US20230000623A1 - Prosthetic heart valve with retention elements - Google Patents

Prosthetic heart valve with retention elements Download PDF

Info

Publication number
US20230000623A1
US20230000623A1 US17/941,538 US202217941538A US2023000623A1 US 20230000623 A1 US20230000623 A1 US 20230000623A1 US 202217941538 A US202217941538 A US 202217941538A US 2023000623 A1 US2023000623 A1 US 2023000623A1
Authority
US
United States
Prior art keywords
leaflet
frame
bridge
apertures
leaflets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/941,538
Inventor
Nathan L. Bennett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences Corp
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Priority to US17/941,538 priority Critical patent/US20230000623A1/en
Publication of US20230000623A1 publication Critical patent/US20230000623A1/en
Assigned to W. L. GORE & ASSOCIATES, INC. reassignment W. L. GORE & ASSOCIATES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENNETT, Nathan L
Assigned to EDWARDS LIFESCIENCES CORPORATION reassignment EDWARDS LIFESCIENCES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: W.L. GORE & ASSOCIATES, INC.
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped

Definitions

  • the present disclosure relates generally to prosthetic valves and more specifically flexible leaflet-type prosthetic heart valve devices.
  • a number of fabrication techniques have been used to couple the leaflets to a frame, including sewing individual leaflets to the frame (biological and synthetic), and for synthetic leaflets only, injection molding and dip coating a polymer onto the frame.
  • the resulting leaflet is supported on the frame and defines a flap having a mounting edge where the leaflet is coupled to the frame and a free edge that allows the flap to move.
  • the flap moves under the influence of fluid pressure.
  • the leaflets open when the upstream fluid pressure exceeds the downstream fluid pressure and closes when the downstream fluid pressure exceeds the upstream fluid pressure.
  • the free edges of the leaflets coapt under the influence of downstream fluid pressure, closing the valve to prevent downstream blood from flowing retrograde through the valve.
  • Valve durability under the repetitive loads of the leaflets opening and closing is dependent, in part, on the load distribution between the leaflet and the frame. Further, substantial load is encountered on the leaflet when in the closed position. Mechanical failure of the leaflet can arise, for example, at the mounting edge, where the flexible leaflet is supported by the relatively rigid frame, particularly at the commissure posts. The repetitive loads of leaflet opening and closing leads to material failure by fatigue, creep or other mechanism, depending in part on the leaflet material. Mechanical failure at the mounting edge is especially prevalent with synthetic leaflets.
  • Described embodiments are directed to apparatus, system, and methods for valve replacement, such as cardiac valve replacement. More specifically, described embodiments are directed toward flexible leaflet valve devices having biological or synthetic leaflet material and a frame, and methods of making and implanting the valve devices.
  • a prosthetic heart valve comprises a leaflet frame assembly.
  • the leaflet frame assembly is an assembly of a leaflet frame, leaflet construct, and retention elements.
  • the leaflet construct is that portion of the valve that comprises the leaflets and the structure for coupling the leaflets to the leaflet frame.
  • the leaflet construct defines a contiguous annular ring defining a plurality of leaflets and a bridge region between each of the leaflets. Each bridge region defines a bridge first end adjacent a first leaflet and a bridge second end adjacent a second leaflet. The leaflets extend radially inward from the leaflet frame when coupled to the leaflet frame.
  • Each of the leaflets defines a fold-over portion that is folded over and lies against a leaflet frame outer side of the leaflet frame and coupled thereto such as with a securement structure, such as, but not limited to suture, adhesive, thermal bonding, or other means.
  • Each of the bridge regions defines a bridge loop with a coaptation neck between the bridge loop and the adjacent leaflets.
  • the coaptation neck is operable to pass through one of the post slots so that the bridge loop is adjacent to the outer portion of the leaflet frame and the leaflets extend radially inward from the leaflet frame.
  • a retention element is disposed within the bridge loop effectively preventing the bridge loop from passing through the post slot.
  • the retention element may be coupled to the commissure post, such as with a securement structure, such as, but not limited to suture, adhesive, thermal bonding, or other means.
  • a securement structure such as, but not limited to suture, adhesive, thermal bonding, or other means.
  • the fold-over portion of each of the leaflets is folded around an inflow edge of the leaflet frame and coupled thereto, such as with a securement structure, such as, but not limited to suture, adhesive, thermal bonding, or other means.
  • a method of making a prosthetic valve comprises obtaining a tube comprising one or more layers of expanded PTFE composite. Cutting a leaflet construct including a plurality of leaflets each being separated by a bridge region from the tube. Providing fold-over apertures in fold-over portions of the leaflets and bridge apertures in the bridge region. Obtaining a plurality of retention elements, each retention element defining retention element apertures. Folding each of the bridge regions into a bridge loop and defining a coaptation neck between each bridge loop and two adjacent leaflets, the bridge loops extending radially away from the tube axis. Disposing a retention element into each of the bridge loops.
  • each retention element Suturing each retention element to the respective bridge loop passing suture through the bridge apertures and the retention element apertures that are aligned therewith.
  • Cutting a leaflet frame from a metal tube defining leaflet frame windows and commissure posts therebetween where each commissure post defines a post slot dimensioned to receive a double thickness of the bridge region.
  • Suturing each retention element to the respective commissure post passing suture through the retention element apertures and the post apertures that are aligned therewith.
  • FIG. 1 A is an outflow side perspective view of a prosthetic heart valve in accordance with an embodiment
  • FIG. 1 B is an inflow side perspective view of the embodiment of the valve of FIG. 1 A ;
  • FIG. 2 is a perspective view of a leaflet frame assembly of the embodiment of the valve of FIG. 1 A ;
  • FIG. 3 is a side exploded view of the leaflet frame, retention element, leaflet construct and base frame, of an embodiment of a valve
  • FIG. 4 is a representation of the embodiment of the valve of FIG. 3 unrolled to a flat orientation, in accordance with an embodiment
  • FIG. 5 A is a perspective view of the bridge region formed into a bridge loop, in accordance with the embodiment of FIG. 2 ;
  • FIG. 5 B is a perspective view of the bridge region formed into a bridge loop and containing a retention element, in accordance with the embodiment of FIG. 2 ;
  • FIG. 6 is a side view of the bridge region of the embodiment of FIG. 7 ;
  • FIG. 7 is a perspective view of a leaflet frame assembly and a base frame, in accordance with the embodiment of the valve of FIG. 1 A ;
  • FIG. 8 is a side view of the bridge region showing fold line at an angle alpha, in accordance with another embodiment.
  • embodiments herein may be described in connection with various principles and beliefs, the described embodiments should not be bound by theory.
  • embodiments are described herein in connection with prosthetic valves, more specifically cardiac prosthetic valves.
  • embodiments within the scope of this disclosure can be applied toward any valve or mechanism of similar structure and/or function.
  • embodiments within the scope of this disclosure can be applied in non-cardiac applications.
  • leaflet as used herein in the context of prosthetic valves is a flexible component of a one-way valve wherein the leaflet is operable to move between an open and closed position under the influence of a pressure differential. In an open position, the leaflet allows blood to flow through the valve. In a closed position, the leaflet substantially blocks retrograde flow through the valve. In embodiments comprising multiple leaflets, each leaflet cooperates with at least one neighboring leaflet to block the retrograde flow of blood.
  • the pressure differential in the blood is caused, for example, by the contraction of a ventricle or atrium of the heart, such pressure differential typically resulting from a fluid pressure building up on one side of the leaflets when closed.
  • the leaflets open and blood flows therethrough.
  • the pressure on the inflow side equalizes with the pressure on the outflow side.
  • the leaflet returns to the closed position generally preventing retrograde flow of blood through the valve.
  • membrane refers to a sheet comprising a single material, such as, but not limited to, expanded fluoropolymer.
  • composite material refers to a combination of a membrane, such as, but not limited to, expanded fluoropolymer, and an elastomer, such as, but not limited to, a fluoroelastomer.
  • the elastomer can be contained within a porous structure of the membrane, coated on one or both sides of the membrane, or a combination of coated on and contained within the membrane.
  • laminate refers to multiple layers of membrane, composite material, or other materials, such as elastomer, and combinations thereof.
  • film as used herein generically refers to one or more of the membrane, composite material, or laminate.
  • biocompatible material as used herein generically refers to any material with biocompatible characteristics including synthetic, such as, but not limited to, a biocompatible polymer, or a biological material, such as, but not limited to, bovine pericardium.
  • native valve orifice and tissue orifice refer to an anatomical structure into which a prosthetic valve can be placed.
  • Such anatomical structure includes, but is not limited to, a location wherein a cardiac valve may or may not have been surgically removed.
  • other anatomical structures that can receive a prosthetic valve include, but are not limited to, veins, arteries, ducts and shunts.
  • a valve orifice or implant site may also refer to a location in a synthetic or biological conduit that may receive a valve.
  • Couple means to join, connect, attach, adhere, affix, or bond, whether directly or indirectly, and whether permanently or temporarily.
  • Embodiments herein include various apparatus, systems, and methods for a prosthetic valve, such as, but not limited to, cardiac valve replacement.
  • the valve is operable as a one-way valve wherein the valve defines a valve orifice into which leaflets open to permit flow and close so as to occlude the valve orifice and prevent flow in response to differential fluid pressure.
  • FIGS. 1 A and 1 B are outflow and inflow, respectfully, perspective views of a valve 100 in the form of a prosthetic heart valve, in accordance with an embodiment.
  • the components of the valve 100 that are visible in FIGS. 1 A and 1 B include three flexible leaflets 310 , a leaflet frame 200 including three commissure posts 210 that has been covered with various material, a base frame 500 that has been covered with various material, and a sewing cuff 600 .
  • the leaflet free edges 312 of the leaflets 310 come together at a cooptation region 316 in a Y-shaped pattern (when viewed from above) to close the valve 100 .
  • the valve 100 closes in this fashion when the pressure of the blood on the outflow side (as viewed in FIG.
  • the leaflet free edges 312 of the leaflets 310 move apart to open the valve 100 and to let blood flow through the valve 100 from the inflow side as viewed in FIG. 1 B when the pressure of the blood on the inflow side of the valve 100 is greater than the pressure on the outflow side of the valve 100 .
  • FIGS. 2 - 5 B show various components that are included in the valve 100 , in accordance with an embodiment.
  • FIG. 2 is a perspective view of a leaflet frame assembly 234 , in accordance with an embodiment, also shown in FIG. 3 in an exploded view and shown in FIG. 4 in an exploded view wherein the annular components have been longitudinally cut and laid open, so as to better illustrate the elements of the valve components.
  • the leaflet frame assembly 234 comprises a leaflet frame 200 , a leaflet construct 300 , and a plurality of retention elements 400 .
  • the leaflet frame 200 is operable to hold and support the leaflet construct 300 .
  • the leaflet frame 200 is annular, that is it defines a cylinder having an axis X and a plurality of commissure posts 210 extending parallel to the axis x that are spaced from one another, each commissure post 210 defining a post slot 217 therethrough that is aligned parallel to the axis X.
  • a leaflet window 222 that is operable to couple to and support the leaflet 310 around the perimeter of the leaflet 310 except for the leaflet free edge 312 .
  • the leaflet frame 200 defines a cylinder having a leaflet frame inner side 202 and a leaflet frame outer side 204 opposite the leaflet frame inner side 202 .
  • the leaflet frame 200 further defines a plurality of commissure posts 210 .
  • Each commissure post 210 has a post outer side 212 and a post inner side 214 opposite the post outer side 212 .
  • the commissure post 210 is defined by a first post leg 216 and a second post leg 218 separated by a post slot 217 therebetween.
  • a commissure tip 219 couples the first post leg 216 and the second post leg 218 .
  • the leaflet frame 200 is annular about a central longitudinal axis X of the valve 100 as shown in FIGS. 2 and 3 .
  • the leaflet frame 200 defines a plurality of leaflet windows 222 that follow the shape of the leaflet 310 .
  • each of the leaflet windows 222 includes two leaflet window sides 223 and a leaflet window base 225 , defining three sides of an isosceles trapezoid, wherein the leaflet window base 225 is substantially flat.
  • the leaflet base 325 is coupled to the leaflet window base 225 and each of the two leaflet sides 323 are coupled to one of the two leaflet window sides 223 .
  • the adjacent leaflet window sides 223 are interconnected by a commissure post 210 comprising of a first post leg 216 and a second post leg 218 that extend from adjacent leaflet window sides 223 and meet at a commissure tip 219 .
  • the commissure posts 210 are equally spaced from one another around the leaflet frame 200 .
  • the first post leg 216 and the second post leg 218 define a post slot 217 therebetween.
  • the leaflet frame 200 can be etched, cut, laser cut, stamped, three-dimensional printed, among other suitable processes, into an annular structure or a sheet of material, with the sheet then formed into an annular structure.
  • the leaflet frame 200 can comprise, such as, but not limited to, any elastically deformable metallic or polymeric material that is generally biocompatible.
  • the leaflet frame 200 can comprise a shape-memory material, such as nitinol, a nickel-titanium alloy.
  • Other materials suitable for the leaflet frame 200 include, but not limited to, other titanium alloys, stainless steel, cobalt-nickel alloy, polypropylene, acetyl homopolymer, acetyl copolymer, other alloys or polymers, or any other material that is generally biocompatible having adequate physical and mechanical properties to function as a leaflet frame 200 as described herein.
  • the leaflet construct 300 is that portion of the valve 100 that comprises the leaflets 310 and the structure for coupling the leaflets 310 to the leaflet frame 200 .
  • the leaflet construct 300 defines a contiguous annular ring defining a plurality of leaflets 310 and a bridge region 330 between each of the leaflets 310 .
  • contiguous means without a break or a seam, that is, seamless.
  • Each bridge region defines a bridge first end 332 adjacent a first leaflet 310 and a bridge second end 334 adjacent a second leaflet 310 .
  • the leaflets extend radially inward from the leaflet frame 200 when coupled to the leaflet frame 200 .
  • Each of the leaflets 310 define a fold-over portion 324 that is folded over and lies against a leaflet frame outer side 204 of the leaflet frame 200 and coupled thereto.
  • Each of the bridge regions 330 defines a bridge loop 338 with a coaptation neck 340 between the bridge loop 338 and the adjacent leaflets 310 .
  • the coaptation neck 340 is operable to pass through one of the post slots 217 so that the bridge loop 338 is adjacent to the outer portion of the leaflet frame 200 and the leaflets 310 extend radially inward from the leaflet frame 200 .
  • the leaflet construct 300 comprising the flexible leaflets 310 can be made of polymer.
  • pre-shaped polymer leaflets can be made by starting from a cylinder of polymer material that has been cut into a shape like that shown in FIGS. 3 and 4 .
  • the leaflet construct 300 can also be made from a sheet of polymer material that has been cut into a shape like that shown in FIGS. 3 and 4 and subsequently coupled together into an annular shape.
  • a leaflet construct 300 having a seam though may not have the advantages of a contiguous, seamless construct that may exhibit a higher tensile strength characteristics. The advantages provided by the retention element 400 may still be realized.
  • leaflet construct 300 may be formed (assuming the use of a material for the leaflets that is suitable for formation in this way) is by compression or injection molding.
  • each leaflet 310 at the folds 326 , has substantially the shape of an isosceles trapezoid having two leaflet sides 323 , a leaflet base 325 and a leaflet free edge 312 opposite the leaflet base 325 , corresponding to the two leaflet window sides 223 and a leaflet window base 225 .
  • the two leaflet sides 323 diverge from the leaflet base 325 , wherein the leaflet base 325 is substantially flat.
  • each leaflet 310 includes a central region 329 and two side regions 328 on opposite sides of the central region 329 .
  • the central region 329 is defined by a shape substantially that of an isosceles trapezoid defined by two central region sides 327 , the leaflet base 325 and the leaflet free edge 312 .
  • Each of the side regions 328 has a shape substantially that of a triangle and each are defined by one of the central region sides 327 , one of the leaflet sides 323 , and the leaflet free edge 312 .
  • the leaflet window may be described as having a U-shape.
  • the leaflet frame generally defines a plurality of U-shaped portions as one proceeds annularly around the leaflet frame, defining a plurality of commissure posts and a plurality of leaflet window frame portions.
  • each of the leaflets 310 has a leaflet belly portion 322 , and a fold-over portion 324 .
  • the leaflet belly portion 322 of each leaflet 310 is the operating portion of the leaflet 310 when in a finished and implanted valve 100 .
  • the fold-over portion 324 of each leaflet 310 is the portion that is used to secure the leaflet 310 to the two leaflet window sides 223 and the leaflet window base 225 of the leaflet frame 200 .
  • Each leaflet window side 223 and a leaflet window base 225 of the leaflet frame 200 fits into a fold 326 that is formed between the leaflet belly portion 322 and the fold-over portion 324 of a respective one of the leaflet sides 323 and leaflet base 325 , respectively, of the leaflets 310 , as shown in FIG. 2 .
  • the leaflet belly portion 322 of each leaflet 310 includes enough material between the commissure posts 210 of the leaflet frame 200 so that the leaflet free edge 312 of the three leaflet belly portions 322 can come together or coapt in the interior of the valve 100 to close the valve 100 as shown in FIG. 1 .
  • each of the leaflets 310 is a bridge region 330 , as shown in FIGS. 4 , 5 A, 5 B and 8 .
  • the bridge region 330 is operable to be formed into a bridge loop 338 having a generally rectangular shape, folding about two loop fold lines 336 so as to contain the retention element 400 therein as discussed below, as shown in FIGS. 5 A, 5 B, 6 and 8 .
  • the two loop fold lines 336 form an angle alpha, which corresponds to the retention element sides 402 as shown in FIG. 6 , in accordance with an embodiment.
  • the leaflet construct 300 can comprise a biocompatible material that is not of a biological source and that is sufficiently compliant and strong for the particular purpose, such as a biocompatible polymer.
  • the leaflet construct 300 comprises a membrane that is combined with an elastomer to form a composite material.
  • the biocompatible material that makes up the leaflet construct 300 comprises a biological material, such as, but not limited to, bovine pericardium.
  • the shape of the leaflets 310 are defined in part by the shape of the leaflet frame 200 and the leaflet free edge 312 .
  • the shape of the leaflets 310 can also be defined by the structures and processes used to manufacture the valve 100 , such as, but not limited, those described below.
  • the shape of the leaflets 310 also depends in part on molding the leaflets 310 using molding and trimming processes to impart a predetermined shape to the leaflet 310 .
  • the leaflets 310 generally flex about the leaflet base 325 about the leaflet window base 225 of the U-shaped portion as the leaflets 310 open and close.
  • each leaflet free edge 312 abuts an adjacent half of a leaflet free edge 312 of an adjacent leaflet 310 , as shown in FIG. 1 A .
  • the three leaflets 310 of the embodiment of FIG. 1 A meet at a triple point 348 .
  • the valve orifice 150 is occluded when the leaflets 310 are in the closed position stopping fluid flow.
  • the leaflet construct 300 can comprise any biocompatible material sufficiently compliant and flexible, such as a biocompatible polymer.
  • the leaflet construct 300 can comprise a membrane that is combined with an elastomer to form a composite material.
  • the leaflet construct 300 can comprise, according to an embodiment, a composite material comprising an expanded fluoropolymer membrane, which comprises a plurality of spaces within a matrix of fibrils, and an elastomeric material.
  • a composite material comprising an expanded fluoropolymer membrane, which comprises a plurality of spaces within a matrix of fibrils, and an elastomeric material.
  • the elastomeric material can include multiple elastomers, multiple types of non-elastomeric components, such as inorganic fillers, therapeutic agents, radiopaque markers, and the like while remaining within the scope of the present disclosure.
  • the composite material includes an expanded fluoropolymer material made from porous ePTFE membrane, for instance as generally described in U.S. Pat. No. 7,306,729 to Bacino.
  • the expandable fluoropolymer used to form the expanded fluoropolymer material described, can comprise PTFE homopolymer. In alternative embodiments, blends of PTFE, expandable modified PTFE and/or expanded copolymers of PTFE can be used.
  • suitable fluoropolymer materials are described in, for example, U.S. Pat. No. 5,708,044, to Branca, U.S. Pat. No. 6,541,589, to Baillie, U.S. Pat. No. 7,531,611, to Sabol et al., U.S. patent application Ser. No. 11/906,877, to Ford, and U.S. patent application Ser. No. 12/410,050, to Xu et al.
  • the expanded fluoropolymer membrane can comprise any suitable microstructure, such as pores, for achieving the desired leaflet performance.
  • Other biocompatible polymers which can be suitable for use in leaflet include but are not limited to the groups of urethanes, silicones (organopolysiloxanes), copolymers of silicon-urethane, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing.
  • leaflet construct materials include: wherein the leaflet construct comprises at least one fluoropolymer membrane layer; wherein the leaflet construct comprises a laminate having more than one fluoropolymer membrane layer; wherein the at least one fluoropolymer membrane layer is an expanded fluoropolymer membrane layer; wherein an elastomer is contained within the expanded fluoropolymer membrane layer; wherein the elastomer comprises perfluoromethyl vinyl ether and tetrafluoroethylene; wherein the expanded fluoropolymer membrane layer comprises ePTFE; wherein the leaflet construct comprises a composite material having at least one fluoropolymer membrane layer having a plurality of pores and an elastomer present in the pores of at least one of the fluoropolymer membrane layers; wherein the composite material comprises fluoropolymer membrane by weight in a range of about 10% to 90%; wherein the elastomer comprises (per)fluoroalkylvinylethers (PAVE); wherein the
  • the retention element 400 is an element that is operable to be disposed within the bridge loop 338 formed by the bridge region 330 of the leaflet construct 300 , which effectively prevents the bridge loop 338 from passing through the post slot 217 , and therefore the leaflet construct 300 is mechanically coupled to the commissure post at the post outer side.
  • the retention element 400 has a width that is larger than a width of the post slot 217 . With the retention element 400 being disposed in the bridge loop 338 , the bridge loop 338 will be prevented from passing through the post slot 217 .
  • the size of the bridge loop 338 should correspond closely to the size of the retention element 400 to prevent a portion of the bridge region 330 from extending through the post slot 217 to the valve orifice 150 in case of the suture loosening or failing.
  • the retention element 400 defines a relatively flat generally rectangular shape so as to have a low profile on the post outer side 212 of the commissure post 210 . Due to the curvature of the annular leaflet frame 200 , the sides of the retention element 400 are formed at an angle corresponding to the two loop fold lines 336 that form an angle alpha, as shown in FIG. 8 , in accordance with an embodiment.
  • the retention element 400 can be flat, relatively flat, or concave on the inside (toward the center of the valve) to correspond with the radially outer convexity of commissure post 210 that the retention element 400 will be adjacent to.
  • Each retention element 400 has a plurality of retention element apertures 408 that align with commissure post apertures 209 wherein the retention element 400 is placed against the post outer side 212 of the commissure post 210 with a portion of the bridge region 330 therebetween.
  • a securement structure such as, but not limited to suture 700 , may be used to couple the retention element 400 to the commissure post 210 .
  • Suture may be of any suitable material, such as PTFE, PET, and nylon, among others.
  • Stitching comprising suture 700 may be passed through these aligned commissure post apertures 209 and retention element apertures 408 and the bridge region 330 to hold each retention element 400 and the bridge region 330 to the commissure post 210 . Some or all of this suture 700 may pass through the fold-over portion 324 of the leaflet 310 . In that event, this suture 700 will contribute to securing the leaflet belly portion 322 of the leaflets 310 to the leaflet frame 200 .
  • suitable materials for the retention elements 400 include various biocompatible alloys such as titanium, Elgiloy, MP35N, stainless steel, nitinol, etc., and various biocompatible engineering plastics such as acetyl polymers, PTFE, and PEEK.
  • a leaflet frame assembly 234 is the assembly of the leaflet frame 200 , leaflet construct 300 , and the retention elements 400 .
  • the leaflet construct 300 is that portion of the valve 100 that comprises the leaflets 310 and the structure for coupling the leaflets 310 to the leaflet frame 200 .
  • the leaflet construct 300 defines a contiguous cylinder defining a plurality of leaflets 310 and a bridge region 330 between each of the leaflets 310 .
  • Each bridge region defines a bridge first end 332 adjacent a first leaflet 310 and a bridge second end 334 adjacent a second leaflet 310 .
  • the leaflets extend radially inward from the leaflet frame 200 when coupled to the leaflet frame 200 .
  • Each of the leaflets 310 defines a fold-over portion 324 that is folded over and lies against a leaflet frame outer side 204 of the leaflet frame 200 and coupled thereto, such as with securement structure, such as, but not limited to suture, adhesive, thermal bonding, or other means.
  • Each of the bridge regions 330 defines a bridge loop 338 with a coaptation neck 340 between the bridge loop 338 and the adjacent leaflets 310 .
  • the coaptation neck 340 is operable to pass through one of the post slots 217 so that the bridge loop 338 is adjacent to the outer portion of the leaflet frame 200 and the leaflets 310 extend radially inward from the leaflet frame 200 .
  • a retention element 400 is disposed within the bridge loop 338 effectively preventing the bridge loop 338 from passing through the post slot 217 .
  • the retention element 400 may be coupled to the commissure post 210 , such as with suture, adhesive, thermal bonding, or other means.
  • the fold-over portion 324 of each of the leaflets 310 is folded around an inflow edge of the leaflet frame 200 and coupled thereto, such as with suture, adhesive, thermal bonding, or other means.
  • each bridge region 330 is wrapped around a retention element outer side 412 to the retention element inner side 414 of one of the retention elements 400 with the bridge first end 332 wrapped across the retention element inner side 414 to adjacent a dividing line 416 that vertically bisects the retention element 400 , from a first direction and the bridge second end 334 wrapped across the retention element inner side 414 to adjacent the dividing line 416 from an opposite direction, wherein the bridge first end 332 and bridge second end 334 are adjacent to each other to define a coaptation neck 340 .
  • the leaflet frame assembly 234 is provided with means for coupling to a native tissue annulus, and thus the leaflet frame assembly 234 is a prosthetic heart valve 100 .
  • a sewing cuff 600 is coupled to the leaflet frame assembly 234 , where the sewing cuff is operable to be sutured to the native tissue annulus.
  • a base frame 500 comprising a sewing cuff 600 is coupled to the leaflet frame assembly 234 .
  • the bridge region 330 being a continuous member, that is, no seams or breaks. Any force tending to pull or extract the bridge region 330 through the post slot 217 is countered by the tensile strength of the material that the bridge region 330 comprises. The forces on the leaflets 310 during use are greatest at the commissure posts 210 tending to pull the leaflets 310 away from the commissure posts 210 .
  • the coupling of the leaflet construct 300 to the leaflet frame 200 at the commissure posts 210 does not rely solely on the suture 700 but also the retention element 400 that prevents the bridge region 330 from passing through the post slot 217 .
  • sutures in general, tend to loosen and fail over a period of time, especially in regions of high stress.
  • the suture 700 that couples the bridge region 330 to the commissure post 210 may loosen or fail but the retention element 400 continues to prevent the bridge region 330 from passing through the post slot 217 preventing failure of the valve 100 .
  • the retention element 400 provides a clamping force between a portion of the bridge region 330 and the post outer side 212 of the commissure post 210 during operation of the valve 100 .
  • This clamping force is the result of the retention element 400 being larger than the post slot 217 which prevents the bridge region 330 from passing through the post slot 217 .
  • the clamping force does not rely on the strength of the suture 700 or the tension of the suture on the bridge region 330 and the commissure posts 210 .
  • This clamping force may tend to distribute the forces on the bridging region 330 reducing peak stresses that might be applied at the suture 700 and apertures 999 . Further the clamping force is the primary mode of transferring the forces from the leaflets 130 to the leaflet frame 200 rather than merely relying on the stitching of the leaflets 310 to the leaflet frame 200 . Further, the angle alpha of the two loop fold lines 336 allows for a substantially equal distribution of stresses over the coaptation neck 340 between the bridge loop 338 and the adjacent leaflets 310 whereby reducing the peak stresses in the coaptation neck 340 .
  • the leaflets 310 extend perpendicular from the leaflet frame 200 , as shown in FIG. 5 .
  • the leaflets 310 extend from the post slot 217 in a direction perpendicular to the post inner side 214 As such, the leaflets 310 exhibit a bias toward the closed position. This is beneficial in that the valve 100 will tend to close earlier during the phase of the cardiac cycle where the blood is decelerating or reversing. An earlier closure will tend to reduce back flow through the valve 100 .
  • the design and manufacturing process greatly reduce possible stress concentration at the leaflet frame-leaflet junction by distributing the load more evenly.
  • These design and manufacturing process aspects also (1) reduce the burden of extensive and demanding suturing, (2) increase the consistency of valve manufacturing results, and (3) increase the service life of a resulting valve as a consequence of all of the foregoing factors.
  • the bridge regions 330 are passed through the post slot 217 in a number of ways.
  • the bridge region 330 is formed into a narrow bridge loop 338 which is passed through the post slot 217 from the leaflet frame inner side 202 to the leaflet frame outer side 204 .
  • a retention element 400 may then be inserted into the bridge loop 338 preventing the bridge loop 338 from being passed back through the post slot 217 .
  • the leaflet frame 200 , leaflet construct 300 and the retention elements 400 have matching and radially aligned apertures for receiving suture.
  • the fold-over portion 324 and the bridge regions 330 containing a retention element 400 are coupled to the leaflet frame by suturing through these matching apertures.
  • the dashed lines in FIG. 7 show an illustrative suture pattern. The suturing work-load is very light and not skill-demanding.
  • the base frame 500 is a generally annular member defining a base frame lumen 550 having a base frame inner side 502 and a base frame outer side 504 , as shown in FIGS. 3 and 4 .
  • the base frame 500 may provide structural, load-bearing support to the leaflet frame 200 .
  • the base frame 500 can be configured to provide positive engagement to the recipient tissue at the implantation site.
  • the base frame 500 defines a plurality of triangular regions 526 extending away from the base frame inflow edge 520 .
  • the leaflet frame 200 may comprise corresponding triangular openings 256 defined by two leaflet window sides 223 of adjacent leaflet windows 222 of the leaflet frame 200 define two sides of an isosceles triangle on the leaflet frame inflow edge 220 .
  • the triangular openings 256 are operable to receive the triangular regions 526 of the base frame 500 therein.
  • the base frame 500 can comprise any metallic or polymeric material that is generally biocompatible.
  • the base frame 500 can comprise a material, such as, but not limited to nitinol, cobalt-nickel alloy, stainless steel, and polypropylene, acetyl homopolymer, acetyl copolymer, ePTFE, other alloys or polymers, or any other biocompatible material having adequate physical and mechanical properties to function as described herein.
  • the base frame 500 can be etched, cut, laser cut, or stamped into a tube or a sheet of material, with the sheet then formed into an annular structure.
  • the base frame 500 can be configured to provide positive engagement to an implant site.
  • the valve 100 further includes a sewing cuff 600 coupled about the base frame 500 , as shown in FIGS. 1 A and 1 B , that is operable to accept suture so as to be sewn to a tissue orifice. It is understood that conventional, surgical techniques to implant prosthetic valves can be used to implant the valve 100 , in accordance with embodiments.
  • valve 100 may be coupled to an implant site.
  • other means such as mechanical and adhesive means may be used to couple the valve 100 to a synthetic or biological conduit.
  • the valve 100 further comprises a base frame 500 , as shown in FIGS. 3 and 4 .
  • the base frame 500 is coupled to a leaflet frame inflow edge 220 of the leaflet frame 200 .
  • the base frame 500 is provided with base frame apertures 508 that may be used to suture the base frame 500 to the leaflet frame 200 using suture 700 .
  • An advantage of a separate leaflet frame 200 and base frame 500 is that they may have different physical characteristics. By way of example, a relatively less stiff leaflet frame 200 supporting the leaflets 310 can be more likely to reduce the loading encountered by the opening and closing leaflets 130 as compared to a stiffer leaflet frame 200 .
  • the leaflet frame 200 having a relatively less stiff property may reduce leaflet accelerations and reduce the closing stresses on the leaflets 310 .
  • the base frame 500 may be more stiff which would be more suitable for suturing to the native tissue orifice.
  • the base frame 500 may resist the compressive forces that may be encountered at the implant site, for example.
  • the inclusion of a base frame 500 and a leaflet frame 200 provides a means for providing different physical properties for each of the base frame 500 and the leaflet frame 200 suitable for a particular purpose.
  • the base frame 500 is stiffer as compared with the leaflet frame 200 .
  • the base frame 500 when engaged to the implant site, such as, but not limited to a tissue orifice, is rigid enough to not significantly deform under physiological loading.
  • the physical properties of the base frame 500 and the leaflet frame 200 depends, in part, on the size, shape, thickness, and material property of the base frame 500 and the leaflet frame 200 .
  • Stiff and stiffness is a measure of the resistance to deformation given by a base. Stiff and stiffness is a function of, among other things, material properties, the shape of the object, and the boundary conditions on the object. Stiffness of the leaflet frame 200 (see FIG. 1 A ) may be measured by any number of methods known in the art. In accordance with one method, cables may be coupled to each of the three commissure posts 210 and brought together so as to allow the cables to be pulled simultaneously along the axis of the leaflet frame, with the leaflet frame held by the base frame 500 . The amount of force on the cables required to deflect the three commissure posts toward the axis provides a measure of stiffness. The same may be done with the base frame 500 with the cables coupled to three equally spaced points on the base frame, such as an apex of the triangular region 526 , as shown in FIG. 4 .
  • the valve 100 may be provided with a sewing cuff 600 adjacent the base frame 500 , as shown in FIGS. 1 A and 1 B .
  • the sewing cuff 600 is operable to provide structure that receives suture for coupling to the implant site.
  • the sewing cuff 600 may comprise any suitable material, such as, but not limited to, double velour polyester and silicone.
  • the sewing cuff 600 may be located circumferentially around the base frame 500 or perivalvular depending from the base frame 500 .
  • the sewing cuff 600 may comprise a filler material, such as, but not limited to, a silicone ring and/or PTFE felt.
  • a method of making a prosthetic valve comprises obtaining a tube comprising one or more layers of expanded PTFE composite. Cutting a leaflet construct including a plurality of leaflets each being separated by a bridge region from the tube. Providing fold-over apertures in fold-over portions of the leaflets and bridge apertures in the bridge region. Obtaining a plurality of retention elements, each retention element defining retention element apertures. Folding each of the bridge regions into a bridge loop and defining a coaptation neck between each bridge loop and two adjacent leaflets, the bridge loops extending radially away from the tube axis. Disposing a retention element into each of the bridge loops.
  • each retention element Suturing each retention element to the respective bridge loop passing suture through the bridge apertures and the retention element apertures that are aligned therewith.
  • Cutting a leaflet frame from a metal tube defining leaflet frame windows and commissure posts therebetween where each commissure post defines a post slot dimensioned to receive a double thickness of the bridge region.
  • Suturing each retention element to the respective commissure post passing suture through the retention element apertures and the post apertures that are aligned therewith.
  • the method may further comprise providing strips of fabric, wrapping and sewing the fabric on the leaflet frame to provide a cushion between the leaflet frame and the leaflet construct, and trimming the fabric to approximately 3 mm from the leaflet frame outflow edge of the leaflet frame.
  • the method may further comprise cutting a base frame from a metal tube defining base frame apertures, and coupling the base frame to the leaflet frame inflow edge of the leaflet frame.
  • the method may further comprise providing a fabric tube and inserting the fabric tube through the base frame along its flow axis. Folding the fabric outflow edge of the fabric over the base frame outflow edge of the base frame. Sewing the fabric into place using suture through the base frame apertures in the base frame. Inverting the fabric inflow edge of the fabric tube over the base frame. Sewing the fabric tube into place using suture through base frame apertures along the inflow edge of the base frame. Disposing a sewing cuff insert inside a pocket defined by the inverted fabric tube and tucking the fabric tube in between the base frame and the sewing cuff insert such that all the slack of the fabric tube is removed around the sewing cuff.
  • leaflet frame coaxially with and adjacent to the base frame and inside the fabric tube. Trimming the fabric tube approximately 5 mm from the leaflet frame outflow edge and suturing the leaflet frame to the base frame at the leaflet window base using suture passing through the respective leaflet window frame apertures and the base frame apertures. Folding the trimmed edge of the fabric tube over the leaflet frame outflow edge, tucking the trimmed edge underneath itself to conceal any frayed edges, and sewing the fabric tube to the fabric on the leaflet frame.
  • a surgical prosthetic heart valve was constructed in the following manner.
  • a leaflet construct 300 including fold-over apertures 308 and bridge apertures 309 , was cut from the leaflet coupon using a CO2 laser according to the pattern shown in FIG. 3 .
  • FIG. 3 Three retention elements 400 made from PEEK, shown in FIG. 3 , were sewn onto the bridge loop 338 of the bridge region 330 of the leaflet construct 300 , as shown in FIGS. 5 and 6 .
  • the retention element 400 is provided with retention element apertures 408 that align with bridge apertures 309 on the leaflet construct 300 .
  • a partial view of the resulting assembly is shown in FIG. 2 .
  • a leaflet frame 200 and base frame 500 were laser cut, including leaflet frame apertures 208 and base frame apertures 508 , respectively, and electropolished from a tube of cobalt chromium (MP35N) with a 25 mm OD and 0.4 mm wall thickness, as shown in FIG. 3 .
  • the frames were cleaned in an ultrasonic bath of ethanol to remove contaminants.
  • Three strips of polyester knit fabric were wrapped and sewn on the leaflet frame, to provide a cushion between the leaflet frame 200 and the leaflet construct 300 .
  • a post slot 217 of the commissure post 210 large enough (approximately 0.254 mm) to accommodate a double thickness of the leaflet construct 300 at the bridge region 330 was provided.
  • the remaining polyester knit fabric was trimmed off approximately 3 mm from the leaflet frame outflow edge 224 of the leaflet frame 200 shown in FIG. 4 .
  • the leaflet construct 300 with retention elements 400 was placed onto the leaflet frame 200 by sliding each coaptation neck 340 in the post slot 217 with the retention elements 400 on the post outer side 212 , as shown in FIG. 2 .
  • the retention element apertures 408 were aligned with leaflet frame apertures 208 on the leaflet frame 200 and were sewn into place with suture 700 , as shown in FIG. 6 .
  • the leaflet construct 300 includes fold-over portions 324 and fold-over apertures 308 along attachment edges.
  • the fold-over portions 324 were folded along the leaflet frame inflow edge 220 of the leaflet frame 200 up against the leaflet frame outer side 204 where fold-over apertures 308 in the fold-over portions 324 coincide with leaflet frame apertures 208 of the leaflet frame 200 and were sewn into place with suture 700 as shown in FIG. 7 .
  • a tube of polyester knit fabric about 24 mm in diameter and at least 10 cm in length was inserted through the base frame 500 along its flow axis.
  • the fabric outflow edge of the polyester knit fabric was folded over the base frame outflow edge 524 of the base frame 500 and sewn into place using suture 700 through base frame apertures 508 in the base frame 500 (not shown).
  • the fabric inflow edge of the polyester knit fabric tube was inverted over the base frame 500 and sewn into place using suture 700 through base frame apertures 508 along the base frame inflow edge 520 of the base frame 500 .
  • a silicone sewing cuff insert was placed over the base frame 500 and inside of the inverted polyester knit fabric tube.
  • the polyester knit fabric tube was tucked in between the base frame 500 and the sewing cuff insert such that all the slack was removed around the sewing cuff 600 .
  • the leaflet frame assembly 234 comprising the leaflet frame 200 , the leaflet construct 300 and retention elements 400 was coaxially placed adjacent the base frame and inside the polyester knit fabric tube.
  • the polyester knit fabric tube was trimmed approximately 5 mm off the leaflet frame outflow edge 224 .
  • the leaflet frame 200 was sutured to the base frame 500 at the leaflet window base 225 , with three sutures 700 at each of the three leaflet window bases 225 of the leaflet frame 200 .
  • the trimmed edge of the polyester knit fabric was folded over the leaflet frame outflow edge 224 .
  • the trimmed edge was tucked underneath itself to conceal any frayed edges and sewn to the polyester knit fabric on the leaflet frame.

Abstract

Described embodiments are directed toward centrally-opening leaflet prosthetic valve devices having a leaflet frame and a leaflet construct. The leaflet construct is at least partially coupled to a leaflet frame outer side of the leaflet frame and being coupled thereto by a retention element.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional of U.S. patent application Ser. No. 16/446,343, filed Jun. 19, 2019, which is a continuation of U.S. patent application Ser. No. 15/791,562, filed Oct. 24, 2017, now U.S. Pat. No. 10,342,659, issued Jul. 9, 2019, which is a continuation of U.S. patent application Ser. No. 14/853,654, filed Sep. 14, 2015, now U.S. Pat. No. 9,827,094, issued Nov. 28, 2017, which claims the benefit of U.S. Provisional Application 62/050,628, filed Sep. 15, 2014, all of which are incorporated herein by reference in their entireties for all purposes.
  • FIELD
  • The present disclosure relates generally to prosthetic valves and more specifically flexible leaflet-type prosthetic heart valve devices.
  • BACKGROUND
  • A number of fabrication techniques have been used to couple the leaflets to a frame, including sewing individual leaflets to the frame (biological and synthetic), and for synthetic leaflets only, injection molding and dip coating a polymer onto the frame. In many cases, the resulting leaflet is supported on the frame and defines a flap having a mounting edge where the leaflet is coupled to the frame and a free edge that allows the flap to move. The flap moves under the influence of fluid pressure. In operation, the leaflets open when the upstream fluid pressure exceeds the downstream fluid pressure and closes when the downstream fluid pressure exceeds the upstream fluid pressure. The free edges of the leaflets coapt under the influence of downstream fluid pressure, closing the valve to prevent downstream blood from flowing retrograde through the valve.
  • Valve durability under the repetitive loads of the leaflets opening and closing is dependent, in part, on the load distribution between the leaflet and the frame. Further, substantial load is encountered on the leaflet when in the closed position. Mechanical failure of the leaflet can arise, for example, at the mounting edge, where the flexible leaflet is supported by the relatively rigid frame, particularly at the commissure posts. The repetitive loads of leaflet opening and closing leads to material failure by fatigue, creep or other mechanism, depending in part on the leaflet material. Mechanical failure at the mounting edge is especially prevalent with synthetic leaflets.
  • There remains a need for a more durable flexible leaflet prosthetic valve.
  • SUMMARY
  • Described embodiments are directed to apparatus, system, and methods for valve replacement, such as cardiac valve replacement. More specifically, described embodiments are directed toward flexible leaflet valve devices having biological or synthetic leaflet material and a frame, and methods of making and implanting the valve devices.
  • According to an embodiment, a prosthetic heart valve comprises a leaflet frame assembly. The leaflet frame assembly is an assembly of a leaflet frame, leaflet construct, and retention elements. The leaflet construct is that portion of the valve that comprises the leaflets and the structure for coupling the leaflets to the leaflet frame. In accordance with an embodiment, the leaflet construct defines a contiguous annular ring defining a plurality of leaflets and a bridge region between each of the leaflets. Each bridge region defines a bridge first end adjacent a first leaflet and a bridge second end adjacent a second leaflet. The leaflets extend radially inward from the leaflet frame when coupled to the leaflet frame. Each of the leaflets defines a fold-over portion that is folded over and lies against a leaflet frame outer side of the leaflet frame and coupled thereto such as with a securement structure, such as, but not limited to suture, adhesive, thermal bonding, or other means. Each of the bridge regions defines a bridge loop with a coaptation neck between the bridge loop and the adjacent leaflets. The coaptation neck is operable to pass through one of the post slots so that the bridge loop is adjacent to the outer portion of the leaflet frame and the leaflets extend radially inward from the leaflet frame. A retention element is disposed within the bridge loop effectively preventing the bridge loop from passing through the post slot. The retention element may be coupled to the commissure post, such as with a securement structure, such as, but not limited to suture, adhesive, thermal bonding, or other means. The fold-over portion of each of the leaflets is folded around an inflow edge of the leaflet frame and coupled thereto, such as with a securement structure, such as, but not limited to suture, adhesive, thermal bonding, or other means.
  • A method of making a prosthetic valve, in accordance with an embodiment, comprises obtaining a tube comprising one or more layers of expanded PTFE composite. Cutting a leaflet construct including a plurality of leaflets each being separated by a bridge region from the tube. Providing fold-over apertures in fold-over portions of the leaflets and bridge apertures in the bridge region. Obtaining a plurality of retention elements, each retention element defining retention element apertures. Folding each of the bridge regions into a bridge loop and defining a coaptation neck between each bridge loop and two adjacent leaflets, the bridge loops extending radially away from the tube axis. Disposing a retention element into each of the bridge loops. Suturing each retention element to the respective bridge loop passing suture through the bridge apertures and the retention element apertures that are aligned therewith. Cutting a leaflet frame from a metal tube defining leaflet frame windows and commissure posts therebetween where each commissure post defines a post slot dimensioned to receive a double thickness of the bridge region. Providing leaflet window frame apertures in the leaflet window frame and post apertures in the commissure posts. Disposing each coaptation neck in a respective post slot with the retention elements adjacent the post outer side and disposing the leaflets in the leaflet frame. Aligning the retention element apertures with the post apertures. Suturing each retention element to the respective commissure post passing suture through the retention element apertures and the post apertures that are aligned therewith. Folding the fold-over portions of each leaflet along the leaflet frame inflow edge and against the leaflet frame outer side aligning the fold-over apertures with the leaflet window frame apertures. And suturing each fold-over portion to the respective leaflet window frame passing suture through the fold-over apertures and the leaflet window frame apertures that are aligned therewith.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the present disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments described herein, and together with the description serve to explain the principles discussed in this disclosure.
  • FIG. 1A is an outflow side perspective view of a prosthetic heart valve in accordance with an embodiment;
  • FIG. 1B is an inflow side perspective view of the embodiment of the valve of FIG. 1A;
  • FIG. 2 is a perspective view of a leaflet frame assembly of the embodiment of the valve of FIG. 1A;
  • FIG. 3 is a side exploded view of the leaflet frame, retention element, leaflet construct and base frame, of an embodiment of a valve;
  • FIG. 4 is a representation of the embodiment of the valve of FIG. 3 unrolled to a flat orientation, in accordance with an embodiment;
  • FIG. 5A is a perspective view of the bridge region formed into a bridge loop, in accordance with the embodiment of FIG. 2 ;
  • FIG. 5B is a perspective view of the bridge region formed into a bridge loop and containing a retention element, in accordance with the embodiment of FIG. 2 ;
  • FIG. 6 is a side view of the bridge region of the embodiment of FIG. 7 ;
  • FIG. 7 is a perspective view of a leaflet frame assembly and a base frame, in accordance with the embodiment of the valve of FIG. 1A; and
  • FIG. 8 is a side view of the bridge region showing fold line at an angle alpha, in accordance with another embodiment.
  • DETAILED DESCRIPTION
  • Persons skilled in the art will readily appreciate that various aspects of the present disclosure can be realized by any number of methods and apparatus configured to perform the intended functions. Stated differently, other methods and apparatus can be incorporated herein to perform the intended functions. It should also be noted that the accompanying drawing figures referred to herein are not necessarily drawn to scale, but may be exaggerated to illustrate various aspects of the present disclosure, and in that regard, the drawing figures should not be construed as limiting.
  • Although the embodiments herein may be described in connection with various principles and beliefs, the described embodiments should not be bound by theory. For example, embodiments are described herein in connection with prosthetic valves, more specifically cardiac prosthetic valves. However, embodiments within the scope of this disclosure can be applied toward any valve or mechanism of similar structure and/or function. Furthermore, embodiments within the scope of this disclosure can be applied in non-cardiac applications.
  • The term leaflet as used herein in the context of prosthetic valves is a flexible component of a one-way valve wherein the leaflet is operable to move between an open and closed position under the influence of a pressure differential. In an open position, the leaflet allows blood to flow through the valve. In a closed position, the leaflet substantially blocks retrograde flow through the valve. In embodiments comprising multiple leaflets, each leaflet cooperates with at least one neighboring leaflet to block the retrograde flow of blood. The pressure differential in the blood is caused, for example, by the contraction of a ventricle or atrium of the heart, such pressure differential typically resulting from a fluid pressure building up on one side of the leaflets when closed. As the pressure on an inflow side of the valve rises above the pressure on the outflow side of the valve, the leaflets open and blood flows therethrough. As blood flows through the valve into a neighboring chamber or blood vessel, the pressure on the inflow side equalizes with the pressure on the outflow side. As the pressure on the outflow side of the valve raises above the blood pressure on the inflow side of the valve, the leaflet returns to the closed position generally preventing retrograde flow of blood through the valve.
  • The term membrane as used herein refers to a sheet comprising a single material, such as, but not limited to, expanded fluoropolymer.
  • The term composite material as used herein refers to a combination of a membrane, such as, but not limited to, expanded fluoropolymer, and an elastomer, such as, but not limited to, a fluoroelastomer. The elastomer can be contained within a porous structure of the membrane, coated on one or both sides of the membrane, or a combination of coated on and contained within the membrane.
  • The term laminate as used herein refers to multiple layers of membrane, composite material, or other materials, such as elastomer, and combinations thereof.
  • The term film as used herein generically refers to one or more of the membrane, composite material, or laminate.
  • The term biocompatible material as used herein generically refers to any material with biocompatible characteristics including synthetic, such as, but not limited to, a biocompatible polymer, or a biological material, such as, but not limited to, bovine pericardium.
  • The terms native valve orifice and tissue orifice refer to an anatomical structure into which a prosthetic valve can be placed. Such anatomical structure includes, but is not limited to, a location wherein a cardiac valve may or may not have been surgically removed. It is understood that other anatomical structures that can receive a prosthetic valve include, but are not limited to, veins, arteries, ducts and shunts. It is further understood that a valve orifice or implant site may also refer to a location in a synthetic or biological conduit that may receive a valve.
  • As used herein, “couple” means to join, connect, attach, adhere, affix, or bond, whether directly or indirectly, and whether permanently or temporarily.
  • Embodiments herein include various apparatus, systems, and methods for a prosthetic valve, such as, but not limited to, cardiac valve replacement. The valve is operable as a one-way valve wherein the valve defines a valve orifice into which leaflets open to permit flow and close so as to occlude the valve orifice and prevent flow in response to differential fluid pressure.
  • FIGS. 1A and 1B are outflow and inflow, respectfully, perspective views of a valve 100 in the form of a prosthetic heart valve, in accordance with an embodiment. The components of the valve 100 that are visible in FIGS. 1A and 1B include three flexible leaflets 310, a leaflet frame 200 including three commissure posts 210 that has been covered with various material, a base frame 500 that has been covered with various material, and a sewing cuff 600. The leaflet free edges 312 of the leaflets 310 come together at a cooptation region 316 in a Y-shaped pattern (when viewed from above) to close the valve 100. The valve 100 closes in this fashion when the pressure of the blood on the outflow side (as viewed in FIG. 1A) is greater than the pressure of the blood on the inflow side of the valve (as viewed in FIG. 1B). The leaflet free edges 312 of the leaflets 310 move apart to open the valve 100 and to let blood flow through the valve 100 from the inflow side as viewed in FIG. 1B when the pressure of the blood on the inflow side of the valve 100 is greater than the pressure on the outflow side of the valve 100.
  • FIGS. 2-5B show various components that are included in the valve 100, in accordance with an embodiment.
  • FIG. 2 is a perspective view of a leaflet frame assembly 234, in accordance with an embodiment, also shown in FIG. 3 in an exploded view and shown in FIG. 4 in an exploded view wherein the annular components have been longitudinally cut and laid open, so as to better illustrate the elements of the valve components. The leaflet frame assembly 234 comprises a leaflet frame 200, a leaflet construct 300, and a plurality of retention elements 400.
  • Leaflet Frame
  • The leaflet frame 200 is operable to hold and support the leaflet construct 300. The leaflet frame 200 is annular, that is it defines a cylinder having an axis X and a plurality of commissure posts 210 extending parallel to the axis x that are spaced from one another, each commissure post 210 defining a post slot 217 therethrough that is aligned parallel to the axis X. Between the commissure posts 210 is a leaflet window 222 that is operable to couple to and support the leaflet 310 around the perimeter of the leaflet 310 except for the leaflet free edge 312.
  • The leaflet frame 200 defines a cylinder having a leaflet frame inner side 202 and a leaflet frame outer side 204 opposite the leaflet frame inner side 202. The leaflet frame 200 further defines a plurality of commissure posts 210. Each commissure post 210 has a post outer side 212 and a post inner side 214 opposite the post outer side 212. The commissure post 210 is defined by a first post leg 216 and a second post leg 218 separated by a post slot 217 therebetween. A commissure tip 219 couples the first post leg 216 and the second post leg 218.
  • In accordance with an embodiment, the leaflet frame 200 is annular about a central longitudinal axis X of the valve 100 as shown in FIGS. 2 and 3 . The leaflet frame 200 defines a plurality of leaflet windows 222 that follow the shape of the leaflet 310. In accordance with an embodiment, each of the leaflet windows 222 includes two leaflet window sides 223 and a leaflet window base 225, defining three sides of an isosceles trapezoid, wherein the leaflet window base 225 is substantially flat. The leaflet base 325 is coupled to the leaflet window base 225 and each of the two leaflet sides 323 are coupled to one of the two leaflet window sides 223. The adjacent leaflet window sides 223 are interconnected by a commissure post 210 comprising of a first post leg 216 and a second post leg 218 that extend from adjacent leaflet window sides 223 and meet at a commissure tip 219. The commissure posts 210 are equally spaced from one another around the leaflet frame 200. The first post leg 216 and the second post leg 218 define a post slot 217 therebetween.
  • The leaflet frame 200 can be etched, cut, laser cut, stamped, three-dimensional printed, among other suitable processes, into an annular structure or a sheet of material, with the sheet then formed into an annular structure.
  • The leaflet frame 200 can comprise, such as, but not limited to, any elastically deformable metallic or polymeric material that is generally biocompatible. The leaflet frame 200 can comprise a shape-memory material, such as nitinol, a nickel-titanium alloy. Other materials suitable for the leaflet frame 200 include, but not limited to, other titanium alloys, stainless steel, cobalt-nickel alloy, polypropylene, acetyl homopolymer, acetyl copolymer, other alloys or polymers, or any other material that is generally biocompatible having adequate physical and mechanical properties to function as a leaflet frame 200 as described herein.
  • Leaflet Construct
  • The leaflet construct 300 is that portion of the valve 100 that comprises the leaflets 310 and the structure for coupling the leaflets 310 to the leaflet frame 200. In accordance with an embodiment, the leaflet construct 300 defines a contiguous annular ring defining a plurality of leaflets 310 and a bridge region 330 between each of the leaflets 310. As used herein, contiguous means without a break or a seam, that is, seamless. Each bridge region defines a bridge first end 332 adjacent a first leaflet 310 and a bridge second end 334 adjacent a second leaflet 310. The leaflets extend radially inward from the leaflet frame 200 when coupled to the leaflet frame 200. Each of the leaflets 310 define a fold-over portion 324 that is folded over and lies against a leaflet frame outer side 204 of the leaflet frame 200 and coupled thereto. Each of the bridge regions 330 defines a bridge loop 338 with a coaptation neck 340 between the bridge loop 338 and the adjacent leaflets 310. The coaptation neck 340 is operable to pass through one of the post slots 217 so that the bridge loop 338 is adjacent to the outer portion of the leaflet frame 200 and the leaflets 310 extend radially inward from the leaflet frame 200.
  • The leaflet construct 300 comprising the flexible leaflets 310 can be made of polymer. For example, pre-shaped polymer leaflets can be made by starting from a cylinder of polymer material that has been cut into a shape like that shown in FIGS. 3 and 4 .
  • The leaflet construct 300 can also be made from a sheet of polymer material that has been cut into a shape like that shown in FIGS. 3 and 4 and subsequently coupled together into an annular shape. A leaflet construct 300 having a seam, though may not have the advantages of a contiguous, seamless construct that may exhibit a higher tensile strength characteristics. The advantages provided by the retention element 400 may still be realized.
  • Another way that the leaflet construct 300 may be formed (assuming the use of a material for the leaflets that is suitable for formation in this way) is by compression or injection molding.
  • In accordance with an embodiment, each leaflet 310, at the folds 326, has substantially the shape of an isosceles trapezoid having two leaflet sides 323, a leaflet base 325 and a leaflet free edge 312 opposite the leaflet base 325, corresponding to the two leaflet window sides 223 and a leaflet window base 225. The two leaflet sides 323 diverge from the leaflet base 325, wherein the leaflet base 325 is substantially flat.
  • In accordance with other embodiments of the valve 100, each leaflet 310 includes a central region 329 and two side regions 328 on opposite sides of the central region 329. The central region 329 is defined by a shape substantially that of an isosceles trapezoid defined by two central region sides 327, the leaflet base 325 and the leaflet free edge 312. Each of the side regions 328 has a shape substantially that of a triangle and each are defined by one of the central region sides 327, one of the leaflet sides 323, and the leaflet free edge 312.
  • In accordance with another embodiment, the leaflet window may be described as having a U-shape. The leaflet frame generally defines a plurality of U-shaped portions as one proceeds annularly around the leaflet frame, defining a plurality of commissure posts and a plurality of leaflet window frame portions.
  • As shown in FIG. 4 , each of the leaflets 310 has a leaflet belly portion 322, and a fold-over portion 324. The leaflet belly portion 322 of each leaflet 310 is the operating portion of the leaflet 310 when in a finished and implanted valve 100. The fold-over portion 324 of each leaflet 310 is the portion that is used to secure the leaflet 310 to the two leaflet window sides 223 and the leaflet window base 225 of the leaflet frame 200. Each leaflet window side 223 and a leaflet window base 225 of the leaflet frame 200 fits into a fold 326 that is formed between the leaflet belly portion 322 and the fold-over portion 324 of a respective one of the leaflet sides 323 and leaflet base 325, respectively, of the leaflets 310, as shown in FIG. 2 . The leaflet belly portion 322 of each leaflet 310 includes enough material between the commissure posts 210 of the leaflet frame 200 so that the leaflet free edge 312 of the three leaflet belly portions 322 can come together or coapt in the interior of the valve 100 to close the valve 100 as shown in FIG. 1 .
  • Between each of the leaflets 310 is a bridge region 330, as shown in FIGS. 4, 5A, 5B and 8 . The bridge region 330 is operable to be formed into a bridge loop 338 having a generally rectangular shape, folding about two loop fold lines 336 so as to contain the retention element 400 therein as discussed below, as shown in FIGS. 5A, 5B, 6 and 8 . Due to the curvature of the annular leaflet frame 200, the two loop fold lines 336 form an angle alpha, which corresponds to the retention element sides 402 as shown in FIG. 6 , in accordance with an embodiment.
  • In accordance with an embodiment, the leaflet construct 300 can comprise a biocompatible material that is not of a biological source and that is sufficiently compliant and strong for the particular purpose, such as a biocompatible polymer. In an embodiment, the leaflet construct 300 comprises a membrane that is combined with an elastomer to form a composite material. In accordance with other embodiments, the biocompatible material that makes up the leaflet construct 300 comprises a biological material, such as, but not limited to, bovine pericardium.
  • The shape of the leaflets 310 are defined in part by the shape of the leaflet frame 200 and the leaflet free edge 312. The shape of the leaflets 310 can also be defined by the structures and processes used to manufacture the valve 100, such as, but not limited, those described below. For example, in accordance with an embodiment, the shape of the leaflets 310 also depends in part on molding the leaflets 310 using molding and trimming processes to impart a predetermined shape to the leaflet 310.
  • The leaflets 310 generally flex about the leaflet base 325 about the leaflet window base 225 of the U-shaped portion as the leaflets 310 open and close. In an embodiment, when the valve 100 is closed, generally about half of each leaflet free edge 312 abuts an adjacent half of a leaflet free edge 312 of an adjacent leaflet 310, as shown in FIG. 1A. The three leaflets 310 of the embodiment of FIG. 1A meet at a triple point 348. The valve orifice 150 is occluded when the leaflets 310 are in the closed position stopping fluid flow.
  • Leaflet Construct Material
  • The leaflet construct 300 can comprise any biocompatible material sufficiently compliant and flexible, such as a biocompatible polymer. The leaflet construct 300 can comprise a membrane that is combined with an elastomer to form a composite material. The leaflet construct 300 can comprise, according to an embodiment, a composite material comprising an expanded fluoropolymer membrane, which comprises a plurality of spaces within a matrix of fibrils, and an elastomeric material. It should be appreciated that multiple types of fluoropolymer membranes and multiple types of elastomeric materials can be combined to form a composite material while remaining within the scope of the present disclosure. It should also be appreciated that the elastomeric material can include multiple elastomers, multiple types of non-elastomeric components, such as inorganic fillers, therapeutic agents, radiopaque markers, and the like while remaining within the scope of the present disclosure.
  • In accordance with an embodiment, the composite material includes an expanded fluoropolymer material made from porous ePTFE membrane, for instance as generally described in U.S. Pat. No. 7,306,729 to Bacino.
  • The expandable fluoropolymer, used to form the expanded fluoropolymer material described, can comprise PTFE homopolymer. In alternative embodiments, blends of PTFE, expandable modified PTFE and/or expanded copolymers of PTFE can be used. Non-limiting examples of suitable fluoropolymer materials are described in, for example, U.S. Pat. No. 5,708,044, to Branca, U.S. Pat. No. 6,541,589, to Baillie, U.S. Pat. No. 7,531,611, to Sabol et al., U.S. patent application Ser. No. 11/906,877, to Ford, and U.S. patent application Ser. No. 12/410,050, to Xu et al.
  • The expanded fluoropolymer membrane can comprise any suitable microstructure, such as pores, for achieving the desired leaflet performance. Other biocompatible polymers which can be suitable for use in leaflet include but are not limited to the groups of urethanes, silicones (organopolysiloxanes), copolymers of silicon-urethane, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing.
  • Further examples of leaflet construct materials include: wherein the leaflet construct comprises at least one fluoropolymer membrane layer; wherein the leaflet construct comprises a laminate having more than one fluoropolymer membrane layer; wherein the at least one fluoropolymer membrane layer is an expanded fluoropolymer membrane layer; wherein an elastomer is contained within the expanded fluoropolymer membrane layer; wherein the elastomer comprises perfluoromethyl vinyl ether and tetrafluoroethylene; wherein the expanded fluoropolymer membrane layer comprises ePTFE; wherein the leaflet construct comprises a composite material having at least one fluoropolymer membrane layer having a plurality of pores and an elastomer present in the pores of at least one of the fluoropolymer membrane layers; wherein the composite material comprises fluoropolymer membrane by weight in a range of about 10% to 90%; wherein the elastomer comprises (per)fluoroalkylvinylethers (PAVE); wherein the elastomer comprises a copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether; wherein the elastomer is silicone; wherein the elastomer is a fluoroelastomer; wherein the elastomer is a urethane; and wherein the elastomer is a TFE/PMVE copolymer; wherein the TFE/PMVE copolymer comprises essentially of between about 40 and 80 weight percent perfluoromethyl vinyl ether and complementally 60 and 20 weight percent tetrafluoroethylene; and wherein the leaflet construct comprises silicone.
  • Retention Element
  • The retention element 400 is an element that is operable to be disposed within the bridge loop 338 formed by the bridge region 330 of the leaflet construct 300, which effectively prevents the bridge loop 338 from passing through the post slot 217, and therefore the leaflet construct 300 is mechanically coupled to the commissure post at the post outer side. The retention element 400 has a width that is larger than a width of the post slot 217. With the retention element 400 being disposed in the bridge loop 338, the bridge loop 338 will be prevented from passing through the post slot 217. The size of the bridge loop 338 should correspond closely to the size of the retention element 400 to prevent a portion of the bridge region 330 from extending through the post slot 217 to the valve orifice 150 in case of the suture loosening or failing.
  • In accordance with an embodiment, the retention element 400 defines a relatively flat generally rectangular shape so as to have a low profile on the post outer side 212 of the commissure post 210. Due to the curvature of the annular leaflet frame 200, the sides of the retention element 400 are formed at an angle corresponding to the two loop fold lines 336 that form an angle alpha, as shown in FIG. 8 , in accordance with an embodiment.
  • In accordance with embodiments, the retention element 400 can be flat, relatively flat, or concave on the inside (toward the center of the valve) to correspond with the radially outer convexity of commissure post 210 that the retention element 400 will be adjacent to. Each retention element 400 has a plurality of retention element apertures 408 that align with commissure post apertures 209 wherein the retention element 400 is placed against the post outer side 212 of the commissure post 210 with a portion of the bridge region 330 therebetween. A securement structure, such as, but not limited to suture 700, may be used to couple the retention element 400 to the commissure post 210. Suture may be of any suitable material, such as PTFE, PET, and nylon, among others. Stitching comprising suture 700 may be passed through these aligned commissure post apertures 209 and retention element apertures 408 and the bridge region 330 to hold each retention element 400 and the bridge region 330 to the commissure post 210. Some or all of this suture 700 may pass through the fold-over portion 324 of the leaflet 310. In that event, this suture 700 will contribute to securing the leaflet belly portion 322 of the leaflets 310 to the leaflet frame 200.
  • Examples of suitable materials for the retention elements 400 include various biocompatible alloys such as titanium, Elgiloy, MP35N, stainless steel, nitinol, etc., and various biocompatible engineering plastics such as acetyl polymers, PTFE, and PEEK.
  • Leaflet Frame Assembly
  • A leaflet frame assembly 234 is the assembly of the leaflet frame 200, leaflet construct 300, and the retention elements 400. The leaflet construct 300 is that portion of the valve 100 that comprises the leaflets 310 and the structure for coupling the leaflets 310 to the leaflet frame 200. In accordance with an embodiment, the leaflet construct 300 defines a contiguous cylinder defining a plurality of leaflets 310 and a bridge region 330 between each of the leaflets 310. Each bridge region defines a bridge first end 332 adjacent a first leaflet 310 and a bridge second end 334 adjacent a second leaflet 310. The leaflets extend radially inward from the leaflet frame 200 when coupled to the leaflet frame 200. Each of the leaflets 310 defines a fold-over portion 324 that is folded over and lies against a leaflet frame outer side 204 of the leaflet frame 200 and coupled thereto, such as with securement structure, such as, but not limited to suture, adhesive, thermal bonding, or other means. Each of the bridge regions 330 defines a bridge loop 338 with a coaptation neck 340 between the bridge loop 338 and the adjacent leaflets 310. The coaptation neck 340 is operable to pass through one of the post slots 217 so that the bridge loop 338 is adjacent to the outer portion of the leaflet frame 200 and the leaflets 310 extend radially inward from the leaflet frame 200. A retention element 400 is disposed within the bridge loop 338 effectively preventing the bridge loop 338 from passing through the post slot 217. The retention element 400 may be coupled to the commissure post 210, such as with suture, adhesive, thermal bonding, or other means. The fold-over portion 324 of each of the leaflets 310 is folded around an inflow edge of the leaflet frame 200 and coupled thereto, such as with suture, adhesive, thermal bonding, or other means.
  • In accordance with an embodiment, each bridge region 330 is wrapped around a retention element outer side 412 to the retention element inner side 414 of one of the retention elements 400 with the bridge first end 332 wrapped across the retention element inner side 414 to adjacent a dividing line 416 that vertically bisects the retention element 400, from a first direction and the bridge second end 334 wrapped across the retention element inner side 414 to adjacent the dividing line 416 from an opposite direction, wherein the bridge first end 332 and bridge second end 334 are adjacent to each other to define a coaptation neck 340.
  • In accordance with an embodiment, the leaflet frame assembly 234 is provided with means for coupling to a native tissue annulus, and thus the leaflet frame assembly 234 is a prosthetic heart valve 100. In an embodiment, a sewing cuff 600 is coupled to the leaflet frame assembly 234, where the sewing cuff is operable to be sutured to the native tissue annulus. In another embodiment, a base frame 500 comprising a sewing cuff 600 is coupled to the leaflet frame assembly 234.
  • One possible way to characterize the benefits of some embodiments presented herein is the effect of the bridge region 330 being a continuous member, that is, no seams or breaks. Any force tending to pull or extract the bridge region 330 through the post slot 217 is countered by the tensile strength of the material that the bridge region 330 comprises. The forces on the leaflets 310 during use are greatest at the commissure posts 210 tending to pull the leaflets 310 away from the commissure posts 210. The coupling of the leaflet construct 300 to the leaflet frame 200 at the commissure posts 210, in accordance with these embodiments, does not rely solely on the suture 700 but also the retention element 400 that prevents the bridge region 330 from passing through the post slot 217. It is understood that sutures, in general, tend to loosen and fail over a period of time, especially in regions of high stress. In these embodiments, the suture 700 that couples the bridge region 330 to the commissure post 210 may loosen or fail but the retention element 400 continues to prevent the bridge region 330 from passing through the post slot 217 preventing failure of the valve 100.
  • Further, the retention element 400 provides a clamping force between a portion of the bridge region 330 and the post outer side 212 of the commissure post 210 during operation of the valve 100. This clamping force is the result of the retention element 400 being larger than the post slot 217 which prevents the bridge region 330 from passing through the post slot 217. The clamping force does not rely on the strength of the suture 700 or the tension of the suture on the bridge region 330 and the commissure posts 210.
  • This clamping force may tend to distribute the forces on the bridging region 330 reducing peak stresses that might be applied at the suture 700 and apertures 999. Further the clamping force is the primary mode of transferring the forces from the leaflets 130 to the leaflet frame 200 rather than merely relying on the stitching of the leaflets 310 to the leaflet frame 200. Further, the angle alpha of the two loop fold lines 336 allows for a substantially equal distribution of stresses over the coaptation neck 340 between the bridge loop 338 and the adjacent leaflets 310 whereby reducing the peak stresses in the coaptation neck 340.
  • In accordance with these embodiments, the leaflets 310 extend perpendicular from the leaflet frame 200, as shown in FIG. 5 . The leaflets 310 extend from the post slot 217 in a direction perpendicular to the post inner side 214 As such, the leaflets 310 exhibit a bias toward the closed position. This is beneficial in that the valve 100 will tend to close earlier during the phase of the cardiac cycle where the blood is decelerating or reversing. An earlier closure will tend to reduce back flow through the valve 100.
  • The design and manufacturing process (including the various components and the way of assembling those components) greatly reduce possible stress concentration at the leaflet frame-leaflet junction by distributing the load more evenly. These design and manufacturing process aspects also (1) reduce the burden of extensive and demanding suturing, (2) increase the consistency of valve manufacturing results, and (3) increase the service life of a resulting valve as a consequence of all of the foregoing factors.
  • Instead of or in addition to suture, chemical bonds and/or adhesives can be used between the leaflet frame 200 and the fold-over portion 324 of the leaflet construct.
  • The bridge regions 330 are passed through the post slot 217 in a number of ways. In accordance with an embodiment, the bridge region 330 is formed into a narrow bridge loop 338 which is passed through the post slot 217 from the leaflet frame inner side 202 to the leaflet frame outer side 204. A retention element 400 may then be inserted into the bridge loop 338 preventing the bridge loop 338 from being passed back through the post slot 217.
  • In accordance with embodiments, the leaflet frame 200, leaflet construct 300 and the retention elements 400 have matching and radially aligned apertures for receiving suture. The fold-over portion 324 and the bridge regions 330 containing a retention element 400 are coupled to the leaflet frame by suturing through these matching apertures. The dashed lines in FIG. 7 show an illustrative suture pattern. The suturing work-load is very light and not skill-demanding.
  • Base Frame
  • The base frame 500 is a generally annular member defining a base frame lumen 550 having a base frame inner side 502 and a base frame outer side 504, as shown in FIGS. 3 and 4 . The base frame 500 may provide structural, load-bearing support to the leaflet frame 200. In addition, the base frame 500 can be configured to provide positive engagement to the recipient tissue at the implantation site.
  • In accordance with an embodiment, the base frame 500 defines a plurality of triangular regions 526 extending away from the base frame inflow edge 520. The leaflet frame 200 may comprise corresponding triangular openings 256 defined by two leaflet window sides 223 of adjacent leaflet windows 222 of the leaflet frame 200 define two sides of an isosceles triangle on the leaflet frame inflow edge 220. The triangular openings 256 are operable to receive the triangular regions 526 of the base frame 500 therein.
  • The base frame 500 can comprise any metallic or polymeric material that is generally biocompatible. For example, the base frame 500 can comprise a material, such as, but not limited to nitinol, cobalt-nickel alloy, stainless steel, and polypropylene, acetyl homopolymer, acetyl copolymer, ePTFE, other alloys or polymers, or any other biocompatible material having adequate physical and mechanical properties to function as described herein.
  • The base frame 500 can be etched, cut, laser cut, or stamped into a tube or a sheet of material, with the sheet then formed into an annular structure.
  • In accordance with embodiments, the base frame 500 can be configured to provide positive engagement to an implant site. In an embodiment, the valve 100 further includes a sewing cuff 600 coupled about the base frame 500, as shown in FIGS. 1A and 1B, that is operable to accept suture so as to be sewn to a tissue orifice. It is understood that conventional, surgical techniques to implant prosthetic valves can be used to implant the valve 100, in accordance with embodiments.
  • It is appreciated that other elements or means for coupling the valve 100 to an implant site are anticipated. By way of example, but not limited thereto, other means, such as mechanical and adhesive means may be used to couple the valve 100 to a synthetic or biological conduit.
  • In another embodiment, the valve 100 further comprises a base frame 500, as shown in FIGS. 3 and 4 . The base frame 500 is coupled to a leaflet frame inflow edge 220 of the leaflet frame 200. The base frame 500 is provided with base frame apertures 508 that may be used to suture the base frame 500 to the leaflet frame 200 using suture 700. An advantage of a separate leaflet frame 200 and base frame 500 is that they may have different physical characteristics. By way of example, a relatively less stiff leaflet frame 200 supporting the leaflets 310 can be more likely to reduce the loading encountered by the opening and closing leaflets 130 as compared to a stiffer leaflet frame 200. The leaflet frame 200 having a relatively less stiff property may reduce leaflet accelerations and reduce the closing stresses on the leaflets 310. Wherein the base frame 500 may be more stiff which would be more suitable for suturing to the native tissue orifice. The base frame 500 may resist the compressive forces that may be encountered at the implant site, for example.
  • In embodiments of the valve 100, the inclusion of a base frame 500 and a leaflet frame 200 provides a means for providing different physical properties for each of the base frame 500 and the leaflet frame 200 suitable for a particular purpose. In accordance with an embodiment, the base frame 500 is stiffer as compared with the leaflet frame 200. The base frame 500, when engaged to the implant site, such as, but not limited to a tissue orifice, is rigid enough to not significantly deform under physiological loading.
  • The physical properties of the base frame 500 and the leaflet frame 200 depends, in part, on the size, shape, thickness, and material property of the base frame 500 and the leaflet frame 200.
  • Stiff and stiffness, as used herein and as is commonly used in engineering, is a measure of the resistance to deformation given by a base. Stiff and stiffness is a function of, among other things, material properties, the shape of the object, and the boundary conditions on the object. Stiffness of the leaflet frame 200 (see FIG. 1A) may be measured by any number of methods known in the art. In accordance with one method, cables may be coupled to each of the three commissure posts 210 and brought together so as to allow the cables to be pulled simultaneously along the axis of the leaflet frame, with the leaflet frame held by the base frame 500. The amount of force on the cables required to deflect the three commissure posts toward the axis provides a measure of stiffness. The same may be done with the base frame 500 with the cables coupled to three equally spaced points on the base frame, such as an apex of the triangular region 526, as shown in FIG. 4 .
  • Sewing Cuff
  • The valve 100 may be provided with a sewing cuff 600 adjacent the base frame 500, as shown in FIGS. 1A and 1B. The sewing cuff 600 is operable to provide structure that receives suture for coupling to the implant site. The sewing cuff 600 may comprise any suitable material, such as, but not limited to, double velour polyester and silicone. The sewing cuff 600 may be located circumferentially around the base frame 500 or perivalvular depending from the base frame 500. The sewing cuff 600 may comprise a filler material, such as, but not limited to, a silicone ring and/or PTFE felt.
  • Methods
  • A method of making a prosthetic valve, in accordance with embodiment, comprises obtaining a tube comprising one or more layers of expanded PTFE composite. Cutting a leaflet construct including a plurality of leaflets each being separated by a bridge region from the tube. Providing fold-over apertures in fold-over portions of the leaflets and bridge apertures in the bridge region. Obtaining a plurality of retention elements, each retention element defining retention element apertures. Folding each of the bridge regions into a bridge loop and defining a coaptation neck between each bridge loop and two adjacent leaflets, the bridge loops extending radially away from the tube axis. Disposing a retention element into each of the bridge loops. Suturing each retention element to the respective bridge loop passing suture through the bridge apertures and the retention element apertures that are aligned therewith. Cutting a leaflet frame from a metal tube defining leaflet frame windows and commissure posts therebetween where each commissure post defines a post slot dimensioned to receive a double thickness of the bridge region. Providing leaflet window frame apertures in the leaflet window frame and post apertures in the commissure posts. Disposing each coaptation neck in a respective post slot with the retention elements adjacent the post outer side and disposing the leaflets in the leaflet frame. Aligning the retention element apertures with the post apertures. Suturing each retention element to the respective commissure post passing suture through the retention element apertures and the post apertures that are aligned therewith. Folding the fold-over portions of each leaflet along the leaflet frame inflow edge and against the leaflet frame outer side aligning the fold-over apertures with the leaflet window frame apertures. And suturing each fold-over portion to the respective leaflet window frame passing suture through the fold-over apertures and the leaflet window frame apertures that are aligned therewith.
  • In accordance with an embodiment the method may further comprise providing strips of fabric, wrapping and sewing the fabric on the leaflet frame to provide a cushion between the leaflet frame and the leaflet construct, and trimming the fabric to approximately 3 mm from the leaflet frame outflow edge of the leaflet frame.
  • In accordance with an embodiment the method may further comprise cutting a base frame from a metal tube defining base frame apertures, and coupling the base frame to the leaflet frame inflow edge of the leaflet frame.
  • In accordance with an embodiment the method may further comprise providing a fabric tube and inserting the fabric tube through the base frame along its flow axis. Folding the fabric outflow edge of the fabric over the base frame outflow edge of the base frame. Sewing the fabric into place using suture through the base frame apertures in the base frame. Inverting the fabric inflow edge of the fabric tube over the base frame. Sewing the fabric tube into place using suture through base frame apertures along the inflow edge of the base frame. Disposing a sewing cuff insert inside a pocket defined by the inverted fabric tube and tucking the fabric tube in between the base frame and the sewing cuff insert such that all the slack of the fabric tube is removed around the sewing cuff. Placing the leaflet frame coaxially with and adjacent to the base frame and inside the fabric tube. Trimming the fabric tube approximately 5 mm from the leaflet frame outflow edge and suturing the leaflet frame to the base frame at the leaflet window base using suture passing through the respective leaflet window frame apertures and the base frame apertures. Folding the trimmed edge of the fabric tube over the leaflet frame outflow edge, tucking the trimmed edge underneath itself to conceal any frayed edges, and sewing the fabric tube to the fabric on the leaflet frame.
  • EXAMPLE
  • By way of example, one embodiment of a valve was made as follows:
  • A surgical prosthetic heart valve was constructed in the following manner. A leaflet construct 300, including fold-over apertures 308 and bridge apertures 309, was cut from the leaflet coupon using a CO2 laser according to the pattern shown in FIG. 3 .
  • Three retention elements 400 made from PEEK, shown in FIG. 3 , were sewn onto the bridge loop 338 of the bridge region 330 of the leaflet construct 300, as shown in FIGS. 5 and 6 . The retention element 400 is provided with retention element apertures 408 that align with bridge apertures 309 on the leaflet construct 300. A partial view of the resulting assembly is shown in FIG. 2 .
  • A leaflet frame 200 and base frame 500 were laser cut, including leaflet frame apertures 208 and base frame apertures 508, respectively, and electropolished from a tube of cobalt chromium (MP35N) with a 25 mm OD and 0.4 mm wall thickness, as shown in FIG. 3 . The frames were cleaned in an ultrasonic bath of ethanol to remove contaminants. Three strips of polyester knit fabric were wrapped and sewn on the leaflet frame, to provide a cushion between the leaflet frame 200 and the leaflet construct 300. A post slot 217 of the commissure post 210 large enough (approximately 0.254 mm) to accommodate a double thickness of the leaflet construct 300 at the bridge region 330 was provided. The remaining polyester knit fabric was trimmed off approximately 3 mm from the leaflet frame outflow edge 224 of the leaflet frame 200 shown in FIG. 4 . The leaflet construct 300 with retention elements 400 was placed onto the leaflet frame 200 by sliding each coaptation neck 340 in the post slot 217 with the retention elements 400 on the post outer side 212, as shown in FIG. 2 . The retention element apertures 408 were aligned with leaflet frame apertures 208 on the leaflet frame 200 and were sewn into place with suture 700, as shown in FIG. 6 . The leaflet construct 300 includes fold-over portions 324 and fold-over apertures 308 along attachment edges. The fold-over portions 324 were folded along the leaflet frame inflow edge 220 of the leaflet frame 200 up against the leaflet frame outer side 204 where fold-over apertures 308 in the fold-over portions 324 coincide with leaflet frame apertures 208 of the leaflet frame 200 and were sewn into place with suture 700 as shown in FIG. 7 .
  • A tube of polyester knit fabric about 24 mm in diameter and at least 10 cm in length was inserted through the base frame 500 along its flow axis. The fabric outflow edge of the polyester knit fabric was folded over the base frame outflow edge 524 of the base frame 500 and sewn into place using suture 700 through base frame apertures 508 in the base frame 500 (not shown). The fabric inflow edge of the polyester knit fabric tube was inverted over the base frame 500 and sewn into place using suture 700 through base frame apertures 508 along the base frame inflow edge 520 of the base frame 500. A silicone sewing cuff insert was placed over the base frame 500 and inside of the inverted polyester knit fabric tube. The polyester knit fabric tube was tucked in between the base frame 500 and the sewing cuff insert such that all the slack was removed around the sewing cuff 600.
  • The leaflet frame assembly 234 comprising the leaflet frame 200, the leaflet construct 300 and retention elements 400 was coaxially placed adjacent the base frame and inside the polyester knit fabric tube. The polyester knit fabric tube was trimmed approximately 5 mm off the leaflet frame outflow edge 224. The leaflet frame 200 was sutured to the base frame 500 at the leaflet window base 225, with three sutures 700 at each of the three leaflet window bases 225 of the leaflet frame 200. The trimmed edge of the polyester knit fabric was folded over the leaflet frame outflow edge 224. The trimmed edge was tucked underneath itself to conceal any frayed edges and sewn to the polyester knit fabric on the leaflet frame.
  • Numerous characteristics and advantages have been set forth in the preceding description, including various alternatives together with details of the structure and function of the devices and/or methods. The disclosure is intended as illustrative only and as such is not intended to be exhaustive. It will be evident to those skilled in the art that various modifications can be made, especially in matters of structure, materials, elements, components, shape, size and arrangement of parts including combinations within the principles of the disclosure, to the full extent indicated by the broad, general meaning of the terms in which the appended claims are expressed. To the extent that these various modifications do not depart from the spirit and scope of the appended claims, they are intended to be encompassed therein.

Claims (17)

What is claimed:
1. A method of making a prosthetic valve, the method comprising:
cutting a leaflet construct from a tube of material such that the leaflet construct includes a plurality of leaflets each separated by a bridge region and having fold-over apertures in fold-over portions of each leaflet and bridge apertures in the bridge region;
folding each of the bridge regions into a bridge loop, each bridge loop of the plurality of leaflets defining coaptation necks between the bridge loop and two adjacent leaflets of the plurality of leaflets;
locating a retention element in each of the bridge loops;
suturing each retention element to the respective bridge loop by passing suture through the bridge apertures and respective retention element apertures that are aligned therewith;
disposing each coaptation neck in a respective post slot of a leaflet frame that is a tube defining leaflet frame windows and a plurality of commissure posts therebetween, where each of the plurality of commissure posts defines a post slot dimensioned to receive a double thickness of the tube at the bridge region and the leaflet frame has leaflet window frame apertures in the leaflet window frame and post apertures in the commissure posts;
positioning the retention elements adjacent an outer side of a respective one of the commissure posts and disposing the leaflets in the leaflet frame;
aligning the retention element apertures with the post apertures;
suturing each retention element to the respective commissure post passing suture through the retention element apertures and the post apertures that are aligned therewith;
folding the fold-over portions of each leaflet along a leaflet frame inflow edge and against a leaflet frame outer side aligning the fold-over apertures with the leaflet window frame apertures; and
suturing each fold-over portion to the respective leaflet window frame passing suture through the fold-over apertures and the leaflet window frame apertures that are aligned therewith.
2. The method of claim 1, wherein the tube of material comprises one or more layers of expanded PTFE composite.
3. The method of claim 1, further comprising:
providing strips of fabric;
wrapping and sewing the strips of fabric on the leaflet frame to provide a cushion between the leaflet frame and the leaflet construct; and
trimming the strips of fabric to adjacent a leaflet frame outflow edge of the leaflet frame.
4. The method of claim 3, further comprising:
providing a base frame that is a tube defining base frame apertures, the base frame defining a base frame central axis;
placing the leaflet frame and base frame in coaxial alignment; and
coupling the base frame to the leaflet frame inflow edge of the leaflet frame.
5. The method of claim 4, further comprising:
providing a fabric tube;
inserting the fabric tube through the base frame along the base frame central axis;
folding a fabric outflow edge of the fabric tube over a base frame outflow edge of the base frame;
coupling the fabric outflow edge to the base frame by sewing the fabric outflow edge using suture through the base frame apertures in the base frame;
inverting a fabric inflow edge of the fabric tube over the base frame;
coupling the fabric inflow edge to an inflow edge of the base frame by sewing the fabric inflow edge using suture through the base frame apertures that are adjacent the inflow edge of the base frame;
disposing a sewing cuff insert inside a pocket defined by the fabric tube that has been inverted;
tucking the fabric tube in between the base frame and the sewing cuff insert such that all slack of the fabric tube is removed around the sewing cuff insert;
placing the leaflet frame coaxially with and adjacent to the base frame and inside the fabric tube;
trimming the fabric tube to adjacent a leaflet frame outflow edge;
suturing the leaflet frame to the base frame at a leaflet window base using suture passing through the respective leaflet window frame apertures and the base frame apertures;
folding a trimmed edge of the fabric tube over the leaflet frame outflow edge;
tucking the trimmed edge underneath itself to conceal any frayed edges; and
sewing the fabric tube to the strips of fabric on the leaflet frame.
6. A method of making a prosthetic valve, the method comprising:
forming a leaflet construct including a plurality of leaflets that are contiguous with one another and are interconnected by a plurality of bridge regions;
folding each of the plurality of bridge regions into a plurality of bridge loops;
passing each of the plurality of bridge loops through a plurality of post slots in a plurality of commissure posts of a leaflet frame;
receiving a plurality of retention elements in the plurality of bridge loops such that each of the plurality of retention elements is abutted against an outer side of the plurality of commissure posts of the leaflet frame;
securing the plurality of bridge loops to the plurality of retention elements, the plurality of retention elements to the plurality of commissure posts, and the plurality of bridge loops to the plurality of commissure posts; and
folding portions of each of the plurality of leaflets over the leaflet frame to define a plurality of fold-over portions and securing the fold-over portions in a folded configuration to couple the fold-over portions to the leaflet frame.
7. The method of claim 6, further comprising using a plurality of sutures to secure the plurality of bridge loops to the plurality of retention elements, the plurality of retention elements to the plurality of commissure posts, and the plurality of bridge loops to the plurality of commissure posts.
8. The method of claim 6, further comprising using a plurality of sutures to secure the fold-over portions in the folded configuration to couple the fold-over portions to the leaflet frame.
9. The method of claim 6, further comprising forming the leaflet construct including the plurality of leaflets that are contiguous with one another and are interconnected by the plurality of bridge regions by cutting a tube of material into the leaflet construct.
10. The method of claim 6, further comprising forming a plurality of apertures through each of the plurality of bridge regions, each of the plurality of commissure posts, and each of the plurality of retention elements locating a plurality of securement structures in the plurality of apertures through each of the plurality of bridge regions, each of the plurality of commissure posts, and each of the plurality of retention elements to secure the plurality of bridge regions, the plurality of commissure posts, and the plurality of retention elements together.
11. The method of claim 6, wherein the leaflet construct is formed of one or more layers of expanded PTFE composite.
12. A method of implanting a prosthetic valve, the method comprising:
positioning a prosthetic valve at an implant site in a body of a patient, the prosthetic valve including a leaflet frame, a leaflet construct, and a retention element, the leaflet construct defining a cylinder having a leaflet frame inner side and a leaflet frame outer side, the leaflet frame having a leaflet frame central axis and a plurality of commissure posts extending parallel to the leaflet frame central axis that are spaced from one another, each commissure post defining a post slot therethrough that is aligned parallel to the leaflet frame central axis, between the commissure posts and contiguous therewith is a leaflet window, the leaflet construct defining a continuous, uninterrupted cylinder comprising a plurality of leaflets and a bridge region seamlessly interconnecting each of the leaflets, the leaflets extending inward from the leaflet frame, each of the leaflets defining a fold-over portion that is folded over and lies against the leaflet frame outer side of the leaflet frame and coupled thereto, each of the bridge regions extending through one of the post slots and defining a bridge loop that is adjacent to the leaflet frame outer side, and the retention element having a width that is larger than a width of the post slot, the retention element being disposed in the bridge loop and operable to prevent the bridge loop from passing through the post slot; and
securing the prosthetic valve at the implant site in the body of the patient.
13. The method of claim 12, further comprising securing the prosthetic valve at the implant site in the body of the patient by sewing a sewing cuff of the prosthetic valve to tissue at the treatment site.
14. The method of claim 12, wherein following implantation of the prosthetic valve at the implant site, blood flows into the valve past an inflow edge of the leaflet frame over which the fold-over portion of each of the leaflets is folded around.
15. A method of implanting a prosthetic valve, the method comprising:
positioning a prosthetic valve at an implant site in a body of a patient, the prosthetic valve including a leaflet frame, a leaflet construct, and a plurality of retention elements, the leaflet frame defining a plurality of commissure posts each defined by a first post leg and a second post leg separated by a post slot, the leaflet construct defining a continuous, uninterrupted cylinder including a plurality of leaflets and a plurality of bridge regions seamlessly interconnecting each of the plurality of leaflets,
where each of the plurality of bridge region is folded into a loop, is received through one of the post slots of the plurality of commissure posts, and is wrapped around one of the plurality of retention elements; and
securing the prosthetic valve at the implant site in the body of the patient.
16. The method of claim 15, further comprising securing the prosthetic valve at the implant site in the body of the patient by sewing a sewing cuff of the prosthetic valve to tissue at the treatment site.
17. The method of claim 15, wherein portions of each of the plurality of leaflets are folded over an inflow edge of the leaflet frame to define a plurality of fold-over portions and following implantation of the prosthetic valve at the implant site, blood flows into the valve past the inflow edge of the leaflet frame.
US17/941,538 2014-09-15 2022-09-09 Prosthetic heart valve with retention elements Pending US20230000623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/941,538 US20230000623A1 (en) 2014-09-15 2022-09-09 Prosthetic heart valve with retention elements

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462050628P 2014-09-15 2014-09-15
US14/853,654 US9827094B2 (en) 2014-09-15 2015-09-14 Prosthetic heart valve with retention elements
US15/791,562 US10342659B2 (en) 2014-09-15 2017-10-24 Prosthetic heart valve with retention elements
US16/446,343 US11471276B2 (en) 2014-09-15 2019-06-19 Prosthetic heart valve with retention elements
US17/941,538 US20230000623A1 (en) 2014-09-15 2022-09-09 Prosthetic heart valve with retention elements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/446,343 Division US11471276B2 (en) 2014-09-15 2019-06-19 Prosthetic heart valve with retention elements

Publications (1)

Publication Number Publication Date
US20230000623A1 true US20230000623A1 (en) 2023-01-05

Family

ID=55453653

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/853,654 Active US9827094B2 (en) 2014-09-15 2015-09-14 Prosthetic heart valve with retention elements
US15/791,562 Active US10342659B2 (en) 2014-09-15 2017-10-24 Prosthetic heart valve with retention elements
US16/446,343 Active 2037-02-09 US11471276B2 (en) 2014-09-15 2019-06-19 Prosthetic heart valve with retention elements
US17/941,538 Pending US20230000623A1 (en) 2014-09-15 2022-09-09 Prosthetic heart valve with retention elements

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/853,654 Active US9827094B2 (en) 2014-09-15 2015-09-14 Prosthetic heart valve with retention elements
US15/791,562 Active US10342659B2 (en) 2014-09-15 2017-10-24 Prosthetic heart valve with retention elements
US16/446,343 Active 2037-02-09 US11471276B2 (en) 2014-09-15 2019-06-19 Prosthetic heart valve with retention elements

Country Status (10)

Country Link
US (4) US9827094B2 (en)
EP (2) EP3804659A1 (en)
JP (3) JP6571763B2 (en)
CN (2) CN109589188B (en)
AU (4) AU2015318007B2 (en)
BR (1) BR112017005029A2 (en)
CA (3) CA3042418C (en)
CR (1) CR20170144A (en)
ES (1) ES2838810T3 (en)
WO (1) WO2016044223A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11826248B2 (en) 2012-12-19 2023-11-28 Edwards Lifesciences Corporation Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US11857412B2 (en) 2017-09-27 2024-01-02 Edwards Lifesciences Corporation Prosthetic valve with expandable frame and associated systems and methods
US11896481B2 (en) 2012-12-19 2024-02-13 Edwards Lifesciences Corporation Truncated leaflet for prosthetic heart valves

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3476367T4 (en) * 2008-06-06 2023-07-17 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US8945212B2 (en) 2011-04-01 2015-02-03 W. L. Gore & Associates, Inc. Durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom
US9554900B2 (en) * 2011-04-01 2017-01-31 W. L. Gore & Associates, Inc. Durable high strength polymer composites suitable for implant and articles produced therefrom
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US9801712B2 (en) 2011-04-01 2017-10-31 W. L. Gore & Associates, Inc. Coherent single layer high strength synthetic polymer composites for prosthetic valves
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9554806B2 (en) 2011-09-16 2017-01-31 W. L. Gore & Associates, Inc. Occlusive devices
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
US9504565B2 (en) 2013-12-06 2016-11-29 W. L. Gore & Associates, Inc. Asymmetric opening and closing prosthetic valve leaflet
WO2015171743A2 (en) 2014-05-07 2015-11-12 Baylor College Of Medicine Artificial, flexible valves and methods of fabricating and serially expanding the same
CA2956402C (en) 2014-08-18 2020-08-25 W.L. Gore & Associates, Inc. Frame with integral sewing cuff for prosthetic valves
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10507101B2 (en) * 2014-10-13 2019-12-17 W. L. Gore & Associates, Inc. Valved conduit
US9855141B2 (en) * 2014-12-18 2018-01-02 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
WO2016183495A2 (en) 2015-05-14 2016-11-17 W. L. Gore & Associates, Inc. Devices and methods for occlusion of an atrial appendage
US10433952B2 (en) 2016-01-29 2019-10-08 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10231829B2 (en) * 2016-05-04 2019-03-19 Boston Scientific Scimed Inc. Leaflet stitching backer
CN113893064A (en) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
US10653523B2 (en) 2017-01-19 2020-05-19 4C Medical Technologies, Inc. Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
US11351058B2 (en) 2017-03-17 2022-06-07 W. L. Gore & Associates, Inc. Glaucoma treatment systems and methods
EP3644905B1 (en) * 2017-06-30 2024-02-28 Ohio State Innovation Foundation Tri-leaflet prosthetic heart valve
EP3672530A4 (en) 2017-08-25 2021-04-14 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
CN114587704A (en) * 2017-09-12 2022-06-07 W.L.戈尔及同仁股份有限公司 Medical device substrate with rotatable struts
EP3681440A1 (en) 2017-09-12 2020-07-22 W. L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
CA3155761A1 (en) * 2017-09-27 2019-04-04 W.L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
CA3078699C (en) 2017-10-13 2023-10-10 W.L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
US11039919B2 (en) 2017-10-31 2021-06-22 W. L. Gore & Associates, Inc. Valved conduit
CA3078473C (en) 2017-10-31 2023-03-14 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
EP3703768A1 (en) * 2017-10-31 2020-09-09 W. L. Gore & Associates, Inc. Synthetic prosthetic valve leaflet
US11154397B2 (en) * 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
CA3078608C (en) * 2017-10-31 2023-03-28 W.L. Gore & Associates, Inc. Prosthetic heart valve
CA3078606C (en) * 2017-10-31 2023-09-05 W.L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US20190201192A1 (en) * 2018-01-02 2019-07-04 4C Medical Technologies, Inc. Stent features and methods to aid with apposition and alignment to native anatomy, mitigation of paravalvular leak and functional efficiency of prosthetic heart valve
CN110731836B (en) * 2018-07-20 2021-10-12 先健科技(深圳)有限公司 Heart valve
PL238191B1 (en) * 2018-07-24 2021-07-19 American Heart Of Poland Spolka Akcyjna Low-profile, balloon-expandable artificial heart valve, in particular aortic, implanted percutaneously
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
USD977642S1 (en) 2018-10-29 2023-02-07 W. L. Gore & Associates, Inc. Pulmonary valve conduit
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
WO2020093172A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11678983B2 (en) 2018-12-12 2023-06-20 W. L. Gore & Associates, Inc. Implantable component with socket
EP3923864A1 (en) * 2019-02-13 2021-12-22 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
WO2020206012A1 (en) 2019-04-01 2020-10-08 Neovasc Tiara Inc. Controllably deployable prosthetic valve
CN113924065A (en) 2019-04-10 2022-01-11 内奥瓦斯克迪亚拉公司 Prosthetic valve with natural blood flow
CN114025813A (en) 2019-05-20 2022-02-08 内奥瓦斯克迪亚拉公司 Introducer with hemostatic mechanism
AU2020295566B2 (en) 2019-06-20 2023-07-20 Neovasc Tiara Inc. Low profile prosthetic mitral valve
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
WO2022076636A1 (en) * 2020-10-07 2022-04-14 St. Jude Medical, Cardiology Division, Inc. Heat treating to improve synthetic leaflet motion and coaptation
CN113730040A (en) * 2021-10-09 2021-12-03 复旦大学附属儿科医院 Application and sewing method of novel ePTFE stent valve
CN117297839A (en) * 2022-06-24 2023-12-29 江苏臻亿医疗科技有限公司 Artificial heart valve
US11701224B1 (en) * 2022-06-28 2023-07-18 Seven Summits Medical, Inc. Prosthetic heart valve for multiple positions and applications
US11931256B1 (en) 2023-09-19 2024-03-19 Seven Summits Medical, Inc. Expandable prosthetic heart valve

Family Cites Families (481)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US654799A (en) 1900-03-08 1900-07-31 Morris H Levett Display device.
SE392582B (en) 1970-05-21 1977-04-04 Gore & Ass PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE
US3739402A (en) 1970-10-15 1973-06-19 Cutter Lab Bicuspid fascia lata valve
US4340091A (en) 1975-05-07 1982-07-20 Albany International Corp. Elastomeric sheet materials for heart valve and other prosthetic implants
US4178639A (en) 1978-04-06 1979-12-18 Carbomedics, Inc. Two-leaflet heart valve
DE2947743C2 (en) 1978-11-30 1983-12-08 Sumitomo Electric Industries, Ltd., Osaka Uniform, porous tubular structure made of polytetrafluoroethylene
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4477930A (en) 1982-09-28 1984-10-23 Mitral Medical International, Inc. Natural tissue heat valve and method of making same
CA1232407A (en) 1983-06-23 1988-02-09 David K. Walker Bubble heart valve
US4556996A (en) 1983-08-04 1985-12-10 Robert S. Wallace Heart valve
US4626255A (en) 1983-09-23 1986-12-02 Christian Weinhold Heart valve bioprothesis
FR2591100B1 (en) 1985-12-09 1990-08-17 Clinique Residence Parc TRICUSPID VALVULAR PROSTHESIS.
US5071609A (en) 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US4816339A (en) 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4851000A (en) 1987-07-31 1989-07-25 Pacific Biomedical Holdings, Ltd. Bioprosthetic valve stent
US5026513A (en) 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
EP0313263B1 (en) 1987-10-19 1993-03-24 W.L. Gore & Associates, Inc. Rapid recoverable ptfe and a process for its manufacture
US4877661A (en) 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
FR2642960B1 (en) 1989-02-15 1994-02-25 Dassault Breguet Aviation PROSTHETIC HEART VALVE
US4955899A (en) 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5147391A (en) * 1990-04-11 1992-09-15 Carbomedics, Inc. Bioprosthetic heart valve with semi-permeable commissure posts and deformable leaflets
GB9012716D0 (en) 1990-06-07 1990-08-01 Frater Robert W M Mitral heart valve replacements
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5163955A (en) 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5673102A (en) 1991-02-22 1997-09-30 Canon Kabushiki Kaisha Image farming and microdevice manufacturing method and exposure apparatus in which a light source includes four quadrants of predetermined intensity
US5489297A (en) * 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5258023A (en) 1992-02-12 1993-11-02 Reger Medical Development, Inc. Prosthetic heart valve
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5342305A (en) 1992-08-13 1994-08-30 Cordis Corporation Variable distention angioplasty balloon assembly
US5628782A (en) 1992-12-11 1997-05-13 W. L. Gore & Associates, Inc. Method of making a prosthetic vascular graft
KR100295124B1 (en) 1993-01-25 2001-09-17 이노우에 노리유끼 Polytetrafluoroethylene porous membrane and preparation method thereof
EP0714270B1 (en) 1993-08-18 2002-09-04 W.L. Gore & Associates, Inc. A tubular intraluminally insertable graft
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
AU8012394A (en) 1993-10-01 1995-05-01 Emory University Self-expanding intraluminal composite prosthesis
IT1269443B (en) 1994-01-19 1997-04-01 Stefano Nazari VASCULAR PROSTHESIS FOR THE REPLACEMENT OR INTERNAL COATING OF MEDIUM AND LARGE DIAMETER BLOOD VESSELS AND DEVICE FOR ITS APPLICATION WITHOUT INTERRUPTION OF BLOOD FLOW
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
JPH10506291A (en) 1994-05-06 1998-06-23 エンドームド・インコーポレーテッド Radially expandable polytetrafluoroethylene
DE69528216T2 (en) 1994-06-17 2003-04-17 Terumo Corp Process for the production of a permanent stent
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
JP3298890B2 (en) 1994-09-02 2002-07-08 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Porous polytetrafluoroethylene mixture
EP0778753B1 (en) 1994-09-02 1999-09-22 W.L. Gore & Associates, Inc. Method of making an asymmetrical porous ptfe form
US5562729A (en) 1994-11-01 1996-10-08 Biocontrol Technology, Inc. Heart valve
CA2163824C (en) 1994-11-28 2000-06-20 Richard J. Saunders Method and apparatus for direct laser cutting of metal stents
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US5476589A (en) 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US5534007A (en) 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5766201A (en) 1995-06-07 1998-06-16 Boston Scientific Corporation Expandable catheter
US5814405A (en) 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
US5752934A (en) 1995-09-18 1998-05-19 W. L. Gore & Associates, Inc. Balloon catheter device
US20060271091A1 (en) 1995-09-18 2006-11-30 Campbell Carey V Balloon catheter device
US5868704A (en) 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US6328763B1 (en) 1995-10-06 2001-12-11 Cardiomend, Llc Optimized geometry of a tissue pattern for semilunar heart valve reconstruction
US5716399A (en) 1995-10-06 1998-02-10 Cardiomend Llc Methods of heart valve repair
EP0859857B1 (en) 1995-10-25 2005-05-04 OctoPlus B.V. Cationic polyacrylates and poly(alkyl)acrylates or the corresponding acrylamides for use in synthetic transfection systems
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US5843158A (en) 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
US5747128A (en) 1996-01-29 1998-05-05 W. L. Gore & Associates, Inc. Radially supported polytetrafluoroethylene vascular graft
JPH09241412A (en) 1996-03-07 1997-09-16 Sumitomo Electric Ind Ltd Drawn polytetrafluoroethylene tube and its production
GB2312485B (en) 1996-04-24 1999-10-20 Endre Bodnar Bioprosthetic conduits
US5628791A (en) 1996-05-09 1997-05-13 Medical Carbon Research Institute, Llc Prosthetic trileaflet heart valve
DE19625202A1 (en) * 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic mitral heart valve
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5769884A (en) 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US5749852A (en) 1996-07-23 1998-05-12 Medtronic, Inc. Sheath system for autoperfusion dilatation catheter balloon
US6174329B1 (en) 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US5944654A (en) 1996-11-14 1999-08-31 Vista Medical Technologies, Inc. Endoscope with replaceable irrigation tube
US6261320B1 (en) 1996-11-21 2001-07-17 Radiance Medical Systems, Inc. Radioactive vascular liner
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5957974A (en) 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
CN1172636C (en) 1997-01-24 2004-10-27 乔米德有限公司 Bistable spring construction for a stent and other medical apparatus
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US5853419A (en) 1997-03-17 1998-12-29 Surface Genesis, Inc. Stent
US5928281A (en) * 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US6395024B1 (en) 1997-05-20 2002-05-28 Triflo Medical, Inc. Mechanical heart valve
CA2235911C (en) 1997-05-27 2003-07-29 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US6203536B1 (en) 1997-06-17 2001-03-20 Medtronic, Inc. Medical device for delivering a therapeutic substance and method therefor
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US5919226A (en) 1997-07-22 1999-07-06 Medtronic, Inc. Mechanical heart valve prosthesis
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6161399A (en) 1997-10-24 2000-12-19 Iowa-India Investments Company Limited Process for manufacturing a wire reinforced monolayer fabric stent
US5931865A (en) 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6042588A (en) 1998-03-03 2000-03-28 Scimed Life Systems, Inc Stent delivery system
US5935162A (en) 1998-03-16 1999-08-10 Medtronic, Inc. Wire-tubular hybrid stent
US5935163A (en) 1998-03-31 1999-08-10 Shelhigh, Inc. Natural tissue heart valve prosthesis
JP4222655B2 (en) 1998-04-06 2009-02-12 ジャパンゴアテックス株式会社 Medical tube
US6117169A (en) 1998-06-24 2000-09-12 Sulzer Carbomedics Inc. Living hinge attachment of leaflet to a valve body
JP2002518131A (en) 1998-06-24 2002-06-25 サルザー カーボメディクス インコーポレイテッド A heart valve leaflet coupling structure that changes to affect the location and magnitude of the maximum load pressure on the leaflet
US6217609B1 (en) 1998-06-30 2001-04-17 Schneider (Usa) Inc Implantable endoprosthesis with patterned terminated ends and methods for making same
US7815763B2 (en) 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
NO984143L (en) 1998-09-09 2000-03-10 Norsk Hydro As New process for producing surface modifying substances
US6334873B1 (en) 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
US6540780B1 (en) 1998-11-23 2003-04-01 Medtronic, Inc. Porous synthetic vascular grafts with oriented ingrowth channels
US6336937B1 (en) 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US7049380B1 (en) 1999-01-19 2006-05-23 Gore Enterprise Holdings, Inc. Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer
US6673102B1 (en) 1999-01-22 2004-01-06 Gore Enterprises Holdings, Inc. Covered endoprosthesis and delivery system
CA2328999C (en) 1999-01-22 2005-07-12 Gore Enterprise Holdings, Inc. Covered endoprosthesis and delivery system
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
AU3289999A (en) 1999-02-10 2000-08-29 Gore Enterprise Holdings, Inc. Multiple-layered leak-resistant tube
US6245012B1 (en) 1999-03-19 2001-06-12 Nmt Medical, Inc. Free standing filter
US6283995B1 (en) 1999-04-15 2001-09-04 Sulzer Carbomedics Inc. Heart valve leaflet with scalloped free margin
US6283994B1 (en) 1999-04-16 2001-09-04 Sulzer Carbomedics Inc. Heart valve leaflet
US6666885B2 (en) 1999-04-16 2003-12-23 Carbomedics Inc. Heart valve leaflet
GB2352205A (en) 1999-06-28 2001-01-24 Nestle Sa Chilled roller for moulding a food product
US20020055773A1 (en) 1999-07-12 2002-05-09 Louis A. Campbell Polymer heart valve with insert molded fabric sewing cuff
US6174331B1 (en) 1999-07-19 2001-01-16 Sulzer Carbomedics Inc. Heart valve leaflet with reinforced free margin
US6890350B1 (en) 1999-07-28 2005-05-10 Scimed Life Systems, Inc. Combination self-expandable, balloon-expandable endoluminal device
EP1253873A2 (en) 1999-10-16 2002-11-06 Sumit Roy Low-profile, non-stented prosthesis for transluminal implantation
US6673107B1 (en) 1999-12-06 2004-01-06 Advanced Cardiovascular Systems, Inc. Bifurcated stent and method of making
GB0114345D0 (en) 2001-06-13 2001-08-08 Aortech Europ Ltd Heart valve prosthesis and method of manufacture
US20030097175A1 (en) 1999-12-08 2003-05-22 O'connor Bernard Heart valve prosthesis and method of manufacture
GB9928905D0 (en) 1999-12-08 2000-02-02 Aortech Europ Ltd Prosthesis
US6740962B1 (en) 2000-02-24 2004-05-25 Micron Technology, Inc. Tape stiffener, semiconductor device component assemblies including same, and stereolithographic methods for fabricating same
US6756094B1 (en) 2000-02-28 2004-06-29 Scimed Life Systems, Inc. Balloon structure with PTFE component
US6379382B1 (en) 2000-03-13 2002-04-30 Jun Yang Stent having cover with drug delivery capability
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US6454799B1 (en) * 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6352552B1 (en) 2000-05-02 2002-03-05 Scion Cardio-Vascular, Inc. Stent
US6610088B1 (en) 2000-05-03 2003-08-26 Shlomo Gabbay Biologically covered heart valve prosthesis
US7419678B2 (en) 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US8252044B1 (en) 2000-11-17 2012-08-28 Advanced Bio Prosthestic Surfaces, Ltd. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
WO2002019951A1 (en) 2000-09-07 2002-03-14 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
EP1318775B1 (en) 2000-09-21 2006-11-29 St. Jude Medical, Inc. Valved prostheses with reinforced polymer leaflets
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
US6953332B1 (en) 2000-11-28 2005-10-11 St. Jude Medical, Inc. Mandrel for use in forming valved prostheses having polymer leaflets by dip coating
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
DE10061936A1 (en) 2000-12-13 2002-07-04 Valentin Kramer Object from ePTFE and method of manufacturing the same
US6454798B1 (en) 2000-12-21 2002-09-24 Sulzer Carbomedics Inc. Polymer heart valve with helical coaption surface
US7083642B2 (en) 2000-12-22 2006-08-01 Avantec Vascular Corporation Delivery of therapeutic capable agents
WO2002074201A1 (en) 2001-03-16 2002-09-26 Mayo Foundation For Medical Education And Research Synthethic leaflets for heart valve repair or replacement
US6761733B2 (en) 2001-04-11 2004-07-13 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US6936067B2 (en) 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
US6716239B2 (en) 2001-07-03 2004-04-06 Scimed Life Systems, Inc. ePTFE graft with axial elongation properties
US20030027332A1 (en) 2001-07-16 2003-02-06 Edwards Lifesciences Corporation Tissue engineered heart valve
EP1414369A2 (en) 2001-07-27 2004-05-06 Medtronic, Inc. Adventitial fabric reinforced porous prosthetic graft
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
US6562069B2 (en) 2001-09-19 2003-05-13 St. Jude Medical, Inc. Polymer leaflet designs for medical devices
US6827737B2 (en) 2001-09-25 2004-12-07 Scimed Life Systems, Inc. EPTFE covering for endovascular prostheses and method of manufacture
JP4398244B2 (en) 2001-10-04 2010-01-13 ネオヴァスク メディカル リミテッド Flow reduction implant
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6541589B1 (en) 2001-10-15 2003-04-01 Gore Enterprise Holdings, Inc. Tetrafluoroethylene copolymer
US6726715B2 (en) 2001-10-23 2004-04-27 Childrens Medical Center Corporation Fiber-reinforced heart valve prosthesis
US6755857B2 (en) 2001-12-12 2004-06-29 Sulzer Carbomedics Inc. Polymer heart valve with perforated stent and sewing cuff
US7033390B2 (en) 2002-01-02 2006-04-25 Medtronic, Inc. Prosthetic heart valve system
US6946173B2 (en) 2002-03-21 2005-09-20 Advanced Cardiovascular Systems, Inc. Catheter balloon formed of ePTFE and a diene polymer
US7163556B2 (en) 2002-03-21 2007-01-16 Providence Health System - Oregon Bioprosthesis and method for suturelessly making same
EP1487353A4 (en) 2002-03-25 2008-04-16 Nmt Medical Inc Patent foramen ovale (pfo) closure clips
WO2003090834A2 (en) 2002-04-25 2003-11-06 The Board Of Trustees Of The Leland Stanford Junior University Expandable guide sheath and apparatus and methods using such sheaths
US7331993B2 (en) 2002-05-03 2008-02-19 The General Hospital Corporation Involuted endovascular valve and method of construction
US20030229394A1 (en) 2002-06-06 2003-12-11 Ogle Matthew F. Processed tissue for medical device formation
US7789908B2 (en) 2002-06-25 2010-09-07 Boston Scientific Scimed, Inc. Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
US20040024448A1 (en) 2002-08-05 2004-02-05 Chang James W. Thermoplastic fluoropolymer-coated medical devices
US20040026245A1 (en) 2002-08-09 2004-02-12 Vivek Agarwal High temperature oleophobic materials
CN1678366B (en) 2002-08-23 2010-06-09 国立循环器病中心总长所代表的日本国 Stent and process for producing the same
US7273492B2 (en) 2002-08-27 2007-09-25 Advanced Cardiovascular Systems Inc. Stent for treating vulnerable plaque
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US7879085B2 (en) 2002-09-06 2011-02-01 Boston Scientific Scimed, Inc. ePTFE crimped graft
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US7001425B2 (en) 2002-11-15 2006-02-21 Scimed Life Systems, Inc. Braided stent method for its manufacture
US7105018B1 (en) 2002-12-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover and method of use
US9125733B2 (en) 2003-01-14 2015-09-08 The Cleveland Clinic Foundation Branched vessel endoluminal device
US20060173100A1 (en) 2003-02-19 2006-08-03 Du Pont-Mitsui Fluorochemicals Co., Ltd Fluororesin composite compositions
US20070207816A1 (en) 2003-02-24 2007-09-06 Polaris Wireless, Inc. Location Estimation of Wireless Terminals Based on Combinations of Signal-Strength Measurements and Geometry-of-Arrival Measurements
US7658759B2 (en) 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
DE602004021799D1 (en) 2003-05-19 2009-08-13 Cook Inc IMPLANTABLE MEDICAL DEVICE WITH LIMITED EXPANSION
US7011646B2 (en) 2003-06-24 2006-03-14 Advanced Cardiovascular Systems, Inc. Balloon catheter having a balloon with a thickened wall portion
EP1659992B1 (en) 2003-07-31 2013-03-27 Cook Medical Technologies LLC Prosthetic valve devices and methods of making such devices
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
FR2863160B1 (en) 2003-12-09 2006-03-03 Perouse Laboratoires DEVICE FOR TREATING A BLOOD VESSEL AND METHOD FOR PREPARING THE SAME
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US7763011B2 (en) 2003-12-22 2010-07-27 Boston Scientific Scimed, Inc. Variable density braid stent
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
CN100589779C (en) 2003-12-23 2010-02-17 萨德拉医学公司 Repositionable heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
US7862610B2 (en) 2004-01-23 2011-01-04 James Quintessenza Bicuspid vascular valve and methods for making and implanting same
US7247167B2 (en) 2004-02-19 2007-07-24 Shlomo Gabbay Low profile heart valve prosthesis
EP2617387A1 (en) 2004-03-02 2013-07-24 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
MXPA06006905A (en) 2004-04-08 2008-02-13 Aga Medical Corp Flange occlusion devices and methods.
US20060122693A1 (en) 2004-05-10 2006-06-08 Youssef Biadillah Stent valve and method of manufacturing same
US7794490B2 (en) 2004-06-22 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices with antimicrobial and biodegradable matrices
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
WO2006014592A1 (en) 2004-07-07 2006-02-09 Cook Incorporated Graft, stent graft and method for manufacture
US20060008497A1 (en) 2004-07-09 2006-01-12 Shlomo Gabbay Implantable apparatus having improved biocompatibility and process of making the same
US8308789B2 (en) 2004-07-16 2012-11-13 W. L. Gore & Associates, Inc. Deployment system for intraluminal devices
US20060115460A1 (en) 2004-08-30 2006-06-01 Naughton Gail K Compositions and methods comprising WNT proteins to promote repair of damaged tissue
FR2874812B1 (en) 2004-09-07 2007-06-15 Perouse Soc Par Actions Simpli INTERCHANGEABLE PROTHETIC VALVE
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
US8262720B2 (en) 2004-12-02 2012-09-11 Nitinol Development Corporation Prosthesis comprising dual tapered stent
US7758640B2 (en) 2004-12-16 2010-07-20 Valvexchange Inc. Cardiovascular valve assembly
US20060135985A1 (en) 2004-12-21 2006-06-22 Cox Daniel L Vulnerable plaque modification methods and apparatuses
US20060161241A1 (en) 2005-01-14 2006-07-20 Denise Barbut Methods and devices for treating aortic atheroma
US20060190070A1 (en) 2005-02-23 2006-08-24 Dieck Martin S Rail stent and methods of use
US8303647B2 (en) 2005-03-03 2012-11-06 Cook Medical Technologies Llc Medical valve leaflet structures with peripheral region receptive to tissue ingrowth
US8062359B2 (en) 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US8475512B2 (en) 2005-05-17 2013-07-02 Cook Medical Technologies Llc Prosthetic valve devices and methods of making and using such devices
US7799072B2 (en) 2005-05-20 2010-09-21 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
JP4912395B2 (en) 2005-05-24 2012-04-11 エドワーズ ライフサイエンシーズ コーポレイション Rapid placement prosthetic heart valve
US8974523B2 (en) 2005-05-27 2015-03-10 Hlt, Inc. Stentless support structure
US20060276883A1 (en) 2005-06-01 2006-12-07 Cook Incorporated Tapered and distally stented elephant trunk stent graft
US7238200B2 (en) 2005-06-03 2007-07-03 Arbor Surgical Technologies, Inc. Apparatus and methods for making leaflets and valve prostheses including such leaflets
US8267993B2 (en) 2005-06-09 2012-09-18 Coroneo, Inc. Expandable annuloplasty ring and associated ring holder
FR2887139B1 (en) 2005-06-15 2008-04-25 Perouse Soc Par Actions Simpli DEVICE FOR TREATING A BLOOD VESSEL.
US7531611B2 (en) 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
US7306729B2 (en) 2005-07-18 2007-12-11 Gore Enterprise Holdings, Inc. Porous PTFE materials and articles produced therefrom
WO2007016251A2 (en) 2005-07-28 2007-02-08 Cook Incorporated Implantable thromboresistant valve
ATE526911T1 (en) 2005-08-17 2011-10-15 Bard Inc C R VARIABLE SPEED STENT DELIVERY SYSTEM
US8956400B2 (en) 2005-10-14 2015-02-17 Flexible Stenting Solutions, Inc. Helical stent
US7563277B2 (en) 2005-10-24 2009-07-21 Cook Incorporated Removable covering for implantable frame projections
EP1948088A2 (en) 2005-11-18 2008-07-30 Innovia LLC Trileaflet heart valve
US20070142907A1 (en) 2005-12-16 2007-06-21 Micardia Corporation Adjustable prosthetic valve implant
EP1968491B1 (en) 2005-12-22 2010-07-07 Symetis SA Stent-valves for valve replacement and associated methods and systems for surgery
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7947074B2 (en) 2005-12-23 2011-05-24 Attila Meretei Implantable prosthetic valve
WO2007079363A2 (en) 2005-12-30 2007-07-12 C.R Bard Inc. Stent with bio-resorbable connector and methods
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
FR2896405B1 (en) 2006-01-24 2008-04-18 Perouse Soc Par Actions Simpli DEVICE FOR TREATING A BLOOD CIRCULATION CONDUIT AND METHOD OF PREPARING THE SAME
ATE447370T1 (en) 2006-02-24 2009-11-15 Nat Univ Ireland MINIMAL INVASIVE INTRAVASCULAR TREATMENT DEVICE
CA2643720A1 (en) 2006-02-28 2007-09-07 Debra A. Bebb Flexible stretch stent-graft
US8025693B2 (en) 2006-03-01 2011-09-27 Boston Scientific Scimed, Inc. Stent-graft having flexible geometries and methods of producing the same
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US8721704B2 (en) 2006-04-21 2014-05-13 W. L. Gore & Associates, Inc. Expandable stent with wrinkle-free elastomeric cover
US8425584B2 (en) 2006-04-21 2013-04-23 W. L. Gore & Associates, Inc. Expandable covered stent with wide range of wrinkle-free deployed diameters
US20070254012A1 (en) 2006-04-28 2007-11-01 Ludwig Florian N Controlled degradation and drug release in stents
US9114194B2 (en) 2006-05-12 2015-08-25 W. L. Gore & Associates, Inc. Immobilized biologically active entities having high biological activity following mechanical manipulation
US20080026190A1 (en) 2006-07-28 2008-01-31 General Electric Company Durable membranes and methods for improving membrane durability
US20080140173A1 (en) 2006-08-07 2008-06-12 Sherif Eskaros Non-shortening wrapped balloon
US7785290B2 (en) 2006-08-07 2010-08-31 Gore Enterprise Holdings, Inc. Non-shortening high angle wrapped balloons
US8882826B2 (en) 2006-08-22 2014-11-11 Abbott Cardiovascular Systems Inc. Intravascular stent
WO2008028964A2 (en) 2006-09-07 2008-03-13 Angiomed Gmbh & Co. Medizintechnik Kg Helical implant having different ends
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8052750B2 (en) 2006-09-19 2011-11-08 Medtronic Ventor Technologies Ltd Valve prosthesis fixation techniques using sandwiching
JP2010504174A (en) 2006-09-21 2010-02-12 クレベニー テクノロジーズ Specially constructed and surface-modified medical devices with certain design features that take advantage of the unique properties of tungsten, zirconium, tantalum, and / or niobium
US20080097401A1 (en) 2006-09-22 2008-04-24 Trapp Benjamin M Cerebral vasculature device
ATE544428T1 (en) 2006-09-28 2012-02-15 Cook Medical Technologies Llc DEVICE FOR REPAIRING AORTIC ANEURYSMS IN THE CHEST
US20080097582A1 (en) 2006-10-18 2008-04-24 Conor Medsystems, Inc. Stent with flexible hinges
US8545545B2 (en) 2006-10-18 2013-10-01 Innovational Holdings Llc Stent with flexible hinges
CN101172059B (en) 2006-10-31 2010-12-08 温宁 Bracket valve with internal layer ligule structure and method for knitting bracket
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
AU2007325652B2 (en) 2006-11-30 2012-07-12 Cook Medical Technologies Llc Implant release mechanism
WO2008091493A1 (en) 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
US7731783B2 (en) 2007-01-24 2010-06-08 Pratt & Whitney Rocketdyne, Inc. Continuous pressure letdown system
US9415567B2 (en) 2007-02-05 2016-08-16 Boston Scientific Scimed, Inc. Synthetic composite structures
WO2008097589A1 (en) 2007-02-05 2008-08-14 Boston Scientific Limited Percutaneous valve, system, and method
EP2111337B1 (en) 2007-02-05 2013-07-03 Boston Scientific Limited Synthetic composite structures
WO2008098252A2 (en) 2007-02-09 2008-08-14 Taheri Laduca Llc Vascular implants and methods of fabricating the same
CA2677648C (en) 2007-02-16 2015-10-27 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US20080208327A1 (en) 2007-02-27 2008-08-28 Rowe Stanton J Method and apparatus for replacing a prosthetic valve
US7914807B2 (en) 2007-03-05 2011-03-29 Boston Scientific Scimed, Inc. Medical devices having improved performance
US8092523B2 (en) 2007-03-12 2012-01-10 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets
US8409274B2 (en) 2007-04-26 2013-04-02 St. Jude Medical, Inc. Techniques for attaching flexible leaflets of prosthetic heart valves to supporting structures
FR2915678B1 (en) 2007-05-02 2010-04-16 Lapeyre Ind Llc MECHANICAL PROTHETIC CARDIAC VALVE
CN100502811C (en) 2007-05-29 2009-06-24 中国人民解放军第二军医大学 Lung arterial support with valve
EP2698129B1 (en) 2007-06-04 2022-11-09 St. Jude Medical, LLC Prosthetic heart valve
US8057531B2 (en) 2007-06-29 2011-11-15 Abbott Cardiovascular Systems Inc. Stent having circumferentially deformable struts
US7815677B2 (en) 2007-07-09 2010-10-19 Leman Cardiovascular Sa Reinforcement device for a biological valve and reinforced biological valve
CN101091675B (en) 2007-07-19 2010-06-16 中国人民解放军第二军医大学 Atrioventricular valve bracket of artificial valve of dual discal straps
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
WO2009029199A1 (en) 2007-08-24 2009-03-05 St. Jude Medical, Inc. Prosthetic aortic heart valves
EP2572675B1 (en) 2007-09-26 2016-06-22 St. Jude Medical, Inc. Collapsible prosthetic heart valves
WO2009045334A1 (en) 2007-09-28 2009-04-09 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
WO2009045331A1 (en) 2007-09-28 2009-04-09 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US7803186B1 (en) 2007-09-28 2010-09-28 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets and leaflet edge clamping
US8637144B2 (en) 2007-10-04 2014-01-28 W. L. Gore & Associates, Inc. Expandable TFE copolymers, method of making, and porous, expended articles thereof
US20090138079A1 (en) 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US8679519B2 (en) 2007-10-23 2014-03-25 Abbott Cardiovascular Systems Inc. Coating designs for the tailored release of dual drugs from polymeric coatings
PT2628464T (en) 2007-12-14 2020-03-05 Edwards Lifesciences Corp Prosthetic valve
US8317857B2 (en) 2008-01-10 2012-11-27 Telesis Research, Llc Biodegradable self-expanding prosthesis
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US8628566B2 (en) 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
ES2821762T3 (en) 2008-02-05 2021-04-27 Silk Road Medical Inc Interventional catheter system
WO2010086460A1 (en) 2009-02-25 2010-08-05 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
EP3915525A1 (en) 2008-02-28 2021-12-01 Medtronic, Inc. Prosthetic heart valve systems
DE102008012113A1 (en) 2008-03-02 2009-09-03 Transcatheter Technologies Gmbh Implant e.g. heart-valve-carrying stent, for e.g. arresting blood vessel, has fiber by which section of implant is reducible according to increasing of implant at extended diameter by unfolding or expansion of diameter with expansion unit
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
EP2106820A1 (en) 2008-03-31 2009-10-07 Torsten Heilmann Expansible biocompatible coats comprising a biologically active substance
US20090287305A1 (en) 2008-05-19 2009-11-19 Amalaha Leonard D Wholly implantable non-natural heart for humans
ES2750335T3 (en) 2008-06-04 2020-03-25 Gore & Ass Controlled deployable medical device
PL3476367T4 (en) 2008-06-06 2023-07-17 Edwards Lifesciences Corporation Low profile transcatheter heart valve
WO2009153768A1 (en) 2008-06-20 2009-12-23 Vysεra Biomedical Limited Esophageal valve
US20110160836A1 (en) 2008-06-20 2011-06-30 Vysera Biomedical Limited Valve device
PL2145917T3 (en) 2008-07-17 2012-11-30 Gore W L & Ass Gmbh Polymer coating comprising a complex of an ionic fluoropolyether and a counter ionic agent
JP5123433B2 (en) 2008-07-17 2013-01-23 エヌヴェーテー アーゲー Prosthetic heart valve system
WO2010011878A2 (en) 2008-07-24 2010-01-28 Cook Incorporated Valve device with biased leaflets
JP2012501803A (en) 2008-09-10 2012-01-26 イーブイ3 インコーポレイテッド Stents and catheters with improved stent deployment
EP2901966B1 (en) 2008-09-29 2016-06-29 Edwards Lifesciences CardiAQ LLC Heart valve
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
CN102245132A (en) 2008-10-10 2011-11-16 奥巴斯尼茨医学公司 Bioabsorbable polymeric medical device
WO2010048177A2 (en) 2008-10-20 2010-04-29 IMDS, Inc. Systems and methods for aneurysm treatment and vessel occlusion
WO2010057262A1 (en) 2008-11-21 2010-05-27 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis and method
US8591573B2 (en) 2008-12-08 2013-11-26 Hector Daniel Barone Prosthetic valve for intraluminal implantation
US7968190B2 (en) 2008-12-19 2011-06-28 Gore Enterprise Holdings, Inc. PTFE fabric articles and method of making same
US8764813B2 (en) 2008-12-23 2014-07-01 Cook Medical Technologies Llc Gradually self-expanding stent
EP2400923B1 (en) 2009-02-25 2017-01-04 JenaValve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
US9139669B2 (en) 2009-03-24 2015-09-22 W. L. Gore & Associates, Inc. Expandable functional TFE copolymer fine powder, the expandable functional products obtained therefrom and reaction of the expanded products
US8888836B2 (en) 2009-04-07 2014-11-18 Medtronic Vascular, Inc. Implantable temporary flow restrictor device
GB0906065D0 (en) 2009-04-07 2009-05-20 Angiomed Ag Delivery system for a prosthesis
EP2810620B1 (en) 2009-04-15 2022-09-14 Edwards Lifesciences CardiAQ LLC Vascular implant and delivery system
NZ595936A (en) 2009-04-24 2014-06-27 Flexible Stenting Solutions Inc Flexible devices
US9572693B2 (en) 2009-05-14 2017-02-21 Orbusneich Medical, Inc. Self-expanding stent with polygon transition zone
WO2010150208A2 (en) 2009-06-23 2010-12-29 Endospan Ltd. Vascular prostheses for treating aneurysms
EP2445418B1 (en) 2009-06-26 2015-03-18 Cook Medical Technologies LLC Linear clamps for anastomosis
DE102009037739A1 (en) 2009-06-29 2010-12-30 Be Innovative Gmbh Percutaneously implantable valve stent, device for its application and method for producing the valve stent
US9327060B2 (en) 2009-07-09 2016-05-03 CARDINAL HEALTH SWITZERLAND 515 GmbH Rapamycin reservoir eluting stent
US8435282B2 (en) 2009-07-15 2013-05-07 W. L. Gore & Associates, Inc. Tube with reverse necking properties
US8936634B2 (en) 2009-07-15 2015-01-20 W. L. Gore & Associates, Inc. Self constraining radially expandable medical devices
US20110054515A1 (en) 2009-08-25 2011-03-03 John Bridgeman Device and method for occluding the left atrial appendage
CN102573703B (en) 2009-08-27 2014-12-10 麦德托尼克公司 Transcatheter valve delivery systems and methods
US9555528B2 (en) 2009-08-28 2017-01-31 Medtronic 3F Therapeutics, Inc. Surgical delivery device and method of use
US8591932B2 (en) 2009-09-17 2013-11-26 W. L. Gore & Associates, Inc. Heparin entities and methods of use
US20110087318A1 (en) 2009-10-09 2011-04-14 Daugherty John R Bifurcated highly conformable medical device branch access
WO2011059823A1 (en) 2009-10-29 2011-05-19 Gore Enterprise Holdings, Inc. Syringe stopper coated with expanded ptfe
AU2010315651B2 (en) 2009-11-03 2014-08-07 Cook Medical Technologies Llc Planar clamps for anastomosis
GR1007028B (en) 2009-11-11 2010-10-22 Ευσταθιος-Ανδρεας Αγαθος SUPPORT OF BIO-ADDITIONAL VALVES WITH DIAGNOSTIC HEART SHAPE
US20130190861A1 (en) 2012-01-23 2013-07-25 Tendyne Holdings, Inc. Prosthetic Valve for Replacing Mitral Valve
US9504562B2 (en) 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
EP2533821B1 (en) 2010-02-12 2016-07-13 Aesculap AG Medical device made of eptfe partially coated with an antimicrobial material
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
WO2011109450A2 (en) 2010-03-01 2011-09-09 Colibri Heart Valve Llc Percutaneously deliverable heart valve and methods associated therewith
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
US9833314B2 (en) 2010-04-16 2017-12-05 Abiomed, Inc. Percutaneous valve deployment
RU2434604C1 (en) 2010-04-30 2011-11-27 Лео Антонович Бокерия Aortal tricusp prosthesis of heart valve
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
EP2568924B1 (en) * 2010-05-10 2021-01-13 Edwards Lifesciences Corporation Prosthetic heart valve
AU2011257298B2 (en) 2010-05-25 2014-07-31 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
FI126855B (en) 2010-07-08 2017-06-30 Aalto-Korkeakoulusäätiö Process and apparatus for producing organic solvents and alcohols with microbes
CN101926699A (en) 2010-07-13 2010-12-29 北京迈迪顶峰医疗科技有限公司 Atrial septal pore-forming scaffold and conveyor thereof
EP2596765B1 (en) 2010-07-20 2017-01-04 Kyoto Medical Planning Co., Ltd. Stent device
WO2012015825A2 (en) 2010-07-27 2012-02-02 Incept, Llc Methods and apparatus for treating neurovascular venous outflow obstruction
CN201744060U (en) 2010-08-17 2011-02-16 天健医疗科技(苏州)有限公司 Step-type artery balloon expansion conduit
US8808848B2 (en) 2010-09-10 2014-08-19 W. L. Gore & Associates, Inc. Porous article
EP2618783A2 (en) 2010-09-23 2013-07-31 Colibri Heart Valve LLC Percutaneously deliverable heart or blood vessel valve with frame having abluminally situated tissue membrane
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
ES2891075T3 (en) 2010-10-05 2022-01-26 Edwards Lifesciences Corp prosthetic heart valve
US8568475B2 (en) 2010-10-05 2013-10-29 Edwards Lifesciences Corporation Spiraled commissure attachment for prosthetic valve
US20120116498A1 (en) 2010-11-05 2012-05-10 Chuter Timothy A Aortic valve prostheses
US20120116496A1 (en) 2010-11-05 2012-05-10 Chuter Timothy A Stent structures for use with valve replacements
US9468547B2 (en) 2010-11-11 2016-10-18 W. L. Gore & Associates, Inc. Deployment of endoluminal devices
SG10201601962WA (en) 2010-12-14 2016-04-28 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
DE102010061371A1 (en) 2010-12-20 2012-06-21 Transcatheter Technologies Gmbh Individual shaft fiber device and kit for folding or deploying a medical implant and method
US9198787B2 (en) 2010-12-31 2015-12-01 Cook Medical Technologies Llc Conformable prosthesis delivery system and method for deployment thereof
EP2661240A1 (en) * 2011-01-06 2013-11-13 ValveXchange Inc. Resizable valve base for cardiovascular valve assembly
WO2012097287A1 (en) 2011-01-13 2012-07-19 Innovia Llc Endoluminal drug applicator and method of treating diseased vessels of the body
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US9895517B2 (en) 2011-01-18 2018-02-20 Loma Vista Medical, Inc. Inflatable medical devices
GB2488530A (en) 2011-02-18 2012-09-05 David J Wheatley Heart valve
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US20140163671A1 (en) 2011-04-01 2014-06-12 W. L. Gore & Associates, Inc. Leaflet and valve apparatus
US9554900B2 (en) 2011-04-01 2017-01-31 W. L. Gore & Associates, Inc. Durable high strength polymer composites suitable for implant and articles produced therefrom
US8945212B2 (en) 2011-04-01 2015-02-03 W. L. Gore & Associates, Inc. Durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom
US9801712B2 (en) 2011-04-01 2017-10-31 W. L. Gore & Associates, Inc. Coherent single layer high strength synthetic polymer composites for prosthetic valves
US8961599B2 (en) 2011-04-01 2015-02-24 W. L. Gore & Associates, Inc. Durable high strength polymer composite suitable for implant and articles produced therefrom
US20140163673A1 (en) 2011-04-01 2014-06-12 W. L. Gore & Associates, Inc. Prosthetic heart valve leaflet adapted for external imaging
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
EP2522308B1 (en) 2011-05-10 2015-02-25 Biotronik AG Mechanical transcatheter heart valve prosthesis
JP2014516695A (en) 2011-05-18 2014-07-17 バトリックス・メディカル・インコーポレイテッド Coated balloon for vascular stabilization
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US10117765B2 (en) 2011-06-14 2018-11-06 W.L. Gore Associates, Inc Apposition fiber for use in endoluminal deployment of expandable implants
CN107496054B (en) 2011-06-21 2020-03-03 托尔福公司 Prosthetic heart valve devices and related systems and methods
US10016579B2 (en) 2011-06-23 2018-07-10 W.L. Gore & Associates, Inc. Controllable inflation profile balloon cover apparatus
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
US20130023984A1 (en) 2011-07-20 2013-01-24 Edwards Lifesciences Corporation Commissure modification of prosthetic heart valve frame for improved leaflet attachment
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
JP2014530677A (en) 2011-09-23 2014-11-20 ゼウス インダストリアル プロダクツ インコーポレイテッド Compound prosthetic shunt device
US9730726B2 (en) 2011-10-07 2017-08-15 W. L. Gore & Associates, Inc. Balloon assemblies having controllably variable topographies
US10016271B2 (en) 2011-10-19 2018-07-10 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
WO2013074990A1 (en) 2011-11-16 2013-05-23 Bolton Medical, Inc. Device and method for aortic branched vessel repair
WO2013086413A1 (en) 2011-12-09 2013-06-13 Edwards Lifesciences Corporation Prosthetic heart valve improved commissure supports
DK2793750T3 (en) * 2011-12-23 2024-03-04 Abiomed Inc PROSTHETIC HEART VALVE WITH OPEN STENT
WO2013109337A1 (en) 2012-01-16 2013-07-25 W.L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US20130183515A1 (en) 2012-01-16 2013-07-18 Charles F. White Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils
US9510935B2 (en) 2012-01-16 2016-12-06 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
AU2013214782B2 (en) 2012-02-01 2017-03-09 Hlt, Inc. Invertible tissue valve and method
US9375308B2 (en) 2012-03-13 2016-06-28 W. L. Gore & Associates, Inc. External steerable fiber for use in endoluminal deployment of expandable devices
CN102764169B (en) 2012-04-19 2015-07-29 杭州启明医疗器械有限公司 Cardiac valve prosthesis and valve bracket thereof
CN102652694B (en) * 2012-05-24 2014-06-25 上海欣吉特生物科技有限公司 Prosthetic heart valve
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US10376360B2 (en) 2012-07-27 2019-08-13 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
EP2712633B1 (en) 2012-10-02 2015-04-29 Biotronik AG Bioprosthetic components for an implant, in particular partly crosslinked biological heart valves
US20140106951A1 (en) 2012-10-15 2014-04-17 W. L. Gore & Associates, Inc. Methods and systems for securing a sleeve for endoluminal devices
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US10327901B2 (en) 2012-11-20 2019-06-25 Innovheart S.R.L. Device for the deployment of a system of guide wires within a cardiac chamber for implanting a prosthetic heart valve
US9872851B2 (en) 2012-12-12 2018-01-23 The Charlotte-Mecklenburg Hospital Authority Methods of treating portal hypertension
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US9398952B2 (en) 2012-12-19 2016-07-26 W. L. Gore & Associates, Inc. Planar zone in prosthetic heart valve leaflet
US9498361B2 (en) 2012-12-19 2016-11-22 Cook Medical Technologies Llc Repositionable diameter constraints
US10279084B2 (en) 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
US10321986B2 (en) 2012-12-19 2019-06-18 W. L. Gore & Associates, Inc. Multi-frame prosthetic heart valve
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US10654200B2 (en) 2013-03-07 2020-05-19 S.M. Scienzia Machinale S.R.L. Apparatus and method for producing a biocompatible three-dimensional object
CN105007955B (en) 2013-03-13 2018-06-22 W.L.戈尔及同仁股份有限公司 Suitable for the durable high-strength polymer composite material and its product of implantation material
CA2907013A1 (en) 2013-03-15 2014-11-13 Yoram Richter System and method for sealing percutaneous valve
CA3112079C (en) 2013-03-15 2023-09-12 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10905539B2 (en) 2013-03-15 2021-02-02 W. L. Gore & Associates, Inc. Self-expanding, balloon expandable stent-grafts
US9232994B2 (en) 2013-03-15 2016-01-12 Medtronic Vascular Galway Limited Stented prosthetic heart valve and methods for making
US20140296969A1 (en) 2013-04-02 2014-10-02 Tendyne Holdlings, Inc. Anterior Leaflet Clip Device for Prosthetic Mitral Valve
GB2513194A (en) 2013-04-19 2014-10-22 Strait Access Tech Holdings Pty Ltd A valve
JP6561044B2 (en) 2013-05-03 2019-08-14 メドトロニック,インコーポレイテッド Valve transfer tool
ES2699785T3 (en) 2013-05-20 2019-02-12 Edwards Lifesciences Corp Device for the administration of cardiac prosthetic valve
WO2014188430A2 (en) 2013-05-23 2014-11-27 CardioSonic Ltd. Devices and methods for renal denervation and assessment thereof
CN108814772B (en) 2013-06-25 2020-09-08 坦迪尼控股股份有限公司 Thrombus management and structural compliance features for prosthetic heart valves
US10524904B2 (en) 2013-07-11 2020-01-07 Medtronic, Inc. Valve positioning device
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
EP4098226A1 (en) 2013-08-30 2022-12-07 JenaValve Technology, Inc. Endoprosthesis comprising a radially collapsible frame and a prosthetic valve
SG11201508895RA (en) 2013-09-20 2015-11-27 Edwards Lifesciences Corp Heart valves with increased effective orifice area
CN105580506B (en) 2013-09-24 2018-12-21 株式会社富士 Mounting device
WO2015057735A1 (en) 2013-10-15 2015-04-23 Cedars-Sinai Medical Center Anatomically-orientated and self-positioning transcatheter mitral valve
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US9504565B2 (en) 2013-12-06 2016-11-29 W. L. Gore & Associates, Inc. Asymmetric opening and closing prosthetic valve leaflet
WO2015171743A2 (en) 2014-05-07 2015-11-12 Baylor College Of Medicine Artificial, flexible valves and methods of fabricating and serially expanding the same
US10231835B2 (en) 2014-05-16 2019-03-19 Trueleaf Medical Ltd. Replacement heart valve
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
EP3169249B1 (en) 2014-07-15 2018-11-28 Koninklijke Philips N.V. Devices for intrahepatic shunts
CA2956402C (en) 2014-08-18 2020-08-25 W.L. Gore & Associates, Inc. Frame with integral sewing cuff for prosthetic valves
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10507101B2 (en) 2014-10-13 2019-12-17 W. L. Gore & Associates, Inc. Valved conduit
US9855141B2 (en) 2014-12-18 2018-01-02 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
AU2015364334B2 (en) 2014-12-18 2018-11-01 Edwards Lifesciences Corporation Prosthetic valves with mechanically coupled leaflets
US20160235525A1 (en) 2015-02-12 2016-08-18 Medtronic, Inc. Integrated valve assembly and method of delivering and deploying an integrated valve assembly
US10064718B2 (en) 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10779936B2 (en) 2015-05-18 2020-09-22 Mayo Foundation For Medical Education And Research Percutaneously-deployable prosthetic tricuspid valve
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
JP6470150B2 (en) 2015-09-03 2019-02-13 日本ライフライン株式会社 Stents and medical devices
US9789294B2 (en) 2015-10-07 2017-10-17 Edwards Lifesciences Corporation Expandable cardiac shunt
US10456243B2 (en) 2015-10-09 2019-10-29 Medtronic Vascular, Inc. Heart valves prostheses and methods for percutaneous heart valve replacement
US10004617B2 (en) 2015-10-20 2018-06-26 Cook Medical Technologies Llc Woven stent device and manufacturing method
US10470876B2 (en) 2015-11-10 2019-11-12 Edwards Lifesciences Corporation Transcatheter heart valve for replacing natural mitral valve
US10583007B2 (en) 2015-12-02 2020-03-10 Edwards Lifesciences Corporation Suture deployment of prosthetic heart valve
CN108430391B (en) 2015-12-03 2020-09-08 坦迪尼控股股份有限公司 Frame features for prosthetic mitral valves
US9931204B2 (en) 2015-12-10 2018-04-03 Medtronic, Inc. Transcatheter heart valve replacement systems, heart valve prostheses, and methods for percutaneous heart valve replacement
AU2016370459B2 (en) 2015-12-14 2019-06-06 Medtronic Vascular Inc. Devices and methods for transcatheter valve loading and implantation
US11229512B2 (en) 2016-04-21 2022-01-25 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses and associated systems and methods
US10758350B2 (en) 2016-06-06 2020-09-01 Medtronic Vascular, Inc. Transcatheter prosthetic heart valve delivery system with protective feature
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
JP7046078B2 (en) 2017-01-23 2022-04-01 セフィア・バルブ・テクノロジーズ,インコーポレイテッド Replacement mitral valve
EP3681440A1 (en) 2017-09-12 2020-07-22 W. L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
EP3687451B1 (en) 2017-09-27 2023-12-13 Edwards Lifesciences Corporation Prosthetic valve with expandable frame
CA3155761A1 (en) 2017-09-27 2019-04-04 W.L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
CN111194190A (en) 2017-10-09 2020-05-22 W.L.戈尔及同仁股份有限公司 Matched support covering piece
CA3078699C (en) 2017-10-13 2023-10-10 W.L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
CA3078606C (en) 2017-10-31 2023-09-05 W.L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
CA3078473C (en) 2017-10-31 2023-03-14 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
CA3078608C (en) 2017-10-31 2023-03-28 W.L. Gore & Associates, Inc. Prosthetic heart valve
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
US20200179663A1 (en) 2018-12-11 2020-06-11 W. L. Gore & Associates, Inc. Medical devices for shunts, occluders, fenestrations and related systems and methods
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11826248B2 (en) 2012-12-19 2023-11-28 Edwards Lifesciences Corporation Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US11896481B2 (en) 2012-12-19 2024-02-13 Edwards Lifesciences Corporation Truncated leaflet for prosthetic heart valves
US11857412B2 (en) 2017-09-27 2024-01-02 Edwards Lifesciences Corporation Prosthetic valve with expandable frame and associated systems and methods

Also Published As

Publication number Publication date
US11471276B2 (en) 2022-10-18
US9827094B2 (en) 2017-11-28
AU2018286581A1 (en) 2019-01-24
US20180049872A1 (en) 2018-02-22
EP3804659A1 (en) 2021-04-14
CA3147802A1 (en) 2016-03-24
WO2016044223A1 (en) 2016-03-24
JP2019188245A (en) 2019-10-31
AU2015318007B2 (en) 2018-09-27
AU2022283738A1 (en) 2023-02-02
CN109589188A (en) 2019-04-09
US20190374339A1 (en) 2019-12-12
CN106714733A (en) 2017-05-24
AU2020273333A1 (en) 2020-12-17
EP3193783B1 (en) 2020-10-28
AU2020273333B2 (en) 2022-09-08
CN106714733B (en) 2019-02-22
CR20170144A (en) 2017-06-16
JP6571763B2 (en) 2019-09-04
EP3193783A1 (en) 2017-07-26
CN109589188B (en) 2021-10-08
JP2021028032A (en) 2021-02-25
US10342659B2 (en) 2019-07-09
CA2960034C (en) 2019-06-25
AU2018286581B2 (en) 2020-08-20
JP2017527397A (en) 2017-09-21
CA3042418A1 (en) 2016-03-24
CA3042418C (en) 2022-04-12
CA2960034A1 (en) 2016-03-24
US20160074161A1 (en) 2016-03-17
AU2015318007A1 (en) 2017-03-16
JP7091424B2 (en) 2022-06-27
BR112017005029A2 (en) 2017-12-05
JP6802335B2 (en) 2020-12-16
ES2838810T3 (en) 2021-07-02

Similar Documents

Publication Publication Date Title
US20230000623A1 (en) Prosthetic heart valve with retention elements
US20210361420A1 (en) Prosthetic heart valve
US20210177589A1 (en) Leaflet frame attachment for prosthetic valves

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: W. L. GORE & ASSOCIATES, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENNETT, NATHAN L;REEL/FRAME:062750/0541

Effective date: 20160216

AS Assignment

Owner name: EDWARDS LIFESCIENCES CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:W.L. GORE & ASSOCIATES, INC.;REEL/FRAME:065021/0654

Effective date: 20230308