US20230014802A1 - Article for use in an aerosol provision system - Google Patents

Article for use in an aerosol provision system Download PDF

Info

Publication number
US20230014802A1
US20230014802A1 US17/757,498 US202017757498A US2023014802A1 US 20230014802 A1 US20230014802 A1 US 20230014802A1 US 202017757498 A US202017757498 A US 202017757498A US 2023014802 A1 US2023014802 A1 US 2023014802A1
Authority
US
United States
Prior art keywords
aerosol
article according
article
generating material
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/757,498
Other languages
English (en)
Inventor
Richard Hepworth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicoventures Trading Ltd
Original Assignee
Nicoventures Trading Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Ltd filed Critical Nicoventures Trading Ltd
Publication of US20230014802A1 publication Critical patent/US20230014802A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/12Chemical features of tobacco products or tobacco substitutes of reconstituted tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/281Treatment of tobacco products or tobacco substitutes by chemical substances the action of the chemical substances being delayed
    • A24B15/283Treatment of tobacco products or tobacco substitutes by chemical substances the action of the chemical substances being delayed by encapsulation of the chemical substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/01Making cigarettes for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/14Machines of the continuous-rod type
    • A24C5/18Forming the rod
    • A24C5/1885Forming the rod for cigarettes with an axial air duct
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/02Cigars; Cigarettes with special covers
    • A24D1/027Cigars; Cigarettes with special covers with ventilating means, e.g. perforations
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/04Cigars; Cigarettes with mouthpieces or filter-tips
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0275Manufacture of tobacco smoke filters for filters with special features
    • A24D3/0279Manufacture of tobacco smoke filters for filters with special features with tubes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/04Tobacco smoke filters characterised by their shape or structure
    • A24D3/043Tobacco smoke filters characterised by their shape or structure with ventilation means, e.g. air dilution
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/04Tobacco smoke filters characterised by their shape or structure
    • A24D3/048Tobacco smoke filters characterised by their shape or structure containing additives
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/061Use of materials for tobacco smoke filters containing additives entrapped within capsules, sponge-like material or the like, for further release upon smoking
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/062Use of materials for tobacco smoke filters characterised by structural features
    • A24D3/063Use of materials for tobacco smoke filters characterised by structural features of the fibers
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/08Use of materials for tobacco smoke filters of organic materials as carrier or major constituent
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/17Filters specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present disclosure relates to an article for use in a non-combustible aerosol provision system, a non-combustible aerosol provision system including an article, and a method of manufacturing an article for use in a non-combustible aerosol provision system.
  • Certain tobacco industry products produce an aerosol during use, which is inhaled by a user.
  • tobacco heating devices heat an aerosol generating substrate such as tobacco to form an aerosol by heating, but not burning, the substrate.
  • Such tobacco industry products commonly include mouthpieces through which the aerosol passes to reach the user's mouth.
  • an article for use in a non-combustible aerosol provision system comprising, a first aerosol generating material, and a component downstream of the first aerosol generating material, wherein the component comprises a tubular portion and wherein the tubular portion comprises a wall comprising a second aerosol generating material.
  • an article for use in a non-combustible aerosol provision system comprising a first aerosol generating material, and a component downstream of the first aerosol generating material, wherein the component comprises a body of material and wherein the body of material comprises a second aerosol generating material.
  • a method for forming an article according to the first aspect comprising applying aerosol generating material to the wall of the tubular portion.
  • a method for forming an article according to the second aspect comprising applying aerosol generating material to the body of material.
  • a non-combustible aerosol provision system comprising an article according to the first or second aspects above, and a non-combustible aerosol provision device.
  • FIG. 1 is a side-on cross sectional view of an article for use with a non-combustible aerosol provision device, the article including a mouthpiece, the mouthpiece including a tubular portion,
  • FIG. 2 is a side-on cross sectional view of an article for use with a non-combustible aerosol provision device, in this example the mouthpiece including a hollow tubular element;
  • FIG. 3 a is a side-on cross sectional view of an article for use with a non-combustible aerosol provision device, in this example the mouthpiece including a capsule-containing mouthpiece,
  • FIG. 3 b is a cross sectional view of the capsule-containing mouthpiece shown in FIG. 3 a;
  • FIG. 4 is a perspective illustration of a non-combustible aerosol provision device for generating aerosol from the aerosol generating material of the articles of FIGS. 1 , 2 , 3 a and 3 b;
  • FIG. 5 illustrates the device of FIG. 4 with the outer cover removed and without an article present
  • FIG. 6 is a side view of the device of FIG. 4 in partial cross-section;
  • FIG. 7 is an exploded view of the device of FIG. 4 , with the outer cover omitted;
  • FIG. 8 A is a cross sectional view of a portion of the device of FIG. 4 .
  • FIG. 8 B is a close-up illustration of a region of the device of FIG. 8 A ;
  • FIG. 9 is a flow diagram illustrating a method of manufacturing an article for use with a non-combustible aerosol provision device.
  • the term “delivery system” is intended to encompass systems that deliver at least one substance to a user, and includes: combustible aerosol provision systems, such as cigarettes, cigarillos, cigars, and tobacco for pipes or for roll-your-own or for make-your-own cigarettes (whether based on tobacco, tobacco derivatives, expanded tobacco, reconstituted tobacco, tobacco substitutes or other smokable material); non-combustible aerosol provision systems that release compounds from an aerosol-generating material without combusting the aerosol-generating material, such as electronic cigarettes, tobacco heating products, and hybrid systems to generate aerosol using a combination of aerosol-generating materials, and aerosol-free delivery systems that deliver the at least one substance to a user orally, nasally, transdermally or in another way without forming an aerosol, including but not limited to, lozenges, gums, patches, articles comprising inhalable powders, and oral products such as oral tobacco which includes snus or moist snuff, wherein the at least one substance may or may not
  • a “combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is combusted or burned during use in order to facilitate delivery of at least one substance to a user.
  • the delivery system is a combustible aerosol provision system, such as a system selected from the group consisting of a cigarette, a cigarillo and a cigar.
  • the disclosure relates to a component for use in a combustible aerosol provision system, such as a filter, a filter rod, a filter segment, a tobacco rod, a spill, an aerosol-modifying agent release component such as a capsule, a thread, or a bead, or a paper such as a plug wrap, a tipping paper or a cigarette paper.
  • a component for use in a combustible aerosol provision system such as a filter, a filter rod, a filter segment, a tobacco rod, a spill, an aerosol-modifying agent release component such as a capsule, a thread, or a bead, or a paper such as a plug wrap, a tipping paper or a cigarette paper.
  • a “non-combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is not combusted or burned in order to facilitate delivery of at least one substance to a user.
  • the delivery system is a non-combustible aerosol provision system, such as a powered non-combustible aerosol provision system.
  • the non-combustible aerosol provision system is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating material is not a requirement.
  • END electronic nicotine delivery system
  • the non-combustible aerosol provision system is an aerosol generating material heating system, also known as a heat-not-burn system.
  • An example of such a system is a tobacco heating system.
  • the non-combustible aerosol provision system is a hybrid system to generate aerosol using a combination of aerosol-generating materials, one or a plurality of which may be heated.
  • Each of the aerosol-generating materials may be, for example, in the form of a solid, liquid or gel and may or may not contain nicotine.
  • the hybrid system comprises a liquid or gel aerosol-generating material and a solid aerosol-generating material.
  • the solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product.
  • the non-combustible aerosol provision system may comprise a non-combustible aerosol provision device and a consumable for use with the non-combustible aerosol provision device.
  • the disclosure relates to consumables comprising aerosol generating material and configured to be used with non-combustible aerosol provision devices. These consumables are sometimes referred to as articles throughout the disclosure.
  • the non-combustible aerosol provision system such as a non-combustible aerosol provision device thereof, may comprise a power source and a controller.
  • the power source may, for example, be an electric power source or an exothermic power source.
  • the exothermic power source comprises a carbon substrate which may be energized so as to distribute power in the form of heat to an aerosol-generating material or to a heat transfer material in proximity to the exothermic power source.
  • the non-combustible aerosol provision system may comprise an area for receiving the consumable, an aerosol generator, an aerosol generation area, a housing, a mouthpiece, a filter and/or an aerosol-modifying agent.
  • the consumable for use with the non-combustible aerosol provision device may comprise aerosol-generating material, an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generator, an aerosol generation area, a housing, a wrapper, a filter, a mouthpiece, and/or an aerosol-modifying agent.
  • the substance to be delivered comprises an active substance.
  • the active substance as used herein may be a physiologically active material, which is a material intended to achieve or enhance a physiological response.
  • the active substance may for example be selected from nutraceuticals, nootropics, psychoactives.
  • the active substance may be naturally occurring or synthetically obtained.
  • the active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or B12 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof.
  • the active substance may comprise one or more constituents, derivatives or extracts of tobacco, cannabis or another botanical.
  • the active substance comprises nicotine.
  • the active substance comprises caffeine, melatonin or vitamin B12
  • Aerosol-generating material is a material that is capable of generating aerosol, for example when heated, irradiated or energized in any other way. Aerosol-generating material may, for example, be in the form of a solid, liquid or gel which may or may not contain an active substance and/or flavorants.
  • the aerosol generating material may comprise an “amorphous solid”, which may alternatively be referred to as a “monolithic solid” (i.e non-fibrous). In some embodiments, the amorphous solid may be a dried gel.
  • the amorphous solid is a solid material that may retain some fluid, such as liquid, within it.
  • the aerosol generating material may for example comprise from about 50 wt %, 60 wt % or 70 wt % of amorphous solid, to about 90 wt %, 95 wt % or 10 wt % of amorphous solid.
  • the aerosol-generating material comprises a gelling agent comprising a cellulosic gelling agent and/or a non-cellulosic gelling agent, an active substance and an acid.
  • the gelling agent comprises a hydrocolloid. In some embodiments, the gelling agent comprises one or more compounds selected from the group comprising alginates, pectins, starches (and derivatives), celluloses (and derivatives), gums, silica or silicones compounds, clays, polyvinyl alcohol and combinations thereof.
  • the gelling agent comprises one or more of alginates, pectins, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylcellulose, pullulan, xanthan gum guar gum, carrageenan, agarose, acacia gum, fumed silica, polydimethylsiloxane (PDMS), sodium silicate, kaolin and polyvinyl alcohol.
  • the gelling agent comprises alginate and/or pectin, and maybe combined with a setting agent (such as a calcium source) during formation of the amorphous solid.
  • the amorphous solid may comprise a calcium-crosslinked alginate and/or a calcium-crosslinked pectin.
  • the cellulosic gelling agent is selected from the group consisting of: hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylcellulose (CMC), hydroxypropyl methylcellulose (HPMC), methyl cellulose, ethyl cellulose, cellulose acetate (CA), cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP) and combinations thereof.
  • the gelling agent comprises (or is) one or more of hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose, guar gum, or acacia gum.
  • the gelling agent comprises (or is) one or more non-cellulosic gelling agents, including, but not limited to, agar, xanthan gum, gum Arabic, guar gum, locust bean gum, pectin, carrageenan, starch, alginate, and combinations thereof.
  • the non-cellulose based gelling agent is alginate or agar.
  • the aerosol-generating material may comprise an acid.
  • the acid maybe an organic acid.
  • the acid may be at least one of a monoprotic acid, a diprotic acid and a triprotic acid.
  • the acid may contain at least one carboxyl functional group.
  • the acid maybe at least one of an alpha-hydroxy acid, carboxylic acid, dicarboxylic acid, tricarboxylic acid and keto acid.
  • the acid maybe an alpha-keto acid.
  • the acid may be at least one of succinic acid, lactic acid, benzoic acid, citric acid, tartaric acid, fumaric acid, levulinic acid, acetic acid, malic acid, formic acid, sorbic acid, benzoic acid, propanoic and pyruvic acid.
  • the acid is lactic acid.
  • the acid is benzoic acid.
  • the acid may be an inorganic acid.
  • the acid may be a mineral acid.
  • the acid may be at least one of sulphuric acid, hydrochloric acid, boric acid and phosphoric acid.
  • the acid is levulinic acid.
  • an acid is particularly preferred in embodiments in which the aerosol generating material comprises nicotine.
  • the presence of an acid may stabilize dissolved species in the slurry from which the aerosol-generating material is formed.
  • the presence of the acid may reduce or substantially prevent evaporation of nicotine during drying of the slurry, thereby reducing loss of nicotine during manufacturing.
  • the aerosol-generating material comprises one or more cannabinoid compounds selected from the group consisting of: cannabidiol (CBD), tetrahydrocannabinol (TIC), tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM) and cannabielsoin (CBE), cannabicitran (CBT).
  • CBD cannabidiol
  • TIC tetrahydrocannabinol
  • THCA cannabidiolic acid
  • CBD cannabin
  • the aerosol-generating material may comprise one or more cannabinoid compounds selected from the group consisting of cannabidiol (CBD) and THC (tetrahydrocannabinol).
  • CBD cannabidiol
  • THC tetrahydrocannabinol
  • the aerosol-generating material may comprise cannabidiol (CBD).
  • the aerosol-generating material may comprise nicotine and cannabidiol (CBD).
  • CBD cannabidiol
  • the aerosol-generating material may comprise nicotine, cannabidiol (C3D), and THC (tetrahydrocannabinol).
  • the amorphous solid comprises 1-60 wt % of a gelling agent; 0.1-50 wt % of an aerosol-former agent; and 0.1-80 wt % of a flavor; wherein these weights are calculated on a dry weight basis.
  • the amorphous solid comprises: 1-50 wt % of a gelling agent; 0.1-50 wt % of an aerosol-former agent, and 30-60 wt % of a flavor; wherein these weights are calculated on a dry weight basis.
  • the amorphous solid comprises: aerosol-former material in an amount of from about 40 to 80 wt % of the amorphous solid, gelling agent and optional filler (i.e. in some examples filler is present in the amorphous solid, in other examples filler is not present in the amorphous solid), wherein the amount of gelling agent and filler taken together is from about 10 to 60 wt % of the amorphous solid (i.e. the gelling agent and filler taken together account for about 10 to 60 wt % of the amorphous solid); and optionally, active substance and/or flavorant in an amount of up to about 20 wt % of the amorphous solid (i.e. the amorphous solid comprises ⁇ 20 wt % active substance).
  • the amorphous solid material may be formed from a dried gel. It has been found that using the component proportions discussed above means that as the gel sets, flavor compounds are stabilized within the gel matrix allowing a higher flavor loading to be achieved than in non-gel compositions.
  • the flavor e.g. menthol
  • the flavor is stabilized at high concentrations and the products have a good shelf life.
  • the amorphous solid may have a thickness of about 0.015 mm to about 1.5 mm.
  • the thickness maybe in the range of about 0.05 mm, 0.1 mm or 0.15 mm to about 0.5 mm, 0.3 mm or 1 mm.
  • the inventors have found that a material having a thickness of 0.2 mmn is particularly suitable in some embodiments.
  • the amorphous solid may comprise more than one layer, and the thickness described herein refers to the aggregate thickness of those layers.
  • amorphous solid If the amorphous solid is too thick, then heating efficiency is compromised. This adversely affects the power consumption in use. Conversely, if the amorphous solid is too thin, it is difficult to manufacture and handle; a very thin material is harder to cast and may be fragile, compromising aerosol formation in use.
  • the amorphous solid may comprise from about 1 wt %, 5 wt %, 10 wt %, 15 wt %, 20 wt %, 25 wt %, 30 wt % or 35 wt % to about 60 wt %, 55 wt %, 50 wt %, 45 wt %, 40 wt % or 35 wt % of a gelling agent (all calculated on a dry weight basis).
  • the amorphous solid may comprise 1-60 wt %, 5-60 wt %, 20-60 wt %, 25-55 wt %, 30-50 wt %, 35-45 wt %, 5-45 wt %, 10-40 wt % or 20-35 wt % of a gelling agent.
  • the amorphous solid comprises alginate and pectin, and the ratio of the alginate to the pectin is from 1:1 to 10:1.
  • the ratio of the alginate to the pectin is typically >1.1, i.e the alginate is present in an amount greater than the amount of pectin.
  • the ratio of alginate to pectin is from about 2:1 to 8:1, or about 3:1 to 6:1, or is approximately 4:1.
  • the amorphous solid comprises filler in an amount of from 1 to 30 wt % of the amorphous solid, such as 5 to 25 wt %, or 10 to 20 wt %. In examples, the amorphous solid comprises filler in an amount greater than 1 wt %, 5 wt %, or 8 wt % of the amorphous solid. In examples, the amorphous solid comprises filler in an amount less than 40 wt %, 30 wt %, 20 wt %, 15 wt %, 12 wt % 10 wt %, 5 wt %, or 1 wt % of the amorphous solid. In other examples, the amorphous solid does not comprise filler.
  • the amorphous solid comprises gelling agent and filler, taken together, in an amount of from about 10 wt %, 20 wt %, 25 wt %, 30 wt %, 35 wt %, 40 wt %, 45 wt %, 50 wt %, 55 wt % or from about 60 wt %.
  • the amount of gelling agent and filler, taken together is no more than 85 wt %, 80 wt %, 75 wt %, 70 wt %, 65 wt %, or no more than 60 wt % of the amorphous solid.
  • the amorphous solid comprises gelling agent and filler, taken together, in an amount of from about 20 to 60 wt %, 25 to 55 wt %, 30 to 50 wt %, or 35 to 45 wt % of the amorphous solid.
  • the filler if present, may comprise one or more inorganic filler materials, such as calcium carbonate, perlite, vermiculite, diatomaceous earth, colloidal silica, magnesium oxide, magnesium sulphate, magnesium carbonate, and suitable inorganic sorbents, such as molecular sieves.
  • the filler may comprise one or more organic filler materials such as wood pulp, cellulose and cellulose derivatives. In particular cases, the amorphous solid comprises no calcium carbonate such as chalk.
  • the filler maybe fibrous.
  • the filler may be a fibrous organic filler material such as wood pulp, hemp fiber, cellulose or cellulose derivatives. Without wishing to be bound by theory, it is believed that including fibrous filler in an amorphous solid may increase the tensile strength of the material.
  • the amorphous solid does not comprise tobacco fibers. In particular examples, the amorphous solid does not comprise fibrous material.
  • the amorphous solid may comprise from about 0.1 wt %, 0.5 wt %, 1 wt %, 3 wt %, 5 wt %, 7 wt % or 10 wt % to about 80 wt %, 50 wt %, 45 wt %, 40 wt %, 35 wt %, 30 wt % or 25 wt % of an aerosol former material (all calculated on a dry weight basis).
  • the amorphous solid may comprise 0.5-40 wt %, 3-35 wt % or 10-25 wt % of an aerosol former material.
  • the aerosol-generating material may comprise one or more active substances and/or flavors, one or more aerosol-former materials, and optionally one or more other functional material.
  • the aerosol-former material may comprise one or more constituents capable of forming an aerosol.
  • the aerosol former comprises one or more polyhydric alcohols, such as propylene glycol, triethylene glycol, 1,3-butanediol and glycerin; esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate; and/or aliphatic esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate.
  • polyhydric alcohols such as propylene glycol, triethylene glycol, 1,3-butanediol and glycerin
  • esters of polyhydric alcohols such as glycerol mono-, di- or triacetate
  • aliphatic esters of mono-, di- or polycarboxylic acids such as dimethyl dodecanedioate and dimethyl tetradecanedioate.
  • the aerosol-former material may comprise one or more of glycerine, glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate.
  • the one or more other functional materials may comprise one or more of pH regulators, coloring agents, preservatives, binders, tillers, stabilizers, and/or antioxidants.
  • the amorphous solid or aerosol-generating material may therefore comprise a colorant or coloring agent.
  • a colorant or coloring agent may alter the visual appearance of the amorphous solid or aerosol generating material.
  • the presence of colorant in the amorphous solid or aerosol generating material may enhance the visual appearance of the amorphous solid and/or the aerosol-generating material.
  • the amorphous solid may be color-matched to other components of the aerosol-generating material or to other components of an article comprising the amorphous solid.
  • a variety of colorants may be used depending on the desired color of the amorphous solid or aerosol-generating material.
  • the color of amorphous solid or aerosol generating material may be, for example, white, green, red, purple, blue, brown or black. Other colors are also envisaged. Natural or synthetic colorants, such as natural or synthetic dyes, food-grade colorants and pharmaceutical-grade colorants may be used.
  • the colorant is caramel, which may confer the amorphous solid or aerosol-generating material with a brown appearance.
  • the color of the amorphous solid or aerosol-generating material may be similar to the color of other components (such as tobacco material) in an aerosol generating material comprising the amorphous solid.
  • the addition of a colorant to the amorphous solid renders it visually indistinguishable from other components in the aerosol-generating material.
  • the colorant maybe incorporated during the formation of the amorphous solid or aerosol-generating material (e.g. when forming a slurry comprising the materials that form the amorphous solid or aerosol-generating material) or it may be applied to the amorphous solid after its formation (e.g. by spraying it onto the amorphous solid or aerosol-generating material).
  • the materials described herein may be present on or in a support, to form a substrate.
  • the support may, for example, be or comprise paper, card, paperboard, cardboard, reconstituted material, a plastics material, a ceramic material, a composite material, glass, a metal, or a metal alloy.
  • the support comprises a susceptor.
  • the susceptor is embedded within the material.
  • the susceptor is on one or either side of the material.
  • a consumable is an article comprising or consisting of aerosol-generating material, part or all of which is intended to be consumed during use by a user.
  • a consumable may comprise one or more other components, such as an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generation area, a housing, a wrapper, a mouthpiece, a filter and/or an aerosol-modifying agent.
  • a consumable may also comprise an aerosol generator, such as a heater, that emits heat to cause the aerosol-generating material to generate aerosol in use.
  • the heater may, for example, comprise combustible material, a material heatable by electrical conduction, or a susceptor.
  • An aerosol-modifying agent is a substance, typically located downstream of the aerosol generation area, that is configured to modify the aerosol generated, for example by changing the taste, flavor, acidity or another characteristic of the aerosol.
  • the aerosol modifying agent may be provided in an aerosol-modifying agent release component, that is operable to selectively release the aerosol-modifying agent.
  • the aerosol-modifying agent may, for example, be an additive or a sorbent.
  • the aerosol-modifying agent may, for example, comprise one or more of a flavorant, a colorant, water, and a carbon adsorbent.
  • the aerosol-modifying agent may, for example, be a solid, a liquid, or a gel.
  • the aerosol-modifying agent maybe in powder, thread or granule form.
  • the aerosol-modifying agent may be free from filtration material.
  • a susceptor is a material that is heatable by penetration with a varying magnetic field, such as an alternating magnetic field.
  • the susceptor may be an electrically-conductive material, so that penetration thereof with a varying magnetic field causes induction heating of the heating material.
  • the heating material may be magnetic material, so that penetration thereof with a varying magnetic field causes magnetic hysteresis heating of the heating material.
  • the susceptor maybe both electrically-conductive and magnetic, so that the susceptor is heatable by both heating mechanisms.
  • the device that is configured to generate the varying magnetic field is referred to as a magnetic field generator, herein.
  • An aerosol generator is an apparatus configured to cause aerosol to be generated from the aerosol-generating material.
  • the aerosol generator is a heater configured to subject the aerosol-generating material to heat energy, so as to release one or more volatiles from the aerosol-generating material to form an aerosol.
  • the aerosol generator is configured to cause an aerosol to be generated from the aerosol-generating material without heating.
  • the aerosol generator maybe configured to subject the aerosol-generating material to one or more of vibration, increased pressure, or electrostatic energy.
  • Induction heating is a process in which an electrically-conductive object is heated by penetrating the object with a varying magnetic field. The process is described by Faraday's law of induction and Ohm's law.
  • An induction heater may comprise an electromagnet and a device for passing a varying electrical current, such as an alternating current, through the electromagnet.
  • a varying electrical current such as an alternating current
  • the electromagnet and the object to be heated are suitably relatively positioned so that the resultant varying magnetic field produced by the electromagnet penetrates the object, one or more eddy currents are generated inside the object.
  • the object has a resistance to the flow of electrical currents. Therefore, when such eddy currents are generated in the object, their flow against the electrical resistance of the object causes the object to be heated. This process is called Joule, ohmic, or resistive heating.
  • An object that is capable of being inductively heated is known as a susceptor.
  • the susceptor is in the form of a closed circuit. It has been found that, when the susceptor is in the form of a closed circuit, magnetic coupling between the susceptor and the electromagnet in use is enhanced, which results in greater or improved Joule heating.
  • Magnetic hysteresis heating is a process in which an object made of a magnetic material is heated by penetrating the object with a varying magnetic field.
  • a magnetic material can be considered to comprise many atomic-scale magnets, or magnetic dipoles. When a magnetic field penetrates such material, the magnetic dipoles align with the magnetic field. Therefore, when a varying magnetic field, such as an alternating magnetic field, for example as produced by an electromagnet, penetrates the magnetic material, the orientation of the magnetic dipoles changes with the varying applied magnetic field such magnetic dipole reorientation causes heat to be generated in the magnetic material.
  • Articles, such as consumables described herein, for instance those in the shape of rods, are often named according to the product length: “regular” (typically in the range 68-75 mm, e.g. from about 68 mm to about 72 mm), “short” or “mini” (68 mm or less), “king size” (typically in the range 75-91 mm, e.g. from about 79 mm to about 88 mm), “long” or “super-king” (typically in the range 91-105 mm, e.g. from about 94 mm to about 101 mm) and “ultra-long” (typically in the range from about 110 mm to about 121 mm).
  • an article in a king-size, super-slim format will, for example, have a length of about 83 mm and a circumference of about 17 mm.
  • Articles may include an aerosol-generating material and a downstream portion downstream of the aerosol-generating material, and each format may be produced with downstream portions of different lengths.
  • the downstream portion length will usually be from about 30 mm to 50 mm.
  • a tipping paper connects the downstream portion to the aerosol generating material and will usually have a greater length than the downstream portion, for example from 3 to 10 mm longer, such that the tipping paper covers the downstream portion and overlaps the aerosol generating material, for instance in the form of a rod, to connect the downstream portion to the rod.
  • Articles and their aerosol generating materials and downstream portions described herein can be made in, but are not limited to, any of the above formats.
  • upstream and downstream used herein are relative terms defined in relation to the direction of mainstream aerosol drawn though an article or device in use.
  • the filamentary tow or filter material described herein can comprise cellulose acetate fiber tow.
  • the filamentary tow can also be formed using other materials used to form fibers, such as polyvinyl alcohol (PVOH), polylactic acid (PLA), polycaprolactone (PCL), poly(i-4 butanediol succinate) (PBS), poly(butylene adipate-co-terephthalate)(PBAT), starch based materials, cotton, aliphatic polyester materials and polysaccharide polymers or a combination thereof.
  • the filamentary tow may be plasticized with a suitable plasticizer for the tow, such as triacetin where the material is cellulose acetate tow, or the tow may be non-plasticized.
  • the tow can have any suitable specification, such as fibers having a Y shaped or other cross section such as ‘X’ shaped, filamentary denier values between 2.5 and 15 denier per filament, for example between 8.0 and 11.0 denier per filament and total denier values of 5,000 to 50,000, for example between 10,000 and 40,000.
  • the cross section of the fibers may have an isoperimetric ratio L 2 /A of 25 or less, preferably 20 or less, and more preferably 15 or less, where L is the length of the perimeter of the cross section and A is the area of the cross section.
  • Such fibers have a relatively low surface area for a given value of denier per filament, which improves delivery of aerosol to the consumer.
  • Filter material described herein also includes cellulose-based materials such as paper.
  • Such materials may have a relatively low density, such as between about 0.1 and about 0.45 grams per cubic centimeter, to allow air and/or aerosol to pass through the material.
  • filter materials such materials may have a primary purpose, such as increasing the resistance to draw of a component, that is not related to filtration as such.
  • tobacco material refers to any material comprising tobacco or derivatives or substitutes thereof.
  • tobacco material may include one or more of tobacco, tobacco derivatives, expanded tobacco, reconstituted tobacco or tobacco substitutes.
  • the tobacco material may comprise one or more of ground tobacco, tobacco fiber, cut tobacco, extruded tobacco, tobacco stem, tobacco lamina, reconstituted tobacco and/or tobacco extract.
  • the active substance may comprise or be derived from one or more botanicals or constituents, derivatives or extracts thereof.
  • botanical includes any material derived from plants including, but not limited to, extracts, leaves, bark, fibers, stems, roots, seeds, flowers, fruits, pollen, husk, shells or the like.
  • the material may comprise an active compound naturally existing in a botanical, obtained synthetically.
  • the material may be in the form of liquid, gas, solid, powder, dust, crushed particles, granules, pellets, shreds, strips, sheets, or the like.
  • Example botanicals are tobacco, eucalyptus, star anise, hemp, cocoa, cannabis, fennel, lemongrass, peppermint, spearmint, rooibos, chamomile, flax, ginger, Ginkgo biloba , hazel, hibiscus, laurel, licorice (liquorice), matcha, mate, orange skin, papaya, rose, sage, tea such as green tea or black tea, thyme, clove, cinnamon, coffee, aniseed (anise), basil, bay leaves, cardamom, coriander, cumin, nutmeg, oregano, paprika, rosemary, saffron, lavender, lemon peel, mint, juniper, elderflower, vanilla, wintergreen, beefsteak plant, curcuma, turmeric, sandalwood, cilantro, bergamot, orange blossom, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon
  • the mint maybe chosen from the following mint varieties. Mentha arventis, Mentha c.v, Mentha niliaca, Mentha piperita, Mentha piperita citrata c.v., Mentha piperita c.v., Mentha spicata crispa, Mentha cardifolia, Mentha longifolia, Mentha suaveolens variegata, Mentha pulegium, Mentha spicata c.v and Mentha suaveolens
  • the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is tobacco. In some embodiments, the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from eucalyptus, star anise, cocoa and hemp. In some embodiments, the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from rooibos and fennel.
  • the substance to be delivered comprises a flavor.
  • flavor and “flavorant” refer to materials which, where local regulations permit, maybe used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers. They may include naturally occurring flavor materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fruit, papaya, rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey
  • the flavor comprises menthol, spearmint and/or peppermint. In some embodiments, the flavor comprises flavor components of cucumber, blueberry, citrus fruits and/or redberry. In some embodiments, the flavor comprises eugenol. In some embodiments, the flavor comprises flavor components extracted from tobacco. In some embodiments, the flavor comprises flavor components extracted from cannabis.
  • the flavor may comprise a sensate, which is intended to achieve a somatosensorial sensation which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, cooling, tingling, numbing effect.
  • a suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucolyptol, WS-3.
  • FIG. 1 is a side-on cross sectional view of an article 1 for use with a non-combustible aerosol provision system.
  • the article can be a tobacco heated product consumable.
  • the article 1 comprises a component 2 , in the present example a mouthpiece 2 , and a cylindrical rod of aerosol generating material 3 , in the present case tobacco material, connected to the mouthpiece 2 .
  • the aerosol generating material 3 provides an aerosol when heated, for instance within a non-combustible aerosol provision device as described herein, for instance a non-combustible aerosol provision device comprising a coil, forming a system.
  • the article 1 can include its own heat source, forming an aerosol provision system without requiring a separate aerosol provision device.
  • the component 2 may comprise a portion of the article 1 downstream of the aerosol generating material 3 which is not arranged to be received in a user's mouth.
  • the aerosol generating material 3 also referred to herein as an aerosol generating substrate 3 , comprises at least one aerosol forming material.
  • the aerosol forming material is glycerol.
  • the aerosol forming material can be another material as described herein or a combination thereof. The aerosol forming material has been found to improve the sensory performance of the article, by helping to transfer compounds such as flavor compounds from the aerosol generating material to the consumer.
  • an issue with adding such aerosol forming materials to the aerosol generating material within an article for use in a non-combustible aerosol provision system can be that, when the aerosol forming material is aerosolized upon heating, it can increase the mass of aerosol which is delivered by the article, and this increased mass can maintain a higher temperature as it passes through the mouthpiece. As it passes through the mouthpiece, the aerosol transfers heat into the mouthpiece and this warms the outer surface of the mouthpiece, including the area which comes into contact with the consumers lips during use.
  • the mouthpiece temperature can be significantly higher than consumers may be accustomed to when smoking, for instance, conventional cigarettes, and this can be an undesirable effect caused by the use of such aerosol forming materials.
  • the mouthpiece includes a tubular portion 4 a , in the present example formed by a hollow tube, also referred to as a cooling element.
  • the mouthpiece 2 in the present example, includes a body of material 6 downstream of the tubular portion 4 a , in this example adjacent to and in an abutting relationship with the tubular portion 4 a .
  • the body of material 6 and tubular portion 4 a each define a substantially cylindrical overall outer shape and share a common longitudinal axis.
  • the body of material 6 is wrapped in a first plug wrap 7 .
  • the tubular portion 4 a and body of material 6 are combined using a second plug wrap 9 which is wrapped around both sections.
  • a tipping paper 5 is wrapped around the full length of the mouthpiece 2 and over part of the rod of aerosol generating material 3 and has an adhesive on its inner surface to connect the mouthpiece 2 and rod 3 .
  • the tubular portion comprises a wall, which comprises a second aerosol generating material 4 b , the second aerosol generating material being an aerosol-generating material as described herein, for instance an amorphous solid material as described herein.
  • the second aerosol generating material 4 b comprises at least one aerosol forming material, and may also comprise at least one aerosol-modifying agent, or other sensate material.
  • the aerosol forming material and/or aerosol-modifying agent can be any aerosol forming material or aerosol-modifying agent as described herein, or a combination thereof.
  • the second aerosol generating material 4 b is disposed on the inner wall of the tubular portion 4 a .
  • the aerosol generated from aerosol generating material 3 referred to herein as the first aerosol
  • heat from the first aerosol may aerosolize the aerosol forming material of the second aerosol generating material 4 b , to form a second aerosol.
  • the second aerosol may comprise a flavorant, which may be additional or complementary to the flavor of the first aerosol.
  • the result of the provision of the second aerosol generating material 4 b on the tubular portion 4 a is, for instance, that it can provide a second aerosol which boosts or complements the flavor or visual appearance of the first aerosol.
  • the second aerosol generating material 4 b may comprise microcapsules which are configured to release the aerosol generating material when exposed to hot aerosol, such as the first aerosol.
  • the microcapsules may comprise a wax shell, or other material configured to disintegrate at the temperature of the first aerosol.
  • the second aerosol generating material 4 b may comprise a coating on the tubular portion.
  • the second aerosol generating material 4 b may alternatively comprise a sheet material, for instance in the form of an amorphous solid as described herein.
  • the second aerosol generating material 4 b may be applied to the tubular portion 4 a by any suitable method, in any suitable form, for instance by painting, spraying, printing, spreading, or adhering a solution, a slurry, a sheet or a particulate.
  • the second aerosol generating material 4 b is applied as a sheet material which is adhered to the internal surface of the tubular portion 4 a .
  • the sheet material can be adhered to the paper or other material forming the internal surface of the tubular portion 4 a prior to formation of the tubular portion 4 a .
  • the sheet can be applied as one or more strips extending through the tubular portion.
  • the strips can have a width of, for instance, 0.5 mm to 10 mm, or 0.75 mm to 5 mm.
  • the sheet can alternatively be applied over substantially the whole internal surface of the tubular portion 4 a .
  • the second aerosol generating material 4 b is sprayed as a liquid onto the material which forms the internal surface of the tubular portion 4 a . This can, for instance, be performed prior to, during or after formation of the tubular portion 4 a .
  • the second aerosol generating material 4 b can be sprayed as a liquid in a pattern of longitudinal stripes along the length of the tubular portion 4 a or as a spiral or swirl pattern over the internal surface of the tubular portion 4 a .
  • the body of material 6 could comprise the second aerosol generating material 4 b instead of or in addition to the tubular portion 4 a .
  • the second aerosol generating material could be sprayed directly into the material forming the cylindrical body of material 6 .
  • the tubular portion 4 a is formed from a plurality of layers of paper which are parallel wound, with butted seams, to form a hollow tube.
  • first and second paper layers are provided in a two-ply tube, although in other examples 3, 4 or more paper layers can be used forming 3,4 or more ply tubes.
  • Other constructions can be used, such as spirally wound layers of paper, cardboard tubes, tubes formed using a papier-mache type process, molded or extruded plastic tubes or similar.
  • the tubular portion 4 a can also be formed using a stiff plug wrap and/or tipping paper as the second plug wrap 9 and/or tipping paper 5 described herein, meaning that a separate tubular element is not required.
  • the stiff plug wrap and/or tipping paper is manufactured to have a rigidity that is sufficient to withstand the axial compressive forces and bending moments that might arise during manufacture and whilst the article 1 is in use.
  • the stiff plug wrap and/or tipping paper can have a basis weight between 70 gsm and 120 gsm, more preferably between 80 gsm and 110 gsm.
  • the stiff plug wrap and/or tipping paper can have a thickness between 80 pm and 200 pm, more preferably between too pm and 160 pm, or from 120 pm to 150 pm. It can be desirable for both the second plug wrap 9 and tipping paper 5 to have values in these ranges, to achieve an acceptable overall level of rigidity for the tubular portion 4 a.
  • the tubular portion 4 a preferably has a wall thickness of at least about too pm and up to about 1.5 mm, preferably between 100 pm and 1 mm and more preferably between 150 pm and 500 pm, or about 300 pin. In the present example, the tubular portion 4 a has a wall thickness of about 290 pm.
  • the “wall thickness” of the tubular portion 4 a corresponds to the thickness of the wall of the tubular portion 4 a in a radial direction. This may be measured, for example, using a calliper.
  • the article 1 has an outer circumference of about 21 mm (i.e. the article is in the demi-slim format).
  • the article 1 has a rod of aerosol generating material having a circumference greater than 19 mm. This has been found to provide a sufficient circumference to generate an improved and sustained aerosol over a usual aerosol generation session preferred by consumers.
  • rod circumferences of greater than 19 mm and less than 23 mm are preferable.
  • the rod circumference can be between 20 mm and 22 mm, which has been found to provide a good balance between providing effective aerosol delivery while allowing for efficient heating.
  • the outer circumference of the mouthpiece 2 is substantially the same as the outer circumference of the rod of aerosol generating material 3 , such that there is a smooth transition between these components.
  • the outer circumference of the mouthpiece 2 is about 20.8 mm.
  • the article 1 may be configured such that there is a separation (i.e. a minimum distance) between a heater of a non-combustible aerosol provision device too and the tubular portion 4 a . This prevents heat from the heater from damaging the material forming the tubular portion 4 a.
  • the minimum distance between a heater of the non-combustible aerosol provision device too and the tubular portion 4 a may be 3 mm or greater. In some examples, minimum distance between the heater of the non-combustible aerosol provision device too and the tubular portion 4 a may be in the range 3 mm to 10 mm, for example 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm or 10 mm.
  • the separation between the heating element of the non-combustible aerosol provision device 100 and the tubular portion 4 a may be achieved by, for example, adjusting the length of the rod of aerosol generating material 3 .
  • the tipping paper 5 extends 5 mm over the rod of aerosol generating material 3 but it can alternatively extend between 3 mm and 10 mm over the rod 3 , or more preferably between 4 mm and 6 mm, to provide a secure attachment between the mouthpiece 2 and rod 3 .
  • the tipping paper 5 can have a basis weight which is higher than the basis weight of plug wraps used in the article 1 , for instance a basis weight of 40 gsm to 80 gsm, more preferably between 50 gsm and 70 gsm, and in the present example 58 gsm.
  • tipping papers having acceptable tensile strength while being flexible enough to wrap around the article 1 and adhere to itself along a longitudinal lap seam on the paper.
  • the outer circumference of the tipping paper 5 once wrapped around the mouthpiece 2 , is about 21 mm.
  • the first plug wrap 7 has a basis weight of less than 50 gsm, more preferably between about 20 gsm and 40 gsm. Preferably, the first plug wrap 7 has a thickness of between 30 pm and 60 pm, more preferably between 35 pm and 45 pm. Preferably, the first plug wrap 7 is a non-porous plug wrap, for instance having a permeability of less than too Coresta units, for instance less than 50 Coresta units. However, in other embodiments, the first plug wrap 7 can be a porous plug wrap, for instance having a permeability of greater than 200 Coresta Units.
  • the length of the body of material 6 is less than about 20 mm. In the present example, the length of the body of material 6 is 16 mm.
  • the body of material 6 is formed from filamentary tow.
  • the tow used in the body of material 6 has a denier per filament
  • the tow can, for instance, have a denier per filament (d.p.f.) of 9.5 and a total denier of 12,000.
  • the tow comprises plasticized cellulose acetate tow.
  • the plasticizer used in the tow comprises about 7% by weight of the tow.
  • the plasticizer is triacetin.
  • different materials can be used to form the body of material 6 .
  • the body 6 can be formed from paper, for instance in a similar way to paper filters known for use in cigarettes.
  • the body 6 can be formed from tows other than cellulose acetate, for instance polylactic acid (PLA), other materials described herein for filamentary tow or similar materials.
  • the tow is preferably formed from cellulose acetate.
  • the tow, whether formed from cellulose acetate or other materials, preferably has a d.p.f. of at least 5, more preferably at least 6 and still more preferably at least 7
  • These values of denier per filament provide a tow which has relatively coarse, thick fibers with a lower surface area which result in a lower pressure drop across the mouthpiece 2 than tows having lower d.p.f. values.
  • the tow has a denier per filament of no more than 12 d.p.f., preferably no more than
  • the total denier of the tow forming the body of material 6 is preferably at most 30,000, more preferably at most 28,000 and still more preferably at most 25,000 These values of total denier provide a tow which takes up a reduced proportion of the cross sectional area of the mouthpiece 2 which results in a lower pressure drop across the mouthpiece 2 than tows having higher total denier values.
  • the tow preferably has a total denier of at least 8,000 and more preferably at least 10,000.
  • the denier per filament is between 5 and 12 while the total denier is between 10,000 and 25,000. More preferably, the denier per filament is between 6 and 10 while the total denier is between 11,000 and 22,000.
  • the cross-sectional shape of the filaments of tow are Y shaped, although in other embodiments other shapes such as ‘X’ shaped filaments can be used, with the same d.p.f. and total denier values as provided herein.
  • the cross section of the fibers may have an isoperimetric ratio L 2 /A of 25 or less, 20 or less, or 15 or less, where L is the length of the perimeter of the cross section and A is the area of the cross section.
  • L is the length of the perimeter of the cross section
  • A is the area of the cross section.
  • Such fibers have a relatively low surface area for a given value of denier per filament, which improves delivery of aerosol to the consumer.
  • the length of the tubular portion 4 a is less than about 50 mm. More preferably, the length of the tubular portion 4 a is less than about 40 mm. Still more preferably, the length of the tubular portion 4 a is less than about 30 mm. In addition, or as an alternative, the length of the tubular portion 4 a is preferably at least about 10 mm. Preferably, the length of the tubular portion 4 a is at least about 15 mm. In some preferred embodiments, the length of the tubular portion 4 a is from about 20 mm to about 30 mm, more preferably from about 22 mm to about 28 mm, even more preferably from about 24 to about 26 mm, most preferably about 25 mm.
  • the length of the tubular portion 4 a is 25 mm.
  • the second plug wrap 9 has a basis weight of less than 50 gsm, more preferably between about 20 gsm and 45 gsm.
  • the second plug wrap 9 has a thickness of between 30 pm and 60 pm, more preferably between 35 pm and 45 pm.
  • the second plug wrap 9 is preferably a non-porous plug wrap having a permeability of less than 100 Coresta Units, for instance less than 50 Coresta Units.
  • the second plug wrap 9 can be a porous plug wrap, for instance having a permeability of greater than 200 Coresta Units.
  • the tubular portion 4 a is located around and defines an air gap within the mouthpiece 2 which acts as a cooling segment.
  • the air gap provides a chamber through which heated volatilized components generated by the aerosol generating material 3 flow.
  • the tubular portion 4 a is hollow to provide a chamber for aerosol accumulation yet rigid enough to withstand axial compressive forces and bending moments that might arise during manufacture and whilst the article 1 is in use.
  • the tubular portion 4 a provides a physical displacement between the aerosol generating material 3 and the body of material 6 .
  • the physical displacement provided by the tubular portion 4 a will provide a thermal gradient across the length of the tubular portion 4 a.
  • the mouthpiece 2 comprises a cavity having an internal volume greater than 450 mm3. Providing a cavity of at least this volume has been found to enable the formation of an improved aerosol.
  • a cavity size provides sufficient space within the mouthpiece 2 to allow heated volatilized components to cool, therefore allowing the exposure of the aerosol generating material 3 to higher temperatures than would otherwise be possible, since they may result in an aerosol which is too warm.
  • the cavity is formed by the tubular portion 4 a , but in alternative arrangements it could be formed within a different part of the mouthpiece 2 .
  • the mouthpiece 2 comprises a cavity, for instance formed within the tubular portion 4 a , having an internal volume greater than 500 mm3, and still more preferably greater than 550 mm 3 , allowing further improvement of the aerosol.
  • the internal cavity comprises a volume of between about 550 mm 3 and about 750 mm 3 , for instance about 600 mm 3 or 700 mm 3 .
  • the tubular portion 4 a can be configured to provide a temperature differential of at least degrees Celsius between a heated volatilized component entering a first, upstream end of the tubular portion 4 a and a heated volatilized component exiting a second, downstream end of the tubular portion 4 a .
  • the tubular portion 4 a is preferably configured to provide a temperature differential of at least 60 degrees Celsius, preferably at least 80 degrees Celsius and more preferably at least 100 degrees Celsius between a heated volatilized component entering a first, upstream end of the tubular portion 4 a and a heated volatilized component exiting a second, downstream end of the tubular portion 4 a .
  • This temperature differential across the length of the tubular portion 4 a protects the temperature sensitive body of material 6 from the high temperatures of the aerosol generating material 3 when it is heated.
  • tubular portion 4 a can be replaced with an alternative cooling element, for instance an element formed from a body of material which allows aerosol to pass through it longitudinally, and which also performs the function of cooling the aerosol.
  • an alternative cooling element for instance an element formed from a body of material which allows aerosol to pass through it longitudinally, and which also performs the function of cooling the aerosol.
  • the mouthpiece 2 of the article 1 comprises an upstream end 3 a adjacent to the aerosol generating substrate 3 and a downstream end 2 b distal from the aerosol generating substrate 3 .
  • the pressure drop or difference (also referred to a resistance to draw) across the mouthpiece, for instance the part of the article 1 downstream of the aerosol generating material 3 is preferably less than about 40 mm H 2 O. Such pressure drops have been found to allow sufficient aerosol, including desirable compounds such as flavor compounds, to pass through the mouthpiece 2 to the consumer. More preferably, the pressure drop across the mouthpiece 2 is less than about 32mmH 2 O.
  • particularly improved aerosol has been achieved using a mouthpiece 2 having a pressure drop of less than 31 mmH 2 O, for instance about 29 mmH 2 O, about 28 mmH 2 O or about 27.5 mmH 2 O.
  • the mouthpiece pressure drop can be at least 10 mmH 2 O, preferably at least 15 mmH 2 O and more preferably at least 20 mmH 2 O.
  • the mouthpiece pressure drop can be between about 15 mmH 2 O and 40 mmH 2 O.
  • the aerosol generating material 3 is wrapped in a wrapper 10 .
  • the wrapper 10 can, for instance, be a paper or paper-backed foil wrapper.
  • the wrapper 10 is substantially impermeable to air.
  • the wrapper 10 preferably has a permeability of less than 100 Coresta Units, more preferably less than 60 Coresta Units. It has been found that low permeability wrappers, for instance having a permeability of less than 100 Coresta Units, more preferably less than 60 Coresta Units, results in an improvement in the aerosol formation in the aerosol generating material 3 .
  • the permeability of the wrapper 10 can be measured in accordance with ISO 2965.2009 concerning the determination of air permeability for materials used as cigarette papers, filter plug wrap and filter joining paper.
  • the wrapper 10 comprises aluminum foil.
  • Aluminum foil has been found to be particularly effective at enhancing the formation of aerosol within the aerosol generating material 3 .
  • the aluminum foil has a metal layer having a thickness of about 6 pm.
  • the aluminum foil has a paper backing.
  • the aluminum foil can be other thicknesses, for instance between 4 pm and 16 pm in thickness.
  • the aluminum foil also need not have a paper backing, but could have a backing formed from other materials, for instance to help provide an appropriate tensile strength to the foil, or it could have no backing material.
  • Metallic layers or foils other than aluminum can also be used.
  • the total thickness of the wrapper is preferably between 20 pm and 60 pm, more preferably between 30 pm and 50 pm, which can provide a wrapper having appropriate structural integrity and heat transfer characteristics.
  • the tensile force which can be applied to the wrapper before it breaks can be greater than 3,000 grains force, for instance between 3,000 and 10,000 grams force or between 3,000 and 4,500 grams force.
  • the wrapper 10 surrounding the aerosol generating material comprises citrate, such as sodium citrate and/or potassium citrate.
  • the wrapper 10 may have a citrate content of 2% by weight or less, or 1% by weight or less. Reducing the citrate content of the wrapper can assist with reducing any visible discoloration of the wrapper during use.
  • the wrapper 10 surrounding the aerosol generating material has a high level of permeability, for example greater than about 1000 Coresta Units, or greater than about 1500 Coresta Units, or greater than about 2000 Coresta Units.
  • the permeability of the wrapper 10 can be measured in accordance with ISO 2965:2009 concerning the determination of air permeability for materials used as cigarette papers, filter plug wrap and filter joining paper.
  • the wrapper 10 may be formed from a material with a high inherent level of permeability, an inherently porous material, or may be formed from a material with any level of inherent permeability where the final level of permeability is achieved by providing the wrapper 10 with a permeable zone or area.
  • Providing a permeable wrapper 10 provides a route for air to enter the smoking article.
  • the wrapper can be provided with a permeability such that the amount of air entering the article through the rod of aerosol generating material is relatively more than the amount of air entering the article through the ventilation area 12 in the mouthpiece.
  • An article having this arrangement may produce a more flavorsome aerosol which may be more satisfactory to the user.
  • the article has a ventilation level of about 75% of the aerosol drawn through the article.
  • the article can have a ventilation level of between 50% and 80% of aerosol drawn through the article, for instance between 65% and 75%. Ventilation at these levels helps to slow down the flow of aerosol drawn through the mouthpiece 2 and thereby enable the aerosol to cool sufficiently before it reaches the downstream end 2 b of the mouthpiece 2 .
  • the ventilation is provided directly into the mouthpiece 2 of the article 1 .
  • the ventilation is provided into the tubular portion 4 a , which has been found to be particularly beneficial in assisting with the aerosol generation process.
  • the ventilation is provided via first and second parallel rows of perforations 12 , in the present case formed as laser perforations, at positions 17.925 mm and 18.625 mm respectively from the downstream, mouth-end 2 b of the mouthpiece 2 . These perforations pass though the tipping paper 5 , second plug wrap 9 and tubular portion 4 a .
  • the ventilation can be provided into the mouthpiece at other locations.
  • the ventilation can be provided via a single row of perforations, for instance laser perforations, into the portion of the article in which the tubular portion is located. This has been found to result in improved aerosol formation, which is thought to result from the airflow through the perforations being more uniform than with multiple rows of perforations, for a given ventilation level.
  • Aerosol temperature has been found to generally increase with a drop in the ventilation level.
  • the relationship between aerosol temperature and ventilation level does not appear to be linear, with variations in ventilation, for instance due to manufacturing tolerances, having less impact at lower target ventilation levels.
  • the aerosol temperature could increase by approximately 6° C. at the lower ventilation limit (60% ventilation).
  • the aerosol temperature may only increase by approximately 3-5° C. at the lower vent limit (45% ventilation).
  • the target ventilation level of the article can therefore be within the range 40% to 70%, for instance, 45% to 65%.
  • the mean ventilation level of at least 20 articles can be between 40% and 70%, for instance between 45% and 70% or between 51% and 59%.
  • the aerosol forming material added to the aerosol generating substrate 3 comprises 14% by weight of the aerosol generating substrate 3 .
  • the aerosol forming material comprises at least 5% by weight of the aerosol generating substrate, more preferably at least 10%.
  • the aerosol forming material comprises less than 25% by weight of the aerosol generating substrate, more preferably less than 20%, for instance between 10% and 20%, between 12% and 18% or between 13% and 16%.
  • the aerosol generating material 3 is provided as a cylindrical rod of aerosol generating material. Irrespective of the form of the aerosol generating material, it preferably has a length of about 10 mm to too mm. In some embodiments, the length of the aerosol generating material is preferably in the range about 25 mm to 50 mm, more preferably in the range about 30 mm to 45 mm, and still more preferably about 30 mm to 40 mm.
  • the volume of aerosol generating material 3 provided can vary from about 200 mm3 to about 4300 mm3, preferably from about 500 mm3 to 1500 mm3, more preferably from about 1000 mm3 to about 1300 mm3.
  • these volumes of aerosol generating material for instance from about 1000 mm3 to about 1300 mm3, has been advantageously shown to achieve a superior aerosol, having a greater visibility and sensory performance compared to that achieved with volumes selected from the lower end of the range.
  • the mass of aerosol generating material 3 provided can be greater than 200 mg, for instance from about 200 mg to 400 mg, preferably from about 230 mg to 360 mg, more preferably from about 250 mg to 360 mg. It has been advantageously found that providing a higher mass of aerosol generating material results in improved sensory performance compared to aerosol generated from a lower mass of tobacco material.
  • the aerosol generating material or substrate is formed from tobacco material as described herein, which includes a tobacco component.
  • the tobacco component preferably contains paper reconstituted tobacco.
  • the tobacco component may also contain leaf tobacco, extruded tobacco, and/or bandcast tobacco.
  • the aerosol generating material 3 can comprise reconstituted tobacco material having a density of less than about 700 milligrams per cubic centimeter (mg/cc).
  • Such tobacco material has been found to be particularly effective at providing an aerosol generating material which can be heated quickly to release an aerosol, as compared to denser materials.
  • the inventors tested the properties of various aerosol generating materials, such as bandcast reconstituted tobacco material and paper reconstituted tobacco material, when heated.
  • aerosol generating materials having a density of less than 700 mg/cc were found to have a zero heat flow temperature of less than 164° C., as compared to materials with a density over 700 mg/cc, which had zero heat flow temperatures greater than 164° C.
  • the density of the aerosol generating material also has an impact on the speed at which heat conducts through the material, with lower densities, for instance those below 700 mg/cc, conducting heat more slowly through the material, and therefore enabling a more sustained release of aerosol.
  • the aerosol generating material 3 comprises reconstituted tobacco material having a density of less than about 700 mg/cc, for instance paper reconstituted tobacco material. More preferably, the aerosol generating material 3 comprises reconstituted tobacco material having a density of less than about 600 mg/cc. Alternatively or in addition, the aerosol generating material 3 preferably comprises reconstituted tobacco material having a density of at least 350 mg/cc, which is considered to allow for a sufficient amount of heat conduction through the material.
  • the tobacco material may be provided in the form of cut rag tobacco.
  • the cut rag tobacco can have a cut width of at least 15 cuts per inch (about 5.9 cuts per cm, equivalent to a cut width of about 1.7 mm).
  • the cut rag tobacco has a cut width of at least 18 cuts per inch (about 7.1 cuts per cm, equivalent to a cut width of about 1.4 mm), more preferably at least 20 cuts per inch (about 7.9 cuts per cm, equivalent to a cut width of about 1.27 mm).
  • the cut rag tobacco has a cut width of 22 cuts per inch (about 8.7 cuts per cm, equivalent to a cut width of about 1.15 mm).
  • the cut rag tobacco has a cut width at or below 40 cuts per inch (about 15.7 cuts per cm, equivalent to a cut width of about 0.64 mm). Cut widths between 0.5 mm and 2.0 mm, for instance between 0.6 mm and 1.5 mm, or between 0.6 mm and 1.7 mm have been found to result in tobacco material which is preferably in terms of surface area to volume ratio, particularly when heated, and the overall density and pressure drop of the substrate 3 .
  • the cut rag tobacco can be formed from a mixture of forms of tobacco material, for instance a mixture of one or more of paper reconstituted tobacco, leaf tobacco, extruded tobacco and bandcast tobacco.
  • the tobacco material comprises paper reconstituted tobacco or a mixture of paper reconstituted tobacco and leaf tobacco.
  • the tobacco material may contain a filler component.
  • the filler component is generally a non-tobacco component, that is, a component that does not include ingredients originating from tobacco.
  • the filler component may be a non-tobacco fiber such as wood fiber or pulp or wheat fiber.
  • the filler component may also be an inorganic material such as chalk, perlite, vermiculite, diatomaceous earth, colloidal silica, magnesium oxide, magnesium sulphate, magnesium carbonate.
  • the filler component may also be a non-tobacco cast material or a non-tobacco extruded material.
  • the filler component may be present in an amount of 0 to 20% by weight of the tobacco material, or in an amount of from 1 to 10% by weight of the composition. In some embodiments, the filler component is absent.
  • the tobacco material contains an aerosol forming material.
  • an “aerosol forming material” is an agent that promotes the generation of an aerosol.
  • An aerosol forming material may promote the generation of an aerosol by promoting an initial vaporization and/or the condensation of a gas to an inhalable solid and/or liquid aerosol.
  • an aerosol forming material may improve the delivery of flavor from the aerosol generating material.
  • any suitable aerosol forming material or agents may be included in the aerosol generating material of the invention, including those described herein.
  • Suitable aerosol forming materials include, but are not limited to a polyol such as sorbitol, glycerol, and glycols like propylene glycol or triethylene glycol; a non-polyol such as monohydric alcohols, high boiling point hydrocarbons, acids such as lactic acid, glycerol derivatives, esters such as diacetin, triacetin, triethylene glycol diacetate, triethyl citrate or myristates including ethyl myristate and isopropyl myristate and aliphatic carboxylic acid esters such as methyl stearate, dimethyl dodecanedioate and dimethyl tetradecanedioate.
  • a polyol such as sorbitol, glycerol, and glycols like propylene glycol or triethylene glycol
  • a non-polyol such as monohydric alcohols, high boiling point hydrocarbons, acids such as lactic acid,
  • the aerosol forming material may be glycerol, propylene glycol, or a mixture of glycerol and propylene glycol.
  • the total amount of glycerol, propylene glycol, or a mixture of glycerol and propylene glycol used maybe in the range of between 10% and 30%, for instance between 15% and 25% of the tobacco material measured on a dry weight basis.
  • Glycerol maybe present in an amount of from 10 to 20% by weight of the tobacco material, for example 13 to 16% by weight of the composition, or about 14% or 15% by weight of the composition.
  • Propylene glycol, if present, may be present in an amount of from 0.1 to 0.3% by weight of the composition.
  • the aerosol forming material may be included in any component, for example any tobacco component, of the tobacco material, and/or in the filler component, if present. Alternatively or additionally the aerosol forming material may be added to the tobacco material separately. In either case, the total amount of the aerosol forming material in the tobacco material can be as defined herein.
  • the tobacco material can contain between 10% and 90% by weight tobacco leaf, wherein the aerosol forming material is provided in an amount of up to about 10% by weight of the leaf tobacco. To achieve an overall level of aerosol forming material between 10% and 20% by weight of the tobacco material, it has been advantageously found that this can be added in higher weight percentages to the another component of the tobacco material, such as reconstituted tobacco material.
  • the tobacco material described herein contains nicotine.
  • the nicotine content is from 0.5 to 1.75% by weight of the tobacco material, and maybe, for example, from 0.8 to 1.5% by weight of the tobacco material. Additionally or alternatively, the tobacco material contains between 10% and 90% by weight tobacco leaf having a nicotine content of greater than 1.5% by weight of the tobacco leaf.
  • a tobacco leaf with nicotine content higher than 1.5% in combination with a lower nicotine base material such as paper reconstituted tobacco
  • a tobacco material with an appropriate nicotine level but better sensory performance than the use of paper reconstituted tobacco alone can, for instance, have a nicotine content of between 1.5% and 5% by weight of the tobacco leaf.
  • the tobacco material described herein can contain an aerosol-modifying agent, such as any of the flavors described herein.
  • the tobacco material contains menthol, forming a mentholated article.
  • the tobacco material can comprise from 3 mg to 20 mg of menthol, preferably between 5 mg and 18 mg and more preferably between 8 mg and 16 mg of menthol. In the present example, the tobacco material comprises 16 mg of menthol.
  • the tobacco material can contain between 2% and 8% by weight of menthol, preferably between 3% and 7% by weight of menthol and more preferably between 4% and 5.5% by weight of menthol. In one embodiment, the tobacco material includes 4.7% by weight of menthol.
  • Such high levels of menthol loading can be achieved using a high percentage of reconstituted tobacco material, for instance greater than 50% of the tobacco material by weight.
  • a high volume of aerosol generating material for instance tobacco material
  • aerosol generating material such as tobacco material
  • the water content of the tobacco material described herein may vary and may be, for example, from 5 to 15% by weight.
  • the water content of the tobacco material described herein may vary according to, for example, the temperature, pressure and humidity conditions at which the compositions are maintained.
  • the water content can be determined by Karl-Fisher analysis, as known to those skilled in the art.
  • Karl-Fisher analysis as known to those skilled in the art.
  • any component other than water is included in the weight of the tobacco material.
  • the aerosol forming material when the aerosol forming material is provided in the tobacco component of the tobacco material, or in the filler component (if present) of the tobacco material, instead of or in addition to being added separately to the tobacco material, the aerosol forming material is not included in the weight of the tobacco component or filler component, but is included in the weight of the “aerosol forming material” in the weight % as defined herein. All other ingredients present in the tobacco component are included in the weight of the tobacco component, even if of non-tobacco origin (for example non tobacco fibers in the case of paper reconstituted tobacco).
  • the tobacco material comprises the tobacco component as defined herein and the aerosol forming material as defined herein. In an embodiment, the tobacco material consists essentially of the tobacco component as defined herein and the aerosol forming material as defined herein. In an embodiment, the tobacco material consists of the tobacco component as defined herein and the aerosol forming material as defined herein. Paper reconstituted tobacco is present in the tobacco component of the tobacco material described herein in an amount of from 10% to 100% by weight of the tobacco component. In embodiments, the paper reconstituted tobacco is present in an amount of from 10% to 80% by weight, or 20% to 70% by weight, of the tobacco component. In a further embodiment, the tobacco component consists essentially of, or consists of, paper reconstituted tobacco.
  • leaf tobacco is present in the tobacco component of the tobacco material in an amount of from at least 10% by weight of the tobacco component.
  • leaf tobacco can be present in an amount of at least 10% by weight of the tobacco component, while the remainder of the tobacco component comprises paper reconstituted tobacco, bandcast reconstituted tobacco, or a combination of bandcast reconstituted tobacco and another form of tobacco such as tobacco granules.
  • Paper reconstituted tobacco refers to tobacco material formed by a process in which tobacco feedstock is extracted with a solvent to afford an extract of solubles and a residue comprising fibrous material, and then the extract (usually after concentration, and optionally after further processing) is recombined with fibrous material from the residue (usually after refining of the fibrous material, and optionally with the addition of a portion of non-tobacco fibers) by deposition of the extract onto the fibrous material.
  • the process of recombination resembles the process for making paper.
  • the paper reconstituted tobacco may be any type of paper reconstituted tobacco that is known in the art.
  • the paper reconstituted tobacco is made from a feedstock comprising one or more of tobacco strips, tobacco stems, and whole leaf tobacco.
  • the paper reconstituted tobacco is made from a feedstock consisting of tobacco strips and/or whole leaf tobacco, and tobacco stems.
  • scraps, fines and winnowings can alternatively or additionally be employed in the feedstock.
  • the paper reconstituted tobacco for use in the tobacco material described herein may be prepared by methods which are known to those skilled in the art for preparing paper reconstituted tobacco.
  • FIG. 2 is a side-on cross sectional view of a further article T, including component 2 ′ in the present example a mouthpiece 2 ′, including a hollow tubular element 8 .
  • Mouthpiece 2 ′ is substantially the same as mouthpiece 2 described above, except that at the downstream end 2 b , the mouthpiece 2 ′ has a hollow tubular element 8 formed from filamentary tow.
  • the mouthpiece 2 ′ includes tubular portion 4 which comprises a wall including a second aerosol generating material, as described with reference to FIG. 1 .
  • the second aerosol generating material is an aerosol-generating material as described herein, for instance an amorphous solid material as described herein.
  • the tubular portion 4 a , body of material 6 and hollow tubular element 8 are combined using the second plug wrap 9 which is wrapped around all three sections.
  • the component 2 ′ may comprise a portion of the article 1 ′ downstream of the aerosol generating material 3 which is not arranged to be received in a user's mouth.
  • the length of the body of material 6 is less than about 15 mm. More preferably, the length of the body of material 6 is less than about 10 mm. In addition, or as an alternative, the length of the body of material 6 is at least about 5 mm.
  • the length of the body of material 6 is at least about 6 mm.
  • the length of the body of material 6 is from about 5 mm to about 15 mm, more preferably from about 6 mm to about 12 mm, even more preferably from about 6 mm to about 12 mm, most preferably about 6 mm, 7 mm, 8 mm, 9 mm or 10 mm.
  • the length of the body of material 6 is 10 mm.
  • the part of the mouthpiece which comes into contact with a consumer's lips has usually been a paper tube, which is either hollow or surrounds a cylindrical body of filter material.
  • Providing a hollow tubular element 8 has advantageously been found to significantly reduce the temperature of the outer surface of the mouthpiece 2 ′ at the downstream end 2 b of the mouthpiece which comes into contact with a consumer's mouth when the article 1 ′ is in use.
  • the use of the hollow tubular element 8 has also been found to significantly reduce the temperature of the outer surface of the mouthpiece 2 ′ even upstream of the hollow tubular element 8 .
  • the hollow tubular element 8 may also, or alternatively, comprise the second aerosol generating material 4 b , as described above.
  • hollow tubular element 8 is formed from filamentary tow.
  • the hollow tubular element may be formed using any construction as described herein for the tubular portion 4 a.
  • the “wall thickness” of the hollow tubular element 8 corresponds to the thickness of the wall of the tube 8 in a radial direction. This may be measured in the same way as that of the tubular portion.
  • the wall thickness is advantageously greater than 0.9 mm, and more preferably 1.0 mm or greater.
  • the wall thickness is substantially constant around the entire wall of the hollow tubular element 8 .
  • the wall thickness is preferably greater than 0.9 mm at any point around the hollow tubular element 8 , more preferably 1.0 mm or greater.
  • the length of the hollow tubular element 8 is less than about 20 mm.
  • the length of the hollow tubular element 8 can be less than about 15 mm.
  • the length of the hollow tubular element 8 can also be less than about 10 mm.
  • the length of the hollow tubular element 8 can be at least about 5 mm.
  • the length of the hollow tubular element 8 is at least about 6 mm.
  • the length of the hollow tubular element 8 is from about 5 mm to about 20 mm, for instance from about 6 mm to about 10 mm, or from about 6 mm to about 8 mm, such as about 6 mm, 7 mm or about 8 mm.
  • the length of the hollow tubular element 8 is 6 mm.
  • a hollow tubular element 8 having a length of greater than about 10 mm, for instance between about
  • a consumer's lips are likely to extend in some cases to about 12 mm from the mouth end of the article 1 when drawing aerosol through the article 1 , and therefore a hollow tubular element 4 having a length of at least 10 mm or at least 12 mm means that most of the consumer's lips surround this element 8 .
  • the density of the hollow tubular element 8 is at least about 0.25 grams per cubic centimeter (g/cc), more preferably at least about 0.3 g/cc.
  • the density of the hollow tubular element 8 is less than about 0.75 grams per cubic centimeter (g/cc), more preferably less than 0.6 g/cc.
  • the density of the hollow tubular element 8 is between 0.25 and 0.75 g/cc, more preferably between 0.3 and 0.6 g/cc, and more preferably between 0.4 g/cc and 0.6 g/cc or about 0.5 g/cc.
  • the “density” of the hollow tubular element 8 refers to the density of the filamentary tow forming the element with any plasticizer incorporated. The density may be determined by dividing the total weight of the hollow tubular element 8 by the total volume of the hollow tubular element 8 , wherein the total volume can be calculated using appropriate measurements of the hollow tubular element 8 taken, for example, using calipers. Where necessary, the appropriate dimensions may be measured using a microscope.
  • the filamentary tow forming the hollow tubular element 8 preferably has a total denier of less than 45,000, more preferably less than 42.000.
  • the total denier has been found to allow the formation of a hollow tubular element 8 which is not too dense.
  • the total denier is at least 20,000, more preferably at least 25,000.
  • the filamentary tow forming the hollow tubular element 8 has a total denier between 25,000 and 45,000, more preferably between 35,000 and 45,000.
  • the cross-sectional shape of the filaments of tow are ‘Y’ shaped, although in other embodiments other shapes such as ‘X’ shaped filaments can be used.
  • the filamentary tow forming the hollow tubular element 8 preferably has a denier per filament of greater than 3 This denier per filament has been found to allow the formation of a hollow tubular element 8 which is not too dense.
  • the denier per filament is at least 4, more preferably at least 5.
  • the filamentary tow forming the hollow tubular element 8 has a denier per filament between 4 and 10, more preferably between 4 and 9.
  • the filamentary tow forming the hollow tubular element 8 has an 8Y40,ooo tow formed from cellulose acetate and comprising 18% plasticizer, for instance triacetin.
  • the hollow tubular element 8 preferably has an internal diameter of greater than 3.0 mm.
  • the hollow tubular element 8 has an internal diameter of greater than 3.1 mm, and still more preferably greater than 3.5 mm or 3.6 mm. In one embodiment, the internal diameter of the hollow tubular element 8 is about 3.9 mm.
  • the hollow tubular element 8 preferably comprises from 15% to 22% by weight of plasticizer.
  • the plasticizer is preferably triacetin, although other plasticizers such as polyethelyne glycol (PEG) can be used. More preferably, the hollow tubular element 8 comprises from 16% to 20% by weight of plasticizer, for instance about 17%, about 18% or about 19% plasticizer.
  • the tubular portion 4 a is a first hollow tubular element, and hollow tubular element 8 is a second hollow tubular element.
  • the ventilation is provided into tubular portion 4 a , as described in relation to FIG. 1 . In alternative embodiments, the ventilation can be provided into the mouthpiece at other locations, for instance into the body of material 6 or hollow tubular element 8 .
  • FIG. 3 a is a side-on cross sectional view of a further article 1 ′ including a capsule-containing component 2 ′′, in the present example a mouthpiece 2 ′′.
  • FIG. 3 b is a cross sectional view of the capsule-containing mouthpiece shown in FIG. 3 a through the line A-A′ thereof.
  • Article 1 ′′ and capsule-containing mouthpiece 2 ′′ are the same as the article 1 and mouthpiece 2 illustrated in FIG. 1 , except that an aerosol-modifying agent is provided within the body of material 6 , in the present example in the form of a capsule 11 , and that an oil-resistant first plug wrap 7 ′ surrounds the body of material 6 .
  • the mouthpiece 2 ′′ includes tubular portion 4 which comprises a wall including a second aerosol generating material, as described with reference to FIG. 1 .
  • the second aerosol generating material is an aerosol-generating material as described herein, for instance an amorphous solid material as described herein.
  • the aerosol-modifying agent can be provided in other forms, such as material injected into the body of material 6 or provided on a thread, for instance the thread carrying a flavorant or other aerosol-modifying agent, which may also be disposed within the body of material 6 .
  • the component 2 ′′ may comprise a portion of the article 1 ′′ downstream of the aerosol generating material 3 which is not arranged to be received in a user's mouth.
  • the capsule 11 can comprise a breakable capsule, for instance a capsule which has a solid, frangible shell surrounding a liquid payload. In the present example, a single capsule 11 is used. The capsule 11 is entirely embedded within the body of material 6 .
  • the capsule 11 is completely surrounded by the material forming the body 6 in other examples, a plurality of breakable capsules maybe disposed within the body of material 6 , for instance 2, 3 or more breakable capsules.
  • the length of the body of material 6 can be increased to accommodate the number of capsules required.
  • the individual capsules may be the same as each other, or may differ from one another in terms of size and/or capsule payload.
  • the capsule 11 has a core-shell structure.
  • the capsule 11 comprises a shell encapsulating a liquid agent, for instance a flavorant or other agent, which can be any one of the flavorants or aerosol-modifying agents described herein.
  • the shell of the capsule can be ruptured by a user to release the flavorant or other agent into the body of material 6 .
  • the first plug wrap 7 ′ can comprise a barrier coating to make the material of the plug wrap substantially impermeable to the liquid payload of the capsule 11 .
  • the second plug wrap 9 and/or tipping paper 5 can comprise a barrier coating to make the material of that plug wrap and/or tipping paper substantially impermeable to the liquid payload of the capsule 11 .
  • the capsule 11 is spherical and has a diameter of about 3 mm.
  • the total weight of the capsule 11 may be in the range about 10 mg to about 50 mg.
  • the capsule 11 is located at a longitudinally central position within the body of material 6 . That is, the capsule 11 is positioned so that its center is 4 mm from each end of the body of material 6 .
  • the capsule 11 can be located at a position other than a longitudinally central position in the body of material 6 , i.e closer to the downstream end of the body of material 6 than the upstream end, or closer to the upstream end of the body of material 6 than the downstream end.
  • the mouthpiece 2 ′′ is configured so that the capsule 11 and the ventilation holes 12 are longitudinally offset from each other in the mouthpiece 2 ′′.
  • FIG. 3 b shows the capsule 11 , the body of material 6 , the first and second plug wraps 7 ′, 9 and the tipping paper 5 .
  • the capsule 11 is centred on the longitudinal axis (not shown) of the mouthpiece 2 ′′.
  • the first and second plug wraps 7 ′, 9 and tipping 5 are arranged concentrically around the body of material 6 .
  • the breakable capsule 11 has a core-shell structure. That is, the encapsulating material or barrier material creates a shell around a core that comprises the aerosol-modifying agent.
  • the shell structure hinders migration of the aerosol-modifying agent during storage of the article 1 ′ but allows controlled release of the aerosol-modifying agent, also referred to as an aerosol modifier, during use.
  • the barrier material also referred to herein as the encapsulating material
  • the capsule is crushed or otherwise fractured or broken by the user to release the encapsulated aerosol modifier. Typically, the capsule is broken immediately prior to heating being initiated but the user can select when to release the aerosol modifier.
  • breakable capsule refers to a capsule, wherein the shell can be broken by means of a pressure to release the core; more specifically the shell can be ruptured under the pressure imposed by the user's fingers when the user wants to release the core of the capsule.
  • the barrier material is heat resistant. That is to say, in some cases, the barrier will not rupture, melt or otherwise fail at the temperature reached at the capsule site during operation of the aerosol provision device.
  • a capsule located in a mouthpiece maybe exposed to temperatures in the range of 30° C. to 100° C. for example, and the barrier material may continue to retain the liquid core up to at least about 50° C. to 120° C.
  • the capsule releases the core composition on heating, for example by melting of the barrier material or by capsule swelling leading to rupture of the barrier material.
  • the total weight of a capsule may be in the range of about 1 mg to about too mg, suitably about 5 mg to about 60 mg, about 8 mg to about 50 mg, about 10 mg to about 20 mg, or about 12 mg to about 18 mg.
  • the total weight of the core formulation may be in the range of about 2 mg to about 90 mg, suitably about 3 mg to about 70 mg, about 5 mg to about 25 mg, about 8 mg to about 20 mg, or about 10 mg to about 15 mg.
  • the capsule according to the invention comprises a core as described above, and a shell.
  • the capsules may present a crush strength from about 4.5 N to about 40 N, more preferably from about 5 N to about 30 N or to about 28 N (for instance about 9.8 N to about 24.5 N).
  • the capsule burst strength can be measured when the capsule is removed from the body of material 6 and using a force gauge to measure the force at which the capsule bursts when pressed between two flat metal plates.
  • a suitable measurement device is the Sauter FK 50 force gauge with a flat headed attachment, which can be used to crush the capsule against a flat, hard surface having a surface similar to the attachment.
  • the capsules maybe substantially spherical and have a diameter of at least about 0.4 mm, 0.6 mm, 0.8 mm, 1.0 mm, 2.0 mm, 2.5 mm, 2.8 mm or 3.0 mm.
  • the diameter of the capsules maybe less than about 10.0 mm, 8.0 mm, 7.0 mm, 6.0 mm, 5.5 mm, 5.0 mm, 4.5 mm, 4.0 mm, 3.5 mm or 3.2 mm.
  • the capsule diameter maybe in the range of about 0.4 mm to about 10.0 mm, about 0.8 mm to about 6.0 mm, about 2.5 mm to about 5.5 mm or about 2.8 mm to about 3.2 mm.
  • the capsule may have a diameter of about 3.0 mm. These sizes are particularly suitable for incorporation of the capsule into an article as described herein.
  • the cross-sectional area of the capsule 11 at its largest cross sectional area is in some embodiments less than 28% of the cross sectional area of the portion of the mouthpiece 2 ′′ in which the capsule 11 is provided, more preferably less than 27% and still more preferably less than 25%.
  • the largest cross sectional area of the capsule is 7.07 mm 2 .
  • the body of material 6 has an outer circumference of 20.8 mm, and the radius of this component will be 3.31 mm, corresponding to a cross sectional area of 34.43 mm 2 .
  • the capsule cross sectional area is, in this example, 20.5% of the cross-sectional area of the mouthpiece 2 ′′.
  • the capsule had a diameter of 3.2 mm, its largest cross sectional area would be 8.04 mm 2 .
  • the cross sectional area of the capsule would be 23.4% of the cross sectional area of the body of material 6 .
  • a capsule with a largest cross sectional area less than 28% of the cross sectional area of the portion of the mouthpiece 2 ′′ in which the capsule 11 is provided has the advantage that the pressure drop across the mouthpiece 2 ′′ is reduced as compared to capsules with larger cross sectional areas and adequate space remains around the capsule for aerosol to pass without the body of material 6 removing significant amounts of the aerosol mass as it passes through the mouthpiece 2 ′′.
  • the pressure drop or difference (also referred to a resistance to draw) across the article reduces by less than 8 mmH 2 O when the capsule is broken. More preferably, the open pressure drop reduces by less than 6mmH 2 O and more preferably less than 5mmH 2 O. These values are measured as the average achieved by at least 80 articles made to the same design. Such small changes in pressure drop mean that other aspects of the product design, such as setting the correct ventilation level for a given product pressure drop, can be achieved irrespective of whether or not the consumer chooses to break the capsule.
  • tow capability curve which represents the pressure drop through a length of rod formed using the tow, for each of a range of tow weights. Parameters such as the rod length and circumference, wrapper thickness and tow plasticizer level are specified, and these are combined with the tow specification to generate the tow capability curve, which gives an indication of the pressure drop which would be provided by different tow weights between the minimum and maximum weights achievable using standard filter rod forming machinery.
  • Such tow capability curves can be calculated, for instance, using software available from tow suppliers.
  • a body of material 6 which includes filamentary tow having a weight per mm of length of the body of material 6 which is between about 10% and about 30% of the range between the minimum and maximum weights of a tow capability curve generated for the filamentary tow. This can provide an acceptable balance between providing enough tow weight to avoid shrinkage after the body 6 has been formed, providing an acceptable pressure drop, while also assisting with capsule placement within the tow, for capsules of the sizes described herein.
  • the part of the mouthpiece 2 in which the capsule is located reaches a temperature of between 58 and 70 degrees Centigrade during use of the system to generate an aerosol.
  • the capsule contents are warmed sufficiently to promote volatization of the capsule contents, for instance an aerosol modifying agent, into the aerosol formed by the system as the aerosol passes through the mouthpiece 2 .
  • Warming the content of the capsule 11 can take place, for instance, before the capsule 11 has been broken, such that when the capsule 11 is broken, its contents are more readily released into the aerosol passing through the mouthpiece 2 .
  • the content of the capsule 11 can be warmed to this temperature after the capsule 11 has been broken, again resulting in the increased release of the content into the aerosol.
  • mouthpiece temperatures in the range of 58 to 70 degrees Centigrade have been found to be high enough that the capsule content can be more readily released, but low enough that the outer surface of the portion of the mouthpiece 2 in which the capsule is located does not reach an uncomfortable temperature for the consumer to touch in order to burst the capsule 11 by squeezing on the mouthpiece 2 .
  • the temperature of the part of the mouthpiece 2 at which the capsule 11 is located can be measured using a digital thermometer with a penetration probe, arranged such that the probe enters the mouthpiece 2 through a wall of the mouthpiece 2 (forming a seal to limit the amount of external air which could leak into the mouthpiece around the probe) and is located close to the location of the capsule 11 .
  • a temperature probe can be placed on the outer surface of the mouthpiece 2 to measure the temperature of the outer surface.
  • Table 1.0 below shows the temperature at the location of the capsule in the mouthpiece 2 of an article used in an aerosol provision system during the first 5 puffs. Data is provided for an article when heated using a coil heating device as described herein with reference to FIGS. 3 to 7 using a ‘standard’ heating profile and for the same article when heated using the same device using a ‘boost’ heating profile.
  • the ‘boost’ heating profile is user selectable and allows a higher heating temperature to be achieved.
  • the temperature of the mouthpiece 2 at the capsule 11 location reaches a maximum temperature of 61.5° C. under the ‘standard’ heating profile and a maximum of 63.8° C. under the ‘boost’ heating profile. A maximum temperature in the range of 58° C.
  • to 70° C. preferably in the range of 59° C. to 05° C. and more preferably in the range of 60° C. to 65° C. has been found to be particularly advantageous in relation to helping to volatize the contents of the capsule 11 while maintaining a suitable outer surface temperature of the mouthpiece 2 .
  • the capsule 11 is breakable by external force applied to the mouthpiece 2 , for instance by a consumer using their fingers or other mechanism to squeeze the mouthpiece 2 .
  • the part of the mouthpiece in which the capsule is located is arranged to reach a temperature of greater than 58° C. during use of the aerosol provision system to generate an aerosol.
  • the burst strength of the capsule 11 when located within the mouthpiece 2 and prior to heating of the aerosol generating material 3 is between 1500 and 4000 grams force.
  • the burst strength of the capsule 1 when located within the mouthpiece 2 and within 30 seconds of use of the aerosol provision system to generate an aerosol is between 1000 and 4000 grams force.
  • the capsule 11 is able to maintain a burst strength within a range which has been found to enable the capsule 11 to be readily crushable by a consumer, while providing the consumer with sufficient tactile feedback that the capsule 11 has been broken. Maintaining such a burst strength is achieved by selecting an appropriate gelling agent for the capsule, as described herein, such as a polysaccharide including, for instance, gum Arabic, gellan gum, acacia gum, xanthan gums or carrageenans, alone or in combination with gelatine. In addition, a suitable wall thickness for the capsule shell should be selected.
  • the burst strength of the capsule when located within the mouthpiece and prior to heating of the aerosol generating material is between 2000 and 3500 grams force, or between 2500 and 3500 grams force.
  • the burst strength of the capsule when located within the mouthpiece and within 30 s of use of the system to generate an aerosol is between 1500 and 4000 grains force, or between 1750 and 3000 grams force.
  • the average burst strength of the capsule when located within the mouthpiece and prior to heating of the aerosol generating material is about 3175 grams force and the average burst strength of the capsule when located within the mouthpiece and within 30 s of use of the system to generate an aerosol is about 2345 grams force.
  • the burst strength of the capsule can be tested using a force measuring instrument such as a Texture Analyser.
  • a force measuring instrument such as a Texture Analyser.
  • a Type TA.XTPlus Texture Analyser was used with a circular shaped metal probe having a 6 mm diameter centerd on the location of the capsule (i.e. 12 mm from the mouth end of the mouthpiece 2 ).
  • the test speed of the probe was 0.3 mm/second, while a pre-test speed of 5.00 mm/second was used and a post-test speed of 10 mm/second.
  • the force used was 5000 g.
  • the articles tested were drawn on using a Borgwaldt A14 Syringe drive Unit following the known Health Canada Intense puffing regime (55 ml puff volume applied for 2 seconds duration every 30 seconds) using standard testing equipment. Three puffs were performed using this puffing regime and the capsule burst strength was measured within 30 seconds of the third puff.
  • the article tested was equivalent to the article 1 ′ illustrated in FIGS.
  • the capsule was a 3 mm diameter capsule located within an 8 mm long body of cellulose acetate tow having a tow specification of 9 5UT2,ooo and a target 9% triacetin plasticizer.
  • the barrier material may comprise one or more of a gelling agent, a bulking agent, a buffer, a coloring agent and a plasticizer.
  • the gelling agent may be, for example, a polysaccharide or cellulosic gelling agent, a gelatin, a gum, a gel, a wax or a mixture thereof.
  • Suitable polysaccharides include alginates, dextrans, maltodextrins, cyclodextrins and pectins.
  • Suitable alginates include, for instance, a salt of alginic acid, an esterified alginate or glyceryl alginate.
  • Salts of alginic acid include ammonium alginate, triethanolamine alginate, and group I or II metal ion alginates like sodium, potassium, calcium and magnesium alginate
  • Esterified alginates include propylene glycol alginate and glyceryl alginate.
  • the barrier material is sodium alginate and/or calcium alginate.
  • Suitable cellulosic materials include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, cellulose acetate and cellulose ethers.
  • the gelling agent may comprise one or more modified starches.
  • the gelling agent may comprise carrageenans.
  • Suitable gums include agar, gellan gum, gum Arabic, pullulan gum, mannan gum, gum ghatti, gum tragacanth, Karaya, locust bean, acacia gum, guar, quince seed and xanthan gums.
  • Suitable gels include agar, agarose, carrageenans, furoidan and furcellaran.
  • Suitable waxes include carnauba wax.
  • the gelling agent may comprise carrageenans and/or gellan gum, these gelling agents are particularly suitable for inclusion as the gelling agent as the pressure required to break the resulting capsules is particularly suitable.
  • the barrier material may comprise one or more bulking agents, such as starches, modified starches (such as oxidised starches) and sugar alcohols such as maltitol.
  • the barrier material may comprise a coloring agent which renders easier the location of the capsule within the aerosol generating device during the manufacturing process of the aerosol generating device.
  • the coloring agent is preferably chosen among colorants and pigments.
  • the barrier material may further comprise at least one buffer, such as a citrate or phosphate compound.
  • the barrier material may further comprise at least one plasticizer, which may be glycerol, sorbitol, maltitol, triacetin, polyethylene glycol, propylene glycol or another polyalcohol with plasticizing properties, and optionally one acid of the monoacid, diacid or triacid type, especially citric acid, fumaric acid, malic acid, and the like.
  • the amount of plasticizer ranges from 1% to 30% by weight, preferably from 2% to 15% by weight, and even more preferably from 3 to 10% by weight of the total dry weight of the shell.
  • the barrier material may also comprise one or more filler materials.
  • suitable filler materials include comprising starch derivatives such as dextrin, maltodextrin, cyclodextrin (alpha, beta or gamma), or cellulose derivatives such as hydroxypropyl-methylcellulose (HPMC), hydroxypropylcellulose (HPC), methylcellulose (MC), carboxy-methylcellulose (CMC), polyvinyl alcohol, polyols or mixture thereof.
  • Dextrin is a preferred filler.
  • the amount of filler in the shell is at most 98.5%, preferably from 25 to 95% more preferably from 40 to 80% and even more preferably from 50 to 60% by weight on the total dry weight of the shell.
  • the capsule shell may additionally comprise a hydrophobic outer layer which reduces the susceptibility of the capsule to moisture-induced degradation.
  • the hydrophobic outer layer is suitably selected from the group comprising waxes, especially carnauba wax, candelilla wax or beeswax, carbowax, shellac (in alcoholic or aqueous solution), ethyl cellulose, hydroxypropyl methyl cellulose, hydroxyl-propylcellulose, latex composition, polyvinyl alcohol, or a combination thereof. More preferably, the at least one moisture barrier agent is ethyl cellulose or a mixture of ethyl cellulose and shellac.
  • the capsule core comprises the aerosol modifier.
  • This aerosol modifier may be any volatile substance which modifies at least one property of the aerosol.
  • the aerosol substance may modify the pH, the sensorial properties, the water content, the delivery characteristics or the flavor
  • the aerosol modifier may be selected from an acid, a base, water or a flavorant.
  • the aerosol modifier comprises one or more flavorants.
  • the flavorant may suitably be licorice, rose oil, vanilla, lemon oil, orange oil, a mint-flavor, suitably menthol and/or a mint oil from any species of the genus Mentha such as peppermint oil and/or spearmint oil, or lavender, fennel or anise.
  • the flavorant comprises menthol.
  • the capsule may comprise at least about 25% w/w flavorant (based on the total weight of the capsule), suitably at least about 30% w/w flavorant, 35% w/w flavorant, 40% w/w flavorant, 45% w/w flavorant or 50% w/w flavorant.
  • the core may comprise at least about 25% w/w flavorant (based on the total weight of the core), suitably at least about 30% w/w flavorant, 35% w/w flavorant, 40% w/w flavorant, 45% w/w flavorant or 50% w/w flavorant.
  • the core may comprise less than or equal to about 75% w/w flavorant (based on the total weight of the core), suitably less than or equal to about 65% w/w flavorant, 55% w/w flavorant, or 50% w/w flavorant.
  • the capsule may include an amount of flavorant in the range of 25-75% w/w (based on the total weight of the core), about 35-60% w/w or about 40-55% w/w.
  • the capsules may include at least about 2 mg, 3 mg or 4 mg of the aerosol modifier, suitably at least about 4.5 mg of the aerosol modifier, 5 mg of the aerosol modifier, 5.5 mg of the aerosol modifier or 6 mg of the aerosol modifier.
  • the consumable comprises at least about 7 mg of the aerosol modifier, suitably at least about 8 mg of the aerosol modifier, 10 mg of the aerosol modifier, 12 mg of the aerosol modifier or 15 mg of the aerosol modifier.
  • the core may also comprise a solvent which dissolves the aerosol modifier.
  • the solvent may suitably comprise short or medium chain fats and oils.
  • the solvent may comprise tri-esters of glycerol such as C2-C12 triglycerides, suitably C6-C10 triglycerides or Cs-C12 triglycerides.
  • the solvent may comprise medium chain triglycerides (MCT-C8-C12), which maybe derived from palm oil and/or coconut oil.
  • the esters maybe formed with caprylic acid and/or capric acid.
  • the solvent may comprise medium chain triglycerides which are caprylic triglycerides and, or capric tryglycerides.
  • the solvent may comprise compounds identified in the CAS registry by numbers 73398-61-5, 65381-09-1, 85409-09-2. Such medium chain triglycerides are odorless and tasteless.
  • the hydrophilic-lipophilic balance (HLB) of the solvent may be in the range of 9 to 13, suitably 10 to 12.
  • Methods of making the capsules include co-extrusion, optionally followed by centrifugation and curing and/or drying.
  • WO 2007/010407 A2 is incorporated by reference, in its entirety.
  • the mouthpieces 2 , 2 ′, 2 ′′ each comprise a single body of material 6 .
  • FIGS. 3 a and 3 b may include multiple bodies of material.
  • the mouthpieces 2 , 2 ′, 2 ′′ may comprise a cavity between the bodies of material.
  • the mouthpiece 2 , 2 ′, 2 ′′ downstream of the aerosol generating material 3 can comprise a wrapper, for instance the first or second plug wraps 7 , 9 , or tipping paper 5 , which comprises an aerosol-modifying agent as described herein or other sensate material.
  • the aerosol-modifying agent maybe disposed on an inwardly or outwardly facing surface of the mouthpiece wrapper.
  • the aerosol modifying agent or other sensate material may be provided on an area of the wrapper, such as an outwardly facing surface of the tipping paper 5 , which comes into contact with the consumer's lips during use.
  • the aerosol-modifying agent or other sensate material may be transferred to the consumer's lips during use. Transfer of the aerosol-modifying agent or other sensate material to the consumer's lips during use of the article may modify the organoleptic properties (e.g. taste) of the aerosol generated by the aerosol generating substrate 3 or otherwise provide the consumer with an alternative sensory experience.
  • the aerosol-modifying agent or other sensate material may impart flavor to the aerosol generated by the aerosol generating substrate 3 .
  • the aerosol-modifying agent or other sensate material maybe at least partially soluble in water such that it is transferred to the user via the consumer's saliva.
  • the aerosol-modifying agent or other sensate material maybe one that volatilizes by the heat generated by the aerosol provision system. This may facilitate transfer of the aerosol-modifying agent to the aerosol generated by the aerosol generating substrate 3 .
  • a suitable sensate material may be a flavor as described herein, sucralose or a cooling agent such as menthol or similar.
  • a non-combustible aerosol provision device is used to heat the aerosol generating material 3 of the articles 1 , T, 1 ′′ described herein.
  • the non-combustible aerosol provision device preferably comprises a coil, since this has been found to enable improved heat transfer to the article 1 , T, 1 ′′ as compared to other arrangements.
  • the coil is configured to, in use, cause heating of at least one electrically-conductive heating element, so that heat energy is conductible from the at least one electrically-conductive heating element to the aerosol generating material to thereby cause heating of the aerosol generating material.
  • the coil is configured to generate, in use, a varying magnetic field for penetrating at least one heating element, to thereby cause induction heating and/or magnetic hysteresis heating of the at least one heating element.
  • the or each heating element may be termed a “susceptor” as defined herein.
  • a coil that is configured to generate, in use, a varying magnetic field for penetrating at least one electrically-conductive heating element, to thereby cause induction heating of the at least one electrically-conductive heating element may be termed an “induction coil” or “inductor coil”.
  • the device may include the heating element(s), for example electrically-conductive heating element(s), and the heating element(s) may be suitably located or locatable relative to the coil to enable such heating of the heating element(s).
  • the heating element(s) may be in a fixed position relative to the coil.
  • the at least one heating element for example at least one electrically-conductive heating element, may be included in the article 1 , T, 1 ′′ for insertion into a heating zone of the device, wherein the article 1 , T. 1 ′′ also comprises the aerosol generating material 3 and is removable from the heating zone after use.
  • both the device and such an article 1 , i′, 1 ′′ may comprise at least one respective heating element, for example at least one electrically-conductive heating element, and the coil may be to cause heating of the heating element(s) of each of the device and the article when the article is in the heating zone.
  • the coil is helical. In some examples, the coil encircles at least a part of a heating zone of the device that is configured to receive aerosol generating material. In some examples, the coil is a helical coil that encircles at least a part of the heating zone.
  • the device comprises an electrically-conductive heating element that at least partially surrounds the heating zone, and the coil is a helical coil that encircles at least a part of the electrically-conductive heating element.
  • the electrically-conductive heating element is tubular.
  • the coil is an inductor coil.
  • the use of a coil enables the non-combustible aerosol provision device to reach operational temperature more quickly than a non-coil aerosol provision device.
  • the non-combustible aerosol provision device including a coil as described above can reach an operational temperature such that a first puff can be provided in less than 30 seconds from initiation of a device heating program, more preferably in less than 25 seconds.
  • the device can reach an operational temperature in about 20 seconds from the initiation of a device heating program.
  • the burning coal generates a hot aerosol which heats tobacco in the tobacco rod behind the coal, as the aerosol is drawn through the rod.
  • This hot aerosol is understood to release flavor compounds from tobacco in the rod behind the burning coal.
  • a device including a coil as described herein is thought to also be capable of heating aerosol generating material, such as tobacco material described herein, to release flavor compounds, resulting in an aerosol which has been reported to more closely resemble an FMC aerosol.
  • Particular improvements in aerosol can be achieved through the use of a device including a coil to heat an article comprising a rod of aerosol generating material having a circumference greater than 19 mm, for instance a circumference between about 19 mm and about 23 mm.
  • an aerosol provision system including a coil as described herein, for instance an induction coil which heats at least some of the aerosol generating material to at least 200° C., more preferably at least 220′C, can enable the generation of an aerosol from an aerosol generating material that has particular characteristics which are thought to more closely resemble those of an FMC product.
  • an aerosol generating material including nicotine
  • an induction heater heated to at least 250° C., for a two-second period, under an airflow of at least 1.50 L/m during the period
  • at least pg of nicotine is aerosolized from the aerosol generating material
  • the weight ratio in the generated aerosol, of aerosol forming material to nicotine is at least about 2.5:1, suitably at least 8.5:1
  • at least 100 pg of the aerosol forming material can be aerosolized from the aerosol generating material, the mean particle or droplet size in the generated aerosol is less than about 1000 nm
  • the aerosol density is at least 0.1 pg/cc.
  • At least 10 pg of nicotine is aerosolized from the aerosol generating material under an airflow of at least 1.50 L/m during the period.
  • less than about 200 pg, suitably less than about 150 pg or less than about 125 pg, of nicotine is aerosolized from the aerosol generating material under an airflow of at least 1.50 L/m during the period.
  • the aerosol contains at least too pg of the aerosol forming material, suitably at least 200 pg, 500 pg or 1 mg of aerosol forming material is aerosolized from the aerosol generating material under an airflow of at least 1.50 L/IT L during the period.
  • the aerosol forming material may comprise or consist of glycerol.
  • mean particle or droplet size refers to the mean size of the solid or liquid components of an aerosol (i e, the components suspended in a gas). Where the aerosol contains suspended liquid droplets and suspended solid particles, the term refers to the mean size of all components together.
  • the mean particle or droplet size in the generated aerosol may be less than about 900 nm, 800 nm, 700, nm 600 nm, 500 nm, 450 nm or 400 nm. In some cases, the mean particle or droplet size maybe more than about 25 nm, 50 nm or 100 nm.
  • the aerosol density generated during the period is at least 0.1 pg/cc. In some cases, the aerosol density is at least 0.2 pg/cc, 0.3 pg/cc or 0.4 pg/cc. In some cases, the aerosol density is less than about 2.5 pg/cc, 2.0 pg/cc, 1.5 pg/cc or 1.0 pg/cc.
  • the non-combustible aerosol provision device is preferably arranged to heat the aerosol generating material 3 of the article 1 , 1 ′, 1 ′′, to a maximum temperature of at least 160° C.
  • the non-combustible aerosol provision device is arranged to heat the aerosol forming material 3 of the article 1 , 1 ′, 1 ′′, to a maximum temperature of at least about 200° C., or at least about 220° C., or at least about 240° C., more preferably at least about 270° C., at least once during the heating process followed by the non-combustible aerosol provision device.
  • an aerosol provision system including a coil as described herein, for instance an induction coil which heats at least some of the aerosol generating material to at least 200° C., more preferably at least 220° C.
  • a coil as described herein, for instance an induction coil which heats at least some of the aerosol generating material to at least 200° C., more preferably at least 220° C.
  • the maximum aerosol temperature measured at the mouth-end of the article 1 , 1 ′, 1 ′′ can preferably be greater than 50° C., more preferably greater than 55° C.
  • the maximum aerosol temperature measured at the mouth-end of the article 1 , 1 ′, 1 ′′ can be less than 62° C., more preferably less than 60° C. and more preferably less than 59° C. In some embodiments, the maximum aerosol temperature measured at the mouth-end of the article 1 , T, 1 ′′ can preferably be between 50° C. and 62° C., more preferably between 50° C. and 60° C.
  • FIG. 4 shows an example of a non-combustible aerosol provision device 100 for generating aerosol from an aerosol generating medium/material such as the aerosol generating material 3 of the articles 1 , 1 ′, 1 ′′ described herein.
  • the device 100 maybe used to heat a replaceable article 110 comprising the aerosol generating medium, for instance the articles 1 , 1 ′, 1 ′′ described herein, to generate an aerosol or other inhalable medium which is inhaled by a user of the device 100 .
  • the device 100 and replaceable article 110 together form a system.
  • the device 100 comprises a housing 102 (in the form of an outer cover) which surrounds and houses various components of the device 100 .
  • the device 100 has an opening 104 in one end, through which the article 110 may be inserted for heating by a heating assembly. In use, the article 110 may be fully or partially inserted into the heating assembly where it may be heated by one or more components of the heater assembly.
  • the device too of this example comprises a first end member 106 which comprises a lid 108 which is moveable relative to the first end member 106 to close the opening 104 when no article 110 is in place.
  • the lid 108 is shown in an open configuration, however the lid 108 may move into a closed configuration. For example, a user may cause the lid 108 to slide in the direction of arrow “B”.
  • the device too may also include a user-operable control element 112 , such as a button or switch, which operates the device too when pressed. For example, a user may turn on the device too by operating the switch 112 .
  • the device too may also comprise an electrical component, such as a socket/port 114 , which can receive a cable to charge a battery of the device too.
  • the socket 114 may be a charging port, such as a USB charging port.
  • FIG. 5 depicts the device too of FIG. 4 with the outer cover 102 removed and without an article 110 present.
  • the device too defines a longitudinal axis 134 .
  • the first end member 106 is arranged at one end of the device 100 and a second end member 116 is arranged at an opposite end of the device 100 .
  • the first and second end members 106 , 116 together at least partially define end surfaces of the device 100 .
  • the bottom surface of the second end member 116 at least partially defines a bottom surface of the device 100 .
  • Edges of the outer cover 102 may also define a portion of the end surfaces.
  • the lid 108 also defines a portion of a top surface of the device 100 .
  • the end of the device closest to the opening 104 may be known as the proximal end (or mouth end) of the device 100 because, in use, it is closest to the mouth of the user.
  • a user inserts an article 110 into the opening 104 , operates the user control 112 to begin heating the aerosol generating material and draws on the aerosol generated in the device. This causes the aerosol to flow through the device too along a flow path towards the proximal end of the device too.
  • the other end of the device furthest away from the opening 104 may be known as the distal end of the device too because, in use, it is the end furthest away from the mouth of the user. As a user draws on the aerosol generated in the device, the aerosol flows away from the distal end of the device too.
  • the device too further comprises a power source 118 .
  • the power source 118 maybe, for example, a battery, such as a rechargeable battery or a non-rechargeable battery Examples of suitable batteries include, for example, a lithium battery (such as a lithium-ion battery), a nickel battery (such as a nickel-cadmium battery), and an alkaline battery.
  • the battery is electrically coupled to the heating assembly to supply electrical power when required and under control of a controller (not shown) to heat the aerosol generating material.
  • the battery is connected to a central support 120 which holds the battery 118 in place.
  • the device further comprises at least one electronics module 122 .
  • the electronics module 122 may comprise, for example, a printed circuit board (PCB).
  • the PCB 122 may support at least one controller, such as a processor, and memory.
  • the PCB 122 may also comprise one or more electrical tracks to electrically connect together various electronic components of the device too.
  • the battery terminals maybe electrically connected to the PCB 122 so that power can be distributed throughout the device 100 .
  • the socket 114 may also be electrically coupled to the battery via the electrical tracks.
  • the heating assembly is an inductive heating assembly and comprises various components to heat the aerosol generating material of the article 110 via an inductive heating process
  • induction heating is a process of heating an electrically conducting object (such as a susceptor) by electromagnetic induction.
  • An induction heating assembly may comprise an inductive element, for example, one or more inductor coils, and a device for passing a varying electric current, such as an alternating electric current, through the inductive element.
  • the varying electric current in the inductive element produces a varying magnetic field.
  • the varying magnetic field penetrates a susceptor suitably positioned with respect to the inductive element, and generates eddy currents inside the susceptor.
  • the susceptor has electrical resistance to the eddy currents, and hence the flow of the eddy currents against this resistance causes the susceptor to be heated by Joule heating.
  • the susceptor comprises ferromagnetic material such as iron, nickel or cobalt
  • heat may also be generated by magnetic hysteresis losses in the susceptor, i.e. by the varying orientation of magnetic dipoles in the magnetic material as a result of their alignment with the varying magnetic field.
  • inductive heating as compared to heating by conduction for example, heat is generated inside the susceptor, allowing for rapid heating. Further, there need not be any physical contact between the inductive heater and the susceptor, allowing for enhanced freedom in construction and application.
  • the induction heating assembly of the example device too comprises a susceptor arrangement 132 (herein referred to as “a susceptor”), a first inductor coil 124 and a second inductor coil 126 .
  • the first and second inductor coils 124 , 126 are made from an electrically conducting material.
  • the first and second inductor coils 124 , 126 are made from Litz wire/cable which is wound in a helical fashion to provide helical inductor coils 124 , 126 .
  • Litz wire comprises a plurality of individual wires which are individually insulated and are twisted together to form a single wire. Litz wires are designed to reduce the skin effect losses in a conductor.
  • the first and second inductor coils 124 , 126 are made from copper Litz wire which has a rectangular cross section. In other examples the Litz wire can have other shape cross sections, such as circular.
  • the first inductor coil 124 is configured to generate a first varying magnetic field for heating a first section of the susceptor 132 and the second inductor coil 126 is configured to generate a second varying magnetic field for heating a second section of the susceptor 132 .
  • the first inductor coil 124 is adjacent to the second inductor coil 126 in a direction along the longitudinal axis 134 of the device 100 (that is, the first and second inductor coils 124 , 126 to not overlap).
  • the susceptor arrangement 132 may comprise a single susceptor, or two or more separate susceptors. Ends 130 of the first and second inductor coils 124 , 126 can be connected to the PCB 122 . It will be appreciated that the first and second inductor coils 124 , 126 , in some examples, may have at least one characteristic different from each other. For example, the first inductor coil 124 may have at least one characteristic different from the second inductor coil 126 . More specifically, in one example, the first inductor coil 124 may have a different value of inductance than the second inductor coil 126 . In FIG.
  • the first and second inductor coils 124 , 126 are of different lengths such that the first inductor coil 124 is wound over a smaller section of the susceptor 132 than the second inductor coil 126 .
  • the first inductor coil 124 may comprise a different number of turns than the second inductor coil 126 (assuming that the spacing between individual turns is substantially the same).
  • the first inductor coil 124 may be made from a different material to the second inductor coil 126 .
  • the first and second inductor coils 124 , 126 may be substantially identical.
  • the first inductor coil 124 and the second inductor coil 126 are wound in opposite directions. This can be useful when the inductor coils are active at different times. For example, initially, the first inductor coil 124 may be operating to heat a first section/portion of the article 110 , and at a later time, the second inductor coil 126 may be operating to heat a second section/portion of the article 110 . Winding the coils in opposite directions helps reduce the current induced in the inactive coil when used in conjunction with a particular type of control circuit. In FIG. 5 , the first inductor coil 124 is a right-hand helix and the second inductor coil 126 is a left-hand helix.
  • the inductor coils 124 , 126 may be wound in the same direction, or the first inductor coil 124 may be a left-hand helix and the second inductor coil 126 may be a right-hand helix.
  • the susceptor 132 of this example is hollow and therefore defines a receptacle within which aerosol generating material is received.
  • the article 110 can be inserted into the susceptor 132 .
  • the susceptor 120 is tubular, with a circular cross section.
  • the susceptor 132 may be made from one or more materials.
  • the susceptor 132 comprises carbon steel having a coating of Nickel or Cobalt.
  • the susceptor 132 may comprise at least two materials capable of being heated at two different frequencies for selective aerosolization of the at least two materials.
  • a first section of the susceptor 132 (which is heated by the first inductor coil 124 ) may comprise a first material
  • a second section of the susceptor 132 which is heated by the second inductor coil 126 may comprise a second, different material.
  • the first section may comprise first and second materials, where the first and second materials can be heated differently based upon operation of the first inductor coil 124 .
  • the first and second materials maybe adjacent along an axis defined by the susceptor 132 , or may form different layers within the susceptor 132 .
  • the second section may comprise third and fourth materials, where the third and fourth materials can be heated differently based upon operation of the second inductor coil 126 .
  • the third and fourth materials maybe adjacent along an axis defined by the susceptor 132 , or may form different layers within the susceptor 132 .
  • Third material may the same as the first material, and the fourth material may be the same as the second material, for example. Alternatively, each of the materials may be different.
  • the susceptor may comprise carbon steel or aluminum for example.
  • the device too of FIG. 5 further comprises an insulating member 128 which may be generally tubular and at least partially surround the susceptor 132 .
  • the insulating member 128 may be constructed from any insulating material, such as plastic for example.
  • the insulating member is constructed from polyether ether ketone (PEEK).
  • PEEK polyether ether ketone
  • the insulating member 128 can also fully or partially support the first and second inductor coils 124 , 126 .
  • the first and second inductor coils 124 , 126 are positioned around the insulating member 128 and are in contact with a radially outward surface of the insulating member 128 .
  • the insulating member 128 does not abut the first and second inductor coils 124 , 126 .
  • a small gap may be present between the outer surface of the insulating member 128 and the inner surface of the first and second inductor coils 124 , 126 .
  • the susceptor 132 , the insulating member 128 , and the first and second inductor coils 124 , 126 are coaxial around a central longitudinal axis of the susceptor 132 .
  • FIG. 6 shows a side view of device 100 in partial cross-section.
  • the outer cover 102 is present in this example.
  • the rectangular cross-sectional shape of the first and second inductor coils 124 , 126 is more clearly visible.
  • the device 100 further comprises a support 136 which engages one end of the susceptor 132 to hold the susceptor 132 in place.
  • the support 136 is connected to the second end member 116 .
  • the device may also comprise a second printed circuit board 138 associated within the control element 112 .
  • the device 100 further comprises a second lid/cap 140 and a spring 142 , arranged towards the distal end of the device 100 .
  • the spring 142 allows the second lid 140 to be opened, to provide access to the susceptor 132 .
  • a user may open the second lid 140 to clean the susceptor 132 and/or the support 136 .
  • the device too further comprises an expansion chamber 144 which extends away from a proximal end of the susceptor 132 towards the opening 104 of the device. Located at least partially within the expansion chamber 144 is a retention clip 146 to abut and hold the article 110 when received within the device too.
  • the expansion chamber 144 is connected to the end member 106 .
  • FIG. 7 is an exploded view of the device too of FIG. 6 , with the outer cover 102 omitted.
  • FIG. 8 A depicts a cross section of a portion of the device too of FIG. 6 .
  • FIG. 8 B depicts a close-up of a region of FIG. 8 A .
  • FIGS. 7 A and 7 B show the article 110 received within the susceptor 132 , where the article 110 is dimensioned so that the outer surface of the article 110 abuts the inner surface of the susceptor 132 . This ensures that the heating is most efficient.
  • the article no of this example comprises aerosol generating material noa.
  • the aerosol generating material noa is positioned within the susceptor 132 .
  • the article no may also comprise other components such as a filter, wrapping materials and/or a cooling structure.
  • FIG. 8 B shows that the outer surface of the susceptor 132 is spaced apart from the inner surface of the inductor coils 124 , 126 by a distance 150 , measured in a direction perpendicular to a longitudinal axis 158 of the susceptor 132 .
  • the distance 150 is about 3 mm to 4 mm, about 3-3-5 mm, or about 3.25 mm.
  • FIG. 8 B further shows that the outer surface of the insulating member 128 is spaced apart from the inner surface of the inductor coils 124 , 126 by a distance 152 , measured in a direction perpendicular to a longitudinal axis 158 of the susceptor 132 .
  • the distance 152 is about 0.05 mm.
  • the distance 152 is substantially 0 mm, such that the inductor coils 124 , 126 abut and touch the insulating member 128 .
  • the susceptor 132 has a wall thickness 154 of about 0.025 mm to 1 mm, or about 0.05 mm.
  • the susceptor 132 has a length of about 40 mm to 60 mm, about 40 mm to 45 mm, or about 44.5 mm.
  • the insulating member 128 has a wall thickness 156 of about 0.25 mm to 2 mm, 0.25 mm to 1 mm, or about 0.5 mm.
  • the articles 1 , 1 ′, 1 ′′ described herein can be inserted into a non-combustible aerosol provision device such as the device too described with reference to FIGS. 3 to 7 . At least a portion of the mouthpiece 2 , 2 ′, 2 ′′ of the article 1 , 1 ′, 1 ′′ protrudes from the non-combustible aerosol provision device too and can be placed into a user's mouth.
  • An aerosol is produced by heating the aerosol generating material 3 using the device too.
  • the aerosol produced by the aerosol generating material 3 passes through the mouthpiece 2 to the user's mouth.
  • the minimum distance between the one or more components of the heater assembly and a tubular element of the article 1 , 1 ′, 1 ′′ maybe in the range 3 mm to 10 mm, for example 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm or 10 mm.
  • the articles 1 , 1 ′, 1 ′′ described herein have particular advantages, for instance when used with non-combustible aerosol provision devices such as the device 100 described with reference to FIGS. 3 to 7 .
  • the first tubular element 4 formed from filamentary tow has surprisingly been found to have a significant influence on the temperature of the outer surface of the mouthpiece 2 of the articles 1 , 1 ′, 1 ′′.
  • an outer surface of the outer wrapper at a longitudinal position corresponding to the location of the hollow tubular element 8 has been found to reach a maximum temperature of less than 42° C. during use, suitably less than 40° C.
  • Table 2.0 shows the temperature of the outer surface of the article 1 as described with reference to FIG. 1 herein when heated using the device too described with reference to FIGS. 3 to 7 herein.
  • First, second and third temperature measuring probes were used as corresponding first, second and third positions along the mouthpiece 2 of the article 1 .
  • the first position (numbered as position 1 in table 2.0) was at 4 mm from the downstream end 2 b of the mouthpiece 2
  • the second position (numbered as position 2 in table 2.0) was at 8 mm from the downstream end 2 b of the mouthpiece 2
  • the third position (numbered as position 3 in table 2.0) was at 12 mm from the downstream end 2 b of the mouthpiece 2 .
  • the first position was therefore on the outer surface of the part of the mouthpiece 2 in which the first tubular element 4 is disposed, while the second and third positions were on the outer surface of the part of the mouthpiece 2 in which the body of material 6 is disposed.
  • a control article was tested for comparison with the filamentary tow tubular elements 4 described herein, and used instead of the filamentary tow tubular element 4 a known spirally wrapped paper tube having the same construction as the second hollow tubular element 8 described herein, but a length of 6 mm rather than 25 mm. Testing was performed for the first 5 puffs on the article, since by the 5 th puff temperatures have generally peaked and are starting to fall, so that an approximate maximum temperature can be observed. Each sample was tested 5 times, and the temperatures provided are an average of these 5 tests.
  • the known Health Canada Intense puffing regime was applied (55 ml puff volume applied for 2 seconds duration every 30 seconds) using standard testing equipment.
  • a tubular element 4 formed from filamentary tow reduced the outer surface temperature of the mouthpiece 2 as compared to the control article in every puff and at every testing position on the mouthpiece 2 .
  • the tubular element 4 formed from filamentary tow was particular effective at reducing the temperature at the first probe position, where consumer's lips will be positioned when using the article 1 .
  • the temperature of the outer surface of the mouthpiece 2 at the first probe position was reduced by more than 7° C. in the first three puffs and by more than 5° C. in the fourth and fifth puffs.
  • FIG. 9 illustrates a method of manufacturing an article for use in a non-combustible aerosol provision system.
  • the method involves the formation of two such articles.
  • aerosol generating material is applied to the wall of at least one tubular portion 4 or at least one body of material 6 . If the tubular portion 4 or body of material 6 are to be at the mouth end of the final mouthpiece, then a single one of these elements can be provide which can be cut in two at step S 105 . Otherwise, two of these elements should be provided so that there is one per final mouthpiece.
  • a mouthpiece rod comprising the at least one tubular portion 4 or body of material is formed.
  • first and second portions of aerosol generating material are positioned adjacent to respective first and second longitudinal ends of the mouthpiece rod.
  • a hollow tubular element rod can comprise a double length first hollow tubular element 8 arranged between first and second respective bodies of material 6 .
  • a tubular portion 4 At the outer end of each body of material 6 is positioned a tubular portion 4 and it is adjacent to the outer ends of these tubular portions 4 that the first and second portions of aerosol generating material are positioned.
  • the mouthpiece rod is wrapped in the second plug wrap described herein.
  • the first and second portions of aerosol generating material are connected to the mouthpiece rod.
  • this is performed by wrapping a tipping paper 5 as described herein around the mouthpiece rod and at least part of each of the portions of aerosol generating material 3 .
  • the tipping paper 5 extends about 5 mm longitudinally over the outer surface of each of the portioned of aerosol generating material 3 .
  • the mouthpiece is cut to form first and second articles, each article comprising a mouthpiece comprising at least one tubular portion or at least one body of material.
  • double length first hollow tubular element 8 of the mouthpiece rod is cut at a position about half-way along its length, so as to form first and second substantially identical articles.
  • a non-combustible aerosol provision system comprising an aerosol-modifying component and a heater which, in use, is operable to heat the aerosol generating material such that the aerosol generating material provides an aerosol.
  • the aerosol-modifying component comprises first and second capsules. The first capsule is disposed in a first portion of the aerosol-modifying component and the second capsule is disposed in a second portion of the aerosol-modifying component downstream of the first portion.
  • the first portion of the aerosol-modifying component is heated to a first temperature during operation of the heater to generate the aerosol and the second portion is heated to a second temperature during operation of the heater to generate aerosol, wherein the second temperature is at least 4 degrees Celsius lower than the first temperature.
  • the second temperature is at least 5, 6, 7, 8, 9 or 10 degrees Celsius lower than the first temperature.
  • the aerosol-modifying component may comprise one or more components of the article.
  • the aerosol-modifying component comprises a body of material, wherein the first and second capsules are disposed in the body of material.
  • the body of material may comprise cellulose acetate.
  • the aerosol-modifying component comprises two bodies of material, wherein the first and second capsules are disposed in the first and second bodies respectively.
  • the aerosol-modifying component alternatively or additionally comprises one or more tubular elements upstream and/or downstream of the body or bodies of material.
  • the aerosol-generating component may comprise the mouthpiece.
  • the second capsule is spaced from the first capsule by a distance of at least 7 mm, measured as the distance between the center of the first and second capsules.
  • the second capsule is spaced from the first capsule by a distance of at least 8, 9 or 10 mm. It has been found that increasing the distance between the first and second capsules increases the difference between the first and second temperatures.
  • the first capsule comprises an aerosol-modifying agent.
  • the second capsule comprises an aerosol-modifying agent which may be the same or different as the aerosol—modifying agent of the first capsule.
  • a user may selectively rupture the first and second capsules by applying an external force to the aerosol modifying component in order to release the aerosol-modifying agent from each capsule.
  • the aerosol-modifying agent of the second capsule is heated to a lower temperature than the aerosol-modifying agent of the first capsule due to the difference between the first and second temperatures.
  • the aerosol-modifying agents of the first and second capsules can be selected based on this temperature difference.
  • the first capsule may comprise a first aerosol modifying agent that has a lower vapor pressure than a second aerosol-modifying agent of the second capsule.
  • the higher vapor pressure of the aerosol-modifying agent of the second capsule would mean that a greater amount of the second aerosol-modifying agent would be volatized relative to the aerosol-modifying agent of the first capsule.
  • this effect is less pronounced such that a more even amount of the aerosol-modifying agents of the first and second capsules are volatized upon breaking of the first and second capsules respectively.
  • the first and second capsules have the same aerosol-modifying profiles, meaning that both capsules contain the same type of aerosol-modifying agent and in the same amount such that if both capsules were heated to the same temperature and broken then both capsules would cause the same modification of the aerosol.
  • the first capsule is heated to a higher temperature than the second capsule, more of the aerosol-modifying agent of the first capsule will be, for example, volatized compared to the modifying agent of the second capsule and thus will cause a more pronounced modification of the aerosol than the second capsule.
  • the user can decide whether to break the first capsule to cause a more pronounced modification of the aerosol, or the second capsule to cause a less pronounced modification of the aerosol, or both capsules to cause the greatest modification of the aerosol.
  • the first and second capsules both comprise first and second aerosol-modifying agents.
  • the first aerosol-modifying agent has a lower vapor pressure than the second aerosol-modifying agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
  • Medicinal Preparation (AREA)
US17/757,498 2019-12-20 2020-12-21 Article for use in an aerosol provision system Pending US20230014802A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1918980.2A GB201918980D0 (en) 2019-12-20 2019-12-20 Article for use in an aerosol provision system
GB1918980.2 2019-12-20
PCT/GB2020/053327 WO2021123834A1 (en) 2019-12-20 2020-12-21 Article for use in an aerosol provision system

Publications (1)

Publication Number Publication Date
US20230014802A1 true US20230014802A1 (en) 2023-01-19

Family

ID=69322807

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/757,498 Pending US20230014802A1 (en) 2019-12-20 2020-12-21 Article for use in an aerosol provision system

Country Status (6)

Country Link
US (1) US20230014802A1 (ja)
EP (1) EP4076036A1 (ja)
JP (2) JP7434566B2 (ja)
KR (1) KR20220119099A (ja)
GB (1) GB201918980D0 (ja)
WO (1) WO2021123834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022526A1 (en) * 2018-12-07 2022-01-27 Philip Morris Products S.A. Aerosol-generating article having biodegradable filtration material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114343230B (zh) * 2022-02-10 2023-05-12 湖北中烟工业有限责任公司 一种薄片添加剂、其制备方法及含有该薄片添加剂的烟草薄片
US20230284682A1 (en) * 2022-03-10 2023-09-14 Nicoventures Trading Limited Aerosol provision system
WO2023198754A1 (en) * 2022-04-12 2023-10-19 Philip Morris Products S.A. Aerosol-generating article with long rod of aerosol-forming substrate
WO2023198795A1 (en) * 2022-04-12 2023-10-19 Philip Morris Products S.A. Aerosol-generating article with relatively long rod of low density aerosol-generating substrate
WO2023198760A1 (en) * 2022-04-12 2023-10-19 Philip Morris Products S.A. Aerosol-generating article with downstream section
CN115153087A (zh) * 2022-07-19 2022-10-11 深圳翌昇生物科技有限公司 一种新型软嘴复合卷纸雾化棒
WO2024089276A1 (en) * 2022-10-27 2024-05-02 Philip Morris Products S.A. Aerosol-generating article comprising a capsule

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317986C (zh) 2002-10-31 2007-05-30 菲利普莫里斯生产公司 含控释香料的电加热的香烟,其制法和用途
AU2006271321B2 (en) 2005-06-21 2012-04-26 V. Mane Fils Smoking device incorporating a breakable capsule, breakable capsule and process for manufacturing said capsule
US20110277781A1 (en) 2010-03-26 2011-11-17 Philip Morris Usa Inc. Methods for improving quality of mainstream smoke and multicomponent filters and smoking articles therefor
US10609955B2 (en) * 2011-04-08 2020-04-07 R.J. Reynolds Tobacco Company Filtered cigarette comprising a tubular element in filter
GB201110863D0 (en) 2011-06-27 2011-08-10 British American Tobacco Co Smoking article filter and insertable filter unit thereof
UA112328C2 (uk) * 2011-11-07 2016-08-25 Філіп Морріс Продактс С.А. Ментолвмісний курильний виріб
EP2625974A1 (en) 2012-02-13 2013-08-14 Philip Morris Products S.A. Aerosol-generating article having a flavour-generating component
US20150335070A1 (en) * 2014-05-20 2015-11-26 R.J. Reynolds Tobacco Company Electrically-powered aerosol delivery system
TW201635927A (zh) 2015-03-27 2016-10-16 菲利浦莫里斯製品股份有限公司 具有嘴端空腔及通氣的吸煙物件
RU2732766C2 (ru) * 2016-05-31 2020-09-22 Филип Моррис Продактс С.А. Система, генерирующая аэрозоль, содержащая нагреваемое изделие, генерирующее аэрозоль
MX2018015614A (es) * 2016-07-07 2019-04-11 Philip Morris Products Sa Boquilla para articulo para fumar para recibir una unidad de inserto.
WO2019033298A1 (zh) 2017-08-16 2019-02-21 河南中烟工业有限责任公司 一种烟棒以及烟棒产品
BR112020004583A2 (pt) 2017-10-13 2020-09-08 Philip Morris Products S.A. artigo gerador de aerossol com uma cavidade com material de alteração de aerossol particulado
CA3084423A1 (en) * 2017-11-30 2019-06-06 Philip Morris Products S.A. Aerosol-generating article having mouthpiece with upstream cavity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022526A1 (en) * 2018-12-07 2022-01-27 Philip Morris Products S.A. Aerosol-generating article having biodegradable filtration material

Also Published As

Publication number Publication date
KR20220119099A (ko) 2022-08-26
JP7434566B2 (ja) 2024-02-20
GB201918980D0 (en) 2020-02-05
WO2021123834A1 (en) 2021-06-24
EP4076036A1 (en) 2022-10-26
JP2024050830A (ja) 2024-04-10
JP2023506993A (ja) 2023-02-20

Similar Documents

Publication Publication Date Title
US20230014802A1 (en) Article for use in an aerosol provision system
AU2020392905B2 (en) An article for use in a non-combustible aerosol provision system
US20220218024A1 (en) A mouthpiece and an article for use in an aerosol provision system
CA3132887C (en) An article for use in a non-combustible aerosol provision system
US20220183347A1 (en) An article for use in a non-combustible aerosol provision system
AU2020239383B2 (en) An article for use in a non-combustible aerosol provision system
US20230017594A1 (en) Article for use in an aerosol provision system
US20230143930A1 (en) Aerosol-generating material
US20220183351A1 (en) An aerosol provision system
US20220183349A1 (en) Aerosol provision system
US20220142236A1 (en) Aerosol provision system
US20220183346A1 (en) Aerosol provision system
US20230031144A1 (en) A component for an article for use in an aerosol delivery system
AU2020234057B2 (en) An article for use in an aerosol provision system
US20230043185A1 (en) A non-combustible aerosol provision system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION