically-active substance, a prophylactically-active substance, or a combination of both. Vaccine compositions may be sterile, pyrogen-free or both sterile and pyrogen-free. General considerations in the formulation and/or manufacture of pharmaceutical agents, such as vaccine compositions, may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference in its entirety).
  • In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are administered to humans, human patients or subjects. For the purposes of the present disclosure, the phrase “active ingredient” generally refers to the RNA vaccines or the polynucleotides contained therein, for example, RNA polynucleotides (e.g., mRNA polynucleotides) encoding CHIKV, DENV and/or ZIKV antigenic polypeptides.
  • Formulations of the vaccine compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient (e.g., mRNA polynucleotide) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.
  • Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation); (4) alter the biodistribution (e.g., target to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein (antigen) in vivo. In addition to traditional excipients such as any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, excipients can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof.
  • Stabilizing Elements
  • Naturally-occurring eukaryotic mRNA molecules have been found to contain stabilizing elements, including, but not limited to untranslated regions (UTR) at their 5′-end (5′UTR) and/or at their 3′-end (3′UTR), in addition to other structural features, such as a 5′-cap structure or a 3′-poly(A) tail. Both the 5′UTR and the 3′UTR are typically transcribed from the genomic DNA and are elements of the premature mRNA. Characteristic structural features of mature mRNA, such as the 5′-cap and the 3′-poly(A) tail are usually added to the transcribed (premature) mRNA during mRNA processing. The 3′-poly(A) tail is typically a stretch of adenine nucleotides added to the 3′-end of the transcribed mRNA. It can comprise up to about 400 adenine nucleotides. In some embodiments the length of the 3′-poly(A) tail may be an essential element with respect to the stability of the individual mRNA.
  • In some embodiments the RNA vaccine may include one or more stabilizing elements. Stabilizing elements may include for instance a histone stem-loop. A stem-loop binding protein (SLBP), a 32 kDa protein has been identified. It is associated with the histone stem-loop at the 3′-end of the histone messages in both the nucleus and the cytoplasm. Its expression level is regulated by the cell cycle; it is peaks during the S-phase, when histone mRNA levels are also elevated. The protein has been shown to be essential for efficient 3′-end processing of histone pre-mRNA by the U7 snRNP. SLBP continues to be associated with the stem-loop after processing, and then stimulates the translation of mature histone mRNAs into histone proteins in the cytoplasm. The RNA binding domain of SLBP is conserved through metazoa and protozoa; its binding to the histone stem-loop depends on the structure of the loop. The minimum binding site includes at least three nucleotides 5′ and two nucleotides 3′ relative to the stem-loop.
  • In some embodiments, the RNA vaccines include a coding region, at least one histone stem-loop, and optionally, a poly(A) sequence or polyadenylation signal. The poly(A) sequence or polyadenylation signal generally should enhance the expression level of the encoded protein. The encoded protein, in some embodiments, is not a histone protein, a reporter protein (e.g. Luciferase, GFP, EGFP, β-Galactosidase, EGFP), or a marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)).
  • In some embodiments, the combination of a poly(A) sequence or polyadenylation signal and at least one histone stem-loop, even though both represent alternative mechanisms in nature, acts synergistically to increase the protein expression beyond the level observed with either of the individual elements. It has been found that the synergistic effect of the combination of poly(A) and at least one histone stem-loop does not depend on the order of the elements or the length of the poly(A) sequence.
  • In some embodiments, the RNA vaccine does not comprise a histone downstream element (HDE). “Histone downstream element” (HDE) includes a purine-rich polynucleotide stretch of approximately 15 to 20 nucleotides 3′ of naturally occurring stem-loops, representing the binding site for the U7 snRNA, which is involved in processing of histone pre-mRNA into mature histone mRNA. Ideally, the inventive nucleic acid does not include an intron.
  • In some embodiments, the RNA vaccine may or may not contain a enhancer and/or promoter sequence, which may be modified or unmodified or which may be activated or inactivated. In some embodiments, the histone stem-loop is generally derived from histone genes, and includes an intramolecular base pairing of two neighbored partially or entirely reverse complementary sequences separated by a spacer, consisting of a short sequence, which forms the loop of the structure. The unpaired loop region is typically unable to base pair with either of the stem loop elements. It occurs more often in RNA, as is a key component of many RNA secondary structures, but may be present in single-stranded DNA as well. Stability of the stem-loop structure generally depends on the length, number of mismatches or bulges, and base composition of the paired region. In some embodiments, wobble base pairing (non-Watson-Crick base pairing) may result. In some embodiments, the at least one histone stem-loop sequence comprises a length of 15 to 45 nucleotides.
  • In other embodiments the RNA vaccine may have one or more AU-rich sequences removed. These sequences, sometimes referred to as AURES are destabilizing sequences found in the 3′UTR. The AURES may be removed from the RNA vaccines. Alternatively the AURES may remain in the RNA vaccine.
  • Nanoparticle Formulations
  • In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are formulated in a nanoparticle. In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are formulated in a lipid nanoparticle. In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are formulated in a lipid-polycation complex, referred to as a cationic lipid nanoparticle. The formation of the lipid nanoparticle may be accomplished by methods known in the art and/or as described in U.S. Pub. No. 20120178702, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid nanoparticle may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine and the cationic peptides described in International Pub. No. WO2012013326 or US Patent Pub. No. US20130142818; each of which is herein incorporated by reference in its entirety. In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are formulated in a lipid nanoparticle that includes a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).
  • A lipid nanoparticle formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size. For example, the lipid nanoparticle formulation may be composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA. (Semple et al., Nature Biotech. 2010 28:172-176; herein incorporated by reference in its entirety). Altering the composition of the cationic lipid can more effectively deliver RNA to various antigen presenting cells (Basha et al. Mol Ther. 2011 19:2186-2200; herein incorporated by reference in its entirety).
  • In some embodiments, lipid nanoparticle formulations may comprise 35 to 45% cationic lipid, 40% to 50% cationic lipid, 50% to 60% cationic lipid and/or 55% to 65% cationic lipid. In some embodiments, the ratio of lipid to RNA (e.g., mRNA) in lipid nanoparticles may be 5:1 to 20:1, 10:1 to 25:1, 15:1 to 30:1 and/or at least 30:1.
  • In some embodiments, the ratio of PEG in the lipid nanoparticle formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the lipid nanoparticle formulations. As a non-limiting example, lipid nanoparticle formulations may contain 0.5% to 3.0%, 1.0% to 3.5%, 1.5% to 4.0%, 2.0% to 4.5%, 2.5% to 5.0% and/or 3.0% to 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[(ω-methoxy-poly(ethyleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3-amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.
  • In some embodiments, the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccine formulation is a nanoparticle that comprises at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, Dlin-K-DMA, 98N12-5, C12-200, Dlin-MC3-DMA, Dlin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In some embodiments, the lipid may be a cationic lipid such as, but not limited to, Dlin-DMA, Dlin-D-DMA, Dlin-MC3-DMA, Dlin-KC2-DMA, DODMA and amino alcohol lipids. The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in US Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may be 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-{[(9Z,2Z)-octadeca-9,12-dien-1-yloxy]methyl}propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2-{[(9Z)-octadec-9-en-1-yloxy]methyl}propan-1-ol (Compound 2 in US20130150625); 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-{[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]methyl}propan-1-ol (Compound 4 in US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.
  • Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.
  • In some embodiments, a lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEG-cDMA, in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% sterol; 0.5-15% PEG-lipid.
  • In some embodiments, a lipid nanoparticle formulation includes 25% to 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., 35 to 65%, 45 to 65%, 60%, 57.5%, 50% or 40% on a molar basis.
  • In some embodiments, a lipid nanoparticle formulation includes 0.5% to 15% on a molar basis of the neutral lipid, e.g., 3 to 12%, 5 to 10% or 15%, 10%, or 7.5% on a molar basis. Examples of neutral lipids include, without limitation, DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes 5% to 50% on a molar basis of the sterol (e.g., 15 to 45%, 20 to 40%, 40%, 38.5%, 35%, or 31% on a molar basis. A non-limiting example of a sterol is cholesterol. In some embodiments, a lipid nanoparticle formulation includes 0.5% to 20% on a molar basis of the PEG or PEG-modified lipid (e.g., 0.5 to 10%, 0.5 to 5%, 1.5%, 0.5%, 1.5%, 3.5%, or 5% on a molar basis. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or around 500 Da. Non-limiting examples of PEG-modified lipids include PEG-distearoyl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEG-cDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are herein incorporated by reference in its entirety).
  • In some embodiments, lipid nanoparticle formulations include 25-75% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations include 35-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations include 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.5% of the neutral lipid, 31% of the sterol, and 1.5% of the PEG or PEG-modified lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 38.5% of the sterol, and 1.5% of the PEG or PEG-modified lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 35% of the sterol, 4.5% or 5% of the PEG or PEG-modified lipid, and 0.5% of the targeting lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations include 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 15% of the neutral lipid, 40% of the sterol, and 5% of the PEG or PEG-modified lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations include 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.1% of the neutral lipid, 34.3% of the sterol, and 1.4% of the PEG or PEG-modified lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations include 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in its entirety), 7.5% of the neutral lipid, 31.5% of the sterol, and 3.5% of the PEG or PEG-modified lipid on a molar basis.
  • In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in molar ratios of 20-70% cationic lipid: 5-45% neutral lipid: 20-55% cholesterol: 0.5-15% PEG-modified lipid. In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% cholesterol: 0.5-15% PEG-modified lipid.
  • In some embodiments, the molar lipid ratio is 50/10/38.5/1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).
  • Non-limiting examples of lipid nanoparticle compositions and methods of making them are described, for example, in Semple et al. (2010) Nat. Biotechnol. 28:172-176; Jayarama et al. (2012), Angew. Chem. Int. Ed., 51: 8529-8533; and Maier et al. (2013) Molecular Therapy 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).
  • In some embodiments, lipid nanoparticle formulations may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, a lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another non-limiting example, a lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, Dlin-KC2-DMA, Dlin-MC3-DMA and L319.
  • In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, Dlin-KC2-DMA, Dlin-MC3-DMA and L319.
  • In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid Dlin-KC2-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid Dlin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid Dlin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DMG and 38.5% of the structural lipid cholesterol. As yet another non-limiting example, the lipid nanoparticle comprise 55% of the cationic lipid L319, 10% of the non-cationic lipid DSPC, 2.5% of the PEG lipid PEG-DMG and 32.5% of the structural lipid cholesterol.
  • Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a vaccine composition may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered. For example, the composition may comprise between 0.1% and 99% (w/w) of the active ingredient. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.
  • In some embodiments, the RNA vaccine composition may comprise the polynucleotide described herein, formulated in a lipid nanoparticle comprising MC3, Cholesterol, DSPC and PEG2000-DMG, the buffer trisodium citrate, sucrose and water for injection. As a non-limiting example, the composition comprises: 2.0 mg/mL of drug substance (e.g., polynucleotides encoding H10N8 influenza virus), 21.8 mg/mL of MC3, 10.1 mg/mL of cholesterol, 5.4 mg/mL of DSPC, 2.7 mg/mL of PEG2000-DMG, 5.16 mg/mL of trisodium citrate, 71 mg/mL of sucrose and 1.0 mL of water for injection.
  • In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 10-500 nm, 20-400 nm, 30-300 nm, 40-200 nm. In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 50-150 nm, 50-200 nm, 80-100 nm or 80-200 nm.
  • In one embodiment, the RNA vaccines of the invention may be formulated in lipid nanoparticles having a diameter from about 10 to about 100 nm such as, but not limited to, about 10 to about 20 nm, about 10 to about 30 nm, about 10 to about 40 nm, about 10 to about 50 nm, about 10 to about 60 nm, about 10 to about 70 nm, about 10 to about 80 nm, about 10 to about 90 nm, about 20 to about 30 nm, about 20 to about 40 nm, about 20 to about 50 nm, about 20 to about 60 nm, about 20 to about 70 nm, about 20 to about 80 nm, about 20 to about 90 nm, about 20 to about 100 nm, about 30 to about 40 nm, about 30 to about 50 nm, about 30 to about 60 nm, about 30 to about 70 nm, about 30 to about 80 nm, about 30 to about 90 nm, about 30 to about 100 nm, about 40 to about 50 nm, about 40 to about 60 nm, about 40 to about 70 nm, about 40 to about 80 nm, about 40 to about 90 nm, about 40 to about 100 nm, about 50 to about 60 nm, about 50 to about 70 nm about 50 to about 80 nm, about 50 to about 90 nm, about 50 to about 100 nm, about 60 to about 70 nm, about 60 to about 80 nm, about 60 to about 90 nm, about 60 to about 100 nm, about 70 to about 80 nm, about 70 to about 90 nm, about 70 to about 100 nm, about 80 to about 90 nm, about 80 to about 100 nm and/or about 90 to about 100 nm.
  • In one embodiment, the lipid nanoparticles may have a diameter from about 10 to 500 nm.
  • In one embodiment, the lipid nanoparticle may have a diameter greater than 100 nm, greater than 150 nm, greater than 200 nm, greater than 250 nm, greater than 300 nm, greater than 350 nm, greater than 400 nm, greater than 450 nm, greater than 500 nm, greater than 550 nm, greater than 600 nm, greater than 650 nm, greater than 700 nm, greater than 750 nm, greater than 800 nm, greater than 850 nm, greater than 900 nm, greater than 950 nm or greater than 1000 nm.
  • Modes of Vaccine Administration
  • CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered by any route which results in a therapeutically effective outcome. These include, but are not limited, to intradermal, intramuscular, and/or subcutaneous administration. The present disclosure provides methods comprising administering RNA vaccines to a subject in need thereof. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, compositions are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, compositions may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
  • In certain embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect (see e.g., the range of unit doses described in International Publication No WO2013078199, herein incorporated by reference in its entirety). The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used.
  • In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight per day, one or more times a day, per week, per month, etc. to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect (see e.g., the range of unit doses described in International Publication No WO2013078199, herein incorporated by reference in its entirety). The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, every four weeks, every 2 months, every three months, every 6 months, etc. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. In exemplary embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered at dosage levels sufficient to deliver 0.0005 mg/kg to 0.01 mg/kg, e.g., about 0.0005 mg/kg to about 0.0075 mg/kg, e.g., about 0.0005 mg/kg, about 0.001 mg/kg, about 0.002 mg/kg, about 0.003 mg/kg, about 0.004 mg/kg or about 0.005 mg/kg.
  • In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered once or twice (or more) at dosage levels sufficient to deliver 0.025 mg/kg to 0.250 mg/kg, 0.025 mg/kg to 0.500 mg/kg, 0.025 mg/kg to 0.750 mg/kg, or 0.025 mg/kg to 1.0 mg/kg.
  • In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.0100 mg, 0.025 mg, 0.050 mg, 0.075 mg, 0.100 mg, 0.125 mg, 0.150 mg, 0.175 mg, 0.200 mg, 0.225 mg, 0.250 mg, 0.275 mg, 0.300 mg, 0.325 mg, 0.350 mg, 0.375 mg, 0.400 mg, 0.425 mg, 0.450 mg, 0.475 mg, 0.500 mg, 0.525 mg, 0.550 mg, 0.575 mg, 0.600 mg, 0.625 mg, 0.650 mg, 0.675 mg, 0.700 mg, 0.725 mg, 0.750 mg, 0.775 mg, 0.800 mg, 0.825 mg, 0.850 mg, 0.875 mg, 0.900 mg, 0.925 mg, 0.950 mg, 0.975 mg, or 1.0 mg. Higher and lower dosages and frequency of administration are encompassed by the present disclosure. For example, a CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered three or four times.
  • In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.010 mg, 0.025 mg, 0.100 mg or 0.400 mg.
  • In some embodiments the RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of between 10 μg/kg and 400 μg/kg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments the RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of between 10 μg and 400 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject.
  • A RNA vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).
  • In some embodiments, a RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of 10 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments, a RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of 2 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments, a vaccine for use in a method of vaccinating a subject is administered the subject two dosages of 10 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments, a RNA vaccine for use in a method of vaccinating a subject is administered the subject two dosages of 2 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject.
  • A RNA (e.g. mRNA) vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).
  • RNA Vaccine Formulations and Methods of Use
  • Some aspects of the present disclosure provide formulations of a RNA (e.g., mRNA) vaccine, wherein the RNA vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject (e.g., production of antibodies specific to a CHIKV, DENV and/or ZIKV antigenic polypeptide). “An effective amount” is a dose of an RNA (e.g., mRNA) vaccine effective to produce an antigen-specific immune response. Also provided herein are methods of inducing an antigen-specific immune response in a subject.
  • In some embodiments, the antigen-specific immune response is characterized by measuring an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered a RNA (e.g., mRNA) vaccine as provided herein. An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen or epitope of an antigen. Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result. Enzyme-linked immunosorbent assay (ELISA) is a common assay for determining antibody titers, for example.
  • In some embodiments, an antibody titer is used to assess whether a subject has had an infection or to determine whether immunizations are required. In some embodiments, an antibody titer is used to determine the strength of an autoimmune response, to determine whether a booster immunization is needed, to determine whether a previous vaccine was effective, and to identify any recent or prior infections. In accordance with the present disclosure, an antibody titer may be used to determine the strength of an immune response induced in a subject by the RNA vaccine.
  • In some embodiments, an anti-ZIKV antigenic polypeptide antibody titer produced in a subject is increased by at least 1 log relative to a control. For example, antibody titer produced in a subject may be increased by at least 1.5, at least 2, at least 2.5, or at least 3 log relative to a control. In some embodiments, the antibody titer produced in the subject is increased by 1, 1.5, 2, 2.5 or 3 log relative to a control. In some embodiments, the antibody titer produced in the subject is increased by 1-3 log relative to a control. For example, the antibody titer produced in a subject may be increased by 1-1.5, 1-2, 1-2.5, 1-3, 1.5-2, 1.5-2.5, 1.5-3, 2-2.5, 2-3, or 2.5-3 log relative to a control.
  • In some embodiments, the antibody titer produced in a subject is increased at least 2 times relative to a control. For example, the antibody titer produced in a subject may be increased at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or at least 10 times relative to a control. In some embodiments, the antibody titer produced in the subject is increased 2, 3, 4, 5, 6, 7, 8, 9, or 10 times relative to a control. In some embodiments, the anti antibody titer produced in a subject is increased 2-10 times relative to a control. For example, the antibody titer produced in a subject may be increased 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9, or 9-10 times relative to a control.
  • A control, in some embodiments, is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered a RNA (e.g., mRNA) vaccine. In some embodiments, a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antibody titer produced in a subject who has been administered a live attenuated CHIKV, DENV and/or ZIKV vaccine. An attenuated vaccine is a vaccine produced by reducing the virulence of a viable (live). An attenuated virus is altered in a manner that renders it harmless or less virulent relative to live, unmodified virus. In some embodiments, a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered inactivated CHIKV, DENV and/or ZIKV vaccine. In some embodiments, a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. Recombinant protein vaccines typically include protein antigens that either have been produced in a heterologous expression system (e.g., bacteria or yeast) or purified from large amounts of the pathogenic organism.
  • In some embodiments, an effective amount of a RNA (e.g., mRNA) vaccine is a dose that is reduced compared to the standard of care dose of a recombinant CHIKV, DENV and/or ZIKV protein vaccine. A “standard of care,” as provided herein, refers to a medical or psychological treatment guideline and can be general or specific. “Standard of care” specifies appropriate treatment based on scientific evidence and collaboration between medical professionals involved in the treatment of a given condition. It is the diagnostic and treatment process that a physician/clinician should follow for a certain type of patient, illness or clinical circumstance. A “standard of care dose,” as provided herein, refers to the dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine, or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine, that a physician/clinician or other medical professional would administer to a subject to treat or prevent CHIKV, DENV and/or ZIKV or a related condition, while following the standard of care guideline for treating or preventing CHIKV, DENV and/or ZIKV, or a related condition.
  • In some embodiments, the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered an effective amount of a ZIKV RNA vaccine is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.
  • In some embodiments, an effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to an at least 2-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. For example, an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine may be a dose equivalent to an at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is a dose equivalent to an at least at least 100-fold, at least 500-fold, or at least 1000-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is a dose equivalent to a 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 50-, 100-, 250-, 500-, or 1000-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or protein CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine. In some embodiments, an effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-fold to 1000-fold (e.g., 2-fold to 100-fold, 10-fold to 1000-fold) reduction in the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine, wherein the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.
  • In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to a 2 to 1000-, 2 to 900-, 2 to 800-, 2 to 700-, 2 to 600-, 2 to 500-, 2 to 400-, 2 to 300-, 2 to 200-, 2 to 100-, 2 to 90-, 2 to 80-, 2 to 70-, 2 to 60-, 2 to 50-, 2 to 40-, 2 to 30-, 2 to 20-, 2 to 10-, 2 to 9-, 2 to 8-, 2 to 7-, 2 to 6-, 2 to 5-, 2 to 4-, 2 to 3-, 3 to 1000-, 3 to 900-, 3 to 800-, 3 to 700-, 3 to 600-, 3 to 500-, 3 to 400-, 3 to 3 to 00-, 3 to 200-, 3 to 100-, 3 to 90-, 3 to 80-, 3 to 70-, 3 to 60-, 3 to 50-, 3 to 40-, 3 to 30-, 3 to 20-, 3 to 10-, 3 to 9-, 3 to 8-, 3 to 7-, 3 to 6-, 3 to 5-, 3 to 4-, 4 to 1000-, 4 to 900-, 4 to 800-, 4 to 700-, 4 to 600-, 4 to 500-, 4 to 400-, 4 to 4 to 00-, 4 to 200-, 4 to 100-, 4 to 90-, 4 to 80-, 4 to 70-, 4 to 60-, 4 to 50-, 4 to 40-, 4 to 30-, 4 to 20-, 4 to 10-, 4 to 9-, 4 to 8-, 4 to 7-, 4 to 6-, 4 to 5-, 4 to 4-, 5 to 1000-, 5 to 900-, 5 to 800-, 5 to 700-, 5 to 600-, 5 to 500-, 5 to 400-, 5 to 300-, 5 to 200-, 5 to 100-, 5 to 90-, 5 to 80-, 5 to 70-, 5 to 60-, 5 to 50-, 5 to 40-, 5 to 30-, 5 to 20-, 5 to 10-, 5 to 9-, 5 to 8-, 5 to 7-, 5 to 6-, 6 to 1000-, 6 to 900-, 6 to 800-, 6 to 700-, 6 to 600-, 6 to 500-, 6 to 400-, 6 to 300-, 6 to 200-, 6 to 100-, 6 to 90-, 6 to 80-, 6 to 70-, 6 to 60-, 6 to 50-, 6 to 40-, 6 to 30-, 6 to 20-, 6 to 10-, 6 to 9-, 6 to 8-, 6 to 7-, 7 to 1000-, 7 to 900-, 7 to 800-, 7 to 700-, 7 to 600-, 7 to 500-, 7 to 400-, 7 to 300-, 7 to 200-, 7 to 100-, 7 to 90-, 7 to 80-, 7 to 70-, 7 to 60-, 7 to 50-, 7 to 40-, 7 to 30-, 7 to 20-, 7 to 10-, 7 to 9-, 7 to 8-, 8 to 1000-, 8 to 900-, 8 to 800-, 8 to 700-, 8 to 600, 8 to 500-, 8 to 400-, 8 to 300-, 8 to 200-, 8 to 100-, 8 to 90-, 8 to 80-, 8 to 70-, 8 to 60-, 8 to 50-, 8 to 40-, 8 to 30-, 8 to 20-, 8 to 10-, 8 to 9-, 9 to 1000-, 9 to 900-, 9 to 800-, 9 to 700-, 9 to 600-, 9 to 500-, 9 to 400-, 9 to 300-, 9 to 200-, 9 to 100-, 9 to 90-, 9 to 80-, 9 to 70-, 9 to 60-, 9 to 50-, 9 to 40-, 9 to 30-, 9 to 20-, 9 to 10-, 10 to 1000-, 10 to 900-, 10 to 800-, 10 to 700-, 10 to 600-, 10 to 500-, 10 to 400-, 10 to 300-, 10 to 200-, 10 to 100-, 10 to 90-, 10 to 80-, 10 to 70-, 10 to 60-, 10 to 50-, 10 to 40-, 10 to 30-, 10 to 20-, 20 to 1000-, 20 to 900-, 20 to 800-, 20 to 700-, 20 to 600-, 20 to 500-, 20 to 400-, 20 to 300-, 20 to 200-, 20 to 100-, 20 to 90-, 20 to 80-, 20 to 70-, 20 to 60-, 20 to 50-, 20 to 40-, 20 to 30-, 30 to 1000-, 30 to 900-, 30 to 800-, 30 to 700-, 30 to 600-, 30 to 500-, 30 to 400-, 30 to 300-, 30 to 200-, 30 to 100-, 30 to 90-, 30 to 80-, 30 to 70-, 30 to 60-, 30 to 50-, 30 to 40-, 40 to 1000-, 40 to 900-, 40 to 800-, 40 to 700-, 40 to 600-, 40 to 500-, 40 to 400-, 40 to 300-, 40 to 200-, 40 to 100-, 40 to 90-, 40 to 80-, 40 to 70-, 40 to 60-, 40 to 50-, 50 to 1000-, 50 to 900-, 50 to 800-, 50 to 700-, 50 to 600-, 50 to 500-, 50 to 400-, 50 to 300-, 50 to 200-, 50 to 100-, 50 to 90-, 50 to 80-, 50 to 70-, 50 to 60-, 60 to 1000-, 60 to 900-, 60 to 800-, 60 to 700-, 60 to 600-, 60 to 500-, 60 to 400-, 60 to 300-, 60 to 200-, 60 to 100-, 60 to 90-, 60 to 80-, 60 to 70-, 70 to 1000-, 70 to 900-, 70 to 800-, 70 to 700-, 70 to 600-, 70 to 500-, 70 to 400-, 70 to 300-, 70 to 200-, 70 to 100-, 70 to 90-, 70 to 80-, 80 to 1000-, 80 to 900-, 80 to 800-, 80 to 700-, 80 to 600-, 80 to 500-, 80 to 400-, 80 to 300-, 80 to 200-, 80 to 100-, 80 to 90-, 90 to 1000-, 90 to 900-, 90 to 800-, 90 to 700-, 90 to 600-, 90 to 500-, 90 to 400-, 90 to 300-, 90 to 200-, 90 to 100-, 100 to 1000-, 100 to 900-, 100 to 800-, 100 to 700-, 100 to 600-, 100 to 500-, 100 to 400-, 100 to 300-, 100 to 200-, 200 to 1000-, 200 to 900-, 200 to 800-, 200 to 700-, 200 to 600-, 200 to 500-, 200 to 400-, 200 to 300-, 300 to 1000-, 300 to 900-, 300 to 800-, 300 to 700-, 300 to 600-, 300 to 500-, 300 to 400-, 400 to 1000-, 400 to 900-, 400 to 800-, 400 to 700-, 400 to 600-, 400 to 500-, 500 to 1000-, 500 to 900-, 500 to 800-, 500 to 700-, 500 to 600-, 600 to 1000-, 600 to 900-, 600 to 800-, 600 to 700-, 700 to 1000-, 700 to 900-, 700 to 800-, 800 to 1000-, 800 to 900-, or 900 to 1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, such as the foregoing, the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine. In some embodiments, the effective amount is a dose equivalent to (or equivalent to an at least) 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 110-, 120-, 130-, 140-, 150-, 160-, 170-, 1280-, 190-, 200-, 210-, 220-, 230-, 240-, 250-, 260-, 270-, 280-, 290-, 300-, 310-, 320-, 330-, 340-, 350-, 360-, 370-, 380-, 390-, 400-, 410-, 420-, 430-, 440-, 450-, 4360-, 470-, 480-, 490-, 500-, 510-, 520-, 530-, 540-, 550-, 560-, 5760-, 580-, 590-, 600-, 610-, 620-, 630-, 640-, 650-, 660-, 670-, 680-, 690-, 700-, 710-, 720-, 730-, 740-, 750-, 760-, 770-, 780-, 790-, 800-, 810-, 820-, 830-, 840-, 850-, 860-, 870-, 880-, 890-, 900-, 910-, 920-, 930-, 940-, 950-, 960-, 970-, 980-, 990-, or 1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, such as the foregoing, an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.
  • In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50-1000 μg. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50-1000, 50-900, 50-800, 50-700, 50-600, 50-500, 50-400, 50-300, 50-200, 50-100, 50-90, 50-80, 50-70, 50-60, 60-1000, 60-900, 60-800, 60-700, 60-600, 60-500, 60-400, 60-300, 60-200, 60-100, 60-90, 60-80, 60-70, 70-1000, 70-900, 70-800, 70-700, 70-600, 70-500, 70-400, 70-300, 70-200, 70-100, 70-90, 70-80, 80-1000, 80-900, 80-800, 80-700, 80-600, 80-500, 80-400, 80-300, 80-200, 80-100, 80-90, 90-1000, 90-900, 90-800, 90-700, 90-600, 90-500, 90-400, 90-300, 90-200, 90-100, 100-1000, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, 100-200, 200-1000, 200-900, 200-800, 200-700, 200-600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-800, 300-700, 300-600, 300-500, 300-400, 400-1000, 400-900, 400-800, 400-700, 400-600, 400-500, 500-1000, 500-900, 500-800, 500-700, 500-600, 600-1000, 600-900, 600-900, 600-700, 700-1000, 700-900, 700-800, 800-1000, 800-900, or 900-1000 μg. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 μg. In some embodiments, the effective amount is a dose of 25-500 μg administered to the subject a total of two times. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a dose of 25-500, 25-400, 25-300, 25-200, 25-100, 25-50, 50-500, 50-400, 50-300, 50-200, 50-100, 100-500, 100-400, 100-300, 100-200, 150-500, 150-400, 150-300, 150-200, 200-500, 200-400, 200-300, 250-500, 250-400, 250-300, 300-500, 300-400, 350-500, 350-400, 400-500 or 450-500 μg administered to the subject a total of two times. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 μg administered to the subject a total of two times.
  • This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
  • EXAMPLES Example 1: Manufacture of Polynucleotides
  • According to the present disclosure, the manufacture of polynucleotides and or parts or regions thereof may be accomplished utilizing the methods taught in International Application WO2014/152027 entitled “Manufacturing Methods for Production of RNA Transcripts”, the contents of which is incorporated herein by reference in its entirety.
  • Purification methods may include those taught in International Application WO2014/152030 and WO2014/152031, each of which is incorporated herein by reference in its entirety.
  • Detection and characterization methods of the polynucleotides may be performed as taught in WO2014/144039, which is incorporated herein by reference in its entirety.
  • Characterization of the polynucleotides of the disclosure may be accomplished using a procedure selected from the group consisting of polynucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, and detection of RNA impurities, wherein characterizing comprises determining the RNA transcript sequence, determining the purity of the RNA transcript, or determining the charge heterogeneity of the RNA transcript. Such methods are taught in, for example, WO2014/144711 and WO2014/144767, the contents of each of which is incorporated herein by reference in its entirety.
  • Example 2: Chimeric Polynucleotide Synthesis Introduction
  • According to the present disclosure, two regions or parts of a chimeric polynucleotide may be joined or ligated using triphosphate chemistry.
  • According to this method, a first region or part of 100 nucleotides or less is chemically synthesized with a 5′ monophosphate and terminal 3′-desOH or blocked OH. If the region is longer than 80 nucleotides, it may be synthesized as two strands for ligation.
  • If the first region or part is synthesized as a non-positionally modified region or part using in vitro transcription (IVT), conversion the 5′-monophosphate with subsequent capping of the 3′ terminus may follow.
  • Monophosphate protecting groups may be selected from any of those known in the art.
  • The second region or part of the chimeric polynucleotide may be synthesized using either chemical synthesis or IVT methods. IVT methods may include an RNA polymerase that can utilize a primer with a modified cap. Alternatively, a cap of up to 130 nucleotides may be chemically synthesized and coupled to the IVT region or part.
  • It is noted that for ligation methods, ligation with DNA T4 ligase, followed by treatment with DNAse should readily avoid concatenation.
  • The entire chimeric polynucleotide need not be manufactured with a phosphate-sugar backbone. If one of the regions or parts encodes a polypeptide, then it is preferable that such region or part comprise a phosphate-sugar backbone.
  • Ligation is then performed using any known click chemistry, orthoclick chemistry, solulink, or other bioconjugate chemistries known to those in the art.
  • Synthetic Route
  • The chimeric polynucleotide is made using a series of starting segments. Such segments include:
  • (a) Capped and protected 5′ segment comprising a normal 3′OH (SEG. 1)
  • (b) 5′ triphosphate segment which may include the coding region of a polypeptide and comprising a normal 3′OH (SEG. 2)
  • (c) 5′ monophosphate segment for the 3′ end of the chimeric polynucleotide (e.g., the tail) comprising cordycepin or no 3′OH (SEG. 3) After synthesis (chemical or IVT), segment 3 (SEG. 3) is treated with cordycepin and
  • then with pyrophosphatase to create the 5′-monophosphate.
  • Segment 2 (SEG. 2) is then ligated to SEG. 3 using RNA ligase. The ligated polynucleotide is then purified and treated with pyrophosphatase to cleave the diphosphate. The treated SEG. 2-SEG. 3 construct is then purified and SEG. 1 is ligated to the 5′ terminus. A further purification step of the chimeric polynucleotide may be performed.
  • Where the chimeric polynucleotide encodes a polypeptide, the ligated or joined segments may be represented as: 5′UTR (SEG. 1), open reading frame or ORF (SEG. 2) and 3′UTR+PolyA (SEG. 3).
  • The yields of each step may be as much as 90-95%.
  • Example 3: PCR for cDNA Production
  • PCR procedures for the preparation of cDNA are performed using 2×KAPA HIFI™ HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes 2×KAPA ReadyMix12.5 μl; Forward Primer (10 μM) 0.75 μl; Reverse Primer (10 PM) 0.75 μl; Template cDNA —100 ng; and dH20 diluted to 25.0 μl. The reaction conditions are at 95° C. for 5 min. and 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° C. for 45 sec, then 72° C. for 5 min. then 4° C. to termination.
  • The reaction is cleaned up using Invitrogen's PURELINK™ PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to 5 μg). Larger reactions will require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA is quantified using the NANODROP™ and analyzed by agarose gel electrophoresis to confirm the cDNA is the expected size. The cDNA is then submitted for sequencing analysis before proceeding to the in vitro transcription reaction.
  • Example 4: In Vitro Transcription (IVT)
  • The in vitro transcription reaction generates polynucleotides containing uniformly modified polynucleotides. Such uniformly modified polynucleotides may comprise a region or part of the polynucleotides of the disclosure. The input nucleotide triphosphate (NTP) mix is made in-house using natural and un-natural NTPs.
  • A typical in vitro transcription reaction includes the following:
  • 1 Template cDNA 1.0 μg
    2 10× transcription buffer (400 mM Tris-HCl pH 8.0, 190 mM MgCl2, 50 mM DTT, 10 mM Spermidine) 2.0 μl
    3 Custom NTPs (25 mM each) 7.2 μl
  • 4 RNase Inhibitor 20 U
  • T7 RNA polymerase 3000 U
    6 dH20 Up to 20.0 μl. and
    7 Incubation at 37° C. for 3 hr-5 hrs.
  • The crude IVT mix may be stored at 4° C. overnight for cleanup the next day. 1 U of RNase-free DNase is then used to digest the original template. After 15 minutes of incubation at 37° C., the mRNA is purified using Ambion's MEGACLEAR™ Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 ag of RNA. Following the cleanup, the RNA is quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA is the proper size and that no degradation of the RNA has occurred.
  • Example 5: Exemplary Nucleic Acids Encoding CHIKV E1 RNA Polynucleotides for Use in a RNA Vaccine
  • The following sequences are exemplary sequences that can be used to encode CHIKV E1 RNA polynucleotides for use in the CHIKV RNA vaccine:
  • TABLE 1
    CHIKV E1 RNA polynucleotides
    SEQ ID
    Name Sequence NO
    ChiK.secE1 TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 1
    HS3UPCRfree ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAGAC
    (CHIKV ACCTGCACAGCTGTTGTTTCTGCTGCTGCTTTGGTTGCCCGATACCACCG
    secreted E1 GTGACTACAAAGACGACGACGATAAATACGAGCACGTGACGGTAATACCA
    antigen) AACACTGTGGGGGTGCCATACAAGACCCTGGTAAATCGCCCAGGCTACTC
    TCCCATGGTGCTGGAGATGGAGCTCCAGTCTGTGACCTTAGAGCCAACCC
    TCTCACTCGACTATATCACCTGTGAATACAAAACAGTGATCCCATCCCCC
    TACGTGAAATGTTGCGGAACTGCAGAGTGTAAGGATAAGAGTCTGCCCGA
    TTACAGCTGCAAGGTGTTTACAGGCGTGTATCCATTTATGTGGGGAGGAG
    CCTACTGTTTTTGCGATGCCGAAAATACTCAGCTGTCTGAAGCCCATGTG
    GAGAAGAGTGAAAGTTGCAAGACCGAATTTGCTAGTGCCTACAGGGCACA
    CACCGCTTCTGCCTCCGCTAAACTCCGAGTCCTTTACCAGGGCAATAATA
    TTACGGTCGCTGCCTACGCTAACGGGGACCACGCTGTGACAGTCAAGGAC
    GCCAAATTCGTAGTGGGCCCAATGAGCTCCGCCTGGACTCCCTTCGACAA
    CAAAATCGTCGTGTATAAAGGCGACGTGTACAATATGGACTACCCACCCT
    TCGGGGCTGGAAGACCGGGCCAGTTTGGAGATATCCAATCAAGGACACCC
    GAGTCAAAGGACGTGTACGCCAATACGCAGCTGGTGCTGCAGAGACCCGC
    CGCTGGTACCGTGCATGTGCCTTATTCCCAAGCTCCATCTGGCTTCAAGT
    ACTGGTTGAAAGAGCGCGGTGCTTCGCTGCAGCATACAGCACCGTTCGGA
    TGTCAGATAGCAACCAACCCTGTACGGGCTGTCAACTGTGCCGTGGGAAA
    TATACCTATTTCCATCGACATTCCGGACGCAGCTTTCACACGTGTCGTTG
    ATGCCCCCTCAGTGACTGACATGTCATGTGAGGTGCCTGCTTGCACCCAC
    AGCAGCGATTTTGGCGGAGTGGCCATAATCAAGTACACCGCCTCCAAAAA
    AGGAAAGTGTGCCGTACACTCTATGACCAACGCCGTCACAATCAGAGAAG
    CCGACGTTGAAGTAGAGGGAAATTCACAGCTGCAAATCAGCTTCAGCACC
    GCTCTTGCCTCTGCTGAGTTTAGGGTTCAGGTTTGCAGTACTCAGGTGCA
    CTGTGCAGCCGCTTGCCATCCCCCCAAGGATCATATCGTGAATTATCCTG
    CATCCCACACCACACTGGGAGTCCAGGATATCTCAACAACTGCAATGTCT
    TGGGTGCAGAAGATCACCTGATAATAGGCTGGAGCCTCGGTGGCCATGCT
    TCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGT
    ACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    Chik- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 2
    Strain37997 ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGTACGA
    -E1 (CHIKV ACACGTAACAGTGATCCCGAACACGGTGGGAGTACCGTATAAGACTCTAG
    E1 antigen- TCAACAGACCGGGCTACAGCCCCATGGTATTGGAGATGGAGCTTCTGTCT
    Strain GTCACCTTGGAACCAACGCTATCGCTTGATTACATCACGTGCGAGTATAA
    37997): AACCGTTATCCCGTCTCCGTACGTGAAATGCTGCGGTACAGCAGAGTGTA
    AGGACAAGAGCCTACCTGATTACAGCTGTAAGGTCTTCACCGGCGTCTAC
    CCATTCATGTGGGGCGGCGCCTACTGCTTCTGCGACACCGAAAATACGCA
    ATTGAGCGAAGCACATGTGGAGAAGTCCGAATCATGCAAAACAGAATTTG
    CATCAGCATACAGGGCTCATACCGCATCCGCATCAGCTAAGCTCCGCGTC
    CTTTACCAAGGAAATAATATCACTGTGGCTGCTTATGCAAACGGCGACCA
    TGCCGTCACAGTTAAGGACGCTAAATTCATAGTGGGGCCAATGTCTTCAG
    CCTGGACACCTTTCGACAATAAAATCGTGGTGTACAAAGGCGACGTCTAC
    AACATGGACTACCCGCCCTTCGGCGCAGGAAGACCAGGACAATTTGGCGA
    CATCCAAAGTCGCACGCCTGAGAGCGAAGACGTCTATGCTAATACACAAC
    TGGTACTGCAGAGACCGTCCGCGGGTACGGTGCACGTGCCGTACTCTCAG
    GCACCATCTGGCTTCAAGTATTGGCTAAAAGAACGAGGGGCGTCGCTGCA
    GCACACAGCACCATTTGGCTGTCAAATAGCAACAAACCCGGTAAGAGCGA
    TGAACTGCGCCGTAGGGAACATGCCTATCTCCATCGACATACCGGACGCG
    GCCTTTACCAGGGTCGTCGACGCGCCATCTTTAACGGACATGTCGTGTGA
    GGTATCAGCCTGCACCCATTCCTCAGACTTTGGGGGCGTAGCCATCATTA
    AATATGCAGCCAGTAAGAAAGGCAAGTGTGCAGTGCACTCGATGACTAAC
    GCCGTCACTATTCGGGAAGCTGAAATAGAAGTAGAAGGGAACTCTCAGTT
    GCAAATCTCTTTTTCGACGGCCCTAGCCAGCGCCGAATTTCGCGTACAAG
    TCTGTTCTACACAAGTACACTGTGCAGCCGAGTGCCATCCACCGAAAGAC
    CATATAGTCAATTACCCGGCGTCACACACCACCCTCGGGGTCCAAGACAT
    TTCCGCTACGGCGATGTCATGGGTGCAGAAGATCACGGGAGGTGTGGGAC
    TGGTTGTCGCTGTTGCAGCACTGATCCTAATCGTGGTGCTATGCGTGTCG
    TTTAGCAGGCACTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGC
    CCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCC
    GTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    Chik- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 3
    Strain37997 ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGCTATG
    -E1 (CHIKV GAACGAACAGCAGCCCCTGTTCTGGTTGCAGGCTCTTATCCCGCTGGCCG
    E1 antigen- CCTTGATCGTCCTGTGCAACTGTCTGAAACTCTTGCCATGCTGCTGTAAG
    Strain ACCCTGGCTTTTTTAGCCGTAATGAGCATCGGTGCCCACACTGTGAGCGC
    37997): GTACGAACACGTAACAGTGATCCCGAACACGGTGGGAGTACCGTATAAGA
    CTCTTGTCAACAGACCGGGTTACAGCCCCATGGTGTTGGAGATGGAGCTA
    CAATCAGTCACCTTGGAACCAACACTGTCACTTGACTACATCACGTGCGA
    GTACAAAACTGTCATCCCCTCCCCGTACGTGAAGTGCTGTGGTACAGCAG
    AGTGCAAGGACAAGAGCCTACCAGACTACAGCTGCAAGGTCTTTACTGGA
    GTCTACCCATTTATGTGGGGCGGCGCCTACTGCTTTTGCGACGCCGAAAA
    TACGCAATTGAGCGAGGCACATGTAGAGAAATCTGAATCTTGCAAAACAG
    AGTTTGCATCGGCCTACAGAGCCCACACCGCATCGGCGTCGGCGAAGCTC
    CGCGTCCTTTACCAAGGAAACAACATTACCGTAGCTGCCTACGCTAACGG
    TGACCATGCCGTCACAGTAAAGGACGCCAAGTTTGTCGTGGGCCCAATGT
    CCTCCGCCTGGACACCTTTTGACAACAAAATCGTGGTGTACAAAGGCGAC
    GTCTACAACATGGACTACCCACCTTTTGGCGCAGGAAGACCAGGACAATT
    TGGTGACATTCAAAGTCGTACACCGGAAAGTAAAGACGTTTATGCCAACA
    CTCAGTTGGTACTACAGAGGCCAGCAGCAGGCACGGTACATGTACCATAC
    TCTCAGGCACCATCTGGCTTCAAGTATTGGCTGAAGGAACGAGGAGCATC
    GCTACAGCACACGGCACCGTTCGGTTGCCAGATTGCGACAAACCCGGTAA
    GAGCTGTAAATTGCGCTGTGGGGAACATACCAATTTCCATCGACATACCG
    GATGCGGCCTTTACTAGGGTTGTCGATGCACCCTCTGTAACGGACATGTC
    ATGCGAAGTACCAGCCTGCACTCACTCCTCCGACTTTGGGGGCGTCGCCA
    TCATCAAATACACAGCTAGCAAGAAAGGTAAATGTGCAGTACATTCGATG
    ACCAACGCCGTTACCATTCGAGAAGCCGACGTAGAAGTAGAGGGGAACTC
    CCAGCTGCAAATATCCTTCTCAACAGCCCTGGCAAGCGCCGAGTTTCGCG
    TGCAAGTGTGCTCCACACAAGTACACTGCGCAGCCGCATGCCACCCTCCA
    AAGGACCACATAGTCAATTACCCAGCATCACACACCACCCTTGGGGTCCA
    GGATATATCCACAACGGCAATGTCTTGGGTGCAGAAGATTACGGGAGGAG
    TAGGATTAATTGTTGCTGTTGCTGCCTTAATTTTAATTGTGGTGCTATGC
    GTGTCGTTTAGCAGGCACTAATGATAATAGGCTGGAGCCTCGGTGGCCAT
    GCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACC
    CGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    chikv- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 4
    Brazillian- ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGTACGA
    E1 (CHIKV ACACGTAACAGTGATCCCGAACACGGTGGGAGTACCGTATAAGACTCTAG
    E1 antigen TCAATAGACCGGGCTACAGTCCCATGGTATTGGAGATGGAACTACTGTCA
    - Brazilian GTCACTTTGGAGCCAACGCTATCGCTTGATTACATCACGTGCGAGTACAA
    strain) AACCGTTATCCCGTCTCCGTACGTGAAATGCTGCGGTACAGCAGAGTGCA
    AGGACAAAAACCTACCTGACTACAGCTGTAAGGTCTTCACCGGCGTCTAC
    CCATTTATGTGGGGCGGAGCCTACTGCTTCTGCGACGCTGAAAACACGCA
    ATTGAGCGAAGCACACGTGGAGAAGTCCGAATCATGCAAAACAGAATTTG
    CATCAGCATACAGGGCTCATACCGCATCCGCATCAGCTAAGCTCCGCGTC
    CTTTACCAAGGAAATAACATCACTGTAACTGCCTATGCTAACGGCGACCA
    TGCCGTCACAGTTAAGGACGCCAAATTCATTGTGGGGCCAATGTCTTCAG
    CCTGGACACCTTTCGACAACAAAATTGTGGTGTACAAAGGTGACGTCTAT
    AACATGGACTACCCGCCCTTTGGCGCAGGAAGACCAGGACAATTTGGCGA
    TATCCAAAGTCGCACACCTGAGAGTAAAGACGTCTATGCTAATACACAAC
    TGGTACTGCAGAGACCGGCTGCGGGTACGGTACATGTGCCATACTCTCAG
    GCACCATCTGGCTTTAAGTATTGGCTAAAAGAACGAGGGGCGTCGCTGCA
    GCACACAGCACCATTTGGCTGCCAAATAGCAACAAACCCGGTAAGAGCGG
    TGAATTGCGCCGTAGGGAACATGCCCATCTCCATCGACATACCGGATGCG
    GCCTTCATTAGGGTCGTCGACGCGCCCTCTTTAACGGACATGTCGTGCGA
    GGTACCAGCCTGCACCCATTCCTCAGATTTCGGGGGCGTCGCCATTATTA
    AATATGCAGCCAGCAAGAAAGGCAAGTGTGCGGTGCATTCGATGACCAAC
    GCCGTCACAATTCGGGAAGCTGAGATAGAAGTTGAAGGGAATTCTCAGCT
    GCAAATCTCTTTCTCGACGGCCTTGGCCAGCGCCGAATTCCGCGTACAAG
    TCTGTTCTACACAAGTACACTGTGTAGCCGAGTGCCACCCTCCGAAGGAC
    CACATAGTCAATTACCCGGCGTCACATACCACCCTCGGGGTCCAGGACAT
    TTCCGCTACGGCGCTGTCATGGGTGCAGAAGATCACGGGAGGCGTGGGAC
    TGGTTGTCGCTGTTGCAGCACTGATTCTAATCGTGGTGCTATGCGTGTCG
    TTCAGCAGGCACTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGC
    CCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCC
    GTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
  • Example 6: Exemplary Nucleic Acids Encoding CHIKV E2 RNA Polynucleotides for Use in a RNA Vaccine
  • The following sequences are exemplary sequences that can be used to encode CHIKV E2 RNA polynucleotides for use in a RNA vaccine:
  • TABLE 2
    CHIKV E2 RNA polynucleotides
    SEQ ID
    Name Sequence NO
    ChiK.secE2 ATGGAGACCCCAGCTCAGCTTCTGTTTCTTCTCCTTCTATGGCTGCCTGA 5
    HS3UPCRfree CACGACTGGACATCACCACCATCATCATAGTACAAAAGACAATTTCAATG
    (CHIKV TGTACAAGGCCACCCGCCCTTATTTAGCACACTGTCCAGATTGCGGTGAG
    secreted E2 GGGCACTCCTGTCACTCTCCTATCGCCTTGGAGCGGATCCGGAATGAGGC
    antigen): GACCGATGGAACACTGAAAATCCAGGTAAGCTTGCAGATTGGCATCAAGA
    CTGACGATAGCCATGATTGGACCAAACTACGGTATATGGATAGCCATACA
    CCTGCCGATGCTGAACGGGCCGGTCTGCTTGTGAGAACTAGCGCTCCATG
    CACCATCACGGGGACAATGGGACATTTTATCCTGGCTAGATGCCCAAAGG
    GCGAAACCCTCACCGTCGGATTCACCGACTCAAGGAAAATTTCTCACACA
    TGTACCCATCCCTTCCACCATGAGCCACCGGTGATCGGGCGCGAACGCTT
    CCACAGCAGGCCTCAGCATGGAAAAGAACTGCCATGCTCGACCTATGTAC
    AGTCCACCGCCGCTACCGCCGAAGAGATCGAAGTGCATATGCCTCCCGAC
    ACACCCGACCGAACCCTAATGACACAACAATCTGGGAATGTGAAGATTAC
    AGTCAATGGACAGACTGTGAGGTATAAGTGTAACTGCGGTGGCTCAAATG
    AGGGCCTCACCACAACGGATAAGGTGATCAATAACTGCAAAATTGACCAG
    TGTCACGCGGCCGTGACCAACCATAAGAACTGGCAGTACAACTCACCCTT
    AGTGCCTAGGAACGCTGAGCTGGGAGATCGCAAGGGGAAGATACACATTC
    CCTTCCCGTTGGCGAATGTGACCTGCCGTGTGCCAAAAGCGAGAAATCCT
    ACCGTAACATATGGCAAAAATCAGGTGACCATGTTGCTCTACCCGGATCA
    CCCAACTCTGCTGAGCTATCGGAATATGGGACAAGAACCCAATTACCACG
    AGGAATGGGTTACGCACAAGAAAGAGGTGACCCTTACAGTCCCTACTGAA
    GGTCTGGAAGTGACCTGGGGCAATAACGAGCCTTATAAGTACTGGCCCCA
    GATGAGTACAAACGGCACCGCCCATGGACATCCACACGAGATCATTCTGT
    ATTACTACGAACTATATCCCACAATGACTGGCAAGCCTATACCAAACCCA
    CTTCTCGGCCTTGATAGCACATGATAATAGGCTGGAGCCTCGGTGGCCAT
    GCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACC
    CGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    chikv- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 6
    Brazillian- ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAC
    E2 (CHIKV CAAGGACAACTTCAATGTCTATAAAGCCACAAGACCGTACTTAGCTCACT
    E2 antigen GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCATTAGAA
    - Brazilian CGCATCAGAAATGAAGCGACAGACGGGACGCTGAAAATCCAGGTCTCCTT
    strain): GCAAATCGGAATAAAGACGGATGATAGCCACGATTGGACCAAGCTGCGTT
    ACATGGACAACCACACGCCAGCGGACGCAGAGAGGGCGGGGCTATTTGTA
    AGAACATCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATCCT
    GACCCGATGTCCGAAAGGGGAAACTCTGACGGTGGGATTCACTGACAGTA
    GGAAGATCAGTCACTCATGTACGCACCCATTTCACCACGACCCTCCTGTG
    ATAGGCCGGGAGAAATTCCATTCCCGACCGCAGCACGGTAAAGAGCTGCC
    TTGCAGCACGTACGTGCAGAGCACCGCCGCAACTACCGAGGAGATAGAGG
    TACACATGCCCCCAGACACCCCTGATCGCACATTGATGTCACAACAGTCC
    GGCAACGTAAAGATCACAGTTAATGGCCAGACGGTGCGGTACAAGTGTAA
    TTGCGGTGGCTCAAATGAAGGACTAATAACTACAGACAAAGTGATTAATA
    ACTGCAAAGTTGATCAATGTCATGCCGCGGTCACCAATCACAAAAAGTGG
    CAGTACAACTCCCCTCTGGTCCCGCGTAATGCTGAACTTGGGGACCGAAA
    AGGAAAAATCCACATCCCGTTTCCGCTGGCAAATGTAACATGCAGGGTGC
    CTAAAGCAAGGAACCCCACCGTGACGTACGGGAAAAACCAAGTCATCATG
    CTACTGTATCCCGACCACCCAACACTCCTGTCCTACCGGAACATGGGAGA
    AGAACCAAACTACCAAGAAGAGTGGGTGACGCATAAGAAGGAAGTCGTGC
    TAACCGTGCCGACTGAAGGGCTCGAGGTCACGTGGGGTAACAACGAGCCG
    TATAAGTATTGGCCGCAGTTATCTACAAACGGTACAGCCCATGGCCACCC
    GCATGAGATAATTCTGTATTATTATGAGCTGTACCCTACTATGACTGTAG
    TAGTTGTGTCAGTGGCCTCGTTCGTACTCCTGTCGATGGTGGGTGTGGCA
    GTGGGGATGTGCATGTGTGCACGACGCAGATGCATCACACCGTACGAACT
    GACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATCA
    GAACAGCTAAAGCGTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTT
    GCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCC
    CCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    chikv- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 7
    Brazillian- ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAT
    E2 (CHIKV TAAGGACCACTTCAATGTCTATAAAGCCACAAGACCGTACCTAGCTCACT
    E2 antigen GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCGCTAGAA
    - Brazilian CGCATCAGAAACGAAGCGACAGACGGGACGTTGAAAATCCAGGTTTCCTT
    strain): GCAAATCGGAATAAAGACGGATGATAGCCATGATTGGACCAAGCTGCGTT
    ATATGGACAATCACATGCCAGCAGACGCAGAGCGGGCCGGGCTATTTGTA
    AGAACGTCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATTCT
    GGCCCGATGTCCGAAAGGAGAAACTCTGACGGTGGGGTTCACTGACGGTA
    GGAAGATCAGTCACTCATGTACGCACCCATTTCACCATGACCCTCCTGTG
    ATAGGCCGGGAAAAATTCCATTCCCGACCGCAGCACGGTAGGGAACTACC
    TTGCAGCACGTACGCGCAGAGCACCGCTGCAACTGCCGAGGAGATAGAGG
    TACACATGCCCCCAGACACCCCAGATCGCACATTAATGTCACAACAGTCC
    GGCAATGTAAAGATCACAGTCAATAGTCAGACGGTGCGGTACAAGTGCAA
    TTGTGGTGACTCAAGTGAAGGATTAACCACTACAGATAAAGTGATTAATA
    ACTGCAAGGTCGATCAATGCCATGCCGCGGTCACCAATCACAAAAAATGG
    CAGTATAACTCCCCTCTGGTCCCGCGTAATGCTGAATTCGGGGACCGGAA
    AGGAAAAGTTCACATTCCATTTCCTCTGGCAAATGTGACATGCAGGGTGC
    CTAAAGCAAGAAACCCCACCGTGACGTACGGAAAAAACCAAGTCATCATG
    TTGCTGTATCCTGACCACCCAACGCTCCTGTCCTACAGGAATATGGGAGA
    AGAACCAAACTATCAAGAAGAGTGGGTGACGCATAAGAAGGAGATCAGGT
    TAACCGTGCCGACTGAGGGGCTCGAGGTCACGTGGGGTAACAATGAGCCG
    TACAAGTATTGGCCGCAGTTATCCACAAACGGTACAGCCCACGGCCACCC
    GCATGAGATAATTCTGTATTATTATGAGCTGTACCCAACTATGACTGCGG
    TAGTTTTGTCAGTGGCCTCGTTCATACTCCTGTCGATGGTGGGTGTGGCA
    GTGGGGATGTGCATGTGTGCACGACGCAGATGCATTACACCGTACGAACT
    GACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATTA
    GAACAGCTAAAGCGTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTT
    GCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCC
    CCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    Chik-Strain TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 8
    37997-E2 ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGCCATA
    (CHIKV E2 TCTAGCTCATTGTCCTGACTGCGGAGAAGGGCATTCGTGCCACAGCCCTA
    Antigen- TCGCATTGGAGCGCATCAGAAATGAAGCAACGGACGGAACGCTGAAAATC
    Strain CAGGTCTCTTTGCAGATCGGGATAAAGACAGATGACAGCCACGATTGGAC
    37997) CAAGCTGCGCTATATGGATAGCCATACGCCAGCGGACGCGGAGCGAGCCG
    GATTGCTTGTAAGGACTTCAGCACCGTGCACGATCACCGGGACCATGGGA
    CACTTTATTCTCGCCCGATGCCCGAAAGGAGAGACGCTGACAGTGGGATT
    TACGGACAGCAGAAAGATCAGCCACACATGCACACACCCGTTCCATCATG
    AACCACCTGTGATAGGTAGGGAGAGGTTCCACTCTCGACCACAACATGGT
    AAAGAGTTACCTTGCAGCACGTACGTGCAGAGCACCGCTGCCACTGCTGA
    GGAGATAGAGGTGCATATGCCCCCAGATACTCCTGACCGCACGCTGATGA
    CGCAGCAGTCTGGCAACGTGAAGATCACAGTTAATGGGCAGACGGTGCGG
    TACAAGTGCAACTGCGGTGGCTCAAACGAGGGACTGACAACCACAGACAA
    AGTGATCAATAACTGCAAAATTGATCAGTGCCATGCTGCAGTCACTAATC
    ACAAGAATTGGCAATACAACTCCCCTTTAGTCCCGCGCAACGCTGAACTC
    GGGGACCGTAAAGGAAAGATCCACATCCCATTCCCATTGGCAAACGTGAC
    TTGCAGAGTGCCAAAAGCAAGAAACCCTACAGTAACTTACGGAAAAAACC
    AAGTCACCATGCTGCTGTATCCTGACCATCCGACACTCTTGTCTTACCGT
    AACATGGGACAGGAACCAAATTACCACGAGGAGTGGGTGACACACAAGAA
    GGAGGTTACCTTGACCGTGCCTACTGAGGGTCTGGAGGTCACTTGGGGCA
    ACAACGAACCATACAAGTACTGGCCGCAGATGTCTACGAACGGTACTGCT
    CATGGTCACCCACATGAGATAATCTTGTACTATTATGAGCTGTACCCCAC
    TATGACTGTAGTCATTGTGTCGGTGGCCTCGTTCGTGCTTCTGTCGATGG
    TGGGCACAGCAGTGGGAATGTGTGTGTGCGCACGGCGCAGATGCATTACA
    CCATATGAATTAACACCAGGAGCCACTGTTCCCTTCCTGCTCAGCCTGCT
    ATGCTGCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTT
    GGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGT
    CTTTGAATAAAGTCTGAGTGGGCGGC
  • Example 7: Exemplary Nucleic Acids Encoding CHIKV E1-E2 RNA Polynucleotides for Use in a RNA Vaccine
  • The following sequences are exemplary sequences that can be used to encode CHIKV E1-E2 RNA polynucleotides for use in a RNA vaccine:
  • TABLE 3
    CHIKV E1-E2 RNA polynucleotides
    SEQ ID
    Name Sequence NO
    chikv- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 9
    Brazillian- ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAC
    E2-E1 CAAGGACAACTTCAATGTCTATAAAGCCACAAGACCGTACTTAGCTCACT
    (CHIKV E1- GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCATTAGAA
    E2 Antigen- CGCATCAGAAATGAAGCGACAGACGGGACGCTGAAAATCCAGGTCTCCTT
    Brazilian GCAAATCGGAATAAAGACGGATGATAGCCACGATTGGACCAAGCTGCGTT
    strain) : ACATGGACAACCACACGCCAGCGGACGCAGAGAGGGCGGGGCTATTTGTA
    AGAACATCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATCCT
    GACCCGATGTCCGAAAGGGGAAACTCTGACGGTGGGATTCACTGACAGTA
    GGAAGATCAGTCACTCATGTACGCACCCATTTCACCACGACCCTCCTGTG
    ATAGGCCGGGAGAAATTCCATTCCCGACCGCAGCACGGTAAAGAGCTGCC
    TTGCAGCACGTACGTGCAGAGCACCGCCGCAACTACCGAGGAGATAGAGG
    TACACATGCCCCCAGACACCCCTGATCGCACATTGATGTCACAACAGTCC
    GGCAACGTAAAGATCACAGTTAATGGCCAGACGGTGCGGTACAAGTGTAA
    TTGCGGTGGCTCAAATGAAGGACTAATAACTACAGACAAAGTGATTAATA
    ACTGCAAAGTTGATCAATGTCATGCCGCGGTCACCAATCACAAAAAGTGG
    CAGTACAACTCCCCTCTGGTCCCGCGTAATGCTGAACTTGGGGACCGAAA
    AGGAAAAATCCACATCCCGTTTCCGCTGGCAAATGTAACATGCAGGGTGC
    CTAAAGCAAGGAACCCCACCGTGACGTACGGGAAAAACCAAGTCATCATG
    CTACTGTATCCCGACCACCCAACACTCCTGTCCTACCGGAACATGGGAGA
    AGAACCAAACTACCAAGAAGAGTGGGTGACGCATAAGAAGGAAGTCGTGC
    TAACCGTGCCGACTGAAGGGCTCGAGGTCACGTGGGGTAACAACGAGCCG
    TATAAGTATTGGCCGCAGTTATCTACAAACGGTACAGCCCATGGCCACCC
    GCATGAGATAATTCTGTATTATTATGAGCTGTACCCTACTATGACTGTAG
    TAGTTGTGTCAGTGGCCTCGTTCGTACTCCTGTCGATGGTGGGTGTGGCA
    GTGGGGATGTGCATGTGTGCACGACGCAGATGCATCACACCGTACGAACT
    GACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATCA
    GAACAGCTAAAGCGTACGAACACGTAACAGTGATCCCGAACACGGTGGGA
    GTACCGTATAAGACTCTAGTCAATAGACCGGGCTACAGTCCCATGGTATT
    GGAGATGGAACTACTGTCAGTCACTTTGGAGCCAACGCTATCGCTTGATT
    ACATCACGTGCGAGTACAAAACCGTTATCCCGTCTCCGTACGTGAAATGC
    TGCGGTACAGCAGAGTGCAAGGACAAAAACCTACCTGACTACAGCTGTAA
    GGTCTTCACCGGCGTCTACCCATTTATGTGGGGCGGAGCCTACTGCTTCT
    GCGACGCTGAAAACACGCAATTGAGCGAAGCACACGTGGAGAAGTCCGAA
    TCATGCAAAACAGAATTTGCATCAGCATACAGGGCTCATACCGCATCCGC
    ATCAGCTAAGCTCCGCGTCCTTTACCAAGGAAATAACATCACTGTAACTG
    CCTATGCTAACGGCGACCATGCCGTCACAGTTAAGGACGCCAAATTCATT
    GTGGGGCCAATGTCTTCAGCCTGGACACCTTTCGACAACAAAATTGTGGT
    GTACAAAGGTGACGTCTATAACATGGACTACCCGCCCTTTGGCGCAGGAA
    GACCAGGACAATTTGGCGATATCCAAAGTCGCACACCTGAGAGTAAAGAC
    GTCTATGCTAATACACAACTGGTACTGCAGAGACCGGCTGCGGGTACGGT
    ACATGTGCCATACTCTCAGGCACCATCTGGCTTTAAGTATTGGCTAAAAG
    AACGAGGGGCGTCGCTGCAGCACACAGCACCATTTGGCTGCCAAATAGCA
    ACAAACCCGGTAAGAGCGGTGAATTGCGCCGTAGGGAACATGCCCATCTC
    CATCGACATACCGGATGCGGCCTTCATTAGGGTCGTCGACGCGCCCTCTT
    TAACGGACATGTCGTGCGAGGTACCAGCCTGCACCCATTCCTCAGATTTC
    GGGGGCGTCGCCATTATTAAATATGCAGCCAGCAAGAAAGGCAAGTGTGC
    GGTGCATTCGATGACCAACGCCGTCACAATTCGGGAAGCTGAGATAGAAG
    TTGAAGGGAATTCTCAGCTGCAAATCTCTTTCTCGACGGCCTTGGCCAGC
    GCCGAATTCCGCGTACAAGTCTGTTCTACACAAGTACACTGTGTAGCCGA
    GTGCCACCCTCCGAAGGACCACATAGTCAATTACCCGGCGTCACATACCA
    CCCTCGGGGTCCAGGACATTTCCGCTACGGCGCTGTCATGGGTGCAGAAG
    ATCACGGGAGGCGTGGGACTGGTTGTCGCTGTTGCAGCACTGATTCTAAT
    CGTGGTGCTATGCGTGTCGTTCAGCAGGCACTGATAATAGGCTGGAGCCT
    CGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCC
    TTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    chikv- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 10
    Brazillian- ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAT
    E2-E1 TAAGGACCACTTCAATGTCTATAAAGCCACAAGACCGTACCTAGCTCACT
    (CHIKV E1- GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCGCTAGAA
    E2 Antigen- CGCATCAGAAACGAAGCGACAGACGGGACGTTGAAAATCCAGGTTTCCTT
    Brazilian GCAAATCGGAATAAAGACGGATGATAGCCATGATTGGACCAAGCTGCGTT
    strain): ATATGGACAATCACATGCCAGCAGACGCAGAGCGGGCCGGGCTATTTGTA
    AGAACGTCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATTCT
    GGCCCGATGTCCGAAAGGAGAAACTCTGACGGTGGGGTTCACTGACGGTA
    GGAAGATCAGTCACTCATGTACGCACCCATTTCACCATGACCCTCCTGTG
    ATAGGCCGGGAAAAATTCCATTCCCGACCGCAGCACGGTAGGGAACTACC
    TTGCAGCACGTACGCGCAGAGCACCGCTGCAACTGCCGAGGAGATAGAGG
    TACACATGCCCCCAGACACCCCAGATCGCACATTAATGTCACAACAGTCC
    GGCAATGTAAAGATCACAGTCAATAGTCAGACGGTGCGGTACAAGTGCAA
    TTGTGGTGACTCAAGTGAAGGATTAACCACTACAGATAAAGTGATTAATA
    ACTGCAAGGTCGATCAATGCCATGCCGCGGTCACCAATCACAAAAAATGG
    CAGTATAACTCCCCTCTGGTCCCGCGTAATGCTGAATTCGGGGACCGGAA
    AGGAAAAGTTCACATTCCATTTCCTCTGGCAAATGTGACATGCAGGGTGC
    CTAAAGCAAGAAACCCCACCGTGACGTACGGAAAAAACCAAGTCATCATG
    TTGCTGTATCCTGACCACCCAACGCTCCTGTCCTACAGGAATATGGGAGA
    AGAACCAAACTATCAAGAAGAGTGGGTGACGCATAAGAAGGAGATCAGGT
    TAACCGTGCCGACTGAGGGGCTCGAGGTCACGTGGGGTAACAATGAGCCG
    TACAAGTATTGGCCGCAGTTATCCACAAACGGTACAGCCCACGGCCACCC
    GCATGAGATAATTCTGTATTATTATGAGCTGTACCCAACTATGACTGCGG
    TAGTTTTGTCAGTGGCCTCGTTCATACTCCTGTCGATGGTGGGTGTGGCA
    GTGGGGATGTGCATGTGTGCACGACGCAGATGCATTACACCGTACGAACT
    GACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATTA
    GAACAGCTAAAGCGTACGAACACGTAACAGTGATCCCGAACACGGTGGGA
    GTACCGTATAAGACTCTAGTCAACAGACCGGGCTACAGCCCCATGGTATT
    GGAGATGGAGCTTCTGTCTGTCACCTTGGAACCAACGCTATCGCTTGATT
    ACATCACGTGCGAGTATAAAACCGTTATCCCGTCTCCGTACGTGAAATGC
    TGCGGTACAGCAGAGTGTAAGGACAAGAGCCTACCTGATTACAGCTGTAA
    GGTCTTCACCGGCGTCTACCCATTCATGTGGGGCGGCGCCTACTGCTTCT
    GCGACACCGAAAATACGCAATTGAGCGAAGCACATGTGGAGAAGTCCGAA
    TCATGCAAAACAGAATTTGCATCAGCATACAGGGCTCATACCGCATCCGC
    ATCAGCTAAGCTCCGCGTCCTTTACCAAGGAAATAATATCACTGTGGCTG
    CTTATGCAAACGGCGACCATGCCGTCACAGTTAAGGACGCTAAATTCATA
    GTGGGGCCAATGTCTTCAGCCTGGACACCTTTCGACAATAAAATCGTGGT
    GTACAAAGGCGACGTCTACAACATGGACTACCCGCCCTTCGGCGCAGGAA
    GACCAGGACAATTTGGCGACATCCAAAGTCGCACGCCTGAGAGCGAAGAC
    GTCTATGCTAATACACAACTGGTACTGCAGAGACCGTCCGCGGGTACGGT
    GCACGTGCCGTACTCTCAGGCACCATCTGGCTTCAAGTATTGGCTAAAAG
    AACGAGGGGCGTCGCTGCAGCACACAGCACCATTTGGCTGTCAAATAGCA
    ACAAACCCGGTAAGAGCGATGAACTGCGCCGTAGGGAACATGCCTATCTC
    CATCGACATACCGGACGCGGCCTTTACCAGGGTCGTCGACGCGCCATCTT
    TAACGGACATGTCGTGTGAGGTATCAGCCTGCACCCATTCCTCAGACTTT
    GGGGGCGTAGCCATCATTAAATATGCAGCCAGTAAGAAAGGCAAGTGTGC
    AGTGCACTCGATGACTAACGCCGTCACTATTCGGGAAGCTGAAATAGAAG
    TAGAAGGGAACTCTCAGTTGCAAATCTCTTTTTCGACGGCCCTAGCCAGC
    GCCGAATTTCGCGTACAAGTCTGTTCTACACAAGTACACTGTGCAGCCGA
    GTGCCATCCACCGAAAGACCATATAGTCAATTACCCGGCGTCACACACCA
    CCCTCGGGGTCCAAGACATTTCCGCTACGGCGATGTCATGGGTGCAGAAG
    ATCACGGGAGGTGTGGGACTGGTTGTCGCTGTTGCAGCACTGATCCTAAT
    CGTGGTGCTATGCGTGTCGTTTAGCAGGCACATGAGTATTAAGGACCACT
    TCAATGTCTATAAAGCCACAAGACCGTACCTAGCTCACTGTCCCGACTGT
    GGAGAAGGGCACTCGTGCCATAGTCCCGTAGCGCTAGAACGCATCAGAAA
    CGAAGCGACAGACGGGACGTTGAAAATCCAGGTTTCCTTGCAAATCGGAA
    TAAAGACGGATGATAGCCATGATTGGACCAAGCTGCGTTATATGGACAAT
    CACATGCCAGCAGACGCAGAGCGGGCCGGGCTATTTGTAAGAACGTCAGC
    ACCGTGCACGATTACTGGAACAATGGGACACTTCATTCTGGCCCGATGTC
    CGAAAGGAGAAACTCTGACGGTGGGGTTCACTGACGGTAGGAAGATCAGT
    CACTCATGTACGCACCCATTTCACCATGACCCTCCTGTGATAGGCCGGGA
    AAAATTCCATTCCCGACCGCAGCACGGTAGGGAACTACCTTGCAGCACGT
    ACGCGCAGAGCACCGCTGCAACTGCCGAGGAGATAGAGGTACACATGCCC
    CCAGACACCCCAGATCGCACATTAATGTCACAACAGTCCGGCAATGTAAA
    GATCACAGTCAATAGTCAGACGGTGCGGTACAAGTGCAATTGTGGTGACT
    CAAGTGAAGGATTAACCACTACAGATAAAGTGATTAATAACTGCAAGGTC
    GATCAATGCCATGCCGCGGTCACCAATCACAAAAAATGGCAGTATAACTC
    CCCTCTGGTCCCGCGTAATGCTGAATTCGGGGACCGGAAAGGAAAAGTTC
    ACATTCCATTTCCTCTGGCAAATGTGACATGCAGGGTGCCTAAAGCAAGA
    AACCCCACCGTGACGTACGGAAAAAACCAAGTCATCATGTTGCTGTATCC
    TGACCACCCAACGCTCCTGTCCTACAGGAATATGGGAGAAGAACCAAACT
    ATCAAGAAGAGTGGGTGACGCATAAGAAGGAGATCAGGTTAACCGTGCCG
    ACTGAGGGGCTCGAGGTCACGTGGGGTAACAATGAGCCGTACAAGTATTG
    GCCGCAGTTATCCACAAACGGTACAGCCCACGGCCACCCGCATGAGATAA
    TTCTGTATTATTATGAGCTGTACCCAACTATGACTGCGGTAGTTTTGTCA
    GTGGCCTCGTTCATACTCCTGTCGATGGTGGGTGTGGCAGTGGGGATGTG
    CATGTGTGCACGACGCAGATGCATTACACCGTACGAACTGACACCAGGAG
    CTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATTAGAACAGCTAAA
    GCGTACGAACACGTAACAGTGATCCCGAACACGGTGGGAGTACCGTATAA
    GACTCTAGTCAACAGACCGGGCTACAGCCCCATGGTATTGGAGATGGAGC
    TTCTGTCTGTCACCTTGGAACCAACGCTATCGCTTGATTACATCACGTGC
    GAGTATAAAACCGTTATCCCGTCTCCGTACGTGAAATGCTGCGGTACAGC
    AGAGTGTAAGGACAAGAGCCTACCTGATTACAGCTGTAAGGTCTTCACCG
    GCGTCTACCCATTCATGTGGGGCGGCGCCTACTGCTTCTGCGACACCGAA
    AATACGCAATTGAGCGAAGCACATGTGGAGAAGTCCGAATCATGCAAAAC
    AGAATTTGCATCAGCATACAGGGCTCATACCGCATCCGCATCAGCTAAGC
    TCCGCGTCCTTTACCAAGGAAATAATATCACTGTGGCTGCTTATGCAAAC
    GGCGACCATGCCGTCACAGTTAAGGACGCTAAATTCATAGTGGGGCCAAT
    GTCTTCAGCCTGGACACCTTTCGACAATAAAATCGTGGTGTACAAAGGCG
    ACGTCTACAACATGGACTACCCGCCCTTCGGCGCAGGAAGACCAGGACAA
    TTTGGCGACATCCAAAGTCGCACGCCTGAGAGCGAAGACGTCTATGCTAA
    TACACAACTGGTACTGCAGAGACCGTCCGCGGGTACGGTGCACGTGCCGT
    ACTCTCAGGCACCATCTGGCTTCAAGTATTGGCTAAAAGAACGAGGGGCG
    TCGCTGCAGCACACAGCACCATTTGGCTGTCAAATAGCAACAAACCCGGT
    AAGAGCGATGAACTGCGCCGTAGGGAACATGCCTATCTCCATCGACATAC
    CGGACGCGGCCTTTACCAGGGTCGTCGACGCGCCATCTTTAACGGACATG
    TCGTGTGAGGTATCAGCCTGCACCCATTCCTCAGACTTTGGGGGCGTAGC
    CATCATTAAATATGCAGCCAGTAAGAAAGGCAAGTGTGCAGTGCACTCGA
    TGACTAACGCCGTCACTATTCGGGAAGCTGAAATAGAAGTAGAAGGGAAC
    TCTCAGTTGCAAATCTCTTTTTCGACGGCCCTAGCCAGCGCCGAATTTCG
    CGTACAAGTCTGTTCTACACAAGTACACTGTGCAGCCGAGTGCCATCCAC
    CGAAAGACCATATAGTCAATTACCCGGCGTCACACACCACCCTCGGGGTC
    CAAGACATTTCCGCTACGGCGATGTCATGGGTGCAGAAGATCACGGGAGG
    TGTGGGACTGGTTGTCGCTGTTGCAGCACTGATCCTAATCGTGGTGCTAT
    GCGTGTCGTTTAGCAGGCACTGATAATAGGCTGGAGCCTCGGTGGCCATG
    CTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCC
    GTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    Chik-Strain TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 11
    37997-E2-E1 ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGCCATA
    (CHIKV E1- TCTAGCTCATTGTCCTGACTGCGGAGAAGGGCATTCGTGCCACAGCCCTA
    E2 Antigen- TCGCATTGGAGCGCATCAGAAATGAAGCAACGGACGGAACGCTGAAAATC
    Strain CAGGTCTCTTTGCAGATCGGGATAAAGACAGATGACAGCCACGATTGGAC
    37997) : CAAGCTGCGCTATATGGATAGCCATACGCCAGCGGACGCGGAGCGAGCCG
    GATTGCTTGTAAGGACTTCAGCACCGTGCACGATCACCGGGACCATGGGA
    CACTTTATTCTCGCCCGATGCCCGAAAGGAGAGACGCTGACAGTGGGATT
    TACGGACAGCAGAAAGATCAGCCACACATGCACACACCCGTTCCATCATG
    AACCACCTGTGATAGGTAGGGAGAGGTTCCACTCTCGACCACAACATGGT
    AAAGAGTTACCTTGCAGCACGTACGTGCAGAGCACCGCTGCCACTGCTGA
    GGAGATAGAGGTGCATATGCCCCCAGATACTCCTGACCGCACGCTGATGA
    CGCAGCAGTCTGGCAACGTGAAGATCACAGTTAATGGGCAGACGGTGCGG
    TACAAGTGCAACTGCGGTGGCTCAAACGAGGGACTGACAACCACAGACAA
    AGTGATCAATAACTGCAAAATTGATCAGTGCCATGCTGCAGTCACTAATC
    ACAAGAATTGGCAATACAACTCCCCTTTAGTCCCGCGCAACGCTGAACTC
    GGGGACCGTAAAGGAAAGATCCACATCCCATTCCCATTGGCAAACGTGAC
    TTGCAGAGTGCCAAAAGCAAGAAACCCTACAGTAACTTACGGAAAAAACC
    AAGTCACCATGCTGCTGTATCCTGACCATCCGACACTCTTGTCTTACCGT
    AACATGGGACAGGAACCAAATTACCACGAGGAGTGGGTGACACACAAGAA
    GGAGGTTACCTTGACCGTGCCTACTGAGGGTCTGGAGGTCACTTGGGGCA
    ACAACGAACCATACAAGTACTGGCCGCAGATGTCTACGAACGGTACTGCT
    CATGGTCACCCACATGAGATAATCTTGTACTATTATGAGCTGTACCCCAC
    TATGACTGTAGTCATTGTGTCGGTGGCCTCGTTCGTGCTTCTGTCGATGG
    TGGGCACAGCAGTGGGAATGTGTGTGTGCGCACGGCGCAGATGCATTACA
    CCATATGAATTAACACCAGGAGCCACTGTTCCCTTCCTGCTCAGCCTGCT
    ATGCTGCCTATGGAACGAACAGCAGCCCCTGTTCTGGTTGCAGGCTCTTA
    TCCCGCTGGCCGCCTTGATCGTCCTGTGCAACTGTCTGAAACTCTTGCCA
    TGCTGCTGTAAGACCCTGGCTTTTTTAGCCGTAATGAGCATCGGTGCCCA
    CACTGTGAGCGCGTACGAACACGTAACAGTGATCCCGAACACGGTGGGAG
    TACCGTATAAGACTCTTGTCAACAGACCGGGTTACAGCCCCATGGTGTTG
    GAGATGGAGCTACAATCAGTCACCTTGGAACCAACACTGTCACTTGACTA
    CATCACGTGCGAGTACAAAACTGTCATCCCCTCCCCGTACGTGAAGTGCT
    GTGGTACAGCAGAGTGCAAGGACAAGAGCCTACCAGACTACAGCTGCAAG
    GTCTTTACTGGAGTCTACCCATTTATGTGGGGCGGCGCCTACTGCTTTTG
    CGACGCCGAAAATACGCAATTGAGCGAGGCACATGTAGAGAAATCTGAAT
    CTTGCAAAACAGAGTTTGCATCGGCCTACAGAGCCCACACCGCATCGGCG
    TCGGCGAAGCTCCGCGTCCTTTACCAAGGAAACAACATTACCGTAGCTGC
    CTACGCTAACGGTGACCATGCCGTCACAGTAAAGGACGCCAAGTTTGTCG
    TGGGCCCAATGTCCTCCGCCTGGACACCTTTTGACAACAAAATCGTGGTG
    TACAAAGGCGACGTCTACAACATGGACTACCCACCTTTTGGCGCAGGAAG
    ACCAGGACAATTTGGTGACATTCAAAGTCGTACACCGGAAAGTAAAGACG
    TTTATGCCAACACTCAGTTGGTACTACAGAGGCCAGCAGCAGGCACGGTA
    CATGTACCATACTCTCAGGCACCATCTGGCTTCAAGTATTGGCTGAAGGA
    ACGAGGAGCATCGCTACAGCACACGGCACCGTTCGGTTGCCAGATTGCGA
    CAAACCCGGTAAGAGCTGTAAATTGCGCTGTGGGGAACATACCAATTTCC
    ATCGACATACCGGATGCGGCCTTTACTAGGGTTGTCGATGCACCCTCTGT
    AACGGACATGTCATGCGAAGTACCAGCCTGCACTCACTCCTCCGACTTTG
    GGGGCGTCGCCATCATCAAATACACAGCTAGCAAGAAAGGTAAATGTGCA
    GTACATTCGATGACCAACGCCGTTACCATTCGAGAAGCCGACGTAGAAGT
    AGAGGGGAACTCCCAGCTGCAAATATCCTTCTCAACAGCCCTGGCAAGCG
    CCGAGTTTCGCGTGCAAGTGTGCTCCACACAAGTACACTGCGCAGCCGCA
    TGCCACCCTCCAAAGGACCACATAGTCAATTACCCAGCATCACACACCAC
    CCTTGGGGTCCAGGATATATCCACAACGGCAATGTCTTGGGTGCAGAAGA
    TTACGGGAGGAGTAGGATTAATTGTTGCTGTTGCTGCCTTAATTTTAATT
    GTGGTGCTATGCGTGTCGTTTAGCAGGCACTAATGATAATAGGCTGGAGC
    CTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCC
    CCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCG
    GC
  • Example 8: Exemplary Nucleic Acids Encoding CHIKV C-E3-E2-6K-E1 RNA Polynucleotides for Use in a RNA Vaccine
  • The following sequence is an exemplary sequence that can be used to encode an CHIKV, DENV and/or ZIKV RNA polynucleotide C-E3-E2-6K-E1 for use in a RNA vaccine:
  • TABLE 4
    CHIKV RNA polynucleotide C-E3-E2-6K-E1
    SEQ ID
    Name Sequence NO
    Chik.C-E3- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 12
    E2-6K- ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAGTT
    E1_HS3UPCRf TATCCCTACGCAGACGTTCTATAATCGGAGGTACCAGCCCAGGCCTTGGG
    ree (C-E3- CCCCCCGCCCTACAATCCAAGTGATAAGACCACGTCCCAGGCCGCAGAGA
    E2-6K-E1 CAAGCCGGCCAATTGGCGCAACTCATCAGCGCAGTTAACAAGTTGACCAT
    Antigen) GCGAGCGGTTCCTCAGCAGAAGCCGAGGCGGAACCGGAAGAATAAGAAAC
    AACGCCAAAAGAAACAGGCGCCGCAGAACGACCCTAAACAGAAGAAACAA
    CCTCCCCAGAAAAAGCCAGCTCAGAAGAAGAAGAAGCCTGGACGCCGTGA
    AAGAATGTGCATGAAAATCGAAAATGATTGCATCTTTGAGGTGAAGCACG
    AGGGCAAAGTGATGGGGTACGCATGCCTGGTGGGCGATAAGGTCATGAAG
    CCAGCACATGTGAAGGGGACAATCGATAATGCTGATCTGGCCAAGCTAGC
    TTTTAAACGTAGCTCCAAATACGATCTTGAGTGTGCCCAGATACCTGTGC
    ACATGAAATCTGATGCAAGCAAGTTCACACACGAGAAGCCTGAGGGCTAT
    TATAACTGGCATCATGGTGCGGTTCAGTACTCCGGCGGCCGATTTACCAT
    TCCTACAGGGGCAGGAAAGCCGGGCGATTCGGGGAGACCCATTTTCGACA
    ACAAAGGCCGCGTGGTAGCTATCGTGCTCGGTGGGGCTAATGAGGGTGCA
    CGTACTGCACTTAGCGTGGTTACCTGGAATAAGGACATTGTCACAAAGAT
    TACACCGGAGGGAGCAGAGGAATGGAGCCTGGCACTGCCCGTTCTGTGCC
    TGCTGGCCAACACCACTTTCCCATGTAGTCAACCCCCTTGCACTCCCTGC
    TGCTATGAGAAAGAGCCTGAGAGCACGTTACGTATGCTGGAAGATAATGT
    CATGAGGCCCGGGTACTATCAACTGCTCAAGGCTAGTCTGACATGCTCGC
    CCCACAGGCAGCGCAGGTCCACGAAAGATAACTTCAACGTTTACAAGGCT
    ACTAGGCCTTATTTGGCCCACTGTCCCGATTGCGGAGAGGGACATTCTTG
    TCATAGTCCTATTGCCTTGGAGCGAATCCGCAACGAGGCCACTGATGGAA
    CCCTTAAGATTCAAGTATCTTTGCAGATTGGCATTAAGACAGATGATTCC
    CATGACTGGACAAAGCTTCGGTACATGGACTCACACACGCCTGCAGATGC
    TGAAAGGGCAGGGCTCTTGGTCAGGACCTCGGCCCCTTGTACAATTACCG
    GGACCATGGGCCACTTCATCCTTGCACGCTGCCCTAAGGGGGAGACGCTG
    ACGGTGGGCTTTACTGACTCGCGTAAGATCTCACACACATGTACACACCC
    TTTCCACCACGAACCTCCAGTCATAGGGAGAGAGAGATTTCACTCTCGCC
    CACAGCATGGCAAAGAGCTGCCATGCTCCACATATGTCCAGAGCACTGCT
    GCTACCGCTGAAGAAATTGAGGTTCACATGCCACCCGATACACCAGACCG
    TACTCTGATGACCCAACAGAGCGGCAACGTGAAGATTACCGTAAATGGAC
    AGACCGTGAGATATAAGTGCAACTGTGGTGGCTCCAATGAGGGCTTAACA
    ACAACGGATAAGGTGATTAACAATTGCAAAATAGATCAGTGCCATGCCGC
    AGTGACCAATCACAAGAATTGGCAATACAACTCACCCCTAGTGCCGAGGA
    ACGCAGAACTAGGCGACAGGAAAGGGAAAATCCATATACCCTTCCCCCTA
    GCAAATGTGACCTGCCGAGTGCCCAAGGCCAGAAACCCCACGGTTACTTA
    CGGCAAGAACCAGGTGACGATGCTTTTGTACCCAGACCATCCCACCTTGC
    TCTCTTATAGAAACATGGGACAGGAGCCTAACTATCATGAGGAGTGGGTG
    ACACACAAGAAAGAAGTCACCCTTACCGTGCCTACCGAAGGGCTTGAAGT
    CACCTGGGGCAACAACGAGCCTTACAAGTATTGGCCACAGATGTCCACAA
    ACGGAACAGCCCACGGCCACCCGCACGAGATCATACTGTATTACTATGAG
    CTTTATCCCACAATGACTGTCGTAATTGTGAGCGTTGCCAGCTTCGTGTT
    GCTTTCAATGGTTGGCACTGCCGTGGGGATGTGCGTGTGTGCTAGGCGCC
    GCTGTATAACTCCTTATGAACTAACTCCAGGCGCCACCGTTCCTTTCCTG
    CTCTCACTACTGTGTTGTGTGCGCACAACAAAGGCTGCCACCTACTACGA
    AGCCGCCGCCTACTTATGGAATGAACAGCAGCCTCTCTTTTGGTTACAGG
    CGCTGATTCCTCTTGCTGCCCTGATCGTGCTATGCAACTGCCTCAAGCTG
    CTGCCCTGTTGTTGCAAGACCCTAGCTTTTCTCGCCGTGATGAGCATCGG
    GGCACATACAGTGTCCGCCTATGAGCACGTCACCGTTATCCCGAACACCG
    TCGGTGTGCCATATAAGACGTTAGTCAATCGACCCGGCTACTCTCCAATG
    GTGCTGGAAATGGAACTCCAGAGTGTGACACTGGAGCCAACCTTATCCCT
    CGATTATATTACCTGCGAATACAAGACCGTCATCCCTTCACCCTATGTCA
    AGTGCTGTGGGACCGCTGAATGCAAAGACAAGAGCTTGCCTGATTACAGT
    TGCAAGGTCTTCACAGGTGTGTACCCCTTCATGTGGGGGGGAGCTTATTG
    CTTTTGTGATGCTGAGAACACCCAACTGAGCGAGGCTCACGTCGAGAAAT
    CTGAGTCTTGCAAGACCGAGTTTGCCTCAGCTTACAGGGCCCACACGGCC
    AGCGCATCCGCCAAATTGAGGGTACTCTACCAGGGTAATAATATCACCGT
    TGCCGCATATGCAAACGGCGATCACGCCGTGACTGTCAAGGATGCCAAGT
    TCGTTGTGGGCCCCATGTCTAGCGCTTGGACACCGTTCGATAATAAGATC
    GTCGTGTACAAAGGGGACGTGTATAATATGGACTACCCACCTTTCGGGGC
    CGGCCGACCGGGACAGTTCGGGGATATTCAGAGCCGCACACCCGAATCTA
    AAGATGTTTACGCCAATACTCAGCTCGTCCTGCAGAGGCCCGCCGCTGGT
    ACAGTTCACGTTCCTTACTCACAGGCACCCTCTGGGTTTAAGTATTGGCT
    GAAAGAACGAGGTGCCAGCTTGCAGCATACAGCGCCTTTCGGATGCCAGA
    TTGCCACTAACCCCGTACGGGCTGTCAACTGCGCGGTCGGCAATATTCCC
    ATTAGCATTGATATCCCGGACGCAGCTTTCACCAGGGTTGTGGACGCCCC
    GAGCGTCACCGACATGAGTTGTGAGGTGCCAGCCTGCACGCATAGCAGTG
    ATTTCGGCGGCGTCGCCATCATTAAATATACCGCAAGCAAGAAAGGCAAG
    TGCGCCGTCCACTCGATGACTAACGCCGTCACAATTCGGGAAGCCGATGT
    TGAGGTCGAAGGCAACTCCCAGCTGCAGATCAGCTTCTCTACTGCTCTTG
    CAAGCGCCGAGTTTCGAGTCCAGGTCTGCAGTACGCAGGTGCATTGTGCA
    GCTGCCTGCCATCCACCCAAAGATCATATTGTGAATTATCCGGCGTCACA
    TACCACACTGGGGGTCCAGGATATTAGTACAACGGCGATGTCCTGGGTGC
    AGAAAATTACGGGAGGAGTGGGCTTAATTGTTGCCGTGGCGGCCCTGATC
    CTGATCGTTGTGCTGTGTGTTAGCTTCTCTAGGCATGACTATAAAGATGA
    CGATGACAAATGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCC
    CTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGT
    GGTCTTTGAATAAAGTCTGAGTGGGCGGC
    CHIKV C-E3- TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA 13
    E2-6K-E1 ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAGTT
    TATCCCTACGCAGACGTTCTATAATCGGAGGTACCAGCCCAGGCCTTGGG
    CCCCCCGCCCTACAATCCAAGTGATAAGACCACGTCCCAGGCCGCAGAGA
    CAAGCCGGCCAATTGGCGCAACTCATCAGCGCAGTTAACAAGTTGACCAT
    GCGAGCGGTTCCTCAGCAGAAGCCGAGGCGGAACCGGAAGAATAAGAAAC
    AACGCCAAAAGAAACAGGCGCCGCAGAACGACCCTAAACAGAAGAAACAA
    CCTCCCCAGAAAAAGCCAGCTCAGAAGAAGAAGAAGCCTGGACGCCGTGA
    AAGAATGTGCATGAAAATCGAAAATGATTGCATCTTTGAGGTGAAGCACG
    AGGGCAAAGTGATGGGGTACGCATGCCTGGTGGGCGATAAGGTCATGAAG
    CCAGCACATGTGAAGGGGACAATCGATAATGCTGATCTGGCCAAGCTAGC
    TTTTAAACGTAGCTCCAAATACGATCTTGAGTGTGCCCAGATACCTGTGC
    ACATGAAATCTGATGCAAGCAAGTTCACACACGAGAAGCCTGAGGGCTAT
    TATAACTGGCATCATGGTGCGGTTCAGTACTCCGGCGGCCGATTTACCAT
    TCCTACAGGGGCAGGAAAGCCGGGCGATTCGGGGAGACCCATTTTCGACA
    ACAAAGGCCGCGTGGTAGCTATCGTGCTCGGTGGGGCTAATGAGGGTGCA
    CGTACTGCACTTAGCGTGGTTACCTGGAATAAGGACATTGTCACAAAGAT
    TACACCGGAGGGAGCAGAGGAATGGAGCCTGGCACTGCCCGTTCTGTGCC
    TGCTGGCCAACACCACTTTCCCATGTAGTCAACCCCCTTGCACTCCCTGC
    TGCTATGAGAAAGAGCCTGAGAGCACGTTACGTATGCTGGAAGATAATGT
    CATGAGGCCCGGGTACTATCAACTGCTCAAGGCTAGTCTGACATGCTCGC
    CCCACAGGCAGCGCAGGTCCACGAAAGATAACTTCAACGTTTACAAGGCT
    ACTAGGCCTTATTTGGCCCACTGTCCCGATTGCGGAGAGGGACATTCTTG
    TCATAGTCCTATTGCCTTGGAGCGAATCCGCAACGAGGCCACTGATGGAA
    CCCTTAAGATTCAAGTATCTTTGCAGATTGGCATTAAGACAGATGATTCC
    CATGACTGGACAAAGCTTCGGTACATGGACTCACACACGCCTGCAGATGC
    TGAAAGGGCAGGGCTCTTGGTCAGGACCTCGGCCCCTTGTACAATTACCG
    GGACCATGGGCCACTTCATCCTTGCACGCTGCCCTAAGGGGGAGACGCTG
    ACGGTGGGCTTTACTGACTCGCGTAAGATCTCACACACATGTACACACCC
    TTTCCACCACGAACCTCCAGTCATAGGGAGAGAGAGATTTCACTCTCGCC
    CACAGCATGGCAAAGAGCTGCCATGCTCCACATATGTCCAGAGCACTGCT
    GCTACCGCTGAAGAAATTGAGGTTCACATGCCACCCGATACACCAGACCG
    TACTCTGATGACCCAACAGAGCGGCAACGTGAAGATTACCGTAAATGGAC
    AGACCGTGAGATATAAGTGCAACTGTGGTGGCTCCAATGAGGGCTTAACA
    ACAACGGATAAGGTGATTAACAATTGCAAAATAGATCAGTGCCATGCCGC
    AGTGACCAATCACAAGAATTGGCAATACAACTCACCCCTAGTGCCGAGGA
    ACGCAGAACTAGGCGACAGGAAAGGGAAAATCCATATACCCTTCCCCCTA
    GCAAATGTGACCTGCCGAGTGCCCAAGGCCAGAAACCCCACGGTTACTTA
    CGGCAAGAACCAGGTGACGATGCTTTTGTACCCAGACCATCCCACCTTGC
    TCTCTTATAGAAACATGGGACAGGAGCCTAACTATCATGAGGAGTGGGTG
    ACACACAAGAAAGAAGTCACCCTTACCGTGCCTACCGAAGGGCTTGAAGT
    CACCTGGGGCAACAACGAGCCTTACAAGTATTGGCCACAGATGTCCACAA
    ACGGAACAGCCCACGGCCACCCGCACGAGATCATACTGTATTACTATGAG
    CTTTATCCCACAATGACTGTCGTAATTGTGAGCGTTGCCAGCTTCGTGTT
    GCTTTCAATGGTTGGCACTGCCGTGGGGATGTGCGTGTGTGCTAGGCGCC
    GCTGTATAACTCCTTATGAACTAACTCCAGGCGCCACCGTTCCTTTCCTG
    CTCTCACTACTGTGTTGTGTGCGCACAACAAAGGCTGCCACCTACTACGA
    AGCCGCCGCCTACTTATGGAATGAACAGCAGCCTCTCTTTTGGTTACAGG
    CGCTGATTCCTCTTGCTGCCCTGATCGTGCTATGCAACTGCCTCAAGCTG
    CTGCCCTGTTGTTGCAAGACCCTAGCTTTTCTCGCCGTGATGAGCATCGG
    GGCACATACAGTGTCCGCCTATGAGCACGTCACCGTTATCCCGAACACCG
    TCGGTGTGCCATATAAGACGTTAGTCAATCGACCCGGCTACTCTCCAATG
    GTGCTGGAAATGGAACTCCAGAGTGTGACACTGGAGCCAACCTTATCCCT
    CGATTATATTACCTGCGAATACAAGACCGTCATCCCTTCACCCTATGTCA
    AGTGCTGTGGGACCGCTGAATGCAAAGACAAGAGCTTGCCTGATTACAGT
    TGCAAGGTCTTCACAGGTGTGTACCCCTTCATGTGGGGGGGAGCTTATTG
    CTTTTGTGATGCTGAGAACACCCAACTGAGCGAGGCTCACGTCGAGAAAT
    CTGAGTCTTGCAAGACCGAGTTTGCCTCAGCTTACAGGGCCCACACGGCC
    AGCGCATCCGCCAAATTGAGGGTACTCTACCAGGGTAATAATATCACCGT
    TGCCGCATATGCAAACGGCGATCACGCCGTGACTGTCAAGGATGCCAAGT
    TCGTTGTGGGCCCCATGTCTAGCGCTTGGACACCGTTCGATAATAAGATC
    GTCGTGTACAAAGGGGACGTGTATAATATGGACTACCCACCTTTCGGGGC
    CGGCCGACCGGGACAGTTCGGGGATATTCAGAGCCGCACACCCGAATCTA
    AAGATGTTTACGCCAATACTCAGCTCGTCCTGCAGAGGCCCGCCGCTGGT
    ACAGTTCACGTTCCTTACTCACAGGCACCCTCTGGGTTTAAGTATTGGCT
    GAAAGAACGAGGTGCCAGCTTGCAGCATACAGCGCCTTTCGGATGCCAGA
    TTGCCACTAACCCCGTACGGGCTGTCAACTGCGCGGTCGGCAATATTCCC
    ATTAGCATTGATATCCCGGACGCAGCTTTCACCAGGGTTGTGGACGCCCC
    GAGCGTCACCGACATGAGTTGTGAGGTGCCAGCCTGCACGCATAGCAGTG
    ATTTCGGCGGCGTCGCCATCATTAAATATACCGCAAGCAAGAAAGGCAAG
    TGCGCCGTCCACTCGATGACTAACGCCGTCACAATTCGGGAAGCCGATGT
    TGAGGTCGAAGGCAACTCCCAGCTGCAGATCAGCTTCTCTACTGCTCTTG
    CAAGCGCCGAGTTTCGAGTCCAGGTCTGCAGTACGCAGGTGCATTGTGCA
    GCTGCCTGCCATCCACCCAAAGATCATATTGTGAATTATCCGGCGTCACA
    TACCACACTGGGGGTCCAGGATATTAGTACAACGGCGATGTCCTGGGTGC
    AGAAAATTACGGGAGGAGTGGGCTTAATTGTTGCCGTGGCGGCCCTGATC
    CTGATCGTTGTGCTGTGTGTTAGCTTCTCTAGGCATTGATAATAGGCTGG
    AGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCC
    TCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGG
    GCGGC
    CHIKV C-E3- SSFWTLVQKLIRLTIGKERKEEEEIEPPWSLSLRRRSIIGGTSPGLGPPA 14
    E2-6K-E1 LQSKDHVPGRRDKPANWRNSSAQLTSPCERFLSRSRGGTGRIRNNAKRNR
    RRRTTLNRRNNLPRKSQLRRRRSLDAVKECAKSKMIASLRSTRAKWGTHA
    WWAIRSSQHMRGQSIMLIWPSLLNVAPNTILSVPRYLCTNLMQASSHTRS
    LRAIITGIMVRFSTPAADLPFLQGQESRAIRGDPFSTTKAAWLSCSVGLM
    RVHVLHLAWLPGIRTLSQRLHRREQRNGAWHCPFCACWPTPLSHVVNPLA
    LPAAMRKSLRARYVCWKIMSGPGTINCSRLVHARPTGSAGPRKITSTFTR
    LLGLIWPTVPIAERDILVIVLLPWSESATRPLMEPLRFKYLCRLALRQMI
    PMTGQSFGTWTHTRLQMLKGQGSWSGPRPLVQLPGPWATSSLHAALRGRR
    RWALLTRVRSHTHVHTLSTTNLQSGERDFTLAHSMAKSCHAPHMSRALLL
    PLKKLRFTCHPIHQTVLPNRAATRLPMDRPDISATVVAPMRAQQRIRLTI
    AKISAMPQPITRIGNTTHPCRGTQNATGKGKSIYPSPQMPAECPRPETPR
    LLTARTRRCFCTQTIPPCSLIETWDRSLTIMRSGHTRKKSPLPCLPKGLK
    SPGATTSLTSIGHRCPQTEQPTATRTRSYCITMSFIPQLSLALPASCCFQ
    WLALPWGCACVLGAAVLLMNLQAPPFLSCSHYCVVCAQQRLPPTTKPPPT
    YGMNSSLSFGYRRFLLLPSCYATASSCCPVVARPLFSPASGHIQCPPMST
    SPLSRTPSVCHIRRSIDPATLQWCWKWNSRVHWSQPYPSIILPANTRPSS
    LHPMSSAVGPLNAKTRACLITVARSSQVCTPSCGGELIAFVMLRTPNARL
    TSRNLSLARPSLPQLTGPTRPAHPPNGYSTRVIISPLPHMQTAITPLSRM
    PSSLWAPCLALGHRSIIRSSCTKGTCIIWTTHLSGPADRDSSGIFRAAHP
    NLKMFTPILSSSCRGPPLVQFTFLTHRHPLGLSIGKNEVPACSIQRLSDA
    RLPLTPYGLSTARSAIFPLALISRTQLSPGLWTPRASPTVVRCQPARIAV
    ISAASPSLNIPQARKASAPSTRLTPSQFGKPMLRSKATPSCRSASLLLLQ
    APSFESRSAVRRCIVQLPAIHPKIILIIRRHIPHWGSRILVQRRCPGCRK
    LREEWALLPWRPSSLCCVLASLGIDNRLEPRWPCFLPLGPPPSPSSPSCT
    RTPVVFESLSGR
  • FIG. 2 shows a phylogenetic tree of chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins. E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus are shown on the right. CAR: Central African republic; ECSA: East/Central/South Africa
  • Example 9: Protocol to Determine Efficacy of mRNA-Encoded Chikungunya Antigen Candidates Against CHIKV
  • Chikungunya has a polycistronic genome and different antigens, based on the Chikungunya structural protein, are possible. There are membrane-bound and secreted forms of E1 and E2, as well as the full length polyprotein antigen, which retains the protein's native conformation. Additionally, the different CHIKV genotypes can also yield different antigens.
  • The efficacy of Chik candidate vaccines in AG129 mice against challenge with a lethal dose of CHIKV strain 181/25 was investigated. A129 mice, which lack IFN α/β receptor signaling, injected intradermally in the footpad with 104 PFU of CHIKV 181/25 virus have a 100% survival rate post-injection. In contrast, AG129 mice, which lack IFN α/β and
    Figure US20230020362A1-20230119-P00001
    receptor signaling, injected intradermally in the footpad with 104 PFU of CHIKV 181/25 virus do not survive past day 5 post-injection. The tested vaccines included: MC3-LNP formulated mRNA encoded CHIKV-E1, MC3-LNP formulated mRNA encoded CHIKV-E2, and MC3-LNP formulated mRNA encoded CHIKV-E1/E2/E3/C. Fifteen groups of five AG129 mice were vaccinated via intradermal (ID) or intramuscular (IM) injection with either 2 μg or 10 μg of the candidate vaccine. The vaccines were given to AG129 mice as single or two doses (second dose provided 28 days after the first dose). The positive control group was vaccinated via intranasal instillation (20 μL volume) with heat-inactivated CHIKV. Phosphate-buffered saline (PBS) was used as a negative control.
  • On day 56, mice were challenged with 1×104 PFU of CHIKV via ID injection in 50 μL volume and monitored for 10 days for weight loss, morbidity, and mortality. Mice that displayed severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis were euthanized. Notably, mice “vaccinated” with heat-inactivated CHIKV (positive control group) became morbid and were euthanized following the second dose of HI-CHIKV (they were not included in the challenge portion of the study).
  • In addition, individual samples were tested for reactivity in a semi-quantitative ELISA for mouse IgG against either Chikungunya-specific E1 (groups 1-4), Chikungunya-specific E2 (groups 5-8), or Chikungunya-specific E1 and E2 proteins (groups 9-15).
  • The health status is scored as indicated in the following Table 5:
  • TABLE 5
    Health Status
    SCORE INITIALS DESCRIPTION APPEARANCE MOBILITY ATTITUDE
    1 H Healthy Smooth Coat. Bright Eyes. Active, Scurrying, Burrowing Alert
    2 SR Slightly Ruffled Slightly Ruffled coat (usually Active, Scurrying, Burrowing Alert
    only around head and neck)
    3 R Ruffled Ruffled Coat throughout Active, Scurrying, Burrowing Alert
    body. A “wet” appearance.
    4 S Sick Very Ruffled coat. Slightly Walking, but no scurrying. Mildly
    closed, inset eyes. Lethargic
    5 VS Very Sick Very Ruffled Coat. Closed, Slow to no movement. Will Extremely
    (Euthanize) inset eyes. return to upright position Lethargic
    if put on its side.
    6 E Euthanize Very ruffled Coat. Closed, No movement or Completely
    inset eyes. Moribund Uncontrollable, spastic Unaware or in
    requiring humane movements. Will NOT return to Noticeable
    euthanasia. upright position if put on its Distress
    side.
    7 D Deceased
  • Example 10: Efficacy of Chikungunya E1 Antigen mRNA Vaccine Candidate
  • AG129 mice (n=5 per group) were vaccinated with 2 μg or 10 μg of MC-3-LNP formulated mRNA encoding CHIKV E1. The AG129 mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery. On Day 56 following final vaccination all mice were challenged with a lethal dose of CHIKV. The survival curve, percent weight loss, and health status of the mice vaccinated with 2 μg CHIKV E1 mRNA are shown in FIGS. 4A-C. The survival results are tabulated in Table 6 below. The survival curve, percent weight loss, and health status of the mice vaccinated with 10 μg CHIKV E1 mRNA are shown in FIGS. 8A-C. The survival results are tabulated in Table 7 below.
  • TABLE 6
    Survival of mice vaccinated with Chikungunya
    E1 antigen mRNA - 2 μg dose
    E1 E1 E1 E1
    days post IM LNP IM LNP ID LNP ID LNP
    infection Day
    0 Day 0, 28 Day 0 Day 0, 28 Vehicle
    0.000 100.000 100.000 100.000 100.000 100.000
    4.000 80.000 40.000 40.000 60.000
    5.000 0.000 0.000 0.000 0.000 0.000
  • TABLE 7
    Survival of mice vaccinated with Chikungunya
    E1 antigen mRNA - 10 μg dose
    E1 E1 E1 E1
    days post IM LNP IM LNP ID LNP ID LNP
    infection Day
    0 Day 0, 28 Day 0 Day 0, 28 Vehicle
    0.000 100.000 100.000 100.000 100.000 100.000
    4.000 60.000 80.000
    5.000 0.000 80.000 0.000 0.000
    6.000 60.000 80.000
    10.000 60.000 80.000
  • As shown in Table 6, the 2 μg dose of CHIKV E1 mRNA vaccine gave no protection post-CHIKV infection challenge when administered via IM or ID with either a single dose or two doses. Likewise, the single dose of 10 μg CHIKV E1 vaccine provided little to no protection when administered via IM or ID. However, as indicated in Table 7, the 10 μg dose of CHIKV E1 mRNA vaccine provided 60% protection post-CHIKV challenge when administered via IM using two doses and provided 80% protection post-CHIKV challenge when administered via ID using two doses.
  • In all experiments, the negative control mice had a ˜0% survival rate, as did the positive control mice (heat-inactivated CHIKV), which died before CHIKV challenge. Some mice died during the vaccination period.
  • Example 11: Efficacy of Chikungunya E2 Antigen mRNA Vaccine Candidate
  • AG129 mice (n=5 per group) were vaccinated with 2 μg or 10 μg of MC-3-LNP formulated mRNA encoding CHIKV E2. The mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery. On Day 56 following final vaccination all mice were challenged with a lethal dose of CHIKV. The survival curve, percent weight loss, and health status of the mice vaccinated with 2 μg CHIKV E2 mRNA are shown in FIGS. 5A-C. The survival results are tabulated in Table 8 below. The survival curve, percent weight loss, and health status of the mice vaccinated with 10 μg CHIKV E2 mRNA are shown in FIGS. 9A-C. The survival results are tabulated in Table 9 below.
  • TABLE 8
    Survival of mice vaccinated with Chikungunya
    E2 antigen mRNA - 2 μg dose
    E1 E1 E1 E1
    days post IM LNP IM LNP ID LNP ID LNP
    infection Day
    0 Day 0, 28 Day 0 Day 0, 28 Vehicle
    0.000 100.000 100.000 100.000 100.000 100.000
    3.000 60.000
    4.000 20.000 80.000 0.000
    5.000 0.000 0.000 0.000
    6.000 80.000
    10.000 80.000 100.000
  • TABLE 9
    Survival of mice vaccinated with Chikungunya
    E2 antigen mRNA - 10 μg dose
    E2 E2 E2 E2
    days post IM LNP IM LNP ID LNP ID LNP
    infection Day
    0 Day 0, 28 Day 0 Day 0, 28 Vehicle
    0.000 100.000 100.000 100.000 100.000 100.000
    5.000 40.000 0.000 0.000
    6.000 0.000
    10.000 100.000 100.000
  • As shown in Table 8, the 2 μg dose of CHIKV E2 mRNA vaccine gave no protection post-CHIKV infection challenge when administered via IM or ID in a single dose. However, when provided in two doses, the 2 μg dose of CHIKV E2 mRNA vaccine provided 80% protection when administered via IM and 100% protection when administered via ID post-CHIKV challenge. As indicated in Table 9, the 10 μg dose of CHIKV E2 mRNA mouse provided no protection post-CHIKV challenge when administered via IM or ID in a single dose. However, administration of CHIKV E2 mRNA via IM or ID using two doses provided 100% protection post-CHIKV challenge.
  • In all experiments, the negative control mice had a ˜0% survival rate, as did the positive control mice (heat-inactivated CHIKV) which died prior to CHIKV challenge. Some mice died during the vaccination period.
  • Example 12: Efficacy of Chikungunya C-E3-E2-6K-E1 Antigen mRNA Vaccine Candidate
  • AG129 mice (n=5 per group) were vaccinated with 2 μg or 10 μg of MC-3-LNP formulated mRNA encoding CHIKV C-E3-E2-6K-E1 mRNA (SEQ ID NO:3). The AG129 mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery. On Day 56 following final vaccination all mice were challenged with a lethal dose of CHIKV. The survival curve, percent weight loss, and health status of the mice vaccinated with 2 μg CHIKV C-E3-E2-6K-E1 mRNA are shown in FIGS. 6A-C. The survival results are tabulated in Table 10 below. The survival curve, percent weight loss, and health status of the mice vaccinated with 10 μg CHIKV C-E3-E2-6K-E1/E2/E3/C mRNA are shown in FIGS. 10A-C. The survival results are tabulated in Table 11 below.
  • TABLE 10
    Survival of mice vaccinated with Chikungunya
    C-E3-E2-6K-E1 antigen mRNA - 2 μg
    E1/E2/ E1/E2/ E1/E2/ E1/E2/
    E3C E3C E3C E3C
    days post IM LNP IM LNP ID LNP ID LNP
    infection Day
    0 Day 0, 28 Day 0 Day 0, 28 Vehicle
    0.000 100.000 100.000 100.000 100.000 100.000
    5.000 80.000 0.000
    10.000 100.000 100.000 80.000 100.000
  • TABLE 11
    Survival of mice vaccinated with Chikungunya
    C-E3-E2-6K-E1 antigen mRNA - 10 μg
    E1/E2/ E1/E2/ E1/E2/ E1/E2/
    E3C E3C E3C E3C
    days post IM LNP IM LNP ID LNP ID LNP
    infection Day
    0 Day 0, 28 Day 0 Day 0, 28 Vehicle
    0.000 100.000 100.000 100.000 100.000 100.000
    5.000 0.000
    10.000 100.000 100.000 100.000 100.000
  • As shown in Table 10, the 2 μg dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV challenge when administered via IM in a single dose and provided 80% protection post-CHIKV challenge when administered via ID in a single dose. The 2 μg dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV challenge when administered via IM or ID in two doses. As shown in Table 11, the 10 μg dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV infection challenge when administered via IM or ID in either a single dose or in two doses.
  • In all experiments, the negative control mice had a ˜0% survival rate, as did the positive control mice (heat-inactivated CHIKV) which died prior to CHIKV challenge. Some mice died during the vaccination period.
  • Example 13: Summary of Survival Data Using Chikungunya an n mRNA Vaccine Candidates CHIKV E1, CHIKV E2, and CHIKV C-E3-E2-6K-E1
  • Table 12 shows the survival data of the mice vaccinated with the CHIKV mRNA antigens used in the studies reported in Examples 10-12.
  • TABLE 12
    Summary of Day 6 post-injection survival data
    Dose
    10 Dose 2
    ug/mouse ug/mouse
    G# Antigen/route/regime (survival %) (survival %)
    1 Chik-E1-IM- single dose 0 0
    2 Chik-E1-IM- two doses 60 0
    3 Chik-E1-ID- single dose 0 0
    4 Chik-E1-ID- two doses 80 0
    5 Chik-E2-IM- single dose 0 0
    6 Chik-E2-IM- two doses 100 80
    7 Chik-E2-ID- single dose 0 0
    8 Chik-E2-ID- two doses 100 100
    9 Chik-E1-E2-E3-C-6KIM- single dose 100 100
    10 Chik-E1-E2-E3-C-6KIM- two doses 100 100
    11 Chik-E1-E2-E3-C-6KID- single dose 100 80
    12 Chik-E1-E2-E3-C-6KID- two doses 100 100
    13 HI CHIKV (+) 0 0
    14 HI CHIKV (+) 0 0
    15 Control (−) 0 0
  • Example 14: In Vitro Transfection of mRNA-Encoded Chikungunya Virus Envelope Protein
  • The in vitro transfection of mRNA encoding Notch and a PBS control were performed in 150k HeLa cells/well transfected with 1 μg mRNA+2 μL LF2000/well in a 24 well plate. Lysate containing proteins expressed from the CHIKV envelope mRNAs transfected in HeLa cells were collected 16 hours post-transfection and then detected by Western blotting with a V5 tag-HRP antibody. The successful detection of a CHIKV envelope protein is shown in FIG. 3 .
  • Example 15: Detection of Immunity (Mouse IgG) Against Either Chikungunya-Specific E1, Chikungunya-Specific E2, or Chikungunya-Specific E1 and E2 Proteins
  • Serum samples from mice vaccinated with the CHIKV E1, E2, or E1-E2-E3-C vaccine described in Examples 11-13 were tested using a semi-quantitative ELISA for the detection of mouse IgG against either Chikungunya-specific E1, Chikungunya-specific E2, or Chikungunya-specific E1 and E2 proteins.
  • Fifteen groups of five mice were vaccinated via intradermal (ID) or intramuscular (IM) injection with either 2 μg or 10 μg of the candidate vaccine. The vaccines were given to AG129 mice as single or two doses (second dose provided 28 days after the first dose). On day 56, mice were challenged with 1×104 PFU of CHIKV via ID injection in 50 μL volume and monitored for 10 days for weight loss, morbidity, and mortality. Mice were bled on day 7 and day 28 post-vaccination via the peri-orbital sinus (retro-orbital bleed). In addition, mice surviving the CHIKV challenge were bled 10 days post-challenge.
  • The individual samples were tested for reactivity in a semi-quantitative ELISA for mouse IgG against either Chikungunya-specific E1, Chikungunya-specific E2, or Chikungunya-specific E1 and E2 proteins. The results are shown in FIGS. 50-52 .
  • The data depicting the results of the ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg or 2 μg at 28 days post immunization is shown in FIGS. 50-51 . The 10 μg of mRNA encoding CHIKV polyprotein produced significant levels of antibody in both studies. The data depicting a comparison of ELISA titers from the data of FIG. 50 to survival in the data of FIG. 51 left panel is shown in FIG. 52 . As shown in the survival results, the animals vaccinated with either dose (single or double administration) of mRNA encoding CHIKV polyprotein had 100% survival rates.
  • Example 16: Efficacy of Chikungunya Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate
  • AG129 mice (n=5 per group) were vaccinated with either 10 μg, 2 μg or 0.4 μg of MC-3-LNP formulated mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13). The mice were vaccinated on either Day 0 or Days 0 and 28 via IM delivery. In one study, all mice were challenged on day 56 with a lethal dose of CHIKV following final vaccination. In another study, all mice were challenged on day 84 with a lethal dose of CHIKV following final vaccination. The survival curve, percent weight loss, and health status of the mice vaccinated with 10 μg, 2 μg or 0.4 μg mRNA were determined as described previously in Examples 10-12. The survival rates, neutralizing antibodies and binding antibodies were assessed. Neutralizing antibodies were also identified against three different strains of CHIKV.
  • The survival rates of the mice vaccinated with mRNA encoding CHIKV C-E3-E2-6k-E1 is shown in FIG. 53 . The data depicts vaccination at a dose of 10 μg (left panels), 2 μg (middle panels) or 0.4 μg (right panels) at 56 days (top panels) or 112 days (bottom panels) post immunization. These data demonstrate that a single 2 μg dose of the mRNA vaccine afforded 100% protection for at least 112 days (16 weeks.) Following 5 the study out further, the data demonstrated that a single 2 μg dose of the mRNA vaccine afforded 100% protection for at least 140 days (20 weeks.)
  • The neutralizing antibody and binding antibody produced in treated mice is shown in FIGS. 54 and 55 respectively. As can be seen in FIGS. 54 and 55 , the levels of neutralizing Ab were dependent or dose and regimen with the highest titers evident with 10 μg dosed twice (days 0 and 28). Plaque reduction neutralization tests (PRNT50 and PRNT80) were used to quantify the titer of neutralizing antibody for the virus. Antigen binding Ab was determined by ELISA. The corresponding correlation between binding Ab and neutralizing antibodies is shown in the bottom panels of FIG. 55 . Following the study out to 16 weeks showed that the highest E1 titers were achieved when 10 μg mRNA vaccine was dosed twice.
  • The data depicting neutralizing antibodies against three different strains of CHIKV is shown in FIG. 56 . The neutralizing antibodies were tested against three different strains of CHIKV, African-Senegal (left panel), La Reunion (middle panel) and CDC CAR (right panel). FIG. 56 shows that the polyprotein-encoding mRNA vaccine elicited broadly neutralizing antibodies against the three strains tested. Sera were further tested against Chik S27 strain (Chikungunya virus (strain S27-African prototype). The data depicting neutralizing antibodies against CHIKV S27 strain is shown in FIG. 57 . These data collectively show that the polyprotein encoding mRNA vaccine elicited broadly neutralizing antibodies against all four strains tested. The vaccine induced neutralizing antibodies against multiple strains of Chikungunya. The prime and boost with the 10 μg dose produced the most robust neutralizing antibody response followed by the single dose with 10 μg.
  • Example 17: Transfection of mRNA Encoded CHIKV Structural Proteins
  • In vitro transfection of mRNA encoding CHIKV structural proteins and PBS control were performed in 400 k HeLa cells transfected with 1.25 μg mRNA lipoplexed with 5ul LF2000/well in 6 well plate. Protein detection in HeLa cell lysate 16 h post transfection was measured. Lysates which contain proteins expressed from the CHIKV mRNAs transfected in HeLa were collected 16 h post transfection. Proteins were detected by WB with anti Flag or and V5 antibody.
  • FIG. 12 show the results of the assay. mRNA encoded CHIKV structural proteins. Protein production in the HeLa cell lysate 16 h post transfection was detected.
  • Example 18: Exemplary Dengue Sequences
  • The following are nucleic acid (SEQ ID NO: 16, 18, 20, and 22) and amino acid (SEQ ID NO: 15, 17, 19, and 21) sequences for each of DEN-1, DEN-2, DEN-3, and DEN-4.
  • TABLE 13
    DENV polynucleotide sequences and amino acid sequences
    SEQ ID
    Name Sequence NO
    DEN-1 MNNQRKKTGRPSFNMLKRARNRVSTVSQLAKRFSKGLLSGQGPMKLVMAF 15
    (NC_001477. IAFLRFLAIPPTAGILARWGSFKKNGAIKVLRGFKKEISNMLNIMNRRKR
    1) SVTMLLMLLPTALAFHLTTRGGEPHMIVSKQERGKSLLFKTSAGVNMCTL
    IAMDLGELCEDTMTYKCPRITETEPDDVDCWCNATETWVTYGTCSQTGEH
    RRDKRSVALAPHVGLGLE
    TRTETWMSSEGAWKQIQKVETWALRHPGFTVIALFLAHAIGTSITQKGII
    FILLMLVTPSMAMRCVGIGNRDFVEGLSGATWVDVVLEHGSCVTTMAKDK
    PTLDIELLKTEVTNPAVLRKLCIEAKISNTTTDSRCPTQGEATLVEEQDT
    NFVCRRTFVDRGWGNGCGLFGKGSLITCAKFKCVTKLEGKIVQYENLKYS
    VIVTVHTGDQHQVGNETTEHGTTATITPQAPTSEIQLTDYGALTLDCSPR
    TGLDFNEMVLLTMKKKSWLVHKQWFLDLPLPWTSGASTSQETWNRQDLLV
    TFKTAHAKKQEVVVLGSQEGAMHTALTGATEIQTSGTTTIFAGHLKCRLK
    MDKLILKGMSYVMCTGSFKLEKEVAETQHGTVLVQVKYEGTDAPCKIPFS
    SQDEKGVTQNGRLITANPIVTDKEKPVNIEAEPPFGESYIVVGAGEKALK
    LSWFKKGSSIGKMFEATARGARRMAILGDTAWDFGSIGGVFTSVGKLIHQ
    IFGTAYGVLFSGVSWTMKIGIGILLTWLGLNSRSTSLSMTCIAVGMVTLY
    LGVMVQADSGCVINWKGRELKCGSGIFVTNEVHTWTEQYKFQADSPKRLS
    AAIGKAWEEGVCGIRSATRLENIMWKQISNELNHILLENDMKFTVVVGDV
    SGILAQGKKMIRPQPMEHKYSWKSWGKAKIIGADVQNTTFIIDGPNTPEC
    PDNQRAWNIWEVEDYGFGIFTTNIWLKLRDSYTQVCDHRLMSAAIKDSKA
    VHADMGYWIESEKNETWKLARASFIEVKTCIWPKSHTLWSNGVLESEMII
    PKIYGGPISQHNYRPGYFTQTAGPWHLGKLELDFDLCEGTTVVVDEHCGN
    RGPSLRTTTVTGKTIHEWCCRSCTLPPLRFKGEDGCWYGMEIRPVKEKEE
    NLVKSMVSAGSGEVDSFSLGLLCISIMIEEVMRSRWSRKMLMTGTLAVFL
    LLTMGQLTWNDLIRLCIMVGANASDKMGMGTTYLALMATFRMRPMFAVGL
    LFRRLTSREVLLLTVGLSLVASVELPNSLEELGDGLAMGIMMLKLLTDFQ
    SHQLWATLLSLTFVKTTFSLHYAWKTMAMILSIVSLFPLCLSTTSQKTTW
    LPVLLGSLGCKPLTMFLITENKIWGRKSWPLNEGIMAVGIVSILLSSLLK
    NDVPLAGPLIAGGMLIACYVISGSSADLSLEKAAEVSWEEEAEHSGASHN
    ILVEVQDDGTMKIKDEERDDTLTILLKATLLAISGVYPMSIPATLFVWYF
    WQKKKQRSGVLWDTPSPPEVERAVLDDGIYRILQRGLLGRSQVGVGVFQE
    GVFHTMWHVTRGAVLMYQGKRLEPSWASVKKDLISYGGGWRFQGSWNAGE
    EVQVIAVEPGKNPKNVQTAPGTFKTPEGEVGAIALDFKPGTSGSPIVNRE
    GKIVGLYGNGVVTTSGTYVSAIAQAKASQEGPLPEIEDEVFRKRNLTIMD
    LHPGSGKTRRYLPAIVREAIKRKLRTLVLAPTRVVASEMAEALKGMPIRY
    QTTAVKSEHTGKEIVDLMCHATFTMRLLSPVRVPNYNMIIMDEAHFTDPA
    SIAARGYISTRVGMGEAAAIFMTATPPGSVEAFPQSIQDEERDIPERSWN
    SGYDWITDFPGKTVWFVPSIKSGNDIANCLRKNGKRVVQLSRKTFDTEYQ
    KTKNNDWDYVVTTDISEMGANFRADRVIDPRRCLKPVILKDGPERVILAG
    PMPVTVASAAQRRGRIGRNQNKEGDQYIYMGQPLNNDEDHAHWTEAKMLL
    DNINTPEGIIPALFEPEREKSAAIDGEYRLRGEARKTFVELMRRGDLPVW
    LSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRW
    LDARTYSDPLALREFKEFAAGRRSVSGDLILEIGKLPQHLTQRAQNALDN
    LVMLHNSEQGGKAYRHAMEELPDTIETLMLLALIAVLTGGVTLFFLSGRG
    LGKTSIGLLCVIASSALLWMASVEPHWIAASIILEFFLMVLLIPEPDRQR
    TPQDNQLAYVVIGLLFMILTVAANEMGLLETTKKDLGIGHAAAENHHHAA
    MLDVDLHPASAWTLYAVATTIITPMMRHTIENTTANISLTAIANQAAILM
    GLDKGWPISKMDIGVPLLALGCYSQVNPLTLTAAVLMLVAHYAIIGPGLQ
    AKATREAQKRTAAGIMKNPTVDGIVAIDLDPVVYDAKFEKQLGQIMLLIL
    CTSQILLMRTTWALCESITLATGPLTTLWEGSPGKFWNTTIAVSMANIFR
    GSYLAGAGLAFSLMKSLGGGRRGTGAQGETLGEKWKRQLNQLSKSEFNTY
    KRSGIIEVDRSEAKEGLKRGETTKHAVSRGTAKLRWFVERNLVKPEGKVI
    DLGCGRGGWSYYCAGLKKVTEVKGYTKGGPGHEEPIPMATYGWNLVKLYS
    GKDVFFTPPEKCDTLLCDIGESSPNPTIEEGRTLRVLKMVEPWLRGNQFC
    IKILNPYMPSVVETLEQMQRKHGGMLVRNPLSRNSTHEMYWVSCGTGNIV
    SAVNMTSRMLLNRFTMAHRKPTYERDVDLGAGTRHVAVEPEVANLDIIGQ
    RIENIKNEHKSTWHYDEDNPYKTWAYHGSYEVKPSGSASSMVNGVVRLLT
    KPWDVIPMVTQIAMTDTTPFGQQRVFKEKVDTRTPKAKRGTAQIMEVTAR
    WLWGFLSRNKKPRICTREEFTRKVRSNAAIGAVFVDENQWNSAKEAVEDE
    RFWDLVHRERELHKQGKCATCVYNMMGKREKKLGEFGKAKGSRAIWYMWL
    GARFLEFEALGFMNEDHWFSRENSLSGVEGEGLHKLGYILRDISKIPGGN
    MYADDTAGWDTRITEDDLQNEAKITDIMEPEHALLATSIFKLTYQNKVVR
    VQRPAKNGTVMDVISRRDQRGSGQVGTYGLNTFTNMEAQLIRQMESEGIF
    SPSELETPNLAERVLDWLKKHGTERLKRMAISGDDCVVKPIDDRFATALT
    ALNDMGKVRKDIPQWEPSKGWNDWQQVPFCSHHFHQLIMKDGREIVVPCR
    NQDELVGRARVSQGAGWSLRETACLGKSYAQMWQLMYFHRRDLRLAANAI
    CSAVPVDWVPTSRTTWSIHAH
    HQWMTTEDMLSVWNRVWIEENPWMEDKTHVSSWEDVPYLGKREDQWCGSL
    IGLTARATWATNIQVAINQVRRLIGNENYLDFMTSMKRFKNESDPEGALW
    DEN-1 agttgttagtctacgtggaccgacaagaacagtttcgaatcggaagcttg 16
    (NC_001477. cttaacgtagttctaacagttttttattagagagcagatctctgatgaac
    1) aaccaacggaaaaagacgggtcgaccgtctttcaatatgctgaaacgcgc
    gagaaaccgcgtgtcaactgtttcacagttggcgaagagattctcaaaag
    gattgctttcaggccaaggacccatgaaattggtgatggcttttatagca
    ttcctaagatttctagccatacctccaacagcaggaattttggctagatg
    gggctcattcaagaagaatggagcgatcaaagtgttacggggtttcaaga
    aagaaatctcaaacatgttgaacataatgaacaggaggaaaagatctgtg
    accatgctcctcatgctgctgcccacagccctggcgttccatctgaccac
    ccgagggggagagccgcacatgatagttagcaagcaggaaagaggaaaat
    cacttttgtttaagacctctgcaggtgtcaacatgtgcacccttattgca
    atggatttgggagagttatgtgaggacacaatgacctacaaatgcccccg
    gatcactgagacggaaccagatgacgttgactgttggtgcaatgccacgg
    agacatgggtgacctatggaacatgttctcaaactggtgaacaccgacga
    gacaaacgttccgtcgcactggcaccacacgtagggcttggtctagaaac
    aagaaccgaaacgtggatgtcctctgaaggcgcttggaaacaaatacaaa
    aagtggagacctgggctctgagacacccaggattcacggtgatagccctt
    tttctagcacatgccataggaacatccatcacccagaaagggatcatttt
    tattttgctgatgctggtaactccatccatggccatgcggtgcgtgggaa
    taggcaacagagacttcgtggaaggactgtcaggagctacgtgggtggat
    gtggtactggagcatggaagttgcgtcactaccatggcaaaagacaaacc
    aacactggacattgaactcttgaagacggaggtcacaaaccctgccgtcc
    tgcgcaaactgtgcattgaagctaaaatatcaaacaccaccaccgattcg
    agatgtccaacacaaggagaagccacgctggtggaagaacaggacacgaa
    ctttgtgtgtcgacgaacgttcgtggacagaggctggggcaatggttgtg
    ggctattcggaaaaggtagcttaataacgtgtgctaagtttaagtgtgtg
    acaaaactggaaggaaagatagtccaatatgaaaacttaaaatattcagt
    gatagtcaccgtacacactggagaccagcaccaagttggaaatgagacca
    cagaacatggaacaactgcaaccataacacctcaagctcccacgtcggaa
    atacagctgacagactacggagctctaacattggattgttcacctagaac
    agggctagactttaatgagatggtgttgttgacaatgaaaaaaaaatcat
    ggctcgtccacaaacaatggtttctagacttaccactgccttggacctcg
    ggggcttcaacatcccaagagacttggaatagacaagacttgctggtcac
    atttaagacagctcatgcaaaaaagcaggaagtagtcgtactaggatcac
    aagaaggagcaatgcacactgcgttgactggagcgacagaaatccaaacg
    tctggaacgacaacaatttttgcaggacacctgaaatgcagattaaaaat
    ggataaactgattttaaaagggatgtcatatgtaatgtgcacagggtcat
    tcaagttagagaaggaagtggctgagacccagcatggaactgttctagtg
    caggttaaatacgaaggaacagatgcaccatgcaagatccccttctcgtc
    ccaagatgagaagggagtaacccagaatgggagattgataacagccaacc
    ccatagtcactgacaaagaaaaaccagtcaacattgaagcggagccacct
    tttggtgagagctacattgtggtaggagcaggtgaaaaagctttgaaact
    aagctggttcaagaagggaagcagtatagggaaaatgtttgaagcaactg
    cccgtggagcacgaaggatggccatcctgggagacactgcatgggacttc
    ggttctataggaggggtgttcacgtctgtgggaaaactgatacaccagat
    ttttgggactgcgtatggagttttgttcagcggtgtttcttggaccatga
    agataggaatagggattctgctgacatggctaggattaaactcaaggagc
    acgtccctttcaatgacgtgtatcgcagttggcatggtcacactgtacct
    aggagtcatggttcaggcggactcgggatgtgtaatcaactggaaaggca
    gagaactcaaatgtggaagcggcatttttgtcaccaatgaagtccacacc
    tggacagagcaatataaattccaggccgactcccctaagagactatcagc
    ggccattgggaaggcatgggaggagggtgtgtgtggaattcgatcagcca
    ctcgtctcgagaacatcatgtggaagcaaatatcaaatgaattaaaccac
    atcttacttgaaaatgacatgaaatttacagtggtcgtaggagacgttag
    tggaatcttggcccaaggaaagaaaatgattaggccacaacccatggaac
    acaaatactcgtggaaaagctggggaaaagccaaaatcataggagcagat
    gtacagaataccaccttcatcatcgacggcccaaacaccccagaatgccc
    tgataaccaaagagcatggaacatttgggaagttgaagactatggatttg
    gaattttcacgacaaacatatggttgaaattgcgtgactcctacactcaa
    gtgtgtgaccaccggctaatgtcagctgccatcaaggatagcaaagcagt
    ccatgctgacatggggtactggatagaaagtgaaaagaacgagacttgga
    agttggcaagagcctccttcatagaagttaagacatgcatctggccaaaa
    tcccacactctatggagcaatggagtcctggaaagtgagatgataatccc
    aaagatatatggaggaccaatatctcagcacaactacagaccaggatatt
    tcacacaaacagcagggccgtggcacttgggcaagttagaactagatttt
    gatttatgtgaaggtaccactgttgttgtggatgaacattgtggaaatcg
    aggaccatctcttagaaccacaacagtcacaggaaagacaatccatgaat
    ggtgctgtagatcttgcacgttaccccccctacgtttcaaaggagaagac
    gggtgctggtacggcatggaaatcagaccagtcaaggagaaggaagagaa
    cctagttaagtcaatggtctctgcagggtcaggagaagtggacagttttt
    cactaggactgctatgcatatcaataatgatcgaagaggtaatgagatcc
    agatggagcagaaaaatgctgatgactggaacattggctgtgttcctcct
    tctcacaatgggacaattgacatggaatgatctgatcaggctatgtatca
    tggttggagccaacgcttcagacaagatggggatgggaacaacgtaccta
    gctttgatggccactttcagaatgagaccaatgttcgcagtcgggctact
    gtttcgcagattaacatctagagaagttcttcttcttacagttggattga
    gtctggtggcatctgtagaactaccaaattccttagaggagctaggggat
    ggacttgcaatgggcatcatgatgttgaaattactgactgattttcagtc
    acatcagctatgggctaccttgctgtctttaacatttgtcaaaacaactt
    tttcattgcactatgcatggaagacaatggctatgatactgtcaattgta
    tctctcttccctttatgcctgtccacgacttctcaaaaaacaacatggct
    tccggtgttgctgggatctcttggatgcaaaccactaaccatgtttctta
    taacagaaaacaaaatctggggaaggaaaagctggcctctcaatgaagga
    attatggctgttggaatagttagcattcttctaagttcacttctcaagaa
    tgatgtgccactagctggcccactaatagctggaggcatgctaatagcat
    gttatgtcatatctggaagctcggccgatttatcactggagaaagcggct
    gaggtctcctgggaagaagaagcagaacactctggtgcctcacacaacat
    actagtggaggtccaagatgatggaaccatgaagataaaggatgaagaga
    gagatgacacactcaccattctcctcaaagcaactctgctagcaatctca
    ggggtatacccaatgtcaataccggcgaccctctttgtgtggtatttttg
    gcagaaaaagaaacagagatcaggagtgctatgggacacacccagccctc
    cagaagtggaaagagcagtccttgatgatggcatttatagaattctccaa
    agaggattgttgggcaggtctcaagtaggagtaggagtttttcaagaagg
    cgtgttccacacaatgtggcacgtcaccaggggagctgtcctcatgtacc
    aagggaagagactggaaccaagttgggccagtgtcaaaaaagacttgatc
    tcatatggaggaggttggaggtttcaaggatcctggaacgcgggagaaga
    agtgcaggtgattgctgttgaaccggggaagaaccccaaaaatgtacaga
    cagcgccgggtaccttcaagacccctgaaggcgaagttggagccatagct
    ctagactttaaacccggcacatctggatctcctatcgtgaacagagaggg
    aaaaatagtaggtctttatggaaatggagtggtgacaacaagtggtacct
    acgtcagtgccatagctcaagctaaagcatcacaagaagggcctctacca
    gagattgaggacgaggtgtttaggaaaagaaacttaacaataatggacct
    acatccaggatcgggaaaaacaagaagataccttccagccatagtccgtg
    aggccataaaaagaaagctgcgcacgctagtcttagctcccacaagagtt
    gtcgcttctgaaatggcagaggcgctcaagggaatgccaataaggtatca
    gacaacagcagtgaagagtgaacacacgggaaaggagatagttgacctta
    tgtgtcacgccactttcactatgcgtctcctgtctcctgtgagagttccc
    aattataatatgattatcatggatgaagcacattttaccgatccagccag
    catagcagccagagggtatatctcaacccgagtgggtatgggtgaagcag
    ctgcgattttcatgacagccactccccccggatcggtggaggcctttcca
    cagagcaatgcagttatccaagatgaggaaagagacattcctgaaagatc
    atggaactcaggctatgactggatcactgatttcccaggtaaaacagtct
    ggtttgttccaagcatcaaatcaggaaatgacattgccaactgtttaaga
    aagaatgggaaacgggtggtccaattgagcagaaaaacttttgacactga
    gtaccagaaaacaaaaaataacgactgggactatgttgtcacaacagaca
    tatccgaaatgggagcaaacttccgagccgacagggtaatagacccgagg
    cggtgcctgaaaccggtaatactaaaagatggcccagagcgtgtcattct
    agccggaccgatgccagtgactgtggctagcgccgcccagaggagaggaa
    gaattggaaggaaccaaaataaggaaggcgatcagtatatttacatggga
    cagcctctaaacaatgatgaggaccacgcccattggacagaagcaaaaat
    gctccttgacaacataaacacaccagaagggattatcccagccctctttg
    agccggagagagaaaagagtgcagcaatagacggggaatacagactacgg
    ggtgaagcgaggaaaacgttcgtggagctcatgagaagaggagatctacc
    tgtctggctatcctacaaagttgcctcagaaggcttccagtactccgaca
    gaaggtggtgctttgatggggaaaggaacaaccaggtgttggaggagaac
    atggacgtggagatctggacaaaagaaggagaaagaaagaaactacgacc
    ccgctggctggatgccagaacatactctgacccactggctctgcgcgaat
    tcaaagagttcgcagcaggaagaagaagcgtctcaggtgacctaatatta
    gaaatagggaaacttccacaacatttaacgcaaagggcccagaacgcctt
    ggacaatctggttatgttgcacaactctgaacaaggaggaaaagcctata
    gacacgccatggaagaactaccagacaccatagaaacgttaatgctccta
    gctttgatagctgtgctgactggtggagtgacgttgttcttcctatcagg
    aaggggtctaggaaaaacatccattggcctactctgcgtgattgcctcaa
    gtgcactgttatggatggccagtgtggaaccccattggatagcggcctct
    atcatactggagttctttctgatggtgttgcttattccagagccggacag
    acagcgcactccacaagacaaccagctagcatacgtggtgataggtctgt
    tattcatgatattgacagtggcagccaatgagatgggattactggaaacc
    acaaagaaggacctggggattggtcatgcagctgctgaaaaccaccatca
    tgctgcaatgctggacgtagacctacatccagcttcagcctggactctct
    atgcagtggccacaacaattatcactcccatgatgagacacacaattgaa
    aacacaacggcaaatatttccctgacagctattgcaaaccaggcagctat
    attgatgggacttgacaagggatggccaatatcaaagatggacataggag
    ttccacttctcgccttggggtgctattctcaggtgaacccgctgacgctg
    acagcggcggtattgatgctagtggctcattatgccataattggacccgg
    actgcaagcaaaagctactagagaagctcaaaaaaggacagcagccggaa
    taatgaaaaacccaactgtcgacgggatcgttgcaatagatttggaccct
    gtggtttacgatgcaaaatttgaaaaacagctaggccaaataatgttgtt
    gatactttgcacatcacagatcctcctgatgcggaccacatgggccttgt
    gtgaatccatcacactagccactggacctctgactacgctttgggaggga
    tctccaggaaaattctggaacaccacgatagcggtgtccatggcaaacat
    ttttaggggaagttatctagcaggagcaggtctggccttttcattaatga
    aatctctaggaggaggtaggagaggcacgggagcccaaggggaaacactg
    ggagaaaaatggaaaagacagctaaaccaattgagcaagtcagaattcaa
    cacttacaaaaggagtgggattatagaggtggatagatctgaagccaaag
    aggggttaaaaagaggagaaacgactaaacacgcagtgtcgagaggaacg
    gccaaactgaggtggtttgtggagaggaaccttgtgaaaccagaagggaa
    agtcatagacctcggttgtggaagaggtggctggtcatattattgcgctg
    ggctgaagaaagtcacagaagtgaaaggatacacgaaaggaggacctgga
    catgaggaaccaatcccaatggcaacctatggatggaacctagtaaagct
    atactccgggaaagatgtattctttacaccacctgagaaatgtgacaccc
    tcttgtgtgatattggtgagtcctctccgaacccaactatagaagaagga
    agaacgttacgtgttctaaagatggtggaaccatggctcagaggaaacca
    attttgcataaaaattctaaatccctatatgccgagtgtggtagaaactt
    tggagcaaatgcaaagaaaacatggaggaatgctagtgcgaaatccactc
    tcaagaaactccactcatgaaatgtactgggtttcatgtggaacaggaaa
    cattgtgtcagcagtaaacatgacatctagaatgctgctaaatcgattca
    caatggctcacaggaagccaacatatgaaagagacgtggacttaggcgct
    ggaacaagacatgtggcagtagaaccagaggtggccaacctagatatcat
    tggccagaggatagagaatataaaaaatgaacacaaatcaacatggcatt
    atgatgaggacaatccatacaaaacatgggcctatcatggatcatatgag
    gtcaagccatcaggatcagcctcatccatggtcaatggtgtggtgagact
    gctaaccaaaccatgggatgtcattcccatggtcacacaaatagccatga
    ctgacaccacaccctttggacaacagagggtgtttaaagagaaagttgac
    acgcgtacaccaaaagcgaaacgaggcacagcacaaattatggaggtgac
    agccaggtggttatggggttttctctctagaaacaaaaaacccagaatct
    gcacaagagaggagttcacaagaaaagtcaggtcaaacgcagctattgga
    gcagtgttcgttgatgaaaatcaatggaactcagcaaaagaggcagtgga
    agatgaacggttctgggaccttgtgcacagagagagggagcttcataaac
    aaggaaaatgtgccacgtgtgtctacaacatgatgggaaagagagagaaa
    aaattaggagagttcggaaaggcaaaaggaagtcgcgcaatatggtacat
    gtggttgggagcgcgctttttagagtttgaagcccttggtttcatgaatg
    aagatcactggttcagcagagagaattcactcagtggagtggaaggagaa
    ggactccacaaacttggatacatactcagagacatatcaaagattccagg
    gggaaatatgtatgcagatgacacagccggatgggacacaagaataacag
    aggatgatcttcagaatgaggccaaaatcactgacatcatggaacctgaa
    catgccctattggccacgtcaatctttaagctaacctaccaaaacaaggt
    agtaagggtgcagagaccagcgaaaaatggaaccgtgatggatgtcatat
    ccagacgtgaccagagaggaagtggacaggttggaacctatggcttaaac
    accttcaccaacatggaggcccaactaataagacaaatggagtctgaggg
    aatcttttcacccagcgaattggaaaccccaaatctagccgaaagagtcc
    tcgactggttgaaaaaacatggcaccgagaggctgaaaagaatggcaatc
    agtggagatgactgtgtggtgaaaccaatcgatgacagatttgcaacagc
    cttaacagctttgaatgacatgggaaaggtaagaaaagacataccgcaat
    gggaaccttcaaaaggatggaatgattggcaacaagtgcctttctgttca
    caccatttccaccagctgattatgaaggatgggagggagatagtggtgcc
    atgccgcaaccaagatgaacttgtaggtagggccagagtatcacaaggcg
    ccggatggagcttgagagaaactgcatgcctaggcaagtcatatgcacaa
    atgtggcagctgatgtacttccacaggagagacttgagattagcggctaa
    tgctatctgttcagccgttccagttgattgggtcccaaccagccgcacca
    cctggtcgatccatgcccaccatcaatggatgacaacagaagacatgttg
    tcagtgtggaatagggtttggatagaggaaaacccatggatggaggacaa
    gactcatgtgtccagttgggaagacgttccatacctaggaaaaagggaag
    atcaatggtgtggttccctaataggcttaacagcacgagccacctgggcc
    accaacatacaagtggccataaaccaagtgagaaggctcattgggaatga
    gaattatctagacttcatgacatcaatgaagagattcaaaaacgagagtg
    atcccgaaggggcactctggtaagccaactcattcacaaaataaaggaaa
    ataaaaaatcaaacaaggcaagaagtcaggccggattaagccatagcacg
    gtaagagctatgctgcctgtgagccccgtccaaggacgtaaaatgaagtc
    aggccgaaagccacggttcgagcaagccgtgctgcctgtagctccatcgt
    ggggatgtaaaaacccgggaggctgcaaaccatggaagctgtacgcatgg
    ggtagcagactagtggttagaggagacccctcccaagacacaacgcagca
    gcggggcccaacaccaggggaagctgtaccctggtggtaaggactagagg
    ttagaggagaccccccgcacaacaacaaacagcatattgacgctgggaga
    gaccagagatcctgctgtctctacagcatcattccaggcacagaacgcca
    aaaaatggaatggtgctgttgaatcaacaggttct
    DEN-2 MNNQRKKAKNTPFNMLKRERNRVSTVQQLTKRFSLGMLQGRGPLKLFMAL 17
    (NC_001474. VAFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRRRR
    2) SAGMIIMLIPTVMAFHLTTRNGEPHMIVSRQEKGKSLLFKTEDGVNMCTL
    MAMDLGELCEDTITYKCPLLRQNEPEDIDCWCNSTSTWVTYGTCTTMGEH
    RREKRSVALVPHVGMGLETRTETWMSSEGAWKHVQRIETWILRHPGFTMM
    AAILAYTIGTTHFQRALIFILLTAVTPSMTMRCIGMSNRDFVEGVSGGSW
    VDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYCIEAKLTNTTT
    ESRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFR
    CKKNMEGKVVQPENLEYTIVITPHSGEEHAVGNDTGKHGKEIKITPQSSI
    TEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLDLPLPW
    LPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEI
    QMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAETQHGTI
    VIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPVNIEAE
    PPFGDSYIIIGVEPGQLKLNWFKKGSSIGQMFETTMRGAKRMAILGDTAW
    DFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILIGVIITWIGMNS
    RSTSLSVTLVLVGIVTLYLGVMVQADSGCVVSWKNKELKCGSGIFITDNV
    HTWTEQYKFQPESPSKLASAIQKAHEEGICGIRSVTRLENLMWKQITPEL
    NHILSENEVKLTIMTGDIKGIMQAGKRSLRPQPTELKYSWKTWGKAKMLS
    TESHNQTFLIDGPETAECPNTNRAWNSLEVEDYGFGVFTTNIWLKLKEKQ
    DVFCDSKLMSAAIKDNRAVHADMGYWIESALNDTWKIEKASFIEVKNCHW
    PKSHTLWSNGVLESEMIIPKNLAGPVSQHNYRPGYHTQITGPWHLGKLEM
    DFDFCDGTTVVVTEDCGNRGPSLRTTTASGKLITEWCCRSCTLPPLRYRG
    EDGCWYGMEIRPLKEKEENLVNSLVTAGHGQVDNFSLGVLGMALFLEEML
    RTRVGTKHAILLVAVSFVTLITGNMSFRDLGRVMVMVGATMTDDIGMGVT
    YLALLAAFKVRPTFAAGLLLRKLTSKELMMTTIGIVLLSQSTIPETILEL
    TDALALGMMVLKMVRNMEKYQLAVTIMAILCVPILQNAWKVSCTILAVVS
    VSPLLLTSSQQKTDWIPLALTIKGLNPTAIFLTTLSRTSKKRSWPLNEAI
    MAVGMVSILASSLLKNDIPMTGPLVAGGLLTVCYVLTGRSADLELERAAD
    VKWEDQAEISGSSPILSITISEDGSMSIKNEEEEQTLTILIRTGLLVISG
    LFPVSIPITAAAWYLWEVKKQRAGVLWDVPSPPPMGKAELEDGAYRIKQK
    GILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHKGKRIEPSWADVKKDLIS
    YGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNAGTIGAVSL
    DFSPGTSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEI
    EDDIFRKRRLTIMDLHPGAGKTKRYLPAIVREAIKRGLRTLILAPTRVVA
    AEMEEALRGLPIRYQTPAIRAEHTGREIVDLMCHATFTMRLLSPVRVPNY
    NLIIMDEAHFTDPASIAARGYISTRVEMGEAAGIFMTATPPGSRDPFPQS
    NAPIIDEEREIPERSWNSGHEWVTDFKGKTVWFVPSIKAGNDIAACLRKN
    GKKVIQLSRKTFDSEYVKTRTNDWDFVVTTDISEMGANFKAERVIDPRRC
    MKPVILTDGEERVILAGPMPVTHSSAAQRRGRIGRNPKNENDQYIYMGEP
    LENDEDCAHWKEAKMLLDNINTPEGIIPSMFEPEREKVDAIDGEYRLRGE
    ARKTFVDLMRRGDLPVWLAYRVAAEGINYADRRWCFDGVKNNQILEENVE
    VEIWTKEGERKKLKPRWLDARIYSDPLALKEFKEFAAGRKSLTLNLITEM
    GRLPTFMTQKARDALDNLAVLHTAEAGGRAYNHALSELPETLETLLLLTL
    LATVTGGIFLFLMSGRGIGKMTLGMCCIITASILLWYAQIQPHWIAASII
    LEFFLIVLLIPEPEKQRTPQDNQLTYVVIAILTVVAATMANEMGFLEKTK
    KDLGLGSIATQQPESNILDIDLRPASAWTLYAVATTFVTPMLRHSIENSS
    VNVSLTAIANQATVLMGLGKGWPLSKMDIGVPLLAIGCYSQVNPITLTAA
    LFLLVAHYAIIGPGLQAKATREAQKRAAAGIMKNPTVDGITVIDLDPIPY
    DPKFEKQLGQVMLLVLCVTQVLMMRTTWALCEALTLATGPISTLWEGNPG
    RFWNTTIAVSMANIFRGSYLAGAGLLFSIMKNTTNTRRGTGNIGETLGEK
    WKSRLNALGKSEFQIYKKSGIQEVDRTLAKEGIKR
    GETDHHAVSRGSAKLRWFVERNMVTPEGKVVDLGCGRGGWSYYCGGLKNV
    REVKGLTKGGPGHEEPIPMSTYGWNLVRLQSGVDVFFIPPEKCDTLLCDI
    GESSPNPTVEAGRTLRVLNLVENWLNNNTQFCIKVLNPYMPSVIEKMEAL
    QRKYGGALVRNPLSRNSTHEMYWVSNASGNIVSSVNMISRMLINRFTMRY
    KKATYEPDVDLGSGTRNIGIESEIPNLDIIGKRIEKIKQEHETSWHYDQD
    HPYKTWAYHGSYETKQTGSASSMVNGVVRLLTKPWDVVPMVTQMAMTDTT
    PFGQQRVFKEKVDTRTQEPKEGTKKLMKITAEWLWKELGKKKTPRMCTRE
    EFTRKVRSNAALGAIFTDENKWKSAREAVEDSRFWELVDKERNLHLEGKC
    ETCVYNMMGKREKKLGEFGKAKGSRAIWYMWLGARFLEFEALGFLNEDHW
    FSRENSLSGVEGEGLHKLGYILRDVSKKEGGAMYADDTAGWDTRITLEDL
    KNEEMVTNHMEGEHKKLAEAIFKLTYQNKVVRVQRPTPRGTVMDIISRRD
    QRGSGQVGTYGLNTFTNMEAQLIRQMEGEGVFKSIQHLTITEEIAVQNWL
    ARVGRERLSRMAISGDDCVVKPLDDRFASALTALNDMGKIRKDIQQWEPS
    RGWNDWTQVPFCSHHFHELIMKDGRVLVVPCRNQDELIGRARISQGAGWS
    LRETACLGKSYAQMWSLMYFHRRDLRLAANAICSAVPSHWVPTSRTTWSI
    HAKHEWMTTEDMLTVWNRVWIQENPWMEDKTPVESWEEIPYLGKREDQWC
    GSLIGLTSRATWAKNIQAAINQVRSLIGNEEYTDYMPSMKRFRREEEEAG
    VLW
    DEN-2 agttgttagtctacgtggaccgacaaagacagattctttgagggagctaa 18
    (NC_001474. gctcaacgtagttctaacagttttttaattagagagcagatctctgatga
    2) ataaccaacggaaaaaggcgaaaaacacgcctttcaatatgctgaaacgc
    gagagaaaccgcgtgtcgactgtgcaacagctgacaaagagattctcact
    tggaatgctgcagggacgaggaccattaaaactgttcatggccctggtgg
    cgttccttcgtttcctaacaatcccaccaacagcagggatattgaagaga
    tggggaacaattaaaaaatcaaaagctattaatgttttgagagggttcag
    gaaagagattggaaggatgctgaacatcttgaataggagacgcagatctg
    caggcatgatcattatgctgattccaacagtgatggcgttccatttaacc
    acacgtaacggagaaccacacatgatcgtcagcagacaagagaaagggaa
    aagtcttctgtttaaaacagaggatggcgtgaacatgtgtaccctcatgg
    ccatggaccttggtgaattgtgtgaagacacaatcacgtacaagtgtccc
    cttctcaggcagaatgagccagaagacatagactgttggtgcaactctac
    gtccacgtgggtaacttatgggacgtgtaccaccatgggagaacatagaa
    gagaaaaaagatcagtggcactcgttccacatgtgggaatgggactggag
    acacgaactgaaacatggatgtcatcagaaggggcctggaaacatgtcca
    gagaattgaaacttggatcttgagacatccaggcttcaccatgatggcag
    caatcctggcatacaccataggaacgacacatttccaaagagccctgatt
    ttcatcttactgacagctgtcactccttcaatgacaatgcgttgcatagg
    aatgtcaaatagagactttgtggaaggggtttcaggaggaagctgggttg
    acatagtcttagaacatggaagctgtgtgacgacgatggcaaaaaacaaa
    ccaacattggattttgaactgataaaaacagaagccaaacagcctgccac
    cctaaggaagtactgtatagaggcaaagctaaccaacacaacaacagaat
    ctcgctgcccaacacaaggggaacccagcctaaatgaagagcaggacaaa
    aggttcgtctgcaaacactccatggtagacagaggatggggaaatggatg
    tggactatttggaaagggaggcattgtgacctgtgctatgttcagatgca
    aaaagaacatggaaggaaaagttgtgcaaccagaaaacttggaatacacc
    attgtgataacacctcactcaggggaagagcatgcagtcggaaatgacac
    aggaaaacatggcaaggaaatcaaaataacaccacagagttccatcacag
    aagcagaattgacaggttatggcactgtcacaatggagtgctctccaaga
    acgggcctcgacttcaatgagatggtgttgctgcagatggaaaataaagc
    ttggctggtgcacaggcaatggttcctagacctgccgttaccatggttgc
    ccggagcggacacacaagggtcaaattggatacagaaagagacattggtc
    actttcaaaaatccccatgcgaagaaacaggatgttgttgttttaggatc
    ccaagaaggggccatgcacacagcacttacaggggccacagaaatccaaa
    tgtcatcaggaaacttactcttcacaggacatctcaagtgcaggctgaga
    atggacaagctacagctcaaaggaatgtcatactctatgtgcacaggaaa
    gtttaaagttgtgaaggaaatagcagaaacacaacatggaacaatagtta
    tcagagtgcaatatgaaggggacggctctccatgcaagatcccttttgag
    ataatggatttggaaaaaagacatgtcttaggtcgcctgattacagtcaa
    cccaattgtgacagaaaaagatagcccagtcaacatagaagcagaacctc
    cattcggagacagctacatcatcataggagtagagccgggacaactgaag
    ctcaactggtttaagaaaggaagttctatcggccaaatgtttgagacaac
    aatgaggggggcgaagagaatggccattttaggtgacacagcctgggatt
    ttggatccttgggaggagtgtttacatctataggaaaggctctccaccaa
    gtctttggagcaatctatggagctgccttcagtggggtttcatggactat
    gaaaatcctcataggagtcattatcacatggataggaatgaattcacgca
    gcacctcactgtctgtgacactagtattggtgggaattgtgacactgtat
    ttgggagtcatggtgcaggccgatagtggttgcgttgtgagctggaaaaa
    caaagaactgaaatgtggcagtgggattttcatcacagacaacgtgcaca
    catggacagaacaatacaagttccaaccagaatccccttcaaaactagct
    tcagctatccagaaagcccatgaagagggcatttgtggaatccgctcagt
    aacaagactggagaatctgatgtggaaacaaataacaccagaattgaatc
    acattctatcagaaaatgaggtgaagttaactattatgacaggagacatc
    aaaggaatcatgcaggcaggaaaacgatctctgcggcctcagcccactga
    gctgaagtattcatggaaaacatggggcaaagcaaaaatgctctctacag
    agtctcataaccagacctttctcattgatggccccgaaacagcagaatgc
    cccaacacaaatagagcttggaattcgttggaagttgaagactatggctt
    tggagtattcaccaccaatatatggctaaaattgaaagaaaaacaggatg
    tattctgcgactcaaaactcatgtcagcggccataaaagacaacagagcc
    gtccatgccgatatgggttattggatagaaagtgcactcaatgacacatg
    gaagatagagaaagcctctttcattgaagttaaaaactgccactggccaa
    aatcacacaccctctggagcaatggagtgctagaaagtgagatgataatt
    ccaaagaatctcgctggaccagtgtctcaacacaactatagaccaggcta
    ccatacacaaataacaggaccatggcatctaggtaagcttgagatggact
    ttgatttctgtgatggaacaacagtggtagtgactgaggactgcggaaat
    agaggaccctctttgagaacaaccactgcctctggaaaactcataacaga
    atggtgctgccgatcttgcacattaccaccgctaagatacagaggtgagg
    atgggtgctggtacgggatggaaatcagaccattgaaggagaaagaagag
    aatttggtcaactccttggtcacagctggacatgggcaggtcgacaactt
    ttcactaggagtcttgggaatggcattgttcctggaggaaatgcttagga
    cccgagtaggaacgaaacatgcaatactactagttgcagtttcttttgtg
    acattgatcacagggaacatgtcctttagagacctgggaagagtgatggt
    tatggtaggcgccactatgacggatgacataggtatgggcgtgacttatc
    ttgccctactagcagccttcaaagtcagaccaacttttgcagctggacta
    ctcttgagaaagctgacctccaaggaattgatgatgactactataggaat
    tgtactcctctcccagagcaccataccagagaccattcttgagttgactg
    atgcgttagccttaggcatgatggtcctcaaaatggtgagaaatatggaa
    aagtatcaattggcagtgactatcatggctatcttgtgcgtcccaaacgc
    agtgatattacaaaacgcatggaaagtgagttgcacaatattggcagtgg
    tgtccgtttccccactgctcttaacatcctcacagcaaaaaacagattgg
    ataccattagcattgacgatcaaaggtctcaatccaacagctatttttct
    aacaaccctctcaagaaccagcaagaaaaggagctggccattaaatgagg
    ctatcatggcagtcgggatggtgagcattttagccagttctctcctaaaa
    aatgatattcccatgacaggaccattagtggctggagggctcctcactgt
    gtgctacgtgctcactggacgatcggccgatttggaactggagagagcag
    ccgatgtcaaatgggaagaccaggcagagatatcaggaagcagtccaatc
    ctgtcaataacaatatcagaagatggtagcatgtcgataaaaaatgaaga
    ggaagaacaaacactgaccatactcattagaacaggattgctggtgatct
    caggactttttcctgtatcaataccaatcacggcagcagcatggtacctg
    tgggaagtgaagaaacaacgggccggagtattgtgggatgttccttcacc
    cccacccatgggaaaggctgaactggaagatggagcctatagaattaagc
    aaaaagggattcttggatattcccagatcggagccggagtttacaaagaa
    ggaacattccatacaatgtggcatgtcacacgtggcgctgttctaatgca
    taaaggaaagaggattgaaccatcatgggcggacgtcaagaaagacctaa
    tatcatatggaggaggctggaagttagaaggagaatggaaggaaggagaa
    gaagtccaggtattggcactggagcctggaaaaaatccaagagccgtcca
    aacgaaacctggtcttttcaaaaccaacgccggaacaataggtgctgtat
    ctctggacttttctcctggaacgtcaggatctccaattatcgacaaaaaa
    ggaaaagttgtgggtctttatggtaatggtgttgttacaaggagtggagc
    atatgtgagtgctatagcccagactgaaaaaagcattgaagacaacccag
    agatcgaagatgacattttccgaaagagaagactgaccatcatggacctc
    cacccaggagcgggaaagacgaagagataccttccggccatagtcagaga
    agctataaaacggggtttgagaacattaatcttggcccccactagagttg
    tggcagctgaaatggaggaagcccttagaggacttccaataagataccag
    accccagccatcagagctgagcacaccgggcgggagattgtggacctaat
    gtgtcatgccacatttaccatgaggctgctatcaccagttagagtgccaa
    actacaacctgattatcatggacgaagcccatttcacagacccagcaagt
    atagcagctagaggatacatctcaactcgagtggagatgggtgaggcagc
    tgggatttttatgacagccactcccccgggaagcagagacccatttcctc
    agagcaatgcaccaatcatagatgaagaaagagaaatccctgaacgttcg
    tggaattccggacatgaatgggtcacggattttaaagggaagactgtttg
    gttcgttccaagtataaaagcaggaaatgatatagcagcttgcctgagga
    aaaatggaaagaaagtgatacaactcagtaggaagacctttgattctgag
    tatgtcaagactagaaccaatgattgggacttcgtggttacaactgacat
    ttcagaaatgggtgccaatttcaaggctgagagggttatagaccccagac
    gctgcatgaaaccagtcatactaacagatggtgaagagcgggtgattctg
    gcaggacctatgccagtgacccactctagtgcagcacaaagaagagggag
    aataggaagaaatccaaaaaatgagaatgaccagtacatatacatggggg
    aacctctggaaaatgatgaagactgtgcacactggaaagaagctaaaatg
    ctcctagataacatcaacacgccagaaggaatcattcctagcatgttcga
    accagagcgtgaaaaggtggatgccattgatggcgaataccgcttgagag
    gagaagcaaggaaaacctttgtagacttaatgagaagaggagacctacca
    gtctggttggcctacagagtggcagctgaaggcatcaactacgcagacag
    aaggtggtgttttgatggagtcaagaacaaccaaatcctagaagaaaacg
    tggaagttgaaatctggacaaaagaaggggaaaggaagaaattgaaaccc
    agatggttggatgctaggatctattctgacccactggcgctaaaagaatt
    taaggaatttgcagccggaagaaagtctctgaccctgaacctaatcacag
    aaatgggtaggctcccaaccttcatgactcagaaggcaagagacgcactg
    gacaacttagcagtgctgcacacggctgaggcaggtggaagggcgtacaa
    ccatgctctcagtgaactgccggagaccctggagacattgcttttactga
    cacttctggctacagtcacgggagggatctttttattcttgatgagcgga
    aggggcatagggaagatgaccctgggaatgtgctgcataatcacggctag
    catcctcctatggtacgcacaaatacagccacactggatagcagcttcaa
    taatactggagttttttctcatagttttgcttattccagaacctgaaaaa
    cagagaacaccccaagacaaccaactgacctacgttgtcatagccatcct
    cacagtggtggccgcaaccatggcaaacgagatgggtttcctagaaaaaa
    cgaagaaagatctcggattgggaagcattgcaacccagcaacccgagagc
    aacatcctggacatagatctacgtcctgcatcagcatggacgctgtatgc
    cgtggccacaacatttgttacaccaatgttgagacatagcattgaaaatt
    cctcagtgaatgtgtccctaacagctatagccaaccaagccacagtgtta
    atgggtctcgggaaaggatggccattgtcaaagatggacatcggagttcc
    ccttctcgccattggatgctactcacaagtcaaccccataactctcacag
    cagctcttttcttattggtagcacattatgccatcatagggccaggactc
    caagcaaaagcaaccagagaagctcagaaaagagcagcggcgggcatcat
    gaaaaacccaactgtcgatggaataacagtgattgacctagatccaatac
    cttatgatccaaagtttgaaaagcagttgggacaagtaatgctcctagtc
    ctctgcgtgactcaagtattgatgatgaggactacatgggctctgtgtga
    ggctttaaccttagctaccgggcccatctccacattgtgggaaggaaatc
    cagggaggttttggaacactaccattgcggtgtcaatggctaacattttt
    agagggagttacttggccggagctggacttctcttttctattatgaagaa
    cacaaccaacacaagaaggggaactggcaacataggagagacgcttggag
    agaaatggaaaagccgattgaacgcattgggaaaaagtgaattccagatc
    tacaagaaaagtggaatccaggaagtggatagaaccttagcaaaagaagg
    cattaaaagaggagaaacggaccatcacgctgtgtcgcgaggctcagcaa
    aactgagatggttcgttgagagaaacatggtcacaccagaagggaaagta
    gtggacctcggttgtggcagaggaggctggtcatactattgtggaggact
    aaagaatgtaagagaagtcaaaggcctaacaaaaggaggaccaggacacg
    aagaacccatccccatgtcaacatatgggtggaatctagtgcgtcttcaa
    agtggagttgacgttttcttcatcccgccagaaaagtgtgacacattatt
    gtgtgacataggggagtcatcaccaaatcccacagtggaagcaggacgaa
    cactcagagtccttaacttagtagaaaattggttgaacaacaacactcaa
    ttttgcataaaggttctcaacccatatatgccctcagtcatagaaaaaat
    ggaagcactacaaaggaaatatggaggagccttagtgaggaatccactct
    cacgaaactccacacatgagatgtactgggtatccaatgcttccgggaac
    atagtgtcatcagtgaacatgatttcaaggatgttgatcaacagatttac
    aatgagatacaagaaagccacttacgagccggatgttgacctcggaagcg
    gaacccgtaacatcgggattgaaagtgagataccaaacctagatataatt
    gggaaaagaatagaaaaaataaagcaagagcatgaaacatcatggcacta
    tgaccaagaccacccatacaaaacgtgggcataccatggtagctatgaaa
    caaaacagactggatcagcatcatccatggtcaacggagtggtcaggctg
    ctgacaaaaccttgggacgtcgtccccatggtgacacagatggcaatgac
    agacacgactccatttggacaacagcgcgtttttaaagagaaagtggaca
    cgagaacccaagaaccgaaagaaggcacgaagaaactaatgaaaataaca
    gcagagtggctttggaaagaattagggaagaaaaagacacccaggatgtg
    caccagagaagaattcacaagaaaggtgagaagcaatgcagccttggggg
    ccatattcactgatgagaacaagtggaagtcggcacgtgaggctgttgaa
    gatagtaggttttgggagctggttgacaaggaaaggaatctccatcttga
    aggaaagtgtgaaacatgtgtgtacaacatgatgggaaaaagagagaaga
    agctaggggaattcggcaaggcaaaaggcagcagagccatatggtacatg
    tggcttggagcacgcttcttagagtttgaagccctaggattcttaaatga
    agatcactggttctccagagagaactccctgagtggagtggaaggagaag
    ggctgcacaagctaggttacattctaagagacgtgagcaagaaagaggga
    ggagcaatgtatgccgatgacaccgcaggatgggatacaagaatcacact
    agaagacctaaaaaatgaagaaatggtaacaaaccacatggaaggagaac
    acaagaaactagccgaggccattttcaaactaacgtaccaaaacaaggtg
    gtgcgtgtgcaaagaccaacaccaagaggcacagtaatggacatcatatc
    gagaagagaccaaagaggtagtggacaagttggcacctatggactcaata
    ctttcaccaatatggaagcccaactaatcagacagatggagggagaagga
    gtctttaaaagcattcagcacctaacaatcacagaagaaatcgctgtgca
    aaactggttagcaagagtggggcgcgaaaggttatcaagaatggccatca
    gtggagatgattgtgttgtgaaacctttagatgacaggttcgcaagcgct
    ttaacagctctaaatgacatgggaaagattaggaaagacatacaacaatg
    ggaaccttcaagaggatggaatgattggacacaagtgcccttctgttcac
    accatttccatgagttaatcatgaaagacggtcgcgtactcgttgttcca
    tgtagaaaccaagatgaactgattggcagagcccgaatctcccaaggagc
    agggtggtctttgcgggagacggcctgtttggggaagtcttacgcccaaa
    tgtggagcttgatgtacttccacagacgcgacctcaggctggcggcaaat
    gctatttgctcggcagtaccatcacattgggttccaacaagtcgaacaac
    ctggtccatacatgctaaacatgaatggatgacaacggaagacatgctga
    cagtctggaacagggtgtggattcaagaaaacccatggatggaagacaaa
    actccagtggaatcatgggaggaaatcccatacttggggaaaagagaaga
    ccaatggtgcggctcattgattgggttaacaagcagggccacctgggcaa
    agaacatccaagcagcaataaatcaagttagatcccttataggcaatgaa
    gaatacacagattacatgccatccatgaaaagattcagaagagaagagga
    agaagcaggagttctgtggtagaaagcaaaactaacatgaaacaaggcta
    gaagtcaggtcggattaagccatagtacggaaaaaactatgctacctgtg
    agccccgtccaaggacgttaaaagaagtcaggccatcataaatgccatag
    cttgagtaaactatgcagcctgtagctccacctgagaaggtgtaaaaaat
    ccgggaggccacaaaccatggaagctgtacgcatggcgtagtggactagc
    ggttagaggagacccctcccttacaaatcgcagcaacaatgggggcccaa
    ggcgagatgaagctgtagtctcgctggaaggactagaggttagaggagac
    ccccccgaaacaaaaaacagcatattgacgctgggaaagaccagagatcc
    tgctgtctcctcagcatcattccaggcacagaacgccagaaaatggaatg
    gtgctgttgaatcaacaggttct
    DEN-3 MNNQRKKTGKPSINMLKRVRNRVSTGSQLAKRFSKGLLNGQGPMKLVMAF 19
    (NC_001475. IAFLRFLAIPPTAGVLARWGTFKKSGAIKVLKGFKKEISNMLSIINQRKK
    2) TSLCLMMILPAALAFHLTSRDGEPRMIVGKNERGKSLLFKTASGINMCTL
    IAMDLGEMCDDTVTYKCPHITEVEPEDIDCWCNLTSTWVTYGTCNQAGEH
    RRDKRSVALAPHVGMGLDTRTQTWMSAEGAWRQVEKVETWALRHPGFTIL
    ALFLAHYIGTSLTQKVVIFILLMLVTPSMTMRCVGVGNRDFVEGLSGATW
    VDVVLEHGGCVTTMAKNKPTLDIELQKTEATQLATLRKLCIEGKITNITT
    DSRCPTQGEAVLPEEQDQNYVCKHTYVDRGWGNGCGLFGKGSLVTCAKFQ
    CLEPIEGKVVQYENLKYTVIITVHTGDQHQVGNETQGVTAEITPQASTTE
    AILPEYGTLGLECSPRTGLDFNEMILLTMKNKAWMVHRQWFFDLPLPWAS
    GATTETPTWNRKELLVTFKNAHAKKQEVVVLGSQEGAMHTALTGATEIQN
    SGGTSIFAGHLKCRLKMDKLELKGMSYAMCTNTFVLKKEVSETQHGTILI
    KVEYKGEDAPCKIPFSTEDGQGKAHNGRLITANPVVTKKEEPVNIEAEPP
    FGESNIVIGIGDNALKINWYKKGSSIGKMFEATERGARRMAILGDTAWDF
    GSVGGVLNSLGKMVHQIFGSAYTALFSGVSWVMKIGIGVLLTWIGLNSKN
    TSMSFSCIAIGIITLYLGAVVQADMGCVINWKGKELKCGSGIFVTNEVHT
    WTEQYKFQADSPKRLATAIAGAWENGVCGIRSTTRMENLLWKQIANELNY
    ILWENNIKLTVVVGDTLGVLEQGKRTLTPQPMELKYSWKTWGKAKIVTAE
    TQNSSFIIDGPNTPECPSASRAWNVWEVEDYGFGVFTTNIWLKLREVYTQ
    LCDHRLMSAAVKDERAVHADMGYWIESQKNGSWKLEKASLIEVKTCTWPK
    SHTLWTNGVLESDMIIPKSLAGPISQHNYRPGYHTQTAGPWHLGKLELDF
    NYCEGTTVVITESCGTRGPSLRTTTVSGKLIHEWCCRSCTLPPLRYMGED
    GCWYGMEIRPISEKEENMVKSLVSAGSGKVDNFTMGVLCLAILFEEVLRG
    KFGKKHMIAGVFFTFVLLLSGQITWRDMAHTLIMIGSNASDRMGMGVTYL
    ALIATFKIQPFLALGFFLRKLTSRENLLLGVGLAMATTLQLPEDIEQMAN
    GVALGLMALKLITQFETYQLWTALVSLTCSNTIFTLTVAWRTATLILAGV
    SLLPVCQSSSMRKTDWLPMTVAAMGVPPLPLFIFSLKDTLKRRSWPLNEG
    VMAVGLVSILASSLLRNDVPMAGPLVAGGLLIACYVITGTSADLTVEKAP
    DVTWEEEAEQTGVSHNLMITVDDDGTMRIKDDETENILTVLLKTALLIVS
    GIFPYSIPATLLVWHTWQKQTQRSGVLWDVPSPPETQKAELEEGVYRIKQ
    QGIFGKTQVGVGVQKEGVFHTMWHVTRGAVLTHNGKRLEPNWASVKKDLI
    SYGGGWRLSAQWQKGEEVQVIAVEPGKNPKNFQTTPGTFQTTTGEIGAIA
    LDFKPGTSGSPIINREGKVVGLYGNGVVTKNGGYVSGIAQTNAEPDGPTP
    ELEEEMFKKRNLTIMDLHPGSGKTRKYLPAIVREAIKRRLRTLILAPTRV
    VAAEMEEALKGLPIRYQTTATKSEHTGREIVDLMCHATFTMRLLSPVRVP
    NYNLIIMDEAHFTDPASIAARGYISTRVGMGEAAAIFMTATPPGTADAFP
    QSNAPIQDEERDIPERSWNSGNEWITDFAGKTVWFVPSIKAGNDIANCLR
    KNGKKVIQLSRKTFDTEYQKTKLNDWDFVVTTDISEMGANFKADRVIDPR
    RCLKPVILTDGPERVILAGPMPVTAASAAQRRGRVGRNPQKENDQYIFTG
    QPLNNDEDHAHWTEAKMLLDNINTPEGIIPALFEPEREKSAAIDGEYRLK
    GESRKTFVELMRRGDLPVWLAHKVASEGIKYTDRKWCFDGQRNNQILEEN
    MDVEIWTKEGEKKKLRPRWLDARTYSDPLALKEFKDFAAGRKSIALDLVT
    EIGRVPSHLAHRTRNALDNLVMLHTSEDGGRAYRHAVEELPETMETLLLL
    GLMILLTGGAMLFLISGKGIGKTSIGLICVIASSGMLWMAEVPLQWIASA
    IVLEFFMMVLLIPEPEKQRTPQDNQLAYVVIGILTLAATIAANEMGLLET
    TKRDLGMSKEPGVVSPTSYLDVDLHPASAWTLYAVATTVITPMLRHTIEN
    STANVSLAAIANQAVVLMGLDKGWPISKMDLGVPLLALGCYSQVNPLTLT
    AAVLLLITHYAIIGPGLQAKATREAQKRTAAGIMKNPTVDGIMTIDLDSV
    IFDSKFEKQLGQVMLLVLCAVQLLLMRTSWALCEALTLATGPITTLWEGS
    PGKFWNTTIAVSMANIFRGSYLAGAGLAFSIMKSVGTGKRGTGSQGETLG
    EKWKKKLNQLSRKEFDLYKKSGITEVDRTEAKEGLKRGETTHHAVSRGSA
    KLQWFVERNMVVPEGRVIDLGCGRGGWSYYCAGLKKVTEVRGYTKGGPGH
    EEPVPMSTYGWNIVKLMSGKDVFYLPPEKCDTLLCDIGESSPSPTVEESR
    TIRVLKMVEPWLKNNQFCIKVLNPYMPTVIEHLERLQRKHGGMLVRNPLS
    RNSTHEMYWISNGTGNIVSSVNMVSRLLLNRFTMTHRRPTIEKDVDLGAG
    TRHVNAEPETPNMDVIGERIKRIKEEHNSTWHYDDENPYKTWAYHGSYEV
    KATGSASSMINGVVKLLTKPWDVVPMVTQMAMTDTTPFGQQRVFKEKVDT
    RTPRPMPGTRKAMEITAEWLWRTLGRNKRPRLCTREEFTKKVRTNAAMGA
    VFTEENQWDSAKAAVEDEEFWKLVDRERELHKLGKCGSCVYNMMGKREKK
    LGEFGKAKGSRAIWYMWLGARYLEFEALGFLNEDHWFSRENSYSGVEGEG
    LH
    KLGYILRDISKIPGGAMYADDTAGWDTRITEDDLHNEEKIIQQMDPEHRQ
    LANAIFKLTYQNKVVKVQRPTPTGTVMDIISRKDQRGSGQLGTYGLNTFT
    NMEAQLVRQMEGEGVLTKADLENPHLLEKKITQWLETKGVERLKRMAISG
    DDCVVKPIDDRFANALLALNDMGKVRKDIPQWQPSKGWHDWQQVPFCSHH
    FHELIMKDGRKLVVPCRPQDELIGRARISQGAGWSLRETACLGKAYAQMW
    SLMYFHRRDLRLASNAICSAVPVHWVPTSRTTWSIHAHHQWMTTEDMLTV
    WNRVWIEENPWMEDKTPVTTWENVPYLGKREDQWCGSLIGLTSRATWAQN
    IPTAIQQVRSLIGNEEFLDYMPSMKRFRKEEESEGAIW
    DEN-3 agttgttagtctacgtggaccgacaagaacagtttcgactcggaagcttg 20
    (NC_001475. cttaacgtagtgctgacagttttttattagagagcagatctctgatgaac
    2) aaccaacggaagaagacgggaaaaccgtctatcaatatgctgaaacgcgt
    gagaaaccgtgtgtcaactggatcacagttggcgaagagattctcaaaag
    gactgctgaacggccagggaccaatgaaattggttatggcgttcatagct
    ttcctcagatttctagccattccaccaacagcaggagtcttggctagatg
    gggaaccttcaagaagtcgggggccattaaggtcctgaaaggcttcaaga
    aggagatctcaaacatgctgagcataatcaaccaacggaaaaagacatcg
    ctctgtctcatgatgatattgccagcagcacttgctttccacttgacttc
    acgagatggagagccgcgcatgattgtggggaagaatgaaagaggtaaat
    ccctactttttaagacagcctctggaatcaacatgtgcacactcatagcc
    atggatttgggagagatgtgtgatgacacggtcacttacaaatgccccca
    cattaccgaagtggaacctgaagacattgactgctggtgcaaccttacat
    caacatgggtgacttatggaacgtgcaatcaagctggagagcatagacgc
    gacaagagatcagtggcgttagctccccatgtcggcatgggactggacac
    acgcacccaaacctggatgtcggctgaaggagcttggagacaagtcgaga
    aggtagagacatgggcccttaggcacccagggttcaccatactagcccta
    tttctcgcccattacataggcacttccctgacccagaaggtggttatttt
    catattattaatgctggtcaccccatccatgacaatgagatgtgtgggag
    taggaaacagagattttgtggaagggctatcaggagctacgtgggttgac
    gtggtgctcgagcacggggggtgtgtgactaccatggctaagaacaagcc
    cacgctggatatagagcttcagaagaccgaggccacccaactggcgaccc
    taaggaagctatgcattgaggggaaaattaccaacataacaactgactca
    agatgtcctacccaaggggaagcggttttgcctgaggagcaggaccagaa
    ctacgtgtgtaagcatacatacgtagacagaggttgggggaacggttgtg
    gtttgtttggcaaaggaagcttggtaacatgtgcgaaatttcaatgcctg
    gaaccaatagagggaaaagtggtgcaatatgagaacctcaaatacaccgt
    catcattacagtgcacacaggagaccaacaccaggtgggaaatgaaacgc
    aaggagtcacggctgagataacacctcaggcatcaaccactgaagccatc
    ttgcctgaatatggaacccttgggctagaatgctcaccacggacaggttt
    ggatttcaatgaaatgatcttactaacaatgaagaacaaagcatggatgg
    tacatagacaatggttctttgacctacctctaccatgggcatcaggagct
    acaacagaaacaccaacctggaacaggaaggagcttcttgtgacattcaa
    aaacgcacatgcgaaaaaacaagaagtagttgtccttggatcgcaagagg
    gagcaatgcataccgcactgacaggagctacagaaatccaaaactcagga
    ggcacaagcattttcgcggggcacttaaaatgtagacttaagatggacaa
    attggaactcaaggggatgagctatgcaatgtgcacgaatacctttgtgt
    tgaagaaagaagtctcagaaacgcagcacgggacaatactcattaaggtt
    gagtacaaaggggaagatgcaccttgcaagattcccttttccacagagga
    tggacaagggaaagctcataatggcagactgatcacagccaaccctgtgg
    tgactaagaaggaggagcctgtcaatattgaggctgaacctccttttggg
    gaaagcaatatagtaattggaattggagacaacgccttgaaaatcaactg
    gtacaagaaggggagctcgattgggaagatgttcgaggccactgaaaggg
    gtgcaaggcgcatggccatcttgggagacacagcttgggactttggatca
    gtgggtggtgttctgaactcattaggcaaaatggtgcaccaaatatttgg
    aagtgcttatacagccctgttcagtggagtctcttgggtgatgaaaattg
    gaataggtgtcctcttgacttggatagggttgaattcaaaaaacacatcc
    atgtcattttcatgcattgcgataggaatcattacactctatctgggagc
    tgtggtacaagctgacatggggtgtgtcataaactggaagggcaaagaac
    tcaaatgtggaagcggaattttcgtcaccaatgaggtccatacctggaca
    gagcaatacaaattccaagcagactccccaaaaagattggcaacagccat
    tgcaggcgcctgggagaatggagtgtgtggaattaggtcaacaaccagaa
    tggagaatctcttgtggaagcaaatagccaatgaactgaactacatatta
    tgggaaaacaatatcaaattaacggtagttgtgggcgatacacttggggt
    cttagagcaagggaaaagaacactaacaccacaacccatggagctaaaat
    actcatggaaaacgtggggaaaggcaaaaatagtgacagctgaaacacaa
    aattcctctttcataatagacgggccaaacacaccggagtgtccaagtgc
    ctcaagagcatggaatgtgtgggaggtggaagattacgggttcggagtct
    tcacaaccaacatatggctgaaactccgagaggtctacacccaactatgt
    gaccataggctaatgtcggcagctgtcaaggatgagagggccgtgcatgc
    cgacatgggctactggatagaaagccaaaagaatggaagttggaagctag
    aaaaagcatccctcatagaggtaaaaacctgcacatggccaaaatcacac
    actctctggactaatggtgtgctagagagtgacatgatcatcccaaagag
    tctagctggtcctatctcacaacacaactacaggcccgggtaccacaccc
    aaacggcaggaccctggcacttaggaaaattggagctggacttcaactac
    tgtgaaggaacaacagttgtcatcacagaaagctgtgggacaagaggccc
    atcattgagaacaacaacagtgtcagggaagttgatacacgaatggtgtt
    gccgctcgtgcacacttccccccctgcgatacatgggagaagacggctgc
    tggtatggcatggaaatcagacccatcagtgagaaagaagagaacatggt
    aaagtctttagtctcagcgggaagtggaaaggtggacaacttcacaatgg
    gtgtcttgtgtttggcaatcctctttgaagaggtgttgagaggaaaattt
    gggaagaaacacatgattgcaggggttttctttacgtttgtgctccttct
    ctcagggcaaataacatggagagacatggcgcacacactaataatgatcg
    ggtccaacgcctctgacaggatgggaatgggcgtcacctacctagctcta
    attgcaacatttaaaatccagccattcttggctttgggatttttcctaag
    aaagctgacatctagagaaaatttattgttaggagttgggttggccatgg
    caacaacgttacaactgccagaggacattgaacaaatggcaaatggagtc
    gctctggggctcatggctcttaaactgataacacaatttgaaacatacca
    attgtggacggcattagtctccttaacgtgttcaaacacaatttttacgt
    tgactgttgcctggagaacagccactctgattttggccggagtttcgctt
    ttaccagtgtgccagtcttcaagcatgaggaaaacagattggctcccaat
    gacagtggcagctatgggagttccaccccttccactttttatttttagct
    tgaaagacacactcaaaaggagaagctggccactgaatgaaggggtgatg
    gctgttgggcttgtgagcattctggccagttctctccttagaaatgatgt
    gcccatggctggaccattagtggccgggggcttgctgatagcgtgctacg
    tcataactggcacgtcagcggacctcactgtagaaaaagccccagatgta
    acatgggaggaagaggctgagcagacaggagtgtcccacaacttaatgat
    cacagttgatgatgatggaacaatgagaataaaagatgatgagactgaga
    acatcctaacagtgcttttaaaaacagcattactaatagtatcaggcatt
    tttccatactccatacccgcaacattgttggtctggcacacttggcaaaa
    acaaacccaaagatccggcgttttatgggacgtacccagccccccagaga
    cacagaaagcagaactggaagaaggggtttataggatcaaacagcaagga
    atttttgggaaaacccaagtaggggttggagtacagaaagaaggagtctt
    ccacaccatgtggcacgtcacaagaggggcagtgttgacacataatggga
    aaagactggaaccaaactgggctagtgtgaaaaaagatctgatttcatat
    ggaggaggatggagactgagcgcacaatggcaaaagggggaggaggtgca
    ggttattgccgtagagccagggaagaacccaaagaactttcaaaccacgc
    caggcactttccagactactacaggggaaataggagcaattgcactggat
    ttcaagcctggaacttcaggatctcctatcataaatagagagggaaaggt
    agtgggactgtatggcaatggagtggttacaaagaatggtggctatgtca
    gcggaatagcgcaaacaaatgcagaaccagatggaccgacaccagagttg
    gaagaagagatgttcaaaaagcgaaacctgaccataatggatcttcatcc
    tgggtcaggaaagacacggaaataccttccagctattgtcagagaggcaa
    tcaagagacgtttaagaaccttaattttggcaccgacaagggtggttgca
    gctgagatggaagaagcattgaaagggctcccaataaggtaccaaacaac
    agcaacaaaatctgaacacacaggaagagagattgttgatctaatgtgcc
    acgcaacgttcacaatgcgtttgctgtcaccagttagggttccaaattac
    aacttgataataatggatgaggcccatttcacagacccagccagtatagc
    ggctagagggtacatatcaactcgtgttggaatgggagaggcagccgcaa
    tcttcatgacagcaacaccccctggaacagctgatgcctttcctcagagc
    aacgctccaattcaagatgaagaaagggacataccagaacgctcatggaa
    ttcaggcaatgaatggattaccgacttcgctgggaaaacggtgtggtttg
    tccctagcattaaagccggaaatgacatagcaaactgcttgcgaaaaaac
    gggaaaaaagtcattcaacttagtaggaagacttttgacacagaatatca
    gaagactaaactgaatgattgggactttgtggtgacaactgacatttcag
    aaatgggggccaatttcaaagcagatagagtgatcgacccaagaagatgt
    ctcaaaccagtgatcttgacagatggaccagagcgggtgatcctggccgg
    accaatgccagtcaccgcggcgagtgctgcgcaaaggagagggagagttg
    gcaggaacccacaaaaagagaatgaccagtacatattcacgggccagcct
    ctcaacaatgatgaagaccatgctcactggacagaagcaaaaatgctgct
    ggacaacatcaacacaccagaagggattataccagctctctttgaaccag
    aaagggagaagtcagccgccatagacggtgagtatcgcctgaagggtgag
    tccaggaagactttcgtggaactcatgaggaggggtgaccttccagtttg
    gttagcccataaagtagcatcagaaggaatcaaatacacagatagaaaat
    ggtgctttgatgggcaacgcaataatcaaattttagaggagaacatggat
    gtggaaatttggacaaaggaaggagaaaagaaaaaattgagacctaggtg
    gcttgatgcccgcacttattcagatccattggcactcaaggaattcaagg
    actttgcggctggcagaaagtcaatcgcccttgatcttgtgacagaaata
    ggaagagtgccttcacatctagcccacagaacaagaaacgctctggacaa
    tctggtgatgctgcatacgtcagaagatggcggtagggcttacaggcatg
    cggtggaggaactaccagaaacaatggaaacactcctactcttgggacta
    atgatcttgttgacaggtggagcaatgcttttcttgatatcaggtaaagg
    gattggaaagacttcaataggactcatttgtgtaatcgcttccagcggca
    tgttgtggatggccgaagttccactccaatggatcgcgtcggctatagtc
    ctggagttttttatgatggtgttgctcataccagaaccagaaaagcagag
    aaccccccaagacaaccaactcgcatatgtcgtgataggcatacttacat
    tggctgcaacaatagcagccaatgaaatgggactgctggaaaccacaaag
    agagacttaggaatgtctaaggagccaggtgttgtttctccaaccagcta
    tttggatgtggacttgcacccagcatcagcctggacattgtacgccgtgg
    ccactacagtaataacaccaatgttaagacataccatagagaattctaca
    gcaaatgtgtccctggcagctatagccaaccaggcagtggtcctgatggg
    tttggacaaaggatggccaatatcaaaaatggacttaggcgtgccactac
    tggcactgggttgctattcacaagtgaacccactgactctaactgcggca
    gtacttttgctaatcacacattatgctatcataggtccaggattgcaagc
    aaaagccacccgtgaagctcagaaaaggacagctgctggaataatgaaga
    atccaacagtggatgggataatgacaatagacctagattctgtaatattt
    gattcaaaatttgaaaaacaactgggacaggttatgctcctggttttgtg
    cgcagtccaactcttgctaatgagaacatcatgggccttgtgtgaagctt
    taactctagctacaggaccaataacaacactctgggaaggatcacctggt
    aagttctggaacaccacgatagctgtttccatggcgaacatttttagagg
    gagctatttagcaggagctgggcttgctttttctattatgaaatcagttg
    gaacaggaaaaagaggaacaggctcacaaggtgaaactttaggagaaaaa
    tggaaaaagaaattaaatcaattatcccggaaagagtttgacctttacaa
    gaaatctggaatcactgaagtggatagaacagaagccaaagaagggttga
    aaagaggagagacaacacatcatgccgtgtcccgaggtagcgcaaaactt
    caatggtttgtggaaagaaacatggtcgttcccgaaggaagagtcataga
    cttgggctgtggaagaggaggctggtcatattactgtgcaggactgaaaa
    aagtcacagaagtgcgaggatacacaaaaggcggtccaggacacgaagaa
    ccagtacctatgtctacatatggatggaacatagttaagttaatgagcgg
    aaaggatgtgttctatctcccacctgaaaagtgtgataccctgttgtgtg
    acattggagaatcttcaccaagcccaacagtggaagagagcagaactata
    agagttttgaagatggttgaaccatggctaaaaaacaaccagttttgcat
    taaagttttgaacccttacatgccaactgtgattgagcacctagaaagac
    tacaaaggaaacatggaggaatgcttgtgagaaatccactttcacgaaac
    tccacgcacgaaatgtactggatatctaatggcacaggtaacattgtctc
    ttcagtcaacatggtgtctagattgctactgaacaggttcacgatgacac
    acaggagacccaccatagagaaagatgtggatttaggagcaggaactcga
    catgttaatgcggaaccagaaacacccaacatggatgtcattggggaaag
    aataaaaaggatcaaggaggagcataattcaacatggcactatgatgacg
    aaaacccctacaaaacgtgggcttaccatggatcctatgaagtcaaagcc
    acaggctcagcctcctccatgataaatggagtcgtgaaactcctcaccaa
    accatgggatgtggtgcccatggtgacacagatggcaatgacagacacaa
    ctccatttggccagcagagagtctttaaagagaaagtggacaccaggacg
    cccaggcccatgccagggacaagaaaggctatggagatcacagcggagtg
    gctctggagaaccctgggaaggaacaaaagacccagattatgcacaaggg
    aagagtttacaaaaaaggtcagaactaacgcagccatgggcgccgttttc
    acagaggagaaccaatgggacagtgcgaaagctgctgttgaggatgaaga
    attttggaaacttgtggacagagaacgtgaactccacaaattgggcaaat
    gtggaagctgcgtttataacatgatgggcaagagagagaaaaaacttgga
    gagtttggcaaagcaaaaggcagtagagctatatggtacatgtggttggg
    agccaggtaccttgagttcgaagcccttggattcttaaatgaagaccact
    ggttctcgcgtgaaaactcttacagtggagtagaaggagaaggactgcac
    aagctaggctacatattaagggacatttccaagatacccggaggagccat
    gtatgctgatgacacagctggttgggacacaagaataacagaagatgacc
    tgcacaatgaggaaaagatcatacagcaaatggaccctgaacacaggcag
    ttagcgaacgctatattcaagctcacataccaaaacaaagtggtcaaagt
    tcaacgaccgactccaacgggcacggtaatggatattatatctaggaaag
    accaaaggggcagtggacaactgggaacttatggcctgaatacattcacc
    aacatggaagcccagttagtcagacaaatggaaggagaaggtgtgctgac
    aaaggcagacctcgagaaccctcatctgctagagaagaaaatcacacaat
    ggttggaaaccaaaggagtggagaggttaaaaagaatggccattagcggg
    gatgattgcgtggtgaaaccaatcgatgacaggttcgctaatgccctgct
    tgctttgaacgatatgggaaaggttcggaaagacatacctcaatggcagc
    catcaaagggatggcatgattggcaacaggttcctttctgctcccaccac
    tttcatgaattgatcatgaaagatggaagaaagttggtggttccctgcag
    accccaggacgaactaataggaagagcaagaatctctcaaggagcgggat
    ggagccttagagaaactgcatgtctggggaaagcctacgcccaaatgtgg
    agtctcatgtattttcacagaagagatctcagattagcatccaacgccat
    atgttcagcagtaccagtccactgggttcccacaagtagaacgacatggt
    ctattcatgctcaccatcagtggatgactacagaagacatgcttactgtt
    tggaacagggtgtggatagaggaaaatccatggatggaagacaaaactcc
    agttacaacttgggaaaatgttccatatctaggaaagagagaagaccaat
    ggtgtggatcacttattggtctcacttccagagcaacctgggcccagaac
    atacccacagcaattcaacaggtgagaagccttataggcaatgaagagtt
    cctggactacatgccttcaatgaagagattcaggaaggaagaggagtcgg
    agggagccatttggtaaacgtaggaagtggaaaagaggctaactgtcagg
    ccaccttaagccacagtacggaagaagctgtgctgcctgtgagccccgtc
    caaggacgttaaaagaagaagtcaggccccaaagccacggtttgagcaaa
    ccgtgctgcctgtagctccgtcgtggggacgtaaaacctgggaggctgca
    aactgtggaagctgtacgcacggtgtagcagactagcggttagaggagac
    ccctcccatgacacaacgcagcagcggggcccgagcactgagggaagctg
    tacctccttgcaaaggactagaggttagaggagaccccccgcaaataaaa
    acagcatattgacgctgggagagaccagagatcctgctgtctcctcagca
    tcattccaggcacagaacgccagaaaatggaatggtgctgttgaatcaac
    aggttct
    DEN-4 MNQRKKVVRPPFNMLKRERNRVSTPQGLVKRFSTGLFSGKGPLRMVLAFI 21
    (NC_002640. TFLRVLSIPPTAGILKRWGQLKKNKAIKILIGFRKEIGRMLNILNGRKRS
    1) TITLLCLIPTVMAFSLSTRDGEPLMIVAKHERGRPLLFKTTEGINKCTLI
    AMDLGEMCEDTVTYKCPLLVNTEPEDIDCWCNLTSTWVMYGTCTQSGERR
    REKRSVALTPHSGMGLETRAETWMSSEGAWKHAQRVESWILRNPGFALLA
    GFMAYMIGQTGIQRTVFFVLMMLVAPSYGMRCVGVGNRDFVEGVSGGAWV
    DLVLEHGGCVTTMAQGKPTLDFELTKTTAKEVALLRTYCIEASISNITTA
    TRCPTQGEPYLKEEQDQQYICRRDVVDRGWGNGCGLFGKGGVVTCAKFSC
    SGKITGNLVQIENLEYTVVVTVHNGDTHAVGNDTSNHGVTAMITPRSPSV
    EVKLPDYGELTLDCEPRSGIDFNEMILMKMKKKTWLVHKQWFLDLPLPWT
    AGADTSEVHWNYKERMVTFKVPHAKRQDVTVLGSQEGAMHSALAGATEVD
    SGDGNHMFAGHLKCKVRMEKLRIKGMSYTMCSGKFSIDKEMAETQHGTTV
    VKVKYEGAGAPCKVPIEIRDVNKEKVVGRIISSTPLAENTNSVTNIELEP
    PFGDSYIVIGVGNSALTLHWFRKGSSIGKMFESTYRGAKRMAILGETAWD
    FGSVGGLFTSLGKAVHQVFGSVYTTMFGGVSWMIRILIGFLVLWIGTNSR
    NTSMAMTCIAVGGITLFLGFTVQADMGCVASWSGKELKCGSGIFVVDNVH
    TWTEQYKFQPESPARLASAILNAHKDGVCGIRSTTRLENVMWKQITNELN
    YVLWEGGHDLTVVAGDVKGVLTKGKRALTPPVSDLKYSWKTWGKAKIFTP
    EARNSTFLIDGPDTSECPNERRAWNSLEVEDYGFGMFTTNIWMKFREGSS
    EVCDHRLMSAAIKDQKAVHADMGYWIESSKNQTWQIEKASLIEVKTCLWP
    KTHTLWSNGVLESQMLIPKSYAGPFSQHNYRQGYATQTVGPWHLGKLEID
    FGECPGTTVTIQEDCDHRGPSLRTTTASGKLVTQWCCRSCTMPPLRFLGE
    DGCWYGMEIRPLSEKEENMVKSQVTAGQGTSETFSMGLLCLTLFVEECLR
    RRVTRKHMILVVVITLCAIILGGLTWMDLLRALIMLGDTMSGRIGGQIHL
    AIMAVFKMSPGYVLGVFLRKLTSRETALMVIGMAMTTVLSIPHDLMELID
    GISLGLILLKIVTQFDNTQVGTLALSLTFIRSTMPLVMAWRTIMAVLFVV
    TLIPLCRTSCLQKQSHWVEITALILGAQALPVYLMTLMKGASRRSWPLNE
    GIMAVGLVSLLGSALLKNDVPLAGPMVAGGLLLAAYVMSGSSADLSLEKA
    ANVQWDEMADITGSSPIVEVKQDEDGSFSIRDVEETNMITLLVKLALITV
    SGLYPLAIPVTMTLWYMWQVKTQRSGALWDVPSPAATKKAALSEGVYRIM
    QRGLFGKTQVGVGIHMEGVFHTMWHVTRGSVICHETGRLEPSWADVRNDM
    ISYGGGWRLGDKWDKEEDVQVLAIEPGKNPKHVQTKPGLFKTLTGEIGAV
    TLDFKPGTSGSPIINRKGKVIGLYGNGVVTKSGDYVSAITQAERIGEPDY
    EVDEDIFRKKRLTIMDLHPGAGKTKRILPSIVREALKRRLRTL1LAPTRV
    VAAEMEEALRGLPIRYQTPAVKSEHTGREIVDLMCHATFTTRLLSSTRVP
    NYNLIVMDEAHFTDPSSVAARGYISTRVEMGEAAAIFMTATPPGATDPFP
    QSNSPIEDIEREIPERSWNTGFDWITDYQGKTVWFVPSIKAGNDIANCLR
    KSGKKVIQLSRKTFDTEYPKTKLTDWDFVVTTDISEMGANFRAGRVIDPR
    RCLKPVILPDGPERVILAGPIPVTPASAAQRRGRIGRNPAQEDDQYVFSG
    DPLKNDEDHAHWTEAKMLLDNIYTPEGIIPTLFGPEREKTQAIDGEFRLR
    GEQRKTFVELMRRGDLPVWLSYKVASAGISYEDREWCFTGERNNQILEEN
    MEVEIWTREGEKKKLRPRWLDARVYADPMALKDFKEFASGRKSITLDILT
    EIASLPTYLSSRAKLALDNIVMLHTTERGGRAYQHALNELPESLETLMLV
    ALLGAMTAGIFLFFMQGKGIGKLSMGLITIAVASGLLWVAEIQPQWIAAS
    IILEFFLMVLLIPEPEKQRTPQDNQLIYVILTILTIIGLIAANEMGLIEK
    TKTDFGFYQVKTETTILDVDLRPASAWTLYAVATTILTPMLRHTIENTSA
    NLSLAAIANQAAVLMGLGKGWPLHRMDLGVPLLAMGCYSQVNPTTLTASL
    VMLLVHYAIIGPGLQAKATREAQKRTAAGIMKNPTVDGITVIDLEPISYD
    PKFEKQLGQVMLLVLCAGQLLLMRTTWAFCEVLTLATGPILTLWEGNPGR
    FWNTTIAVSTANIFRGSYLAGAGLAFSLIKNAQTPRRGTGTTGETLGEKW
    KRQLNSLDRKEFEEYKRSGILEVDRTEAKSALKDGSKIKHAVSRGSSKIR
    WIVERGMVKPKGKVVDLGCGRGGWSYYMATLKNVTEVKGYTKGGPGHEEP
    IPMATYGWNLVKLHSGVDVFYKPTEQVDTLLCDIGESSSNPTIEEGRTLR
    VLKMVEPWLSSKPEFCIKVLNPYMPTVIEELEKLQRKHGGNLVRCPLSRN
    STHEMYWVSGASGNIVSSVNTTSKMLLNRFTTRHRKPTYEKDVDLGAGTR
    SVSTETEKPDMTIIGRRLQRLQEEHKETWHYDQENPYRTWAYHGSYEAPS
    TGSASSMVNGVVKLLTKPWDVIPMVTQLAMTDTTPFGQQRVFKEKVDTRT
    PQPKPGTRMVMTTTANWLWALLGKKKNPRLCTREEFISKVRSNAAIGAVF
    QEEQGWTSASEAVNDSRFWELVDKERALHQEGKCESCVYNMMGKREKKLG
    EFGRAKGSRAIWYMWLGARFLEFEALGFLNEDHWFGRENSWSGVEGEGLH
    RLGYILEEIDKKDGDLMYADDTAGWDTRITEDDLQNEELITEQMAPHHKI
    LAKAIFKLTYQNKVVKVLRPTPRGAVMDIISRKDQRGSGQVGTYGLNTFT
    NMEVQLIRQMEAEGVITQDDMQNPKGLKERVEKWLKECGVDRLKRMAISG
    DDCVVKPLDERFGTSLLFLNDMGKVRKDIPQWEPSKGWKNWQEVPFCSHH
    FHKIFMKDGRSLVVPCRNQDELIGRARISQGAGW
    SLRETACLGKAYAQMWSLMYFHRRDLRLASMAICSAVPTEWFPTSRTTWS
    IHAHHQWMTTEDMLKVWNRVWIEDNPNMTDKTPVHSWEDIPYLGKREDLW
    CGSLIGLSSRATWAKNIHTAITQVRNLIGKEEYVDYMPVMKRYSAPSESE
    GVL
    DEN-4 agttgttagtctgtgtggaccgacaaggacagttccaaatcggaagcttg 22
    (NC_002640. cttaacacagttctaacagtttgtttgaatagagagcagatctctggaaa
    1) aatgaaccaacgaaaaaaggtggttagaccacctttcaatatgctgaaac
    gcgagagaaaccgcgtatcaacccctcaagggttggtgaagagattctca
    accggacttttttctgggaaaggacccttacggatggtgctagcattcat
    cacgtttttgcgagtcctttccatcccaccaacagcagggattctgaaga
    gatggggacagttgaagaaaaataaggccatcaagatactgattggattc
    aggaaggagataggccgcatgctgaacatcttgaacgggagaaaaaggtc
    aacgataacattgctgtgcttgattcccaccgtaatggcgttttccctca
    gcacaagagatggcgaacccctcatgatagtggcaaaacatgaaaggggg
    agacctctcttgtttaagacaacagaggggatcaacaaatgcactctcat
    tgccatggacttgggtgaaatgtgtgaggacactgtcacgtataaatgcc
    ccctactggtcaataccgaacctgaagacattgattgctggtgcaacctc
    acgtctacctgggtcatgtatgggacatgcacccagagcggagaacggag
    acgagagaagcgctcagtagctttaacaccacattcaggaatgggattgg
    aaacaagagctgagacatggatgtcatcggaaggggcttggaagcatgct
    cagagagtagagagctggatactcagaaacccaggattcgcgctcttggc
    aggatttatggcttatatgattgggcaaacaggaatccagcgaactgtct
    tctttgtcctaatgatgctggtcgccccatcctacggaatgcgatgcgta
    ggagtaggaaacagagactttgtggaaggagtctcaggtggagcatgggt
    cgacctggtgctagaacatggaggatgcgtcacaaccatggcccagggaa
    aaccaaccttggattttgaactgactaagacaacagccaaggaagtggct
    ctgttaagaacctattgcattgaagcctcaatatcaaacataactacggc
    aacaagatgtccaacgcaaggagagccttatctgaaagaggaacaggacc
    aacagtacatttgccggagagatgtggtagacagagggtggggcaatggc
    tgtggcttgtttggaaaaggaggagttgtgacatgtgcgaagttttcatg
    ttcggggaagataacaggcaatttggtccaaattgagaaccttgaataca
    cagtggttgtaacagtccacaatggagacacccatgcagtaggaaatgac
    acatccaatcatggagttacagccatgataactcccaggtcaccatcggt
    ggaagtcaaattgccggactatggagaactaacactcgattgtgaaccca
    ggtctggaattgactttaatgagatgattctgatgaaaatgaaaaagaaa
    acatggctcgtgcataagcaatggtttttggatctgcctcttccatggac
    agcaggagcagacacatcagaggttcactggaattacaaagagagaatgg
    tgacatttaaggttcctcatgccaagagacaggatgtgacagtgctggga
    tctcaggaaggagccatgcattctgccctcgctggagccacagaagtgga
    ctccggtgatggaaatcacatgtttgcaggacatcttaagtgcaaagtcc
    gtatggagaaattgagaatcaagggaatgtcatacacgatgtgttcagga
    aagttttcaattgacaaagagatggcagaaacacagcatgggacaacagt
    ggtgaaagtcaagtatgaaggtgctggagctccgtgtaaagtccccatag
    agataagagatgtaaacaaggaaaaagtggttgggcgtatcatctcatcc
    acccctttggctgagaataccaacagtgtaaccaacatagaattagaacc
    cccctttggggacagctacatagtgataggtgttggaaacagcgcattaa
    cactccattggttcaggaaagggagttccattggcaagatgtttgagtcc
    acatacagaggtgcaaaacgaatggccattctaggtgaaacagcttggga
    ttttggttccgttggtggactgttcacatcattgggaaaggctgtgcacc
    aggtttttggaagtgtgtatacaaccatgtttggaggagtctcatggatg
    attagaatcctaattgggttcttagtgttgtggattggcacgaactcgag
    gaacacttcaatggctatgacgtgcatagctgttggaggaatcactctgt
    ttctgggcttcacagttcaagcagacatgggttgtgtggcgtcatggagt
    gggaaagaattgaagtgtggaagcggaatttttgtggttgacaacgtgca
    cacttggacagaacagtacaaatttcaaccagagtccccagcgagactag
    cgtctgcaatattaaatgcccacaaagatggggtctgtggaattagatca
    accacgaggctggaaaatgtcatgtggaagcaaataaccaacgagctaaa
    ctatgttctctgggaaggaggacatgacctcactgtagtggctggggatg
    tgaagggggtgttgaccaaaggcaagagagcactcacacccccagtgagt
    gatctgaaatattcatggaagacatggggaaaagcaaaaatcttcacccc
    agaagcaagaaatagcacatttttaatagacggaccagacacctctgaat
    gccccaatgaacgaagagcatggaactctcttgaggtggaagactatgga
    tttggcatgttcacgaccaacatatggatgaaattccgagaaggaagttc
    agaagtgtgtgaccacaggttaatgtcagctgcaattaaagatcagaaag
    ctgtgcatgctgacatgggttattggatagagagctcaaaaaaccagacc
    tggcagatagagaaagcatctcttattgaagtgaaaacatgtctgtggcc
    caagacccacacactgtggagcaatggagtgctggaaagccagatgctca
    ttccaaaatcatatgcgggccctttttcacagcacaattaccgccagggc
    tatgccacgcaaaccgtgggcccatggcacttaggcaaattagagataga
    ctttggagaatgccccggaacaacagtcacaattcaggaggattgtgacc
    atagaggcccatctttgaggaccaccactgcatctggaaaactagtcacg
    caatggtgctgccgctcctgcacgatgcctcccttaaggttcttgggaga
    agatgggtgctggtatgggatggagattaggcccttgagtgaaaaagaag
    agaacatggtcaaatcacaggtgacggccggacagggcacatcagaaact
    ttttctatgggtctgttgtgcctgaccttgtttgtggaagaatgcttgag
    gagaagagtcactaggaaacacatgatattagttgtggtgatcactcttt
    gtgctatcatcctgggaggcctcacatggatggacttactacgagccctc
    atcatgttgggggacactatgtctggtagaataggaggacagatccacct
    agccatcatggcagtgttcaagatgtcaccaggatacgtgctgggtgtgt
    ttttaaggaaactcacttcaagagagacagcactaatggtaataggaatg
    gccatgacaacggtgctttcaattccacatgaccttatggaactcattga
    tggaatatcactgggactaattttgctaaaaatagtaacacagtttgaca
    acacccaagtgggaaccttagctctttccttgactttcataagatcaaca
    atgccattggtcatggcttggaggaccattatggctgtgttgtttgtggt
    cacactcattcctttgtgcaggacaagctgtcttcaaaaacagtctcatt
    gggtagaaataacagcactcatcctaggagcccaagctctgccagtgtac
    ctaatgactcttatgaaaggagcctcaagaagatcttggcctcttaacga
    gggcataatggctgtgggtttggttagtctcttaggaagcgctcttttaa
    agaatgatgtccctttagctggcccaatggtggcaggaggcttacttctg
    gcggcttacgtgatgagtggtagctcagcagatctgtcactagagaaggc
    cgccaacgtgcagtgggatgaaatggcagacataacaggctcaagcccaa
    tcgtagaagtgaagcaggatgaagatggctctttctccatacgggacgtc
    gaggaaaccaatatgataacccttttggtgaaactggcactgataacagt
    gtcaggtctctaccccttggcaattccagtcacaatgaccttatggtaca
    tgtggcaagtgaaaacacaaagatcaggagccctgtgggacgtcccctca
    cccgctgccactaaaaaagccgcactgtctgaaggagtgtacaggatcat
    gcaaagagggttattcgggaaaactcaggttggagtagggatacacatgg
    aaggtgtatttcacacaatgtggcatgtaacaagaggatcagtgatctgc
    cacgagactgggagattggagccatcttgggctgacgtcaggaatgacat
    gatatcatacggtgggggatggaggcttggagacaaatgggacaaagaag
    aagacgttcaggtcctcgccatagaaccaggaaaaaatcctaaacatgtc
    caaacgaaacctggccttttcaagaccctaactggagaaattggagcagt
    aacattagatttcaaacccggaacgtctggttctcccatcatcaacagga
    aaggaaaagtcatcggactctatggaaatggagtagttaccaaatcaggt
    gattacgtcagtgccataacgcaagccgaaagaattggagagccagatta
    tgaagtggatgaggacatttttcgaaagaaaagattaactataatggact
    tacaccccggagctggaaagacaaaaagaattcttccatcaatagtgaga
    gaagccttaaaaaggaggctacgaactttgattttagctcccacgagagt
    ggtggcggccgagatggaagaggccctacgtggactgccaatccgttatc
    agaccccagctgtgaaatcagaacacacaggaagagagattgtagacctc
    atgtgtcatgcaaccttcacaacaagacttttgtcatcaaccagggttcc
    aaattacaaccttatagtgatggatgaagcacatttcaccgatccttcta
    gtgtcgcggctagaggatacatctcgaccagggtggaaatgggagaggca
    gcagccatcttcatgaccgcaacccctcccggagcgacagatccctttcc
    ccagagcaacagcccaatagaagacatcgagagggaaattccggaaaggt
    catggaacacagggttcgactggataacagactaccaagggaaaactgtg
    tggtttgttcccagcataaaagctggaaatgacattgcaaattgtttgag
    aaagtcgggaaagaaagttatccagttgagtaggaaaacctttgatacag
    agtatccaaaaacgaaactcacggactgggactttgtggtcactacagac
    atatctgaaatgggggccaattttagagccgggagagtgatagaccctag
    aagatgcctcaagccagttatcctaccagatgggccagagagagtcattt
    tagcaggtcctattccagtgactccagcaagcgctgctcagagaagaggg
    cgaataggaaggaacccagcacaagaagacgaccaatacgttttctccgg
    agacccactaaaaaatgatgaagatcatgcccactggacagaagcaaaga
    tgctgcttgacaatatctacaccccagaagggatcattccaacattgttt
    ggtccggaaagggaaaaaacccaagccattgatggagagtttcgcctcag
    aggggaacaaaggaagacttttgtggaattaatgaggagaggagaccttc
    cggtgtggctgagctataaggtagcttctgctggcatttcttacgaagat
    cgggaatggtgcttcacaggggaaagaaataaccaaattttagaagaaaa
    catggaggttgaaatttggactagagagggagaaaagaaaaagctaaggc
    caagatggttagatgcacgtgtatacgctgaccccatggctttgaaggat
    ttcaaggagtttgccagtggaaggaagagtataactctcgacatcctaac
    agagattgccagtttgccaacttacctttcctctagggccaagctcgccc
    ttgataacatagtcatgctccacacaacagaaagaggagggagggcctat
    caacacgccctgaacgaacttccggagtcactggaaacactcatgcttgt
    agctttactaggtgctatgacagcaggcatcttcctgtttttcatgcaag
    ggaaaggaatagggaaattgtcaatgggtttgataaccattgcggtggct
    agtggcttgctctgggtagcagaaattcaaccccagtggatagcggcctc
    aatcatactagagttttttctcatggtactgttgataccggaaccagaaa
    aacaaaggaccccacaagacaatcaattgatctacgtcatattgaccatt
    ctcaccatcattggtctaatagcagccaacgagatggggctgattgaaaa
    aacaaaaacggattttgggttttaccaggtaaaaacagaaaccaccatcc
    tcgatgtggacttgagaccagcttcagcatggacgctctatgcagtagcc
    accacaattctgactcccatgctgagacacaccatagaaaacacgtcggc
    caacctatctctagcagccattgccaaccaggcagccgtcctaatggggc
    ttggaaaaggatggccgctccacagaatggacctcggtgtgccgctgtta
    gcaatgggatgctattctcaagtgaacccaacaaccttgacagcatcctt
    agtcatgcttttagtccattatgcaataataggcccaggattgcaggcaa
    aagccacaagagaggcccagaaaaggacagctgctgggatcatgaaaaat
    cccacagtggacgggataacagtaatagatctagaaccaatatcctatga
    cccaaaatttgaaaagcaattagggcaggtcatgctactagtcttgtgtg
    ctggacaactactcttgatgagaacaacatgggctttctgtgaagtcttg
    actttggccacaggaccaatcttgaccttgtgggagggcaacccgggaag
    gttttggaacacgaccatagccgtatccaccgccaacattttcaggggaa
    gttacttggcgggagctggactggctttttcactcataaagaatgcacaa
    acccctaggaggggaactgggaccacaggagagacactgggagagaagtg
    gaagagacagctaaactcattagacagaaaagagtttgaagagtataaaa
    gaagtggaatactagaagtggacaggactgaagccaagtctgccctgaaa
    gatgggtctaaaatcaagcatgcagtatcaagagggtccagtaagatcag
    atggattgttgagagagggatggtaaagccaaaagggaaagttgtagatc
    ttggctgtgggagaggaggatggtcttattacatggcgacactcaagaac
    gtgactgaagtgaaagggtatacaaaaggaggtccaggacatgaagaacc
    gattcccatggctacttatggttggaatttggtcaaactccattcagggg
    ttgacgtgttctacaaacccacagagcaagtggacaccctgctctgtgat
    attggggagtcatcttctaatccaacaatagaggaaggaagaacattaag
    agttttgaagatggtggagccatggctctcttcaaaacctgaattctgca
    tcaaagtccttaacccctacatgccaacagtcatagaagagctggagaaa
    ctgcagagaaaacatggtgggaaccttgtcagatgcccgctgtccaggaa
    ctccacccatgagatgtattgggtgtcaggagcgtcgggaaacattgtga
    gctctgtgaacacaacatcaaagatgttgttgaacaggttcacaacaagg
    cataggaaacccacttatgagaaggacgtagatcttggggcaggaacgag
    aagtgtctccactgaaacagaaaaaccagacatgacaatcattgggagaa
    ggcttcagcgattgcaagaagagcacaaagaaacctggcattatgatcag
    gaaaacccatacagaacctgggcgtatcatggaagctatgaagctccttc
    gacaggctctgcatcctccatggtgaacggggtggtaaaactgctaacaa
    aaccctgggatgtgattccaatggtgactcagttagccatgacagataca
    accccttttgggcaacaaagagtgttcaaagagaaggtggataccagaac
    accacaaccaaaacccggtacacgaatggttatgaccacgacagccaatt
    ggctgtgggccctccttggaaagaagaaaaatcccagactgtgcacaagg
    gaagagttcatctcaaaagttagatcaaacgcagccataggcgcagtctt
    tcaggaagaacagggatggacatcagccagtgaagctgtgaatgacagcc
    ggttttgggaactggttgacaaagaaagggccctacaccaggaagggaaa
    tgtgaatcgtgtgtctataacatgatgggaaaacgtgagaaaaagttagg
    agagtttggcagagccaagggaagccgagcaatctggtacatgtggctgg
    gagcgcggtttctggaatttgaagccctgggttttttgaatgaagatcac
    tggtttggcagagaaaattcatggagtggagtggaaggggaaggtctgca
    cagattgggatatatcctggaggagatagacaagaaggatggagacctaa
    tgtatgctgatgacacagcaggctgggacacaagaatcactgaggatgac
    cttcaaaatgaggaactgatcacggaacagatggctccccaccacaagat
    cctagccaaagccattttcaaactaacctatcaaaacaaagtggtgaaag
    tcctcagacccacaccgcggggagcggtgatggatatcatatccaggaaa
    gaccaaagaggtagtggacaagttggaacatatggtttgaacacattcac
    caacatggaagttcaactcatccgccaaatggaagctgaaggagtcatca
    cacaagatgacatgcagaacccaaaagggttgaaagaaagagttgagaaa
    tggctgaaagagtgtggtgtcgacaggttaaagaggatggcaatcagtgg
    agacgattgcgtggtgaagcccctagatgagaggtttggcacttccctcc
    tcttcttgaacgacatgggaaaggtgaggaaagacattccgcagtgggaa
    ccatctaagggatggaaaaactggcaagaggttcctttttgctcccacca
    ctttcacaagatctttatgaaggatggccgctcactagttgttccatgta
    gaaaccaggatgaactgatagggagagccagaatctcgcagggagctgga
    tggagcttaagagaaacagcctgcctgggcaaagcttacgcccagatgtg
    gtcgcttatgtacttccacagaagggatctgcgtttagcctccatggcca
    tatgctcagcagttccaacggaatggtttccaacaagcagaacaacatgg
    tcaatccacgctcatcaccagtggatgaccactgaagatatgctcaaagt
    gtggaacagagtgtggatagaagacaaccctaatatgactgacaagactc
    cagtccattcgtgggaagatataccttacctagggaaaagagaggatttg
    tggtgtggatccctgattggactttcttccagagccacctgggcgaagaa
    cattcatacggccataacccaggtcaggaacctgatcggaaaagaggaat
    acgtggattacatgccagtaatgaaaagatacagtgctccttcagagagt
    gaaggagttctgtaattaccaacaacaaacaccaaaggctattgaagtca
    ggccacttgtgccacggtttgagcaaaccgtgctgcctgtagctccgcca
    ataatgggaggcgtaataatccccagggaggccatgcgccacggaagctg
    tacgcgtggcatattggactagcggttagaggagacccctcccatcactg
    ataaaacgcagcaaaagggggcccgaagccaggaggaagctgtactcctg
    gtggaaggactagaggttagaggagacccccccaacacaaaaacagcata
    ttgacgctgggaaagaccagagatcctgctgtctctgcaacatcaatcca
    ggcacagagcgccgcaagatggattggtgttgttgatccaacaggttct
  • Example 19: Dengue Virus RNA Vaccine Immunogenicity in Mice
  • This study provides a preliminary analysis of the immunogenicity of a nucleic acid mRNA vaccine using a dengue virus (DENV) serotype 2 antigen in BALB/c mice. The study utilizes 44 groups of 10 BALB/c female (5) and male (5) mice (440 total, 6-8 weeks of age at study initiation, see Table 10 for design summary). In this study, construct numbers used are referenced and found in Table 14.
  • TABLE 14
    Dengue Antigen polynucleotides
    ORF mRNA Protein
    Construct SEQ SEQ SEQ
    Number Gene ID Description ID NO ID NO ID NO Construct
    1 131502 Dengue 2, 24 25 23 DEN2_D2Y98P_PrME_Hs3
    D2Y98P strain,
    PrME
    transmembrane
    antigen
    2 131503 Dengue 2, 27 28 26 DEN2_D2Y98P_PrME80_Hs3
    D2Y98P strain,
    PrME secreted
    antigen
    3 131507 Dengue 2, 30 31 29 DEN2_D2Y98P_PrME80_ScFv.aDEC205.FLAG_Hs3
    D2Y98P strain,
    PrME secreted
    antigen with
    dendritic
    targeting ScFv
    against mouse
    DEC205
    4 120554 Dengue strain 2 33 34 32 DEN2_DIII_Ferritin_Hs3
    domain
    3
    ferritin

    The sequences are shown below:
  • TABLE 15
    SEQ ID
    Name Sequence NO
    MDAMKRGLCCVLLLCGAVFVSPFHLTTRNGEPHMIVSRQEKGKSLLFKTE 23
    NGVNMCTLMAMDLGELCEDTITYNCPLLRQNEPEDIDCWCNSTSTWVTYG
    TCTATGEHRREKRSVALVPHVGMGLETRTETWMSSEGAWKHAQRIETWVL
    RHPGFTIMAAILAYTIGTTYFQRVLIFILLTAVAPSMTMRCIGISNRDFV
    EGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKHPATLRKYCIE
    AKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGG
    IVTCAMFTCKKNMEGKIVQPENLEYTIVITPHSGEEGNDTGKHGKEIKVT
    PQSSITEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLD
    LPLPWLPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALT
    GATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAET
    QHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPV
    NIEAEPPFGDSYIIIGVEPGQLKLSWFKKGSSIGQMFETTMRGAKRMAIL
    GDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILIGVVITW
    IGMNSRSTSLSVSLVLVGVVTLYLGVMVQA
    ATGGATGCTATGAAAAGAGGCCTGTGTTGTGTGTTGCTGTTGTGCGGAGC 24
    TGTGTTTGTGTCACCTTTCCACCTGACTACCCGCAATGGTGAGCCCCATA
    TGATTGTGTCGCGCCAGGAGAAGGGGAAGTCCCTCCTGTTCAAAACTGAA
    AACGGCGTGAACATGTGTACCCTGATGGCCATGGACCTTGGAGAACTGTG
    CGAGGACACCATCACCTACAATTGTCCGCTCCTGCGCCAAAACGAACCAG
    AAGATATCGACTGCTGGTGCAATTCCACTTCAACCTGGGTTACCTACGGA
    ACTTGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCTCGGTGGCGCT
    GGTGCCTCATGTCGGAATGGGACTGGAGACTCGGACGGAGACTTGGATGT
    CCTCGGAGGGAGCATGGAAACATGCCCAACGGATCGAAACTTGGGTGCTG
    AGGCACCCTGGATTCACCATCATGGCAGCGATCCTCGCCTACACTATAGG
    TACTACCTACTTTCAAAGGGTGCTGATCTTCATTCTCCTCACCGCAGTGG
    CCCCTTCAATGACCATGAGGTGCATTGGGATCTCGAACCGGGACTTCGTC
    GAAGGAGTGTCCGGAGGTAGCTGGGTCGACATCGTCCTGGAACACGGAAG
    CTGCGTGACTACTATGGCGAAGAACAAGCCAACCTTGGACTTCGAGCTTA
    TCAAGACCGAGGCGAAGCACCCGGCCACTCTGAGAAAGTACTGCATCGAG
    GCTAAGCTCACCAACACGACCACTGCCTCGCGATGCCCAACTCAGGGAGA
    ACCGTCACTGAACGAAGAACAGGATAAACGCTTTGTGTGCAAGCATAGCA
    TGGTGGATAGAGGCTGGGGAAACGGCTGTGGACTCTTCGGAAAGGGTGGA
    ATTGTGACGTGCGCAATGTTCACTTGCAAGAAGAATATGGAAGGGAAGAT
    CGTCCAGCCGGAGAACCTGGAATACACTATCGTGATCACCCCGCACTCAG
    GCGAGGAGAACGCAGTGGGCAACGATACCGGGAAGCACGGGAAGGAAATC
    AAGGTGACCCCGCAGTCGTCCATTACCGAGGCCGAACTCACCGGATACGG
    CACTGTGACTATGGAATGCTCGCCACGGACCGGGCTGGATTTCAATGAGA
    TGGTGCTCTTGCAAATGGAGAACAAAGCCTGGCTGGTCCACCGCCAGTGG
    TTCCTCGACCTCCCCCTTCCGTGGCTGCCGGGAGCTGACACCCAAGGATC
    CAACTGGATCCAAAAAGAAACCCTTGTCACGTTTAAGAATCCACATGCCA
    AAAAGCAGGACGTGGTCGTGCTCGGAAGCCAGGAAGGAGCCATGCACACT
    GCGCTGACTGGAGCAACCGAAATTCAAATGTCGAGCGGCAACCTCCTCTT
    CACTGGACATCTGAAGTGCCGGCTGCGCATGGACAAACTGCAACTTAAGG
    GCATGTCATACTCGATGTGTACCGGCAAATTCAAGGTGGTGAAGGAGATC
    GCGGAGACTCAGCACGGGACCATCGTCATCCGGGTCCAGTATGAGGGTGA
    TGGTTCCCCCTGCAAGATCCCTTTCGAAATCATGGATCTGGAGAAACGTC
    ACGTGCTGGGCCGGCTGATCACTGTGAATCCGATCGTTACGGAGAAAGAC
    AGCCCGGTGAACATCGAAGCTGAACCGCCGTTTGGGGATAGCTACATTAT
    CATCGGCGTGGAACCAGGCCAGCTCAAGTTGTCGTGGTTCAAGAAAGGAT
    CCAGCATCGGACAGATGTTCGAAACCACTATGCGCGGAGCCAAACGCATG
    GCTATCCTGGGGGACACGGCCTGGGACTTCGGGTCGCTGGGTGGTGTGTT
    CACCTCCATTGGAAAGGCGCTCCATCAGGTGTTTGGTGCGATCTACGGCG
    CCGCATTCTCCGGAGTGTCATGGACCATGAAGATCCTCATCGGAGTCGTC
    ATCACCTGGATCGGCATGAATTCTCGGTCCACTTCCTTGAGCGTCAGCCT
    GGTGCTGGTCGGAGTTGTGACTCTGTACCTTGGAGTGATGGTCCAGGCC
    GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUG 25
    GAUGCUAUGAAAAGAGGCCUGUGUUGUGUGUUGCUGUUGUGCGGAGCUGU
    GUUUGUGUCACCUUUCCACCUGACUACCCGCAAUGGUGAGCCCCAUAUGA
    UUGUGUCGCGCCAGGAGAAGGGGAAGUCCCUCCUGUUCAAAACUGAAAAC
    GGCGUGAACAUGUGUACCCUGAUGGCCAUGGACCUUGGAGAACUGUGCGA
    GGACACCAUCACCUACAAUUGUCCGCUCCUGCGCCAAAACGAACCAGAAG
    AUAUCGACUGCUGGUGCAAUUCCACUUCAACCUGGGUUACCUACGGAACU
    UGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCUCGGUGGCGCUGGU
    GCCUCAUGUCGGAAUGGGACUGGAGACUCGGACGGAGACUUGGAUGUCCU
    CGGAGGGAGCAUGGAAACAUGCCCAACGGAUCGAAACUUGGGUGCUGAGG
    CACCCUGGAUUCACCAUCAUGGCAGCGAUCCUCGCCUACACUAUAGGUAC
    UACCUACUUUCAAAGGGUGCUGAUCUUCAUUCUCCUCACCGCAGUGGCCC
    CUUCAAUGACCAUGAGGUGCAUUGGGAUCUCGAACCGGGACUUCGUCGAA
    GGAGUGUCCGGAGGUAGCUGGGUCGACAUCGUCCUGGAACACGGAAGCUG
    CGUGACUACUAUGGCGAAGAACAAGCCAACCUUGGACUUCGAGCUUAUCA
    AGACCGAGGCGAAGCACCCGGCCACUCUGAGAAAGUACUGCAUCGAGGCU
    AAGCUCACCAACACGACCACUGCCUCGCGAUGCCCAACUCAGGGAGAACC
    GUCACUGAACGAAGAACAGGAUAAACGCUUUGUGUGCAAGCAUAGCAUGG
    UGGAUAGAGGCUGGGGAAACGGCUGUGGACUCUUCGGAAAGGGUGGAAUU
    GUGACGUGCGCAAUGUUCACUUGCAAGAAGAAUAUGGAAGGGAAGAUCGU
    CCAGCCGGAGAACCUGGAAUACACUAUCGUGAUCACCCCGCACUCAGGCG
    AGGAGAACGCAGUGGGCAACGAUACCGGGAAGCACGGGAAGGAAAUCAAG
    GUGACCCCGCAGUCGUCCAUUACCGAGGCCGAACUCACCGGAUACGGCAC
    UGUGACUAUGGAAUGCUCGCCACGGACCGGGCUGGAUUUCAAUGAGAUGG
    UGCUCUUGCAAAUGGAGAACAAAGCCUGGCUGGUCCACCGCCAGUGGUUC
    CUCGACCUCCCCCUUCCGUGGCUGCCGGGAGCUGACACCCAAGGAUCCAA
    CUGGAUCCAAAAAGAAACCCUUGUCACGUUUAAGAAUCCACAUGCCAAAA
    AGCAGGACGUGGUCGUGCUCGGAAGCCAGGAAGGAGCCAUGCACACUGCG
    CUGACUGGAGCAACCGAAAUUCAAAUGUCGAGCGGCAACCUCCUCUUCAC
    UGGACAUCUGAAGUGCCGGCUGCGCAUGGACAAACUGCAACUUAAGGGCA
    UGUCAUACUCGAUGUGUACCGGCAAAUUCAAGGUGGUGAAGGAGAUCGCG
    GAGACUCAGCACGGGACCAUCGUCAUCCGGGUCCAGUAUGAGGGUGAUGG
    UUCCCCCUGCAAGAUCCCUUUCGAAAUCAUGGAUCUGGAGAAACGUCACG
    UGCUGGGCCGGCUGAUCACUGUGAAUCCGAUCGUUACGGAGAAAGACAGC
    CCGGUGAACAUCGAAGCUGAACCGCCGUUUGGGGAUAGCUACAUUAUCAU
    CGGCGUGGAACCAGGCCAGCUCAAGUUGUCGUGGUUCAAGAAAGGAUCCA
    GCAUCGGACAGAUGUUCGAAACCACUAUGCGCGGAGCCAAACGCAUGGCU
    AUCCUGGGGGACACGGCCUGGGACUUCGGGUCGCUGGGUGGUGUGUUCAC
    CUCCAUUGGAAAGGCGCUCCAUCAGGUGUUUGGUGCGAUCUACGGCGCCG
    CAUUCUCCGGAGUGUCAUGGACCAUGAAGAUCCUCAUCGGAGUCGUCAUC
    ACCUGGAUCGGCAUGAAUUCUCGGUCCACUUCCUUGAGCGUCAGCCUGGU
    GCUGGUCGGAGUUGUGACUCUGUACCUUGGAGUGAUGGUCCAGGCCUGAU
    AAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCC
    CAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAA
    GUCUGAGUGGGCGGC
    MDAMKRGLCCVLLLCGAVFVSPFHLTTRNGEPHMIVSRQEKGKSLLFKTE 26
    NGVNMCTLMAMDLGELCEDTITYNCPLLRQNEPEDIDCWCNSTSTWVTYG
    TCTATGEHRREKRSVALVPHVGMGLETRTETWMSSEGAWKHAQRIETWVL
    RHPGFTIMAAILAYTIGTTYFQRVLIFILLTAVAPSMTMRCIGISNRDFV
    EGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKHPATLRKYCIE
    AKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGG
    IVTCAMFTCKKNMEGKIVQPENLEYTIVITPHSGEEGNDTGKHGKEIKVT
    PQSSITEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLD
    LPLPWLPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALT
    GATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAET
    QHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPV
    NIEAEPPFGDSYIIIGVEPGQLKLSWFKKG
    ATGGATGCTATGAAAAGAGGCCTGTGTTGTGTGTTGCTGTTGTGCGGAGC 27
    TGTGTTTGTGTCACCTTTCCACCTGACTACCCGCAATGGTGAGCCCCATA
    TGATTGTGTCGCGCCAGGAGAAGGGGAAGTCCCTCCTGTTCAAAACTGAA
    AACGGCGTGAACATGTGTACCCTGATGGCCATGGACCTTGGAGAACTGTG
    CGAGGACACCATCACCTACAATTGTCCGCTCCTGCGCCAAAACGAACCAG
    AAGATATCGACTGCTGGTGCAATTCCACTTCAACCTGGGTTACCTACGGA
    ACTTGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCTCGGTGGCGCT
    GGTGCCTCATGTCGGAATGGGACTGGAGACTCGGACGGAGACTTGGATGT
    CCTCGGAGGGAGCATGGAAACATGCCCAACGGATCGAAACTTGGGTGCTG
    AGGCACCCTGGATTCACCATCATGGCAGCGATCCTCGCCTACACTATAGG
    TACTACCTACTTTCAAAGGGTGCTGATCTTCATTCTCCTCACCGCAGTGG
    CCCCTTCAATGACCATGAGGTGCATTGGGATCTCGAACCGGGACTTCGTC
    GAAGGAGTGTCCGGAGGTAGCTGGGTCGACATCGTCCTGGAACACGGAAG
    CTGCGTGACTACTATGGCGAAGAACAAGCCAACCTTGGACTTCGAGCTTA
    TCAAGACCGAGGCGAAGCACCCGGCCACTCTGAGAAAGTACTGCATCGAG
    GCTAAGCTCACCAACACGACCACTGCCTCGCGATGCCCAACTCAGGGAGA
    ACCGTCACTGAACGAAGAACAGGATAAACGCTTTGTGTGCAAGCATAGCA
    TGGTGGATAGAGGCTGGGGAAACGGCTGTGGACTCTTCGGAAAGGGTGGA
    ATTGTGACGTGCGCAATGTTCACTTGCAAGAAGAATATGGAAGGGAAGAT
    CGTCCAGCCGGAGAACCTGGAATACACTATCGTGATCACCCCGCACTCAG
    GCGAGGAGAACGCAGTGGGCAACGATACCGGGAAGCACGGGAAGGAAATC
    AAGGTGACCCCGCAGTCGTCCATTACCGAGGCCGAACTCACCGGATACGG
    CACTGTGACTATGGAATGCTCGCCACGGACCGGGCTGGATTTCAATGAGA
    TGGTGCTCTTGCAAATGGAGAACAAAGCCTGGCTGGTCCACCGCCAGTGG
    TTCCTCGACCTCCCCCTTCCGTGGCTGCCGGGAGCTGACACCCAAGGATC
    CAACTGGATCCAAAAAGAAACCCTTGTCACGTTTAAGAATCCACATGCCA
    AAAAGCAGGACGTGGTCGTGCTCGGAAGCCAGGAAGGAGCCATGCACACT
    GCGCTGACTGGAGCAACCGAAATTCAAATGTCGAGCGGCAACCTCCTCTT
    CACTGGACATCTGAAGTGCCGGCTGCGCATGGACAAACTGCAACTTAAGG
    GCATGTCATACTCGATGTGTACCGGCAAATTCAAGGTGGTGAAGGAGATC
    GCGGAGACTCAGCACGGGACCATCGTCATCCGGGTCCAGTATGAGGGTGA
    TGGTTCCCCCTGCAAGATCCCTTTCGAAATCATGGATCTGGAGAAACGTC
    ACGTGCTGGGCCGGCTGATCACTGTGAATCCGATCGTTACGGAGAAAGAC
    AGCCCGGTGAACATCGAAGCTGAACCGCCGTTTGGGGATAGCTACATTAT
    CATCGGCGTGGAACCAGGCCAGCTCAAGTTGTCGTGGTTCAAGAAAGGA
    GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUG 28
    GAUGCUAUGAAAAGAGGCCUGUGUUGUGUGUUGCUGUUGUGCGGAGCUGU
    GUUUGUGUCACCUUUCCACCUGACUACCCGCAAUGGUGAGCCCCAUAUGA
    UUGUGUCGCGCCAGGAGAAGGGGAAGUCCCUCCUGUUCAAAACUGAAAAC
    GGCGUGAACAUGUGUACCCUGAUGGCCAUGGACCUUGGAGAACUGUGCGA
    GGACACCAUCACCUACAAUUGUCCGCUCCUGCGCCAAAACGAACCAGAAG
    AUAUCGACUGCUGGUGCAAUUCCACUUCAACCUGGGUUACCUACGGAACU
    UGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCUCGGUGGCGCUGGU
    GCCUCAUGUCGGAAUGGGACUGGAGACUCGGACGGAGACUUGGAUGUCCU
    CGGAGGGAGCAUGGAAACAUGCCCAACGGAUCGAAACUUGGGUGCUGAGG
    CACCCUGGAUUCACCAUCAUGGCAGCGAUCCUCGCCUACACUAUAGGUAC
    UACCUACUUUCAAAGGGUGCUGAUCUUCAUUCUCCUCACCGCAGUGGCCC
    CUUCAAUGACCAUGAGGUGCAUUGGGAUCUCGAACCGGGACUUCGUCGAA
    GGAGUGUCCGGAGGUAGCUGGGUCGACAUCGUCCUGGAACACGGAAGCUG
    CGUGACUACUAUGGCGAAGAACAAGCCAACCUUGGACUUCGAGCUUAUCA
    AGACCGAGGCGAAGCACCCGGCCACUCUGAGAAAGUACUGCAUCGAGGCU
    AAGCUCACCAACACGACCACUGCCUCGCGAUGCCCAACUCAGGGAGAACC
    GUCACUGAACGAAGAACAGGAUAAACGCUUUGUGUGCAAGCAUAGCAUGG
    UGGAUAGAGGCUGGGGAAACGGCUGUGGACUCUUCGGAAAGGGUGGAAUU
    GUGACGUGCGCAAUGUUCACUUGCAAGAAGAAUAUGGAAGGGAAGAUCGU
    CCAGCCGGAGAACCUGGAAUACACUAUCGUGAUCACCCCGCACUCAGGCG
    AGGAGAACGCAGUGGGCAACGAUACCGGGAAGCACGGGAAGGAAAUCAAG
    GUGACCCCGCAGUCGUCCAUUACCGAGGCCGAACUCACCGGAUACGGCAC
    UGUGACUAUGGAAUGCUCGCCACGGACCGGGCUGGAUUUCAAUGAGAUGG
    UGCUCUUGCAAAUGGAGAACAAAGCCUGGCUGGUCCACCGCCAGUGGUUC
    CUCGACCUCCCCCUUCCGUGGCUGCCGGGAGCUGACACCCAAGGAUCCAA
    CUGGAUCCAAAAAGAAACCCUUGUCACGUUUAAGAAUCCACAUGCCAAAA
    AGCAGGACGUGGUCGUGCUCGGAAGCCAGGAAGGAGCCAUGCACACUGCG
    CUGACUGGAGCAACCGAAAUUCAAAUGUCGAGCGGCAACCUCCUCUUCAC
    UGGACAUCUGAAGUGCCGGCUGCGCAUGGACAAACUGCAACUUAAGGGCA
    UGUCAUACUCGAUGUGUACCGGCAAAUUCAAGGUGGUGAAGGAGAUCGCG
    GAGACUCAGCACGGGACCAUCGUCAUCCGGGUCCAGUAUGAGGGUGAUGG
    UUCCCCCUGCAAGAUCCCUUUCGAAAUCAUGGAUCUGGAGAAACGUCACG
    UGCUGGGCCGGCUGAUCACUGUGAAUCCGAUCGUUACGGAGAAAGACAGC
    CCGGUGAACAUCGAAGCUGAACCGCCGUUUGGGGAUAGCUACAUUAUCAU
    CGGCGUGGAACCAGGCCAGCUCAAGUUGUCGUGGUUCAAGAAAGGAUGAU
    AAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCC
    CAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAA
    GUCUGAGUGGGCGGC
    MDAMKRGLCCVLLLCGAVFVSPFHLTTRNGEPHMIVSRQEKGKSLLFKTE 29
    NGVNMCTLMAMDLGELCEDTITYNCPLLRQNEPEDIDCWCNSTSTWVTYG
    TCTATGEHRREKRSVALVPHVGMGLETRTETWMSSEGAWKHAQRIETWVL
    RHPGFTIMAAILAYTIGTTYFQRVLIFILLTAVAPSMTMRCIGISNRDFV
    EGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKHPATLRKYCIE
    AKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGG
    IVTCAMFTCKKNMEGKIVQPENLEYTIVITPHSGEEGNDTGKHGKEIKVT
    PQSSITEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLD
    LPLPWLPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALT
    GATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAET
    QHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPV
    NIEAEPPFGDSYIIIGVEPGQLKLSWFKKGGGGGSGGGGSGGGGSEVKLQ
    QSGTEVVKPGASVKLSCKASGYIFTSYDIDWVRQTPEQGLEWIGWIFPGE
    GSTEYNEKFKGRATLSVDKSSSTAYMELTRLTSEDSAVYFCARGDYYRRY
    FDLWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSFLSTSLGNSITI
    TCHASQNIKGWLAWYQQKSGNAPQLLIYKASSLQSGVPSRFSGSGSGTDY
    IFTISNLQPEDIATYYCQHYQSFPWTFGGGTKLEIKRDYKDDDDK
    ATGGATGCTATGAAAAGAGGCCTGTGTTGTGTGTTGCTGTTGTGCGGAGC 30
    TGTGTTTGTGTCACCTTTCCACCTGACTACCCGCAATGGTGAGCCCCATA
    TGATTGTGTCGCGCCAGGAGAAGGGGAAGTCCCTCCTGTTCAAAACTGAA
    AACGGCGTGAACATGTGTACCCTGATGGCCATGGACCTTGGAGAACTGTG
    CGAGGACACCATCACCTACAATTGTCCGCTCCTGCGCCAAAACGAACCAG
    AAGATATCGACTGCTGGTGCAATTCCACTTCAACCTGGGTTACCTACGGA
    ACTTGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCTCGGTGGCGCT
    GGTGCCTCATGTCGGAATGGGACTGGAGACTCGGACGGAGACTTGGATGT
    CCTCGGAGGGAGCATGGAAACATGCCCAACGGATCGAAACTTGGGTGCTG
    AGGCACCCTGGATTCACCATCATGGCAGCGATCCTCGCCTACACTATAGG
    TACTACCTACTTTCAAAGGGTGCTGATCTTCATTCTCCTCACCGCAGTGG
    CCCCTTCAATGACCATGAGGTGCATTGGGATCTCGAACCGGGACTTCGTC
    GAAGGAGTGTCCGGAGGTAGCTGGGTCGACATCGTCCTGGAACACGGAAG
    CTGCGTGACTACTATGGCGAAGAACAAGCCAACCTTGGACTTCGAGCTTA
    TCAAGACCGAGGCGAAGCACCCGGCCACTCTGAGAAAGTACTGCATCGAG
    GCTAAGCTCACCAACACGACCACTGCCTCGCGATGCCCAACTCAGGGAGA
    ACCGTCACTGAACGAAGAACAGGATAAACGCTTTGTGTGCAAGCATAGCA
    TGGTGGATAGAGGCTGGGGAAACGGCTGTGGACTCTTCGGAAAGGGTGGA
    ATTGTGACGTGCGCAATGTTCACTTGCAAGAAGAATATGGAAGGGAAGAT
    CGTCCAGCCGGAGAACCTGGAATACACTATCGTGATCACCCCGCACTCAG
    GCGAGGAGAACGCAGTGGGCAACGATACCGGGAAGCACGGGAAGGAAATC
    AAGGTGACCCCGCAGTCGTCCATTACCGAGGCCGAACTCACCGGATACGG
    CACTGTGACTATGGAATGCTCGCCACGGACCGGGCTGGATTTCAATGAGA
    TGGTGCTCTTGCAAATGGAGAACAAAGCCTGGCTGGTCCACCGCCAGTGG
    TTCCTCGACCTCCCCCTTCCGTGGCTGCCGGGAGCTGACACCCAAGGATC
    CAACTGGATCCAAAAAGAAACCCTTGTCACGTTTAAGAATCCACATGCCA
    AAAAGCAGGACGTGGTCGTGCTCGGAAGCCAGGAAGGAGCCATGCACACT
    GCGCTGACTGGAGCAACCGAAATTCAAATGTCGAGCGGCAACCTCCTCTT
    CACTGGACATCTGAAGTGCCGGCTGCGCATGGACAAACTGCAACTTAAGG
    GCATGTCATACTCGATGTGTACCGGCAAATTCAAGGTGGTGAAGGAGATC
    GCGGAGACTCAGCACGGGACCATCGTCATCCGGGTCCAGTATGAGGGTGA
    TGGTTCCCCCTGCAAGATCCCTTTCGAAATCATGGATCTGGAGAAACGTC
    ACGTGCTGGGCCGGCTGATCACTGTGAATCCGATCGTTACGGAGAAAGAC
    AGCCCGGTGAACATCGAAGCTGAACCGCCGTTTGGGGATAGCTACATTAT
    CATCGGCGTGGAACCAGGCCAGCTCAAGTTGTCGTGGTTCAAGAAAGGAG
    GAGGTGGAGGATCCGGAGGCGGAGGGTCGGGCGGTGGTGGATCGGAGGTC
    AAACTGCAGCAATCAGGGACCGAAGTCGTGAAGCCGGGGGCTTCAGTCAA
    GCTGTCCTGCAAGGCCAGCGGCTATATCTTCACTAGCTACGACATCGATT
    GGGTGCGGCAGACTCCGGAGCAAGGACTCGAGTGGATTGGGTGGATCTTT
    CCGGGCGAGGGATCAACCGAGTACAACGAAAAATTTAAGGGACGGGCAAC
    GCTGTCCGTGGACAAGAGCTCATCTACGGCGTACATGGAGCTGACGCGGC
    TCACGTCAGAGGATTCCGCCGTCTACTTCTGTGCCAGGGGCGACTACTAC
    CGGCGCTACTTTGATCTGTGGGGACAAGGAACGACCGTGACTGTCTCATC
    AGGCGGCGGCGGATCGGGAGGAGGCGGATCGGGTGGCGGTGGTTCGGACA
    TTCAGATGACTCAATCGCCCAGCTTCCTGTCGACCTCACTGGGGAATTCT
    ATTACGATCACTTGTCACGCTTCGCAGAACATCAAGGGTTGGCTGGCTTG
    GTACCAGCAGAAAAGCGGTAACGCCCCGCAACTGCTCATCTACAAGGCAT
    CGTCCCTGCAATCGGGAGTGCCGTCACGCTTTTCAGGATCGGGCTCCGGA
    ACCGATTACATCTTTACCATCAGCAACCTGCAGCCGGAAGACATCGCCAC
    TTACTACTGTCAACACTATCAGAGCTTTCCGTGGACCTTTGGAGGGGGGA
    CCAAATTGGAGATCAAGCGCGACTACAAGGATGACGATGACAAA
    GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUG 31
    GAUGCUAUGAAAAGAGGCCUGUGUUGUGUGUUGCUGUUGUGCGGAGCUGU
    GUUUGUGUCACCUUUCCACCUGACUACCCGCAAUGGUGAGCCCCAUAUGA
    UUGUGUCGCGCCAGGAGAAGGGGAAGUCCCUCCUGUUCAAAACUGAAAAC
    GGCGUGAACAUGUGUACCCUGAUGGCCAUGGACCUUGGAGAACUGUGCGA
    GGACACCAUCACCUACAAUUGUCCGCUCCUGCGCCAAAACGAACCAGAAG
    AUAUCGACUGCUGGUGCAAUUCCACUUCAACCUGGGUUACCUACGGAACU
    UGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCUCGGUGGCGCUGGU
    GCCUCAUGUCGGAAUGGGACUGGAGACUCGGACGGAGACUUGGAUGUCCU
    CGGAGGGAGCAUGGAAACAUGCCCAACGGAUCGAAACUUGGGUGCUGAGG
    CACCCUGGAUUCACCAUCAUGGCAGCGAUCCUCGCCUACACUAUAGGUAC
    UACCUACUUUCAAAGGGUGCUGAUCUUCAUUCUCCUCACCGCAGUGGCCC
    CUUCAAUGACCAUGAGGUGCAUUGGGAUCUCGAACCGGGACUUCGUCGAA
    GGAGUGUCCGGAGGUAGCUGGGUCGACAUCGUCCUGGAACACGGAAGCUG
    CGUGACUACUAUGGCGAAGAACAAGCCAACCUUGGACUUCGAGCUUAUCA
    AGACCGAGGCGAAGCACCCGGCCACUCUGAGAAAGUACUGCAUCGAGGCU
    AAGCUCACCAACACGACCACUGCCUCGCGAUGCCCAACUCAGGGAGAACC
    GUCACUGAACGAAGAACAGGAUAAACGCUUUGUGUGCAAGCAUAGCAUGG
    UGGAUAGAGGCUGGGGAAACGGCUGUGGACUCUUCGGAAAGGGUGGAAUU
    GUGACGUGCGCAAUGUUCACUUGCAAGAAGAAUAUGGAAGGGAAGAUCGU
    CCAGCCGGAGAACCUGGAAUACACUAUCGUGAUCACCCCGCACUCAGGCG
    AGGAGAACGCAGUGGGCAACGAUACCGGGAAGCACGGGAAGGAAAUCAAG
    GUGACCCCGCAGUCGUCCAUUACCGAGGCCGAACUCACCGGAUACGGCAC
    UGUGACUAUGGAAUGCUCGCCACGGACCGGGCUGGAUUUCAAUGAGAUGG
    UGCUCUUGCAAAUGGAGAACAAAGCCUGGCUGGUCCACCGCCAGUGGUUC
    CUCGACCUCCCCCUUCCGUGGCUGCCGGGAGCUGACACCCAAGGAUCCAA
    CUGGAUCCAAAAAGAAACCCUUGUCACGUUUAAGAAUCCACAUGCCAAAA
    AGCAGGACGUGGUCGUGCUCGGAAGCCAGGAAGGAGCCAUGCACACUGCG
    CUGACUGGAGCAACCGAAAUUCAAAUGUCGAGCGGCAACCUCCUCUUCAC
    UGGACAUCUGAAGUGCCGGCUGCGCAUGGACAAACUGCAACUUAAGGGCA
    UGUCAUACUCGAUGUGUACCGGCAAAUUCAAGGUGGUGAAGGAGAUCGCG
    GAGACUCAGCACGGGACCAUCGUCAUCCGGGUCCAGUAUGAGGGUGAUGG
    UUCCCCCUGCAAGAUCCCUUUCGAAAUCAUGGAUCUGGAGAAACGUCACG
    UGCUGGGCCGGCUGAUCACUGUGAAUCCGAUCGUUACGGAGAAAGACAGC
    CCGGUGAACAUCGAAGCUGAACCGCCGUUUGGGGAUAGCUACAUUAUCAU
    CGGCGUGGAACCAGGCCAGCUCAAGUUGUCGUGGUUCAAGAAAGGAGGAG
    GUGGAGGAUCCGGAGGCGGAGGGUCGGGCGGUGGUGGAUCGGAGGUCAAA
    CUGCAGCAAUCAGGGACCGAAGUCGUGAAGCCGGGGGCUUCAGUCAAGCU
    GUCCUGCAAGGCCAGCGGCUAUAUCUUCACUAGCUACGACAUCGAUUGGG
    UGCGGCAGACUCCGGAGCAAGGACUCGAGUGGAUUGGGUGGAUCUUUCCG
    GGCGAGGGAUCAACCGAGUACAACGAAAAAUUUAAGGGACGGGCAACGCU
    GUCCGUGGACAAGAGCUCAUCUACGGCGUACAUGGAGCUGACGCGGCUCA
    CGUCAGAGGAUUCCGCCGUCUACUUCUGUGCCAGGGGCGACUACUACCGG
    CGCUACUUUGAUCUGUGGGGACAAGGAACGACCGUGACUGUCUCAUCAGG
    CGGCGGCGGAUCGGGAGGAGGCGGAUCGGGUGGCGGUGGUUCGGACAUUC
    AGAUGACUCAAUCGCCCAGCUUCCUGUCGACCUCACUGGGGAAUUCUAUU
    ACGAUCACUUGUCACGCUUCGCAGAACAUCAAGGGUUGGCUGGCUUGGUA
    CCAGCAGAAAAGCGGUAACGCCCCGCAACUGCUCAUCUACAAGGCAUCGU
    CCCUGCAAUCGGGAGUGCCGUCACGCUUUUCAGGAUCGGGCUCCGGAACC
    GAUUACAUCUUUACCAUCAGCAACCUGCAGCCGGAAGACAUCGCCACUUA
    CUACUGUCAACACUAUCAGAGCUUUCCGUGGACCUUUGGAGGGGGGACCA
    AAUUGGAGAUCAAGCGCGACUACAAGGAUGACGAUGACAAAUGAUAAUAG
    GCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGCC
    CCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUG
    AGUGGGCGGC
    MDWTWILFLVAAATRVHSKGMSYSMCTGKFKVVKEIAETQHGTIVIRVQT 32
    EGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPVNIEAEPPFGDS
    YIIIGVEPGQLKLNWFKKGSSIGQMFETTMRGAKRMAILSGGDIIKLLNE
    QVNKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEEYEHAKKLIIFLN
    ENNVPVQLTSISAPEHKFEGLTQIFQKAYEHEQHISESINNIVDHAIKSK
    DHATFNFLQWYVAEQHEEEVLFKDILDKIELIGNENHGLYLADQYVKGIA
    KSRKS
    ATGGATTGGACCTGGATCTTGTTTCTCGTCGCCGCAGCCACTCGCGTTCA 33
    TAGCAAAGGAATGTCATACTCCATGTGCACGGGAAAATTCAAGGTGGTCA
    AAGAGATCGCGGAGACTCAGCACGGCACCATCGTCATTCGCGTGCAAACT
    GAAGGAGATGGATCTCCCTGCAAGATCCCGTTCGAGATCATGGACCTGGA
    AAAGAGACACGTCCTCGGTAGACTGATCACCGTGAACCCGATCGTGACGG
    AGAAGGATTCCCCGGTGAATATTGAAGCAGAGCCTCCATTTGGGGACTCA
    TACATTATCATTGGGGTCGAGCCGGGCCAGCTGAAGCTGAATTGGTTTAA
    GAAGGGCTCGTCAATCGGACAGATGTTCGAAACTACTATGAGGGGTGCAA
    AGCGGATGGCGATCCTCTCGGGCGGAGATATCATCAAACTCCTTAACGAA
    CAGGTGAACAAGGAGATGCAGTCCTCAAACCTTTACATGAGCATGTCGTC
    CTGGTGTTACACCCATAGCCTGGACGGCGCTGGATTGTTCCTGTTTGACC
    ATGCAGCGGAGGAATACGAACACGCCAAGAAGCTCATCATCTTCCTGAAC
    GAGAATAACGTGCCAGTGCAACTGACCTCCATCTCGGCTCCTGAGCACAA
    GTTCGAAGGACTCACCCAGATCTTCCAAAAGGCCTACGAACACGAACAGC
    ACATCAGCGAATCCATCAACAATATCGTGGACCATGCTATCAAAAGCAAA
    GACCATGCGACCTTCAACTTCCTGCAATGGTATGTCGCCGAACAGCACGA
    AGAGGAGGTGCTGTTCAAGGACATTCTCGACAAAATCGAATTGATAGGGA
    ACGAAAATCACGGTCTGTACCTGGCCGATCAATACGTGAAGGGAATTGCC
    AAGTCGCGGAAGTCGT
    GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUG 34
    GAUUGGACCUGGAUCUUGUUUCUCGUCGCCGCAGCCACUCGCGUUCAUAG
    CAAAGGAAUGUCAUACUCCAUGUGCACGGGAAAAUUCAAGGUGGUCAAAG
    AGAUCGCGGAGACUCAGCACGGCACCAUCGUCAUUCGCGUGCAAACUGAA
    GGAGAUGGAUCUCCCUGCAAGAUCCCGUUCGAGAUCAUGGACCUGGAAAA
    GAGACACGUCCUCGGUAGACUGAUCACCGUGAACCCGAUCGUGACGGAGA
    AGGAUUCCCCGGUGAAUAUUGAAGCAGAGCCUCCAUUUGGGGACUCAUAC
    AUUAUCAUUGGGGUCGAGCCGGGCCAGCUGAAGCUGAAUUGGUUUAAGAA
    GGGCUCGUCAAUCGGACAGAUGUUCGAAACUACUAUGAGGGGUGCAAAGC
    GGAUGGCGAUCCUCUCGGGCGGAGAUAUCAUCAAACUCCUUAACGAACAG
    GUGAACAAGGAGAUGCAGUCCUCAAACCUUUACAUGAGCAUGUCGUCCUG
    GUGUUACACCCAUAGCCUGGACGGCGCUGGAUUGUUCCUGUUUGACCAUG
    CAGCGGAGGAAUACGAACACGCCAAGAAGCUCAUCAUCUUCCUGAACGAG
    AAUAACGUGCCAGUGCAACUGACCUCCAUCUCGGCUCCUGAGCACAAGUU
    CGAAGGACUCACCCAGAUCUUCCAAAAGGCCUACGAACACGAACAGCACA
    UCAGCGAAUCCAUCAACAAUAUCGUGGACCAUGCUAUCAAAAGCAAAGAC
    CAUGCGACCUUCAACUUCCUGCAAUGGUAUGUCGCCGAACAGCACGAAGA
    GGAGGUGCUGUUCAAGGACAUUCUCGACAAAAUCGAAUUGAUAGGGAACG
    AAAAUCACGGUCUGUACCUGGCCGAUCAAUACGUGAAGGGAAUUGCCAAG
    UCGCGGAAGUCGUGAUAAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGC
    CCCUUGGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCC
    GUGGUCUUUGAAUAAAGUCUGAGUGGGCGGCU
  • Mice were vaccinated on weeks 0 and 3 via intramuscular (IM) or intradermal (ID) routes. One group remained unvaccinated and one was administered 105 plaque-forming units (PFU) live DENV2, D2Y98P isolate via intravenous (IV) injection as a positive control. Serum was collected from each mouse on weeks 1, 3, and 5; bleeds on weeks 1 and 3 were in-life samples (tail vein or submandibular bleeds) and week 5 will be a terminal (intracardiac) bleed. Individual serum samples were stored at −80° C. until analysis by neutralization or microneutralization assay. Pooled samples from each group at the week 5 time points were tested by Western blot for reactivity with viral lysate.
  • TABLE 16
    Detailed experimental design (treatment, readouts)
    Vaccine (n =
    10, female)
    mice/group)
    Mouse Delivered Formulation/
    Group Strain week 0 and 3 Chemistry Route Dose Readouts
    1 Female N/A N/A N/A Serum
    2 BALB/c DEN2Y98-PrME N1-methyl- ID 0.4  samples
    3 6-8 (construct 1 pseudouridine/ IM mg/kg collected
    weeks from Table 14) 5-methyl- in LNP on weeks
    4 of age cytosine ID 0.08 1, 3, and 5.
    5 IM mg/kg Serum
    in LNP analyzed
    6 ID  0.016 via
    7 IM mg/kg Western
    in LNP blot
    8 N1-methyl- ID 0.4 
    9 pseudouridine IM mg/kg
    in LNP
    10 ID 0.08
    11 IM mg/kg
    in LNP
    11 ID  0.016
    12 IM mg/kg
    in LNP
    13 DEN2Y98-PrME80 N1-methyl- ID 0.4 
    14 (construct 2 pseudouridine/ IM mg/kg
    from Table 14) 5-methyl- in LNP
    15 cytosine ID 0.08
    16 IM mg/kg
    in LNP
    17 ID  0.016
    18 IM mg/kg
    in LNP
    19 N1-methyl- ID 0.4 
    20 pseudouridine IM mg/kg
    in LNP
    21 ID 0.08
    22 IM mg/kg
    in LNP
    23 ID  0.016
    24 IM mg/kg
    in LNP
    25 DEN2Y98- N1-methyl- ID 0.4 
    26 PrME80-DC pseudouridine/ IM mg/kg
    (construct 3 5-methyl- in LNP
    27 from Table 14) cytosine ID 0.08
    28 IM mg/kg
    in LNP
    29 ID  0.016
    30 IM mg/kg
    in LNP
    31 N1-methyl- ID 0.4 
    32 pseudouridine IM mg/kg
    in LNP
    33 ID 0.08
    34 IM mg/kg
    in LNP
    35 ID  0.016
    36 IM mg/kg
    in LNP
    37 DEN2-DIII- N1-methyl- ID 0.4 
    38 Ferritin pseudouridine IM mg/kg
    (construct 4 in LNP
    39 from Table 14) ID 0.08
    40 IM mg/kg
    in LNP
    41 ID  0.016
    42 IM mg/kg
    in LNP
    43 Control, IV 105 PFU
    D2Y98P
    live virus

    Signal was detected in groups 5, 15, 39, and 44 (live virus control) by a band that appeared between 50 and 60 kDa in the Western blot data. The data suggests that a mRNA vaccine to a single dengue viral antigen can produce antibody in preliminary studies.
  • In order to provide a Dengue vaccine having enhanced immunogenicity, RNA vaccines for concatemeric antigens were designed and tested according to the invention. These vaccines, which have significantly enhanced activity, in comparison to the single protein antigens described herein, are described below.
  • Example 20: In Silico Prediction of T Cell Epitopes for RNA Vaccine Design
  • Several peptide epitopes from Dengue virus were generated and tested for antigenic activity. The peptide epitopes are designed to maximize MHC presentation. In general the process of MHC class I presentation is quite inefficient, with only 1 peptide of 10,000 degraded molecules actually being presented. Additionally the priming of CD8 T cell with APCs having insufficient densities of surface peptide/MHC class I complexes results in weak responders exhibiting impaired cytokine secretion and a decrease memory pool. Thus, the process of designing highly effective peptide epitopes is important to the immunogenicity of the ultimate vaccine.
  • In silico prediction of desirable peptide epitopes was performed using Immune Epitope Database. Using this database several immunogenic Dengue T cell epitopes showing strong homology across all 4 Dengue serotypes were predicted. Examples of these epitopes are shown in FIGS. 16A-16C and 17A-17C.
  • Example 21: Prediction of DENV T Cell Epitopes for RNA Vaccine Design
  • The design of optimized vaccination systems to prevent or treat conditions that have failed to respond to more traditional treatments or early vaccination strategies relies on the identification of the antigens or epitopes that play a role in these conditions and which the immune system can effectively target. T cell epitopes (e.g., MHC peptide binding) for the various alleles shown in Table 17 were determined using Rapid Epitope Discovery System (ProImmune REVEAL & ProVE®). This system is used to identify those candidate epitopes that actually cause relevant immune responses from the numerous other potential candidates identified using algorithms to predict MHC-peptide binding. The REVEAL binding assay determines the ability of each candidate peptide to bind to one or more MHC I class alleles and stabilize the MHC-peptide complex. The assay identifies the most likely immunogenic peptides in a protein sequence by comparing the binding to that of a high affinity T cell epitope and detecting the presence or absence of the native conformation of the MHC-peptide complex. The epitope peptides are further tested using the assays described herein to confirm their immunogenic activity.
  • TABLE 17
    Alleles Tested
    Allele
    A*01:01
    A*02:01
    A*03:01
    A*11:01
    A*24:02
    B*07:02
    B*27:05
    H-2Kb
  • TABLE 18
    ProImmune REVEAL® binding assay data for A*01: 01
    Peptide I.D. SEQ ID NO REVEAL® score at 0 h
    TTDISEMGA 217 68.4
  • TABLE 19
    ProImmune REVEAL® binding assay data for A*02: 01
    Peptide I.D. SEQ ID NO REVEAL® score at 0 h
    TMWHVTRGA 218 112.0
    MWHVTRGAV 219 62.7
    GLYGNGVVT 220 87.7
    TLILAPTRV 221 104.2
    LILAPTRVV 222 106.4
    ILAPTRVVA 223 95.7
    VVAAEMEEA 224 92.2
    IVDLMCHAT 225 62.7
    LMCHATFTM 226 72.9
    MGEAAAIFM 227 50.6
    GEAAAIFMT 228 74.3
    KTVWFVPSI 229 115.9
    LMRRGDLPV 230 82.3
    TLLCDIGES 231 63.9
    LLCDIGESS 232 93.9
    AMTDTTPFG 233 91.9
    GQQRVFKEK 234 47.1
    KLTYQNKVV 235 92.3
    AISGDDCVV 236 91.1
    LMYFHRRDL 237 97.8
  • TABLE 20
    ProImmune REVEAL® binding assay data for A*03: 01
    Peptide I.D. SEQ ID NO REVEAL® score at 0 h
    RTLILAPTR 238 91.4
    TLILAPTRV 239 55.2
    MCHATFTMR 240 86.8
    TVWFVPSIK 241 53.6
    GQQRVFKEK 242 59.6
    CVYNMMGKR 243 81.6
  • TABLE 21
    ProImmune REVEAL® binding assay data for A*11: 01
    Peptide I.D. SEQ ID NO REVEAL® score at 0 h
    HTMWHVTRG 244 56.3
    RTLILAPTR 245 89.9
    TLILAPTRV 246 59.0
    MCHATFTMR 247 91.0
    ATFTMRLLS 248 58.5
    GEAAAIFMT 249 50.3
    KTVWFVPSI 250 50.8
    TVWFVPSIK 251 92.2
    GQQRVFKEK 252 85.5
    CVYNMMGKR 253 113.2
    VYNMMGKRE 254 62.5
    YNMMGKREK 255 80.9
    NMMGKREKK 256 77.9
    GTYGLNTFT 257 63.6
    ISGDDCVVK 258 88.7
  • TABLE 22
    ProImmune REVEAL® binding assay data for A*24: 02
    Peptide I.D. SEQ ID NO REVEAL® score at 0 h
    LMCHATFTM 259 99.5
    CHATFTMRL 260 75.9
    GEAAAIFMT 261 58.9
    KTVWFVPSI 262 89.1
    HWTEAKMLL 263 103.2
    WTEAKMLLD 264 94.7
    LGCGRGGWS 265 74.8
    MAMTDTTPF 266 51.3
    MYADDTAGW 267 76.8
    VGTYGLNTF 268 96.0
    YFHRRDLRL 269 87.5
  • TABLE 23
    ProImmune REVEAL® binding assay data for B*07: 02
    Peptide I.D. SEQ ID NO REVEAL® score at 0 h
    FKPGTSGSP 270 50.4
    KPGTSGSPI 271 112.1
    IPERSWNSG 272 45.2
    PERVILAGP 273 56.1
    LMRRGDLPV 274 178.9
    PLSRNSTHE 275 65.0
    LSRNSTHEM 276 124.5
    SRNSTHEMY 277 52.0
    MAMTDTTPF 278 117.4
    TPFGQQRVF 279 112.7
    LMYFHRRDL 280 119.6
  • TABLE 24
    ProImmune REVEAL® binding assay data for B*27: 05
    Peptide I.D. SEQ ID NO REVEAL® score at 0 h
    LRTLILAPT 281 58.7
    LMCHATFTM 282 98.2
    ARGYISTRV 283 125.3
    RRGDLPVWL 284 144.8
    GQQRVFKEK 285 95.4
    SRAIWYMWL 286 53.9
    FKLTYQNKV 287 53.7
  • TABLE 25
    ProImmune REVEAL® binding assay data for H-2 Kb
    Peptide I.D. SEQ ID NO REVEAL® score at 0 h
    FKPGTSGSP 288 45.7
    LAPTRVVAA 289 102.5
    LMCHATFTM 290 59.0
    CHATFTMRL 291 60.3
    HATFTMRLL 292 69.5
    ATFTMRLLS 293 55.6
    KTVWFVPSI 294 54.4
    LSRNSTHEM 295 51.1
    QQRVFKEKV 296 63.4
    YGLNTFTNM 297 75.4
    LMYFHRRDL 298 54.9
  • Example 22: Activity Testing for Predicted Peptide Epitopes
  • Exemplary peptide epitopes selected using the methods described above were further characterized. These peptide epitopes were confirmed to have activity using in vitro HLA binding assays (human lymphocyte binding assays). Peptides (9 aa peptides from the dengue antigen) were screened for their ability to bind to HLA. The analysis of the homology, affinity, frequency and design of these peptides is shown in FIGS. 16A-16C and 17A-17C.
  • Example 23: In Vivo Analysis of Mimectopes of Predicted Human Epitopes RNA Vaccines Methods
  • IFNγ ELISpot. Mouse IFNγ ELISpot assays were performed using IFNγ coated Millipore IP Opaque plates according to the manufacturer's mouse IFNγ ELISPOT guidelines. Briefly, the plates were blocked using complete RPMI (R10) and incubated for 30 minutes prior to plating cells. Peptides (284-292, 408-419 or 540-548) were diluted to 5 different concentrations for stimulation at 5, −6, −7, −8, or −9 from an original stock concentration of 10 mM (−2). Mouse splenocytes (200,000-250,000 cells) were plated in appropriate wells with peptide, PMA+Ionomycin or R10 media alone. Cells were stimulated in a total volume of 125 μL per well. Plates were then incubated at 37° C., 5% CO2 for 18-24 hrs. Plates were developed following the manufacturer's instructions. Plates were counted and quality controlled using the automated ELISPOT reader CTL ImmunoSpot/FluoroSpot.
  • Intracellular Cytokine Staining (ICS). Intracellular Cytokine Staining (ICS). For intracellular cytokine staining, individual splenocytes, were resuspended at a concentration of 1.5×106 cells per mL. Peptides (284-292, 408-419 or 540-548) were made into 5 dilutions from a stock concentration of 10 mM(−2). The final concentrations of each peptide were −5, −6, −7, −8, or −9 in their respective wells. Cells were stimulated in a final volume of 200 uL within a 96 well culture plate. After the addition of Golgi plug (0.2 uL per well), cells were incubated at 37° C., 5% CO2 for 5 hours. Following stimulation, cells were surface stained, fixed, washed and put at 4° C. overnight. Intracellular staining was performed the following day, resulting in full panel of Live/Dead (Invitrogen), αCD3, αCD4, αCD8, αCD45, αCCR7, αCD44, αCD25, αIL-2, αIFNγ, and αTNFα (BD Biosciences). Cells were acquired in a 96-U bottom plate using BD LSR Fortessa HTS (BD Biosciences).
  • Results
  • The exemplary peptide epitopes selected using the methods described herein were used to produce tests mouse mimectopes of the predicted human epitopes. These mimectopes were analyzed for in vivo activity using restimulation assays during the acute phase of Dengue infection (Day 7). The methods were performed on dengue-infected IFNαβ/γ-receptor-deficient mice (AG129). Seven days post infection splenocytes were harvested and subjected to an ELISPOT assay to quantify secretion of cytokines by T cells (CD8) as described above. Briefly, the isolated splenocytes were stimulated with the test peptides and tested for T cell activation. If the peptide is an appropriate antigen, some cells would be present antigen during infection and would be capable of stimulating T cells. The methods for analyzing the T cell activation were performed as follows:
  • T cells (at a known concentration) were incubated with a specific antigen in a cell culture well the activated T cells were transferred to ELISPOT plates (precoated with anti-cytokine antibody)
    the cells were incubated such that cytokines could be secreted
    the cells were washed off the plate and enzyme coupled secondary Ig was added
    the plates were washed and substrate was added
    positive spots were scored under microscope.
  • The data is shown in FIGS. 18-19 . FIGS. 18 and 19 are graphs depicting the results of an ELISPOT assay of dengue-specific peptides measuring IFN-γ (spots per million splenocytes).
  • A schematic of an assay on a BLT Mouse Model (Bone Marrow/Liver/Thymus) is shown in FIG. 20 . The results of a histogram analysis of human CD8 T cells stimulated with peptide epitope is also shown in FIG. 20 .
  • The following two sequences were used as controls:
  • (SEQ ID NO: 35)
    (V5)8-cathb: Kozak Start GKPIPNPLLGLDST-GFLG-
    GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-
    GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-
    GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-
    GKPIPNPLLGLDST Stop
    (SEQ ID NO: 36)
    (v5)8-cathb + MHCi: Kozak Start GKPIPNPLLGLDST-
    GFLG-GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-
    GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-
    GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-
    GKPIPNPLLGLDST Stop

    Some results are shown in Table 26:
  • TABLE 26
    Results
    A*02:01
    Peptide ID REVEAL® Score
    5. KQWFLDLPL (SEQ ID NO: 213)  86.0
    6. RQWFLDLPL (SEQ ID NO: 214)  77.7
    7. RQWFFDLPL (SEQ ID NO: 215)  80.5
    8. TALTGATEI (SEQ ID NO: 216)   0.9
    Positive Control 100. +/-
  • Example 24: AG129 Mouse Challenge of Mimectopes of Predicted Human Epitopes from DENV2
  • A study is performed on AG129 mouse using a cocktail of 2 peptide epitopes. The immunogenicity of the peptide epitopes is determined in AG129 mice against challenge with a lethal dose of mouse-adapted DENV 2 strain D2Y98P. AG129 mice, which lack IFN α/β and
    Figure US20230020362A1-20230119-P00002
    receptor signaling, injected intradermally in the footpad with 104 PFU of DENV do not survive past day 5 post-injection. AG129 mice are vaccinated via intramuscular (IM) injection with either 2 μg or 10 μg of a cocktail of 2 peptide epitopes. The vaccines are given to AG129 mice with a prime and a boost (day 0 and day 28). The positive control group is vaccinated with heat-inactivated DENV 2. Phosphate-buffered saline (PBS) is used as a negative control. On day 56, mice are challenged with mouse-adapted DENV 2 and monitored for 10 days for weight loss, morbidity, and mortality. Mice that display severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis are euthanized.
  • Example 25: “Humanized” DENV Peptides Mouse Immunogenicity Study
  • A study analyzing immunogenicity of the peptide epitopes on humanized mice is performed. A single-dose cocktail (30 μg) containing 3 different peptide epitopes are delivered by IM route of immunization with prime and boost (day 0, day 28). A T cell (ELISPOT and ICS) characterization may be performed on Day 7, Day 28, and Day 56.
  • Example 26: Testing of Non-Human Primate (NHP) Mimectopes of Predicted DENV Human Epitopes
  • Non-human primate (NHP) mimectopes to the human epitopes may also be developed and tested for activity in NHP assays. The NHP mimectopes are designed based on the human antigen sequence. These mimectopes may be analyzed for in vivo activity in an NHP model using, for instance, restimulation assays. Once the NHPs have been infected, immune cells may be isolated and tested for sensitivity of activation by the particular mimectopes.
  • Example 27: Targeting of DENV Concatemeric Constructs Using Cytoplasmic Domain of MHC I
  • MHC-1_V5 concatemer constructs were developed and transfected in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus Dapi was performed. The data is shown in FIGS. 21-23 . FIG. 21 shows MHC-1_V5 concatemer transfection in HeLa cells. The arrows indicate V5-MHC1 colocalization (bottom right). FIG. 22 shows MHC-1_V5 concatemer transfection. The arrows indicate regions where V5 preferentially colocalizes with MHC1 and not with Mitotracker. FIG. 23 shows V5 concatemer transfection in HeLa cells. V5 has homogeneous cytoplasmic distribution preferentially colocalizes with MHC1 and not with Mitotracker. These data demonstrate that the V5 concatemer with the cytoplasmic domain from MHC class I colocalizes with MHC class I expression (FIG. 21 ), while the V5 concatemer without this sequence is only found in the cytoplasm (FIG. 23 ) following transfection in HeLa cells.
  • Example 28: In Vivo Analysis of DENV Concatemeric mRNA Epitope Construct
      • The Dengue concatemers used in this study consist of 8 repeats of the peptide TALGATET (SEQ ID NO: 299), a mouse CD8 T cell epitope found in the DENV2 envelope. The peptide repeats were linked via cathepsin B cleavage sites and modified with the various sequences as follows:
        (1) TALGATEI (SEQ ID NO: 299) peptide concatemer with no modification
        (2) TALGATEI (SEQ ID NO: 299) peptide concatemer with IgKappa signal peptide
        (3) TALGATEI (SEQ ID NO: 299) peptide concatemer with PEST sequence
        (4) TALGATEI (SEQ ID NO: 299) peptide concatemer with IgKappa signal peptide and PEST sequence
        (5) TALGATEI (SEQ ID NO: 299) peptide concatemer with MHC class I cytoplasmic domain
        (6) TALGATEI (SEQ ID NO: 299) peptide concatemer with IgKappa signal peptide and MHC class I cytoplasmic domain
    (7) Heat-inactivated DENV2 (D2Y98P)
  • (8) No immunization
  • The immunogenicity of the peptide concatemeric candidate vaccines were determined in AG129 mice against challenge with a lethal dose of DENV strain D2Y98P. AG129 mice, which lack IFN α/β and
    Figure US20230020362A1-20230119-P00003
    receptor signaling, injected intradermally in the footpad with 104 PFU of DENV do not survive past day 5 post-injection. (In this study, the mice died due to a problem with the heat-attenuation). The tested vaccines included constructs (1)-(8) disclosed above. AG129 mice were vaccinated via intramuscular (IM) injection with either 2 μg or 10 μg of the candidate vaccine. The vaccines were given to AG129 mice as a prime and a boost (second dose provided 28 days after the first dose). The positive control group was vaccinated with heat-inactivated DENV 2. Phosphate-buffered saline (PBS) was used as a negative control.
  • On day 56, mice were challenged with mouse-adapted DENV 2 and monitored for 10 days for weight loss, morbidity, and mortality. Mice that displayed severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis were euthanized. Notably, mice “vaccinated” with heat-inactivated DENV (positive control group) became morbid and died (they were not included in the challenge portion of the study).
  • In addition, individual serum samples were collected prior to challenge on day 54 and PBMCs were isolated and frozen for subsequent testing.
  • The AG129 mice PBMCs were thawed and stimulated with TALGATEI (SEQ ID NO: 299) peptide for 5 hours in a standard intracellular cytokine assay. For intracellular cytokine staining, PBMCs were thawed and suspended in media. The TALGATEI (SEQ ID NO: 299) peptide was administered to stimulate the cells. After the addition of Golgi plug, cells were incubated at 37° C., 5% CO2 for 5 hours. Following stimulation, cells were surface stained, fixed, washed and put at 4° C. overnight. Intracellular staining was performed the following day and assayed via ELISPOT assay to quantify secretion of cytokines by T cells (CD8) as described above to determine T cell activation. If the peptide is an appropriate antigen, some cells would be present antigen during infection and would be capable of stimulating T cells. The results are shown in FIGS. 24A and 24B, which demonstrate that each of the peptides (1)-(6) stimulate T cell activation.
  • Example 29: Exemplary CHIKV Polypeptides
  • The amino acids presented in the Table 27 are exemplary CHIKV antigenic polypeptides. To the extent that any exemplary antigenic peptide described herein includes a flag tag or V5, or a polynucleotide encodes a flag tag or V5, the skilled artisan understands that such flag tag or V5 is excluded from the antigenic polynucleotide in a vaccine formulation. Thus, any of the polynucleotides encoding proteins described herein are encompassed within the compositions of the invention without the flag tag or V5 sequence.
  • TABLE 27
    Antigen
    identifier Amino acid sequence
    SE_chikv- MYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVK
    Brazillian- CCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDTENTQLSEAHVEKSESCKTEFASAYR
    E1_KP164567- AHTASASAKLRVLYQGNNITVAAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVY
    71_72 NMDYPPFGAGRPGQFGDIQSRTPESEDVYANTQLVLQRPSAGTVHVPYSQAPSGFKYWLKER
    GASLQHTAPFGCQIATNPVRAMNCAVGNMPISIDIPDAAFTRVVDAPSLTDMSCEVSACTHS
    SDFGGVAIIKYAASKKGKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCS
    TQVHCAAECHPPKDHIVNYPASHTTLGVQDISATAMSWVQKITGGVGLVVAVAALILIVVLC
    VSFSRH (SEQ ID NO. 37)
    SE_chikv- MYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVK
    Brazillian- CCGTAECKDKNLPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASAYR
    E1_KP164568- AHTASASAKLRVLYQGNNITVTAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVY
    69_70 NMDYPPFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLKER
    GASLQHTAPFGCQIATNPVRAVNCAVGNMPISIDIPDAAFIRVVDAPSLTDMSCEVPACTHS
    SDFGGVAIIKYAASKKGKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCS
    TQVHCVAECHPPKDHIVNYPASHTTLGVQDISATALSWVQKITGGVGLVVAVAALILIVVLC
    VSFSRH (SEQ ID NO. 38)
    SE_chikv- MSIKDHFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDS
    Brazillian- HDWTKLRYMDNHMPADAERAGLFVRTSAPCTITGTMGHFILARCPKGETLTVGFTDGRKISH
    E2- SCTHPFHHDPPVIGREKFHSRPQHGRELPCSTYAQSTAATAEEIEVHMPPDTPDRTLMSQQS
    E1_KP164567- GNVKITVNSQTVRYKCNCGDSSEGLTTTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAE
    71_72 FGDRKGKVHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEE
    WVTHKKEIRLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTAVVL
    SVASFILLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKAYEHVTVIPNT
    VGVPYKTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVKCCGTAECKDKS
    LPDYSCKVFTGVYPFMWGGAYCFCDTENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLR
    VLYQGNNITVAAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVYNMDYPPFGAGR
    PGQFGDIQSRTPESEDVYANTQLVLQRPSAGTVHVPYSQAPSGFKYWLKERGASLQHTAPFG
    CQIATNPVRAMNCAVGNMPISIDIPDAAFTRVVDAPSLTDMSCEVSACTHSSDFGGVAIIKY
    AASKKGKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCSTQVHCAAECHP
    PKDHIVNYPASHTTLGVQDISATAMSWVQKITGGVGLVVAVAALILIVVLCVSFSRHMSIKD
    HFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDSHDWTK
    LRYMDNHMPADAERAGLFVRTSAPCTITGTMGHFILARCPKGETLTVGFTDGRKISHSCTHP
    FHHDPPVIGREKFHSRPQHGRELPCSTYAQSTAATAEEIEVHMPPDTPDRTLMSQQSGNVKI
    TVNSQTVRYKCNCGDSSEGLTTTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAEFGDRK
    GKVHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEEWVTHK
    KEIRLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTAVVLSVASF
    ILLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKAYEHVTVIPNTVGVPY
    KTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVKCCGTAECKDKSLPDYS
    CKVFTGVYPFMWGGAYCFCDTENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLRVLYQG
    NNITVAAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVYNMDYPPFGAGRPGQFG
    DIQSRTPESEDVYANTQLVLQRPSAGTVHVPYSQAPSGFKYWLKERGASLQHTAPFGCQIAT
    NPVRAMNCAVGNMPISIDIPDAAFTRVVDAPSLTDMSCEVSACTHSSDFGGVAIIKYAASKK
    GKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCSTQVHCAAECHPPKDHI
    VNYPASHTTLGVQDISATAMSWVQKITGGVGLVVAVAALILIVVLCVSFSRH (SEQ ID
    NO. 39)
    SQ-031495 MSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDS
    SE_chikv- HDWTKLRYMDNHTPADAERAGLFVRTSAPCTITGTMGHFILTRCPKGETLTVGFTDSRKISH
    Brazillian- SCTHPFHHDPPVIGREKFHSRPQHGKELPCSTYVQSTAATTEEIEVHMPPDTPDRTLMSQQS
    E2- GNVKITVNGQTVRYKCNCGGSNEGLITTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAE
    E1_KP164568- LGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEE
    69_70 WVTHKKEVVLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTVVVV
    SVASFVLLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKAYEHVTVIPNT
    VGVPYKTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVKCCGTAECKDKN
    LPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLR
    VLYQGNNITVTAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVYNMDYPPFGAGR
    PGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLKERGASLQHTAPFG
    CQIATNPVRAVNCAVGNMPISIDIPDAAFIRVVDAPSLTDMSCEVPACTHSSDFGGVAIIKY
    AASKKGKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCSTQVHCVAECHP
    PKDHIVNYPASHTTLGVQDISATALSWVQKITGGVGLVVAVAALILIVVLCVSFSRH (SEQ
    ID NO. 40)
    SE_chikv- MSIKDHFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDS
    Brazillian- HDWTKLRYMDNHMPADAERAGLFVRTSAPCTITGTMGHFILARCPKGETLTVGFTDGRKISH
    E2_KP164567- SCTHPFHHDPPVIGREKFHSRPQHGRELPCSTYAQSTAATAEEIEVHMPPDTPDRTLMSQQS
    71_72 GNVKITVNSQTVRYKCNCGDSSEGLTTTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAE
    FGDRKGKVHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEE
    WVTHKKEIRLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTAVVL
    SVASFILLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKA (SEQ ID
    NO. 41)
    SE_chikv- MSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDS
    Brazillian- HDWTKLRYMDNHTPADAERAGLFVRTSAPCTITGTMGHFILTRCPKGETLTVGFTDSRKISH
    E2_KP164568- SCTHPFHHDPPVIGREKFHSRPQHGKELPCSTYVQSTAATTEEIEVHMPPDTPDRTLMSQQS
    69_70 GNVKITVNGQTVRYKCNCGGSNEGLITTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAE
    LGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEE
    WVTHKKEVVLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTVVVV
    SVASFVLLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKA (SEQ ID
    NO. 42)
    SE_CHIKV_C_E3 MEFIPTQTFYNRRYQPRPWAPRPTIQVIRPRPRPQRQAGQLAQLISAVNKLTMRAVPQQKPR
    _E2_6K_E1_no RNRKNKKQRQKKQAPQNDPKQKKQPPQKKPAQKKKKPGRRERMCMKIENDCIFEVKHEGKVM
    Flag or V5 or GYACLVGDKVMKPAHVKGTIDNADLAKLAFKRSSKYDLECAQIPVHMKSDASKFTHEKPEGY
    HA (Strain YNWHHGAVQYSGGRFTIPTGAGKPGDSGRPIFDNKGRVVAIVLGGANEGARTALSVVTWNKD
    37997 IVTKITPEGAEEWSLALPVLCLLANTTFPCSQPPCTPCCYEKEPESTLRMLEDNVMRPGYYQ
    Senegal) LLKASLTCSPHRQRRSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLK
    IQVSLQIGIKTDDSHDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILARCPKGE
    TLTVGFTDSRKISHTCTHPFHHEPPVIGRERFHSRPQHGKELPCSTYVQSTAATAEEIEVHM
    PPDTPDRTLMTQQSGNVKITVNGQTVRYKCNCGGSNEGLTTTDKVINNCKIDQCHAAVTNHK
    NWQYNSPLVPRNAELGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVTMLLYPDHPTLL
    SYRNMGQEPNYHEEWVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQMSTNGTAHGHPHEIIL
    YYYELYPTMTVVIVSVASFVLLSMVGTAVGMCVCARRRCITPYELTPGATVPFLLSLLCCVR
    TTKAATYYEAAAYLWNEQQPLFWLQALIPLAALIVLCNCLKLLPCCCKTLAFLAVMSIGAHT
    VSAYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELQSVTLEPTLSLDYITCEYKTVIPSPY
    VKCCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASA
    YRAHTASASAKLRVLYQGNNITVAAYANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGD
    VYNMDYPPFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLK
    ERGASLQHTAPFGCQIATNPVRAVNCAVGNIPISIDIPDAAFTRVVDAPSVTDMSCEVPACT
    HSSDFGGVAIIKYTASKKGKCAVHSMTNAVTIREADVEVEGNSQLQISFSTALASAEFRVQV
    CSTQVHCAAACHPPKDHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVV
    LCVSFSRH (SEQ ID NO. 43)
    SE_CHIKV_C_E3 MEFIPTQTFYNRRYQPRPWAPRPTIQVIRPRPRPQRQAGQLAQLISAVNKLTMRAVPQQKPR
    _E2_6K_E1-no RNRKNKKQRQKKQAPQNDPKQKKQPPQKKPAQKKKKPGRRERMCMKIENDCIFEVKHEGKVM
    Flag or V5 or GYACLVGDKVMKPAHVKGTIDNADLAKLAFKRSSKYDLECAQIPVHMKSDASKFTHEKPEGY
    HA_DX YNWHHGAVQYSGGRFTIPTGAGKPGDSGRPIFDNKGRVVAIVLGGANEGARTALSVVTWNKD
    IVTKITPEGAEEWSLALPVLCLLANTTFPCSQPPCTPCCYEKEPESTLRMLEDNVMRPGYYQ
    LLKASLTCSPHRQRRSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLK
    IQVSLQIGIKTDDSHDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILARCPKGE
    TLTVGFTDSRKISHTCTHPFHHEPPVIGRERFHSRPQHGKELPCSTYVQSTAATAEEIEVHM
    PPDTPDRTLMTQQSGNVKITVNGQTVRYKCNCGGSNEGLTTTDKVINNCKIDQCHAAVTNHK
    NWQYNSPLVPRNAELGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVTMLLYPDHPTLL
    SYRNMGQEPNYHEEWVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQMSTNGTAHGHPHEIIL
    YYYELYPTMTVVIVSVASFVLLSMVGTAVGMCVCARRRCITPYELTPGATVPFLLSLLCCVR
    TTKAATYYEAAAYLWNEQQPLFWLQALIPLAALIVLCNCLKLLPCCCKTLAFLAVMSIGAHT
    VSAYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELQSVTLEPTLSLDYITCEYKTVIPSPY
    VKCCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASA
    YRAHTASASAKLRVLYQGNNITVAAYANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGD
    VYNMDYPPFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLK
    ERGASLQHTAPFGCQIATNPVRAVNCAVGNIPISIDIPDAAFTRVVDAPSVTDMSCEVPACT
    HSSDFGGVAIIKYTASKKGKCAVHSMTNAVTIREADVEVEGNSQLQISFSTALASAEFRVQV
    CSTQVHCAAACHPPKDHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVV
    LCVSFSRH (SEQ ID NO. 44)
    SE_CHIKV_E1_ MYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELQSVTLEPTLSLDYITCEYKTVIPSPYVK
    no Flag or V5 CCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASAYR
    AHTASASAKLRVLYQGNNITVAAYANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGDVY
    NMDYPPFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLKER
    GASLQHTAPFGCQIATNPVRAVNCAVGNIPISIDIPDAAFTRVVDAPSVTDMSCEVPACTHS
    SDFGGVAIIKYTASKKGKCAVHSMTNAVTIREADVEVEGNSQLQISFSTALASAEFRVQVCS
    TQVHCAAACHPPKDHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVVLC
    VSFSRH (SEQ ID NO. 45)
    CHIKV_E2_6K_ MSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLKIQVSLQIGIKTDDS
    E1_no Flag or HDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILARCPKGETLTVGFTDSRKISH
    V5 TCTHPFHHEPPVIGRERFHSRPQHGKELPCSTYVQSTAATAEEIEVHMPPDTPDRTLMTQQS
    GNVKITVNGQTVRYKCNCGGSNEGLTTTDKVINNCKIDQCHAAVTNHKNWQYNSPLVPRNAE
    LGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVTMLLYPDHPTLLSYRNMGQEPNYHEE
    WVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQMSTNGTAHGHPHEIILYYYELYPTMTVVIV
    SVASFVLLSMVGTAVGMCVCARRRCITPYELTPGATVPFLLSLLCCVRTTKAATYYEAAAYL
    WNEQQPLFWLQALIPLAALIVLCNCLKLLPCCCKTLAFLAVMSIGAHTVSAYEHVTVIPNTV
    GVPYKTLVNRPGYSPMVLEMELQSVTLEPTLSLDYITCEYKTVIPSPYVKCCGTAECKDKSL
    PDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLRV
    LYQGNNITVAAYANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGDVYNMDYPPFGAGRP
    GQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLKERGASLQHTAPFGC
    QIATNPVRAVNCAVGNIPiSIDIPDAAFTRVVDAPSVTDMSCEVPACTHSSDFGGVAIIKYT
    ASKKGKCAVHSMTNAVTIREADVEVEGNSQLQISFSTALASAEFRVQVCSTQVHCAAACHPP
    KDHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVVLCVSFSRH (SEQ
    ID NO. 46)
    SE_CHIKV_E2_ MSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLKIQVSLQIGIKTDDS
    no Flag or HDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILARCPKGETLTVGFTDSRKISH
    V5 TCTHPFHHEPPVIGRERFHSRPQHGKELPCSTYVQSTAATAEEIEVHMPPDTPDRTLMTQQS
    GNVKITVNGQTVRYKCNCGGSNEGLTTTDKVINNCKIDQCHAAVTNHKNWQYNSPLVPRNAE
    LGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVTMLLYPDHPTLLSYRNMGQEPNYHEE
    WVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQMSTNGTAHGHPHEIILYYYELYPTMTVVIV
    SVASFVLLSMVGTAVGMCVCARRRCITPYELTPGATVPFLLSLLCCVRTTKA (SEQ ID
    NO. 47)
  • Example 30. ZIKV Vaccines
  • The design of preferred Zika vaccine mRNA constructs of the invention encode prME proteins from the Zika virus intended to produce significant immunogenicity. The open reading frame comprises a signal peptide (to optimize expression into the endoplasmic reticulum) followed by the Zika prME polyprotein sequence. The particular prME sequence used is from a Micronesian strain (2007) that most closely represents a consensus of contemporary strain prMEs. This construct has 99% prME sequence identity to the current Brazilian isolates.
  • Within the Zika family, there is a high level of homology within the prME sequence (>90%) across all strains so far isolated (See Table 28 below). The high degree of homology is also preserved when comparing the original isolates from 1947 to the more contemporary strains circulating in Brazil in 2015, suggesting that there is “drift” occurring from the original isolates. Furthermore, attenuated virus preparations have provided cross-immunization to all other strains tested, including Latin American/Asian, and African.
  • Overall, this data suggests that cross-protection of all Zika strains is possible with a vaccine based on prME.
  • TABLE 28
    Zika virus prME homology
    Zika virus Pairwise AA % identity
    Country of Year of to Brazilian isolates
    Strain isolation isolation prME Genome
    South Suriname
    2015 100.0% 99.0%
    American
    Asian Cambodia
    2010 99.4% 99.1%
    French Polynesia 2013 99.7% 99.4%
    Micronesia
    2007 98.8% 97.1%
    African Senegal 2002 92.5% 89.9%
    Ugnada 1947 91.0% 87.3%
  • In fact, the prM/M and E proteins of ZIKV have a very high level (99%) of sequence conservation between the currently circulating Asiatic and Brazilian viral strains. The sequence alignment of the prM/M and E proteins is shown in FIG. 27 .
  • The M and E proteins are on the surface of the viral particle. Neutralizing antibodies predominantly bind to the E protein, the preM/M protein functions as a chaperone for proper folding of E protein and prevent premature fusion of E protein within acidic compartments along the cellular secretory pathway.
  • Described herein are examples of ZIKV vaccine designs comprising mRNA encoding the both prM/M and E proteins or E protein alone (FIGS. 26A and 26B). FIG. 26A depicts mRNA encoding an artificial signal peptide fused to prM protein fused to E protein. FIG. 2B depicts mRNA encoding an artificial signal peptide fused to E protein.
  • ZIKV vaccine constructs can encode the prME or E proteins from different strains, for example, Brazil_isolate_ZikaSPH2015 or ACD75819_Micronesia, having a signal peptide fused to the N-termini of the antigenic protein(s). In this example, ZIKV vaccines comprise mRNAs encoding antigenic polypeptides having amino acid sequences of SEQ ID NO: 50-59. The examples are not meant to be limiting.
  • Example 31. Expression of ZIKV prME Protein in Mammalian Cells Using ZIKV mRNA Vaccine Construct
  • The ZIKV prME mRNA vaccine construct were tested in mammalian cells (239T cells) for the expression of ZIKV prME protein. 293T cells were plated in 24-well plates and were transfected with 2 μg of ZIKV prME mRNA using a Lipofectamine transfection reagent. The cells were incubated for the expression of the ZIKV prME proteins before they were lysed in an immunoprecipitation buffer containing protease inhibitor cocktails. Reducing agent was not added to the lysis buffer to ensure that the cellular proteins were in a non-reduced state. Cell lysates were centrifuged at 8,000×g for 20 mins to collect lysed cell precipitate. The cell precipitates were then stained with anti ZIKV human serum and goat anti-human Alexa Fluor 647. Fluorescence was detected as an indication of prME expression (FIG. 28 ).
  • The expression of ZIKV prME protein was also detected by fluorescence-activated cell sorting (FACS) using a flow cytometer. 293F cells (2×106 cells/ml, 30 ml) were transfected with 120 μg PEI, 1 ml of 150 mM NaCl, and 60 μg prME mRNA. Transfected cells were incubated for 48 hours at 37° C. in a shaker at 130 rpm and under 5% CO2. The cells were then washed with PBS buffer containing 2% FBS and fixed in a fixation buffer (PBS buffer containing formalin) for 20 minutes at room temperature. The fixed cells were permeabilized in a permeabilization buffer (PBS+1% Triton X100+1 μl of Golgi plug/ml of cells). The permeabilized cells were then stained with anti-ZIKV human serum (1:20 dilution) and goat anti-human Alexa Fluor 647 secondary antibody, before they were sorted on a flow cytometer. As shown in FIG. 29 , FIG. 30A and FIG. 30B, cells transfected with prME mRNA and stained with the anti-ZIKA human serum shifted to higher fluorescent intensity, indicating that prME expressed from the ZIKV mRNA vaccine constructs in the transfected cells.
  • Example 32. Expression, Purification and Characterization of Zika VLPs
  • VLPs were made in HeLa cells and in HEK293t cells and purified via PEG precipitation or ultracentrifugation, respectively. Cells were cultured in culture media. Prior to transfection, cells were passaged twice in virus growth media+10% FBS to media adaptation.
  • Cells were seeded the day before transfection into T-175 flask. 100 μg of prME-encoding mRNA was transfected using 100 μg pf lipofectamine as per manufacturer's protocol. 6 hours post transfection, monolayers were washed twice with 1×PBS and 20 mL of virus growth media was added. Supernatant was collected 24-48 hours post transfection by centrifugation at 2000×g for 10 mins and 0.22 μm filtration.
  • For VLP purification via PEG precipitation, VLP's were concentrated using Biovision PEG precipitation kit as per manufacturer's protocol. In brief, supernatant with VLP's was mixed with PEG8000 and incubated at 4° C. for 16 hours. After incubation, mixture was centrifuged at 3000×g for 30 mins. Pellet containing concentrated VLP's was collected and suspended into PBS. VLP's were further buffer exchanged into PBS (1:500) using amicon ultra 100MWCO filter. Purified samples were negative stained (FIG. 32 ).
  • Expression of prME from the vaccine mRNA constructs on the invention was demonstrated to result in the production of virus like particles (VLPs) that are expected to present to the immune system as identical to Zika virus particles. FIG. 32 shows negative stain electron micrographs of supernatants from HeLa cells transfected with mRNA encoding Zika prME. The virus-like particles (VLPs), purified by PEG precipitation, have highly uniform size (˜35-40 nm) and morphology. The bumpy appearance of the VLP surface appears to reflect mostly immature morphology due to expression from HeLa cells, which have very low expression of furin, a host protease that is required for maturation the viral envelope. Upon maturation, these VLPs will have an exterior structure essentially identical to wild type viral particles, thus eliciting a broad immune response to future Zika virus exposure.
  • For VLP purification via ultracentrifugation, 293T cells were transfected with Zika prME mRNA as described herein. Supernatant was collected 24 hours after changing the media as described herein. (30 hours post transfection) VLP's were concentrated using Biovision PEG virus precipitation kit into 500 μL volume. VLP were further purified using a 10-50% sucrose gradient. Sample layer was seen between 20-30% sucrose layers and collected. VLP's were buffered exchanged into PBS by 1:1000 dilution using a 100MWCO amicon ultra filter. VLP's concentrated after PEG precipitation and ultracentrifuge purified VLP were analyzed on a reducing SDS-PAGE gel for purity (FIG. 33 ).
  • Example 33: Immunogenicity Studies Study A
  • The instant study was designed to test the immunogenicity in Balb/c mice of candidate ZIKV vaccines comprising a mRNA polynucleotide encoding ZIKV prME. Four groups of Balb/c mice (n=5) were immunized intramuscularly (IM) with 10 μg (n=2) or 2 μg (n=2) of the candidate vaccine. One group of mice was administered PBS intramuscularly as a control. All mice were administered an initial dose of vaccine (Groups 1-4) or PBS (Group 5) on Day 0, and then the mice in Groups 1 and 3 were administered a boost dose on Day 21, while the mice in Group 5 were administered PBS on Day 21. All mice were bled on Day 41. See Table 29. Anti-Zika neutralization IgG titer was determined on Day −1, Day 28 and Day 41 (FIG. 33B).
  • TABLE 29
    ZIKV mRNA Vaccine Immunogenicity Study
    Study
    design
    BALB/C Immunization
    Group Vaccine N Dose Route Prime Boost Endpoint
    1 Zika 5 10 ug IM Day Day Terminal
    prME
    0 21 bleeds
    vaccine on Day 41.
    2 Zika 5 10 ug IM Day NA Anti Zika
    prME
    0 neutralizing
    vaccine IgG titer.
    3 Zika 5  2 ug IM Day Day
    prME
    0 21
    vaccine
    4 Zika 5  2 ug IM Day NA
    prME
    0
    vaccine
    5 PBS 5 NA IM Day Day
    0 21
  • Day 42 neutralizing titers reached EC50s of 427 for 2 μg and 690 for 10 μg. The control serum in this experiment was from naturally infected immunocompromised mice (Ifnar1−/−, derived from B/6 lineage) in which high viral loads would be achieved.
  • Study B
  • The instant study is designed to test the immunogenicity in mice of candidate ZIKV vaccines comprising a mRNA polynucleotide encoding ZIKV polyprotein. Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Up to three immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against ZIKV polyprotein are determined by ELISA.
  • Example 34: ZIKV Rodent Challenge Study A
  • The instant study was designed to test the efficacy in AG129 mice of candidate ZIKV vaccines against a lethal challenge using a ZIKV vaccine comprising mRNA encoding ZIKV prME. Four groups of AG129 mice (n=8) were immunized intramuscularly (IM) with 10 μg (n=2) or 2 μg (n=2) of the candidate vaccine. One group of mice was administered PBS intramuscularly as a control. All mice were administered an initial dose of vaccine (Groups 1-4) or PBS (Group 5) on Day 0, and then the mice in Groups 1 and 3 were administered a boost dose on Day 21, while the mice in Group 5 were administered PBS on Day 21. All mice were challenged with a lethal dose of ZIKV in Day 42. All mice were then monitored for survival and weight loss. Anti-Zika neutralization IgG titer was determined on Day −1, Day 28 and Day 41, and viral load was determined 5 days post challenge.
  • TABLE 30
    ZIKV In vivo challenge
    Study
    design
    AG129 Immunization Chal- End-
    Group Vaccine n Dose Route Prime Boost lenge point
    1 Zika 8 10 ug IM Day Day Day Monitor
    prME
    0 21 42 for
    vaccine survival
    2 Zika 8 10 ug IM Day NA and
    prME 0 weight
    vaccine loss.
    3 Zika 8  2 ug IM Day Day Viral
    prME
    0 21 load at
    vaccine Day 5
    4 Zika 8  2 ug IM Day NA
    prME
    0
    vaccine
    5 PBS 8 NA IM Day Day
    0 21
  • Study B
  • The instant study is designed to test the efficacy in AG129 mice of candidate ZIKV vaccines against a lethal challenge using a ZIKV vaccine comprising mRNA encoding ZIKV polyprotein. Animals are challenged with a lethal dose of the ZIKV. Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate ZIKV vaccines with and without adjuvant. The animals are then challenged with a lethal dose of ZIKV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.
  • In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG or PEG-DMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.
  • TABLE 31
    ZIKV Nucleic Acid Sequences
    SEQ
    ID
    Description Sequence NO:
    Zika virus ATGAAAAACCCAAAGAAGAAATCCGGAGGATTCCGGATTGTCAATATGCTAAAAC 48
    strain MR 766 GCGGAGTAGCCCGTGTAAACCCCTTGGGAGGTTTGAAGAGGCTGCCAGCCGGACT
    polyprotein TCTGCTGGGTCATGGACCCATCAGAATGGTTTTGGCGATATTAGCCTTTTTGAGA
    gene, TTCACAGCAATCAAGCCATCACTGGGCCTCATCAACAGATGGGGTACCGTGGGGA
    complete cds AAAAAGAGGCTATGGAAATAATAAAAAAATTTAAGAAAGATCTTGCTGCCATGTT
    GenBank GAGAATAATCAATGCTAGGAAGGAGAGGAAGAGACGTGGCGCAGACACCAGCATC
    Accession: GGAATCGTTGGCCTCCTGTTGACTACAGCCATGGCAGCAGAGATCACTAGACGTG
    DQ859059 GGAGTGCATACTACATGTACTTGGATAGGAGCGATGCAGGGAAGGCCATTTCTTT
    CGCTACCACATTGGGGGTGAACAAATGCCATGTGCAGATCATGGACCTCGGGCAC
    ATGTGTGACGCCACCATGAGCTATGAATGCCCTATGCTGGACGAGGGGGTGGAAC
    CAGATGACGTCGATTGCTGGTGCAACACGACATCAACTTGGGTTGTGTACGGAAC
    CTGTCATCATAAAAAAGGTGAAGCACGGCGATCTAGAAGAGCCGTCACGCTCCCA
    TCTCACTCCACAAGGAAATTGCAAACGCGGTCGCAGACTTGGCTAGAATCAAGAG
    AATACACAAAGCACCTGATCAAGGTTGAAAATTGGATATTCAGGAACCCTGGTTT
    TACGCTAGTGGCTGTCGCCATCGCCTGGCTTTTGGGAAGCTCGACGAGCCAAAAA
    GTCATATACTTGGTCATGATACTGCTGATTGCCCCGGCATACAGTATCAGGTGCA
    TAGGAGTCAGCAATAGAGACTTCGTGGAGGGCATGTCAGGTGGGACCTGGGTTGA
    CGTTGTCCTGGAACATGGAGGCTGCGTCACCGTGATGGCACAGGACAAGCCAACA
    GTTGACATAGAGCTGGTCACAACAACGGTTAGTAACATGGCCGAGGTGAGATCCT
    ATTGTTACGAGGCATCAATATCGGACATGGCTTCGGACAGTCGCTGCCCAACACA
    AGGTGAAGCCTACCTTGACAAGCAATCAGACACTCAATATGTTTGCAAAAGAACA
    TTGGTGGACAGAGGTTGGGGAAATGGGTGTGGACTCTTTGGCAAAGGGAGTTTGG
    TGACATGTGCTAAGTTCACGTGCTCCAAGAAGATGACTGGGAAGAGCATTCAGCC
    GGAGAACCTGGAGTATCGGATAATGCTATCAGTGCATGGCTCCCAGCACAGTGGG
    ATGATTGTTAATGATGAAAACAGAGCGAAGGTCGAGGTTACGCCCAATTCACCAA
    GAGCAGAAGCAACCCTGGGAGGCTTTGGAAGCTTAGGACTTGATTGTGAACCAAG
    GACAGGCCTTGACTTTTCAGATCTGTATTACCTAACCATGAATAACAAGCATTGG
    TTGGTGCACAAAGAGTGGTTTCATGACATCCCATTGCCCTGGCATGCTGGGGCAG
    ACACTGGAACTCCACATTGGAACAACAAGGAGGCATTAGTGGAATTCAAGGACGC
    CCACGCCAAGAGGCAAACCGTCGTGGTTTTGGGGAGCCAGGAAGGAGCCGTCCAC
    ACGGCTCTTGCTGGAGCTCTAGAGGCTGAGATGGATGGTGCAAAGGGAAGGCTAT
    TCTCTGGCCACTTGAAATGTCGCTTAAAAATGGACAAGCTTAGATTGAAGGGCGT
    GTCATATTCCTTGTGCACCGCGGCATTCACATTCACCAAGGTCCCGGCTGAAACA
    CTACATGGAACAGTCACAGTGGAGGTGCAGTATGCAGGGACAGATGGACCCTGCA
    AGGTCCCAGCCCAGATGGCGGTGGACATGCAGACCTTGACCCCAGTCGGAAGGCT
    GATAACCGCCAACCCCGTGATTACTGAAAGCACTGAGAATTCAAAGATGATGTTG
    GAGCTCGACCCACCATTTGGGGATTCTTACATTGTCATAGGAGTTGGGGATAAGA
    AAATCACCCATCACTGGCATAGGAGTGGCAGCACCATTGGAAAAGCATTTGAAGC
    CACTGTGAGAGGCGCTAAGAGAATGGCAGTCCTGGGGGACACAGCTTGGGACTTT
    GGATCAGTCGGAGGTGTGTTTAACTCATTGGGCAAGGGCATTCATCAGATTTTTG
    GAGCAGCTTTCAAATCACTGTTTGGAGGAATGTCCTGGTTCTCACAGATCCTCAT
    AGGCACTCTGCTGGTGTGGTTAGGTCTGAACACAAAGAATGGGTCTATCTCCCTC
    ACATGCTTAGCCCTGGGGGGAGTGATGATCTTCCTCTCCACGGCTGTTTCTGCTG
    ACGTGGGGTGCTCGGTGGACTTCTCAAAAAAAGAAACGAGATGTGGCACGGGGGT
    GTTCGTCTACAATGACGTTGAAGCCTGGAGGGACCGGTACAAGTACCATCCTGAC
    TCCCCTCGTAGACTGGCAGCAGCCGTTAAGCAAGCTTGGGAAGAGGGGATTTGTG
    GGATCTCCTCTGTTTCTAGAATGGAAAACATAATGTGGAAATCAGTGGAAGGAGA
    GCTCAATGCAATCCTAGAGGAGAATGGAGTCCAACTGACAGTTGTTGTGGGATCT
    GTAAAAAACCCCATGTGGAGAGGCCCACAAAGATTGCCAGTGCCTGTGAATGAGC
    TGCCCCATGGCTGGAAAGCCTGGGGGAAATCGTACTTTGTTAGGGCGGCAAAGAC
    CAACAACAGTTTTGTTGTCGACGGTGACACATTGAAGGAATGTCCGCTCAAGCAC
    AGAGCATGGAACAGCTTCCTCGTGGAGGATCACGGGTTTGGGGTCTTCCACACCA
    GTGTTTGGCTTAAGGTTAGAGAAGATTACTCACTGGAGTGTGACCCAGCCGTCAT
    AGGAACAGCTGTTAAGGGAAAGGAGGCCGCGCACAGTGATCTAGGCTATTGGATT
    GAAAGTGAAAAGAATGACACATGGAGGCTGAAGAGGGCTCATTTGATTGAGATGA
    AAACATGTGAGTGGCCAAAGTCTCACACACTGTGGACAGATGGAGTGGAAGAAAG
    TGATCTGATCATACCCAAGTCTTTAGCTGGTCCACTCAGCCACCACAACACCAGA
    GAGGGTTACAGAACTCAAGTGAAAGGGCCATGGCATAGTGAGGAGCTTGAAATCC
    GATTTGAGGAATGTCCAGGTACCAAGGTTCATGTGGAGGAGACATGCGGAACGAG
    AGGACCATCTCTGAGATCAACCACTGCAAGCGGAAGGGTCATTGAGGAATGGTGC
    TGTAGGGAATGCACAATGCCCCCACTATCGTTCCGAGCAAAAGATGGCTGCTGGT
    ATGGAATGGAGATAAGGCCTAGGAAAGAACCAGAGAGCAACTTAGTGAGGTCAAT
    GGTGACAGCGGGATCAACCGATCATATGGATCATTTTTCTCTTGGAGTGCTTGTG
    ATTCTACTCATGGTGCAGGAAGGGTTGAAGAAGAGAATGACCACAAAGATCATCA
    TGAGCACATCAATGGCAGTGCTGGTGGCCATGATCTTGGGAGGATTCTCAATGAG
    TGACCTGGCTAAGCTTGTGATCCTGATGGGGGCCACTTTCGCAGAAATGAACACT
    GGAGGAGACGTAGCTCACTTGGCATTAGTAGCGGCATTTAAAGTCAGACCAGCCT
    TGCTGGTCTCATTTATCTTCAGAGCCAACTGGACACCTCGTGAGAGCATGCTGCT
    AGCCTTGGCTTCGTGTCTTCTGCAAACTGCGATCTCCGCTCTTGAAGGCGACTTG
    ATGGTCCTCGTTAATGGATTTGCTTTGGCCTGGTTGGCAATACGTGCAATGGCCG
    TGCCACGCACTGACAACATCGCTCTAGCAATTCTGGCTGCTCTAACACCACTAGC
    CCGAGGCACACTGCTCGTGGCATGGAGAGCGGGCCTCGCCACTTGTGGAGGGTTC
    ATGCTCCTCTCCCTGAAAGGGAAAGGTAGTGTGAAGAAGAACCTGCCATTCGTCG
    CGGCCTTGGGATTGACCGCTGTGAGAATAGTGGACCCCATTAATGTGGTGGGACT
    ACTGTTACTCACAAGGAGTGGGAAGCGGAGCTGGCCCCCTAGTGAAGTGCTCACT
    GCTGTCGGCCTGATATGTGCATTGGCCGGAGGGTTTGCCAAGGCAGACATAGAGA
    TGGCTGGGCCCATGGCGGCAGTGGGCCTGCTAATTGTCAGTTATGTGGTCTCGGG
    AAAGAGTGTAGATATGTACATTGAAAGAGCAGGTGACATCACATGGGAGAAAGAC
    GCGGAAGTCACTGGAAACAGTCCTCGGCTTGACGTGGCACTAGATGAGAGTGGTG
    ATTTCTCTCTGGTGGAGGAAGATGGTCCACCCATGAGAGAGATCATACTTAAGGT
    GGTCTTGATGGCCATCTGTGGCATGAACCCAATAGCCATACCTTTTGCTGCAGGA
    GCGTGGTATGTGTATGTGAAGACTGGGAAAAGGAGTGGTGCCCTCTGGGACGTGC
    CTGCTCCGAAAGAAGTGAAAAAAGGAGAGACCACAGATGGAGTGTACAGAGTGAT
    GACTCGCAGACTGCTGGGTTCAACACAAGTTGGAGTGGGAGTCATGCAGGAGGGA
    GTCTTCCACACCATGTGGCACGTCACAAAAGGGGCCGCATTGAGGAGCGGTGAAG
    GGAGACTTGATCCATACTGGGGGGATGTCAAGCAGGACTTGGTGTCATATTGTGG
    GCCTTGGAAGCTGGACGCAGCTTGGGACGGAGTTAGTGAGGTGCAGCTTCTGGCC
    GTACCCCCTGGAGAGAGAGCCAGAAACATTCAGACTCTGCCTGGAATATTTAAGA
    CAAAGGATGGGGACATCGGAGCAGTTGCTTTGGACTATCCTGCAGGAACCTCAGG
    ATCTCCGATCCTAGACAAATGCGGGAGAGTGATAGGACTCTATGGCAATGGGGTT
    GTGATCAAGAACGGAAGCTATGTTAGTGCTATAACCCAGGGAAAGAGGGAGGAGG
    AGACTCCGGTTGAGTGTTTTGAACCCTCGATGCTGAAGAAGAAGCAGCTAACTGT
    CCTGGACCTGCATCCAGGGGCTGGGAAAACCAGGAGAGTTCTTCCTGAAATAGTC
    CGTGAAGCTATAAAGAAGAGACTCCGCACGGTGATCTTGGCACCAACCAGGGTCG
    TCGCTGCTGAGATGGAGGAAGCCCTGAGAGGACTTCCGGTGCGTTACATGACAAC
    AGCAGTCAAGGTCACCCATTCTGGGACAGAAATCGTTGATTTGATGTGCCATGCC
    ACCTTCACTTCACGCCTACTACAACCCATTAGAGTCCCTAATTACAACCTCTACA
    TCATGGATGAAGCCCATTTCACAGACCCCTCAAGCATAGCTGCAAGAGGATATAT
    ATCAACAAGGGTTGAGATGGGCGAGGCAGCAGCCATCTTTATGACTGCCACACCA
    CCAGGAACCCGCGATGCGTTTCCAGATTCCAACTCACCAATCATGGACACAGAAG
    TGGAAGTCCCAGAGAGAGCCTGGAGCTCAGGCTTTGATTGGGTGACGGACCATTC
    TGGGAAAACAGTTTGGTTCGTTCCAAGCGTGAGGAATGGAAATGAAATCGCAGCC
    TGTCTGACAAAGGCTGGAAAGCGGGTTATACAGCTTAGTAGGAAAACTTTTGAGA
    CAGAGTTTCAGAAAACAAAAAATCAAGAGTGGGACTTTGTCATAACAACTGACAT
    CTCAGAGATGGGTGCCAACTTCAAGGCTGACCGGGTTATAGATTCCAGGAGATGC
    CTAAAGCCAGTTATACTTGATGGTGAGAGAGTCATCTTGGCTGGGCCCATGCCTG
    TCACGCATGCTAGCGCTGCTCAGAGGAGAGGACGTATAGGCAGGAACCCCAACAA
    GCCTGGAGATGAGTACATGTATGGAGGTGGGTGTGCGGAGACTGATGAAGACCAT
    GCACATTGGCTTGAAGCAAGAATGCTTCTTGACAACATTTACCTCCAGGATGGCC
    TCATAGCCTCGCTCTATCGACCTGAGGCCGACAAGGTAGCCGCCATTGAGGGAGA
    GTTTAAGCTGAGGACAGAGCAAAGGAAGACCTTTGTGGAACTCATGAAGAGAGGA
    GATCTTCCCGTTTGGTTGGCCTACCAGGTTGCATCTGCCGGAATAACTTATACAG
    ACAGAAGATGGTGTTTTGATGGCACAACCAACAACACCATAATGGAAGACAGTGT
    ACCAGCAGAGGTGTGGACCAAGTATGGAGAGAAGAGAGTGCTCAAACCAAGATGG
    ATGGACGCCAGGGTCTGCTCAGATCATGCGGCCCTGAAGTCGTTCAAAGAATTCG
    CCGCTGGGAAAAGAGGAGCGGCTTTGGGAGTAATGGAGGCCCTGGGAACATTACC
    AGGACACATGACAGAGAGGTTTCAGGAAGCCATTGATAACCTCGCTGTGCTCATG
    CGAGCAGAGACTGGAAGCAGGCCCTACAAGGCAGCGGCAGCCCAATTGCCGGAGA
    CCCTAGAGACCATCATGCTTTTAGGCCTGCTGGGAACAGTATCGCTGGGGATCTT
    TTTTGTCTTGATGAGGAACAAGGGCATCGGGAAGATGGGCTTTGAAATGGTAACC
    CTTGGGGCCAGCGCATGGCTCATGTGGCTCTCAGAAATCGAACCAGCCAGAATTG
    CATGTGTCCTTATTGTTGTGTTTTTATTACTGGTGGTGCTAATACCAGAGCCAGA
    GAAGCAAAGATCCCCCCAGGACAATCAGATGGCAATCATTATTATGGTGGCAGTG
    GGCCTTTTGGGGTTGATAACTGCAAATGAACTTGGATGGCTGGAGAGAACAAAAA
    ATGACATAGCTCATCTGATGGGAAAGAGAGAAGAGGGAACAACCGTGGGATTCTC
    AATGGACATCGATCTGCGACCAGCCTCCGCATGGGCTATTTATGCCGCATTGACA
    ACCCTCATCACCCCAGCCGTCCAGCACGCGGTAACTACCTCGTACAACAACTACT
    CCTTAATGGCGATGGCCACACAAGCTGGAGTGCTGTTTGGCATGGGCAAAGGGAT
    GCCATTTTATGCATGGGACTTAGGAGTCCCGTTGCTAATGATGGGCTGCTACTCA
    CAACTAACACCCCTGACCCTGATAGTAGCCATCATTTTGCTTGTGGCACATTACA
    TGTACTTGATCCCAGGCCTACAGGCAGCAGCAGCACGCGCTGCCCAGAAGAGAAC
    AGCAGCCGGCATCATGAAGAATCCCGTTGTGGATGGAATAGTGGTAACTGACATT
    GACACAATGACAATTGACCCCCAAGTGGAGAAGAAGATGGGACAAGTGCTACTTA
    TAGCAGTGGCTGTCTCCAGTGCTGTGTTGCTGCGGACCGCTTGGGGATGGGGGGA
    GGCTGGAGCTTTGATCACAGCAGCAACTTCCACCCTGTGGGAAGGCTCCCCAAAC
    AAATACTGGAACTCCTCCACAGCCACCTCACTGTGCAACATCTTCAGAGGAAGTT
    ACTTGGCAGGAGCTTCCCTTATTTACACAGTGACAAGAAATGCCGGCCTGGTTAA
    GAGACGTGGAGGTGGAACGGGAGAAACTCTGGGAGAGAAGTGGAAAGCCCGCCTG
    AATCAGATGTCGGCCTTGGAGTTCTACTCTTACAAAAAGTCAGGCATCACTGAAG
    TATGTAGAGAGGAGGCTCGCCGCGCCCTCAAGGATGGAGTGGCCACAGGAGGACA
    TGCTGTATCCCGAGGAAGCGCAAAACTCAGATGGTTGGTGGAGAGAGGATATCTG
    CAGCCCTATGGAAAGGTTGTTGATCTCGGATGCGGCAGAGGGGGCTGGAGTTATT
    ATGCCGCCACCATCCGCAAAGTGCAGGAGGTGAGAGGATACACAAAGGGAGGTCC
    CGGTCATGAAGAGCCCATGCTGGTGCAAAGCTATGGGTGGAACATAATTCGTCTC
    AAGAGTGGAGTGGACGTCTTCCACATGGCGGCTGAGTCGTGTGACACTTTGCTGT
    GTGACATAGGTGAGTCATCATCCAGTCCTGAAGTGGAGGAGACGCGAACACTCAG
    AGTGCTCTCCATGGTGGGGGACTGGCTTGAGAAGAGACCAGGGGCCTTCTGCATA
    AAGGTGTTATGCCCATACACCAGCACCATGATGGAGACCATGGAGCGACTGCAAC
    GTAGGTATGGGGGAGGACTAGTCAGAGTGCCACTGTCCCGCAATTCTACACATGA
    GATGTATTGGGTCTCTGGAGCAAAAAGTAACATCATAAAAAGTGTGTCCACCACA
    AGTCAGCTCCTCCTGGGACGCATGGATGGGCCCAGGAGGCCAGTGAAGTATGAGG
    AGGATGTGAACCTCGGCTCAGGCACACGAGCTGTGGCAAGCTGTGCTGAGGCTCC
    CAACATGAAGGTCATTGGTAGGCGCATTGAGAGAATCCGTAGTGAACATGCAGAA
    ACATGGTTCTTTGATGAAAACCATCCATACAGGACATGGGCCTACCACGGGAGCT
    ACGAAGCCCCCACGCAAGGGTCAGCATCTTCCCTCGTGAATGGGGTTGTTAGACT
    CCTGTCAAAGCCCTGGGATGTGGTGACTGGAGTTACAGGAATAGCTATGACTGAC
    ACCACACCGTACGGCCAACAAAGAGTCTTCAAAGAAAAAGTGGACACCAGGGTGC
    CAGACCCTCAAGAAGGTACTCGCCAGGTAATGAACATGGTCGCTTCCTGGCTGTG
    GAAGGAGCTGGGAAAACGTAAGCGGCCACGTGTCTGCACCAAAGAAGAGTTCATC
    AACAAGGTGCGCAGCAATGCAGCACTGGGAGCAATATTTGAAGAGGAAAAAGAAT
    GGAAGACGGCTGTGGAAGCTGTGAATGATCCAAGGTTTTGGGCCCTAGTGGATAA
    GGAAAGAGAACACCACCTGAGAGGAGAGTGCCATAGTTGTGTGTACAACATGATG
    GGAAAAAGAGAAAAGAAGCAAGGGGAATTCGGGAAAGCAAAAGGCAGTCGCGCCA
    TCTGGTACATGTGGTTGGGAGCCAGATTCTTGGAGTTTGAAGCCCTTGGATTCTT
    GAACGAGGACCATTGGATGGGAAGAGAAAACTCAGGAGGTGGTGTCGAAGGGTTG
    GGACTGCAAAGACTTGGATACGTTCTAGAAGAAATGAGCCGGGCACCAGGAGGAA
    AGATGTATGCAGATGACACCGCTGGCTGGGACACCCGCATTAGCAAGTTTGATTT
    GGAGAATGAAGCCTTGATTACTAACCAAATGGATGAAGGGCACAGAACTCTGGCG
    TTGGCCGTGATTAAGTACACATACCAAAACAAAGTGGTGAAGGTCCTCAGACCAG
    CTGAAGGAGGAAAAACAGTCATGGACATCATTTCAAGACAAGACCAGAGGGGGAG
    CGGACAAGTTGTCACTTATGCTCTCAACACATTTACCAACTTGGTGGTGCAGCTC
    ATCCGGAACATGGAGGCTGAGGAAGTGTTAGAGATGCAAGACTTATGGCTGTTGA
    GGAAGCCAGAGAAAGTAACCAGATGGCTGCAGAGTAGCGGATGGGACAGACTCAA
    ACGAATGGCAGTCAGTGGTGATGACTGTGTTGTAAAGCCAATTGATGACAGGTTT
    GCACACGCCCTCAGGTTCTTGAATGATATGGGGAAAGTTAGGAAAGACACACAGG
    AATGGAAACCCTCAACTGGATGGAGCAACTGGGAAGAAGTCCCGTTCTGCTCCCA
    CCACTTTAACAAGCTGCACCTCAAAGACGGGAGATCCATTGTGGTCCCTTGCCGC
    CACCAAGATGAACTGATTGGCCGGGCTCGCGTTTCGCCGGGGGCAGGATGGAGCA
    TCCGGGAGACTGCCTGTCTTGCAAAATCATATGCACAGATGTGGCAGCTTCTTTA
    TTTCCACAGAAGAGACCTCCGACTGATGGCCAATGCCATTTGCTCGGCCGTGCCA
    GTTGACTGGGTCCCAACTGGGAGAACTACCTGGTCAATCCATGGAAAGGGAGAAT
    GGATGACTACTGAGGACATGCTCATGGTGTGGAATAGAGTGTGGATTGAGGAGAA
    TGATCACATGGAGGACAAGACCCCTGTAACAAAATGGACAGACATTCCCTATTTG
    GGAAAAAGGGAGGACTTATGGTGTGGATCCCTTATAGGACACAGACCTCGCACCA
    CTTGGGCTGAGAACATCAAAGACACAGTCAGCATGGTGCGCAGAATCATAGGTGA
    TGAAGAAAAGTACATGGACTACCTATCCACTCAAGTTCGCTACTTGGGTGAGGAA
    GGGTCTACACCTGGAGTGCTGTAA
    IgE HC signal TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG 49
    peptide_prM-E AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGACTGGACCTGGATC
    #1 CTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCGTGGAAGTGACCAGACGGG
    (Brazil_isolate_ GCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCATCAGCTT
    ZikaSPH2015, TCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTGGGCCAC
    Sequence, ATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCGTGGAAC
    NT (5′ UTR, CCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTACGGCAC
    ORF, 3′ UTR) CTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACACTGCCT
    AGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAAGCAGAG
    AGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCCCGGCTT
    TGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCCCAGAAA
    GTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCCGGTGTA
    TCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGA
    CGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCCGCC
    GTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCT
    ACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTACACA
    GGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAGCGGACC
    CTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCCTCG
    TGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCC
    CGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCTCCCAGCACAGCGGC
    ATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAA
    TCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGG
    CCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTGACC
    ATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGC
    CCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTGGAACAACAAAGAGGCTCT
    GGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCT
    CAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATG
    GCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCTGAAGATGGACAA
    GCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACC
    AAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCG
    GCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCT
    GACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGCACCGAG
    AACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCGTGA
    TCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGATCCGGCAGCACCAT
    CGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGC
    GATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACAGCCTGGGAAAGG
    GCATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTTCGGCGGCATGAGCTG
    GTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACCAAG
    AACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGCTGATCTTTCTGA
    GCACAGCCGTGTCCGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGC
    CCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGT
    CTTTGAATAAAGTCTGAGTGGGCGGC
    IgE HC signal ATGGACTGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCG 50
    peptide_prM-E TGGAAGTGACCAGACGGGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGC
    #1 CGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAG
    (Brazil_isolate_ ATCATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGC
    ZikaSPH2015), TGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCAC
    ORF CTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGA
    Sequence, NT CGGGCCGTGACACTGCCTAGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGA
    CCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGAT
    CTTCCGGAACCCCGGCTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGC
    AGCAGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTG
    CCTACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAG
    CGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATG
    GCCCAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATA
    TGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGA
    CAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAG
    TACGTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGT
    TTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGAC
    CGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCAC
    GGCTCCCAGCACAGCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGA
    ACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGG
    CGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGC
    GACCTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGT
    TCCACGACATCCCCCTGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTG
    GAACAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACC
    GTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCC
    TGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTG
    CCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACC
    GCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTG
    TGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGC
    CGTGGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTG
    ATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCG
    GCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCA
    CAGATCCGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAG
    AGAATGGCCGTGCTGGGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCC
    TGAACAGCCTGGGAAAGGGCATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCT
    GTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGG
    CTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCG
    GCGTGCTGATCTTTCTGAGCACAGCCGTGTCCGCC
    IgE HC signal G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAC 51
    peptide_prM-E TGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCGTGGAAG
    #1 TGACCAGACGGGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGA
    (Brazil_isolate_ GGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATG
    ZikaSPH2015), GACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACG
    mRNA AGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGT
    Sequence GGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCC
    (T100 tail) GTGACACTGCCTAGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGC
    TGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCG
    GAACCCCGGCTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGC
    ACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACA
    GCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGG
    CACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAG
    GATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCG
    AAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAG
    ATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTG
    TGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCA
    AGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAA
    GAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCTCC
    CAGCACAGCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGG
    CCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTT
    TGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTG
    TACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACG
    ACATCCCCCTGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTGGAACAA
    CAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTG
    GTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAG
    CCGAAATGGATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCT
    GAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCC
    TTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAG
    TGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGA
    TATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACC
    GAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACT
    CCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGATC
    CGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATG
    GCCGTGCTGGGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACA
    GCCTGGGAAAGGGCATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTTCGG
    CGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGC
    CTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGC
    TGATCTTTCTGAGCACAGCCGTGTCCGCCTGATAATAGGCTGGAGCCTCGGTGGC
    CATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCG
    TACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAATCTAG
    IgE HC signal TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG 52
    peptide_prM-E AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGACTGGACCTGGATC
    #2 CTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCACCAGAAGAGGCAGCGCCT
    (Brazil_isolate_ ACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCATCAGCTTTCCAACCAC
    ZikaSPH2015), CCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTGGGCCACATGTGCGAC
    Sequence, GCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCGTGGAACCCGACGATG
    NT (5′ UTR, TGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTACGGCACCTGTCACCA
    ORF, 3′ UTR) CAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACACTGCCTAGCCACTCC
    ACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAAGCAGAGAGTACACCA
    AGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCCCGGCTTTGCCCTGGC
    TGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCCCAGAAAGTGATCTAC
    CTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCCGGTGTATCGGCGTGT
    CCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGACGTGGTGCT
    GGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCCGCCGTGGACATC
    GAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCTACTGCTACG
    AGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTACACAGGGCGAGGC
    CTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAGCGGACCCTGGTGGAT
    AGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCCTCGTGACCTGCG
    CCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCCCGAGAACCT
    GGAATACCGGATCATGCTGAGCGTGCACGGCTCCCAGCACAGCGGCATGATCGTG
    AACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAATCACCCCCA
    ACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGGCCTGGACTG
    CGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTGACCATGAACAAC
    AAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGCCCTGGCATG
    CTGGCGCTGATACAGGCACCCCCCACTGGAACAACAAAGAGGCTCTGGTGGAATT
    CAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCTCAGGAAGGC
    GCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATGGCGCCAAAG
    GCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCTGAAGATGGACAAGCTGCGGCT
    GAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACCAAGATCCCC
    GCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCGGCACCGACG
    GCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCTGACCCCCGT
    GGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGCACCGAGAACAGCAAG
    ATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCGTGATCGGCGTGG
    GAGAGAAGAAGATCACCCACCACTGGCACAGATCCGGCAGCACCATCGGCAAGGC
    CTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGCGATACCGCC
    TGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACAGCCTGGGAAAGGGCATCCACC
    AGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGGCATGAGCTGGTTCAGCCA
    GATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACCAAGAACGGCAGC
    ATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGCTGATCTTTCTGAGCACAGCCG
    TGTCCGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGC
    CTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATA
    AAGTCTGAGTGGGCGGC
    IgE HC signal ATGGACTGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCA 53
    peptide_prM-E CCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGC
    #2 CATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGAC
    (Brazil_Isolate_ CTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGG
    ZikaSPH2015), GCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGT
    ORF GTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTG
    Sequence, NT ACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGG
    AAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAA
    CCCCGGCTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACC
    TCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCA
    TCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCAC
    ATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGAT
    AAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAG
    TGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATG
    CCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGC
    AAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGG
    GCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAG
    CATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCTCCCAG
    CACAGCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCA
    AGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGG
    ATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTAC
    TACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACA
    TCCCCCTGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTGGAACAACAA
    AGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTG
    CTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCG
    AAATGGATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCTGAA
    GATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTC
    ACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGC
    AGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATAT
    GCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAG
    AGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCT
    ACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGATCCGG
    CAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCC
    GTGCTGGGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACAGCC
    TGGGAAAGGGCATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGG
    CATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTG
    AACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGCTGA
    TCTTTCTGAGCACAGCCGTGTCCGCC
    IgE HC signal G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAC 54
    peptide_prM-E TGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCACCAGAA
    #2 GAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCATCAG
    (Brazil_isolate_ CTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTGGGC
    ZikaSPH2015), CACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCGTGG
    mRNA AACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTACGG
    Sequence CACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACACTG
    (T100 tail) CCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAAGCA
    GAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCCCGG
    CTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCCCAG
    AAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCCGGT
    GTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGT
    GGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCC
    GCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGA
    GCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTAC
    ACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAGCGG
    ACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCC
    TCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCA
    GCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCTCCCAGCACAGC
    GGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGG
    AAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCT
    GGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTG
    ACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCC
    TGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTGGAACAACAAAGAGGC
    TCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGA
    TCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGG
    ATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCTGAAGATGGA
    CAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTC
    ACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACG
    CCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGAC
    CCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGCACC
    GAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCG
    TGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGATCCGGCAGCAC
    CATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTG
    GGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACAGCCTGGGAA
    AGGGCATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGGCATGAG
    CTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACC
    AAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGCTGATCTTTC
    TGAGCACAGCCGTGTCCGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCT
    TGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGT
    GGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAATCTAG
    HuIgGk signal TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG 55
    peptide_prME AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAAACCCCTGCCCAG
    #1 CTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCACCGGCGTGGAAGTGACCA
    (Brazil_isolate_ GAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCAT
    ZikaSPH2015), CAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTG
    Sequence, GGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCG
    NT (5′ UTR, TGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTA
    ORF, 3′ UTR) CGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACA
    CTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAA
    GCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCC
    CGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCC
    CAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCC
    GGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATG
    GGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAG
    CCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGC
    GGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCC
    TACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAG
    CGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCA
    GCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCAT
    CCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAGCAC
    TCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGG
    TGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATC
    TCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTAC
    CTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCC
    CCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAAAGA
    GGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTG
    GGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAA
    TGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCCGGCTGAAGAT
    GGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACC
    TTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGT
    ACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCA
    GACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGC
    ACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACA
    TCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACCGCAGCGGCAG
    CACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAGAGAATGGCCGTG
    CTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTCTGG
    GCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGGCAT
    GAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAAC
    ACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGATCT
    TTCTGAGCACCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCT
    TCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCC
    CGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC
    HuIgGk signal ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCA 56
    peptide_prME CCGGCGTGGAAGTGACCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAG
    #1 CGACGCCGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTAC
    (Brazil_isolate_ ATCCAGATCATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCC
    ZikaSPH2015), CCATGCTGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCAC
    ORF CAGCACCTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGG
    Sequence, NT TCCAGACGGGCCGTGACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGT
    CCCAGACCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAA
    CTGGATCTTCCGGAACCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTG
    CTGGGCAGCAGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCG
    CCCCTGCCTACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGG
    CATGAGCGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACA
    GTGATGGCCCAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGT
    CCAATATGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGC
    CAGCGACAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGAC
    ACCCAGTACGTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCG
    GCCTGTTTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAA
    GATGACCGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGC
    GTGCACGGCAGCCAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAG
    ACGAGAACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCAC
    ACTGGGCGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGAT
    TTCAGCGACCTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAG
    AGTGGTTCCACGACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACC
    CCACTGGAACAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGG
    CAGACCGTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTG
    GCGCCCTGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCT
    GAAGTGCCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTG
    TGTACCGCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCG
    TGACTGTGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCA
    GATGGCCGTGGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAAC
    CCTGTGATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCC
    CCTTCGGCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCA
    CTGGCACCGCAGCGGCAGCACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGA
    GCCAAGAGAATGGCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCG
    GAGCCCTGAACTCTCTGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAA
    GAGCCTGTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTC
    GTGTGGCTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTC
    TGGGAGGCGTGCTGATCTTTCTGAGCACCGCCGTGTCTGCC
    HuIgGk signal G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAA 57
    peptide prME ACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCACCGGCG
    #1 TGGAAGTGACCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGC
    (Brazil_isolate_ CGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAG
    ZikaSPH2015), ATCATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGC
    mRNA TGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCAC
    Sequence CTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGA
    (T100 tail) CGGGCCGTGACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGA
    CCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGAT
    CTTCCGGAACCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGC
    AGCAGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTG
    CCTACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAG
    CGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATG
    GCCCAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATA
    TGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGA
    CAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAG
    TACGTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGT
    TTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGAC
    CGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCAC
    GGCAGCCAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGA
    ACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGG
    CGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGC
    GACCTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGT
    TCCACGACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTG
    GAACAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACC
    GTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCC
    TGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTG
    CCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACC
    GCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTG
    TGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGC
    CGTGGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTG
    ATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCG
    GCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCA
    CCGCAGCGGCAGCACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAG
    AGAATGGCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCC
    TGAACTCTCTGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCT
    GTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGG
    CTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAG
    GCGTGCTGATCTTTCTGAGCACCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTC
    GGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTG
    CACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATCTAG
    HuIgGk signal TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG 58
    peptide_prME AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAAACCCCTGCCCAG
    #
    2 CTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCACCGGCACCAGAAGAGGCA
    (Brazil_isolate_ GCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCATCAGCTTTCC
    ZikaSPH2015), AACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTGGGCCACATG
    Sequence, TGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCGTGGAACCCG
    NT (5′ UTR, ACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTACGGCACCTG
    ORF, 3′ UTR) TCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACACTGCCTAGC
    CACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAAGCAGAGAGT
    ACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCCCGGCTTTGC
    CCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCCCAGAAAGTG
    ATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCCGGTGTATCG
    GCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGACGT
    GGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCCGCCGTG
    GACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCTACT
    GCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTACACAGGG
    CGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAGCGGACCCTG
    GTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCCTCGTGA
    CCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCCCGA
    GAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAGCACTCCGGCATG
    ATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAATCA
    CCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGGCCT
    GGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTGACCATG
    AACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGCCCT
    GGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAAAGAGGCTCTGGT
    GGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCTCAG
    GAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATGGCG
    CCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCCGGCTGAAGATGGACAAGCT
    GCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACCAAG
    ATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCGGCA
    CCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCTGAC
    CCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGCACCGAGAAC
    AGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCGTGATCG
    GCGTGGGAGAGAAGAAGATCACCCACCACTGGCACCGCAGCGGCAGCACAATCGG
    CAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGAGAT
    ACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTCTGGGCAAGGGAA
    TCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGGCATGAGCTGGTT
    CAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACCAAGAAC
    GGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGATCTTTCTGAGCA
    CCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCC
    TTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTT
    TGAATAAAGTCTGAGTGGGCGGC
    HuIgGk signal ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCA 59
    peptide_prME CCGGCACCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGG
    #
    2 CGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATC
    (Brazil_isolate_ ATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGG
    ZikaSPH2015), ACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTG
    ORF GGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGG
    Sequence, NT GCCGTGACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCT
    GGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTT
    CCGGAACCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGC
    AGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCT
    ACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGG
    CGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCC
    CAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGG
    CCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAG
    CAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTAC
    GTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTG
    GCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGG
    CAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGC
    AGCCAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACC
    GGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGG
    CTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGAC
    CTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCC
    ACGACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAA
    CAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTG
    GTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGG
    AAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCCG
    GCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCC
    GCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGG
    AAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGT
    GGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATC
    ACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCG
    ACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACCG
    CAGCGGCAGCACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAGAGA
    ATGGCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGA
    ACTCTCTGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTT
    CGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTG
    GGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCG
    TGCTGATCTTTCTGAGCACCGCCGTGTCTGCC
    HuIgGk signal G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAA 60
    peptide_prME ACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCACCGGCA
    #2 CCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGC
    (Brazil_isolate_ CATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGAC
    ZikaSPH2015), CTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGG
    mRNA GCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGT
    Sequence GTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTG
    (T100 tall) ACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGG
    AAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAA
    CCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACC
    TCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCA
    TCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCAC
    ATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGAT
    AAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAG
    TGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATG
    CCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGC
    AAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGG
    GCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAG
    CATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAG
    CACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCA
    AGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGG
    ATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTAC
    TACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACA
    TCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAA
    AGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTG
    CTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCG
    AAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCCGGCTGAA
    GATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTC
    ACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGC
    AGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATAT
    GCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAG
    AGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCT
    ACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACCGCAGCGG
    CAGCACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAGAGAATGGCC
    GTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTC
    TGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGG
    CATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTG
    AACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGA
    TCTTTCTGAGCACCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCAT
    GCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTAC
    CCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAATCTAG
    HuIgGk signal TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG 61
    peptide_E AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAAACCCCTGCCCAG
    (Brazil_isolate_ CTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGACACCACCGGCATCAGATGCATCG
    ZikaSPH2015), GCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGACGT
    Sequence, GGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCCGCCGTG
    NT (5′ UTR, GACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCTACT
    ORF, 3′ UTR) GCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTACACAGGG
    CGAGGCCTACCTGGACAAGCAGAGCGACACCCAGTACGTGTGCAAGCGGACCCTG
    GTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCCTCGTGA
    CCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCCCGA
    GAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAGCACTCCGGCATG
    ATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAATCA
    CCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGGCCT
    GGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTGACCATG
    AACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGCCCT
    GGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAAAGAGGCTCTGGT
    GGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCTCAG
    GAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATGGCG
    CCAAAGGCAGACTGAGCAGCGGCCACCTGAAGTGCCGGCTGAAGATGGACAAGCT
    GCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACCAAG
    ATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCGGCA
    CCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCTGAC
    CCCCGTGGGCAGGCTGATCACAGCCAACCCTGTGATCACCGAGAGCACCGAGAAC
    AGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCGTGATCG
    GCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGAAGCGGCAGCACCATCGG
    CAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGAGAT
    ACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTCTGGGCAAGGGAA
    TCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTTCGGCGGCATGAGCTGGTT
    CAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACCAAGAAC
    GGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGATCTTTCTGAGCA
    CCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCC
    TTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTT
    TGAATAAAGTCTGAGTGGGCGGC
    HuIgGk signal ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGACACCA 62
    peptide_E CCGGCATCAGATGCATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGG
    (Brazil_isolate_ CGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCC
    ZikaSPH2015), CAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGG
    ORF CCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAG
    Sequence, NT CAGATGCCCTACACAGGGCGAGGCCTACCTGGACAAGCAGAGCGACACCCAGTAC
    GTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTG
    GCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGG
    CAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGC
    AGCCAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACC
    GGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGG
    CTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGAC
    CTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCC
    ACGACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAA
    CAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTG
    GTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGG
    AAGCCGAAATGGATGGCGCCAAAGGCAGACTGAGCAGCGGCCACCTGAAGTGCCG
    GCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCC
    GCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGG
    AAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGT
    GGATATGCAGACCCTGACCCCCGTGGGCAGGCTGATCACAGCCAACCCTGTGATC
    ACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCG
    ACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAG
    AAGCGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGA
    ATGGCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGA
    ACTCTCTGGGCAAGGGAATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTT
    CGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTG
    GGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCG
    TGCTGATCTTTCTGAGCACCGCCGTGTCTGCC
    HuIgGk signal G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAA 63
    peptide_E ACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGACACCACCGGCA
    (Brazil_isolate_ TCAGATGCATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCAC
    ZikaSPH2015), ATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGAT
    mRNA AAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAG
    Sequence TGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATG
    (T100 tall) CCCTACACAGGGCGAGGCCTACCTGGACAAGCAGAGCGACACCCAGTACGTGTGC
    AAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGG
    GCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAG
    CATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAG
    CACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCA
    AGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGG
    ATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTAC
    TACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACA
    TCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAA
    AGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTG
    CTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCG
    AAATGGATGGCGCCAAAGGCAGACTGAGCAGCGGCCACCTGAAGTGCCGGCTGAA
    GATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTC
    ACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGC
    AGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATAT
    GCAGACCCTGACCCCCGTGGGCAGGCTGATCACAGCCAACCCTGTGATCACCGAG
    AGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCT
    ACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGAAGCGG
    CAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCC
    GTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTC
    TGGGCAAGGGAATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTTCGGCGG
    CATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTG
    AACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGA
    TCTTTCTGAGCACCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCAT
    GCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTAC
    CCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
    AAAAAAAAAAAAAAAAAAAAAAAAATCTAG
    Zika_RIO- ATGCTGGGCAGCAACAGCGGCCAGAGAGTGGTGTTCACCATCCTGCTGCTGCTGG 64
    U1_JEVsp TGGCCCCTGCCTACAGCGCCGAAGTGACAAGAAGAGGCAGCGCCTACTACATGTA
    Zika PRME CCTGGACCGGAACGATGCCGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATG
    Strain AACAAGTGCTACATCCAGATCATGGACCTGGGCCACATGTGCGACGCCACCATGA
    ascension id: GCTACGAGTGCCCCATGCTGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTG
    ANG09399 with GTGCAATACCACCAGCACCTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGC
    JEV PRM GAAGCCAGACGGTCCAGACGGGCCGTGACACTGCCTAGCCACAGCACCAGAAAGC
    signal TGCAGACCCGGTCCCAGACCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGAT
    sequence CCGGGTGGAAAACTGGATCTTCCGGAACCCCGGCTTTGCCCTGGCTGCCGCTGCT
    (optimized) ATTGCTTGGCTGCTGGGCTCTAGCACCAGCCAGAAAGTGATCTACCTCGTGATGA
    TCCTGCTGATCGCCCCAGCCTACTCCATCCGGTGTATCGGCGTGTCCAACCGGGA
    CTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGC
    GGCTGCGTGACAGTGATGGCCCAGGACAAGCCCACCGTGGACATCGAGCTCGTGA
    CCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCAT
    CAGCGACATGGCCAGCGACAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGAC
    AAGCAGTCCGACACCCAGTACGTGTGCAAGCGGACCCTGGTGGACAGGGGCTGGG
    GCAATGGCTGTGGCCTGTTTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGC
    CTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGG
    ATCATGCTGAGCGTGCACGGCTCCCAGCACAGCGGCATGATCGTGAACGACACCG
    GCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAG
    AGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGA
    ACCGGCCTGGATTTCAGCGACCTGTACTACCTGACCATGAACAACAAACACTGGC
    TGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGCCCTGGCATGCTGGCGCTGA
    TACAGGCACCCCCCACTGGAACAACAAAGAGGCCCTGGTGGAATTCAAGGACGCC
    CACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATA
    CAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGAG
    CAGCGGCCACCTGAAGTGCCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTG
    TCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACAC
    TGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAA
    AGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCTGACCCCCGTGGGCAGGCTG
    ATCACAGCCAACCCTGTGATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGG
    AACTGGACCCCCCCTTCGGCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAA
    GATCACCCACCACTGGCACAGAAGCGGCAGCACCATCGGCAAGGCCTTTGAGGCT
    ACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGCGATACCGCCTGGGATTTTG
    GCTCTGTGGGCGGAGCCCTGAACAGCCTGGGAAAGGGCATCCACCAGATCTTCGG
    AGCCGCCTTTAAGAGCCTGTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATC
    GGCACCCTGCTGATGTGGCTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGA
    TGTGCCTGGCTCTGGGCGGCGTGCTGATCTTTCTGAGCACAGCCGTGTCCGCC
    Zika_ RIO- ATGAAGTGCCTGCTGTACCTGGCCTTCCTGTTCATCGGCGTGAACTGCGCCGAAG 65
    U1-_VSVgSp TGACCAGAAGAGGCAGCGCCTACTACATGTACCTGGACCGGAACGATGCCGGCGA
    Zika PRME GGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATG
    Strain GACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACG
    ascension id: AGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGT
    ANG09399 with GGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCC
    VSV g protein GTGACACTGCCTAGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGC
    signal TGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCG
    sequence GAACCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGCAGC
    (optimized) ACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACA
    GCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGG
    CACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAG
    GACAAGCCCACCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCG
    AAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAG
    ATGCCCTACACAGGGCGAGGCCTACCTGGACAAGCAGTCCGACACCCAGTACGTG
    TGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCA
    AGGGCAGCCTCGTGACCTGTGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAA
    GAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGC
    CAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGG
    CCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTT
    TGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTG
    TACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACG
    ACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAA
    CAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTG
    GTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAG
    CCGAAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCAGACT
    GAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCC
    TTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAG
    TGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCAGCTCAGATGGCCGTGGA
    TATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACC
    GAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACT
    CCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGAAG
    CGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATG
    GCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACT
    CTCTGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGG
    CGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTGATGTGGCTGGGC
    CTGAACACCAAGAACGGCAGCATCTCCCTGATGTGCCTGGCTCTGGGAGGCGTGC
    TGATCTTCCTGAGCACAGCCGTGTCTGCC
    ZIKA_PRME_DSP ATGGACTGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCG 66
    _N154A TGGAAGTGACCAGACGGGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGC
    Zika PRME CGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAG
    Strain ATCATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGC
    ascension id: TGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCAC
    ACD75819 with CTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGA
    IgE signal CGGGCCGTGACACTGCCTAGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGA
    peptide CCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGAT
    (optimized) CTTCCGGAACCCCGGCTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGC
    AGCAGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTG
    CCTACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAG
    CGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATG
    GCCCAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATA
    TGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGA
    CAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAG
    TACGTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGT
    TTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGAC
    CGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCAC
    GGCTCCCAGCACAGCGGCATGATCGTGGCCGACACCGGCCACGAGACAGACGAGA
    ACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGG
    CGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGC
    GACCTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGT
    TCCACGACATCCCCCTGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTG
    GAACAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACC
    GTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCC
    TGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTG
    CCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACC
    GCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTG
    TGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGC
    CGTGGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTG
    ATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCG
    GCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCA
    CAGATCCGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAG
    AGAATGGCCGTGCTGGGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCC
    TGAACAGCCTGGGAAAGGGCATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCT
    GTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGG
    CTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCG
    GCGTGCTGATCTTTCTGAGCACAGCCGTGTCCGCC
  • TABLE 32
    ZIKV Amino Acid Sequences
    SEQ
    ID
    Description Sequence NO:
    FSM|ACD75819 MKNPKEEIRRIRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPIRMVLAI 67
    polyprotein LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    KKRRGTDTSVGIVGLLLTTAMAVEVTRRGSAYYMYLDRSDAGEAISFPTT
    LGMNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENW
    IFRNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHET
    DENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    MR_766|ABI54475 MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 68
    LAFLRFTAIKPSLGLINRWGTVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIVGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFTLVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDENRAK
    VEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKE
    WFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVH
    TALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTK
    VPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVIT
    ESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVR
    GAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQI
    LIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    SM_6_V_1|ABI54480 MKNPKRAGSSRLVNMLRRGAARVIPPGGGLKRLPVGLLLGRGPIKMILAI 69
    LAFLRFTAIKPSTGLINRWGKVGKKEAIKILTKFKADVGTMLRIINNRKT
    KKRGVETGIVFLALLVSIVAVEVTKKGDTYYMFADKKDAGKVVTFETESG
    PNRCSIQAMDIGHMCPATMSYECPVLEPQYEPEDVDCWCNSTAAWIVYGT
    CTHKTTGETRRSRRSITLPSHASQKLETRSSTWLESREYSKYLIKVENWI
    LRNPGYALVAAVIGWTLGSSRSQKIIFVTLLMLVAPAYSIRCIGIGNRDF
    IEGMSGGTWVDIVLEHGGCVTVMSNDKPTLDFELVTTTASNMAEVRSYCY
    EANISEMASDSRCPTQGEAYLDKMADSQFVCKRGYVDRGWGNGCGLFGKG
    SIVTCAKFTCVKKLTGKSIQPENLEYRVLVSVHASQHGGMINNDTNHQHD
    KENRARIDITASAPRVEVELGSFGSFSMECEPRSGLNFGDLYYLTMNNKH
    WLVNRDWFHDLSLPWHTGATSNNHHWNNKEALVEFREAHAKKQTAVVLGS
    QEGAVHAALAGALEAESDGHKATIYSGHLKCRLKLDKLRLKGMSYALCTG
    AFTFARTPSETIHGTATVELQYAGEDGPCKVPIVITSDTNSMASTGRLIT
    ANPVVTESGANSKMMVEIDPPFGDSYIIVGTGTTKITHHWHRAGSSIGRA
    FEATMRGAKRMAVLGDTAWDFGSVGGMFNSVGKFVHQVFGSAFKALFGGM
    SWFTQLLIGFLLIWMGLNARGGTVAMSFMGIGAMLIFLATSVSG
    MR_766|AAV34151 MKNPKEEIRRIRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 70
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIGYETDEDR
    AKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH
    KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA
    VHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTF
    TKVPAETLHGTVTVEVQYAGTDGPCKIPVQMAVDMQTLTPVGRLITANPV
    ITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKAFEAT
    VRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFS
    QILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    MR_766|YP_002790881 MKNPKEEIRRIRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 71
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCKKMTGKSIQPENLEYRIMLSVHGSQHSGMIGYETDEDRA
    KVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHK
    EWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAV
    HTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFT
    KVPAETLHGTVTVEVQYAGTDGPCKIPVQMAVDMQTLTPVGRLITANPVI
    TESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKAFEATV
    RGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQ
    ILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    ARB7701|AHF49785 MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 72
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATN
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALAAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDIGHET
    DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGVHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    ARB15076|AHF49784 MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 73
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATN
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALAAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDENRAK
    VEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKE
    WFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVH
    TALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTK
    VPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVIT
    ESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVR
    GAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQI
    LIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    ARB13565|AHF49783 MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 74
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATN
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALAAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDIGHET
    DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGVHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    ArB1362|AHL43500 MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 75
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALAAVAIAWLLGSSTSQKVIYLIMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDXXXXX
    XXNRAEVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    ArD7117|AHL43501 MKNPKKRSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 76
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIVGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCQHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDIGHET
    DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA
    VCTAAKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    ArD157995|AHL43503 MKNPKKKSGRFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 77
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGETRRSRRSVSLRYHYTRKLQTRSQTWLESREYKKHLIMVENW
    IFRNPGFAIVSVAITWLMGSLTSQKVIYLVMIVLIVPAYSISCIGVSNRD
    LVEGMSGGTWVDVVLEHGGCVTEMAQDKPTVDIELVTMTVSNMAEVRSYC
    YEASLSDMASASRCPTQGEPSLDKQSDTQSVCKRTLGDRGWGNGCGIFGK
    GSLVTCSKFTCCKKMPGKSIQPENLEYRIMLPVHGSQHSGMIVNDIGHET
    DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKVPAETLHGTVTVEVQSAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    ArD128000|AHL43502 MKNPKRKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 78
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALAAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMXXXXXGHET
    DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    RLVRKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWLKKGSSIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGVHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    ArD158084|AHL43504 MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 79
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDIGHET
    DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    H/PF/2013|AHZ13508 MKNPKKKSGGFRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPIRMVLAI 80
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    KKRRGADTSVGIVGLLLTTAMAAEVTRRGSAYYMYLDRNDAGEAISFPTT
    LGMNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENW
    IFRNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHET
    DENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGM
    SWFSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA
    MR766_NIID|BAP47441 MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI 81
    LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT
    LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY
    GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW
    IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD
    FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC
    YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK
    GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMTVNDIGYET
    DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH
    WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS
    QEGAVHTALAGALEAEMDGAKGKLFSGHLKCRLKMDKLRLKGVSYSLCTA
    AFTFTKVPAETLHGTVTVEVQYAGTDGPCKIPVQMAVDMQTLTPVGRLIT
    ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA
    FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM
    SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA
    prME VEVTKKGDTYYMFADKKDAGKVVTFETESGPNRCSIQAMDIGHMCPATMS 82
    ABI54480_SouthAfrica YECPVLEPQYEPEDVDCWCNSTAAWIVYGTCTHKTTGETRRSRRSITLPS
    HASQKLETRSSTWLESREYSKYLIKVENWILRNPGYALVAAVIGWTLGSS
    RSQKIIFVTLLMLVAPAYSIRCIGIGNRDFIEGMSGGTWVDIVLEHGGCV
    TVMSNDKPTLDFELVTTTASNMAEVRSYCYEANISEMASDSRCPTQGEAY
    LDKMADSQFVCKRGYVDRGWGNGCGLFGKGSIVTCAKFTCVKKLTGKSIQ
    PENLEYRVLVSVHASQHGGMINNDTNHQHDKENRARIDITASAPRVEVEL
    GSFGSFSMECEPRSGLNFGDLYYLTMNNKHWLVNRDWFHDLSLPWHTGAT
    SNNHHWNNKEALVEFREAHAKKQTAVVLGSQEGAVHAALAGALEAESDGH
    KATIYSGHLKCRLKLDKLRLKGMSYALCTGAFTFARTPSETIHGTATVEL
    QYAGEDGPCKVPIVITSDTNSMASTGRLITANPVVTESGANSKMMVEIDP
    PFGDSYIIVGTGTTKITHHWHRAGSSIGRAFEATMRGAKRMAVLGDTAWD
    FGSVGGMFNSVGKFVHQVFGSAFKALFGGMSWFTQLLIGFLLIWMGLNAR
    GGTVAMSFMGIGAMLIFLATSVSG
    prME AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS 83
    AAV34151_Uganda_NHP YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIGYETDEDRAKVEVTPNSPRAEATLGGFGSL
    GLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHW
    NNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLFS
    GHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQYAGTD
    GPCKIPVQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSY
    IVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGG
    VFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISL
    TCLALGGVMIFLSTAVSA
    prME AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 84
    AHZ13508_FrenchPoly_ YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    2013 STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG
    SISLMCLALGGVLIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS 85
    gAHL43504 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVMIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS 86
    AHL43503 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGETRRSRRSVSLRYH
    YTRKLQTRSQTWLESREYKKHLIMVENWIFRNPGFAIVSVAITWLMGSLT
    SQKVIYLVMIVLIVPAYSISCIGVSNRDLVEGMSGGTWVDVVLEHGGCVT
    EMAQDKPTVDIELVTMTVSNMAEVRSYCYEASLSDMASASRCPTQGEPSL
    DKQSDTQSVCKRTLGDRGWGNGCGIFGKGSLVTCSKFTCCKKMPGKSIQP
    ENLEYRIMLPVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQS
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVMIFLSTAVSA
    prME AAEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATM 87
    AHL43502 SYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPS
    HSTRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSS
    TSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCV
    TVMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAY
    LDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQ
    PENLEYRIMLSVHGSQHSGMXXXXXGHETDENRAKVEVTPNSPRAEATLG
    GFGSLGLDCEPRTGLDFSDLYYLTMNNKHRLVRKEWFHDIPLPWHAGADT
    GTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAK
    GRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQ
    YAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPP
    FGDSYIVIGVGDKKITHHWLKKGSSIGKAFEATVRGAKRMAVLGDTAWDF
    GSVGGVFNSLGKGVHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKN
    GSISLTCLALGGVMIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS 88
    AHL43501 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCQHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLFSGHLKCRLKMDKLRLKGVSYSLCTAVCTAAKVPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVMIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
    89
    AHL43500 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSST
    SQKVIYLIMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDXXXXXXXNRAEVEVTPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVMIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATNLGVNKCHVQIMDLGHMCDATMS 90
    AHF49785 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGVFNSLGKGVHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVMIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATNLGVNKCHVQIMDLGHMCDATMS 91
    AHF49784_1976 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDENRAKVEVTPNSPRAEATLGGFGSLGL
    DCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHWNN
    KEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLFSGH
    LKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQYAGTDGP
    CKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIV
    IGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGGVF
    NSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISLTC
    LALGGVMIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATNLGVNKCHVQIMDLGHMCDATMS 92
    AHF49783 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGVFNSLGKGVHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVMIFLSTAVSA
    prME VEVTRRGSAYYMYLDRSDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 93
    ACD75819_Micronesia YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVLIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS 94
    ABI54475 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFTLVAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDENRAKVEVTPNSPRAEATLGGFGSLGL
    DCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHWNN
    KEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLFSGH
    LKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQYAGTDGP
    CKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIV
    IGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGGVF
    NSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISLTC
    LALGGVMIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS 95
    YP_002790881 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIGYETDEDRAKVEVTPNSPRAEATLGGFGSL
    GLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHW
    NNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLFS
    GHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQYAGTD
    GPCKIPVQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSY
    IVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGG
    VFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISL
    TCLALGGVMIFLSTAVSA
    prME AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS 96
    BAP4744 YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMTVNDIGYETDENRAKVEVTPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    KLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY
    AGTDGPCKIPVQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVMIFLSTAVSA
    prME AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 97
    KU365780_2015_Brazil_ YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    isolate_BeH815744 STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG
    SISLMCLALGGVLIFLSTAVSA
    prME AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 98
    KU365779_2015_ YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    Brazil_isolate_ STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    BeH819966 SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG
    SISLMCLALGGVLIFLSTAVSA
    prME AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 99
    KU365778_2015_ YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    Brazil_isolate_ STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    BeH819015 SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG
    SISLMCLALGGVLIFLSTAVSA
    prME AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 100
    KU365777_2015_ YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    Brazil_isolate_ STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    BeH818995 SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG
    SISLMCLALGGVLIFLSTAVSA
    prME AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 101
    KU321639_2015_ YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    Brazil_isolate_ STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    ZikaSPH2015 SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDIVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG
    SISLMCLALGGVLIFLSTAVSA
    prME AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHTCDATMS 102
    KU312312_2015_ YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    Suriname_isolate_ STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    Z1106033 SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNAKNG
    SISLMCLALGGVLIFLSTAVSA
    Premembrane/membrane AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 103
    protein YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    KU321639_2015_ STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    Brazil_isolate_ SQKVIYLVMILLIAPAYS
    ZikaSPH2015
    Envelop protein IRCIGVSNRDFVEGMSGGTWVDIVLEHGGCVTVMAQDKPTVDIELVTTTV 104
    KU321639_2015_ SNMAEVRSYCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRG
    Brazil_isolate_ WGNGCGLFGKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSG
    ZikaSPH2015 MIVNDTGHETDENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSD
    LYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHA
    KRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRL
    KGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQ
    TLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHW
    HRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFG
    AAFKSLFGGMSWFSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLST
    AVSA
    Capsid protein MKNPKKKSGGFRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPIRMVLAI 105
    KU321639_2015_ LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE
    Brazil_isolate_ KKRRGADTSVGIVGLLLTTAMAAEV
    ZikaSPH2015
    Non-structural VGCSVDFSKKETRCGTGVFVYNDVEAWRDRYKYHPDSPRRLAAAVKQAWE 106
    protein 1 DGICGISSVSRMENIMWRSVEGELNAILEENGVQLTVVVGSVKNPMWRGP
    KU321639_2015_ QRLPVPVNELPHGWKAWGKSHFVRAAKTNNSFVVDGDTLKECPLKHRAWN
    Brazil_isolate_ SFLVEDHGFGVFHTSVWLKVREDYSLECDPAVIGTAVKGKEAVHSDLGYW
    ZikaSPH2015 IESEKNDTWRLKRAHLIEMKTCEWPKSHTLWTDGIEESDLIIPKSLAGPL
    SHHNTREGYRTQMKGPWHSEELEIRFEECPGTKVHVEETCGTRGPSLRST
    TASGRVIEEWCCRECTMPPLSFRAKDGCWYGMEIRPRKEPESNLVRSMVT
    AGSTDHMDHFSL
    Non-structural GVLVILLMVQEGLKKRMTTKIIISTSMAVLVAMILGGFSMSDLAKLAILM 107
    protein 2A GATFAEMNTGGDVAHLALIAAFKVRPALLVSFIFRANWTPRESMLLALAS
    KU321639_2015_ CLLQTAISALEGDLMVLINGFALAWLAIRAMVVPRTDNITLAILAALTPL
    Brazil_isolate_ ARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLPFVMALGLTAVRLVDP
    ZikaSPH2015 INVVGLLLLTRSGKRSWP
    Non-structural PSEVLTAVGLICALAGGFAKADIEMAGPMAAVGLLIVSYVVSGKSVDMYI 108
    protein 2B ERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEDDGPPMREIILKVVL
    KU321639_2015_ MTICGMNPIAIPFAAGAWYVYVKTGKRSGALWDVPAPKEVKKGE
    Brazil_isolate_
    ZikaSPH2015
  • SEQ
    ID
    Description Sequence NO:
    Non-structural TTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGSALRSGEGRLDP 109
    protein 3 YWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFK
    KU321639_2015_ TKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQ
    Brazil_isolate_ GRREEETPVECFEPSMLKKKQLTVLDLHPGAGKTRRVLPEIVREAIKTRL
    ZikaSPH2015 RTVILAPTRVVAAEMEEALRGLPVRYMTTAVNVTHSGTEIVDLMCHATFT
    SRLLQPIRVPNYNLYIMDEAHFTDPSSIAARGYISTRVEMGEAAAIFMTA
    TPPGTRDAFPDSNSPIMDTEVEVPERAWSSGFDWVTDYSGKTVWFVPSVR
    NGNEIAACLTKAGKRVIQLSRKTFETEFQKTKHQEWDFVVTTDISEMGAN
    FKADRVIDSRRCLKPVILDGERVILAGPMPVTHASAAQRRGRIGRNPNKP
    GDEYLYGGGCAETDEDHAHWLEARMLLDNIYLQDGLIASLYRPEADKVAA
    IEGEFKLRTEQRKTFVELMKRGDLPVWLAYQVASAGITYTDRRWCFDGTT
    NNTIMEDSVPAEVWTRHGEKRVLKPRWMDARVCSDHAALKSFKEFAAGKR
    GAA
    Non-structural FGVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLE 110
    protein 4A TIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPA
    KU321639_2015_ RIACVLIVVFLLLVVLIPEPEKQRSPQDNQMAIIIMVAVGLLGLITA
    Brazil_isolate_
    ZikaSPH2015
    Non-structural NELGWLERTKSDLSHLMGRREEGATMGFSMDIDLRPASAWAIYAALTTFI 111
    protein 4B TPAVQHAVTTSYNNYSLMAMATQAGVLFGMGKGMPFYAWDFGVPLLMIGC
    KU321639_2015_ YSQLTPLTLIVAIILLVAHYMYLIPGLQAAAARAAQKRTAAGIMKNPVVD
    Brazil_isolate_ GIVVTDIDTMTIDPQVEKKMGQVLLMAVAVSSAILSRTAWGWGEAGALIT
    ZikaSPH2015 AATSTLWEGSPNKYWNSSTATSLCNIFRGSYLAGASLIYTVTRNAGLVKR
    RGGGTGETLGEKWKARLNQMSALEFYSYKKSGITEVCREEARRALKDGVA
    TGGHAVSRGSAKLRWLVERGYLQPYGKVIDLGCGRGGWSYYAATIRKVQE
    VKGYTKGGPGHEEPVLVQSYGWNIVRLKSGVDVFHMAAEPCDTLLCDIGE
    SSSSPEVEEARTLRVLSMVGDWLEKRPGAFCIKVLCPYTSTMMETLERLQ
    RRYGGGLVRVPLSRNSTHEMYWVSGAKSNTIKSVSTTSQLLLGRMDGPRR
    PV
    Non-structural KYEEDVNLGSGTRAVVSCAEAPNMKIIGNRIERIRSEHAETWFFDENHPY 112
    protein 5 RTWAYHGSYEAPTQGSASSLINGVVRLLSKPWDVVTGVTGIAMTDTTPYG
    KU321639_2015_ QQRVFKEKVDTRVPDPQEGTRQVMSMVSSWLWKELGKHKRPRVCTKEEFI
    Brazil_isolate_ NKVRSNAALGAIFEEEKEWKTAVEAVNDPRFWALVDKEREHHLRGECQSC
    ZikaSPH2015 VYNMMGKREKKQGEFGKAKGSRAIWYMWLGARFLEFEALGFLNEDHWMGR
    ENSGGGVEGLGLQRLGYVLEEMSRIPGGRMYADDTAGWDTRISRFDLENE
    ALITNQMEKGHRALALAIIKYTYQNKVVKVLRPAEKGKTVMDIISRQDQR
    GSGQVVTYALNTFTNLVVQLIRNMEAEEVLEMQDLWLLRRSEKVTNWLQS
    NGWDRLKRMAVSGDDCVVKPIDDRFAHALRFLNDMGKVRKDTQEWKPSTG
    WDNWEEVPFCSHHFNKLHLKDGRSIVVPCRHQDELIGRARVSPGAGWSIR
    ETACLAKSYAQMWQLLYFHRRDLRLMANAICSSVPVDWVPTGRTTWSIHG
    KGEWMTTEDMLVVWNRVWIEENDHMEDKTPVTKWTDIPYLGKREDLWCGS
    LIGHRPRTTWAENIKNTVNMVRRIIGDEEKYMDYLSTQVRYLGEEGSTPG
    VL
    Signal METPAQLLFLLLLWLPDTTGAEVTRRGSAYYMYLDRNDAGEAISFPTTLG 113
    peptide_prM-E MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGT
    CHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIF
    RNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFV
    EGMSGGTWVDIVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYCYE
    ASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGS
    LVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDE
    NRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWL
    VHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQE
    GAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAF
    TFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITAN
    PVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFE
    ATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSW
    FSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA
    Signal peptide_E METPAQLLFLLLLWLPDTTGIRCIGVSNRDFVEGMSGGTWVDIVLEHGGC 114
    VTVMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEA
    YLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKS1
    QPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATL
    GGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGAD
    TGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGA
    KGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEV
    QYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDP
    PFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWD
    FGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTK
    NGSISLMCLALGGVLIFLSTAVSA
    IgE HC signal MDWTWILFLVAAATRVHSVEVTRRGSAYYMYLDRSDAGEAISFPTTLGMN 115
    peptide_prM-E #1 KCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCH
    (Brazil_isolate_ HKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRN
    ZikaSPH2015) PGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEG
    MSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEAS
    ISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLV
    TCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENR
    AKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH
    KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA
    VHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTF
    TKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPV
    ITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEAT
    VRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFS
    QILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    IgE HC signal MDWTWILFLVAAATRVHSVEVTRRGSAYYMYLDRSDAGEAISFPTTLGMN 116
    peptide_prM-E #1 KCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCH
    (ACD75819_Micronesia) HKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRN
    PGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEG
    MSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEAS
    ISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLV
    TCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENR
    AKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH
    KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA
    VHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTF
    TKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPV
    ITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEAT
    VRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFS
    QILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    IgE HC signal MDWTWILFLVAAATRVHSTRRGSAYYMYLDRSDAGEAISFPTTLGMNKCY 117
    peptide_prM-E #2 IQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKK
    (Brazil_isolate_ GEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPGF
    ZikaSPH2015) ALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSG
    GTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISD
    MASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCA
    KFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKV
    EITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEW
    FHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHT
    ALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKI
    PAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITE
    STENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRG
    AKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQIL
    IGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    HuIgGk signal METPAQLLFLLLLWLPDTTGVEVTRRGSAYYMYLDRSDAGEAISFPTTLG 118
    peptide_prME #1 MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGT
    (Brazil_isolate_ CHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIF
    ZikaSPH2015) RNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFV
    EGMSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYE
    ASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGS
    LVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDE
    NRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWL
    VHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQE
    GAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAF
    TFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITAN
    PVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFE
    ATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSW
    FSQILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    HuIgGk signal METPAQLLFLLLLWLPDTTGTRRGSAYYMYLDRSDAGEAISFPTTLGMNK 119
    peptide_prME #2 CYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHH
    (Brazil_isolate_ KKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNP
    ZikaSPH2015) GFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGM
    SGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASI
    SDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVT
    CAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRA
    KVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHK
    EWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAV
    HTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFT
    KIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVI
    TESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATV
    RGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQ
    ILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    HuIgGk signal METPAQLLFLLLLWLPDTTGIRCIGVSNRDFVEGMSGGTWVDVVLEHGGC 120
    peptide_E VTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEA
    (Brazil_isolate_ YLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKS1
    ZikaSPH2015) QPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATL
    GGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGAD
    TGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGA
    KGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEV
    QYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDP
    PFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWD
    FGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTK
    NGSISLTCLALGGVLIFLSTAVSA
    IgE HC signal MDWTWILFLVAAATRVHSTRRGSAYYMYLDRSDAGEAISFPTTLGMNKCY 121
    peptide_prM-E #2 IQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKK
    (ACD75819_Micronesia) GEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPGF
    ALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSG
    GTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISD
    MASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCA
    KFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKV
    EITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEW
    FHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHT
    ALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKI
    PAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITE
    STENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRG
    AKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQIL
    IGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    HuIgGk signal METPAQLLFLLLLWLPDTTGVEVTRRGSAYYMYLDRSDAGEAISFPTTLG 122
    peptide_prME #1, MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGT
    (ACD75819_Micronesia) CHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIF
    RNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFV
    EGMSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYE
    ASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGS
    LVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDE
    NRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWL
    VHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQE
    GAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAF
    TFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITAN
    PVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFE
    ATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSW
    FSQILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    HuIgGk signal METPAQLLFLLLLWLPDTTGTRRGSAYYMYLDRSDAGEAISFPTTLGMNK 123
    peptide_prME #2, CYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHH
    (ACD75819_Micronesia) KKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNP
    GFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGM
    SGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASI
    SDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVT
    CAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRA
    KVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHK
    EWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAV
    HTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFT
    KIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVI
    TESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATV
    RGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQ
    ILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
    HuIgGk signal METPAQLLFLLLLWLPDTTGIRCIGVSNRDFVEGMSGGTWVDVVLEHGGC 124
    peptide_E, VTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEA
    (ACD75819_Micronesia) YLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKS1
    QPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATL
    GGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGAD
    TGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGA
    KGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEV
    QYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDP
    PFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWD
    FGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTK
    NGSISLTCLALGGVLIFLSTAVSA
    HuIgGk signal METPAQLLFLLLLWLPDTTG 125
    peptide
    IgE heavy chain MDWTWILFLVAAATRVHS 126
    epsilon -1 signal
    peptide
    Zika_RIO-U1_JEVsp AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 127
    Zika PRME Strain YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    ascension id: STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    ANG09399 SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG
    SISLMCLALGGVLIFLSTAVSA
    Japanese MLGSNSGQRVVFTILLLLVAPAYS 128
    encephalitis PRM
    signal sequence
    Zika_RIO-U1_JEVsp MLGSNSGQRVVFTILLLLVAPAYSAEVTRRGSAYYMYLDRNDAGEAISFP 129
    Zika PRME Strain TTLGMNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWV
    ascension id: VYGTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVE
    ANG09399 with JEV NWIFRNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSN
    PRM signal RDFVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRS
    sequence YCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLF
    GKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGH
    ETDENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNN
    KHWLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVL
    GSQEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLC
    TAAFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRL
    ITANPVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIG
    KAFEATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFG
    GMSWFSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA
    Zika_RIO- EVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMSY 130
    U1¬_VSVgSp ECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSHS
    Zika PRME Strain TRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSSTS
    ascension id: QKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVTV
    ANG09399 MAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYLD
    KQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQPE
    NLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGGF
    GSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGT
    PHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGR
    LSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYA
    GTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFG
    DSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGS
    VGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNGS
    ISLMCLALGGVLIFLSTAVSA
    VSV g protein MKCLLYLAFLFIGVNCA 131
    signal sequence
    Zika_ RIO- MKCLLYLAFLFigVNCAEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKC 132
    U1¬_VSVgSp YIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHK
    Zika PRME Strain KGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPG
    ascension id: FALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMS
    ANG09399 with VSV GGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYCYEASIS
    g protein signal DMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTC
    sequence AKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAK
    VEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKE
    WFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVH
    TALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTK
    IPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVIT
    ESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVR
    GAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQI
    LIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA
    ZIKA_PRME_DSP_N154A VEVTRRGSAYYMYLDRSDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS 133
    (glycosylation YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH
    mutant) STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST
    Zika PRME Strain SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT
    ascension id: VMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL
    ACD75819 DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP
    ENLEYRIMLSVHGSQHSGMIVADTGHETDENRAKVEITPNSPRAEATLGG
    FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG
    TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG
    RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY
    AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF
    GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG
    SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG
    SISLTCLALGGVLIFLSTAVSA
    ZIKA_PRME_DSP_N154A MDWTWILFLVAAATRVHSVEVTRRGSAYYMYLDRSDAGEAISFPTTLGMN 134
    (glycosylation KCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCH
    mutant with HKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRN
    signal peptide) PGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEG
    Zika PRME Strain MSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEAS
    ascension id: ISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLV
    ACD75819 with IgE TCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVADTGHETDENR
    signal peptide AKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH
    KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA
    VHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTF
    TKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPV
    ITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEAT
    VRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFS
    QILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
  • TABLE 33
    ZIKV NCBI Accession Numbers (Amino Acid Sequences)
    Name GenBank Accession
    polyprotein [Zika virus] YP_002790881.1
    polyprotein [Zika virus] BAP47441.1
    polyprotein [Zika virus] AEN75263.1
    polyprotein [Zika virus] AHL43504.1
    polyprotein [Zika virus] AEN75266.1
    polyprotein [Zika virus] AHF49784.1
    polyprotein [Zika virus] AHF49783.1
    polyprotein [Zika virus] AHF49785.1
    polyprotein [Zika virus] ABI54475.1
    polyprotein [Zika virus] AHL43501.1
    polyprotein [Zika virus] AHL43500.1
    polyprotein [Zika virus] AHL43502.1
    polyprotein [Zika virus] AEN75265.1
    polyprotein [Zika virus] AHL43503.1
    polyprotein [Zika virus] AEN75264.1
    polyprotein [Zika virus] AHZ13508.1
    polyprotein [Zika virus] ACD75819.1
    polyprotein [Zika virus] AFD30972.1
    polyprotein [Zika virus] AAK91609.1
    envelope protein [Zika virus] AHL43462.1
    envelope protein [Zika virus] AHL43464.1
    envelope protein [Zika virus] AHL43461.1
    envelope protein [Zika virus] AHL43460.1
    envelope protein [Zika virus] AHL43463.1
    envelope protein [Zika virus] AHL43444.1
    envelope protein [Zika virus] AHL43451.1
    envelope protein [Zika virus] AHL43437.1
    envelope protein [Zika virus] AHL43455.1
    envelope protein [Zika virus] AHL43448.1
    envelope protein [Zika virus] AHL43439.1
    envelope protein [Zika virus] AHL43468.1
    E protein [Zika virus] AIC06934.1
    envelope protein [Zika virus] AHL43450.1
    envelope protein [Zika virus] AHL43442.1
    envelope protein [Zika virus] AHL43458.1
    envelope glycoprotein [Zika virus] AHL16749.1
    envelope protein [Zika virus] AHL43453.1
    envelope protein [Zika virus] AHL43443.1
    envelope protein [Zika virus] AHL43438.1
    envelope protein [Zika virus] AHL43441.1
    envelope protein [Zika virus] AHL43457.1
    envelope protein [Zika virus] AAK91609.1
    polyprotein [Zika virus] AHL43505.1
  • Example 35: Surface Expressed DENV2 prME Antigens
  • The DENV2 prME polypeptide antigen sequences provided in Table 34 were tested to confirm that the DENV prME protein antigen is translated, properly folded and expressed on the surface of cells. For the polypeptide sequences, the bolded sequence is Dengue signal sequence, the underlined sequence is DENV2 precursor membrane sequence, and the unmarked sequence is DENV2 envelope sequence. The sequences encoding the polypeptides are codon-optimized. HeLa cells were transfected with DNA encoding the prMEs from nine different Dengue 2 isolates. After 24 hours, surface expression of the prME was detected using three different antibodies followed by goat-anti-human AF700 secondary antibody and subjecting the cells to FACS analyses. Each of the three antibodies are broadly neutralizing DENV2 prME antibodies that have in vivo efficacy against Dengue virus. D88 binds to DIII of Envelope protein for all 4 Dengue serotypes (US20150225474). 2D22 binds to DIII of Envelope protein for Dengue 2 serotype. 5J7 binds to 3 domains of Envelope protein for Dengue 3 serotype. FIG. 34B shows that two of the DENV2 prME antigens are recognized by the D88 and 2D22 antibodies. These results show that the two DENV2 prME antigens identified as Thailand/01 68/1979 and Peru/IQT29 13/1996 are expressed at the cell surface in a conformationally correct form and are excellent vaccine candidates (FIG. 34A). FIG. 34B shows a repeat of staining in triplicate and in two different cell lines (HeLa and 293T). These results confirm proper conformation of expressed DENV2 prME antigens (in particular, the prME antigens from Thailand/01 68/1979 and Peru/IQT29 13/1996) and also evidence at least non-inferior and even superior DENV2 antigenicity as compared to Dengvaxia (CYD-TDV), a live attenuated tetravalent chimeric vaccine. Antigen expressed from the mRNA encoding Dengue 2 prME from Peru/IQT2913/1996 shows the best binding to 2 different DENV2 antibodies in 293T cells and in HeLa cells (D88—binds all 4 serotypes 2D22—binds Dengue 2). This construct has a single amino acid difference from the Dengue 2 Envelope III Domain immunodeterminant region (see bold, underline in SEQ ID NO: 168, Table 34).
  • TABLE 34
    Example DENV2 PrME Polypeptide
    Sequence
    Name
    5′ UTR ORF 3′ UTR Polypeptide
    Dengue 2 TCAAGCTT ATGCTGAATATTCTGAACCGCCG TGATAATA MLNILNRRRRTA
    prME TTGGACCC CCGCCGGACTGCCGGGATTATAA GGCTGGAG GIIIMMIPTVMA
    (Thailand/ TCGTACAG TTATGATGATTCCCACCGTGATG CCTCGGTG FHLTTRNGEPHM
    0168/1979) AAGCTAAT GCCTTCCACCTGACCACCCGGAA GCCATGCT IVSRQEKGKSLL
    ACGACTCA CGGGGAACCACATATGATCGTGT TCTTGCCC FKTEDGVNMCTL
    CTATAGGG CCAGACAGGAGAAGGGAAAGTCC CTTGGGCC MAMDLGELCEDT
    AAATAAGA CTGCTGTTCAAGACCGAGGACGG TCCCCCCA ITYKCPLLRQNE
    GAGAAAAG CGTGAACATGTGCACCCTCATGG GCCCCTCC PEDIDCWCNSTS
    AAGAGTAA CTATGGACCTGGGCGAACTCTGC TCCCCTTC TWVTYGTCTTTG
    GAAGAAAT GAGGACACCATCACCTACAAGTG CTGCACCC EHRREKRSVALV
    ATAAGAGC CCCCCTGTTGAGGCAGAACGAGC GTACCCCC PHVGMGLETRTE
    CACC CGGAGGATATTGACTGCTGGTGC GTGGTCTT TWMSSEGAWKHA
    (SEQ ID AATTCGACCAGCACCTGGGTCAC TGAATAAA QRIETWILRHPG
    NO: 135) CTACGGGACTTGCACCACAACCG GTCTGAGT FTIMAAILAYTI
    GAGAACATCGGCGCGAAAAGCGC GGGCGGC GTTHFQRALIFI
    AGCGTGGCTTTGGTGCCTCACGT (SEQ ID LLTAVAPSMTMR
    CGGAATGGGGCTGGAGACTAGAA NO: 153) CIGISNRDFVEG
    CCGAGACTTGGATGTCGTCGGAA VSGGSWVDIVLE
    GGGGCCTGGAAACACGCACAGCG HGSCVTTMAKNK
    CATCGAAACTTGGATACTCAGGC PTLDFELIKTEA
    ATCCCGGCTTCACCATTATGGCC KQPATLRKYCIE
    GCGATCCTGGCATACACCATCGG AKLTNTTTESRC
    TACTACCCACTTCCAACGGGCCC PTQGEPSLNEEQ
    TGATCTTTATCCTCCTGACCGCT DKRFVCKHSMVD
    GTCGCACCATCCATGACCATGCG RGWGNGCGLFGK
    GTGTATCGGTATCAGCAACAGGG GGIVTCAMFTCK
    ACTTCGTGGAGGGAGTGTCGGGA KNMEGKIVQPEN
    GGATCCTGGGTGGATATTGTGCT LEYTIVVTPHSG
    GGAACACGGTTCCTGCGTCACTA EEHAVGNDTGKH
    CCATGGCGAAGAACAAGCCTACC GKEIKVTPQSSI
    CTGGACTTTGAGCTGATCAAAAC TEAELTGYGTVT
    TGAGGCCAAGCAGCCGGCCACCC MECSPRTGLDFN
    TGCGCAAGTACTGCATCGAAGCC EMVLLQMENKAW
    AAGCTGACCAATACCACTACCGA LVHRQWFLDLPL
    ATCCCGCTGTCCGACCCAAGGGG PWLPGADTQGSN
    AGCCCTCCCTGAATGAGGAGCAG WIQKETLVTFKN
    GACAAGCGCTTCGTCTGCAAGCA PHAKKQDVVVLG
    TTCAATGGTCGACCGCGGCTGGG SQEGAMHTALTG
    GAAACGGCTGGGGACTGTTCGGA ATEIQMSSGNLL
    AAGGGCGGCATTGTGACCTGTGC FTGHLKCRLRMD
    CATGTTCACTTGCAAGAAGAACA KLQLKGMSYSMC
    TGGAAGGAAAGATCGTGCAGCCC TGKFKVVKEIAE
    GAAAACCTGGAGTATACCATCGT TQHGTIVIRVQY
    CGTGACCCCGCACTCCGGGGAAG EGDGSPCKIPFE
    AACACGCTGTGGGAAACGACACC IMDLEKRHVLGR
    GGAAAGCACGGAAAGGAGATCAA LITVNPIVTEKD
    AGTGACCCCACAGTCGAGCATTA SPVNIEAEPPFG
    CCGAGGCCGAACTTACTGGTTAC DSYIIIGVEPGQ
    GGCACTGTGACGATGGAATGTTC LKLNWFKKGSSI
    ACCGAGAACTGGACTGGATTTCA GQMFETTMRGAK
    ACGAAATGGTGCTGCTCCAAATG RMAILGDTAWDF
    GAAAACAAGGCCTGGCTGGTGCA GSLGGVFTSIGK
    CCGCCAGTGGTTTCTTGACCTCC ALHQVFGAIYGA
    CTCTCCCTTGGCTGCCTGGAGCA AFSGVSWTMKIL
    GACACTCAGGGTTCCAACTGGAT IGVIITWIGMNS
    TCAGAAGGAAACACTCGTGACCT RSTSLSVSLVLV
    TCAAGAACCCTCACGCGAAGAAG GIVTLYLGVMVQ
    CAGGATGTGGTCGTGCTGGGAAG A (SEQ ID
    CCAGGAGGGAGCGATGCATACCG NO: 162)
    CCCTCACCGGCGCGACGGAGATT
    CAGATGTCCAGCGGAAACCTTCT
    GTTCACCGGACACCTGAAGTGCA
    GACTGAGGATGGACAAGCTGCAG
    CTCAAGGGAATGTCCTACTCCAT
    GTGCACTGGAAAGTTCAAGGTCG
    TGAAGGAGATTGCCGAAACTCAG
    CATGGTACCATCGTGATCCGGGT
    GCAATATGAAGGGGACGGATCCC
    CGTGCAAGATCCCTTTCGAAATC
    ATGGACTTGGAGAAGCGACACGT
    GCTGGGCAGACTGATCACAGTCA
    ACCCCATCGTGACTGAGAAGGAT
    TCACCCGTGAACATTGAAGCCGA
    GCCGCCTTTCGGCGATAGCTACA
    TCATCATTGGCGTGGAACCGGGA
    CAGCTTAAGCTCAACTGGTTCAA
    GAAGGGTTCCTCGATCGGTCAAA
    TGTTTGAAACCACGATGCGGGGT
    GCCAAACGGATGGCCATTCTGGG
    AGACACCGCCTGGGATTTCGGCT
    CCTTGGGCGGAGTGTTCACTTCT
    ATCGGAAAGGCGCTGCACCAAGT
    GTTCGGAGCCATCTACGGCGCCG
    CGTTCTCGGGCGTCAGCTGGACC
    ATGAAGATTCTGATCGGGGTCAT
    CATCACTTGGATTGGGATGAACT
    CACGGTCCACCTCCCTGAGCGTG
    TCCCTTGTCCTGGTCGGCATCGT
    GACCCTGTACCTCGGAGTGATGG
    TGCAGGCTTAG (SEQ ID NO:
    144)
    Dengue 2 TCAAGCTT ATGCTTAACATTCTCAACCGCCG TGATAATA MLNILNRRRRTA
    prME TTGGACCC CCGGAGAACTGCTGGTATTATCA GGCTGGAG GIIIMMIPTVMA
    (Thailand/ TCGTACAG TTATGATGATTCCCACTGTGATG CCTCGGTG FHLTTRNGEPHM
    16681/1984) AAGCTAAT GCCTTCCACCTGACCACGCGGAA GCCATGCT IVGRQEKGKSLL
    ACGACTCA CGGCGAACCCCATATGATTGTCG TCTTGCCC FKTEDGVNMCTL
    CTATAGGG GTCGGCAGGAAAAGGGGAAGTCC CTTGGGCC MAIDLGELCEDT
    AAATAAGA CTGCTGTTCAAAACTGAGGACGG TCCCCCCA ITYKCPLLRQNE
    GAGAAAAG AGTGAACATGTGCACCCTCATGG GCCCCTCC PEDIDCWCNSTS
    AAGAGTAA CTATTGACCTGGGAGAGCTGTGC TCCCCTTC TWVTYGTCATTG
    GAAGAAAT GAAGATACTATCAGGTACAAGTG CTGCACCC EHRREKRSVALV
    ATAAGAGC CCCCCTGCTGCGCCAGAACGAGC GTACCCCC PHVGMGLETRTE
    CACC CTGAGGACATTGACTGCTGGTGC GTGGTCTT TWMSSEGAWKHV
    (SEQ ID AACTCCACGTCAACCTGGGTCAC TGAATAAA QRIETWILRHPG
    NO: 136) CTACGGAACTTGCGCGACTACCG GTCTGAGT FTIMAAILAYTI
    GCGAACATCGCAGAGAAAAGAGA GGGCGGC GTTHFQRALIFI
    AGCGTGGCCCTCGTGCCGCACGT (SEQ ID LLTAVAPSMTMR
    CGGGATGGGGCTGGAAACCCGGA NO: 154) CIGMSNRDFVEG
    CCGAAACCTGGATGTCCTCGGAA VSGGSWVDIVLE
    GGCGCCTGGAAGCACGTGCAGAG HGSCVTTMAKNK
    GATCGAAACTTGGATCCTCCGGC PTLDFELIKTEA
    ACCCGGGATTCACCATCATGGCC KQPATLRKYCIE
    GCCATCCTCGCTTACACAATCGG AKLTNTTTESRC
    AACCACTCACTTTCAACGCGCCC PTQGEPSLNEEQ
    TGATCTTCATCCTGCTTACCGCC DKRFVCKHSMVD
    GTGGCCCCGTCCATGACCATGCG RGWGNGCGLFGK
    CTGCATTGGAATGTCAAACCGGG GGIVTCAMFRCK
    ACTTCGTCGAGGGAGTCTCCGGA KNMEGKVVQPEN
    GGAAGCTGGGTGGACATCGTGCT LEYTIVITPHSG
    GGAGCACGGCAGCTGTGTGACCA EEHAVGNDTGKH
    CCATGGCCAAGAACAAGCCAACT GKEIKITPQSST
    CTTGATTTCGAACTGATCAAGAC TEAELTGYGTVT
    CGAGGCCAAGCAGCCTGCCACTC MECSPRTGLDFN
    TGAGGAAGTACTGTATCGAAGCG EMVLLQMENKAW
    AAGCTGACCAACACCACTACCGA LVHRQWFLDLPL
    ATCCCGCTGCCCGACCCAGGGCG PWLPGADTQGSN
    AACCTTCCTTGAACGAAGAACAG WIQKETLVTFKN
    GACAAGAGATTCGTGTGCAAGCA PHAKKQDVVVLG
    TAGCATGGTCGACAGGGGATGGG SQEGAMHTALTG
    GGAACGGATGTGGACTCTTTGGG ATEIQMSSGNLL
    AAGGGCGGAATCGTCACCTGTGC FTGHLKCRLRMD
    GATGTTCCGGTGCAAGAAGAACA KLQLKGMSYSMC
    TGGAGGGGAAGGTCGTGCAGCCC TGKFKVVKEIAE
    GAAAATCTCGAGTACACTATCGT TQHGTIVIRVQY
    GATCACCCCGCATTCCGGAGAGG EGDGSPCKIPFE
    AGCACGCCGTGGGCAACGACACC IMDLEKRHVLGR
    GGGAAGCACGGAAAGGAGATCAA LITVNPIVTEKD
    AATTACCCCTCAATCCTCCACCA SPVNIEAEPPFG
    CCGAAGCCGAATTGACTGGTTAC DSYIIIGVEPGQ
    GGTACCGTGACTATGGAGTGCTC LKLNWFKKGSSI
    GCCGCGGACTGGCTTGGACTTCA GQMFETTMRGAK
    ACGAGATGGTGCTGCTGCAAATG RMAILGDTAWDF
    GAGAACAAGGCCTGGCTGGTGCA GSLGGVFTSIGK
    CCGGCAGTGGTTTCTTGATCTGC ALHQVFGAIYGA
    CTCTGCCTTGGCTGCCCGGAGCC AFSGVSWTMKIL
    GACACCCAGGGTAGCAATTGGAT IGVIITWIGMNS
    CCAGAAAGAGACACTCGTGACCT RSTSLSVTLVLV
    TTAAGAACCCGCACGCAAAGAAG GIVTLYLGVMVQ
    CAGGATGTCGTGGTCCTGGGAAG A (SEQ ID
    CCAAGAAGGGGCAATGCATACCG NO: 163)
    CACTCACTGGAGCCACTGAAATC
    CAGATGTCCTCCGGCAATCTGCT
    GTTCACCGGCCATCTGAAGTGCC
    GACTGCGCATGGACAAGCTCCAG
    CTTAAGGGAATGTCCTACTCCAT
    GTGTACTGGAAAGTTCAAAGTCG
    TGAAGGAAATTGCCGAAACCCAG
    CACGGCACCATAGTGATCCGGGT
    GCAGTACGAGGGCGACGGCTCAC
    CCTGCAAAATCCCGTTCGAGATT
    ATGGATCTCGAAAAGCGCCACGT
    GCTGGGCAGACTGATTACCGTGA
    ACCCTATCGTGACCGAGAAGGAT
    TCCCCAGTGAACATCGAGGCCGA
    ACCGCCCTTCGGAGACTCGTATA
    TCATCATCGGCGTGGAGCCCGGC
    CAGCTGAAGCTGAACTGGTTCAA
    GAAGGGGTCGAGCATCGGCCAGA
    TGTTCGAGACTACCATGCGCGGC
    GCGAAGAGGATGGCGATCCTGGG
    GGATACCGCTTGGGACTTCGGTT
    CCCTCGGCGGGGTGTTCACCTCG
    ATTGGGAAGGCCCTCCACCAAGT
    GTTCGGTGCAATCTACGGAGCGG
    CGTTCAGCGGAGTGTCGTGGACC
    ATGAAGATTCTGATCGGCGTGAT
    CATCACCTGGATTGGCATGAACT
    CCCGGTCTACTAGCCTGTCGGTG
    ACCCTGGTGCTGGTCGGAATCGT
    GACCTTGTACCTGGGAGTGATGG
    TGCAAGCTTAG (SEQ ID NO:
    145)
    Dengue 2 TCAAGCTT ATGCTGAACATCCTGAACCGCAG TGATAATA MLNILNRRRRTA
    prME TTGGACCC AAGGAGAACCGCCGGTATTATTA GGCTGGAG GIIIMMIPTVMA
    (Jamaica/ TCGTACAG TTATGATGATCCCCACCGTGATG CCTCGGTG FHLTTRNGEPHM
    1409/1983) AAGCTAAT GCATTCCACCTGACTACCCGCAA GCCATGCT IVGRQEKGKSLL
    ACGACTCA CGGAGAGCCGCATATGATCGTGG TCTTGCCC FKTEDGVNMCTL
    CTATAGGG GCCGCCAGGAAAAGGGAAAGTCC CTTGGGCC MAIDLGELCEDT
    AAATAAGA CTGCTGTTCAAGACTGAGGACGG TCCCCCCA ITYKCPLLRQNE
    GAGAAAAG CGTGAACATGTGCACTCTCATGG GCCCCTCC PEDIDCWCNSTS
    AAGAGTAA CCATCGACCTCGGCGAACTGTGC TCCCCTTC TWVTYGTCATTG
    GAAGAAAT GAGGACACCATTACTTACAAGTG CTGCACCC EHRREKRSVALV
    ATAAGAGC CCCGCTGCTGAGACAGAACGAGC GTACCCCC PHVGMGLETRTE
    CACC CTGAGGACATCGACTGTTGGTGT GTGGTCTT TWMSSEGAWKHV
    (SEQ ID AACTCGACCTCCACCTGGGTCAC TGAATAAA QRIETWILRHPG
    NO: 137) CTACGGAACGTGCGCCACAACCG GTCTGAGT FTIMAAILAYTI
    GAGAACACCGCCGGGAAAAGCGG GGGCGGC GTTHFQRALIFI
    AGCGTGGCTCTGGTGCCGCACGT (SEQ ID LLTAVAPSMTMR
    CGGAATGGGTCTGGAGACTAGAA NO: 155) CIGISNRDFVEG
    CCGAAACCTGGATGTCATCCGAG VSGGSWVDIVLE
    GGGGCATGGAAACATGTGCAGCG HGSCVTTMAKNK
    AATCGAGACTTGGATCCTGAGAC PTLDFELIKTEA
    ACCCGGGCTTCACTATCATGGCG KQPATLRKYCIE
    GCCATCCTTGCCTACACCATTGG AKLTNTTTESRC
    CACTACTCACTTCCAACGGGCGC PTQGEPSLNEEQ
    TGATCTTCATACTGCTCACCGCG DKRFLCKHSMVD
    GTGGCCCCCTCCATGACGATGCG RGWGNGCGLFGK
    CTGCATCGGAATCTCCAACCGGG GGIVTCAMFTCK
    ACTTCGTGGAGGGCGTCAGCGGA KNMEGKVVLPEN
    GGCAGCTGGGTGGACATCGTGTT LEYTIVITPHSG
    GGAGCACGGAAGCTGCGTGACCA EEHAVGNDTGKH
    CCATGGCCAAGAACAAGCCCACT GKEIKITPQSSI
    CTTGATTTTGAGCTGATCAAGAC TEAELTGYGTVT
    GGAAGCAAAGCAGCCGGCCACTC MECSPRTGLDFN
    TGAGGAAGTACTGCATCGAGGCC EMVLLQMEDKAW
    AAGCTCACCAACACAACCACCGA LVHRQWFLDLPL
    ATCTCGGTGCCCGACCCAAGGAG PWLPGADTQGSN
    AGCCATCACTGAACGAGGAACAG WIQKETLVTFKN
    GACAAGAGATTCCTGTGCAAACA PHAKKQDVVVLG
    TTCGATGGTGGACAGGGGATGGG SQEGAMHTALTG
    GAAATGGTTGCGGCCTGTTCGGC ATEIQMSSGNLL
    AAAGGAGGCATTGTGACCTGTGC FTGHLKCRLRMD
    GATGTTCACTTGCAAGAAAAACA KLQLKGMSYSMC
    TGGAGGGGAAGGTCGTGTTGCCG TGKFKIVKEIAE
    GAGAACCTGGAGTACACTATCGT TQHGTIVIRVQY
    GATTACCCCGCACTCCGGGGAGG EGDGSPCKIPFE
    AACATGCCGTGGGAAATGACACC IMDLEKRHVLGR
    GGAAAGCACGGGAAGGAAATCAA LITVNPIVTEKD
    AATCACGCCTCAGTCCTCAATCA SPVNIEAEPPFG
    CCGAAGCCGAGCTTACCGGCTAC DSYIIIGVEPGQ
    GGTACCGTGACCATGGAGTGCAG LKLNWFKKGSSI
    CCCTCGGACTGGACTGGACTTCA GQMFETTMRGAK
    ACGAGATGGTGCTGCTGCAAATG RMAILGDTAWDF
    GAAGATAAGGCCTGGCTGGTGCA GSLGGVFTSIGK
    CCGGCAGTGGTTCTTGGATTTGC ALHQVFGAIYGA
    CACTGCCTTGGCTGCCCGGCGCG AFSGVSWTMKIL
    GATACCCAGGGTTCCAACTGGAT IGVIITWIGMNS
    TCAGAAGGAAACCCTCGTGACCT RSTSLSVSLVLV
    TCAAGAATCCTCACGCCAAGAAG GVVTLYLGAMVQ
    CAGGACGTGGTGGTGCTGGGTTC A (SEQ ID
    CCAAGAAGGGGCCATGCATACTG NO: 164)
    CCCTCACTGGAGCGACCGAAATC
    CAGATGTCGTCCGGCAACCTCCT
    GTTCACCGGCCACCTGAAGTGCC
    GCCTGCGGATGGACAAGTTGCAG
    CTGAAGGGAATGAGCTACTCGAT
    GTGTACCGGAAAGTTCAAGATCG
    TGAAGGAAATCGCCGAAACCCAG
    CACGGAACCATCGTCATTAGAGT
    GCAGTACGAAGGGGACGGCAGCC
    CGTGCAAGATCCCCTTCGAAATT
    ATGGACCTGGAGAAGCGCCACGT
    GCTCGGAAGGCTCATCACTGTCA
    ACCCAATCGTCACCGAAAAGGAC
    TCCCCTGTGAACATCGAAGCAGA
    GCCCCCTTTCGGGGACTCCTACA
    TTATTATCGGCGTGGAGCCCGGC
    CAGCTGAAGCTGAACTGGTTCAA
    GAAGGGATCCTCGATCGGACAGA
    TGTTCGAAACCACCATGCGGGGA
    GCCAAGCGGATGGCTATTCTGGG
    AGATACCGCTTGGGATTTCGGCT
    CCCTCGGCGGCGTCTTTACTTCC
    ATCGGGAAAGCGCTCCACCAAGT
    GTTTGGAGCCATCTACGGTGCCG
    CTTTTTCCGGGGTGTCATGGACC
    ATGAAGATTCTTATCGGGGTCAT
    TATTACTTGGATCGGCATGAACT
    CCCGGAGCACCTCGCTGTCCGTG
    AGCCTCGTGCTCGTGGGGGTGGT
    CACTCTGTATCTTGGTGCCATGG
    TGCAGGCCTAG (SEQ ID NO:
    146)
    Dengue 2 TCAAGCTT ATGCTTAACATCCTGAATAGAAG TGATAATA MLNILNRRRRTA
    prME TTGGACCC AAGAAGAACCGCCGGCATTATCA GGCTGGAG GIIIMMIPTVMA
    (Thailand/ TCGTACAG TTATGATGATACCCACCGTGATG CCTCGGTG FHLTTRNGEPHM
    NGS- AAGCTAAT GCCTTCCACCTGACTACTCGCAA GCCATGCT IVSRQEKGKSLL
    C/1944) ACGACTCA CGGAGAGCCTCATATGATCGTGT TCTTGCCC FKTEDGVNMCTL
    CTATAGGG CGCGGCAGGAGAAGGGAAAGTCC CTTGGGCC MAMDLGELCEDT
    AAATAAGA CTGCTGTTTAAGACGGAGGACGG TCCCCCCA ITYKCPFLKQNE
    GAGAAAAG CGTGAACATGTGCACTCTTATGG GCCCCTCC PEDIDCWCNSTS
    AAGAGTAA CAATGGACCTTGGAGAGCTGTGC TCCCCTTC TWVTYGTCTTTG
    GAAGAAAT GAGGATACCATCACCTACAAGTG CTGCACCC EHRREKRSVALV
    ATAAGAGC TCCGTTCCTGAAGCAAAACGAGC GTACCCCC PHVGMGLETRTE
    CACC CTGAGGATATTGACTGCTGGTGC GTGGTCTT TWMSSEGAWKHA
    (SEQ ID AACTCCACCTCAACCTGGGTCAC TGAATAAA QRIETWILRHPG
    NO: 138) ATATGGGACCTGTACCACTACTG GTCTGAGT FTIMAAILAYTI
    GCGAACACCGCCGCGAGAAAAGA GGGCGGC GTTHFQRALIFI
    AGCGTGGCGTTGGTGCCTCACGT (SEQ ID LLTAVAPSMTMR
    CGGCATGGGTCTGGAAACTCGGA NO: 156) CIGISNRDFVEG
    CCGAAACTTGGATGAGCTCAGAG VSGGSWVDIVLE
    GGGGCATGGAAGCACGCCCAGAG HGSCVTTMAKNK
    GATTGAAACCTGGATTCTGCGCC PTLDFELIETEA
    ACCCTGGATTCACCATCATGGCG KQPATLRKYCIE
    GCTATTCTGGCGTACACTATTGG AKLTNTTTDSRC
    AACCACCCACTTTCAGCGGGCCC PTQGEPSLNEEQ
    TTATCTTCATCCTCCTCACTGCC DKRFVCKHSMVD
    GTGGCGCCCTCCATGACTATGCG RGWGNGCGLFGK
    GTGTATCGGAATTTCCAACCGCG GGIVTCAMFTCK
    ACTTCGTGGAAGGAGTGTCCGGA KNMKGKVVQPEN
    GGCTCCTGGGTCGACATTGTGCT LEYTIVITPHSG
    GGAACATGGTTCATGCGTGACCA EEHAVGNDTGKH
    CGATGGCCAAGAACAAGCCCACC GKEIKITPQSSI
    CTCGACTTCGAGCTGATCGAGAC TEAELTGYGTVT
    TGAAGCCAAGCAGCCGGCCACTC MECSPRTGLDFN
    TGCGGAAGTACTGTATCGAGGCC EMVLLQMENKAW
    AAGCTCACCAACACCACCACCGA LVHRQWFLDLPL
    TTCCCGCTGCCCGACCCAAGGAG PWLPGADTQGSN
    AACCTTCGCTCAACGAGGAGCAG WIQKETLVTFKN
    GACAAGCGGTTCGTGTGCAAGCA PHAKKQDVVVLG
    CAGCATGGTCGACAGGGGATGGG SQEGAMHTALTG
    GGAATGGATGCGGTCTGTTCGGA ATEIQMSSGNLL
    AAGGGAGGCATTGTGACTTGTGC FTGHLKCRLRMD
    AATGTTCACTTGCAAGAAGAACA KLQLKGMSYSMC
    TGAAGGGGAAGGTCGTGCAGCCG TGKFKVVKEIAE
    GAAAACCTGGAGTACACCATCGT TQHGTIVIRVQY
    GATCACCCCTCATTCGGGCGAAG EGDGSPCKIPFE
    AACACGCTGTGGGGAATGATACC IMDLEKRHVLGR
    GGAAAGCACGGAAAGGAAATTAA LITVNPIVTEKD
    GATCACACCCCAATCCAGCATCA SPVNIEAEPPFG
    CTGAGGCAGAACTGACCGGCTAC DSYIIIGVEPGQ
    GGCACTGTGACCATGGAGTGCTC LKLNWFKKGSSI
    GCCTCGGACTGGCCTGGACTTCA GQMIETTMRGAK
    ACGAGATGGTGCTGCTCCAAATG RMAILGDTAWDF
    GAAAACAAGGCCTGGCTGGTGCA GSLGGVFTSIGK
    CAGACAGTGGTTCCTCGATTTGC ALHQVFGAIYGA
    CCTTGCCGTGGCTCCCTGGCGCC AFSGVSWIMKIL
    GACACCCAGGGATCTAACTGGAT IGVIITWIGMNS
    CCAGAAGGAAACCCTTGTGACCT RSTSLSVSLVLV
    TCAAGAACCCGCACGCTAAGAAA GVVTLYLGVMVQ
    CAGGATGTGGTGGTGCTGGGAAG A (SEQ ID
    CCAGGAAGGAGCAATGCATACCG NO: 165)
    CGCTCACGGGTGCCACCGAGATC
    CAGATGAGCTCCGGGAACCTCCT
    GTTCACCGGTCACCTGAAGTGCC
    GACTCCGCATGGACAAACTGCAG
    CTCAAGGGGATGTCCTACTCCAT
    GTGCACCGGGAAATTCAAGGTCG
    TGAAGGAGATCGCTGAGACTCAG
    CACGGTACTATCGTGATCCGGGT
    GCAGTATGAGGGAGATGGGAGCC
    CGTGCAAAATCCCATTTGAGATC
    ATGGACTTGGAAAAGCGCCATGT
    GCTGGGTCGGCTGATTACCGTGA
    ACCCAATCGTCACCGAAAAGGAC
    AGCCCCGTCAACATTGAAGCCGA
    ACCACCCTTCGGAGACTCGTACA
    TCATCATTGGCGTGGAACCGGGC
    CAGCTGAAGCTGAACTGGTTCAA
    AAAGGGGTCCTCTATCGGCCAAA
    TGATCGAAACCACCATGCGGGGA
    GCTAAGCGGATGGCGATTTTGGG
    AGACACTGCGTGGGACTTTGGCT
    CACTGGGGGGAGTGTTCACCAGC
    ATCGGCAAAGCCCTGCACCAAGT
    GTTCGGTGCCATCTACGGAGCCG
    CCTTCAGCGGAGTGTCCTGGATC
    ATGAAGATCCTGATCGGCGTGAT
    CATTACCTGGATCGGCATGAACT
    CCAGGTCCACCTCGCTCTCCGTG
    TCGCTGGTGCTGGTCGGGGTCGT
    GACCCTGTACCTGGGAGTGATGG
    TCCAGGCCTGA (SEQ ID NO:
    147)
    Dengue 2 TCAAGCTT ATGTTGAATATCCTGAACCGCCG TGATAATA MLNILNRRRRTA
    prME TTGGACCC CCGGAGAACTGCCGGAATTATCA GGCTGGAG GIIIMMIPTVMA
    (PuertoRico/ TCGTACAG TTATGATGATCCCTACCGTGATG CCTCGGTG FHLTTRNGEPHM
    PR159- AAGCTAAT GCGTTCCACCTTACTACCCGGAA GCCATGCT IVSRQEKGKSLL
    S1/1969) ACGACTCA CGGGGAGCCTCACATGATCGTGT TCTTGCCC FKTKDGTNMCTL
    CTATAGGG CACGCCAGGAGAAGGGGAAATCC CTTGGGCC MAMDLGELCEDT
    AAATAAGA CTGCTGTTCAAGACCAAGGACGG TCCCCCCA ITYKCPFLKQNE
    GAGAAAAG TACCAACATGTGTACCCTGATGG GCCCCTCC PEDIDCWCNSTS
    AAGAGTAA CGATGGACCTCGGAGAGCTGTGC TCCCCTTC TWVTYGTCTTTG
    GAAGAAAT GAGGACACCATCACCTACAAATG CTGCACCC EHRREKRSVALV
    ATAAGAGC CCCGTTCCTGAAGCAGAACGAGC GTACCCCC PHVGMGLETRTE
    CACC CGGAAGATATTGACTGTTGGTGC GTGGTCTT TWMSSEGAWKHA
    (SEQ ID AACTCCACCTCCACTTGGGTCAC TGAATAAA QRIETWILRHPG
    NO: 139) CTACGGAACTTGCACCACTACTG GTCTGAGT FTIMAAILAYTI
    GGGAGCATAGACGGGAGAAGCGC GGGCGGC GTTHFQRVLIFI
    TCCGTGGCCCTGGTGCCGCACGT (SEQ ID LLTAIAPSMTMR
    CGGCATGGGACTGGAAACCAGAA NO: 157) CIGISNRDFVEG
    CCGAGACTTGGATGTCCAGCGAA VSGGSWVDIVLE
    GGCGCCTGGAAGCACGCCCAGCG HGSCVTTMAKNK
    GATTGAAACTTGGATCCTGAGGC PTLDFELIKTEA
    ACCCGGGTTTTACCATTATGGCC KQPATLRKYCIE
    GCTATCTTGGCATACACCATCGG AKLTNTTTDSRC
    CACCACCCACTTCCAACGCGTCC PTQGEPTLNEEQ
    TGATCTTCATCCTGCTGACCGCC DKRFVCKHSMVD
    ATTGCGCCCTCCATGACCATGCG RGWGNGCGLFGK
    GTGCATCGGAATCAGCAACCGCG GGIVTCAMFTCK
    ACTTCGTGGAAGGCGTCAGCGGC KNMEGKIVQPEN
    GGTTCTTGGGTGGACATCGTGTT LEYTVVITPHSG
    GGAGCACGGATCGTGCGTGACCA EEHAVGNDTGKH
    CCATGGCCAAGAACAAGCCGACC GKEVKITPQSSI
    CTCGATTTCGAGCTGATCAAGAC TEAELTGYGTVT
    TGAAGCCAAGCAGCCAGCTACCC MECSPRTGLDFN
    TGCGGAAGTATTGCATCGAAGCC EMVLLQMKDKAW
    AAGCTCACTAATACTACGACCGA LVHRQWFLDLPL
    CAGCCGGTGTCCGACCCAAGGAG PWLPGADTQGSN
    AGCCCACCCTGAATGAGGAACAA WIQKETLVTFKN
    GACAAGCGCTTCGTGTGCAAGCA PHAKKQDVVVLG
    TTCCATGGTGGACCGGGGCTGGG SQEGAMHTALTG
    GAAACGGCTGCGGACTGTTCGGG ATEIQMSSGNLL
    AAAGGAGGAATTGTGACTTGCGC FTGHLKCRLRMD
    CATGTTCACTTGCAAGAAGAACA KLQLKGMSYSMC
    TGGAGGGGAAGATCGTCCAGCCT TGKFKVVKEIAE
    GAGAACCTCGAGTACACGGTCGT TQHGTIVIRVQY
    GATTACTCCGCACTCGGGAGAAG EGDGSPCKTPFE
    AACACGCCGTGGGCAACGACACC IMDLEKRHVLGR
    GGAAAGCATGGGAAGGAAGTGAA LTTVNPIVTEKD
    AATCACGCCCCAATCGTCGATTA SPVNIEAEPPFG
    CCGAGGCTGAGCTGACCGGCTAC DSYIIIGVEPGQ
    GGCACCGTGACCATGGAGTGCTC LKLDWFKKGSSI
    CCCGAGGACCGGACTGGACTTCA GQMFETTMRGAK
    ACGAAATGGTGCTGCTGCAGATG RMAILGDTAWDF
    AAGGACAAGGCCTGGCTGGTGCA GSLGGVFTSIGK
    CCGCCAGTGGTTCCTCGACCTCC ALHQVFGAIYGA
    CACTCCCCTGGCTGCCCGGAGCG AFSGVSWTMKIL
    GATACGCAGGGATCCAACTGGAT IGVIITWIGMNS
    CCAGAAGGAAACTCTTGTGACCT RSTSLSVSLVLV
    TCAAGAACCCTCATGCCAAGAAG GIVTLYLGVMVQ
    CAGGACGTGGTGGTCCTGGGATC A (SEQ ID
    CCAAGAGGGCGCGATGCACACCG NO: 166)
    CACTGACCGGCGCCACCGAAATT
    CAGATGTCCTCCGGAAACCTCCT
    GTTCACTGGCCACCTGAAGTGCA
    GACTCCGCATGGACAAGCTGCAG
    CTCAAGGGGATGAGCTACTCCAT
    GTGTACCGGAAAATTCAAGGTCG
    TGAAGGAAATTGCAGAAACACAG
    CATGGGACAATTGTCATTCGGGT
    CCAGTACGAGGGCGATGGTTCAC
    CGTGCAAGACTCCATTCGAGATC
    ATGGATCTGGAGAAAAGACACGT
    GCTGGGTCGGCTGACTACCGTGA
    ACCCAATCGTGACTGAGAAGGAC
    TCCCCCGTGAACATCGAAGCCGA
    GCCTCCTTTTGGCGATTCCTACA
    TCATCATTGGAGTGGAACCCGGA
    CAGCTTAAGTTGGATTGGTTCAA
    GAAGGGCTCCTCGATCGGACAGA
    TGTTCGAAACCACCATGCGCGGT
    GCCAAGCGAATGGCCATCCTGGG
    GGACACCGCCTGGGACTTCGGTA
    GCCTGGGCGGAGTGTTTACCTCA
    ATTGGAAAGGCTCTGCACCAAGT
    GTTTGGGGCGATCTACGGAGCGG
    CCTTCAGCGGTGTCTCCTGGACT
    ATGAAGATTCTCATCGGAGTGAT
    AATCACCTGGATCGGCATGAACA
    GCCGGTCAACCAGCCTGTCCGTG
    TCCCTGGTGCTGGTCGGCATCGT
    GACTCTCTACCTCGGAGTGATGG
    TGCAGGCCTAG (SEQ ID NO:
    148)
    Dengue 2 TCAAGCTT ATGCTCAACATACTGAACAGACG TGATAATA MLNILNRRRRTA
    prME TTGGACCC GAGAAGGACCGCCGGTATTATTA GGCTGGAG GIIIMMIPTVMA
    (16681- TCGTACAG TCATGATGATCCCTACTGTGATG CCTCGGTG FHLTTRNGEPHM
    PDK53) AAGCTAAT GCATTCCACCTGACAACCCGCAA GCCATGCT IVSRQEKGKSLL
    ACGACTCA CGGAGAGCCCCACATGATCGTGT TCTTGCCC FKTEVGVNMCTL
    CTATAGGG CACGCCAGGAGAAAGGGAAGTCA CTTGGGCC MAMDLGELCEDT
    AAATAAGA CTGCTGTTCAAGACCGAAGTCGG TCCCCCCA ITYKCPLLRQNE
    GAGAAAAG CGTGAACATGTGTACCCTGATGG GCCCCTCC PEDIDCWCNSTS
    AAGAGTAA CGATGGATCTTGGCGAACTGTGC TCCCCTTC TWVTYGTCTTMG
    GAAGAAAT GAGGACACCATCAGGTACAAGTG CTGCACCC EHRREKRSVALV
    ATAAGAGC CCCCCTGTTGCGGCAAAACGAAC GTACCCCC PHVGMGLETRTE
    CACC CAGAGGACATCGACTGCTGGTGT GTGGTCTT TWMSSEGAWKHV
    (SEQ ID AACTCCACCTCGACCTGGGTCAC TGAATAAA QRIETWILRHPG
    NO: 140) CTACGGAACCTGTACCACTATGG GTCTGAGT FTMMAAILAYTI
    GGGAACACCGGCGGGAGAAGCGC GGGCGGC GTTHFQRALILI
    TCCGTGGCGCTCGTGCCTCATGT (SEQ ID LLTAVTPSMTMR
    CGGCATGGGACTGGAGACTCGGA NO: 158) CIGMSNRDFVEG
    CTGAAACCTGGATGTCGTCGGAG VSGGSWVDIVLE
    GGGGCCTGGAAGCACGTCCAGCG HGSCVTTMAKNK
    GATCGAGACTTGGATCCTTCGCC PTLDFELIKTEA
    ATCCGGGCTTCACCATGATGGCC KQPATLRKYCIE
    GCCATCCTGGCCTACACCATCGG AKLTNTTTESRC
    AACCACCCATTTCCAACGGGCCC PTQGEPSLNEEQ
    TGATCCTGATCCTGTTGACTGCC DKRFVCKHSMVD
    GTGACCCCCTCCATGACTATGCG RGWGNGCGLFGK
    GTGCATTGGGATGTCGAACAGGG GGIVTCAMFRCK
    ATTTCGTGGAGGGAGTCAGCGGT KNMEGKVVQPEN
    GGCAGCTGGGTGGACATCGTGCT LEYTIVITPHSG
    GGAACATGGATCCTGCGTGACTA EEHAVGNDTGKH
    CCATGGCAAAGAACAAGCCAACC GKEIKITPQSSI
    CTCGATTTCGAACTGATCAAGAC TEAELTGYGTIT
    CGAGGCGAAACAGCCGGCGACCC MECSPRTGLDFN
    TGAGGAAGTACTGCATCGAGGCC EIVLLQMENKAW
    AAGCTCACCAACACCACTACCGA LVHRQWFLDLPL
    GAGCAGATGCCCTACCCAAGGGG PWLPGADTQGSN
    AACCTTCCCTGAACGAGGAGCAG WIQKETLVTFKN
    GACAAGAGATTCGTCTGCAAGCA PHAKKQDVVVLG
    CTCCATGGTGGACCGCGGCTGGG SQEGAMHTALTG
    GAAACGGATGCGGACTCTTCGGA ATEIQMSSGNLL
    AAGGGCGGTATTGTGACCTGTGC FTGHLKCRLRMD
    CATGTTCCGCTGCAAGAAAAACA KLQLKGMSYSMC
    TGGAAGGGAAAGTGGTGCAGCCC TGKFKVVKEIAE
    GAGAACCTCGAGTACACTATCGT TQHGTIVIRVQY
    GATCACACCGCACAGCGGAGAAG EGDGSPCKIPFE
    AACACGCCGTGGGCAACGACACT IMDLEKRHVLGR
    GGAAAGCACGGGAAGGAAATCAA LITVNPIVTEKD
    GATCACCCCGCAATCCTCAATCA SPVNIEAEPPFG
    CTGAGGCTGAGTTGACCGGCTAC DSYIIIGVEPGQ
    GGGACTATTACCATGGAATGCTC LKLNWFKKGSSI
    CCCACGAACGGGACTGGACTTCA GQMFETTMRGAK
    ACGAAATTGTGTTGCTCCAAATG RMAILGDTAWDF
    GAAAACAAGGCCTGGCTCGTGCA GSLGGVFTSIGK
    CCGGCAGTGGTTCCTGGATCTGC ALHQVFGAIYGA
    CCCTGCCGTGGCTGCCGGGTGCC AFSGVSWTMKIL
    GACACTCAGGGGAGCAACTGGAT IGVIITWIGMNS
    TCAGAAGGAAACCCTTGTGACCT RSTSLSVTLVLV
    TCAAGAACCCCCACGCAAAGAAG GIVTLYLGVMVQ
    CAGGACGTGGTGGTGCTGGGTAG A (SEQ ID
    CCAAGAAGGCGCCATGCACACGG NO: 167)
    CCCTGACCGGAGCGACCGAGATC
    CAGATGTCCAGCGGAAATCTGCT
    CTTTACTGGTCATCTGAAGTGCA
    GACTTCGGATGGACAAGCTGCAA
    CTGAAGGGAATGTCCTACTCAAT
    GTGCACTGGAAAGTTCAAGGTCG
    TGAAGGAGATCGCCGAAACCCAG
    CACGGGACTATCGTCATCCGCGT
    GCAGTACGAAGGAGATGGCTCCC
    CGTGCAAGATCCCTTTCGAAATC
    ATGGACCTGGAGAAGCGCCACGT
    GTTGGGGCGCCTTATTACTGTGA
    ACCCCATCGTGACCGAGAAGGAC
    TCCCCTGTCAACATCGAGGCTGA
    ACCGCCATTCGGAGATTCCTATA
    TCATTATCGGAGTGGAACCGGGC
    CAGCTCAAGCTGAATTGGTTCAA
    GAAGGGATCCTCGATTGGCCAGA
    TGTTCGAAACGACTATGCGGGGC
    GCTAAGCGCATGGCCATCCTGGG
    CGATACTGCCTGGGATTTTGGTT
    CTCTGGGCGGAGTGTTCACCTCC
    ATTGGAAAGGCCCTGCACCAAGT
    GTTCGGCGCCATCTACGGTGCCG
    CGTTTAGCGGTGTCTCATGGACC
    ATGAAAATCCTCATTGGCGTGAT
    CATTACCTGGATTGGCATGAACT
    CCAGAAGCACTTCCCTGTCCGTG
    ACCCTGGTGCTCGTCGGAATTGT
    GACACTCTACCTCGGAGTGATGG
    TGCAGGCTTGA (SEQ ID NO:
    149)
    TCAAGCTT ATGCTGAACATTTTGAACAGACG TCAAGCTT MLNILNRRRRTA
    Dengue 2 TTGGACCC CCGAAGGACCGCAGGCATTATCA TTGGACCC GIIIMMIPTVMA
    prME TCGTACAG TTATGATGATCCCTACCGTGATG TCGTACAG FHLTTRNGEPHM
    (Peru/IQT2913/ AAGCTAAT GCCTTCCATCTGACTACTAGGAA AAGCTAAT IVSRQEKGKSLL
    1996) ACGACTCA CGGAGAGCCACATATGATCGTGT ACGACTCA FKTKDGTNMCTL
    CTATAGGG CGCGCCAGGAAAAGGGAAAGAGC CTATAGGG MAMDLGELCEDT
    AAATAAGA CTGCTTTTTAAAACCAAGGACGG AAATAAGA ITYKCPFLKQNE
    GAGAAAAG CACGAACATGTGCACCCTTATGG GAGAAAAG PEDIDCWCNSTS
    AAGAGTAA CCATGGACCTGGGGGAGTTGTGC AAGAGTAA TWVTYGTCTTTG
    GAAGAAAT GAGGACACCATCACCTACAAGTG GAAGAAAT EHRREKRSVALV
    ATAAGAGC CCCGTTCCTGAAGCAAAACGAGC ATAAGAGC PHVGMGLETRTE
    CACC CCGAAGATATTGACTGCTGGTGC CACC TWMSSEGAWKHA
    (SEQ ID AACTCCACCTCCACCTGGGTCAC (SEQ ID QRIETWILRHPG
    NO: 141) TTATGGGACTTGCACCACCACCG NO: 159) FTIMAAILAYTI
    GCGAACATCGCAGAGAAAAGAGA GTTHFQRVLIFI
    AGCGTGGCCCTGGTCCCCCACGT LLTAIAPSMTMR
    CGGGATGGGCCTCGAGACTCGGA CIGISNRDFVEG
    CCGAAACTTGGATGTCATCAGAG VSGGSWVDIVLE
    GGCGCATGGAAGCATGCTCAGCG HGSCVTTMAKNK
    GATCGAAACCTGGATCCTGAGAC PTLDFELIKTEA
    ACCCTGGTTTCACAATTATGGCC KQPATLRKYCIE
    GCCATTCTTGCGTACACGATCGG AKLTNTTTDSRC
    AACGACTCATTTCCAACGCGTGC PTQGEPTLNEEQ
    TGATCTTCATTCTCCTGACCGCT DKRFVCKHSMVD
    ATTGCGCCGTCCATGACTATGCG RGWGNGCGLFGK
    GTGCATCGGAATCTCAAACCGGG GGIVTCAMFTCK
    ACTTCGTGGAAGGAGTGTCGGGA KNMEGKIVQPEN
    GGATCCTGGGTGGACATTGTGCT LEYTVVITPHSG
    GGAGCACGGTTCCTGCGTCACCA EEHAVGNDTGKH
    CCATGGCCAAAAACAAGCCTACC GKEVKITPQSSI
    CTGGACTTCGAGCTGATCAAGAC TEAELTGYGTVT
    TGAGGCCAAGCAGCCCGCGACCC MECSPRTGLDFN
    TCCGGAAGTACTGCATCGAGGCC EMVLLQMEDKAW
    AAGTTGACCAACACTACTACCGA LVHRQWFLDLPL
    TTCCCGGTGCCCGACCCAAGGAG PWLPGADTQGSN
    AACCAACTCTGAACGAAGAACAG WIQKETLVTFKN
    GATAAGCGGTTTGTGTGCAAGCA PHAKKQDVVVLG
    CTCAATGGTGGACAGGGGATGGG SQEGAMHTALTG
    GCAACGGCTGTGGACTGTTCGGA ATEIQMSSGNLL
    AAGGGTGGTATTGTGACCTGTGC FTGHLKCRLRMD
    AATGTTTACCTGTAAAAAGAATA KLQLKGMSYSMC
    TGGAGGGGAAGATCGTGCAGCCT TGKFKIVKEIAE
    GAAAATCTCGAGTACACTGTCGT TQHGTIVIRVQY
    CATCACCCCGCACTCGGGAGAGG EGDGSPCKIPFE
    AGCACGCTGTGGGCAACGACACC IMDLEKRHVLGR
    GGAAAGCACGGAAAGGAGGTCAA LITVNPIVTEKD
    GATAACCCCGCAATCCTCCATTA SPVNIEAEPPFG
    CGGAAGCCGAACTGACTGGTTAC DSYIIIG A EPGQ
    GGCACCGTGACTATGGAGTGCTC LKLDWFKKGSSI
    CCCTCGGACCGGCCTGGACTTCA GQMFETTMRGAK
    ACGAAATGGTGCTGCTCCAAATG RMAILGDTAWDF
    GAAGATAAGGCCTGGCTGGTGCA GSLGGVFTSIGK
    CAGGCAGTGGTTCCTGGATCTCC ALHQVFGAIYGA
    CGCTGCCGTGGCTGCCTGGCGCT AFSGVSWTMKIL
    GACACTCAGGGAAGCAACTGGAT IGVIITWIGMNS
    CCAGAAGGAAACCCTCGTGACCT RSTSLSVSLVLV
    TTAAGAACCCCCACGCCAAGAAG GIVTLYLGVMVQ
    CAGGATGTGGTGGTGTTGGGAAG A (SEQ ID
    CCAGGAGGGGGCCATGCATACTG NO: 168)
    CCCTCACCGGCGCGACCGAAATC
    CAGATGTCGTCCGGCAATCTGCT
    GTTCACCGGACACCTCAAGTGTC
    GCCTTCGGATGGACAAGCTGCAG
    CTGAAGGGAATGAGCTACAGCAT
    GTGCACCGGGAAGTTCAAGATCG
    TGAAGGAAATCGCCGAAACCCAG
    CACGGAACCATCGTGATCCGGGT
    GCAGTACGAGGGCGACGGTTCTC
    CCTGCAAAATCCCCTTCGAAATC
    ATGGATCTGGAGAAGAGACACGT
    CCTGGGTCGCCTGATCACCGTGA
    ACCCCATTGTGACTGAGAAGGAC
    TCCCCAGTGAACATCGAAGCGGA
    GCCCCCATTCGGAGACAGCTACA
    TTATCATTGGTGCCGAACCGGGG
    CAGCTGAAACTGGACTGGTTCAA
    GAAGGGCAGCTCGATTGGCCAAA
    TGTTCGAAACGACAATGCGGGGC
    GCAAAGCGCATGGCCATCCTGGG
    AGACACTGCCTGGGACTTCGGGT
    CCCTTGGGGGGGTGTTCACCTCG
    ATCGGAAAAGCCTTGCACCAAGT
    GTTCGGCGCAATCTACGGCGCCG
    CGTTCTCGGGAGTCTCCTGGACT
    ATGAAGATCCTGATCGGTGTCAT
    CATCACCTGGATCGGGATGAACT
    CCCGGTCCACTTCCCTCTCGGTG
    TCACTCGTGCTTGTGGGAATTGT
    CACCCTGTACCTCGGAGTGATGG
    TGCAGGCCTGA (SEQ ID NO:
    150)
    Dengue 2 TCAAGCTT ATGCTGAATATTCTGAACCGACG TGATAATA MLNILNRRRRTA
    prME TTGGACCC CCGCCGCACTGCCGGAATCATTA GGCTGGAG GIIIMMIPTVMA
    (Thailand/ TCGTACAG TCATGATGATCCCTACCGTGATG CCTCGGTG FHLTTRNGEPHM
    PUO- AAGCTAAT GCGTTCCATCTCACCACTCGGAA GCCATGCT IVSRQEKGKSLL
    218/1980) ACGACTCA TGGCGAACCCCATATGATCGTGT TCTTGCCC FKTEDGVNMCTL
    CTATAGGG CGAGACAGGAAAAGGGAAAGAGC CTTGGGCC MAMDLGELCEDT
    AAATAAGA CTTTTGTTCAAAACTGAAGATGG TCCCCCCA ITYKCPLLRQNE
    GAGAAAAG AGTGAACATGTGCACTCTCATGG GCCCCTCC PEDIDCWCNSTS
    AAGAGTAA CAATGGATCTGGGCGAACTGTGC TCCCCTTC TWVTYGTCTTTG
    GAAGAAAT GAAGATACCATCACTTACAAGTG CTGCACCC EHRREKRSVALV
    ATAAGAGC TCCGCTGTTGAGACAGAACGAGC GTACCCCC PHVGMGLETRTE
    CACC CTGAGGACATCGACTGCTGGTGT GTGGTCTT TWMSSEGAWKHA
    (SEQ ID AACAGCACTTCCACCTGGGTCAC TGAATAAA QRIEIWILRHPG
    NO: 142) CTACGGCACTTGCACTACCACCG GTCTGAGT FTIMAAILAYTI
    GAGAACACCGGCGCGAGAAGAGG GGGCGGC GTTHFQRALIFI
    AGCGTGGCTCTTGTGCCGCACGT (SEQ ID LLTAVAPSMTMR
    CGGCATGGGACTCGAGACTCGGA NO: 160) CIGISNRDFVEG
    CCGAAACCTGGATGTCATCCGAA VSGGSWVDIVLE
    GGAGCCTGGAAACACGCCCAACG HGSCVTTMAKNK
    GATCGAAATTTGGATCCTGAGAC PTLDFELIKTEA
    ACCCCGGTTTCACTATCATGGCC KQPATLRKYCIE
    GCAATCCTGGCGTACACTATTGG AKLTNTTTESRC
    CACCACGCACTTCCAGAGGGCCC PTQGEPSLNEEQ
    TCATTTTCATCCTCCTGACTGCC DKRFVCKHSMVD
    GTGGCGCCATCCATGACCATGAG RGWGNGCGLFGK
    ATGTATTGGCATTTCCAACCGCG GGIVTCAMFTCK
    ATTTCGTGGAGGGAGTGTCCGGA KNMEGKVVQPEN
    GGATCCTGGGTCGACATCGTGCT LEYTIVVTPHSG
    GGAACACGGATCTTGCGTCACCA EEHAVGNDTGKH
    CCATGGCTAAGAACAAGCCCACC GKEIKVTPQSSI
    CTCGACTTCGAGCTGATCAAGAC TEAELTGYGTVT
    AGAAGCCAAGCAGCCGGCCACCC MECSPRTGLDFN
    TCCGCAAGTATTGCATTGAAGCC EMVLLQMENKAW
    AAGCTTACCAACACCACCACCGA LVHRQWFLDLPL
    GTCGCGGTGCCCAACCCAAGGAG PWLPGADTQGSN
    AGCCGAGCCTCAATGAGGAACAG WIQKETLVTFKN
    GACAAGCGCTTCGTGTGCAAACA PHAKKQDVVVLG
    CAGCATGGTCGACCGGGGTTGGG SQEGAMHTALTG
    GCAACGGATGTGGCCTGTTCGGG ATEIQMSSGNLL
    AAGGGTGGCATTGTGACTTGCGC FTGHLKCRLRMD
    AATGTTCACTTGCAAGAAGAACA KLQLKGMSYSMC
    TGGAGGGGAAAGTGGTGCAACCC TGKFKVVKEIAE
    GAGAACCTGGAGTACACCATCGT TQHGTIVIRVQY
    CGTGACCCCACACTCCGGAGAGG EGDGSPCKIPFE
    AGCACGCCGTGGGAAACGACACG IMDLEKRHVLGR
    GGGAAGCATGGAAAGGAGATCAA LITVNPIVTEKD
    GGTCACACCCCAATCATCTATTA SPVNIEAEPPFG
    CCGAGGCCGAACTGACCGGATAC DSYIIIGVEPGQ
    GGTACTGTGACGATGGAGTGCAG LKLNWFKKGSSI
    CCCGAGGACTGGACTGGACTTCA GQMFETTMRGAK
    ACGAAATGGTGCTGCTGCAAATG RMAILGDTAWDF
    GAGAACAAGGCCTGGCTCGTGCA GSLGGVFTSIGK
    CCGGCAGTGGTTTCTGGATCTCC ALHQVFGAIYGA
    CACTGCCGTGGTTGCCGGGAGCC AFSGVSWTMKIL
    GACACCCAGGGGTCGAACTGGAT IGVIITWIGMNS
    CCAGAAGGAAACTCTTGTGACGT RSTSLSVSLVLV
    TTAAGAATCCTCACGCGAAGAAG GIVTLYLGVMVQ
    CAGGACGTGGTGGTCCTGGGATC A (SEQ ID
    GCAGGAAGGAGCTATGCACACCG NO: 169)
    CTCTGACCGGCGCCACTGAGATC
    CAGATGTCCTCGGGCAACCTCCT
    GTTCACCGGTCATCTGAAGTGCC
    GGCTGCGGATGGACAAATTGCAG
    CTGAAGGGGATGTCCTACTCCAT
    GTGCACCGGGAAGTTCAAGGTCG
    TGAAGGAGATCGCGGAAACTCAG
    CACGGCACCATTGTCATTAGAGT
    GCAGTACGAGGGAGATGGTTCAC
    CGTGCAAGATACCGTTCGAAATC
    ATGGACCTGGAAAAGAGACATGT
    CTTGGGACGCCTGATCACTGTGA
    ACCCTATCGTGACCGAAAAGGAC
    TCCCCTGTGAACATCGAGGCGGA
    GCCGCCTTTCGGCGACTCCTACA
    TCATTATCGGAGTGGAGCCCGGG
    CAGCTGAAGCTCAACTGGTTTAA
    GAAGGGGTCCAGCATCGGCCAGA
    TGTTCGAAACCACCATGCGGGGG
    GCGAAGAGGATGGCGATCCTGGG
    AGACACCGCCTGGGATTTCGGTT
    CACTGGGCGGAGTGTTCACCTCC
    ATCGGAAAGGCCCTGCACCAAGT
    GTTCGGCGCAATCTACGGTGCTG
    CCTTCTCGGGAGTCTCCTGGACC
    ATGAAGATCCTGATCGGCGTGAT
    TATCACATGGATCGGCATGAACA
    GCCGGTCAACCTCCCTTTCCGTG
    TCCCTGGTGCTGGTCGGCATCGT
    GACTCTGTACCTGGGCGTGATGG
    TGGAGGCCTGA (SEQ ID NO:
    151)
    Dengue 2 TCAAGCTT ATGCTGAACATTCTGAACCGGAG TGATAATA MLNILNRRRRTA
    prME TTGGACCC AAGAAGAACCGCCGGCATTATTA GGCTGGAG GIIIMMIPTVMA
    (D2Y98P) TCGTACAG TCATGATGATTCCCACTGTGATG CCTCGGTG FHLTTRNGEPHM
    with AAGCTAAT GCATTTCACCTGACCACCCGGAA GCCATGCT IVSRQEKGKSLL
    native ACGACTCA CGGAGAACCTCATATGATCGTGT TCTTGCCC FKTENGVNMCTL
    leader CTATAGGG CGAGACAGGAGAAGGGAAAGTCC CTTGGGCC MAMDLGELCEDT
    AAATAAGA CTGCTGTTCAAGACAGAAAACGG TCCCCCCA ITYNCPLLRQNE
    GAGAAAAG AGTGAACATGTGCACCCTGATGG GCCCCTCC PEDIDCWCNSTS
    AAGAGTAA CCATGGATCTCGGCGAACTGTGC TCCCCTTC TWVTYGTCTATG
    GAAGAAAT GAGGATACTATCACCTACAACTG CTGCACCC EHRREKRSVALV
    ATAAGAGC TCCGTTGCTGCGCCAAAACGAGC GTACCCCC PHVGMGLETRTE
    CACC CGGAGGACATCGACTGCTGGTGT GTGGTCTT TWMSSEGAWKHA
    (SEQ ID AACTCCACGTCGACCTGGGTCAC TGAATAAA QRIETWVLRHPG
    NO: 143) CTACGGCACTTGCACCGCGACCG GTCTGAGT FTIMAAILAYTI
    GCGAACACAGAAGAGAGAAACGC GGGCGGC GTTYFQRVLIFI
    TCCGTCGCTCTGGTGCCGCACGT (SEQ ID LLTAVAPSMTMR
    CGGGATGGGGCTTGAAACCCGGA NO: 161) CIGISNRDFVEG
    CTGAAACCTGGATGAGCTCGGAG VSGGSWVDIVLE
    GGCGCTTGGAAGCATGCCCAGCG HGSCVTTMAKNK
    CATCGAAACTTGGGTGCTGAGGC PTLDFELIKTEA
    ATCCAGGCTTCACAATCATGGCC KHPATLRKYCIE
    GCCATCCTCGCGTACACCATCGG AKLTNTTTASRC
    TACTACGTACTTCCAGCGGGTGT PTQGEPSLNEEQ
    TGATCTTCATTCTGCTGACCGCC DKRFVCKHSMVD
    GTGGCCCCTAGCATGACCATGCG RGWGNGCGLFGK
    GTGCATCGGGATCTCCAACCGCG GGIVTCAMFTCK
    ATTTCGTGGAGGGGGTGTCCGGT KNMEGKIVQPEN
    GGAAGCTGGGTGGACATTGTGCT LEYTIVITPHSG
    GGAGCACGGCTCGTGCGTGACCA EENAVGNDTGKH
    CCATGGCCAAGAACAAGCCCACC GKEIKVTPQSSI
    CTTGATTTTGAGCTGATCAAGAC TEAELTGYGTVT
    CGAAGCGAAACACCCCGCGACCC MECSPRTGLDFN
    TCCGGAAGTACTGCATTGAAGCC EMVLLQMENKAW
    AAGCTCACCAACACTACCACGGC LVHRQWFLDLPL
    CTCCCGGTGCCCTACCCAAGGAG PWLPGADTQGSN
    AACCTTCCTTGAACGAAGAACAG WIQKETLVTFKN
    GACAAGCGCTTCGTGTGCAAGCA PHAKKQDVVVLG
    TTCAATGGTGGACCGGGGCTGGG SQEGAMHTALTG
    GAAATGGCTGTGGCCTCTTCGGA ATEIQMSSGNLL
    AAAGGCGGAATTGTGACTTGCGC FTGHLKCRLRMD
    AATGTTCACTTGCAAGAAGAACA KLQLKGMSYSMC
    TGGAGGGAAAGATTGTGCAGCCC TGKFKVVKEIAE
    GAGAACCTCGAGTACACTATTGT TQHGTIVIRVQY
    CATCACTCCCCACTCCGGCGAAG EGDGSPCKIPFE
    AAAACGCTGTCGGCAACGACACC IMDLEKRHVLGR
    GGAAAGCATGGAAAGGAGATCAA LITVNPIVTEKD
    GGTCACCCCGCAATCCTCAATTA SPVNIEAEPPFG
    CTGAGGCAGAACTGACCGGTTAC DSYIIIGVEPGQ
    GGAACTGTGACTATGGAGTGTTC LKLSWFKKGSSI
    CCCTCGCACCGGCCTCGATTTCA GQMFETTMRGAK
    ACGAGATGGTGCTGCTGCAAATG RMAILGDTAWDF
    GAGAACAAGGCCTGGCTGGTGCA GSLGGVFTSIGK
    CCGGCAGTGGTTCCTCGATTTGC ALHQVFGAIYGA
    CCCTGCCGTGGCTGCCGGGAGCC AFSGVSWTMKIL
    GACACTCAGGGATCCAACTGGAT IGVVITWIGMNS
    CCAGAAAGAAACCCTCGTGACCT RSTSLSVSLVLV
    TCAAAAACCCCGAGGCGAAGAAG GVVTLYLGVMVQ
    CAGGACGTGGTGGTGCTGGGTTC A (SEQ ID
    CCAAGAAGGGGCGATGCATACCG NO: 170)
    CCCTGACTGGTGCTACCGAAATC
    CAGATGTCAAGCGGAAATCTCCT
    GTTTACCGGTCACCTGAAGTGCA
    GGCTCCGGATGGACAAGTTGCAG
    CTGAAGGGGATGTCGTACAGCAT
    GTGTACTGGGAAGTTCAAGGTCG
    TGAAGGAGATTGCCGAAACCCAG
    CACGGAACCATAGTCATCAGGGT
    CCAGTACGAGGGCGACGGCAGCC
    CTTGCAAGATCCCGTTCGAGATC
    ATGGATCTGGAGAAGCGACACGT
    GCTGGGCCGGCTTATCACTGTGA
    ATCCAATCGTGACCGAGAAAGAC
    TCGCCCGTGAACATCGAAGCCGA
    GCCGCCGTTCGGCGACTCATACA
    TCATCATCGGCGTGGAACCAGGA
    CAGCTGAAGCTGTCATGGTTCAA
    GAAGGGTTCCAGCATTGGTCAGA
    TGTTCGAAACAACGATGCGCGGA
    GCCAAGCGCATGGCTATCCTTGG
    GGACACCGCCTGGGACTTCGGGT
    CGCTGGGAGGAGTGTTTACCAGC
    ATCGGAAAGGCCCTGCACCAAGT
    GTTCGGTGCCATCTACGGAGCCG
    CATTTTCCGGAGTGTCGTGGACT
    ATGAAGATTCTGATCGGCGTCGT
    GATTACCTGGATCGGGATGAACT
    CCAGGTCTACTTCCCTCTCCGTG
    AGCCTGGTGCTGGTCGGCGTGGT
    CACCCTGTATCTGGGCGTGATGG
    TCCAGGCTTAG (SEQ ID NO:
    152)
  • TABLE 35
    Full-length Dengue Amino Acid Sequences (Homo sapiens strains; Brazil, Cuba and U.S.)
    GenBank Collection
    Accession Length Type Country Genome Region Date Virus Name
    AGN94866 3392 1 Brazil UTR5CMENS1NS 2010 Dengue virus 1
    2ANS2BNS3NS4 isolate 12898/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGN94867 3392 1 Brazil UTR5CMENS1NS 2010 Dengue virus 1
    2ANS2BNS3NS4 isolate 13501/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGN94868 3392 1 Brazil UTR5CMENS1NS 2010 Dengue virus 1
    2ANS2BNS3NS4 isolate 13671/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGN94869 3392 1 Brazil UTR5CMENS1NS 2010 Dengue virus 1
    2ANS2BNS3NS4 isolate 13861/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGN94870 3392 1 Brazil UTR5CMENS1NS 2010 Dengue virus 1
    2ANS2BNS3NS4 isolate 14985/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGN94871 3392 1 Brazil UTR5CMENS1NS 1996 Dengue virus 1
    2ANS2BNS3NS4 isolate 21814/BR-
    A2KNS4BNS5UT PE/96, complete
    R3 genome
    AGN94872 3392 1 Brazil UTR5CMENS1NS 1997 Dengue virus 1
    2ANS2BNS3NS4 isolate 40604/BR-
    A2KNS4BNS5UT PE/97, complete
    R3 genome
    AGN94873 3392 1 Brazil UTR5CMENS1NS 1997 Dengue virus 1
    2ANS2BNS3NS4 isolate 41111/BR-
    A2KNS4BNS5UT PE/97, complete
    R3 genome
    AGN94874 3392 1 Brazil UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate 52082/BR-
    A2KNS4BNS5UT PE/98, complete
    R3 genome
    AGN94875 3392 1 Brazil UTR5CMENS1NS 1999 Dengue virus 1
    2ANS2BNS3NS4 isolate 59049/BR-
    A2KNS4BNS5UT PE/99, complete
    R3 genome
    AGN94876 3392 1 Brazil UTR5CMENS1NS 2000 Dengue virus 1
    2ANS2BNS3NS4 isolate 70523/BR-
    A2KNS4BNS5UT PE/00, complete
    R3 genome
    AGN94877 3392 1 Brazil UTR5CMENS1NS 2001 Dengue virus 1
    2ANS2BNS3NS4 isolate 74488/BR-
    A2KNS4BNS5UT PE/01, complete
    R3 genome
    AGN94878 3392 1 Brazil UTR5CMENS1NS 2001 Dengue virus 1
    2ANS2BNS3NS4 isolate 75861/BR-
    A2KNS4BNS5UT PE/01, complete
    R3 genome
    AGN94879 3392 1 Brazil UTR5CMENS1NS 2002 Dengue virus 1
    2ANS2BNS3NS4 isolate 88463/BR-
    A2KNS4BNS5UT PE/02, complete
    R3 genome
    AGN94865 3392 1 Brazil UTR5CMENS1NS 2010 Dengue virus 1
    2ANS2BNS3NS4 isolate 9808/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    ACO06150 3392 1 Brazil UTR5CMENS1NS 2000 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2374/2000,
    complete genome
    ACO06151 3392 1 Brazil UTR5CMENS1NS 2000 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2375/2000,
    complete genome
    ACO06153 3392 1 Brazil UTR5CMENS1NS 2001 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2378/2001,
    complete genome
    ACO06155 3392 1 Brazil UTR5CMENS1NS 2002 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2381/2002,
    complete genome
    ACO06157 3392 1 Brazil UTR5CMENS1NS 2003 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2384/2003,
    complete genome
    ACO06161 3392 1 Brazil UTR5CMENS1NS 2004 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2389/2004,
    complete genome
    ACO06164 3392 1 Brazil UTR5CMENS1NS 2005 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2392/2005,
    complete genome
    ACO06167 3392 1 Brazil UTR5CMENS1NS 2006 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2395/2006,
    complete genome
    ACO06170 3392 1 Brazil UTR5CMENS1NS 2007 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2398/2007,
    complete genome
    ACO06173 3392 1 Brazil UTR5CMENS1NS 2008 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BR/BID-
    R3 V2401/2008,
    complete genome
    ACY70762 3392 1 Brazil UTR5CMENS1NS 2008 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 1/BR/BID-
    V3490/2008,
    complete genome
    ACJ12617 3392 1 Brazil UTR5CMENS1NS Dengue virus 1
    2ANS2BNS3NS4 isolate DF01-
    A2KNS4BNS5UT HUB01021093,
    R3 complete genome
    AHC08447 3392 1 Brazil CMENS1NS2ANS 2011 Dengue virus 1
    2BNS3NS4A2KN strain
    S4BNS5 1266/2011/BR/RJ/
    2011 polyprotein
    gene, partial cds
    AHC08446 3392 1 Brazil CMENS1NS2ANS 2010 Dengue virus 1
    2BNS3NS4A2KN strain
    S4BNS5 242/2010/BR/RJ/
    2010 polyprotein
    gene, partial cds
    AHC08448 3392 1 Brazil CMENS1NS2ANS 1988 Dengue virus 1
    2BNS3NS4A2KN strain
    S4BNS5 36034/BR/RJ/
    1988 polyprotein
    gene, partial cds
    AHC08449 3392 1 Brazil CMENS1NS2ANS 1989 Dengue virus 1
    2BNS3NS4A2KN strain
    S4BNS5 38159/BR/RJ/
    1989 polyprotein
    gene, partial cds
    AHC08450 3392 1 Brazil CMENS1NS2ANS 2000 Dengue virus 1
    2BNS3NS4A2KN strain
    S4BNS5 66694/BR/ES/
    2000 polyprotein
    gene, partial cds
    AHC08451 3392 1 Brazil CMENS1NS2ANS 2001 Dengue virus 1
    2BNS3NS4A2KN strain
    S4BNS5 68826/BR/RJ/
    2001 polyprotein
    gene, partial cds
    AGN94880 3391 2 Brazil UTR5CMENS1NS 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate 13858/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGN94881 3391 2 Brazil UTR5CMENS1NS 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate 14905/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGN94882 3391 2 Brazil UTR5CMENS1NS 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate 19190/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGN94884 3391 2 Brazil UTR5CMENS1NS 1995 Dengue virus 2
    2ANS2BNS3NS4 isolate 3275/BR-
    A2KNS4BNS5UT PE/95, complete
    R3 genome
    AGN94885 3391 2 Brazil UTR5CMENS1NS 1995 Dengue virus 2
    2ANS2BNS3NS4 isolate 3311/BR-
    A2KNS4BNS5UT PE/95, complete
    R3 genome
    AGN94886 3391 2 Brazil UTR5CMENS1NS 1995 Dengue virus 2
    2ANS2BNS3NS4 isolate 3337/BR-
    A2KNS4BNS5UT PE/95, complete
    R3 genome
    AGN94887 3391 2 Brazil UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate 37473/BR-
    A2KNS4BNS5UT PE/97, complete
    R3 genome
    AGN94888 3391 2 Brazil UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate 47913/BR-
    A2KNS4BNS5UT PE/98, complete
    R3 genome
    AGN94889 3391 2 Brazil UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate 51347/BR-
    A2KNS4BNS5UT PE/98, complete
    R3 genome
    AGN94890 3391 2 Brazil UTR5CMENS1NS 1999 Dengue virus 2
    2ANS2BNS3NS4 isolate 57135/BR-
    A2KNS4BNS5UT PE/99, complete
    R3 genome
    AGN94891 3391 2 Brazil UTR5CMENS1NS 2000 Dengue virus 2
    2ANS2BNS3NS4 isolate 72144/BR-
    A2KNS4BNS5UT PE/00, complete
    R3 genome
    AGN94892 3391 2 Brazil UTR5CMENS1NS 2002 Dengue virus 2
    2ANS2BNS3NS4 isolate 87086/BR-
    A2KNS4BNS5UT PE/02, complete
    R3 genome
    AGN94883 3391 2 Brazil UTR5CMENS1NS 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate 9479/BR-
    A2KNS4BNS5UT PE/10, complete
    R3 genome
    AGK36299 3391 2 Brazil CMENS1NS2ANS Mar. 30, 2010 Dengue virus 2
    2BNS3NS4A2KN isolate ACS380,
    S4BNS5UTR3 complete genome
    AGK36289 3391 2 Brazil UTR5CMENS1NS Mar. 1, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate ACS46,
    A2KNS4BNS5UT complete genome
    R3
    AGK36290 3391 2 Brazil UTR5CMENS1NS Mar. 1, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate ACS46_II,
    A2KNS4BNS5UT complete genome
    R3
    AGK36291 3391 2 Brazil UTR5CMENS1NS Apr. 12, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate ACS538,
    A2KNS4BNS5UT complete genome
    R3
    AGK36292 3391 2 Brazil UTR5CMENS1NS May 4, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate ACS542,
    A2KNS4BNS5UT complete genome
    R3
    AGK36294 3391 2 Brazil UTR5CMENS1NS May 4, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate ACS721,
    A2KNS4BNS5UT complete genome
    R3
    ACO06152 3391 2 Brazil UTR5CMENS1NS 2000 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2376/2000,
    complete genome
    AET43250 3391 2 Brazil CMENS1NS2ANS 2000 Dengue virus 2
    2BNS3NS4A2KN isolate DENV-
    S4BNS5UTR3 2/BR/BID-
    V2377/2000,
    complete genome
    ACO06154 3391 2 Brazil UTR5CMENS1NS 2001 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2379/2001,
    complete genome
    ACO06156 3391 2 Brazil UTR5CMENS1NS 2002 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2382/2002,
    complete genome
    ACW82928 3391 2 Brazil UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2385/2003,
    complete genome
    ACO06158 3391 2 Brazil UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2386/2003,
    complete genome
    ACO06162 3391 2 Brazil UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2390/2004,
    complete genome
    ACO06165 3391 2 Brazil UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2393/2005,
    complete genome
    ACO06168 3391 2 Brazil UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2396/2006,
    complete genome
    ACO06171 3391 2 Brazil UTR5CMENS1NS 2007 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2399/2007,
    complete genome
    ACS32031 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V2402/2008,
    complete genome
    ACW82873 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V3481/2008,
    complete genome
    ACW82874 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V3483/2008,
    complete genome
    ACW82875 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V3486/2008,
    complete genome
    ACY70763 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 2/BR/BID-
    V3495/2008,
    complete genome
    ADI80655 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 2/BR/BID-
    V3637/2008,
    complete genome
    ACY70778 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V3638/2008,
    complete genome
    ACY70779 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 2/BR/BID-
    V3640/2008,
    complete genome
    ACY70780 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 2/BR/BID-
    V3644/2008,
    complete genome
    ACY70781 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V3645/2008,
    complete genome
    ACY70782 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V3648/2008,
    complete genome
    ACY70783 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V3650/2008,
    complete genome
    ACY70784 3391 2 Brazil UTR5CMENS1NS 2008 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/BR/BID-
    R3 V3653/2008,
    complete genome
    AGK36297 3391 2 Brazil UTR5CMENS1NS Apr. 15, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate DGV106,
    A2KNS4BNS5UT complete genome
    R3
    AGK36295 3391 2 Brazil UTR5CMENS1NS Feb. 24, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate DGV34,
    A2KNS4BNS5UT complete genome
    R3
    AGK36293 3391 2 Brazil UTR5CMENS1NS Feb. 24, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate DGV37,
    A2KNS4BNS5UT complete genome
    R3
    AGK36298 3391 2 Brazil UTR5CMENS1NS Mar. 9, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate DGV69,
    A2KNS4BNS5UT complete genome
    R3
    AGK36296 3391 2 Brazil UTR5CMENS1NS Mar. 24, 2010 Dengue virus 2
    2ANS2BNS3NS4 isolate DGV91,
    A2KNS4BNS5UT complete genome
    R3
    AFV95788 3391 2 Brazil CMENS1NS2ANS 2008 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR0337/2008/RJ/
    2008 polyprotein
    gene, partial cds
    AFV95787 3391 2 Brazil CMENS1NS2ANS 2008 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR0450/2008/RJ/
    2008 polyprotein
    gene, partial cds
    ADV39968 3391 2 Brazil CMENS1NS2ANS 2008 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR0690/RJ/2008
    polyprotein gene,
    complete cds
    ADV71220 3391 2 Brazil CMENS1NS2ANS 1990 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR39145/RJ/90
    polyprotein gene,
    partial cds
    ADV71215 3391 2 Brazil CMENS1NS2ANS 1990 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR41768/RJ/90
    polyprotein gene,
    partial cds
    ADV71216 3391 2 Brazil CMENS1NS2ANS 1991 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR42727/RJ/91
    polyprotein gene,
    partial cds
    ADV71217 3391 2 Brazil CMENS1NS2ANS 1994 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR48622/CE/94
    polyprotein gene,
    partial cds
    ADV71218 3391 2 Brazil CMENS1NS2ANS 1998 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR61310/RJ/98
    polyprotein gene,
    partial cds
    ADV71219 3391 2 Brazil CMENS1NS2ANS 1999 Dengue virus 2
    2BNS3NS4A2KN strain
    S4BNS5 BR64905/RJ/99
    polyprotein gene,
    partial cds
    AFH53774 3390 2 Brazil UTR5CMENS1NS Dengue virus 2
    2ANS2BNS3NS4 strain JHA1,
    A2KNS4BNS5 partial genome
    AGN94893 3390 3 Brazil UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT 101905/BR-
    R3 PE/03, complete
    genome
    AGN94902 3390 3 Brazil UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate 129/BR-
    A2KNS4BNS5UT PE/04, complete
    R3 genome
    AGN94899 3390 3 Brazil UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate 145/BR-
    A2KNS4BNS5UT PE/04, complete
    R3 genome
    AGN94903 3390 3 Brazil UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate 161/BR-
    A2KNS4BNS5UT PE/04, complete
    R3 genome
    AGN94896 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate 206/BR-
    A2KNS4BNS5UT PE/05, complete
    R3 genome
    AGN94904 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate 249/BR-
    A2KNS4BNS5UT PE/05, complete
    R3 genome
    AGN94901 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate 255/BR-
    A2KNS4BNS5UT PE/05, complete
    R3 genome
    AGN94905 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate 263/BR-
    A2KNS4BNS5UT PE/05, complete
    R3 genome
    AGN94898 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate 277/BR-
    A2KNS4BNS5UT PE/05, complete
    R3 genome
    AGN94906 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate 283/BR-
    A2KNS4BNS5UT PE/05, complete
    R3 genome
    AGN94907 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate 314/BR-
    A2KNS4BNS5UT PE/06, complete
    R3 genome
    AGN94897 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate 339/BR-
    A2KNS4BNS5UT PE/05, complete
    R3 genome
    AGN94908 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate 411/BR-
    A2KNS4BNS5UT PE/06, complete
    R3 genome
    AGN94909 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate 418/BR-
    A2KNS4BNS5UT PE/06, complete
    R3 genome
    AGN94910 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate 420/BR-
    A2KNS4BNS5UT PE/06, complete
    R3 genome
    AGN94911 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate 423/BR-
    A2KNS4BNS5UT PE/06, complete
    R3 genome
    AGN94912 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate 424/BR-
    A2KNS4BNS5UT PE/06, complete
    R3 genome
    AGN94900 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate 603/BR-
    A2KNS4BNS5UT PE/06, complete
    R3 genome
    AGN94895 3390 3 Brazil UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate 81257/BR-
    A2KNS4BNS5UT PE/02, complete
    R3 genome
    AGN94894 3390 3 Brazil UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate 85469/BR-
    A2KNS4BNS5UT PE/02, complete
    R3 genome
    AFK83756 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT D3BR/ACN/2007,
    R3 complete genome
    AFK83755 3390 3 Brazil UTR5CMENS1NS 2009 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT D3BR/AL95/2009,
    R3 complete genome
    AFK83754 3390 3 Brazil UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT D3BR/BR8/04,
    R3 complete genome
    AFK83753 3390 3 Brazil UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT D3BR/BV4/02,
    R3 complete genome
    AFK83762 3390 3 Brazil UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT D3BR/CU6/02,
    R3 complete genome
    AFK83759 3390 3 Brazil UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT D3BR/MR9/03,
    R3 complete genome
    AFK83761 3390 3 Brazil UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT D3BR/PV1/03,
    R3 complete genome
    AFK83760 3390 3 Brazil UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT D3BR/SL3/02,
    R3 complete genome
    AHG23238 3390 3 Brazil UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V2383/2002,
    complete genome
    ACO06159 3390 3 Brazil UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2387/2003,
    complete genome
    ACO06160 3390 3 Brazil UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2388/2003,
    complete genome
    ACO06163 3390 3 Brazil UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2391/2004,
    complete genome
    ACO06166 3390 3 Brazil UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2394/2005,
    complete genome
    ACO06169 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2397/2006,
    complete genome
    ACO06172 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2400/2007,
    complete genome
    ACO06174 3390 3 Brazil UTR5CMENS1NS 2008 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2403/2008,
    complete genome
    ACQ44485 3390 3 Brazil UTR5CMENS1NS 2001 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2977/2001,
    complete genome
    ACQ44486 3390 3 Brazil UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V2983/2003,
    complete genome
    ACY70743 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3417/2006,
    complete genome
    ACY70744 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3423/2006,
    complete genome
    ACY70745 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3424/2006,
    complete genome
    ACY70746 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3427/2006,
    complete genome
    ACY70747 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3429/2006,
    complete genome
    ACY70748 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3430/2006,
    complete genome
    ACW82870 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3431/2006,
    complete genome
    ACY70749 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3434/2006,
    complete genome
    ACY70750 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3435/2006,
    complete genome
    ACY70751 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3441/2006,
    complete genome
    ACY70752 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3442/2006,
    complete genome
    ACW82871 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3444/2006,
    complete genome
    ACY70753 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3446/2006,
    complete genome
    ACY70754 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3451/2006,
    complete genome
    ACY70755 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3456/2006,
    complete genome
    ACY70756 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3457/2006,
    complete genome
    ACY70757 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3460/2006,
    complete genome
    ACW82872 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3463/2006,
    complete genome
    ACY70758 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3464/2006,
    complete genome
    ACY70759 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3465/2006,
    complete genome
    ACY70760 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3469/2007,
    complete genome
    ACY70761 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3470/2007,
    complete genome
    ACY70764 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3584/2006,
    complete genome
    ACY70765 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3585/2007,
    complete genome
    ACY70766 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3588/2007,
    complete genome
    ACY70767 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3589/2007,
    complete genome
    ACY70768 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3590/2007,
    complete genome
    ACY70769 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3591/2007,
    complete genome
    ACY70770 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3593/2007,
    complete genome
    ACY70771 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3597/2007,
    complete genome
    ACY70772 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3598/2007,
    complete genome
    ACY70773 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3601/2007,
    complete genome
    ACY70774 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3605/2007,
    complete genome
    ACY70775 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 3/BR/BID-
    V3606/2007,
    complete genome
    ACY70776 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3609/2007,
    complete genome
    ACY70777 3390 3 Brazil UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/BR/BID-
    R3 V3615/2007,
    complete genome
    AEV42062 3390 3 Brazil UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT DENV3/BR/
    R3 D3LIMHO/2006,
    complete genome
    AGH08164 3390 3 Brazil UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 strain 95016/BR-
    A2KNS4BNS5UT PE/02, complete
    R3 genome
    AEX91754 3387 4 Brazil UTR5CMENS1NS Sep. 8, 2010 Dengue virus 4
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT Br246RR/10,
    R3 complete genome
    AIQ84223 3387 4 Brazil UTR5CMENS1NS Mar. 28, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR12_TVP17898/
    R3 2012
    isolate serum_12,
    complete genome
    AIQ84224 3387 4 Brazil UTR5CMENS1NS Mar. 30, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR20_TVP17906/
    R3 2012
    isolate serum_20,
    complete genome
    AIQ84225 3387 4 Brazil UTR5CMENS1NS Mar. 30, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR23_TVP17909/
    R3 2012
    isolate serum_23,
    complete genome
    AIQ84226 3387 4 Brazil UTR5CMENS1NS Apr. 19, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR24_TVP17910/
    R3 2012
    isolate serum_24,
    complete genome
    AIQ84227 3387 4 Brazil UTR5CMENS1NS Apr. 12, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR27_TVP17913/
    R3 2012
    isolate serum_27,
    complete genome
    AIQ84228 3387 4 Brazil UTR5CMENS1NS Apr. 19, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR28_TVP17914/
    R3 2012
    isolate serum_28,
    complete genome
    AIQ84220 3387 4 Brazil UTR5CMENS1NS Apr. 23, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR2_TVP17888/
    R3 2012
    isolate serum_2,
    complete genome
    AIQ84245 3387 4 Brazil UTR5CMENS1NS Apr. 20, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR33_TVP17919/
    R3 2012
    isolate serum_33,
    complete genome
    AIQ84244 3387 4 Brazil UTR5CMENS1NS Mar. 30, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR35_TVP17921/
    R3 2012
    isolate serum_35,
    complete genome
    AIQ84243 3387 4 Brazil UTR5CMENS1NS Apr. 3, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR40_TVP17926/
    R3 2012
    isolate serum_40,
    complete genome
    AIQ84242 3387 4 Brazil UTR5CMENS1NS Apr. 5, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR44_TVP17930/
    R3 2012
    isolate serum_44,
    complete genome
    AIQ84241 3387 4 Brazil UTR5CMENS1NS Mar. 23, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR47_TVP17933/
    R3 2012
    isolate serum_47,
    complete genome
    AIQ84240 3387 4 Brazil UTR5CMENS1NS Mar. 21, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR48_TVP17934/
    R3 2012
    isolate serum_48,
    complete genome
    AIQ84239 3387 4 Brazil UTR5CMENS1NS Mar. 12, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR50_TVP18148/
    R3 2012
    isolate serum_50,
    complete genome
    AIQ84238 3387 4 Brazil UTR5CMENS1NS Mar. 20, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR52_TVP17938/
    R3 2012
    isolate serum_52,
    complete genome
    AIQ84237 3387 4 Brazil UTR5CMENS1NS Mar. 14, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR53_TVP17939/
    R3 2012
    isolate serum_53,
    complete genome
    AIQ84236 3387 4 Brazil UTR5CMENS1NS Mar. 14, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR55_TVP17941/
    R3 2012
    isolate serum_55,
    complete genome
    AIQ84235 3387 4 Brazil UTR5CMENS1NS Mar. 14, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR60_TVP17946/
    R3 2012
    isolate serum_60,
    complete genome
    AIQ84234 3387 4 Brazil UTR5CMENS1NS Apr. 19, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR73_TVP17951/
    R3 2012
    isolate serum_73,
    complete genome
    AIQ84233 3387 4 Brazil UTR5CMENS1NS Apr. 19, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR76_TVP17953/
    R3 2012
    isolate serum_76,
    complete genome
    AIQ84232 3387 4 Brazil UTR5CMENS1NS Feb. 3, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR84_TVP17961/
    R3 2012
    isolate serum_84,
    complete genome
    AIQ84221 3387 4 Brazil UTR5CMENS1NS Apr. 23, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR8_TVP17894/
    R3 2012
    isolate serum_8,
    complete genome
    AIQ84231 3387 4 Brazil UTR5CMENS1NS Feb. 3, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR91_TVP17968/
    R3 2012
    isolate serum_91,
    complete genome
    AIQ84230 3387 4 Brazil UTR5CMENS1NS Feb. 29, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR92_TVP17969/
    R3 2012
    isolate serum_92,
    complete genome
    AIQ84229 3387 4 Brazil UTR5CMENS1NS Feb. 16, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR94_TVP17971/
    R3 2012
    isolate serum_94,
    complete genome
    AIQ84222 3387 4 Brazil UTR5CMENS1NS Apr. 18, 2012 Dengue virus 4
    2ANS2BNS3NS4 strain DENV-4/MT/
    A2KNS4BNS5UT BR9_TVP17895/
    R3 2012
    isolate serum_9,
    complete genome
    AEW50182 3387 4 Brazil UTR5CMENS1NS Mar. 26, 1982 Dengue virus 4
    2ANS2BNS3NS4 strain H402276,
    A2KNS4BNS5 complete genome
    AFX65866 3387 4 Brazil UTR5CMENS1NS Jul. 17, 2010 Dengue virus 4
    2ANS2BNS3NS4 strain H772846,
    A2KNS4BNS5UT complete genome
    R3
    AFX65867 3387 4 Brazil UTR5CMENS1NS Jul. 18, 2010 Dengue virus 4
    2ANS2BNS3NS4 strain H772852,
    A2KNS4BNS5UT complete genome
    R3
    AEW50183 3387 4 Brazil UTR5CMENS1NS Jul. 21, 2010 Dengue virus 4
    2ANS2BNS3NS4 strain H772854,
    A2KNS4BNS5 complete genome
    AFX65868 3387 4 Brazil UTR5CMENS1NS Aug. 20, 2010 Dengue virus 4
    2ANS2BNS3NS4 strain H773583,
    A2KNS4BNS5UT complete genome
    R3
    AFX65869 3387 4 Brazil UTR5CMENS1NS Aug. 24, 2010 Dengue virus 4
    2ANS2BNS3NS4 strain H774846,
    A2KNS4BNS5UT complete genome
    R3
    AFX65870 3387 4 Brazil UTR5CMENS1NS Nov. 10, 2010 Dengue virus 4
    2ANS2BNS3NS4 strain H775222,
    A2KNS4BNS5UT complete genome
    R3
    AFX65871 3387 4 Brazil UTR5CMENS1NS Jan. 12, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H778494,
    A2KNS4BNS5UT complete genome
    R3
    AFX65872 3387 4 Brazil UTR5CMENS1NS Jan. 11, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H778504,
    A2KNS4BNS5UT complete genome
    R3
    AFX65873 3387 4 Brazil UTR5CMENS1NS Jan. 20, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H778887,
    A2KNS4BNS5UT complete genome
    R3
    AFX65874 3387 4 Brazil UTR5CMENS1NS Jan. 14, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H779228,
    A2KNS4BNS5UT complete genome
    R3
    AFX65875 3387 4 Brazil UTR5CMENS1NS Jan. 24, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H779652,
    A2KNS4BNS5UT complete genome
    R3
    AFX65876 3387 4 Brazil UTR5CMENS1NS Nov. 29, 2010 Dengue virus 4
    2ANS2BNS3NS4 strain H780090,
    A2KNS4BNS5UT complete genome
    R3
    AFX65877 3387 4 Brazil UTR5CMENS1NS Nov. 21, 2010 Dengue virus 4
    2ANS2BNS3NS4 strain H780120,
    A2KNS4BNS5UT complete genome
    R3
    AFX65878 3387 4 Brazil UTR5CMENS1NS Jan. 29, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H780556,
    A2KNS4BNS5UT complete genome
    R3
    AFX65879 3387 4 Brazil UTR5CMENS1NS Jan. 29, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H780563,
    A2KNS4BNS5UT complete genome
    R3
    AFX65880 3387 4 Brazil UTR5CMENS1NS Jan. 13, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H780571,
    A2KNS4BNS5UT complete genome
    R3
    AFX65881 3387 4 Brazil UTR5CMENS1NS Mar. 18, 2011 Dengue virus 4
    2ANS2BNS3NS4 strain H781363,
    A2KNS4BNS5UT complete genome
    R3
    AIK23224 3391 2 Cuba CMENS1NS2ANS 1981 Dengue virus 2
    2BNS3NS4A2KN isolate
    S4BNS5 Cuba_A115_1981
    polyprotein gene,
    complete cds
    AIK23223 3391 2 Cuba CMENS1NS2ANS 1981 Dengue virus 2
    2BNS3NS4A2KN isolate
    S4BNS5 Cuba_A132_1981
    polyprotein gene,
    complete cds
    AIK23222 3391 2 Cuba CMENS1NS2ANS 1981 Dengue virus 2
    2BNS3NS4A2KN isolate
    S4BNS5 Cuba_A15_1981
    polyprotein gene,
    complete cds
    AIK23225 3391 2 Cuba CMENS1NS2ANS 1981 Dengue virus 2
    2BNS3NS4A2KN isolate
    S4BNS5 Cuba_A169_1981
    polyprotein gene,
    complete cds
    AIK23226 3391 2 Cuba CMENS1NS2ANS 1981 Dengue virus 2
    2BNS3NS4A2KN isolate
    S4BNS5 Cuba_A35_1981
    polyprotein gene,
    complete cds
    AAW31409 3391 2 Cuba UTR5CMENS1NS Dengue virus type
    2ANS2BNS3NS4 2 strain
    A2KNS4BNS5UT Cuba115/97,
    R3 complete genome
    AAW31407 3391 2 Cuba UTR5CMENS1NS Dengue virus type
    2ANS2BNS3NS4 2 strain
    A2KNS4BNS5UT Cuba13/97,
    R3 complete genome
    AAW31411 3391 2 Cuba UTR5CMENS1NS Dengue virus type
    2ANS2BNS3NS4 2 strain
    A2KNS4BNS5UT Cuba165/97,
    R3 complete genome
    AAW31412 3391 2 Cuba UTR5CMENS1NS 1997 Dengue virus type
    2ANS2BNS3NS4 2 strain
    A2KNS4BNS5UT Cuba205/97,
    R3 complete genome
    AAW31408 3391 2 Cuba UTR5CMENS1NS Dengue virus type
    2ANS2BNS3NS4 2 strain
    A2KNS4BNS5UT Cuba58/97,
    R3 complete genome
    AAW31410 3391 2 Cuba UTR5CMENS1NS 1997 Dengue virus type
    2ANS2BNS3NS4 2 strain
    A2KNS4BNS5UT Cuba89/97,
    R3 complete genome
    AFJ91714 3392 1 USA UTR5CMENS1NS 2010, October Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/BOL-KW010,
    R3 complete genome
    ACA48834 3392 1 USA UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1162/1998,
    complete genome
    ACJ04186 3392 1 USA UTR5CMENS1NS 1995 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1734/1995,
    complete genome
    ACJ04190 3392 1 USA UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1738/1998,
    complete genome
    ACH99678 3392 1 USA UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1739/1998,
    complete genome
    ACH99679 3392 1 USA UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1740/1998,
    complete genome
    ACJ04191 3392 1 USA UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1741/1998,
    complete genome
    ACJ04192 3392 1 USA UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1742/1998,
    complete genome
    ACH99680 3392 1 USA UTR5CMENS1NS 1995 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1743/1995,
    complete genome
    ACH99681 3392 1 USA UTR5CMENS1NS 1995 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V1744/1995,
    complete genome
    ACJ04215 3392 1 USA UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2093/1998,
    complete genome
    ACJ04216 3392 1 USA UTR5CMENS1NS 1995 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2094/1995,
    complete genome
    ACJ04217 3392 1 USA UTR5CMENS1NS 1994 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2095/1994,
    complete genome
    ACL99012 3392 1 USA UTR5CMENS1NS 1993 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2096/1993,
    complete genome
    ACL99013 3392 1 USA UTR5CMENS1NS 1986 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2097/1986,
    complete genome
    ACJ04221 3392 1 USA UTR5CMENS1NS 1994 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2127/1994,
    complete genome
    ACJ04222 3392 1 USA UTR5CMENS1NS 1995 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2128/1995,
    complete genome
    ACJ04223 3392 1 USA UTR5CMENS1NS 1995 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2129/1995,
    complete genome
    ACL99002 3392 1 USA UTR5CMENS1NS 1995 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2130/1995,
    complete genome
    ACJ04224 3392 1 USA UTR5CMENS1NS 1996 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2131/1996,
    complete genome
    ACJ04225 3392 1 USA UTR5CMENS1NS 1993 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2132/1993,
    complete genome
    ACJ04226 3392 1 USA UTR5CMENS1NS 1993 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2133/1993,
    complete genome
    ACJ04227 3392 1 USA UTR5CMENS1NS 1993 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2134/1993,
    complete genome
    ACL99003 3392 1 USA UTR5CMENS1NS 1992 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2135/1992,
    complete genome
    ACJ04228 3392 1 USA UTR5CMENS1NS 1992 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2136/1992,
    complete genome
    ACJ04229 3392 1 USA UTR5CMENS1NS 1992 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2137/1992,
    complete genome
    ACK28188 3392 1 USA UTR5CMENS1NS 1996 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2138/1996,
    complete genome
    ACJ04230 3392 1 USA UTR5CMENS1NS 1996 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2139/1996,
    complete genome
    ACJ04231 3392 1 USA UTR5CMENS1NS 1996 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2140/1996,
    complete genome
    ACK28189 3392 1 USA UTR5CMENS1NS 1987 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2142/1987,
    complete genome
    ACJ04232 3392 1 USA UTR5CMENS1NS 1987 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V2143/1987,
    complete genome
    ACA48858 3392 1 USA UTR5CMENS1NS 2006 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V852/2006,
    complete genome
    ACA48859 3392 1 USA UTR5CMENS1NS 1998 Dengue virus 1
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 1/US/BID-
    R3 V853/1998,
    complete genome
    ACF49259 3392 1 USA UTR5CMENS1NS 1944 Dengue virus 1
    2ANS2BNS3NS4 isolate
    A2KNS4BNS5UT US/Hawaii/1944,
    R3 complete genome
    AIU47321 3392 1 USA UTR5CMENS1NS 1944 Dengue virus 1
    2ANS2BNS3NS4 strain Hawaii,
    A2KNS4BNS5UT complete genome
    R3
    ACA48811 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1031/2006,
    complete genome
    ACA48812 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1032/1998,
    complete genome
    ACA48813 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1033/1998,
    complete genome
    ACA48814 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1034/1998,
    complete genome
    ACA48815 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1035/2006,
    complete genome
    ACA48816 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1036/2006,
    complete genome
    ACA48817 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1038/1998,
    complete genome
    ACA48818 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1039/2006,
    complete genome
    ACA48819 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1040/2006,
    complete genome
    ACA48820 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1041/2006,
    complete genome
    ACA48821 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1042/1998,
    complete genome
    ACA48823 3391 2 USA UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1045/2005,
    complete genome
    ACA58330 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1046/2004,
    complete genome
    ACA48824 3391 2 USA UTR5CMENS1NS 1999 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1048/1999,
    complete genome
    ACA48827 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1052/1998,
    complete genome
    ACA48828 3391 2 USA UTR5CMENS1NS 1996 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1054/1996,
    complete genome
    ACB29511 3391 2 USA UTR5CMENS1NS 1996 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1055/1996,
    complete genome
    ACA58331 3391 2 USA UTR5CMENS1NS 1994 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1057/1994,
    complete genome
    ACA58332 3391 2 USA UTR5CMENS1NS 1994 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1058/1994,
    complete genome
    ACA48829 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1060/1989,
    complete genome
    ACD13309 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1061/1989,
    complete genome
    ACA48832 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1084/1998,
    complete genome
    ACA58337 3391 2 USA UTR5CMENS1NS 1994 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1085/1994,
    complete genome
    ACA58338 3391 2 USA UTR5CMENS1NS 1991 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1087/1991,
    complete genome
    ACB29512 3391 2 USA UTR5CMENS1NS 1986 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1163/1986,
    complete genome
    ACA48835 3391 2 USA UTR5CMENS1NS 1986 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1164/1986,
    complete genome
    ACA48836 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1165/1987,
    complete genome
    ACA48837 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1166/1987,
    complete genome
    ACA48838 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1167/1987,
    complete genome
    ACA48839 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1168/1987,
    complete genome
    ACA48840 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1169/1987,
    complete genome
    ACA48841 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1170/1987,
    complete genome
    ACA48842 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1171/1987,
    complete genome
    ACA48843 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1172/1987,
    complete genome
    ACA48844 3391 2 USA UTR5CMENS1NS 1987 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1174/1987,
    complete genome
    ACA48845 3391 2 USA UTR5CMENS1NS 1988 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1175/1988,
    complete genome
    ACA48846 3391 2 USA UTR5CMENS1NS 1988 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1176/1988,
    complete genome
    ACA48847 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1177/1989,
    complete genome
    ACA48848 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1178/1989,
    complete genome
    ACA48849 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1179/1989,
    complete genome
    ACA48850 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1180/1989,
    complete genome
    ACA48851 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1181/1989,
    complete genome
    ACA48852 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1182/1989,
    complete genome
    ACA48853 3391 2 USA UTR5CMENS1NS 1990 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1183/1990,
    complete genome
    ACA48854 3391 2 USA UTR5CMENS1NS 1990 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1188/1990,
    complete genome
    ACA48855 3391 2 USA UTR5CMENS1NS 1990 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1189/1990,
    complete genome
    ACB29513 3391 2 USA UTR5CMENS1NS 1993 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1356/1993,
    complete genome
    ACA48856 3391 2 USA UTR5CMENS1NS 1993 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1360/1993,
    complete genome
    ACB29514 3391 2 USA UTR5CMENS1NS 1995 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1367/1995,
    complete genome
    ACB29515 3391 2 USA UTR5CMENS1NS 1995 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1368/1995,
    complete genome
    ACD13310 3391 2 USA UTR5CMENS1NS 1995 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1372/1995,
    complete genome
    ACB29516 3391 2 USA UTR5CMENS1NS 1995 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1373/1995,
    complete genome
    ACB29517 3391 2 USA UTR5CMENS1NS 1996 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1376/1996,
    complete genome
    ACB87126 3391 2 USA UTR5CMENS1NS 1996 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1378/1996,
    complete genome
    ACB29518 3391 2 USA UTR5CMENS1NS 1996 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1383/1996,
    complete genome
    ACB87127 3391 2 USA UTR5CMENS1NS 1996 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1385/1996,
    complete genome
    ACD13396 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1387/1998,
    complete genome
    ACD13311 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1388/1998,
    complete genome
    ACB29519 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1392/1998,
    complete genome
    ACB29520 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1393/1998,
    complete genome
    ACB87128 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1394/1998,
    complete genome
    ACB29521 3391 2 USA UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1395/1997,
    complete genome
    ACB29522 3391 2 USA UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1396/1997,
    complete genome
    ACB29523 3391 2 USA UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1397/1997,
    complete genome
    ACB29524 3391 2 USA UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1398/1997,
    complete genome
    ACB29525 3391 2 USA UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1399/1997,
    complete genome
    ACB29526 3391 2 USA UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1401/1997,
    complete genome
    ACB29527 3391 2 USA UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1404/1997,
    complete genome
    ACB29528 3391 2 USA UTR5CMENS1NS 1997 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1409/1997,
    complete genome
    ACB87129 3391 2 USA UTR5CMENS1NS 2007 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1410/2007,
    complete genome
    ACB87130 3391 2 USA UTR5CMENS1NS 2007 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1411/2007,
    complete genome
    ACB87131 3391 2 USA UTR5CMENS1NS 2007 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1412/2007,
    complete genome
    ACB87132 3391 2 USA UTR5CMENS1NS 2007 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1413/2007,
    complete genome
    ACD13348 3391 2 USA UTR5CMENS1NS 1996 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1424/1996,
    complete genome
    ACD13349 3391 2 USA UTR5CMENS1NS 1999 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1425/1999,
    complete genome
    ACD13350 3391 2 USA UTR5CMENS1NS 1999 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1426/1999,
    complete genome
    ACD13351 3391 2 USA UTR5CMENS1NS 1999 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1427/1999,
    complete genome
    ACD13352 3391 2 USA UTR5CMENS1NS 1999 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1428/1999,
    complete genome
    ACD13353 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/B ID-
    R3 V1431/2004,
    complete genome
    ACD13354 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1432/2004,
    complete genome
    ACD13397 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1434/2004,
    complete genome
    ACD13398 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1435/2004,
    complete genome
    ACD13399 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1436/2004,
    complete genome
    ACD13400 3391 2 USA UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1439/2005,
    complete genome
    ACE63530 3391 2 USA UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1440/2005,
    complete genome
    ACD13401 3391 2 USA UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1441/2005,
    complete genome
    ACE63543 3391 2 USA UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1442/2005,
    complete genome
    ACD13406 3391 2 USA UTR5CMENS1NS 2000 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1461/2000,
    complete genome
    ACD13407 3391 2 USA UTR5CMENS1NS 2000 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1462/2000,
    complete genome
    ACD13408 3391 2 USA UTR5CMENS1NS 2000 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1463/2000,
    complete genome
    ACD13409 3391 2 USA UTR5CMENS1NS 2000 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1464/2000,
    complete genome
    ACD13411 3391 2 USA UTR5CMENS1NS 2001 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1467/2001,
    complete genome
    ACD13412 3391 2 USA UTR5CMENS1NS 2001 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1468/2001,
    complete genome
    ACD13413 3391 2 USA UTR5CMENS1NS 2001 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1469/2001,
    complete genome
    ACD13414 3391 2 USA UTR5CMENS1NS 2001 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1470/2001,
    complete genome
    ACD13415 3391 2 USA UTR5CMENS1NS 2001 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1471/2001,
    complete genome
    ACD13416 3391 2 USA UTR5CMENS1NS 2001 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1472/2001,
    complete genome
    ACD13395 3391 2 USA UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1482/2003,
    complete genome
    ACD13419 3391 2 USA UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1483/2003,
    complete genome
    ACD13420 3391 2 USA UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1484/2003,
    complete genome
    ACD13421 3391 2 USA UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1486/2003,
    complete genome
    ACD13422 3391 2 USA UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1487/2003,
    complete genome
    ACD13424 3391 2 USA UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1492/2003,
    complete genome
    ACD13425 3391 2 USA UTR5CMENS1NS 2003 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1493/2003,
    complete genome
    ACD13426 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1494/2004,
    complete genome
    ACD13427 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1495/2004,
    complete genome
    ACD13428 3391 2 USA UTR5CMENS1NS 2004 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1496/2004,
    complete genome
    ACD13429 3391 2 USA UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V1497/2005,
    complete genome
    AEH59341 3390 2 USA CMENS1NS2ANS 2009 Dengue virus 2
    2BNS3NS4A2KN isolate DENV-
    S4BNS5 2/US/BID-
    V4824/2009,
    complete genome
    AEH59346 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 2/US/BID-
    V5411/2006,
    complete genome
    AEH59345 3391 2 USA UTR5CMENS1NS 2007 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5 2/US/BID-
    V5412/2007,
    complete genome
    ACA58343 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V585/2006,
    complete genome
    ACA48986 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V587/2006,
    complete genome
    ACA48987 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V588/2006,
    complete genome
    ACA48988 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V589/2006,
    complete genome
    ACA48989 3391 2 USA UTR5CMENS1NS 2002 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V591/2002,
    complete genome
    ACA48990 3391 2 USA UTR5CMENS1NS 2002 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V592/2002,
    complete genome
    ACA48991 3391 2 USA UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V593/2005,
    complete genome
    ACA48992 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V594/2006,
    complete genome
    ACA48993 3391 2 USA UTR5CMENS1NS 2006 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V595/2006,
    complete genome
    ACA48994 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V596/1998,
    complete genome
    ACA48995 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V597/1998,
    complete genome
    ACA48996 3391 2 USA UTR5CMENS1NS 1999 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V598/1999,
    complete genome
    ACA48997 3391 2 USA UTR5CMENS1NS 1999 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V599/1999,
    complete genome
    ACA48998 3391 2 USA UTR5CMENS1NS 2005 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V600/2005,
    complete genome
    ACA48999 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V675/1998,
    complete genome
    ACA49000 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V676/1998,
    complete genome
    ACA49001 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V677/1998,
    complete genome
    ACA49002 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V678/1998,
    complete genome
    ACA49003 3391 2 USA UTR5CMENS1NS 1994 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V679/1994,
    complete genome
    ACA49004 3391 2 USA UTR5CMENS1NS 1994 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V680/1994,
    complete genome
    ACA49005 3391 2 USA UTR5CMENS1NS 1998 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V681/1998,
    complete genome
    ACA49006 3391 2 USA UTR5CMENS1NS 1994 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V682/1994,
    complete genome
    ACA49007 3391 2 USA UTR5CMENS1NS 1994 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V683/1994,
    complete genome
    ACA49008 3391 2 USA UTR5CMENS1NS 1994 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V684/1994,
    complete genome
    ACA49009 3391 2 USA UTR5CMENS1NS 1988 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V685/1988,
    complete genome
    ACA49010 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V686/1989,
    complete genome
    ACA49011 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V687/1989,
    complete genome
    ACA49012 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V688/1989,
    complete genome
    ACA49013 3391 2 USA UTR5CMENS1NS 1989 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V689/1989,
    complete genome
    ACA49014 3391 2 USA UTR5CMENS1NS 1988 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V690/1988,
    complete genome
    ACA48857 3391 2 USA UTR5CMENS1NS 1990 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V851/1990,
    complete genome
    ACA48860 3391 2 USA UTR5CMENS1NS 2001 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V854/2001,
    complete genome
    ACA48861 3391 2 USA UTR5CMENS1NS 1992 Dengue virus 2
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 2/US/BID-
    R3 V855/1992,
    complete genome
    ACA48822 3390 3 USA UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1043/2006,
    complete genome
    ACA58329 3390 3 USA UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1044/2006,
    complete genome
    ACA48825 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1049/1998,
    complete genome
    ACA48826 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1050/1998,
    complete genome
    ACA48830 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1075/1998,
    complete genome
    ACA58333 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1076/1999,
    complete genome
    ACA58334 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1077/2000,
    complete genome
    ACA48831 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1078/2003,
    complete genome
    ACA58335 3390 3 USA UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1079/2006,
    complete genome
    ACA58336 3390 3 USA UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1080/2006,
    complete genome
    ACA48833 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1088/1998,
    complete genome
    ACA58339 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1089/2003,
    complete genome
    ACA58340 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1090/1998,
    complete genome
    ACA58341 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1091/2004,
    complete genome
    ACA58342 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1092/2004,
    complete genome
    ACB87133 3390 3 USA UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1415/2007,
    complete genome
    ACB87134 3390 3 USA UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1416/2007,
    complete genome
    ACB87135 3390 3 USA UTR5CMENS1NS 2007 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1417/2007,
    complete genome
    ACD13402 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1447/1998,
    complete genome
    ACE63531 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1448/1998,
    complete genome
    ACE63532 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1449/1998,
    complete genome
    ACH99660 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1450/1998,
    complete genome
    ACE63544 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1451/1999,
    complete genome
    ACE63545 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1452/1999,
    complete genome
    ACE63533 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1453/1999,
    complete genome
    ACE63534 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1454/1999,
    complete genome
    ACD13403 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1455/1999,
    complete genome
    ACD13405 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1460/2000,
    complete genome
    ACE63528 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1465/2000,
    complete genome
    ACD13410 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1466/1999,
    complete genome
    ACD13417 3391 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1473/2002,
    complete genome
    ACD13418 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1475/2002,
    complete genome
    ACD13392 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1476/2002,
    complete genome
    ACH61690 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1477/2002,
    complete genome
    ACJ04182 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1478/2002,
    complete genome
    ACD13393 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1480/2003,
    complete genome
    ACD13394 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1481/2003,
    complete genome
    ACE63529 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1490/2003,
    complete genome
    ACD13423 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1491/2003,
    complete genome
    ACH99651 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1604/2004,
    complete genome
    ACO06143 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1605/2004,
    complete genome
    ACH61715 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1606/2004,
    complete genome
    ACH61716 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1607/2004,
    complete genome
    ACH61717 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1608/2004,
    complete genome
    ACH61718 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1609/2004,
    complete genome
    ACH61719 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1610/2004,
    complete genome
    ACO06144 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1611/2004,
    complete genome
    ACH61720 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1612/2004,
    complete genome
    ACH61721 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1613/2004,
    complete genome
    ACH99652 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1614/2004,
    complete genome
    ACJ04178 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1615/2004,
    complete genome
    ACH99653 3390 3 USA UTR5CMENS1NS 2004 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1616/2004,
    complete genome
    ACH99654 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1617/2005,
    complete genome
    ACH99655 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1618/2005,
    complete genome
    ACH99656 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1619/2005,
    complete genome
    ACH99657 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1620/2005,
    complete genome
    ACH99658 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1621/2005,
    complete genome
    ACH99665 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1622/2005,
    complete genome
    ACH99666 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1623/2005,
    complete genome
    ACH99667 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1624/2005,
    complete genome
    ACH99668 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1625/2005,
    complete genome
    ACH99669 3390 3 USA UTR5CMENS1NS 2005 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1626/2005,
    complete genome
    ACJ04183 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1729/2003,
    complete genome
    ACJ04184 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1730/2003,
    complete genome
    ACH99676 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1731/2003,
    complete genome
    ACJ04185 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1732/2002,
    complete genome
    ACH99677 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1733/1999,
    complete genome
    ACJ04187 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1735/1999,
    complete genome
    ACJ04188 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1736/1999,
    complete genome
    ACJ04189 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V1737/1999,
    complete genome
    ACL98985 3390 3 USA UTR5CMENS1NS 1999 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2098/1999,
    complete genome
    ACL98986 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2099/1998,
    complete genome
    ACL99014 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2100/2000,
    complete genome
    ACL98987 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2103/2000,
    complete genome
    ACJ04218 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2104/2000,
    complete genome
    ACJ04219 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2105/2000,
    complete genome
    ACL98988 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2106/2000,
    complete genome
    ACL98989 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2107/2000,
    complete genome
    ACL98990 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2108/2000,
    complete genome
    ACL98991 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2110/2000,
    complete genome
    ACL98992 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2111/2000,
    complete genome
    ACL98993 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2112/2000,
    complete genome
    ACL98994 3390 3 USA UTR5CMENS1NS 2000 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2113/2000,
    complete genome
    ACL98995 3390 3 USA UTR5CMENS1NS 2001 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2114/2001,
    complete genome
    ACL98996 3390 3 USA UTR5CMENS1NS 2001 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2115/2001,
    complete genome
    ACL98997 3390 3 USA UTR5CMENS1NS 2001 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2117/2001,
    complete genome
    ACL98998 3390 3 USA UTR5CMENS1NS 2001 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2118/2001,
    complete genome
    ACL98999 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2119/2002,
    complete genome
    ACJ04220 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2120/2002,
    complete genome
    ACL99000 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2122/2002,
    complete genome
    ACK28187 3390 3 USA UTR5CMENS1NS 2002 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2123/2002,
    complete genome
    ACL99001 3390 3 USA UTR5CMENS1NS 2006 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V2126/2006,
    complete genome
    ACA48862 3390 3 USA UTR5CMENS1NS 2003 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V858/2003,
    complete genome
    ACA48863 3390 3 USA UTR5CMENS1NS 1998 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/US/BID-
    R3 V859/1998,
    complete genome
    AFZ40124 3390 3 USA UTR5CMENS1NS 1963 Dengue virus 3
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 3/USA/633798/
    R3 1963,
    complete genome
    ACH61714 3387 4 USA UTR5CMENS1NS 1998 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V1082/1998,
    complete genome
    ACH61687 3387 4 USA UTR5CMENS1NS 1986 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V1083/1986,
    complete genome
    ACH61688 3387 4 USA UTR5CMENS1NS 1998 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V1093/1998,
    complete genome
    ACH61689 3387 4 USA UTR5CMENS1NS 1998 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V1094/1998,
    complete genome
    ACS32012 3387 4 USA UTR5CMENS1NS 1994 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2429/1994,
    complete genome
    ACS32013 3387 4 USA UTR5CMENS1NS 1994 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2430/1994,
    complete genome
    ACS32014 3387 4 USA UTR5CMENS1NS 1995 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2431/1995,
    complete genome
    ACS32037 3387 4 USA UTR5CMENS1NS 1995 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2432/1995,
    complete genome
    ACO06140 3387 4 USA UTR5CMENS1NS 1995 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2433/1995,
    complete genome
    ACO06145 3387 4 USA UTR5CMENS1NS 1995 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2434/1995,
    complete genome
    ACS32015 3387 4 USA UTR5CMENS1NS 1996 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2435/1996,
    complete genome
    ACS32016 3387 4 USA UTR5CMENS1NS 1996 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2436/1996,
    complete genome
    ACS32017 3387 4 USA UTR5CMENS1NS 1996 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2437/1996,
    complete genome
    ACS32018 3387 4 USA UTR5CMENS1NS 1996 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2438/1996,
    complete genome
    ACS32019 3387 4 USA UTR5CMENS1NS 1996 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2439/1996,
    complete genome
    ACO06146 3387 4 USA UTR5CMENS1NS 1996 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2440/1996,
    complete genome
    ACQ44402 3387 4 USA UTR5CMENS1NS 1998 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2441/1998,
    complete genome
    ACQ44403 3387 4 USA UTR5CMENS1NS 1998 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2442/1998,
    complete genome
    ACO06147 3387 4 USA UTR5CMENS1NS 1998 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2443/1998,
    complete genome
    ACQ44404 3387 4 USA UTR5CMENS1NS 1998 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2444/1998,
    complete genome
    ACQ44405 3387 4 USA UTR5CMENS1NS 1998 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2445/1998,
    complete genome
    ACQ44406 3387 4 USA UTR5CMENS1NS 1999 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2446/1999,
    complete genome
    ACQ44407 3387 4 USA UTR5CMENS1NS 1999 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2447/1999,
    complete genome
    ACQ44408 3387 4 USA UTR5CMENS1NS 1999 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V2448/1999,
    complete genome
    ACJ04171 3387 4 USA UTR5CMENS1NS 1994 Dengue virus 4
    2ANS2BNS3NS4 isolate DENV-
    A2KNS4BNS5UT 4/US/BID-
    R3 V860/1994,
    complete genome
  • TABLE 36
    DENY POLYPEPTIDE SEQUENCES
    SEQ ID
    NO: Accession No. Sequence
    171 gi|158348409|ref| MNNQRKKTGRPSFNMLKRARNRVSTVSQLAKRFSKGLL
    NP_722466.2| SGQGPMKLVMAFIAFLRFLAIPPTAGILARWGSFKKNGAI
    capsid protein KVLRGFKKEISNMLNIMNRRKR
    [Dengue virus 1]
    172 gi|164654862|ref| MNNQRKKTGKPSINMLKRVRNRVSTGSQLAKRFSKGLL
    YP_001531164.2| NGQGPMKLVMAFIAFLRFLAIPPTAGVLARWGTFKKSGA
    Capsid protein IKVLKGFKKEISNMLSIINQRKK
    [Dengue virus 3]
    173 gi|159024809|ref| MNNQRKKAKNTPFNMLKRERNRVSTVQQLTKRFSLGM
    NP_739591.2| LQGRGPLKLFMALVAFLRFLTIPPTAGILKRWGTIKKSKA
    Capsid protein INVLRGFRKEIGRMLNILNRRRR
    [Dengue virus 2]
    174 gi|158348408|ref| MNNQRKKTGRPSFNMLKRARNRVSTVSQLAKRFSKGLL
    NP_722457.2| SGQGPMKLVMAFIAFLRFLAIPPTAGILARWGSFKKNGAI
    anchored capsid KVLRGFKKEISNMLNIMNRRKRSVTMLLMLLPTALA
    protein [Dengue
    virus 1]
    175 gi|164654854|ref| MNNQRKKTGKPSINMLKRVRNRVSTGSQLAKRFSKGLL
    YP_001531165.2| NGQGPMKLVMAFIAFLRFLAIPPTAGVLARWGTFKKSGA
    Anchored capsid IKVLKGFKKEISNMLSIINQRKKTSLCLMMILPAALA
    protein [Dengue
    virus 3]
    176 gi|159024808|ref| MNNQRKKAKNTPFNMLKRERNRVSTVQQLTKRFSLGM
    NP_739581.2| LQGRGPLKLFMALVAFLRFLTIPPTAGILKRWGTIKKSKA
    Anchored capsid INVLRGFRKEIGRMLNILNRRRRSAGMIIMLIPTVMA
    protein [Dengue
    virus 2]
    177 gi|73671168|ref| MNQRKKVVRPPFNMLKRERNRVSTPQGLVKRFSTGLFS
    NP_740314.1| GKGPLRMVLAFITFLRVLSIPPTAGILKRWGQLKKNKAIK
    anchored capsid ILIGFRKEIGRMLNILNGRKRSTITLLCLIPTVMA
    (anchC) protein
    [Dengue virus 4]
    178 gi|73671167|ref| MNQRKKVVRPPFNMLKRERNRVSTPQGLVKRFSTGLFS
    NP_740313.1| GKGPLRMVLAFITFLRVLSIPPTAGILKRWGQLKKNKAIK
    virion capsid ILIGFRKEIGRMLNILNGRKR
    (virC) protein
    [Dengue virus 4]
    Envelope gi|164654853|ref| MRCVGVGNRDFVEGLSGATWVDVVLEHGGCVTTMAKN
    Protein YP_001531168.2| KPTLDIELQKTEATQLATLRKLCIEGKITNITTDSRCPTQG
    179 Envelope EAVLPEEQDQNYVCKHTYVDRGWGNGCGLFGKGSLVT
    protein [Dengue CAKFQCLEPIEGKVVQYENLKYTVIITVHTGDQHQVGNE
    virus 3] TQGVTAEITPQASTTEAILPEYGTLGLECSPRTGLDFNEMI
    LLTMKNKAWMVHRQWFFDLPLPWASGATTETPTWNRK
    ELLVTFKNAHAKKQEVVVLGSQEGAMHTALTGATEIQN
    SGGTSIFAGHLKCRLKMDKLELKGMSYAMCTNTFVLKK
    EVSETQHGTILIKVEYKGEDAPCKIPFSTEDGQGKAHNGR
    LITANPVVTKKEEPVNIEAEPPFGESNIVIGIGDNALKINW
    YKKGSSIGKMFEATERGARRMAILGDTAWDFGSVGGVL
    NSLGKMVHQIFGSAYTALFSGVSWVMKIGIGVLLTWIGL
    NSKNTSMSFSCIAIGIITLYLGAVVQA
    180 gi|158828123|ref| MRCVGIGNRDFVEGLSGATWVDVVLEHGSCVTTMAKD
    NP_722460.2| KPTLDIELLKTEVTNPAVLRKLCIEAKISNTTTDSRCPTQG
    envelope protein EATLVEEQDTNFVCRRTFVDRGWGNGCGLFGKGSLITCA
    [Dengue virus 1] KFKCVTKLEGKIVQYENLKYSVIVTVHTGDQHQVGNETT
    EHGTTATITPQAPTSEIQLTDYGALTLDCSPRTGLDFNEM
    VLLTMKKKSWLVHKQWFLDLPLPWTSGASTSQETWNR
    QDLLVTFKTAHAKKQEVVVLGSQEGAMHTALTGATEIQ
    TSGTTTIFAGHLKCRLKMDKLILKGMSYVMCTGSFKLEK
    EVAETQHGTVLVQVKYEGTDAPCKIPFSSQDEKGVTQNG
    RLITANPIVTDKEKPVNIEAEPPFGESYIVVGAGEKALKLS
    WFKKGSSIGKMFEATARGARRMAILGDTAWDFGSIGGV
    FTSVGKLIHQIFGTAYGVLFSGVSWTMKIGIGILLTWLGL
    NSRSTSLSMTCIAVGMVTLYLGVMVQA
    181 gi|159024812|ref| MRCIGMSNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNK
    NP_739583.2| PTLDFELIKTEAKQPATLRKYCIEAKLTNTTTESRCPTQGE
    Envelope protein PSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCA
    [Dengue virus 2] MFRCKKNMEGKVVQPENLEYTIVITPHSGEEHAVGNDTG
    KHGKEIKITPQSSITEAELTGYGTVTMECSPRTGLDFNEM
    VLLQMENKAWLVHRQWFLDLPLPWLPGADTQGSNWIQ
    KETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQ
    MSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKV
    VKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVL
    GRLITVNPIVTEKDSPVNIEAEPPFGDSYIIIGVEPGQLKLN
    WFKKGSSIGQMFETTMRGAKRMAILGDTAWDFGSLGGV
    FTSIGKALHQVFGAIYGAAFSGVSWTMKILIGVIITWIGM
    NSRSTSLSVTLVLVGIVTLYLGVMVQA
    182 tr|Q9IZI6|Q9IZI6_ MRCVGVGNRDFVEGVSGGAWVDLVLEHGGCVTTMAQ
    9FLAV GKPTLDFELTKTTAKEVALLRTYCIEASISNITTATRCPTQ
    Envelope protein GEPYLKEEQDQQYICRRDVVDRGWGNGCGLFGKGGVV
    (Fragment) TCAKFSCSGKITGNLVRIENLEYTVVVTVHNGDTHAVGN
    OS = Dengue virus DTSNHGVTAMITPRSPSVEVKLPDYGELTLDCEPRSGIDF
    4 GN = E PE = 4 NEMILMKMKKKTWLVHKQWFLDLPLPWTAGADTSEVH
    SV = 1 WNYKERMVTFKVPHAKRQDVTVLGSQEGAMHSALAGA
    TEVDSGDGNHMFAGHLKCEVRMEKLRIKGMSYTMCSG
    KFSIDKEMAETQHGTTVVKVKYEGAGAPCKVPIEIRDVN
    KEKVVGRIISSTPLAENTNSVTNIELEPPFGDSYIVIGVGNS
    ALTLHWFRKGSSIGKMFESTYRGAKRMAILGETAWDFGS
    VGGLFTSLGKAVHQVFGSVYTTMFGGVSWMIRILIGFLV
    LWIGTNSRNTSMAMTCIAVGGITLFLGF
    183 gi|73671170|ref| SVALTPHSGMGLETRAETWMSSEGAWKHAQRVESWILR
    NP_740316.1| NPGFALLAGFMAYMIGQTGIQRTVFFVLMMLVAPSYG
    membrane (M)
    protein [Dengue
    virus 4]
    184 gi|158828127|ref| SVALAPHVGMGLDTRTQTWMSAEGAWRQVEKVETWA
    YP_001531167.1| LRHPGFTILALFLAHYIGTSLTQKVVIFILLMLVTPSMT
    Membrane
    glycoprotein
    [Dengue virus 3]
    185 gi|158828122|ref| SVALAPHVGLGLETRTETWMSSEGAWKQIQKVETWALR
    NP_722459.2| HPGFTVIALFLAHAIGTSITQKGIIFILLMLVTPSMA
    membrane
    glycoprotein
    [Dengue virus 1]
    186 gi|159024811|ref| SVALVPHVGMGLETRTETWMSSEGAWKHVQRIETWILR
    NP_739592.2| HPGFTMMAAILAYTIGTTHFQRALIFILLTAVTPSMT
    Membrane
    glycoprotein
    [Dengue virus 2]
  • Example 36. OVA Multitope in vitro Screening Assay Kinetic Analysis
  • As depicted in FIG. 35 , antigen surface presentation is an inefficient process in the antigen presenting cells (APC). Peptides generated from proteasome degradation of the antigens are presented with low efficiency (only 1 peptide of 10000 degraded molecules is actually presented). Thus, priming of CD8 T cells with APCs provides insufficient densities of surface peptide/MHC I complexes, resulting in weak responders exhibiting impaired cytokine secretion and decreased memory pool. To improve DENV mRNA vaccines encoding concatemeric DENV antigens, an in vitro assay was designed to test the linkers used to connect peptide repeats, the number of peptide repeats, and sequences known to enhance antigen presentation.
  • mRNA constructs encoding one or more OVA epitopes were configured with different linker sequences, protease cleavage sites, and antigen presentation enhancer sequences. Their respective sequences were as shown in Table 37. To perform the assay, 200 ng of each MC3-formulated mRNA construct was transfected into JAWSII cells in a 24-well plate. Cells were isolated at 6, 24, and 48 hours post transfection and stained with fluorescently-labeled Anti-Mouse OVA257-264 (SIINFEKL) peptide bound to H-2Kb. Staining was analyzed on a LSRFortessa flow cytometer. Samples were run in triplicate. The Mean Fluorescent Intensity (MFI) for each mRNA construct was measured and shown in FIG. 36 . Constructs 2, 3, 7, 9, and 10 showed enhanced surface presentation of the OVA epitope, indicating that the configurations of these constructs may be used for DENV mRNA vaccine. Construct 5 comprises a single OVA peptide and a KDEL sequence that is known to prevent the secretion of a protein. Construct 5 showed little surface antigen presentation because the secretion of the peptide was inhibited.
  • Example 37. Antibody Binding to DENV-1, 2, 3, and 4 prME Epitopes
  • DENV mRNA vaccines encoding concatemeric antigen epitopes were tested for binding to antibodies known to recognize one or more DENV serotypes. To test antibody binding to the epitopes, 200 ng of DENV mRNA vaccines encoding different Dengue prME epitopes were transfected into HeLa cells in 24-well plates using the TransitIT-mRNA Transfection Kit (Mirus Bio). The DENV mRNA vaccine constructs are shown in Table 34. Transfections were done in triplicate. After 24 hours, surface expression was detected using four different antibodies (10 μg/mL) followed by either goat-anti-human or anti-mouse AF700 secondary antibody (1/500). Signal generated from antibody binding are shown as Mean Fluorescent Intensity (MFI) (FIG. 37 ). Antibody D88 is known to recognize all 4 serotypes and bound to all antigen epitopes encoded by the DENV mRNA vaccine constructs tested. Antibody 2D22 is known to recognize only DENV 2 and preferentially bound to construct 21, which encodes DENV 2 antigen epitopes. Antibody 2D22 also showed weak binding to epitopes of other DENV serotypes. Antibody 5J7 is known to recognize only DENV 3 and only bound to antigen epitopes encoded by constructs 13, 19, and 20, which encode DENV 3 antigen epitopes. Antibody 1-11 is known to bind strongly to DENV 1 and 2, to bind weakly to DENV 3 and to bind little DENV 4. Antibody 1-11 bound to DENV 1, 2, and 3, and binding to DENV 3 antigen epitopes was stronger than binding to DENV 1 or 2 (FIG. 37 ).
  • TABLE 37
    mRNA constructs that encode one or more OVA epitopes
    # of
    Peptides/ Antigen Presentation SEQ ID
    Construct Repeats Linker Enhancer Sequence Amino acid Sequence NO:
    1 8 OVA G/S MLESIINFEKLTEGGGGS 187
    (8 mer) GGGGSLESIINFEKLTEG
    Repeats GGGSGGGGSLESIINFEK
    (Flanking LTEGGGGSGGGGSLESII
    AA) NFEKLTEGGGGSGGGGSL
    ESIINFEKLTEGGGGSGG
    GGSLESIINFEKLTEGGG
    GSGGGGSLESIINFEKLT
    EGGGGSGGGGSLESIINF
    EKLTE
    2 8 OVA Cathepsin MLESIINFEKLTEGFLGL 188
    (8 mer) B ESIINFEKLTEGFLGLES
    Repeats Cleavage IINFEKLTEGFLGLESII
    (Flanking Site NFEKLTEGFLGLESIINF
    AA) (GFLG) EKLTEGFLGLESIINFEK
    LTEGFLGLESIINFEKLT
    EGFLGLESIINFEKLTE
    3 8 OVA Human MHCI MRVTAPRTVLLLLSAALA 189
    (8 mer) Secretion LTETWALESIINFEKLTE
    Repeats Peptide/Cytoplasmic LESIINFEKLTELESIIN
    (Flanking Domain FEKLTELESIINFEKLTE
    AA) LESIINFEKLTELESIIN
    FEKLTELESIINFEKLTE
    LESIINFEKLTEGSIVGI
    VAGLAVLAVVVIGAVVAT
    VMCRRKSSGGKGGSYSQA
    ASSDSAQGSDVSLTA
    4 8 OVA Cathepsin Human MHCI MRVTAPRTVLLLLSAALA 190
    (8 mer) B Secretion LTETWALESIINFEKLTE
    Repeats Cleavage Peptide/Cytoplasmic GFLGLESIINFEKLTEGF
    (Flanking Site Domain LGLESIINFEKLTEGFLG
    AA) (GFLG) LESIINFEKLTEGFLGLE
    SIINFEKLTEGFLGLESI
    INFEKLTEGFLGLESIIN
    FEKLTEGFLGLESIINFE
    KLTEGSIVGIVAGLAVLA
    VVVIGAVVATVMCRRKSS
    GGKGGSYSQAASSDSAQG
    SDVSLTA
    5 Single OVA KDEL MSIINFEKLKDEL 191
    6 Single OVA Human MHCI MRVTAPRTVLLLLSAALA 192
    (Flanking Secretion LTETWALESIINFEKLTE
    AA) Peptide/Cytoplasmic GSIVGIVAGLAVLAVVVI
    Domain GAVVATVMCRRKSSGGKG
    GSYSQAASSDSAQGSDVS
    LTA
    7 8 OVA Cathepsin Murine Ig Kappa METDTLLLWVLLLWVPGS 193
    (8 mer) B Signal Peptide(Igκ) TGDSIINFEKLGFLGSII
    Repeats Cleavage NFEKLGFLGSIINFEKLG
    Site FLGSIINFEKLGFLGSII
    (GFLG) NFEKLGFLGSIINFEKLG
    FLGSIINFEKLGFLGSII
    NFEKL
    8 8 OVA G/S Human MHCI MRVTAPRTVLLLLSAALA 194
    (8 mer) Secretion LTETWALESIINFEKLTE
    Repeats Peptide/Cytoplasmic GGGGSGGGGSLESIINFE
    (Flanking Domain KLTEGGGGSGGGGSLESI
    AA) INFEKLTEGGGGSGGGGS
    LESIINFEKLTEGGGGSG
    GGGSLESIINFEKLTEGG
    GGSGGGGSLESIINFEKL
    TEGGGGSGGGGSLESIIN
    FEKLTEGGGGSGGGGSLE
    SIINFEKLTEGSIVGIVA
    GLAVLAVVVIGAVVATVM
    CRRKSSGGKGGSYSQAAS
    SDSAQGSDVSLTA
    9 8 OVA MLESIINFEKLTELESII 195
    (8 mer) NFEKLTELESIINFEKLT
    Repeats ELESIINFEKLTELESII
    (Flanking NFEKLTELESIINFEKLT
    AA) ELESIINFEKLTELESII
    NFEKLTE
    10 Single OVA MSIINFEKL 196
    11 8 OVA Cathepsin Murine Ig Kappa METDTLLLWVLLLWVPGS 197
    (8 mer) B Signal Peptide(Igκ) TGDHPFTEDDAVDPNDSD
    Repeats Cleavage and PEST IDPESRSIINFEKLGFLG
    Site SIINFEKLGFLGSIINFE
    (GFLG) KLGFLGSIINFEKLGFLG
    SIINFEKLGFLGSIINFE
    KLGFLGSIINFEKLGFLG
    SIINFEKL
    12 8 OVA Cathepsin Murine MHC Class I MSIINFEKLGFLGSIINF 198
    (8 mer) B Cytoplasmic Domain EKLGFLGSIINFEKLGFL
    Repeats Cleavage (MITD) GSIINFEKLGFLGSIINF
    Site EKLGFLGSIINFEKLGFL
    (GFLG) GSIINFEKLGFLGSIINF
    EKLPPPSTVSNMIIIEVL
    IVLGAVINIGAMVAFVLK
    SKRKIGGKGGVYALAGGS
    NSIHGSALFLEAFKA
  • TABLE 38
    DENV mRNA vaccine constructs tested for
    antibody binding or in challenge studies
    Con- SEQ
    struct mRNA Name ID NO
    13 DEN3_prME_PaH881/88_AF349753.1 199
    14 DEN1_prME_West_Pac_AY145121.1 200
    15 DEN1_prME_PUO-359_AAN32784.1 201
    16 DEN4_prME_DHF_Patient_JN638571.1 202
    17 DEN4_prME_DENV4/CN/GZ29/2010_KP723482.1 203
    18 DEN4_prME_rDEN4_AF326825.1 204
    19 DEN3_prME_L11439.1 205
    20 DEN3_prME_D3/Hu/TL129NIID/2005_AB214882 206
    21 DENV2_prME_Peru_IQT2913_1996 207
    22 DENV2_prME_Thailand-168_1979 208
    23 DENV2_prME_Thailand_PUO-218_1980 209
    (Sanofi strain)
    24 DEN2_D2Y98P_PRME80_Hs3_LSP 210
    25 Non-H2Kb multitope 211
    26 H2Kb multitope 212
  • Example 38. DENV prME Challenge Study in Cynomolgus (Cyno) Monkey Model
  • Shown in Table 39 is the design of DENV prME challenge study in cynomolgus (cyno) money. Indicated DENV mRNA vaccine encoding prME antigen epitopes, or vaccines thereof, are used to immunize cyno. The vaccines are formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the cyno monkeys intramuscularly on day 0, 21, and 42. Dosages of the vaccines are 250 μg or 5 μg per immunization. In experiments where a combination of different DENV mRNA vaccines are used, 250 μg or 5 μg of each mRNA vaccine is used. FLAG-tagged H10N8 flu vaccine is used as control at a dosage of 250 μg per immunization. Naïve cyno monkeys without immunization are also used as control. Cyno monkey sera are collected on days 20, 41, 62, and 92 post initial immunization and used for serotype-specific neutralization assays.
  • Immunized cyno monkeys are challenged on day 63 post initial immunization with indicated DENV viruses. Cyno monkey sera are collected on days 62 (pre-challenge), 63-66, 68, 70, 72, 76, and 92 (end of life) to determine serum viral load.
  • TABLE 39
    DENV prME Challenge Study Design in Cynomolgus (cyno) Monkey
    Group Vaccine
    n = 3 Vaccine Schedule Dosage/Route Challenge
    1 Dengue 1 Day 0, 21, 42 IM, LNP Challenge with
    prME 250 μg Dengue 1/03135 s.c
    2 (Construct IM, LNP (5log PFU)
    15) 5 μg
    3 Dengue 2 Day 0, 21, 42 IM, LNP Challenge with
    prME 250 μg Dengue 2/99345 s.c
    4 (Construct IM, LNP (5log PFU)
    21) 5 μg
    5 Dengue 3 Day 0, 21, 42 IM, LNP Challenge with
    prME 250 μg Dengue 3/16562 s.c
    6 (Construct IM, LNP (5log PFU)
    19) 5 μg
    7 Dengue 4 Day 0, 21, 42 IM, LNP Challenge with
    prME 250 μg Dengue 4/1036 s.c
    8 (Construct IM, LNP (5log PFU)
    17) 5 μg
    9 prME Combo Day 0, 21, 42 IM, LNP Challenge with
    (Post- 1000 μg Total Dengue 1/03135 s.c
    Formulation (250 μg of each) (5log PFU)
    10 Mix) IM, LNP
    (Constructs 20 μg Total
    15, 17, 19, (5 μg of each)
    and 21)
    11 prME Combo Day 0, 21, 42 IM, LNP Challenge with
    (Post- 1000 μg Total Dengue 2/99345 s.c
    Formulation (250 μg of each) (5log PFU)
    12 Mix) IM, LNP
    (Constructs 20 μg Total
    15, 17, 19, (5 μg of each)
    and 21)
    13 prME Combo Day 0, 21, 42 IM, LNP Challenge with
    (Post- 1000 μg Total Dengue 3/16562 s.c
    Formulation (250 μg of each) (5log PFU)
    14 Mix) IM, LNP
    (Constructs 20 μg Total
    15, 17, 19, (5 μg of each)
    and 21)
    15 prME Combo Day 0, 21, 42 IM, LNP Challenge with
    (Post- 1000 μg Total Dengue 4/1036 s.c
    Formulation (250 μg of each) (5log PFU)
    16 Mix) IM, LNP
    (Constructs 20 μg Total
    15, 17, 19, (5 μg of each)
    and 21)
    17 prME Combo Day 0, 21, 42 IM, LNP Challenge with
    (Post- 1000 μg Total Dengue 2/99345 s.c
    Formulation (250 μg of each) (5log PFU)
    Mix)
    (Constructs
    15, 17, 19,
    and 22)
    18 H10N8- FLAG Day 0, 21, 42 IM, LNP Challenge with
    250 μg Dengue 2/99345 s.c
    (5log PFU)
    19 Naive Challenge with
    Dengue 1/03135 s.c
    (5log PFU)
    20 Naive Challenge with
    Dengue 2/99345 s.c
    (5log PFU)
    21 Naive Challenge with
    Dengue 3/16562 s.c
    (5log PFU)
    22 Naive Challenge with
    Dengue 4/1036 s.c
    (5log PFU)
    Collect serum on day 20, 41, 62, and 92 for serotype-specific neutralization assay
    Collect serum on day 62 (per-challenge), 63-66, 68, 70, 72, 76, and 92 (end of In-life) to determine serum viral load
  • Example 39: Dengue 2 prME Challenge Study in AG129 Mice
  • The instant study was designed to evaluate the efficacy of four DENV mRNA vaccine constructs (constructs 21-24 in Table 38) in AG129 mice challenge assays. The schedule of the challenge study was shown in FIG. 38A. The DENV mRNA vaccines were formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the AG129 mice intramuscularly on days 0 and 21. Dosage of the vaccines were 2 ag or 10 ag per immunization. Heat inactivated D2Y98P strain was used as a negative control to vaccinate the mice. Naïve AG129 mice without immunization were also used as control.
  • Immunized AG129 mice were challenged on day 42 post initial immunization with Dengue D2Y98P virus (s.c., 1e5 PFU per mouse). AG129 mice sera were collected on days 20 and 41 post initial immunization and used for serotype-specific neutralization assays. Mice immunized with any of the four DENV mRNA vaccine constructs survived, while the control mice died. These data demonstrate that, after lethal challenge, there was 100% protection provided by each mRNA vaccine construct, regardless of dose. The weights and health of the mice were monitored and the results were plotted in FIGS. 38C-38D.
  • Mice sera collected from mice immunized with 2 μg of the DENV mRNA vaccines were able to neutralize several DENV 2 strains and variations in the neutralization ability between the tested mRNA vaccines and between different DENV 2 strains were observed (FIG. 39 ).
  • Example 40: DENV prME Challenge Study in AG129 Mice Model
  • Shown in Table 40 is the design of a DENV prME challenge study in AG129 mice, including the mRNA constructs tested, the vaccination schedule, the dosage, the challenge strains, and the serum collection schedule.
  • Indicated DENV mRNA vaccine encoding prME antigen epitopes, or vaccines thereof, were used to immunize AG129 mice. The vaccines were formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the mice intramuscularly on days 0 and 21. Dosages of the vaccines were 2 μg or 10 μg per immunization. In experiments where a combination of different DENV mRNA vaccines were used, 2 μg of each mRNA vaccine was used. Naïve AG129 mice without immunization were used as control. AG129 mice sera were collected on days 20 and 41 post initial immunization and used for serotype-specific neutralization assays.
  • Immunized AG129 mice were challenged on day 42 post initial immunization with Dengue D2Y98P virus (s.c., 1e5 PFU per mouse). The weights and health of the mice were monitored for 14 days post infection and the results were plotted in FIGS. 40A-40I.
  • TABLE 40
    DENV prME Challenge Study Design in AG129 Mice
    Group Vaccine
    n = 5 Vaccine Schedule Dosage/Route Serum/PBMCs Challenge Readout
    1 Dengue 1 Day 0, 21 IM, LNP, Collect serum on Challenge with Monitor
    prME 10 μg day 20 and 41 for 1e5 PFU per weights
    (Construct 15) serotype-specific mouse of and health
    2 Day 0, 21 IM, LNP, neutralization D2Y98P SC for 14
    2 μg assay injection days p.i.
    (Day 42)
    3 Dengue 2 Day 0, 21 IM, LNP,
    prME 10 μg
    4 (Construct 21) Day 0, 21 IM, LNP,
    2 μg
    5 Dengue 3 Day 0, 21 IM, LNP,
    prME 10 μg
    6 (Construct 19) Day 0, 21 IM, LNP,
    2 μg
    7 Dengue 4 Day 0, 21 IM, LNP,
    prME 10 μg
    8 (Construct 17) Day 0, 21 IM, LNP,
    2 μg
    9 H2Kb Day 0, 21 IM, LNP, Collect and
    Multitope 10 μg cryopreserve
    10 (Construct 25) Day 0, 21 IM, LNP, PBMCs on day 20
    2 μg and 41; Ship to
    11 Non-H2Kb Day 0, 21 IM, LNP, Valera
    Multitope 10 μg
    12 (Construct 26) Day 0, 21 IM, LNP,
    2 μg
    13 prME Combo + Day 0, 21 IM, LNP, Collect serum on
    H2Kb 10 μg Total day 20 and 41 for
    Multitope (2 μg of each) serotype-specific
    (Constructs 15, neutralization
    17, 19, and 21) assay
    (Post7)
    14 prME Combo + Day 0, 21 IM, LNP,
    non-H2Kb 10 μg Total
    Multitope (2 μg of each)
    (Constructs 15,
    17, 19, 21, and
    26) (Post7)
    15 prME Combo Day 0, 21 IM, LNP,
    (Constructs 15, 8 μg Total
    17, 19, and 21) (2 μg of each)
    (Post7)
    16 prME Combo + Day 0, 21 IM, LNP,
    H2Kb 10 μg Total
    Multitope (2 μg of each)
    (Constructs 15,
    17, 19, 21 and
    25) (Post1)
    17 prME Combo + Day 0, 21 IM, LNP,
    non-H2Kb 10 μg Total
    Multitope (2 μg of each)
    (Constructs 15,
    17, 19, 21, and
    26) (Post1)
    18 prME Combo Day 0, 21 IM, LNP,
    (Constructs 15, 8 μg Total
    17, 19, and 21) (2 μg of each)
    (Post1)
    19 Dengue 2 Day 0, 21 IM, LNP, Collect serum on
    prME 2 μg day 20 and 41 for
    (Construct 22) Dengue 2-specific
    20 Naive Day 0, 21 Tris/Sucrose neutralization
    assay
  • Example 41: Virus-Like Particles
  • The antigens produced from the DENV prME mRNA vaccines of the present disclosure, when expressed, are able to assemble into virus-like particles (VLPs). The instant study was designed to evaluate the immunogenicity of the VLPs by negative stain electron microscope imaging. As shown in FIG. 41 , DENV mRNA vaccine constructs 21-24 were expressed and VLPs were assembled an isolated. The VLPs were visualized under negative stain electron microscopy. Construct 23 is the vaccine construct used by Sanofi in its DENV vaccines. Constructs 21, 22, and 24 produced more uniform VLPs, suggesting that these VLPs may be more superior in their immunogenicity than the VLPs produced from construct 23.
  • Example 42: Efficacy of CHIKV mRNA Vaccine X Against CHIKV in AG129 Mice Study Design
  • Chikungunya virus (CHIKV) 181/25 strain is an attenuated vaccine strain that was developed by the US Army via multiple plaque-to-plaque passages of the 15561 Southeast Asian human isolate (Levitt et al.). It is well tolerated in humans and is highly immunogenic. It produces small plaques and has decreased virulence in infant mice and nonhuman primates. When the attenuated virus is administered to immunodeficient AG129 mice (lacking the IFN-α/β and γ receptors) the mice succumb to a lethal disease within 3-4 days with ruffled fur and weight loss (Partidos, et al. 2011 Vaccine).
  • This instant study was designed to evaluate the efficacy of CHIKV candidate vaccines as described herein in AG129 mice (Table 41). The study consisted of 14 groups of female 6-8 week old AG129 mice (Table 41). Groups 1-4, 7-8, and 10-15 were vaccinated with CHIKV vaccine X via the intramuscular (IM; 0.05 mL) route on Day 0 and select groups received an additional boost on Day 28. Control Groups 9 and 16 received vehicle (PBS) only on Days 0 and 28 via IM route (0.05 mL). Regardless of vaccination schedule, Groups 1-4 and 7-9 were challenged on Day 56 while Groups 10-16 were challenged on Day 112 using the CHIKV 181/25 strain (stock titer 3.97×107 PFU/mL, challenge dose 1×104 PFU/mouse). For virus challenge, all mice received a lethal dose (1×104 PFU) of Chikungunya (CHIK) strain 181/25 via intradermal (ID) route (0.050 mL via footpad). All mice were monitored for 10 days post infection for weight loss, morbidity, and mortality. Each mice was assigned a heath score based on Table 5. Mice displaying severe illness as determined by >30% weight loss, a health score of higher than 5, extreme lethargy, and/or paralysis were euthanized with a study endpoint of day 10 post virus challenge. Test bleeds via retro-orbital (RO) collection were performed on mice from all groups on Days −3, 28, and 56. Mice from Groups 10-16 were also bled on Days 84 & 112. Mice that survived challenge were also terminally bled on Day 10 post challenge. Serum samples from mice (Days −3, 28, 56, 84, 112 and surviving mice) were kept frozen (−80° C.) and stored until they were tested for reactivity in a semi quantitative ELISA for mouse IgG against either E1, E2 or CHIKV lysate.
  • Experimental Procedure Intramuscular (IM) Injection of Mice
  • 1. Restrain the animal either manually, chemically, or with a restraint device.
  • 2. Insert the needle into the muscle. Pull back slightly on the plunger of the syringe to check proper needle placement. If blood is aspirated, redirect the needle and recheck placement again.
  • 3. Inject appropriate dose and withdraw needle. Do not exceed maximum volume. If the required volume exceeds the maximum volume allowed, multiple sites may be used with each receiving no more than the maximum volume.
  • 4. The injection site may be massaged gently to disperse the injected material.
  • Intradermal (ID) Injections of Mice
  • 1. Restrain the animal either manually, chemically, or with a restraint device.
  • 2. Carefully clip the hair from the intended injection site. This procedure can be done upon animals arriving or the day before any procedures or treatments are required.
  • 3. Lumbar area is the most common site for ID injections in all species, but other areas can be used as well.
  • 4. Pinch or stretch the skin between your fingers (or tweezers) to isolate the injection site.
  • 5. With the beveled edge facing up, insert the needle just under the surface between the layers of skin. Inject the appropriate dose and withdraw needle. A small bleb will form when an ID injection is given properly.
  • 6. If the required volume exceeds the maximum volume allowed, multiple sites may be used with each receiving no more than the maximum volume.
  • Retro-Orbital Bleeding in Mice
  • 1. Place the mice in the anesthesia chamber and open oxygen line and set to 2.5% purge. Start flow of anesthesia at 5% isoflurane.
  • 2. Once the animal becomes sedate, turn anesthesia to 2.5%-3% isoflurane and continue to expose the animal to the anesthesia. Monitor the animal to avoid breathing becoming slow.
  • 3. Remove the small rodent from anesthesia chamber and place on its back while restraining with left hand and scruff the back of the animal's neck, so it is easy to restrain and manipulate while performing the procedure with the right hand.
  • 4. With a small motion movement, place the capillary tube in the corner of the animal's eye close to the nostril, and rotate or spin the Hematocrit glass pipette until blood start flowing out. Collect the appropriate amount of blood needed into the appropriate labeled vial.
  • 5. Monitor the animal after retro-orbital bleeding is done for at least 10-15 seconds to ensure hemostasis.
  • 6. Place the animal back to its original cage and monitor for any other problems or issues caused while manipulating animal due to the procedure.
  • Observation of Mice
  • 1. Mice were observed through 10 days post infection (11 days total, 0-10 days post infection).
  • 2. Mice were weighed daily on an Ohause scale and the weights are recorded.
  • 3. Survival and health of each mouse were evaluated once time a day using a scoring system of 1-7 described in Table 5.
  • Infection
  • On either Day 56 (Groups 1-4, 7-9) or Day 112 (Groups 10-16) groups of 5 female 6-8 week old AG129 mice were infected via intradermal injection with 1×104 PFU/mouse of the 181/25 strain of Chikungunya diluted in PBS. The total inoculation volume was 0.05 mL administered in the rear footpad of each animal. Mice were anesthetized lightly using 2-5% v/v of isoflurane at ˜2.5 L/min of 02 (VetEquip IMPAC6) immediately prior to infection.
  • Dose Administration
  • In this study mice were administered 0.04 μg, 2 μg, or 10 μg of various formulations of the CHIKV vaccine X or vehicle alone (PBS) on either Day 0 or on Days 0 and 28 via the intramuscular route (0.05 mL). The material was pre-formulated by the Client and diluted in PBS by IBT prior to dosing as per instructions provided by the Client.
  • Results
  • Mice were immunized once (Day 0) or twice (Days 0 & 28) with either 0.04 μg, 2 μg, or 10 μg of Chikungunya vaccine X and were challenged with CHIKV strain 181/25 on either Day 56 (Groups 1-4, 7-9) or on Day 112 (Groups 10-16). Mice were monitored for a total of 10 days post infection for health and weight changes. Mice that received either 2 μg or 10 μg of the CHIKV vaccine X either once (Day 0) or twice (Days 0 and 28) were fully protected (100%) regardless of whether the mice were challenged 56 days or 112 days after the initial vaccination (FIGS. 42A-42B, Table 44). Mice receiving 0.04 μg of the CHIKV vaccine were not protected at all from lethal CHIKV infection. This efficacy data is supported by the health scores observed in the vaccinated mice in that the protected mice displayed little to no adverse health effects of a CHIKV infection (FIGS. 44A-44B). Weight loss is not a strong indicator of disease progression in the CHIKV AG129 mouse model (FIGS. 43A-43B).
  • Mice immunized with the CHIKV vaccine X showed increased antibody titers against CHIKV E1, E2 and CHIKV lysate as compared to the vehicle only (PBS) treated groups. Serum binding against the virus lysate yielded the highest antibody titers for all vaccinated groups (FIGS. 45A-45C, 46A-46C, 47A-47C, 48A-48C). Overall, the antibody titers were dose dependent with the highest titers observed in serum from mice vaccinated with 10 μg of CHIKV vaccine X while the lowest titers were observed in serum from mice vaccinated with 0.04 μg of the CHIKV vaccine X. Similarly, higher titers were observed in serum from mice vaccinated twice (Days 0 and 28) as compared to serum from mice vaccinated only once (Day 0). Serum obtained on Day 112 post initial vaccination still yielded increased antibody titers in mice that received either 10 ag or 2 ag of CHIKV vaccine X (FIGS. 47A-47C).
  • Serum from mice groups 10-16, 112 days post immunization were also tested in a Plaque Reduction Neutralization Test (PRNT). Serum from each mice was diluted from 1/20 to 1/40960 and assessed for its ability to reduce CHIKV plaque formation. The results were shown in Table 46.
  • TABLE 41
    CHIKV Challenge Study Design in AG129 mice
    Group* Dose
    (n = 5) Vaccine Schedule (IM route) Challenge Bleeds
    1 VAL- Day 0 10 μg Challenge with Pre-bleed for
    2 181388 Day 0 & 28 1 × 104 PFU per serum via RO
    3 Day 0 2 μg mouse of CHIK route on days −3,
    4 Day 0 & 28 181/25 via ID 28, 56, (all
    injection groups) & 84, 112
    on day 56. (groups 10-16
    7 Day 0 0-4 μg Weights and only).
    8 Day 0 & 28 health for 10 Terminal bleed
    9 PBS Day 0 & 28 days following surviving mice on
    infection. day 10 post
    10 VAL- Day 0 10 μg Challenge with challenge.
    11 181388 Day 0 & 28 1 × 104 PFU per Serum stored
    12 Day 0 2 μg mouse of CHIK at −80° C.
    13 Day 0 & 28 181/25 via ID
    14 Day 0 0-4 μg injection on day
    15 Day 0 & 28 112. Weights and
    16 PBS Day 0 & 28 health for 10
    days following
    infection.
    *No group 5 or 6 in this study
  • TABLE 42
    Equipment and Software
    Item Vendor Cat#/Model
    Syringes BD Various
    Animal Housing InnoVive Various
    Scale Ohause AV2101
    Prism software GraphPad N/A
    Microplate Washer BioTek ELx405
    Plate reader with SoftMax Pro Molecular Devices VersaMax
    version 5.4.5
  • TABLE 43
    ELISA Reagents
    Storage
    Name Supplier cat# Temperature Notes
    DPBS
    1X, sterile Corning 21-031- Ambient For dilution of coating antigen
    CM or equivalent
    StartingBlock T20 Thermo Scientific 2-8° C. For blocking non-specific
    (PBS) Blocking 37539 binding and use as diluent of
    Buffer Standards, unknown test sera
    and detection antibody
    SureBlue Reserve KPL 53-00-02 or 2-8° C. N/A
    TMB Microwell equivalent
    Peroxidase
    Substrate (1-
    Component)
    DPBS powder, non- Corning 55-031-PB 2-8° C. Use deionized water to
    sterile or equivalent dissolved DPBS powder from
    one bottle to a final volume of
    10 liters of 1X DPBS
    TWEEN-20 Sigma-Aldrich Ambient Add 5 mL TWEEN-20 to 10
    P1379-500ML or liters of 1X DPBS and mix
    equivalent well to prepare DPBS +
    0.05% TWEEN-20 Wash
    Buffer for automatic plate
    washer
  • TABLE 44
    ELISA Reagents
    Critical Reagent Please note: Coating antigens and standards Supplier cat# Storage
    are stored as single-use aliquots. and/or lot# Temperature Assay Parameter
    Coating antigens CHIKV recombinant E1 glycoprotein, IBT Bioservices, −70° C. or below 400 ng/well
    expressed in 293 mammalian cells IBT's lot 08.11.2015
    BCA = 0.351 mg/mL
    CHIKV recombinant E2 glycoprotein, ImmunoDx, cat# −70° C. or below 400 ng/well
    expressed in E. coli IBT's BCA = 1.291 80002, lot
    mg/mL 10MY4
    CHIKV 181/25 lysate from sucrose- IBT Bioservices, −70° C. or below 300 ng/well
    purified viruses, lysed by sonication lot 11.23.2015
    IBT's BCA = 1.316 mg/mL
    Standards Anti-E1 positive control Pooled mouse IBT Bioservices −70° C. or below Assigned, 30,812
    serum from survivors of BS-1842 group Antibody Units/mL
    4 (vaccinated with E1 mRNA 10 μg, ID, against E1 protein
    LNP on study days 0 and 28) day 66
    terminal bleeds (10 days after CHIKV
    infection)
    Anti-E2 positive control, Pooled mouse IBT Bioservices −70° C. or below Assigned, 16912
    serum from survivors of BS-1842 group Antibody Units/mL
    8 (vaccinated with E2 mRNA 10 μg, ID, against E2 protein
    LNP on study days 0 and 28) day 66 Assigned 14,200
    terminal bleeds (10 days after CHIKV Antibody Units/mL
    infection)
    Detection antibody Anti-mouse IgG (H + L)-HRP KPL, cat# 474- 2-8° C. 1:6000 dilution
    1806, lot 140081
  • TABLE 45
    Survival Percentage
    10 μg 2 μg 0.4 μg
    Days
    10 μg Day 0 2 μg Day 0 0.4 μg Day 0
    p.i. Day 0 & 28 Day 0 & 28 Day 0 & 28 PBS
    a. Groups 1-4 and 7-9, Day 56 Challenge
    0 100 100 100 100 100 100 100
    3 80
    4 0 40 80
    5 0 0
    10 100 100 100 100
    b. Groups 10-16, Day 112 Challenge
    0 100 100 100 100 100 100 100
    3 80 80
    4 20 20 50
    5 0 0 0
    10 100 100 100 100
  • TABLE 46
    CHIKV Plaque Reduction Neutralization Test (PRNT)
    Serum dilutions from 1/20 to 1/40960
    Expt info
    Vaccination CHIKV strain sample PRNT80 PRNT50
    GP# regimen 37997 ID titer titer
    10 Day 0, CHIKV 1  1/160  1/640
    IM/10 μg 37997 2  1/320  1/320
    working stock 3  1/160  1/640
    titer = 4  1/160    1/1280
    780 PFU/ml 5  1/320    1/1280
    11 Day 0/Day 28, 1  1/640    1/2560
    IM/10 μg 2    1/1280    1/1280
    3  1/320    1/2560
    4  1/640    1/5120
    5    1/1280    1/5120
    12 Day 0, 1  1/20  1/80
    IM/2 μg 2  1/40  1/320
    3 <1/20  1/160
    PRNT80 4 <1/20  1/160
    cutoff 5 <1/20  1/20
    13 Day 0, 8 PFU 1  1/80  1/320
    Day 28, 2  1/80  1/640
    IM/2 μg 3  1/20  1/320
    4  1/20  1/320
    5  1/320  1/640
    14 Day 0, 1 <1/20 80
    IM/0.4 μg 2 <1/20 <1/20
    3 <1/20 <1/20
    4 <1/20 <1/20
    5 <1/20 <1/20
    15 Day 0, PRNT50 1 <1/20 <1/20
    Day 28, cutoff 2 <1/20 80
    IM/0.4 μg 20 PFU 3 <1/20 <1/20
    4 <1/20 <1/20
    5 <1/20 <1/20
    16 Vehicle 1 <1/20 <1/20
    Day 0/Day 28 2 <1/20 <1/20
    3 <1/20 <1/20
    4 <1/20 <1/20
    5 <1/20 <1/20
  • Example 43: Immunogenicity of Chikungunya Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate in Rats
  • Sprague Dawley rats (n=5) were vaccinated with 20 g of MC-3-LNP formulated mRNA 30 encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13). The rats were vaccinated on either Day 0 or Days 0 and 14 or Days 0, 14 and 28 via IM delivery. Sera was collected on days −3, 14, 28 and 42 for ELISA testing. FIG. 58 demonstrated that there was at least a two log increase in antibody titer against CHIKV lysate post 3rd vaccination with the mRNA vaccine in normal rats.
  • Example 44: Evaluation of T Cell Activation of Chikungunya P 5 Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate
  • C57BL/6 mice (n=6 experimental group; n=3 control group) were vaccinated with 10 g of MC-3-LNP formulated mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13). The mice were vaccinated on either Day 0 or Days 0 and 28 (boost) via IM delivery. Sera was collected on days 3, 28 and 42 for ELISA testing. Animals were sacrificed on day 42 and spleens were harvested for immunological evaluation of T cells. Splenic cells were isolated and analyzed by FACS. Briefly, spleens were removed, cells isolated, and stimulated in vitro with immunogenic peptides found within either C, E1, or E2 region of CHIKV that are known to be CD8 epitopes in B6 mice. The readout for this assay was cytokine secretion (IFN-gamma and TNF-alpha), which reveals whether the vaccine induced antigen-specific T cell responses. No CD8 T cell responses were detected using the E2 or C peptide (baseline levels of IFN-gamma and TNF-alpha), whereas there was a response to the E1-corresponding peptide (average of about 0.4% IFN-gamma and 0.1% TNF). The peptides were used to stimulate T cells used in the study were E1=HSMTNAVTI (SEQ ID NO: 300), E2=IILYYYELY (SEQ ID NO: 301), and C=ACLVGDKVM (SEQ ID NO: 302).
  • FIG. 59 shows that the polyprotein-encoding CHIKV polyprotein vaccine elicited high antibody titers against the CHIKV glycoproteins. FIGS. 60 and 61A-61B show T cell activation by E1 peptide.
  • EQUIVALENTS
  • All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.
  • The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
  • In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims (23)

1.-111. (canceled)
112. A Dengue virus (DENV) messenger ribonucleic acid (mRNA) vaccine, comprising:
an mRNA polynucleotide comprising an open reading frame encoding a DENV polypeptide; and
a lipid nanoparticle comprising 20-60 mol % cationic lipid, 5-25 mol % neutral lipid, 25-55 mol % sterol, and 0.5-15 mol % polyethylene glycol (PEG)-modified lipid.
113. The DENV mRNA vaccine of claim 112, wherein the DENV polypeptide is selected from a DENV envelope (E) protein, a DENV membrane (M) protein, a DENV precursor membrane (prM) protein, a DENV capsid (C) protein, and a DENV prME protein.
114.-165. (canceled)
166. The DENV mRNA vaccine of claim 112, wherein the mRNA polynucleotide comprises a chemical modification.
167. The DENV mRNA vaccine of claim 166, wherein the chemical modification is selected from pseudouridine, N1-methylpseudouridine, 2-thiouridine, 4′-thiouridine, 5-methylcytosine, 5-methyluridine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine, and 2′-O-methyl uridine.
168. (canceled)
169. The DENV mRNA vaccine of claim 167, wherein the chemical modification is a N1-methylpseudouridine.
170. (canceled)
171. The DENV mRNA vaccine of claim 169, wherein 100% of the uracil in the open reading frame has a chemical modification.
172.-182. (canceled)
183. The DENV mRNA vaccine of claim 112, wherein the cationic lipid is an ionizable cationic lipid and the sterol is cholesterol.
184.-190. (canceled)
191. A method of inducing an immune response in a subject, the method comprising administering to the subject the DENV mRNA vaccine of claim 112 in an amount effective to produce an antigen-specific immune response in the subject.
192.-477. (canceled)
478. A Dengue virus (DENV) messenger ribonucleic acid (mRNA) vaccine, comprising:
an mRNA polynucleotide comprising an open reading frame encoding a DENV polypeptide; and
a lipid nanoparticle comprising 20-60 mol % ionizable cationic lipid, 5-25 mol % neutral lipid, 25-55 mol % cholesterol, and 0.5-15 mol % polyethylene glycol (PEG)-modified lipid,
wherein 100% of the uracil in the open reading frame has a chemical modification.
479. The DENV mRNA vaccine of claim 478, wherein the chemical modification is a N1-methylpseudouridine.
480. The DENV mRNA vaccine of claim 478, wherein the DENV polypeptide comprises a DENV envelope (E) protein.
481. The DENV mRNA vaccine of claim 478, wherein the DENV polypeptide comprises a DENV membrane (M) protein.
482. The DENV mRNA vaccine of claim 478, wherein the DENV polypeptide comprises a DENV precursor membrane (prM) protein.
483. The DENV mRNA vaccine of claim 478, wherein the DENV polypeptide comprises a DENV prME protein.
484. The DENV mRNA vaccine of claim 478, wherein the lipid nanoparticle comprises 40-50 mol % of the ionizable cationic lipid, 5-10 mol % of the neutral lipid, and 1-3 mol % of the polyethylene glycol (PEG)-modified lipid.
485. A method of inducing an immune response in a subject, the method comprising administering to the subject the DENV mRNA vaccine of claim 478 in an amount effective to produce an antigen-specific immune response in the subject.
US17/737,532 2015-07-21 2022-05-05 Infectious disease vaccines Pending US20230020362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/737,532 US20230020362A1 (en) 2015-07-21 2022-05-05 Infectious disease vaccines

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
US201562195263P 2015-07-21 2015-07-21
US201562199204P 2015-07-30 2015-07-30
US201562241699P 2015-10-14 2015-10-14
US201562245233P 2015-10-22 2015-10-22
US201562245179P 2015-10-22 2015-10-22
US201562244859P 2015-10-22 2015-10-22
US201562244855P 2015-10-22 2015-10-22
US201562244995P 2015-10-22 2015-10-22
US201562247660P 2015-10-28 2015-10-28
US201562247644P 2015-10-28 2015-10-28
US201562247581P 2015-10-28 2015-10-28
US201562247551P 2015-10-28 2015-10-28
US201562247527P 2015-10-28 2015-10-28
US201662303405P 2016-03-04 2016-03-04
US201662303666P 2016-03-04 2016-03-04
US201662351200P 2016-06-16 2016-06-16
US201662351206P 2016-06-16 2016-06-16
US201662351244P 2016-06-16 2016-06-16
US201662351148P 2016-06-16 2016-06-16
US201662351267P 2016-06-16 2016-06-16
US201662357806P 2016-07-01 2016-07-01
PCT/US2016/043348 WO2017015463A2 (en) 2015-07-21 2016-07-21 Infectious disease vaccines
US201815746286A 2018-01-19 2018-01-19
US16/009,880 US10702597B2 (en) 2015-07-21 2018-06-15 CHIKV RNA vaccines
US16/898,268 US11364292B2 (en) 2015-07-21 2020-06-10 CHIKV RNA vaccines
US17/737,532 US20230020362A1 (en) 2015-07-21 2022-05-05 Infectious disease vaccines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/898,268 Continuation US11364292B2 (en) 2015-07-21 2020-06-10 CHIKV RNA vaccines

Publications (1)

Publication Number Publication Date
US20230020362A1 true US20230020362A1 (en) 2023-01-19

Family

ID=57834776

Family Applications (6)

Application Number Title Priority Date Filing Date
US15/746,286 Active 2036-11-07 US11007260B2 (en) 2015-07-21 2016-07-21 Infectious disease vaccines
US16/009,811 Active US10449244B2 (en) 2015-07-21 2018-06-15 Zika RNA vaccines
US16/009,880 Active US10702597B2 (en) 2015-07-21 2018-06-15 CHIKV RNA vaccines
US16/009,848 Abandoned US20180344838A1 (en) 2015-07-21 2018-06-15 Denv rna vaccines
US16/897,859 Pending US20200368343A1 (en) 2015-07-21 2020-06-10 Zika virus mrna vaccines
US17/737,532 Pending US20230020362A1 (en) 2015-07-21 2022-05-05 Infectious disease vaccines

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US15/746,286 Active 2036-11-07 US11007260B2 (en) 2015-07-21 2016-07-21 Infectious disease vaccines
US16/009,811 Active US10449244B2 (en) 2015-07-21 2018-06-15 Zika RNA vaccines
US16/009,880 Active US10702597B2 (en) 2015-07-21 2018-06-15 CHIKV RNA vaccines
US16/009,848 Abandoned US20180344838A1 (en) 2015-07-21 2018-06-15 Denv rna vaccines
US16/897,859 Pending US20200368343A1 (en) 2015-07-21 2020-06-10 Zika virus mrna vaccines

Country Status (7)

Country Link
US (6) US11007260B2 (en)
EP (2) EP3324979B1 (en)
ES (1) ES2937963T3 (en)
HK (1) HK1256169A1 (en)
MA (1) MA42502A (en)
TW (1) TW201718638A (en)
WO (1) WO2017015463A2 (en)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
NZ717682A (en) 2012-02-16 2017-10-27 Vlp Therapeutics Llc Virus like particle composition
US9637532B2 (en) 2013-07-12 2017-05-02 Vlp Therapeutics, Llc Virus like particle comprising PD-1 antigen or PD-1 ligand antigen
SG10201912038TA (en) * 2014-04-23 2020-02-27 Modernatx Inc Nucleic acid vaccines
CN106795513B (en) 2014-08-08 2021-06-11 Vlp治疗公司 Virus-like particles comprising a modified envelope protein E3
US10385101B2 (en) 2014-08-08 2019-08-20 Vlp Therapeutics, Llc Virus like particle comprising modified envelope protein E3
CA2960102C (en) 2014-09-11 2023-10-24 Vlp Therapeutics, Llc Flavivirus virus like particle
US11364292B2 (en) 2015-07-21 2022-06-21 Modernatx, Inc. CHIKV RNA vaccines
WO2017015463A2 (en) 2015-07-21 2017-01-26 Modernatx, Inc. Infectious disease vaccines
US11564893B2 (en) 2015-08-17 2023-01-31 Modernatx, Inc. Methods for preparing particles and related compositions
CN108472309A (en) 2015-10-22 2018-08-31 摩登纳特斯有限公司 For varicellazoster virus(VZV)Nucleic acid vaccine
CA3002922A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
WO2017070624A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Tropical disease vaccines
ES2922760T3 (en) 2015-10-22 2022-09-20 Modernatx Inc Respiratory virus vaccines
MA45209A (en) 2015-10-22 2019-04-17 Modernatx Inc VACCINES AGAINST SEXUALLY TRANSMITTED DISEASES
JP7080172B2 (en) 2015-12-10 2022-06-03 モデルナティエックス インコーポレイテッド Compositions and Methods for Delivery of Therapeutic Agents
US10465190B1 (en) 2015-12-23 2019-11-05 Modernatx, Inc. In vitro transcription methods and constructs
MX2018009917A (en) * 2016-02-17 2019-08-14 Curevac Ag Zika virus vaccine.
CN109152826B (en) * 2016-02-25 2022-11-04 宾夕法尼亚大学理事会 Novel vaccine against Zika virus
WO2017150683A1 (en) * 2016-03-04 2017-09-08 Vlp Therapeutics, Llc Zika virus virus like particle
CA3024500A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding relaxin
US10967057B2 (en) * 2016-06-02 2021-04-06 Glaxosmithkline Biologicals S.A. Zika viral antigen constructs
US10611801B2 (en) 2016-06-09 2020-04-07 Beth Israel Deaconess Medical Center, Inc. Compositions and methods for preventing and treating Zika virus infection
BR112018075513A2 (en) 2016-06-13 2019-10-01 Us Health nucleic acids encoding Zika virus-like particles and their use in vaccines and Zika virus diagnostic testing
WO2018018041A1 (en) * 2016-07-22 2018-01-25 University Of Florida Research Foundation, Incorporated Design of protective anti-zikv vaccine without inducing cross-reactions with dengue
CN116837052A (en) 2016-09-14 2023-10-03 摩登纳特斯有限公司 High-purity RNA composition and preparation method thereof
CA3041307A1 (en) 2016-10-21 2018-04-26 Giuseppe Ciaramella Human cytomegalovirus vaccine
EP3538146A4 (en) 2016-11-11 2020-07-15 ModernaTX, Inc. Influenza vaccine
EP4043031A3 (en) 2016-11-17 2022-11-23 GlaxoSmithKline Biologicals SA Zika viral antigen constructs
WO2018107088A2 (en) 2016-12-08 2018-06-14 Modernatx, Inc. Respiratory virus nucleic acid vaccines
EP3555289A1 (en) 2016-12-13 2019-10-23 ModernaTX, Inc. Rna affinity purification
CA3049991A1 (en) 2017-01-11 2018-07-19 The Trustees Of The University Of Pennsylvania Nucleoside-modified rna for inducing an immune response against zika virus
JP2020514321A (en) * 2017-02-01 2020-05-21 モデルナティーエックス, インコーポレイテッド Immunomodulatory therapeutic mRNA composition encoding an activated oncogene variant peptide
US11806393B2 (en) * 2017-02-10 2023-11-07 La Jolla Institute For Allergy And Immunology Flavivirus peptide sequences, epitopes, and methods and uses thereof
WO2018151816A1 (en) * 2017-02-16 2018-08-23 Modernatx, Inc. High potency immunogenic compositions
CN108503696B (en) * 2017-02-27 2023-05-12 中国科学院上海巴斯德研究所 Zika virus subunit vaccine expressed by yeast cells
CN108503697B (en) * 2017-02-27 2023-03-31 中国科学院上海巴斯德研究所 Zika virus subunit vaccine expressed by drosophila cells
WO2018160690A1 (en) * 2017-02-28 2018-09-07 Guangzhou Nanotides Pharmaceuticals Co., Ltd. Rna pharmaceutical formulations for prophylactic and therapeutic treatment of zika virus infection
MA47787A (en) 2017-03-15 2020-01-22 Modernatx Inc RESPIRATORY SYNCYTIAL VIRUS VACCINE
EP3609534A4 (en) 2017-03-15 2021-01-13 ModernaTX, Inc. Broad spectrum influenza virus vaccine
WO2018170256A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Herpes simplex virus vaccine
US11045540B2 (en) 2017-03-15 2021-06-29 Modernatx, Inc. Varicella zoster virus (VZV) vaccine
US20200030432A1 (en) 2017-03-17 2020-01-30 Modernatx, Inc. Zoonotic disease rna vaccines
US11905525B2 (en) 2017-04-05 2024-02-20 Modernatx, Inc. Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
CN109081868B (en) * 2017-06-14 2022-06-24 中国科学院上海巴斯德研究所 Monoclonal antibody targeting Zika virus envelope protein conserved epitope and application thereof
US11786607B2 (en) 2017-06-15 2023-10-17 Modernatx, Inc. RNA formulations
WO2018237039A1 (en) * 2017-06-20 2018-12-27 Texas Tech University System Zika virus like particle (vlp) based vaccine and microneutralization assay
MA50751A (en) * 2017-08-18 2020-06-24 Modernatx Inc EFFECTIVE RNA-BASED VACCINES
EP3668979A4 (en) 2017-08-18 2021-06-02 Modernatx, Inc. Methods for hplc analysis
US11866696B2 (en) 2017-08-18 2024-01-09 Modernatx, Inc. Analytical HPLC methods
EP3668971B1 (en) 2017-08-18 2024-04-10 ModernaTX, Inc. Rna polymerase variants
US11744801B2 (en) 2017-08-31 2023-09-05 Modernatx, Inc. Methods of making lipid nanoparticles
WO2019055807A1 (en) * 2017-09-14 2019-03-21 Modernatx, Inc. Zika virus rna vaccines
JP7295124B2 (en) 2017-11-03 2023-06-20 タケダ ワクチン,インコーポレイテッド Zika vaccines and immunogenic compositions and methods of use thereof
EP3723796A1 (en) 2017-12-13 2020-10-21 CureVac AG Flavivirus vaccine
SG11202005772YA (en) * 2018-01-06 2020-07-29 Emergex Vaccines Holding Ltd Mhc class i associated peptides for prevention and treatment of multiple flavi virus
US11911453B2 (en) 2018-01-29 2024-02-27 Modernatx, Inc. RSV RNA vaccines
JP7047658B2 (en) * 2018-08-07 2022-04-05 トヨタ自動車株式会社 Fuel cell system
US11351242B1 (en) 2019-02-12 2022-06-07 Modernatx, Inc. HMPV/hPIV3 mRNA vaccine composition
CN113795579A (en) 2019-02-20 2021-12-14 摩登纳特斯有限公司 RNA polymerase variants for co-transcriptional capping
US11851694B1 (en) 2019-02-20 2023-12-26 Modernatx, Inc. High fidelity in vitro transcription
US20220213504A1 (en) * 2019-05-21 2022-07-07 The Regents Of The University Of California Zika Virus Constructs and Therapeutic Compositions Thereof
WO2021127017A1 (en) * 2019-12-16 2021-06-24 La Jolla Institute For Immunology Combinations of flavivirus proteins, peptide sequences, epitopes, and methods and uses thereof
GB202001620D0 (en) * 2020-02-06 2020-03-25 Inst De Medicina Molecular Joaeo Lobo Antunes C-X-C motif chemokine receptor 4 antagonist
GB2594365B (en) 2020-04-22 2023-07-05 BioNTech SE Coronavirus vaccine
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
US20220226465A1 (en) 2021-01-18 2022-07-21 ConserV Bioscience Coronavirus Immunogenic Compositions, Methods and Uses Thereof
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
WO2023069498A1 (en) 2021-10-22 2023-04-27 Senda Biosciences, Inc. Mrna vaccine composition
WO2023096858A1 (en) 2021-11-23 2023-06-01 Senda Biosciences, Inc. A bacteria-derived lipid composition and use thereof
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Family Cites Families (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906092A (en) 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
CA1335429C (en) 1986-03-07 1995-05-02 Geoffrey L. Smith Processes for the production of hcmv glycoproteins, antibodies thereto and hcmv vaccines, and recombinant vectors therefor
CA2489769A1 (en) 1989-03-21 1990-10-04 Philip L. Felgner Expression of exogenous polynucleotide sequences in a vertebrate
US6867195B1 (en) 1989-03-21 2005-03-15 Vical Incorporated Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected
ES2052478T1 (en) 1989-11-20 1994-07-16 Oncogen RECOMBINANTLY PRODUCED NON-REPLICATION RETROVIRAL PARTICLES USED AS ANTIVIRAL AND IMMUNOGENOUS AGENTS.
FR2676072B1 (en) 1991-05-03 1994-11-18 Transgene Sa RNA DELIVERY VECTOR.
WO1993014778A1 (en) 1992-01-23 1993-08-05 Vical, Inc. Ex vivo gene transfer
IL112820A0 (en) 1994-03-07 1995-05-26 Merck & Co Inc Coordinate in vivo gene expression
WO1995026204A1 (en) 1994-03-25 1995-10-05 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US6355247B1 (en) 1994-06-02 2002-03-12 Chiron Corporation Nucleic acid immunization using a virus-based infection/transfection system
US5795587A (en) 1995-01-23 1998-08-18 University Of Pittsburgh Stable lipid-comprising drug delivery complexes and methods for their production
US6074865A (en) 1995-07-20 2000-06-13 The United States Of America As Represented By The Secretary Of The Army Recombinant dengue virus DNA fragment
US20050287540A1 (en) 1995-09-27 2005-12-29 Murphy Brian R Production of attenuated negative stranded RNA virus vaccines from cloned nucleotide sequences
EP0855184A1 (en) 1997-01-23 1998-07-29 Grayson B. Dr. Lipford Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination
US6251665B1 (en) 1997-02-07 2001-06-26 Cem Cezayirli Directed maturation of stem cells and production of programmable antigen presenting dentritic cells therefrom
US6261281B1 (en) 1997-04-03 2001-07-17 Electrofect As Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells
JP2001519162A (en) 1997-10-07 2001-10-23 ユニバーシティ・オブ・メリーランド・バイオテクノロジー・インスティチュート Method for introducing and expressing RNA in animal cells
JP2002500010A (en) 1997-12-23 2002-01-08 カイロン コーポレイション Human genes and gene expression products I
US6432925B1 (en) 1998-04-16 2002-08-13 John Wayne Cancer Institute RNA cancer vaccine and methods for its use
US7227011B2 (en) * 1998-06-04 2007-06-05 United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Nucleic acid vaccines for prevention of flavivirus infection
ATE297190T1 (en) 1999-02-26 2005-06-15 Chiron Corp MICROEMULSIONS WITH ADSORBED MACROMOLECULES AND MICROPARTICLES
US6514948B1 (en) 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
EP1541690A3 (en) 1999-09-09 2005-07-27 CureVac GmbH Transfer of mRNA using polycationic compounds
WO2001021810A1 (en) 1999-09-17 2001-03-29 Aventis Pasteur Limited Chlamydia antigens and corresponding dna fragments and uses thereof
AU7725500A (en) 1999-09-30 2001-04-30 National Jewish Medical And Research Center Method for inhibition of pathogenic microorganisms
US7060291B1 (en) 1999-11-24 2006-06-13 Transave, Inc. Modular targeted liposomal delivery system
WO2001060847A2 (en) 2000-02-16 2001-08-23 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Avirulent, immunogenic flavivirus chimeras
WO2002002606A2 (en) 2000-07-03 2002-01-10 Chiron S.P.A. Immunisation against chlamydia pneumoniae
IL154009A0 (en) 2000-07-21 2003-07-31 Glaxo Group Ltd Codon-optimized papilloma virus sequences
EP1383556B9 (en) 2001-04-21 2008-03-19 Curevac GmbH INJECTION DEVICE FOR ADMINISTERING mRNA
EP1832603B1 (en) 2001-06-05 2010-02-03 CureVac GmbH Stabilised mRNA with increased G/C-content encoding a bacterial antigen and its use
DE10162480A1 (en) 2001-12-19 2003-08-07 Ingmar Hoerr The application of mRNA for use as a therapeutic agent against tumor diseases
NZ535690A (en) * 2002-02-26 2009-04-30 Maxygen Inc Novel flavivirus antigens
IL164354A0 (en) 2002-04-04 2005-12-18 Coley Pharm Gmbh Immunostimulatory g,u-containing oligoribonucleotides
DE10229872A1 (en) 2002-07-03 2004-01-29 Curevac Gmbh Immune stimulation through chemically modified RNA
ATE471335T1 (en) 2002-12-23 2010-07-15 Vical Inc VACCINES AGAINST INFECTIONS WITH THE HUMAN CYTOMEGALIVIRUS BASED ON CODONE-OPTIMIZED POLYNUCLEOTIDES
WO2004076645A2 (en) 2003-02-27 2004-09-10 University Of Massachusetts Compositions and methods for cytomegalovirus treatment
WO2005009346A2 (en) 2003-06-24 2005-02-03 Mirus Corporation Inhibition of gene function by delivery of polynucleotide-based gene expression inhibitors to mammalian cells in vivo
ATE432285T1 (en) 2003-07-11 2009-06-15 Alphavax Inc CYTOMEGALOVIRUS VACCINES BASED ON ALPHAVIRUS
DE10335833A1 (en) 2003-08-05 2005-03-03 Curevac Gmbh Transfection of blood cells with mRNA for immune stimulation and gene therapy
DE10347710B4 (en) 2003-10-14 2006-03-30 Johannes-Gutenberg-Universität Mainz Recombinant vaccines and their use
DE102004035227A1 (en) 2004-07-21 2006-02-16 Curevac Gmbh mRNA mixture for vaccination against tumor diseases
WO2006025990A2 (en) 2004-07-27 2006-03-09 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Diseases Control And Prevention Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes and methods for their use
DE102004042546A1 (en) 2004-09-02 2006-03-09 Curevac Gmbh Combination therapy for immune stimulation
WO2006056027A1 (en) 2004-11-29 2006-06-01 The Council Of The Queensland Institute Of Medical Research Human cytomegalovirus immunotherapy
WO2006071903A2 (en) 2004-12-28 2006-07-06 Ptc Therapeutics, Inc. Cell based methods and systems for the identification of rna regulatory sequences and compounds that modulate their functions
US20100221186A1 (en) 2005-03-11 2010-09-02 Hueseyin Firat Biomarkers for cardiovascular side-effects induced by cox-2 inhibitory compounds
EP2026839A4 (en) * 2005-12-14 2009-04-01 Univ Oklahoma Rna virus vaccines and methods
DE102006007433A1 (en) 2006-02-17 2007-08-23 Curevac Gmbh Immunostimulant adjuvant useful in vaccines against cancer or infectious diseases comprises a lipid-modified nucleic acid
EP2046954A2 (en) 2006-07-31 2009-04-15 Curevac GmbH NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT
CN101148661B (en) 2006-09-18 2013-01-02 中国医学科学院基础医学研究所 Human papilloma virus 16 type coat protein virus-like particles, preparation method and use thereof
DE102006051516A1 (en) 2006-10-31 2008-05-08 Curevac Gmbh (Base) modified RNA to increase the expression of a protein
US8440202B2 (en) 2006-11-09 2013-05-14 The United States Of America As Represented By The Secretary Of The Navy Induction of an immune response against dengue virus using the prime-boost approach
DE102007001370A1 (en) 2007-01-09 2008-07-10 Curevac Gmbh RNA-encoded antibodies
GB0700914D0 (en) 2007-01-18 2007-02-28 Animal Health Inst Polynucleotides and uses thereof
WO2009030254A1 (en) 2007-09-04 2009-03-12 Curevac Gmbh Complexes of rna and cationic peptides for transfection and for immunostimulation
WO2009046739A1 (en) 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating prostate cancer (pca)
WO2009046738A1 (en) 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating lung cancer, particularly of non-small lung cancers (nsclc)
EP2630967A1 (en) 2007-10-12 2013-08-28 Massachusetts Institute of Technology Vaccine nanotechnology
KR101483715B1 (en) 2008-01-31 2015-01-19 큐어백 게엠바하 NUCLEIC ACIDS COMPRISING FORMULA (NuGlXmGnNv)a AND DERIVATIVES THEREOF AS AN IMMUNOSTIMULATING AGENTS/ADJUVANTS
NZ588583A (en) 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
WO2009127230A1 (en) 2008-04-16 2009-10-22 Curevac Gmbh MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION
PL2774608T3 (en) 2008-06-16 2020-05-18 Pfizer Inc. Drug loaded polymeric nanoparticles and methods of making and using same
WO2010037408A1 (en) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
WO2010042877A1 (en) 2008-10-09 2010-04-15 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
CA2743139C (en) 2008-11-10 2019-04-02 Alnylam Pharmaceuticals, Inc. Novel lipids and compositions for the delivery of therapeutics
WO2010057203A2 (en) 2008-11-17 2010-05-20 The Board Of Regents Of The University Of Texas System Hdl particles for delivery of nucleic acids
WO2010088927A1 (en) 2009-02-09 2010-08-12 Curevac Gmbh Use of pei for the improvement of endosomal release and expression of transfected nucleic acids, complexed with cationic or polycationic compounds
RU2600798C2 (en) 2009-04-01 2016-10-27 Юниверсити Оф Майами Vaccine compositions and methods of use thereof
WO2011000106A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Improved cationic lipids and methods for the delivery of therapeutic agents
WO2011005799A2 (en) 2009-07-06 2011-01-13 Novartis Ag Self replicating rna molecules and uses thereof
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
US8691961B1 (en) 2009-11-09 2014-04-08 Integral Molecular, Inc. Flavivirus reporter virus and methods of making and using the same
ME03327B (en) 2009-12-01 2019-10-20 Translate Bio Inc Steroid derivative for the delivery of mrna in human genetic diseases
WO2011069529A1 (en) 2009-12-09 2011-06-16 Curevac Gmbh Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids
EP2387999A1 (en) 2010-05-21 2011-11-23 CureVac GmbH Histidine-containing solution for transfection and/or injection of nucleic acids and uses thereof
JP2013531634A (en) 2010-05-24 2013-08-08 メルク・シャープ・エンド・ドーム・コーポレイション Novel aminoalcohol cationic lipids for oligonucleotide delivery
FI4005592T3 (en) 2010-07-06 2023-01-13 Virion-like delivery particles for self-replicating rna molecules
WO2012006369A2 (en) 2010-07-06 2012-01-12 Novartis Ag Immunisation of large mammals with low doses of rna
EP2590626B1 (en) 2010-07-06 2015-10-28 GlaxoSmithKline Biologicals SA Liposomes with lipids having an advantageous pka-value for rna delivery
CN103327963A (en) 2010-07-06 2013-09-25 诺华股份有限公司 Cationic oil-in-water emulsions
US9192661B2 (en) 2010-07-06 2015-11-24 Novartis Ag Delivery of self-replicating RNA using biodegradable polymer particles
CN107648604A (en) 2010-07-30 2018-02-02 库瑞瓦格股份公司 The purposes of polymer support load compound and polymer support
US8822663B2 (en) 2010-08-06 2014-09-02 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2012019630A1 (en) 2010-08-13 2012-02-16 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein
WO2012031046A2 (en) 2010-08-31 2012-03-08 Novartis Ag Lipids suitable for liposomal delivery of protein-coding rna
RU2671482C2 (en) 2010-08-31 2018-10-31 Новартис Аг Small liposomes for delivery of immunogen coding rna
PL2611461T3 (en) 2010-08-31 2022-07-04 Glaxosmithkline Biologicals Sa Pegylated liposomes for delivery of immunogen-encoding rna
PT3590949T (en) 2010-10-01 2022-08-02 Modernatx Inc Ribonucleic acids containing n1-methyl-pseudouracils and uses thereof
US8853377B2 (en) 2010-11-30 2014-10-07 Shire Human Genetic Therapies, Inc. mRNA for use in treatment of human genetic diseases
WO2012089225A1 (en) 2010-12-29 2012-07-05 Curevac Gmbh Combination of vaccination and inhibition of mhc class i restricted antigen presentation
US20120177701A1 (en) 2010-12-31 2012-07-12 Selecta Biosciences, Inc. Compositions comprising immunostimulatory nucleic acids and related methods
WO2012099805A2 (en) 2011-01-19 2012-07-26 Ocean Nanotech, Llc Nanoparticle based immunological stimulation
WO2012116715A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in newborns and infants
WO2012113413A1 (en) 2011-02-21 2012-08-30 Curevac Gmbh Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
WO2012116714A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in elderly patients
US8710200B2 (en) 2011-03-31 2014-04-29 Moderna Therapeutics, Inc. Engineered nucleic acids encoding a modified erythropoietin and their expression
CN103687957A (en) 2011-05-17 2014-03-26 现代治疗公司 Engineered nucleic acids and methods of use thereof for non-human vertebrates
JP6100762B2 (en) 2011-06-02 2017-03-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nanoparticles encapsulated in membranes and methods of use
BR112013031553A2 (en) 2011-06-08 2020-11-10 Shire Human Genetic Therapies, Inc. compositions, mrna encoding a gland and its use, use of at least one mrna molecule and a vehicle for transfer and use of an mrna encoding for exogenous protein
US8916696B2 (en) 2011-06-12 2014-12-23 City Of Hope Aptamer-mRNA conjugates for targeted protein or peptide expression and methods for their use
EP2729168A2 (en) 2011-07-06 2014-05-14 Novartis AG Immunogenic compositions and uses thereof
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
AU2012280904B2 (en) 2011-07-06 2017-02-23 Glaxosmithkline Biologicals S.A. Cationic oil-in-water emulsions
SG10201605512WA (en) 2011-07-06 2016-09-29 Novartis Ag Oil-in-water emulsions that contain nucleic acids
EP2731975B1 (en) 2011-07-14 2016-04-20 Basf Se Method for producing water-absorbing polymer particles having a high swelling speed
CA3185394A1 (en) 2011-09-02 2013-03-07 Arrowhead Pharmaceuticals, Inc. Organic compositions to treat hsf1-related diseases
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP2755693A4 (en) 2011-09-12 2015-05-20 Moderna Therapeutics Inc Engineered nucleic acids and methods of use thereof
US20140271829A1 (en) 2011-10-11 2014-09-18 Anders Lilja Recombinant self-replicating polycistronic rna molecules
JP2014532071A (en) 2011-10-14 2014-12-04 エスティーシー. ユーエヌエムStc.Unm Lipid bilayer (protocell) supported on porous nanoparticles for targeted delivery including transdermal delivery of cargo and method thereof
HUE057604T2 (en) 2011-10-18 2022-06-28 Dicerna Pharmaceuticals Inc Amine cationic lipids and uses thereof
WO2013078199A2 (en) 2011-11-23 2013-05-30 Children's Medical Center Corporation Methods for enhanced in vivo delivery of synthetic, modified rnas
WO2013090186A1 (en) 2011-12-14 2013-06-20 modeRNA Therapeutics Modified nucleic acids, and acute care uses thereof
WO2013130161A1 (en) 2011-12-14 2013-09-06 modeRNA Therapeutics Methods of responding to a biothreat
AU2012352180A1 (en) 2011-12-16 2014-07-31 Moderna Therapeutics, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
JP2015510495A (en) 2011-12-21 2015-04-09 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Methods for extending the viability or longevity of an organ or organ graft
EP3144389B1 (en) 2011-12-30 2018-05-09 Cellscript, Llc Making and using in vitro-synthesized ssrna for introducing into mammalian cells to induce a biological or biochemical effect
WO2013113325A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Negatively charged nucleic acid comprising complexes for immunostimulation
WO2013120497A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein
WO2013120499A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen
US10322089B2 (en) 2012-03-14 2019-06-18 The Board Of Trustees Of The Leland Stanford Junior University Nanoparticles, nanoparticle delivery methods, and systems of delivery
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
EP3505176A1 (en) 2012-04-02 2019-07-03 Moderna Therapeutics, Inc. Modified polynucleotides for the production of secreted proteins
US10501513B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
JP2015518705A (en) 2012-04-02 2015-07-06 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified polynucleotides for the production of biologics and proteins associated with human diseases
US10501512B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides
EP2854857B1 (en) 2012-05-25 2018-11-28 CureVac AG Reversible immobilization and/or controlled release of nucleic acid containing nanoparticles by (biodegradable) polymer coatings
MX2014015041A (en) 2012-06-08 2015-06-17 Shire Human Genetic Therapies Pulmonary delivery of mrna to non-lung target cells.
US9512456B2 (en) 2012-08-14 2016-12-06 Modernatx, Inc. Enzymes and polymerases for the synthesis of RNA
WO2014093924A1 (en) * 2012-12-13 2014-06-19 Moderna Therapeutics, Inc. Modified nucleic acid molecules and uses thereof
US9267114B2 (en) 2012-11-07 2016-02-23 Southern Research Institute Flavivirus envelope protein mutations affecting virion disassembly
WO2014071963A1 (en) 2012-11-09 2014-05-15 Biontech Ag Method for cellular rna expression
WO2014072061A1 (en) 2012-11-09 2014-05-15 Biontech Ag Method for cellular rna expression
JP6144355B2 (en) 2012-11-26 2017-06-07 モデルナティエックス インコーポレイテッドModernaTX,Inc. Chemically modified mRNA
WO2014093574A1 (en) 2012-12-13 2014-06-19 Moderna Therapeutics, Inc. Modified polynucleotides for altering cell phenotype
CA2897858A1 (en) 2013-02-22 2014-08-28 Curevac Gmbh Combination of vaccination and inhibition of the pd-1 pathway
JP6352950B2 (en) 2013-03-08 2018-07-04 ノバルティス アーゲー Lipids and lipid compositions for active drug delivery
WO2014160243A1 (en) 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Purification and purity assessment of rna molecules synthesized with modified nucleosides
US20160184458A1 (en) 2013-03-14 2016-06-30 Shire Human Genetic Therapies, Inc. Mrna therapeutic compositions and use to treat diseases and disorders
WO2014152211A1 (en) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
HUE055044T2 (en) 2013-03-14 2021-10-28 Translate Bio Inc Methods and compositions for delivering mrna coded antibodies
WO2014152030A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Removal of dna fragments in mrna production process
US20160032273A1 (en) 2013-03-15 2016-02-04 Moderna Therapeutics, Inc. Characterization of mrna molecules
ES2670529T3 (en) 2013-03-15 2018-05-30 Translate Bio, Inc. Synergistic improvement of nucleic acid delivery through mixed formulations
EP2971161B1 (en) 2013-03-15 2018-12-26 ModernaTX, Inc. Ribonucleic acid purification
WO2014144711A1 (en) 2013-03-15 2014-09-18 Moderna Therapeutics, Inc. Analysis of mrna heterogeneity and stability
US10138507B2 (en) 2013-03-15 2018-11-27 Modernatx, Inc. Manufacturing methods for production of RNA transcripts
EP2983804A4 (en) 2013-03-15 2017-03-01 Moderna Therapeutics, Inc. Ion exchange purification of mrna
EP3024483B1 (en) 2013-07-25 2020-01-15 Calder Biosciences Inc. Conformationally stabilized rsv pre-fusion f proteins
KR20160044566A (en) 2013-08-21 2016-04-25 큐어백 아게 Respiratory syncytial virus (RSV) vaccine
WO2015024667A1 (en) 2013-08-21 2015-02-26 Curevac Gmbh Method for increasing expression of rna-encoded proteins
US20160194368A1 (en) * 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
CA2927393A1 (en) * 2013-10-18 2015-04-23 Moderna Therapeutics, Inc. Compositions and methods for tolerizing cellular systems
WO2015095340A1 (en) 2013-12-19 2015-06-25 Novartis Ag Lipids and lipid compositions for the delivery of active agents
WO2015122995A1 (en) 2014-02-11 2015-08-20 Visterra, Inc. Antibody moleules to dengue virus and uses thereof
EP3110401A4 (en) 2014-02-25 2017-10-25 Merck Sharp & Dohme Corp. Lipid nanoparticle vaccine adjuvants and antigen delivery systems
SG10201912038TA (en) 2014-04-23 2020-02-27 Modernatx Inc Nucleic acid vaccines
EP3888676A1 (en) 2014-06-13 2021-10-06 GlaxoSmithKline Biologicals S.A. Immunogenic combinations
US20170202979A1 (en) 2014-07-17 2017-07-20 Modernatx, Inc. Terminal modifications of polynucleotides
US10493141B2 (en) * 2014-09-17 2019-12-03 The University Of Iowa Research Foundation Viral RNA segments as immunomodulatory agents and vaccine components
EP3031822A1 (en) 2014-12-08 2016-06-15 Novartis AG Cytomegalovirus antigens
US20180000953A1 (en) 2015-01-21 2018-01-04 Moderna Therapeutics, Inc. Lipid nanoparticle compositions
EP3048114A1 (en) 2015-01-22 2016-07-27 Novartis AG Cytomegalovirus antigens and uses thereof
WO2016164762A1 (en) 2015-04-08 2016-10-13 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor egf-a and intracellular domain mutants and methods of using the same
JP6912384B2 (en) 2015-04-22 2021-08-04 キュアバック アーゲー RNA-containing compositions for the treatment of cancer diseases
EP3289083A4 (en) 2015-04-27 2018-12-19 The Trustees Of The University Of Pennsylvania Nucleoside-modified rna for inducing an adaptive immune response
CN107810009A (en) 2015-05-15 2018-03-16 库瑞瓦格股份公司 It is related to and exempts from strengthened scheme using at least one the first of mRNA constructs
WO2016201377A1 (en) 2015-06-10 2016-12-15 Moderna Therapeutics, Inc. Targeted adaptive vaccines
US20180296663A1 (en) 2015-06-17 2018-10-18 Curevac Ag Vaccine composition
WO2017015463A2 (en) 2015-07-21 2017-01-26 Modernatx, Inc. Infectious disease vaccines
WO2017015457A1 (en) 2015-07-21 2017-01-26 Modernatx, Inc. Ebola vaccine
US20190008938A1 (en) 2015-07-30 2019-01-10 Modernatx, Inc. Concatemeric peptide epitope rnas
US20190008887A1 (en) 2015-07-30 2019-01-10 ModernaTX Inc. Multimeric mrna
US20200085852A1 (en) 2015-08-05 2020-03-19 Curevac Ag Epidermal mrna vaccine
US20180237849A1 (en) 2015-08-17 2018-08-23 Modernatx, Inc. Rna mapping/fingerprinting
US11564893B2 (en) 2015-08-17 2023-01-31 Modernatx, Inc. Methods for preparing particles and related compositions
EP4286012A2 (en) 2015-09-17 2023-12-06 ModernaTX, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
US10849920B2 (en) 2015-10-05 2020-12-01 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
WO2017066789A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified sugar
BR112018008102A2 (en) 2015-10-22 2018-11-06 Modernatx Inc respiratory syncytial virus vaccine
US20180318409A1 (en) 2015-10-22 2018-11-08 Modernatx, Inc. Cancer vaccines
EA201890999A1 (en) 2015-10-22 2018-12-28 МОДЕРНАТиЭкс, ИНК. VACCINE AGAINST VIRUS HERPES VIRUS
ES2922760T3 (en) 2015-10-22 2022-09-20 Modernatx Inc Respiratory virus vaccines
CN108472309A (en) 2015-10-22 2018-08-31 摩登纳特斯有限公司 For varicellazoster virus(VZV)Nucleic acid vaccine
WO2017070624A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Tropical disease vaccines
AU2016342048B2 (en) 2015-10-22 2022-09-08 Modernatx, Inc. Broad spectrum influenza virus vaccine
MA45209A (en) 2015-10-22 2019-04-17 Modernatx Inc VACCINES AGAINST SEXUALLY TRANSMITTED DISEASES
CA3002922A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
JP7080172B2 (en) 2015-12-10 2022-06-03 モデルナティエックス インコーポレイテッド Compositions and Methods for Delivery of Therapeutic Agents
US10465190B1 (en) 2015-12-23 2019-11-05 Modernatx, Inc. In vitro transcription methods and constructs
EP3184119A1 (en) 2015-12-23 2017-06-28 Themis Bioscience GmbH Chromatography based purification strategies for measles scaffold based viruses
MX2018009917A (en) * 2016-02-17 2019-08-14 Curevac Ag Zika virus vaccine.
CN109152826B (en) 2016-02-25 2022-11-04 宾夕法尼亚大学理事会 Novel vaccine against Zika virus
WO2017165317A2 (en) 2016-03-20 2017-09-28 Samuel Bogoch Therapies, vaccines, and predictive methods for flaviviruses
WO2017162265A1 (en) * 2016-03-21 2017-09-28 Biontech Rna Pharmaceuticals Gmbh Trans-replicating rna
MA45053A (en) 2016-05-18 2019-03-27 Modernatx Inc POLYNUCLEOTIDES CODING FOR A CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR FOR THE TREATMENT OF CYSTIC FIBROSIS
EP3458107B1 (en) 2016-05-18 2024-03-13 ModernaTX, Inc. Polynucleotides encoding jagged1 for the treatment of alagille syndrome
MA45036A (en) 2016-05-18 2019-03-27 Modernatx Inc POLYNUCLEOTIDES CODING CITRINE FOR THE TREATMENT OF CITRULLINEMIA TYPE 2
AU2017266932B2 (en) 2016-05-18 2023-04-20 Modernatx, Inc. Polynucleotides encoding alpha-galactosidase A for the treatment of Fabry disease
CA3024500A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding relaxin
MA45050A (en) 2016-05-18 2019-03-27 Modernatx Inc LIPOPROTEIN LIPASE CODING POLYNUCLEOTIDES FOR THE TREATMENT OF HYPERLIPIDEMIA
WO2017210215A1 (en) 2016-05-31 2017-12-07 The Government Of The United States Of America As Represented By The Secretary Of The Army Zika virus vaccine and methods of production
KR102472026B1 (en) * 2016-06-01 2022-11-30 액세스 투 어드밴스드 헬스 인스티튜트 Nanoalum Particles Containing Sizing Agent
US10967057B2 (en) 2016-06-02 2021-04-06 Glaxosmithkline Biologicals S.A. Zika viral antigen constructs
GB201613191D0 (en) 2016-07-29 2016-09-14 Univ Oxford Innovation Ltd Zika virus vaccine
CN116837052A (en) 2016-09-14 2023-10-03 摩登纳特斯有限公司 High-purity RNA composition and preparation method thereof
US10898566B2 (en) 2016-09-19 2021-01-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Zika virus vaccines
CA3041307A1 (en) 2016-10-21 2018-04-26 Giuseppe Ciaramella Human cytomegalovirus vaccine
MX2019004810A (en) 2016-10-26 2019-10-15 Modernatx Inc Messenger ribonucleic acids for enhancing immune responses and methods of use thereof.
WO2018081462A1 (en) 2016-10-26 2018-05-03 Modernatx, Inc. Methods and compositions for rna mapping
EP3538146A4 (en) 2016-11-11 2020-07-15 ModernaTX, Inc. Influenza vaccine
EP4043031A3 (en) 2016-11-17 2022-11-23 GlaxoSmithKline Biologicals SA Zika viral antigen constructs
WO2018107088A2 (en) 2016-12-08 2018-06-14 Modernatx, Inc. Respiratory virus nucleic acid vaccines
EP3555289A1 (en) 2016-12-13 2019-10-23 ModernaTX, Inc. Rna affinity purification
CA3049991A1 (en) 2017-01-11 2018-07-19 The Trustees Of The University Of Pennsylvania Nucleoside-modified rna for inducing an immune response against zika virus
US20180243225A1 (en) 2017-01-25 2018-08-30 Modernatx, Inc. Ebola/marburg vaccines
EP3577221A4 (en) 2017-02-01 2020-12-23 ModernaTX, Inc. Polynucleotide secondary structure
SG10202108307YA (en) 2017-02-01 2021-08-30 Modernatx Inc Rna cancer vaccines
WO2018151816A1 (en) 2017-02-16 2018-08-23 Modernatx, Inc. High potency immunogenic compositions
WO2018170256A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Herpes simplex virus vaccine
US11045540B2 (en) 2017-03-15 2021-06-29 Modernatx, Inc. Varicella zoster virus (VZV) vaccine
EP3609534A4 (en) 2017-03-15 2021-01-13 ModernaTX, Inc. Broad spectrum influenza virus vaccine
MA47787A (en) 2017-03-15 2020-01-22 Modernatx Inc RESPIRATORY SYNCYTIAL VIRUS VACCINE
US20200030432A1 (en) 2017-03-17 2020-01-30 Modernatx, Inc. Zoonotic disease rna vaccines
US20200038499A1 (en) 2017-03-22 2020-02-06 Modernatx, Inc. Rna bacterial vaccines
US11905525B2 (en) 2017-04-05 2024-02-20 Modernatx, Inc. Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
MA49463A (en) 2017-04-26 2021-05-05 Modernatx Inc HERPES SIMPLEX VACCINE
WO2018232355A1 (en) 2017-06-15 2018-12-20 Modernatx, Inc. Rna antibodies
US11786607B2 (en) 2017-06-15 2023-10-17 Modernatx, Inc. RNA formulations
EP3668979A4 (en) 2017-08-18 2021-06-02 Modernatx, Inc. Methods for hplc analysis
MA50751A (en) 2017-08-18 2020-06-24 Modernatx Inc EFFECTIVE RNA-BASED VACCINES
EP3668971B1 (en) 2017-08-18 2024-04-10 ModernaTX, Inc. Rna polymerase variants
US11866696B2 (en) 2017-08-18 2024-01-09 Modernatx, Inc. Analytical HPLC methods
WO2019055807A1 (en) 2017-09-14 2019-03-21 Modernatx, Inc. Zika virus rna vaccines
US20190192646A1 (en) 2017-11-03 2019-06-27 Modernatx, Inc. Salmonella vaccines
MA50813A (en) 2017-11-21 2020-09-30 Modernatx Inc EPSTEIN-BARR VIRUS VACCINES
US11911453B2 (en) 2018-01-29 2024-02-27 Modernatx, Inc. RSV RNA vaccines
JP2021529750A (en) 2018-06-27 2021-11-04 モデルナティーエックス, インコーポレイテッド Selection of personalized cancer vaccine epitopes
EP3863645A4 (en) 2018-09-13 2022-11-16 ModernaTX, Inc. Modified mrna for the treatment of progressive familial intrahepatic cholestasis disorders
JP2022500543A (en) 2018-09-19 2022-01-04 モデルナティーエックス, インコーポレイテッド High-purity PEG lipids and their use
EP3852732A1 (en) 2018-09-19 2021-07-28 ModernaTX, Inc. Peg lipids and uses thereof
MA54192A (en) 2018-11-07 2021-09-15 Modernatx Inc RNA VACCINES AGAINST CANCER
CN113795579A (en) 2019-02-20 2021-12-14 摩登纳特斯有限公司 RNA polymerase variants for co-transcriptional capping

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Harenberg et al., Persistence of Th1/Tc1 responses one year after tetravalent dengue vaccination in adults and adolescents in Singapore, 2013, , Human Vaccines & Immunotherapeutics, Vol. 9, No. 11, pages 2317-2325 *

Also Published As

Publication number Publication date
EP3324979A2 (en) 2018-05-30
US10702597B2 (en) 2020-07-07
US20190060438A1 (en) 2019-02-28
EP3324979B1 (en) 2022-10-12
US20180344838A1 (en) 2018-12-06
MA42502A (en) 2018-05-30
TW201718638A (en) 2017-06-01
US11007260B2 (en) 2021-05-18
HK1256169A1 (en) 2019-09-13
US20180344839A1 (en) 2018-12-06
ES2937963T3 (en) 2023-04-03
US20200368343A1 (en) 2020-11-26
US20180280496A1 (en) 2018-10-04
EP3324979A4 (en) 2019-07-10
EP4218805A1 (en) 2023-08-02
WO2017015463A2 (en) 2017-01-26
WO2017015463A3 (en) 2018-04-26
US10449244B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
US20230020362A1 (en) Infectious disease vaccines
US11235052B2 (en) Chikungunya virus RNA vaccines
US10273269B2 (en) High potency immunogenic zika virus compositions
US20230381301A1 (en) Respiratory virus nucleic acid vaccines
JP6980780B2 (en) Human cytomegalovirus vaccine
US20180243225A1 (en) Ebola/marburg vaccines
US20200129608A1 (en) Respiratory syncytial virus vaccine
US11364292B2 (en) CHIKV RNA vaccines
WO2018200737A1 (en) Herpes simplex virus vaccine
AU2016341311A1 (en) Respiratory syncytial virus vaccine
BE1025121A1 (en) ANTIGENIC CONSTRUCTS OF ZIKA VIRUS
WO2023092069A1 (en) Sars-cov-2 mrna domain vaccines and methods of use

Legal Events

Date Code Title Description
AS Assignment

Owner name: MODERNATX, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CIARAMELLA, GIUSEPPE;HUANG, ERIC YI-CHUN;BAHL, KAPIL;AND OTHERS;SIGNING DATES FROM 20170914 TO 20200207;REEL/FRAME:060716/0933

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED