US20220370206A1 - Gender Specific Implant and Packaging - Google Patents

Gender Specific Implant and Packaging Download PDF

Info

Publication number
US20220370206A1
US20220370206A1 US17/812,067 US202217812067A US2022370206A1 US 20220370206 A1 US20220370206 A1 US 20220370206A1 US 202217812067 A US202217812067 A US 202217812067A US 2022370206 A1 US2022370206 A1 US 2022370206A1
Authority
US
United States
Prior art keywords
component
tibial
femoral component
femoral
gender
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/812,067
Inventor
Peter M. Bonutti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
P Tech LLC
Original Assignee
P Tech LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by P Tech LLC filed Critical P Tech LLC
Priority to US17/812,067 priority Critical patent/US20220370206A1/en
Assigned to P TECH, LLC reassignment P TECH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARCTEC, LLC
Assigned to MARCTEC, LLC reassignment MARCTEC, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BONUTTI, PETER M.
Publication of US20220370206A1 publication Critical patent/US20220370206A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/389Tibial components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/92Identification means for patients or instruments, e.g. tags coded with colour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/94Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0095Packages or dispensers for prostheses or other implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3859Femoral components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3877Patellae or trochleae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/03Containers specially adapted for medical or pharmaceutical purposes for pills or tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/18Arrangements for indicating condition of container contents, e.g. sterile condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06166Sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3804Joints for elbows or knees for elbows
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/40Joints for shoulders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4261Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for wrists
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/461Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/48Operating or control means, e.g. from outside the body, control of sphincters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30032Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in absorbability or resorbability, i.e. in absorption or resorption time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30036Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in release or diffusion time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • A61F2002/30064Coating or prosthesis-covering structure made of biodegradable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30125Rounded shapes, e.g. with rounded corners elliptical or oval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/30364Rotation about the common longitudinal axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30403Longitudinally-oriented cooperating ribs and grooves on mating lateral surfaces of a mainly longitudinal connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/305Snap connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/3071Identification means; Administration of patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • A61F2002/308Blind bores, e.g. of circular cross-section oblong
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30891Plurality of protrusions
    • A61F2002/30892Plurality of protrusions parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30929Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having at least two superposed coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30975Designing or manufacturing processes made of two halves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3859Femoral components
    • A61F2002/3863Condyles fitted on an anchored base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4631Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor the prosthesis being specially adapted for being cemented
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4632Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4632Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery
    • A61F2002/4633Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery for selection of endoprosthetic joints or for pre-operative planning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4658Measuring instruments used for implanting artificial joints for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0008Rounded shapes, e.g. with rounded corners elliptical or oval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
    • A61F2250/0031Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time made from both resorbable and non-resorbable prosthetic parts, e.g. adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0035Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in release or diffusion time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0078Gender-specific, e.g. different for male and female patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0085Identification means; Administration of patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0085Identification means; Administration of patients
    • A61F2250/0087Identification means; Administration of patients colour-coded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0085Identification means; Administration of patients
    • A61F2250/0089Identification means; Administration of patients coded with symbols, e.g. dots, numbers, letters, words
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00544Coating made of tantalum or Ta-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/0097Coating or prosthesis-covering structure made of pharmaceutical products, e.g. antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2205/00General identification or selection means
    • A61J2205/20Colour codes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2205/00General identification or selection means
    • A61J2205/30Printed labels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2205/00General identification or selection means
    • A61J2205/50General identification or selection means using icons or symbolic figures, e.g. by a graphical representation symbolising the type of pathology or the organ by an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2205/00General identification or selection means
    • A61J2205/60General identification or selection means using magnetic or electronic identifications, e.g. chips, RFID, electronic tags

Definitions

  • the present invention relates to gender specific medical treatments, medical implants, and therapeutics.
  • Psychologists may choose different therapeutic techniques to address certain emotional issues with a man than with a woman.
  • Personal trainers likewise may employ different physical training regimen for men than for women, and may have different target goals for cardiovascular and muscular development.
  • sexual dimorphism is the systematic difference in form between individuals of different gender in the same species. This may include differences in size, color, or the presence of gender defining body parts, such as horns or antlers. While in humans, the male and female forms are perceived differently, they tend to have a low level of sexual dimorphism when compared to other species. For example, the body masses of both male and female humans are approximately normally distributed.
  • the notch width at the end of the femur in the knee joint tends to be wider in males than in females.
  • medical implants currently are limited to unisex designs. Further examples of differences between men and women may be found in metabolic rates, diurnal changes, range of motion, pH and hormonal changes, elasticity of body tissue, and susceptibility to diseases or medical conditions.
  • males and females metabolize medications at different rates and react differently to different types of medications.
  • females may metabolize some analgesics and adjuvant drugs at different rates than men, among them oxycodone, tramadol, fentanyl, bupivacaine, and diazepam.
  • males may respond more favorably to tricyclic agents and females may get greater relief from selective serotonin reuptake.
  • the present invention provides a system and method for accounting for gender specific differences in medical treatment. This is achieved first by taking into account these differences so that a patient's therapy and treatment is more closely tailored to them. This includes, for example, providing gender specific treatment, medical devices, medicines, and/or instrumentation. These differences may result in different techniques being provided for treating bones or joints (such as the knee, hip, or spine), differences in drug selection, drug delivery and dosage, different implant designs, and different treatment for soft tissue repair. These and other non-limiting examples are further discussed in detail below.
  • the medical treatment system can include a medical device identification system which differentiates use for male and female patients.
  • the medical device identification system includes a container adapted to receive a medical device and a gender specifier.
  • the gender specifier is used to identify the gender the medical device is designed for.
  • the gender specifier can be incorporated into a label, where the gender specifier can be in text form, symbolic form or color coded. For example, the gender specifier can be in the text form “MALE” or “FEMALE.”
  • the gender specifier may also be an electronic device, such as an RFID tag that is associated or packaged with the device or medicine so that it can be readily identified and associated for use with a particular gender.
  • This embodiment of the invention may be of particular use for sterilized products, medicines that are sealed in a container, or in other situations where it is difficult to visually confirm for which sex the product is intended.
  • the medical treatment system may include a medication container having a gender-specific labeling system.
  • the label system may provide information identifying the contents and gender-specific instructions regarding usage of the enclosed medicine.
  • the usage information may include, for example, the recommended dosage for one or both genders.
  • the gender specifier may be dosage information, but also it may be in a text form, such as “FEMALE” and “MALE,” or alternatively may be in the form of a color coding or in symbolic representations.
  • FIG. 1 depicts an exemplary knee joint
  • FIG. 2 depicts an exemplary prosthetic knee joint
  • FIG. 3 depicts an exemplary femoral component of a male prosthetic knee joint
  • FIG. 4 depicts an exemplary tibial component of a male prosthetic knee joint
  • FIG. 5 depicts an exemplary femoral component of a female prosthetic knee joint
  • FIG. 6 depicts an exemplary tibial component of a female prosthetic knee joint
  • FIG. 7 depicts an another exemplary femoral component of a prosthetic knee joint
  • FIG. 8 depicts an exemplary rotatable tibial component of a prosthetic knee joint
  • FIG. 9 depicts a partial cross section of the rotatable tibial component of FIG. 8 ;
  • FIG. 10 depicts a platform of a rotatable tibial component of a prosthetic knee joint
  • FIG. 11 depicts a platform of a rotatable/translatable tibial component of a prosthetic knee joint
  • FIG. 12 depicts another platform of a rotatable/translatable tibial component of a prosthetic knee joint
  • FIG. 13 depicts an exemplary male patella with pegs or contact points arranged based on the male anatomy
  • FIG. 14 depicts an exemplary female patella with pegs or contact points arranged based on the female anatomy
  • FIG. 15 depicts an exemplary bi-compartmental femoral component of a male prosthetic knee joint
  • FIG. 16 depicts an exemplary bi-compartmental femoral component of a female prosthetic knee joint
  • FIG. 17 depicts a schematic diagram of a computer navigation system of the present invention.
  • FIG. 18 depicts a triangular mapping of a femur portion of a knee joint
  • FIG. 19 depicts a triangular mapping of a tibia portion of a knee joint
  • FIG. 20 depicts an exemplary vascular stent
  • FIG. 21 depicts an exemplary female vascular stent
  • FIG. 22 depicts a cross sectional view of an embodiment of the stent of FIG. 20 ;
  • FIG. 23 depicts an exemplary medical implant including an energy sink
  • FIG. 24 depicts a representative packaging material of the present invention
  • FIG. 25 depicts a representative label affixed to the packaging material of FIG. 24 ;
  • FIG. 26 depicts a representative medicine container of the present invention
  • the present invention provides a system and method for gender specific medical treatment. As mentioned above, gender differences are often ignored when determining how to treat a medical condition. It is believed that accounting for one or more of these differences during treatment may greatly improve the quality of care and degree of recovery that a patient experiences.
  • Knee replacements are about twice as likely to be performed on women as on men. There are gender-specific differences in the bones adjoint associated with the knee that are not currently taken into account in this area of medicine. For example, the female patellais generally thinner and narrower in superior and inferior dimensions, while in men it is generally wider in proportion.
  • FIG. 1 there is shown an anterior view of a knee joint 10 , wherein the patella is not shown.
  • the knee joint 10 includes a femoral portion 12 having medial and lateral condyles 14 and 16 .
  • a trochlear groove 18 is interposed between the medial and lateral condyles 14 and 16 , allowing for tracking of the patella along the end portion of the femur 12 as the knee joint 10 is flexed and extended.
  • a tibial portion 20 of the knee joint 10 includes a tibial plateau 22 , including medial and lateral menisci 24 and 26 disposed on the tibial plateau 22 .
  • the medial and lateral condyles 14 and 16 abut the tibial plateau 22 , engaging the medial and lateral menisci 24 and 26 allow for rotation of the tibia 20 with respect to the femur 12 and shock absorption between the femur 12 and tibia 20 .
  • a central longitudinal axis of the femur portion 12 is aligned at an angle ⁇ with respect to a central longitudinal axis of the tibial portion 20 .
  • an exemplary prosthetic knee 28 includes a femoral component 30 and a tibial component 32 .
  • the femoral component 30 is configured to curve about the cut end portions of the medial and lateral condyles 14 and 16 , having a trochlear groove 34 therein to allow tracking of the patella about the femoral component 30 as the knee joint 10 is flexed and extended.
  • the tibial component 32 includes flat platform 36 with a cushioning material 38 , replacing the medial and lateral meniscus 24 and 26 .
  • the femoral and tibial components 30 and 32 cooperate to permit normal knee-joint functioning.
  • the femoral and tibial components 30 and 32 are designed similar in size and shape to average knee joints, and have a range of sizes to span the normal size ranges of the knee joints.
  • one aspect of the present invention is directed to a prosthetic knee joint that is configured and dimensioned for gender specific use.
  • the prosthetic knee joint may have a reduced bearing surface, such as being reduced by 10 percent or more in comparison to a male prosthetic knee design.
  • the reduced bearing surface would allow greater range of motion of the implant corresponding to the greater range of motion typically exhibited in women.
  • the implant for women may also be significantly thinner, such as being at least 5 percent thinner, at least 10 percent thinner, or alternatively at least 20 percent thinner than implants for men.
  • a formal prosthetic knee for women may also have one or more of the following: thinner runners to help improve range of motion, lesser amount of metal, or greater flexibility.
  • the present invention also contemplates female specific and male specific bone cement, with the composition of the female bone cement differing from the male bone cement.
  • fillers could be added to the PMMA (the principal component of the bone cement) to change the mechanical properties.
  • other components such as an antibiotic
  • a female bone cement may have added components to address the osteoporotic bone found in women.
  • Such components include calcium supplements and other agents for promoting an osteogenic or osteoconductive effect (or slowing the process of bone demineralization).
  • a male femoral component 40 of a knee joint implant of the present invention is provided.
  • the femoral component 40 includes medial and lateral condyle portions 42 and 44 each having a width W 1 and a radius R 1 .
  • a trochlear groove 46 is disposed between the medial and lateral condyle portions 42 and 44 and has a width W 2 .
  • the widths W 1 and W 2 and the radius R 1 of the femoral components 40 are provided in a range of sizes to span the normal size ranges of male human knee joints. Additionally, the thickness t 1 and the material densities of the femoral components 40 are selected to correspond to male bone thickness and densities.
  • a male tibial component 48 of a knee joint of the present invention is provided.
  • the tibial component 48 includes flat platform 50 , having a substantially oval shape, wherein the cushioning material 52 replaces the medial and lateral meniscus 24 and 26 .
  • a bone spike 54 is included for insertion into the prepared end of the tibia, securing the tibial component 48 to the tibia.
  • the bone spike 54 can be substantially conical in shape, having a maximum diameter d 1 and length l 1 .
  • a female femoral component 60 of a knee joint implant of the present invention is provided.
  • the femoral component 60 includes medial and lateral condyle portions 62 and 64 each having a width W 3 and a radius R 2 .
  • a trochlear groove 66 is disposed between the medial and lateral condyle portions 62 and 64 and has a width W 4 .
  • the widths W 3 and W 4 and the radius R 2 of the femoral components 60 are provided in a range of sizes to span the normal size ranges of female human knee joints. Additionally, the thickness t 2 and the material densities of the femoral components 60 are selected to correspond to female bone thickness and densities.
  • female tibial component 70 of a knee joint of the present invention is provided.
  • the tibial component 70 includes flat platform 72 , having a substantially elongated oval shape, wherein the cushioning material 74 replaces the medial and lateral meniscus 24 and 26 .
  • a bone spike 76 is included for insertion into the prepared end of the tibia, securing the tibial component 70 to the tibia.
  • the bone spike 74 can be substantially conical in shape, having a maximum diameter d 2 and length 12 .
  • the male femoral component 40 will generally have greater widths W 1 and W 2 and the radius R 1 , thus bearing surface area, than that of comparable female femoral component 60 widths W 3 and W 4 and the radius R 2 .
  • the male femoral component 40 will generally have a greater material thickness t 1 than that of thickness t 2 of a comparable female femoral component 60 .
  • a “large” size for a male prosthetic knee joint may differ significantly in size, proportion, and construction from a large-sized prosthetic knee joint for women. Furthermore, as shown in FIG.
  • an upper section 68 of the female femoral component 60 can be generally narrower than that of a comparably male femoral component 40 , to accommodate structural differences between the female and male femurs.
  • the female femoral component 60 design can have scalloped edges compared to the male femoral component 40 design.
  • the thickness, the material densities, and the material composition of the femoral components 40 and 60 may be selected to correspond to different male and female bone thickness and densities. Additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components 40 and 60 .
  • the tibial components 58 and 70 are designed and configured for use in replacement of the knee joint in males and females.
  • the dimensions of the tibial components once again may be provided in a range of sizes to span the normal size ranges of male and female human knee joints.
  • the male platform 50 has a substantially oval shape
  • the female platform 72 has an elongated oval shape.
  • the shapes of the platforms 50 and 72 are selected to accommodate the differences in sizes and bearing surface areas of the corresponding male and female femoral components 48 and 60 .
  • the thickness and the material densities of the tibial components are selected to correspond to or function with male and female bone thickness, densities, geometry, range of motion, or the like. Furthermore, additional dimensions of the tibial portion of the knee joint can be utilized in the design and configuration of the tibial components 48 and 70 .
  • a gender-specific design may be identified by one component having less material than for the opposite sex.
  • additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components. One or more of these dimensions may be varied so that an implant is more suited to a male or female patient.
  • an implant design may be considered gender-specific if one or more of these parameters has been selected to better match either a male or female.
  • a gender-specific prosthetic design may also be identified by comparing relative differences that exist between a female design and a male design. For example, if one or more dimensions (e.g., bearing surface area, widths, radii, curvature, thickness of material, amount of metal, range of motion, flexibility, etc.) or relative proportions (e.g., relative width or relative differences in angles, minimum or maximum sizes, etc.) or an implant design for one sex varies by more than 5 percent, or alternatively by 10 percent or more, or even by about 20 percent or more, from an implant designed for the opposite sex, then the design may qualify as being gender-specific.
  • dimensions e.g., bearing surface area, widths, radii, curvature, thickness of material, amount of metal, range of motion, flexibility, etc.
  • relative proportions e.g., relative width or relative differences in angles, minimum or maximum sizes, etc.
  • the femoral component 80 includes medial and lateral condyle portions 82 and 84 .
  • the medial condyle portion 82 has a width Wm and a radius Rm and the lateral condyle portion 84 has a width W L and a radius R L , wherein the width W m and W L can be of equal dimension, or in the alternative, the widths W m and W L can be of non-equal dimension.
  • the medial and lateral condyle portions 82 and 84 radii R m and R L can be of equal dimension, or in the alternative, radii R m and R L can be of non-equal dimension.
  • the size differences between the widths and/or radii of the medial and lateral condyle portions can be at least 5 percent, 10 percent, or 20 percent.
  • a trochlear groove 86 is disposed between the medial and lateral condyle portions 82 and 84 and has a width W 1 .
  • the widths W m and W L and the radii R m and R L of the femoral components 80 can be provided in a range of sizes to more precisely emulate the size and dimensions of a male or female human knee joints.
  • the radii R m and R L of the medial and lateral portions 82 and 84 of the femoral component 80 can be selected such that the radius R m of the medial condyle portion is larger with respect to the radius R L of the lateral condyle portion.
  • the radii R m and R L of the medial and lateral portions 82 and 84 form a substantially partial conical surface.
  • the thickness t 3 and the material densities of the femoral components 80 are selected to correspond to male or female bone thickness and densities.
  • a male femoral component will generally have greater widths W m and W L and the radii R m and R L , thus bearing surface areas, than that of a comparable female femoral component widths W m and W L and the radii R m and R L .
  • the male femoral component will generally have a greater material thickness t 3 than that of thickness of a comparable female femoral component.
  • a “large” size for a male prosthetic knee joint may differ significantly in size, proportion, and construction from a large-sized prosthetic knee joint for women. Furthermore, as shown in FIG.
  • an upper section of the female femoral component can be generally narrower than that of a comparably sized male femoral component to accommodate structural differences between the female and male femurs.
  • a female femoral component design can have scalloped edges compared to the male femoral component design.
  • the thickness, the material densities, and the material composition of the femoral components may be selected to correspond to different male and female bone thickness and densities. Additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components.
  • a tibial component 90 of a knee joint of the present invention is provided.
  • the tibial component 90 includes a platform 92 , having a substantially oval shape, wherein a cushioning material 94 replaces the medial and lateral meniscus 24 and 26 .
  • a bone spike 96 is included for insertion into the prepared end of the tibia, securing the tibial component 90 to the tibia.
  • the bone spike 96 can be substantially conical in shape, having a maximum diameter d 1 and length l 1 .
  • the platform 92 can be rotatably connected to the bone spike 96 , such that the platform 92 can rotated with respect to the central longitudinal axis “A” of the bone spike 96 .
  • the platform 92 includes a slotted section 98 , in which a head portion 100 of the bone spike 96 is positioned.
  • the slotted section 98 is configured to capture the head portion 100 of the bone spike 96 , securing the head portion 100 within the slotted section 98 , yet allowing the platform 92 to rotate with respect with the bone spike 96 .
  • the platform 92 can rotate with respect to a femoral component as the knee joint is moved between flexion and extension, thereby decreasing the frictional forces between the contacting surfaces of the femoral component and a cushioning material of the platform 92 .
  • the rotation of the platform 92 can decrease the stresses provided on the implant/bone interface, decreasing the likelihood of failure and increasing the life expectancy of the implant. It is contemplated that the other rotational, translation, and positional configurations of the platform 92 with respect to the bone spike 96 can be provided to further increase the efficiency of emulating a natural knee joint and accounting for the anatomical differences between male and female joints.
  • the bone spike 96 can be centrally positioned on the flat platform 92 , such that the center 102 of the platform 92 is aligned along the central longitudinal axis of the bone spike 96 .
  • the bone spike 96 ′ can be positioned offset from the center 102 of the platform 92 , such that the center 102 of the platform 92 is rotatable about the bone spike 96 ′.
  • the platform 92 can include an elongated slotted section 104 , such that the platform 92 can slide in the anterior and posterior directions as the knee joint is moved between flexion and extension.
  • the platform 92 can rotate with respect to the bone spike 96 as the knee joint is moved between flexion and extension. In this manner, the compound movement for the platform 92 can be used to emulate high flexion.
  • the platform 92 includes an angular elongated slotted section 106 , such that the platform 92 can slide substantially in the anterior/posterior and medial/lateral directions as the knee joint is moved between flexion and extension.
  • the platform 92 can rotate with respect to the bone spike 96 as the knee joint is moved between flexion and extension.
  • the tibial components 90 are designed and configured for use in replacement of the knee joint in males and females.
  • the dimensions of the tibial components once again may be provided in a range of sizes to span the normal size ranges of male and female human knee joints.
  • the male platform 50 has a substantially oval shape
  • the female platform 72 has an elongated oval shape.
  • the shapes of the platforms 50 and 72 are selected to accommodate the differences in sizes and bearing surface areas of the corresponding male and female femoral components 48 and 60 .
  • the thickness and the material densities of the tibial components are selected to correspond to or function with male and female bone thickness, densities, geometry, range of motion, or the like.
  • additional dimensions of the tibial portion of the knee joint can be utilized in the design and configuration of the tibial component 90 .
  • a male patella 110 and a female patella 112 are provided. As shown in these figures, the male and female patellas 110 and 112 have substantially different shapes, where the female patella 112 is more elongated with respect to the male patella 110 . As such, when replacement patellas are provided, they are provided in accordance with the gender of the patient.
  • contact pegs 114 can be affixed to the surface, providing multiple point contact surfaces between the patella and the femur or femoral implant.
  • the arrangement of the pegs 114 can be changed accordingly.
  • the pegs 114 are positioned in a substantially triangular configuration for the male patella, allowing for the wider surface of the male patella 110 .
  • the pegs 114 are positioned in a substantially linear configuration, allowing for the more linear surface of the female patella 114 .
  • FIGS. 2-14 show total knee replacement components
  • the present invention is well-suited for partial knee replacement components such as uni-compartmental and bi-compartmental implants.
  • the present invention also contemplates the use for re-surfacing and surface bearing procedures and/or components.
  • a bi-compartmental male femoral component 120 of a knee joint implant of the present invention includes medial and lateral components 122 and 124 .
  • the medial component 122 includes a medial condyle portion 126 having a width W m and a radius R m .
  • the lateral component 124 includes a lateral condyle portion 128 having a width W L and a radius R L , As previously discussed, the widths W m and W L can be of equal dimension or can be of different dimensions. Similarly, the medial and lateral condyle portions 126 and 128 radii R m and R L can be of equal dimension or can be of non-equal dimension.
  • a trochlear groove 130 formed by the combination of the medial and lateral components 122 and 124 is disposed between the medial and lateral condyle portions 126 and 128 and has a width W t ,
  • a bi-compartmental female femoral component 140 of a knee joint implant of the present invention is provided.
  • the femoral component 140 includes medial and lateral components 142 and 144 .
  • the medial component 142 includes a medial condyle portion 146 having a width W m and a radius R m
  • the lateral component 144 includes a lateral condyle portion 148 having a width W L and a radius R L
  • the widths W m and W L can be of equal dimension or can be of different dimensions.
  • the medial and lateral condyle portions 146 and 148 radii R m and R L can be of equal dimension or can be of different dimensions.
  • a trochlear groove 150 formed by the combination of the medial and lateral components 142 and 144 is disposed between the medial and lateral condyle portions 146 and 148 and has a width W t .
  • the widths W m and W L and the radii R m and R L of the medial and lateral components 132 and 134 are provided in a range of sizes to span the normal size ranges of female human knee joints. Additionally, the thickness t 2 and the material densities of the medial and lateral components 132 and 134 are selected to correspond to female bone thickness and densities.
  • male femoral components will generally have greater widths W m and W L and radii R m and R L , thus bearing surface area, than that of comparable female femoral components widths W m and W L and radii R m and R L , Similarly, the male femoral components will generally have a greater material thickness t 1 than that of thickness of a comparable female femoral component.
  • a “large” size for a male prosthetic knee joint may differ significantly in size, proportion, and construction from a large-sized prosthetic knee joint for women. Furthermore, as shown in FIGS.
  • an upper section 152 of the female femoral components 142 and 144 can be generally narrower than that of a comparably male femoral components 122 and 124 , to accommodate structural differences between the female and male femurs.
  • the upper section 152 is such that the female femoral components 142 and 144 have scalloped edges compared to the male femoral components 122 and 124 .
  • the thickness, the material densities, and the material composition of the femoral components 122 , 124 , 142 , and 144 may be selected to correspond to different male and female bone thickness and densities. Additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components 142 and 144 .
  • a gender-specific design may be identified by one component having less material than for the opposite sex.
  • additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components. One or more of these dimensions may be varied so that an implant is better suited to a male or female patient.
  • an implant design may be considered gender-specific if one or more of these parameters has been selected to better match either a male or female.
  • a gender-specific prosthetic design may also be identified by comparing relative differences that exist between a female design and a male design. For example, if one or more dimensions (e.g., bearing surface area, widths, radii, curvature, thickness of material, amount of metal, range of motion, flexibility, etc.) or relative proportions (e.g., relative width or relative differences in angles, minimum or maximum sizes, etc.) or an implant design for one sex varies by more than 5 percent, or alternatively by 10 percent or more, or even by about 20 percent or more, from an implant designed for the opposite sex, then the design may qualify as being gender-specific.
  • dimensions e.g., bearing surface area, widths, radii, curvature, thickness of material, amount of metal, range of motion, flexibility, etc.
  • relative proportions e.g., relative width or relative differences in angles, minimum or maximum sizes, etc.
  • the computer navigation system 160 includes a central processing unit (CPU) 162 , having a processor 164 and memory 166 , a display device 168 , and input devices, including a keyboard 170 and a stylus 172 .
  • a computer program is stored on the CPU 162 , where the computer program can be used to aid in the selection, preparation, and insertion of implants into a patient.
  • the stylus 172 can be used to provide single point locations or multiple point locations to outline the contours of a surface of a portion of a joint.
  • the navigation system 160 can further include a printer 174 .
  • An anatomical database is stored on the CPU 162 and is accessible by the computer program to determine appropriate implants for use in the patient.
  • the anatomical database includes information relating to a joint in the body of a patient, for example a knee joint.
  • the anatomical database includes a library of joint mappings, having a broad range of joint sizes, as well as including information relating to gender differences in the joints.
  • the anatomical database can include information on bone thickness, density, the radii of the medial and lateral condyles, the widths of the medial and lateral condyles, the width of the trochlear groove, and the angular relationship of the medial and lateral condyles with respect to the central longitudinal axis of the femur for a broad range of different size joints for male and females.
  • conventional computer navigation systems include a library or database of anatomical parameters that are used in the registration or other calibrating process, but the anatomical parameters are based on a unisex model that represents a composite of male and female anatomies.
  • the computer navigation system of the present invention includes a male library or database and a female library or database.
  • the separate libraries or databases include differences in the anatomy. Exemplary differences have been discussed previously and additional gender differences are described below. Thus, with the computer navigation system of the present invention, the patient's gender is selected and the appropriate library or database is used in the registration or other calibrating process.
  • the stylus 172 is used to the map the joint, with at least three points located on the joint to determine the anatomical parameters of the joint.
  • the joint mapping is displayed on the display device 168 .
  • the stylus 172 maps the femoral portion 12 of the knee joint 10 .
  • the stylus 172 is used to locate a home point “HP” on the femur 12 , where the home point lies on the top surface on the femur 10 in a plane defined by the central longitudinal axis “A” of the femur 10 .
  • At least two additional points “P 1 ” and “P 2 ” are located with respect to the home point, such as end surfaces of the medial and lateral condyles 14 and 16 .
  • the three points (HP, P 1 and P 2 ) define a triangular mapping “T 1 ” of the femoral portion 12 of the knee joint 10 , which is displayed on the display device 168 .
  • gender information is also provided.
  • the display device 168 displays a generic knee joint, highlighting a point on the joint to be located using the stylus 172 .
  • a home point “HP” and the end surfaces of the medial and lateral condyles are highlighted on the generic knee joint.
  • the stylus 172 is utilized to locate the corresponding points on the knee joint 10 of the patient.
  • the computer program utilizes the mapped points and the gender information to provide a preliminary model for the femoral portion 12 , which is displayed on the display device 168 .
  • the preliminary model is based on a statistical analyzing of the relationship of the mapped points and the gender information, in comparison to the knee joint database.
  • the resulting preliminary model can include information on the radii of the medial and lateral condyles, the widths of the medial and lateral condyles, the width of the trochlear groove, and the angular relationship of the medial and lateral condyles with respect to the central longitudinal axis of the femur.
  • Based on the preliminary model an appropriately size femoral implant can be selected for use, as well as a corresponding cutting pattern for that implant.
  • the input device 170 can be used to map anterior and posterior points of the medial and lateral condyles, the femoral contacting surface of the medial and lateral condyles, the trochlear groove, etc. Additional information, such as the bone diameter and angular relationship between the femur and the pelvis can be utilized to refine the model.
  • the computer navigation system 160 can be used to map the tibial portion 20 of the knee joint 10 .
  • the stylus 172 is used to locate reference points on the end portion of the tibia 20 with respect to the home point “HP” on the femur 12 .
  • the stylus 172 can be used to map points along the tibial plateau 22 , including the tibial plateau end points P 3 and P 4 , to providing a triangular model “T 2 ” of the tibia 20 as well as the angular relationship “ ⁇ ” between the tibia 20 and femur 12 .
  • the computer program utilizes the mapped points and the gender information to provide a preliminary model for the tibial portion 20 , which is displayed on the display device 168 .
  • the tibial portion 20 can be displayed either individually or in relation to the femoral portion 12 .
  • the resulting preliminary model can be used to select an appropriately sized tibial implant, as well as a corresponding cutting pattern for that implant.
  • the selection of the femoral and tibial implants is not only based on the inputted data, by also on the implants themselves, and their ability to function appropriately together.
  • a medical implant such as a prosthetic knee for men or women.
  • surfaces of the device may have different ingrowth surfaces, porosity, HA, or BMP coated or bonded to it.
  • additional prosthetic implants can be designed and configured for gender specific use.
  • the female pelvis is distinguished from that of the male by its bones being more delicate and shallower in depth.
  • the ilia of the female pelvis are less sloped, and the anterior iliac spines more widely separated; hence the greater lateral prominence of the hips in females.
  • the superior aperture of the lesser pelvis is larger in the female than in the male; it is more nearly circular, and its obliquity is greater.
  • the inferior aperture is larger and the coccyx more movable.
  • the sciatic notches are wider and shallower, and the spines of the ischia project less inward.
  • the ischial tuberosities and the acetabula are wider apart, and the former are more everted.
  • the pubic symphysis is less deep, and the pubic arch is wider and more rounded than in the male, where it is an angle rather than an arch.
  • prosthetic hip implants may be designed and configured for gender specific use, taking into account the structural differences between the female and male pelvis and connecting femurs.
  • an implant designed for women may be designed to provide greater range of motion than a similar implant designed for men.
  • Females often benefit from having a greater range of motion for hips just as they do for knees.
  • the female design may be more flexible in the acetabular component, more flexible in the femoral stem, or have a greater modulus of elasticity (especially in more osteoporotic bone). Designing the female prosthetic so that the femoral head contacts a thinner acetabulum also may change range of motion and stability to be more suitable for women than men.
  • the offset for the femoral head and neck region may be different for men than women.
  • a female design may have less offset while a male design may have a greater offset to increase the lever arm.
  • the difference in offset may be about 5 percent or greater in one embodiment, although as described above the offset may differ by 10 percent or more, or by 20 percent or more.
  • prosthetic designs such as the hip may incorporate gender-specific features is with the use of different ingrowth surfaces.
  • the superior portion under compression on the acetabular component may have HA coating and/or a roughened surface texture for one gender while less or no HA coating and/or a smoother surface texture for the opposite gender.
  • the inferior coating may be porous or fiber metal coating or porous tantalum coating so that there would be two or more ingrowth surfaces on the same gender-specific implant.
  • one or more components may be color-coded so that they may be more readily identified by visual inspection.
  • the rotating or bearing surface of the femoral head may have one color for women and another color for men.
  • a component having a pink visible surface may signify that the gender-specific design of the implant is for women, while a black surface may signify that the gender-specific design is for men.
  • This color-coding of one or more components may be used in place of or in conjunction with any other gender identification systems, including those described elsewhere herein.
  • gender specific prosthetic implants can be designed and configured for use in the any joint in a body, including ankle, knee, hip, spine, neck, wrist, elbow, and shoulder.
  • a nucleus pulposes implant for women may have greater elasticity or greater hydrophilic capability.
  • the shape, angle, or distance distracted between the disc space may be designed to be gender-specific for men and women.
  • disc replacement technology may have gender-specific features such as differences in disc height or angulation changes such as lordosis or rotational angle.
  • a spinal cage could have gender-specific designs that vary in thickness or forced expansion.
  • Bone cement such as used in spine treatment or in treating other bones in the body, also may have a different viscosity for men and women, different rates of introduction into the body, or different amounts of bonding or interdigitation, especially with osteoporotic bone in females versus males.
  • gender-specific designs also may result in kits of implants, tools and devices tailored primarily for a particular gender. For instance, a kit of implants of varying sizes intended for women may have a generally smaller size than a kit of similar implants intended for men. Providing a gender-specific kit allows for the reduction or elimination of conventional kit components that might primarily be intended for use on the opposite sex. Likewise, there maybe differences in the tools and instruments provided in one kit versus another due to anatomical, physiological, or other differences between men and women. One benefit of providing gender-specific kits is that it may reduce the amount of variety of devices and instruments that may be prepared for a particular surgery. The potential reduction in complexity and number of devices and instrumentation may in turn allow a physician to perform surgeries more efficiently and successfully.
  • Sutures also may be designed to have gender-specific features.
  • suture materials are all designed to have the same properties for men and women. Under the present invention, however, suture material may have greater elasticity for females than for males.
  • Stents are another example where a currently unisex approach could be improved by taking into account gender-specific differences. Stents are used in a wide variety of applications, such as for aneurysms, aortic, cardiac, carotid, vascular anastomosis, vascular angioplasty, and the like. As is well known stents are typically inserted in a compressed state and then expanded when in position. The expansion of stents today is the same for men and women; yet female vessel tissue tends to be more elastic than in men. Therefore, it is believed the vessels in women would apply a less resistance to an opening stent than in men.
  • one embodiment of the present invention would be to design a stent to require a lower opening force for women than a stent designed for men.
  • a balloon used to expand a male designed stent may apply a greater opening force than a balloon used to expand a female designed stent.
  • stent expansion may involve less elasticity and greater stiffness in men than in women since male vessel tissue is generally more rigid than for women. Since female tissue often is more pliable, a female stent design may have a lower modulus of elasticity to expand, may be more elastic, and less rigid.
  • a male stent design may have differences in drug release than in women. For example, a male stent design may have a greater drug release associated with it, may have specific localized drug release, or a greater concentration of drug released over a shorter period. Additionally, different drug combinations may be associated with a male stent design than for a female stent design. The stent may have multiple layers for providing different drug deliveries for men and women.
  • one layer may be porous or permeable that allows a drug to be released from an inner coating or layer.
  • the porous or permeable coating or layer may have different apertures for men than for women, thereby providing a gender-specific drug delivery.
  • the coatings or layers may react differently to temperature, pH, or other differences in the intended environment that may be present between men and women.
  • a porous or permeable layer may have an outer coating that dissolves when deployed in a female, thereby allowing the inner coating or layer to be released into the body, but remains substantially intact during exposure in a male body.
  • the outer coating may have a different rate of degradation for men than women, thereby allowing for gender-specific rates of drug delivery.
  • FIG. 20 illustrates an embodiment of the invention concerning an arterial stent 180 .
  • Stents are particularly useful in the treatment and repair of blood vessels after a stenosis has been compressed by percutaneous transluminal coronary angioplasty (PTCA), percutaneous transluminal angioplasty (PTA), or removed by atherectomy or other means, to help improve the results of the procedure and reduce the possibility of restenosis.
  • Stents also can be used to provide primary compression to a stenosis in cases in which no initial PTCA or PTA procedure is performed.
  • stents are most often used in the procedures mentioned above, they also can be implanted on another body lumen such as the carotid arteries, peripheral vessels, urethra, esophagus and bile duct.
  • a guiding catheter or sheath is percutaneously introduced into the cardiovascular system of a patient through the femoral arteries and advanced through the vasculature until the distal end of the guiding catheter is in the aorta.
  • a guidewire and a dilatation catheter having a balloon on the distal end are introduced through the guiding catheter with the dilatation catheter sliding over the guidewire.
  • the guidewire is first advanced out of the guiding catheter into the patient's vasculature and is directed across the arterial lesion.
  • the dilatation catheter is subsequently advanced over the previously advanced guidewire until the dilatation balloon is properly positioned across the arterial lesion.
  • the expandable balloon is inflated to a predetermined size, such as with a radiopaque liquid, at relatively high pressure to displace the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery.
  • the balloon is then deflated to a small profile so that the dilatation catheter can be withdrawn from the patient's vasculature and the blood flow resumed through the dilated artery.
  • a predetermined size such as with a radiopaque liquid
  • angioplasty procedures of the kind referenced above, abrupt reclosure may occur or restenosis of the artery may develop over time, which may require another angioplasty procedure, a surgical bypass operation, or some other method of repairing or strengthening the area.
  • a physician can implant an intravascular prosthesis for maintaining vascular patency, commonly known as a stent, inside the artery across the lesion.
  • Stents are generally cylindrically shaped devices which function to hold open and sometimes expand a segment of a blood vessel or other arterial lumen, such as a coronary artery.
  • Stents are delivered in a radially compressed condition to the target location and then are deployed into an expanded condition to support the vessel and help maintain it in an open position.
  • the stent may be a self-expanding type formed from, for example, shape memory metals or super-elastic nickel-titanium (NiTi) alloys, which will automatically expand from a compressed state when the stent is advanced out of the distal end of the delivery catheter into the body lumen.
  • the invention provides stents 180 that are configured and dimensioned for gender specific use. As noted above, upon insertion into an artery, the stent 180 expands from an initial, compact condition to an expanded condition having a diameter D 1 , wherein the rate of expansion E is dependent on the material properties of the stent 180 . In the expanded condition, the diameter D 1 is of sufficient size to impart an expansive force Fe onto the inner arterial wall.
  • the stent 180 is designed and configured for use in angioplasty procedures in males.
  • One or more stents 180 may be provided having at least one rate of expansion E and at least one expanded diameter D 1 configured and dimensioned to span the normal size ranges of male human arteries.
  • the expansive force Fe imparted onto the inner arterial wall is a function of the arterial wall thickness, such that the expansive force Fe is of sufficient strength to maintain the artery in an open condition preventing reclosure, without damage to the inner arterial wall.
  • additional dimensions of the arteries can be utilized in the design and configuration of the stent 180 .
  • the stent 182 is designed and configured for use in angioplasty procedures in females.
  • one or more stents 182 may be provided having at least one rate of expansion E and at least one expanded diameter D 2 configured and dimensioned to span the normal size ranges of female human arteries.
  • the expansive force Fe imparted onto the inner arterial wall is a function of the arterial wall thickness, such that the expansive force is of sufficient strength to maintain the artery in an open condition preventing reclosure, without damage to the inner arterial wall.
  • additional dimensions, gender-specific features, or other parameters of the arteries can be utilized in the designed and configuration of the gender specific stent 182 .
  • the stent 82 also may account for the effect of an illness or medical condition on the strength, size, or thickness of a vessel or vessel wall, which optionally may also be dependent at least in part upon gender.
  • Some of the structural features of the stents that account for gender-specific differences include the following: stent 182 has ends that flare outwardly, while stent 80 is substantially cylindrical; stent 182 has fewer openings than stent 180 ; and the openings in the sidewall of stent 182 are generally larger than the openings in the sidewall of stent 180 .
  • coatings can be used to make stent designs gender specific. It is well known that the stents 180 and 182 can be coated with a pharmaceutical agent 184 . As shown in FIG. 22 , the pharmaceutical agent 184 can be combined with a coating 186 or other medium used for controlled release rates of the pharmaceutical agent 184 . The pharmaceutical agent 184 can be incorporated into or covered by a monolithic layer or coating, wherein the agent 184 diffuses through the coating 186 and is released into the surrounding fluid. Alternatively, the coating 186 can be a degradable coating, such that as the coating 186 degrades the pharmaceutical agent 184 is released.
  • the pharmaceutical agent 184 can be a drug used for the prevention or treatment of restenosis.
  • Formulations useful for restenosis prevention or treatment can include, but are not limited to, heparin and heparin fragments, colchicine, taxol, agiotensin converting enzyme (ACE) inhibitors, angiopeptin, Cyclosporin A, goat-anti-rabbit PDGF antibody, terbinafine, trapidil, interferon-gamma, steroids, ionizing radiation, fusion toxins, antisense oligonucleotides, gene vectors, and rapamycin.
  • ACE agiotensin converting enzyme
  • the pharmaceutical agent 184 may be a therapeutic biologic agent.
  • agents include, but are not limited to, hormones, cells, fetal cells, stem cells, bone morphogenic proteins (BMPs), tissue inductive factors, enzymes, proteins, RNA, viruses, etc.
  • one embodiment of the invention provides a coated stents 180 , 182 where the coating is formulated differently for different genders.
  • the pharmaceutical agent 184 release rate and dosage are selected to correspond to expected male metabolization and reactions.
  • a coating 186 may also be provided on the stent 180 , 182 so that the pharmaceutical agent 184 is covered by or incorporated into the coating 186 .
  • the coating 186 may be used to control the timing and release rate of the pharmaceutical agent 184 .
  • the pharmaceutical agent 184 may be released gradually through diffusion through the coating 184 or after at least partial degradation of the coating 186 .
  • the coating 186 can be designed and configured to release the pharmaceutical agent 184 at a rate and dosage corresponding to metabolization and potential reactions of primarily either men or women.
  • the pharmaceutical agent 184 release rate and dosage may be selected to correspond to expected female metabolization and reactions in the same manner.
  • stent 180 , 182 was depicted, in other embodiments, similar techniques may be used to coat other types of implantable medical devices, such as hip and knee replacements (total and partial), spinal implants, scaffolds, biological implants or grafts, tissue grafts, screws, plates, rods, prosthetic devices, etc.
  • a gender-specific design may also involve altering or controlling the treated area differently for men than for women.
  • a medical implant in the form of a prosthetic knee joint 190 including a femoral and tibial component 192 and 194 .
  • the femoral component 192 is configured to provide a localized environmental change in a body of a patient.
  • a localized increase in temperature can have beneficial effects, which include (but are not limited to): aiding in the alleviation of localized pain, fighting of local infections, and increasing vascular flow and permeability of vessels at the treatment site to control delivery of pharmaceutical agent.
  • a localized increasing in temperature increases the permeability of the local tissue, allowing for an increased and more efficient absorption of the pharmaceutical agent into the treatment site.
  • the femoral component 192 includes an energy sink 196 , wherein the energy sink 196 can be used to control the localized temperature of the surrounding tissue.
  • the energy sink 196 can be a heat sink, wherein the heat sink 196 is charged by an internal or external energy unit 198 .
  • the heat sink 196 produces a local increase in temperature.
  • the male and female genders react differently to localized changes in temperatures. For example, a localized increase in temperature of B degrees may have beneficial effect on a female, but no effect on a male.
  • the applied energy is gender dependent. For example, in a female X amount of energy may be required to heat the heat sink 196 to sufficiently raise the localize temperature to have a beneficial effect.
  • Y amount of energy may be required to heat the heat sink 196 to sufficiently raise the localize temperature to have a beneficial effect, wherein Y is greater than X.
  • the applied energy and heat sink of a femoral component 192 are designed and configured for gender specific use, taking into account the reactive differences between the female and male genders.
  • a localized change in pH can have similar beneficial effects, which include (but are not limited to): aiding in the alleviation of localized pain, fighting of local infections, and increasing vascular flow and permeability of vessels at the treatment site to control delivery of pharmaceutical agent.
  • a localized increase in pH may increase the permeability of the local tissue, thereby allowing for an increased and more efficient absorption of the pharmaceutical agent into the treatment site.
  • the energy sink 196 in the femoral component 92 can be a pH sink 196 .
  • the pH sink 196 can be incorporated into the femoral component 192 or be positioned separate from the femoral component 192 . Therefore, the pH sink 196 may be configured to release a chemical to produce either an increase or decrease in the local pH in order to provide a more gender-specific use.
  • An acidic agent would lower the pH and a basic agent would raise the pH. Such agents are well-known to those of ordinary skill.
  • the male and female genders react differently to localized changes in pH.
  • a localized increase or decrease in the acidity of the surrounding tissue may have a beneficial effect on a female, but no effect on a male.
  • the chemical and release rate thereof is dependent on the gender of the patient.
  • the pH sink 196 is designed and configured for gender specific use, taking into account the reactive differences between the female and male genders.
  • temperature or pH changes may also be used to induce the release of beneficial enzymes, proteins, hormones, etc. from the cells in the treatment site.
  • beneficial enzymes, proteins, hormones, etc. For example, a localized increase in acidity and/or temperature can be perceived as a physical damage or an infection to the local area.
  • the local cells may release beneficial proteins, enzymes, hormones, etc.
  • a treatment or device may qualify as being gender specific.
  • One way a treatment or device may be considered gender specific is to identify differences in product design or treatment between men and women.
  • Another way to identify whether a device or treatment is gender specific is to determine who the intended patients are. For instance, a product line having two or more models where at least one model is marketed or designed more for men than women and another model is marketed or designed more for women than men would be gender-specific, and therefore within the scope of the invention. If there are measurable differences between the product design or treatment for men versus women, then another way to identify a product or treatment as gender-specific would be by having these differences meet or exceed a threshold amount. For example, in cases where two or more models are offered to account for gender differences at least one of the varying design parameters will differ by about 5 percent or more, and more preferably will differ by about 10 percent or more.
  • differences in a range of sizes of a device may in some cases be by 5 percent or more or by 10 percent or more.
  • other measurable differences such as quantity, concentration, or release rates of medications may differ by these numerical amounts.
  • skilled artisans would readily appreciate that these differences may be applied to any other measurable design parameter of a device or treatment, including duration, amount, thickness, forces applied, diameter, width, height, volume, density, temperature, pH changes, or the like.
  • a medical implant can be any prosthetic implant for use in a body, including, ankle, knee, hip, spine, neck, wrist, elbow or shoulder implants.
  • the medical implant can be, but is not limited to, tissue, scaffold, biological implants, graft, tissue graft, screws, plate, rods, or similar devices.
  • Pharmaceutical delivery of medication may also be provided in a gender-specific manner.
  • the release and absorption rates of drugs are different for men and women.
  • Oral medication for instance, may be absorbed differently due to resorption rates in the stomach, intestine, duodenum, abdomen, or the like.
  • intravenous medications can react differently for men and women.
  • the present invention contemplates an improved drug delivery that accounts for gender-specific differences.
  • One such example of an improved, gender-specific drug delivery system is in chemotherapy, which is known for being a thermal gradient drug delivery. Since men and women have different temperatures, diurnal changes, and pH, drug-delivery systems would benefit from accounting for one or more of these differences.
  • dosages and the route of administration e.g.
  • oral release or intravenous may be varied for men and women.
  • the initial dosage for men may differ from the initial dosage for women, the amount of drugs used in subsequent doses may differ, and the time period between subsequent doses also may differ between men and women.
  • a medicine given to a man may involve a second dose 8 hours later, while for women the second dose may be 6 hours later, or based on diurnal curves of men and women.
  • the system includes gender specific packaging material which differentiates use for male and female patients.
  • the packaging material can include labeling or color coding to specify gender usage.
  • the packaging material can include labeling, inserts, or product information which provides dosage information for both male and female patients.
  • the packaging material 200 includes a label 202 affixed thereto or, in the alternative, incorporated into the packaging material 200 .
  • the label 202 illustrated in FIG. 25 , provides information identifying the contents and usage of the packaging material 200 , which can include a gender specifier 204 .
  • the gender specifier 204 identifies the gender that the contents of the packaging material 200 are intended for.
  • the gender specifier 204 can be in pictorial, graphic, or text (or combination) form such as “FEMALE” or “MALE.” It is contemplated that the text form of the gender specifier 204 can be provided in a variety of languages, depending of the intended country of use.
  • the gender specifier 204 can be in the form of a color coding, wherein a first color is used to indicate a female gender and a second color is used to indicate a male gender.
  • the first and second colors may be selected from colors that are recognizable as gender indicators. For example, to indicate a female gender the first color can be pink while blue maybe used to indicate a male gender.
  • first and second colors can be any colors which are readably discernable as indicators of gender.
  • the color coded gender specifier 204 is depicted as incorporating only a portion of the label 202 . However, it is contemplated that the entire label 202 can be color coded to specify gender.
  • the gender specifier 204 can be a symbolic form for representing female and male genders.
  • the gender specifier 204 can be the western culture ideograms for female and male genders, namely “ ⁇ ” for the female gender and “ ⁇ ” for the male gender.
  • gender symbols can be any symbols which are readably discernable as indicators of gender.
  • the label 202 can include additional information, including, the product name 206 and product technical information 208 .
  • the product name 206 can be a name used by the company for the product, used to identify the origin of the product, such as CHARITE owned by DePuy Spine, Inc., for an artificial disc.
  • the product name can be a generic or descriptive name of the product, such as ARTIFICIAL DISC.
  • Additional technical information 208 can be provided, such as information relating to the size, material, date of manufacture, lot or control number, etc.
  • the packaging material 200 is the gender specifier.
  • the packaging material 200 can be color coded to indicate gender, wherein a first color is used to indicate a female gender and a second color is used to indicate a male gender.
  • the first and second color are selected from colors that are recognizable a gender indicators.
  • first color can be the color pink and to indicate a male gender the second color can be the color blue.
  • first and second colors can be any colors which are readily discernable and indicators of gender.
  • an exemplary medicine container 210 is provided, wherein the medicine container 210 includes a label 212 affixed thereto.
  • the label 212 provides information identifying the contents 214 and usage of the enclosed medicine.
  • the usage information includes the recommend dosage for each gender, wherein gender specifiers 216 and 218 annotate the gender dosage information 220 and 222 .
  • the gender specifiers 216 and 218 can be in a text form, such as “FEMALE” and “MALE.”
  • the gender specifiers 216 and 218 can be in the form of a color coding or in symbolic representations.
  • a product insert can be provided in the medicine container 210 . Similar to the label 212 , the product insert can provide information identifying the contents and usage of the enclosed medicine, which can include gender specifiers used in conjunction with dosage information.
  • RFID chips may be associated with equipment, instruments, or in sterile packaging so that identification of the intended gender for the devices may be quickly determined. This may be of particular benefit where it is difficult to visually determine the gender-specific design. For example, it may be difficult to visually confirm the intended gender of light sensitive therapeutics, internal components, sealed materials, or implanted devices. Likewise, instrumentation kits may involve several tools or devices that would be time-consuming to confirm are all intended for the same gender. By associating an RFID tag with these devices, however, the gender-specific information can be quickly retrieved. In one embodiment, RFID chips provided in packaged gender-specific drugs are used to determine remaining quantities of medicine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Robotics (AREA)
  • Prostheses (AREA)

Abstract

A system of prosthetic implants for a total knee replacement procedure is provided. The system includes a tibial component of a knee joint implant, a tibial insert configured to be positioned against the superior side of the platform of the tibial component, a first femoral component of a knee joint implant, and a second femoral component of a knee joint implant.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. Non-Provisional application Ser. No. 15/597,631 entitled Gender Specific Implant and Packaging, filed May 17, 2017, which is a divisional of U.S. Non Provisional application Ser. No. 15/003,243 entitled Gender Specific Implant and Packaging, filed Jan. 21, 2016; which is itself a continuation of U.S. Non Provisional application Ser. No. 11/454,109 entitled Implant for Knee Replacement, filed Jun. 15, 2006 (now U.S. Pat. No. 9,301,845), the contents of which are herein incorporated by reference in their entirety. This application also claims the benefit under 35 U.S. § 119(e) of U.S. Provisional Application No. 60/690,653 entitled Gender Specific Implant and Packaging, filed Jun. 15, 2005, the contents of which are herein incorporated by reference in their entirety. This application also claims the benefit under 35 U.S. § 119(e) of U.S. Provisional Application No. 60/755,804 entitled Gender Specific Implant and Packaging, filed Jan. 3, 2006, the contents of which are herein incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to gender specific medical treatments, medical implants, and therapeutics.
  • BACKGROUND OF THE INVENTION
  • Some fields of study recognize and account for differences between men and women better than others. Psychologists, for example, may choose different therapeutic techniques to address certain emotional issues with a man than with a woman. Personal trainers likewise may employ different physical training regimen for men than for women, and may have different target goals for cardiovascular and muscular development.
  • Some fields of medical study may even consider gender during diagnosis of an illness or injury, but most do not identify or consider gender differences in treatment protocols, medical implants, drug development, drug dosage and delivery, and the like. Instead, many treatments only account for differences based on body weight, or create distinctions only between infants, children and adults while ignoring potentially significant differences based on gender. In many instances, therefore, there has been little, if any, effort to refine medical science to account for differences between men and women.
  • One reason that medical science has not advanced to account for gender differences in treatment may be due in part to a widely held perception that sexual dimorphism is relatively low in humans when compared to other animals, and therefore the differences often are ignored or overlooked. Sexual dimorphism is the systematic difference in form between individuals of different gender in the same species. This may include differences in size, color, or the presence of gender defining body parts, such as horns or antlers. While in humans, the male and female forms are perceived differently, they tend to have a low level of sexual dimorphism when compared to other species. For example, the body masses of both male and female humans are approximately normally distributed.
  • However, despite this relative low-level sexual dimorphism when compared to other species, there are physiological, muscular, and skeletal differences in men and women that are of particular relevance to improved medical treatment. Many of these differences are present even between men and women of similar height, weight, and build, but currently are not taken into consideration when treating a patient. For example, the female brain has more intercellular connections than the male brain, which may account for why women generally are likely to recover more of their speech abilities after a stroke than men, yet medical treatment for men and women is virtually identical. Additionally, male bones tend to be larger in size, having greater lengths, thicknesses, and densities. Similarly, the joints in male and female bodies differ. For example, the notch width at the end of the femur in the knee joint tends to be wider in males than in females. Despite these differences, medical implants currently are limited to unisex designs. Further examples of differences between men and women may be found in metabolic rates, diurnal changes, range of motion, pH and hormonal changes, elasticity of body tissue, and susceptibility to diseases or medical conditions.
  • For example, males and females metabolize medications at different rates and react differently to different types of medications. As a result of these differences, females may metabolize some analgesics and adjuvant drugs at different rates than men, among them oxycodone, tramadol, fentanyl, bupivacaine, and diazepam. Similarly, males may respond more favorably to tricyclic agents and females may get greater relief from selective serotonin reuptake.
  • In spite of these differences, medical practitioners tend to treat male and female patients with a gender-neutral approach. At best, medicines may be prescribed based on weight or body mass index (BMI), without taking into account other, potentially more significant gender differences. Medical implants and instruments are provided in limited sizes (e.g., small, medium, and large), but each having similar geometric proportions, the same material construction, the same surface treatment, and the same therapeutic coating for men and women. In short, medical science has made little effort to account for many potentially significant gender differences.
  • Perhaps another reason gender differences have not been incorporated into medical science is the additional complexity it would introduce for patients and health professionals. It may be difficult, for example, for a doctor, nurse, or pharmacist to keep track of different gender-specific dosage amounts, dosage rates, drug combinations, and the like. Likewise, a couple, such as a husband and wife, where both are being treated for the same medical condition may become confused if presented with different medicines, or with different dosage instructions (e.g. dosage amounts, dosage frequency, etc.) for medicines with the same active ingredient. Additionally, if both patients are taking the same brand of medication, it may be difficult to distinguish each person's medicine from the other.
  • Regardless of the reason for the current state of medical science, it would be desirable to have more sophisticated medical treatments that better account for gender differences.
  • SUMMARY OF THE INVENTION
  • The present invention provides a system and method for accounting for gender specific differences in medical treatment. This is achieved first by taking into account these differences so that a patient's therapy and treatment is more closely tailored to them. This includes, for example, providing gender specific treatment, medical devices, medicines, and/or instrumentation. These differences may result in different techniques being provided for treating bones or joints (such as the knee, hip, or spine), differences in drug selection, drug delivery and dosage, different implant designs, and different treatment for soft tissue repair. These and other non-limiting examples are further discussed in detail below.
  • In addition, the invention also may involve improved identification systems that help patients or health professionals avoid or reduce potential confusion that may result from the availability of gender specific treatment options. For example, the medical treatment system can include a medical device identification system which differentiates use for male and female patients. The medical device identification system includes a container adapted to receive a medical device and a gender specifier. The gender specifier is used to identify the gender the medical device is designed for. The gender specifier can be incorporated into a label, where the gender specifier can be in text form, symbolic form or color coded. For example, the gender specifier can be in the text form “MALE” or “FEMALE.”
  • The gender specifier may also be an electronic device, such as an RFID tag that is associated or packaged with the device or medicine so that it can be readily identified and associated for use with a particular gender. This embodiment of the invention may be of particular use for sterilized products, medicines that are sealed in a container, or in other situations where it is difficult to visually confirm for which sex the product is intended.
  • Alternatively, the medical treatment system may include a medication container having a gender-specific labeling system. The label system may provide information identifying the contents and gender-specific instructions regarding usage of the enclosed medicine. The usage information may include, for example, the recommended dosage for one or both genders. Thus, the gender specifier may be dosage information, but also it may be in a text form, such as “FEMALE” and “MALE,” or alternatively may be in the form of a color coding or in symbolic representations.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
  • FIG. 1 depicts an exemplary knee joint;
  • FIG. 2 depicts an exemplary prosthetic knee joint;
  • FIG. 3 depicts an exemplary femoral component of a male prosthetic knee joint;
  • FIG. 4 depicts an exemplary tibial component of a male prosthetic knee joint;
  • FIG. 5 depicts an exemplary femoral component of a female prosthetic knee joint;
  • FIG. 6 depicts an exemplary tibial component of a female prosthetic knee joint;
  • FIG. 7 depicts an another exemplary femoral component of a prosthetic knee joint;
  • FIG. 8 depicts an exemplary rotatable tibial component of a prosthetic knee joint;
  • FIG. 9 depicts a partial cross section of the rotatable tibial component of FIG. 8;
  • FIG. 10 depicts a platform of a rotatable tibial component of a prosthetic knee joint;
  • FIG. 11 depicts a platform of a rotatable/translatable tibial component of a prosthetic knee joint;
  • FIG. 12 depicts another platform of a rotatable/translatable tibial component of a prosthetic knee joint;
  • FIG. 13 depicts an exemplary male patella with pegs or contact points arranged based on the male anatomy;
  • FIG. 14 depicts an exemplary female patella with pegs or contact points arranged based on the female anatomy;
  • FIG. 15 depicts an exemplary bi-compartmental femoral component of a male prosthetic knee joint;
  • FIG. 16 depicts an exemplary bi-compartmental femoral component of a female prosthetic knee joint;
  • FIG. 17 depicts a schematic diagram of a computer navigation system of the present invention;
  • FIG. 18 depicts a triangular mapping of a femur portion of a knee joint;
  • FIG. 19 depicts a triangular mapping of a tibia portion of a knee joint;
  • FIG. 20 depicts an exemplary vascular stent;
  • FIG. 21 depicts an exemplary female vascular stent;
  • FIG. 22 depicts a cross sectional view of an embodiment of the stent of FIG. 20;
  • FIG. 23 depicts an exemplary medical implant including an energy sink;
  • FIG. 24 depicts a representative packaging material of the present invention;
  • FIG. 25 depicts a representative label affixed to the packaging material of FIG. 24;
  • FIG. 26 depicts a representative medicine container of the present invention;
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a system and method for gender specific medical treatment. As mentioned above, gender differences are often ignored when determining how to treat a medical condition. It is believed that accounting for one or more of these differences during treatment may greatly improve the quality of care and degree of recovery that a patient experiences.
  • One example where medical science currently applies a unisex approach is in the treatment of bones and joints. Three non-limiting examples discussed below—namely treatment of the knee, hip, and spine—illustrate how the invention may be used to improve the quality of care a patient may receive when gender differences are taken into account.
  • Knee replacements, for instance, are about twice as likely to be performed on women as on men. There are gender-specific differences in the bones adjoint associated with the knee that are not currently taken into account in this area of medicine. For example, the female patellais generally thinner and narrower in superior and inferior dimensions, while in men it is generally wider in proportion.
  • Referring to FIG. 1, there is shown an anterior view of a knee joint 10, wherein the patella is not shown. The knee joint 10 includes a femoral portion 12 having medial and lateral condyles 14 and 16. A trochlear groove 18 is interposed between the medial and lateral condyles 14 and 16, allowing for tracking of the patella along the end portion of the femur 12 as the knee joint 10 is flexed and extended. A tibial portion 20 of the knee joint 10 includes a tibial plateau 22, including medial and lateral menisci 24 and 26 disposed on the tibial plateau 22. The medial and lateral condyles 14 and 16 abut the tibial plateau 22, engaging the medial and lateral menisci 24 and 26 allow for rotation of the tibia 20 with respect to the femur 12 and shock absorption between the femur 12 and tibia 20. A central longitudinal axis of the femur portion 12 is aligned at an angle α with respect to a central longitudinal axis of the tibial portion 20.
  • Depending upon the degree and type of injury, a total or partial knee replacement procedure can be performed when a knee joint 10 is damaged. A total knee replacement may involve replacing or repairing up to three bone surfaces, namely the medial and lateral condyles 14 and 16 of the femur 12, the tibial plateau 22 of the tibia 20, and the back surface of the patella. Referring to FIG. 2, an exemplary prosthetic knee 28 includes a femoral component 30 and a tibial component 32. The femoral component 30 is configured to curve about the cut end portions of the medial and lateral condyles 14 and 16, having a trochlear groove 34 therein to allow tracking of the patella about the femoral component 30 as the knee joint 10 is flexed and extended. The tibial component 32 includes flat platform 36 with a cushioning material 38, replacing the medial and lateral meniscus 24 and 26.
  • The femoral and tibial components 30 and 32 cooperate to permit normal knee-joint functioning. The femoral and tibial components 30 and 32 are designed similar in size and shape to average knee joints, and have a range of sizes to span the normal size ranges of the knee joints.
  • As previously discussed, there are many skeletal differences between men and women, including bone structure, configuration, size, length, thickness, density, and geometric proportion. The male femur, for example, tends to be proportionally wider, has a greater thickness, and a wider trochlear groove. Additionally, because of the differences between the male and female pelvic structures, the angular relationship a. between the femur and the tibia inhale and female knees is different. Currently, these differences are not accounted for in prosthetic design, whereas in the present invention one or more of these differences could be taken into account to provide gender-specific prosthetic design.
  • Thus, one aspect of the present invention is directed to a prosthetic knee joint that is configured and dimensioned for gender specific use. To improve articulation for women, for instance, the prosthetic knee joint may have a reduced bearing surface, such as being reduced by 10 percent or more in comparison to a male prosthetic knee design. The reduced bearing surface would allow greater range of motion of the implant corresponding to the greater range of motion typically exhibited in women. Overall, the implant for women may also be significantly thinner, such as being at least 5 percent thinner, at least 10 percent thinner, or alternatively at least 20 percent thinner than implants for men. A formal prosthetic knee for women may also have one or more of the following: thinner runners to help improve range of motion, lesser amount of metal, or greater flexibility.
  • If the female implant is significantly thinner or has a much smaller surface area contacting bone than a male implant, it may be desirable to provide more ingrowth surface on the female implant in order to enhance fixation. Fixation can also be increased by using a different amount or configuration of bone cement, the grouting material frequently used for fixation of a prosthetic component. In this regard, the present invention also contemplates female specific and male specific bone cement, with the composition of the female bone cement differing from the male bone cement. For example, fillers could be added to the PMMA (the principal component of the bone cement) to change the mechanical properties. Additionally, other components (such as an antibiotic) can be selected depending on whether the intended recipient is a male or a female. In this regard, a female bone cement may have added components to address the osteoporotic bone found in women. Such components include calcium supplements and other agents for promoting an osteogenic or osteoconductive effect (or slowing the process of bone demineralization).
  • Referring to FIG. 3, a male femoral component 40 of a knee joint implant of the present invention is provided. The femoral component 40 includes medial and lateral condyle portions 42 and 44 each having a width W1 and a radius R1. A trochlear groove 46 is disposed between the medial and lateral condyle portions 42 and 44 and has a width W2. The widths W1 and W2 and the radius R1 of the femoral components 40 are provided in a range of sizes to span the normal size ranges of male human knee joints. Additionally, the thickness t1 and the material densities of the femoral components 40 are selected to correspond to male bone thickness and densities.
  • Referring to FIG. 4, a male tibial component 48 of a knee joint of the present invention is provided. The tibial component 48 includes flat platform 50, having a substantially oval shape, wherein the cushioning material 52 replaces the medial and lateral meniscus 24 and 26. A bone spike 54 is included for insertion into the prepared end of the tibia, securing the tibial component 48 to the tibia. The bone spike 54 can be substantially conical in shape, having a maximum diameter d1 and length l1.
  • Referring to FIG. 5, a female femoral component 60 of a knee joint implant of the present invention is provided. The femoral component 60 includes medial and lateral condyle portions 62 and 64 each having a width W3 and a radius R2. A trochlear groove 66 is disposed between the medial and lateral condyle portions 62 and 64 and has a width W4. The widths W3 and W4 and the radius R2 of the femoral components 60 are provided in a range of sizes to span the normal size ranges of female human knee joints. Additionally, the thickness t2 and the material densities of the femoral components 60 are selected to correspond to female bone thickness and densities.
  • Referring to FIG. 6, female tibial component 70 of a knee joint of the present invention is provided. The tibial component 70 includes flat platform 72, having a substantially elongated oval shape, wherein the cushioning material 74 replaces the medial and lateral meniscus 24 and 26. A bone spike 76 is included for insertion into the prepared end of the tibia, securing the tibial component 70 to the tibia. The bone spike 74 can be substantially conical in shape, having a maximum diameter d2 and length 12.
  • As previously discussed, the male femoral component 40 will generally have greater widths W1 and W2 and the radius R1, thus bearing surface area, than that of comparable female femoral component 60 widths W3 and W4 and the radius R2. Similarly, the male femoral component 40 will generally have a greater material thickness t1 than that of thickness t2 of a comparable female femoral component 60. Thus, a “large” size for a male prosthetic knee joint may differ significantly in size, proportion, and construction from a large-sized prosthetic knee joint for women. Furthermore, as shown in FIG. 5, an upper section 68 of the female femoral component 60 can be generally narrower than that of a comparably male femoral component 40, to accommodate structural differences between the female and male femurs. In other words the female femoral component 60 design can have scalloped edges compared to the male femoral component 40 design. Additionally, the thickness, the material densities, and the material composition of the femoral components 40 and 60 may be selected to correspond to different male and female bone thickness and densities. Additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components 40 and 60.
  • Similar to the femoral components 40 and 60, the tibial components 58 and 70 are designed and configured for use in replacement of the knee joint in males and females. The dimensions of the tibial components once again may be provided in a range of sizes to span the normal size ranges of male and female human knee joints. As shown in FIGS. 4 and 6, the male platform 50 has a substantially oval shape, whereas the female platform 72 has an elongated oval shape. The shapes of the platforms 50 and 72 are selected to accommodate the differences in sizes and bearing surface areas of the corresponding male and female femoral components 48 and 60. Additionally, the thickness and the material densities of the tibial components are selected to correspond to or function with male and female bone thickness, densities, geometry, range of motion, or the like. Furthermore, additional dimensions of the tibial portion of the knee joint can be utilized in the design and configuration of the tibial components 48 and 70.
  • Thus, a gender-specific design may be identified by one component having less material than for the opposite sex. Furthermore, additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components. One or more of these dimensions may be varied so that an implant is more suited to a male or female patient. Thus, an implant design may be considered gender-specific if one or more of these parameters has been selected to better match either a male or female.
  • A gender-specific prosthetic design may also be identified by comparing relative differences that exist between a female design and a male design. For example, if one or more dimensions (e.g., bearing surface area, widths, radii, curvature, thickness of material, amount of metal, range of motion, flexibility, etc.) or relative proportions (e.g., relative width or relative differences in angles, minimum or maximum sizes, etc.) or an implant design for one sex varies by more than 5 percent, or alternatively by 10 percent or more, or even by about 20 percent or more, from an implant designed for the opposite sex, then the design may qualify as being gender-specific.
  • Referring to FIG. 7, another femoral component 80 of a knee joint implant of the present invention is provided. The femoral component 80 includes medial and lateral condyle portions 82 and 84. The medial condyle portion 82 has a width Wm and a radius Rm and the lateral condyle portion 84 has a width WL and a radius RL, wherein the width Wm and WL can be of equal dimension, or in the alternative, the widths Wm and WL can be of non-equal dimension. Similarly, the medial and lateral condyle portions 82 and 84 radii Rm and RL can be of equal dimension, or in the alternative, radii Rm and RL can be of non-equal dimension. In this regard, the size differences between the widths and/or radii of the medial and lateral condyle portions can be at least 5 percent, 10 percent, or 20 percent. A trochlear groove 86 is disposed between the medial and lateral condyle portions 82 and 84 and has a width W1.
  • In this manner, the widths Wm and WL and the radii Rm and RL of the femoral components 80 can be provided in a range of sizes to more precisely emulate the size and dimensions of a male or female human knee joints. For example, the radii Rm and RL of the medial and lateral portions 82 and 84 of the femoral component 80 can be selected such that the radius Rm of the medial condyle portion is larger with respect to the radius RL of the lateral condyle portion. As such, the radii Rm and RL of the medial and lateral portions 82 and 84 form a substantially partial conical surface. Additionally, the thickness t3 and the material densities of the femoral components 80 are selected to correspond to male or female bone thickness and densities.
  • As previously discussed, a male femoral component will generally have greater widths Wm and WL and the radii Rm and RL, thus bearing surface areas, than that of a comparable female femoral component widths Wm and WL and the radii Rm and RL. Similarly, the male femoral component will generally have a greater material thickness t3 than that of thickness of a comparable female femoral component. Thus, a “large” size for a male prosthetic knee joint may differ significantly in size, proportion, and construction from a large-sized prosthetic knee joint for women. Furthermore, as shown in FIG. 5, an upper section of the female femoral component can be generally narrower than that of a comparably sized male femoral component to accommodate structural differences between the female and male femurs. In other words a female femoral component design can have scalloped edges compared to the male femoral component design. Additionally, the thickness, the material densities, and the material composition of the femoral components may be selected to correspond to different male and female bone thickness and densities. Additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components.
  • Referring to FIG. 8, a tibial component 90 of a knee joint of the present invention is provided. The tibial component 90 includes a platform 92, having a substantially oval shape, wherein a cushioning material 94 replaces the medial and lateral meniscus 24 and 26. A bone spike 96 is included for insertion into the prepared end of the tibia, securing the tibial component 90 to the tibia. The bone spike 96 can be substantially conical in shape, having a maximum diameter d1 and length l1. The platform 92 can be rotatably connected to the bone spike 96, such that the platform 92 can rotated with respect to the central longitudinal axis “A” of the bone spike 96.
  • In an embodiment as shown in FIG. 9, the platform 92 includes a slotted section 98, in which a head portion 100 of the bone spike 96 is positioned. The slotted section 98 is configured to capture the head portion 100 of the bone spike 96, securing the head portion 100 within the slotted section 98, yet allowing the platform 92 to rotate with respect with the bone spike 96. In this manner, the platform 92 can rotate with respect to a femoral component as the knee joint is moved between flexion and extension, thereby decreasing the frictional forces between the contacting surfaces of the femoral component and a cushioning material of the platform 92. Furthermore, the rotation of the platform 92 can decrease the stresses provided on the implant/bone interface, decreasing the likelihood of failure and increasing the life expectancy of the implant. It is contemplated that the other rotational, translation, and positional configurations of the platform 92 with respect to the bone spike 96 can be provided to further increase the efficiency of emulating a natural knee joint and accounting for the anatomical differences between male and female joints.
  • Referring to FIG. 10, the bone spike 96 can be centrally positioned on the flat platform 92, such that the center 102 of the platform 92 is aligned along the central longitudinal axis of the bone spike 96. Alternatively, the bone spike 96′ can be positioned offset from the center 102 of the platform 92, such that the center 102 of the platform 92 is rotatable about the bone spike 96′.
  • Referring to FIG. 11, the platform 92 can include an elongated slotted section 104, such that the platform 92 can slide in the anterior and posterior directions as the knee joint is moved between flexion and extension. In addition, the platform 92 can rotate with respect to the bone spike 96 as the knee joint is moved between flexion and extension. In this manner, the compound movement for the platform 92 can be used to emulate high flexion.
  • Referring to FIG. 12, the platform 92 includes an angular elongated slotted section 106, such that the platform 92 can slide substantially in the anterior/posterior and medial/lateral directions as the knee joint is moved between flexion and extension. In addition, the platform 92 can rotate with respect to the bone spike 96 as the knee joint is moved between flexion and extension.
  • Similar to the femoral components, the tibial components 90 are designed and configured for use in replacement of the knee joint in males and females. The dimensions of the tibial components once again may be provided in a range of sizes to span the normal size ranges of male and female human knee joints. As showing in FIGS. 4 and 6, the male platform 50 has a substantially oval shape, whereas the female platform 72 has an elongated oval shape. The shapes of the platforms 50 and 72 are selected to accommodate the differences in sizes and bearing surface areas of the corresponding male and female femoral components 48 and 60. Additionally, the thickness and the material densities of the tibial components are selected to correspond to or function with male and female bone thickness, densities, geometry, range of motion, or the like. Furthermore, additional dimensions of the tibial portion of the knee joint can be utilized in the design and configuration of the tibial component 90.
  • Referring to FIGS. 13 and 14, a male patella 110 and a female patella 112 are provided. As shown in these figures, the male and female patellas 110 and 112 have substantially different shapes, where the female patella 112 is more elongated with respect to the male patella 110. As such, when replacement patellas are provided, they are provided in accordance with the gender of the patient.
  • Furthermore, in surgical procedures requiring resurfacing of the patella surfaces, contact pegs 114 can be affixed to the surface, providing multiple point contact surfaces between the patella and the femur or femoral implant. As male and female patellas 110 and 112 have different shapes, the arrangement of the pegs 114 can be changed accordingly. As shown in FIG. 13, the pegs 114 are positioned in a substantially triangular configuration for the male patella, allowing for the wider surface of the male patella 110. As shown in FIG. 14, the pegs 114 are positioned in a substantially linear configuration, allowing for the more linear surface of the female patella 114. Providing such contact pegs (rather than replacing or resurfacing the entire patella) offers a number of advantages, which include greater applicability to minimally invasive procedures, reduced articulating surface area, etc. Published U.S. Patent Application Publication No. US 2003/0028196 A1 discloses a number of such pegs or reduced bearing surface implants that can be used with the present invention. The entire content of this patent application is incorporated herein by reference.
  • Although FIGS. 2-14, show total knee replacement components, the present invention is well-suited for partial knee replacement components such as uni-compartmental and bi-compartmental implants. The present invention also contemplates the use for re-surfacing and surface bearing procedures and/or components.
  • Referring to FIG. 15, a bi-compartmental male femoral component 120 of a knee joint implant of the present invention is provided. The femoral component 120 includes medial and lateral components 122 and 124. The medial component 122 includes a medial condyle portion 126 having a width Wm and a radius Rm. The lateral component 124 includes a lateral condyle portion 128 having a width WL and a radius RL, As previously discussed, the widths Wm and WL can be of equal dimension or can be of different dimensions. Similarly, the medial and lateral condyle portions 126 and 128 radii Rm and RL can be of equal dimension or can be of non-equal dimension. A trochlear groove 130 formed by the combination of the medial and lateral components 122 and 124 is disposed between the medial and lateral condyle portions 126 and 128 and has a width Wt,
  • Referring to FIG. 16, a bi-compartmental female femoral component 140 of a knee joint implant of the present invention is provided. The femoral component 140 includes medial and lateral components 142 and 144. The medial component 142 includes a medial condyle portion 146 having a width Wm and a radius Rm, The lateral component 144 includes a lateral condyle portion 148 having a width WL and a radius RL As previously discussed, the widths Wm and WL can be of equal dimension or can be of different dimensions. Similarly, the medial and lateral condyle portions 146 and 148 radii Rm and RL can be of equal dimension or can be of different dimensions. A trochlear groove 150 formed by the combination of the medial and lateral components 142 and 144 is disposed between the medial and lateral condyle portions 146 and 148 and has a width Wt. The widths Wm and WL and the radii Rm and RL of the medial and lateral components 132 and 134 are provided in a range of sizes to span the normal size ranges of female human knee joints. Additionally, the thickness t2 and the material densities of the medial and lateral components 132 and 134 are selected to correspond to female bone thickness and densities.
  • As previously discussed, male femoral components will generally have greater widths Wm and WL and radii Rm and RL, thus bearing surface area, than that of comparable female femoral components widths Wm and WL and radii Rm and RL, Similarly, the male femoral components will generally have a greater material thickness t1 than that of thickness of a comparable female femoral component. Thus, a “large” size for a male prosthetic knee joint may differ significantly in size, proportion, and construction from a large-sized prosthetic knee joint for women. Furthermore, as shown in FIGS. 15 and 16, an upper section 152 of the female femoral components 142 and 144 can be generally narrower than that of a comparably male femoral components 122 and 124, to accommodate structural differences between the female and male femurs. In other words, the upper section 152 is such that the female femoral components 142 and 144 have scalloped edges compared to the male femoral components 122 and 124. Additionally, the thickness, the material densities, and the material composition of the femoral components 122, 124, 142, and 144 may be selected to correspond to different male and female bone thickness and densities. Additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components 142 and 144.
  • Thus, a gender-specific design may be identified by one component having less material than for the opposite sex. Furthermore, additional dimensions of the femoral portion of the knee joint can be utilized in the design and configuration of the femoral components. One or more of these dimensions may be varied so that an implant is better suited to a male or female patient. Thus, an implant design may be considered gender-specific if one or more of these parameters has been selected to better match either a male or female.
  • A gender-specific prosthetic design may also be identified by comparing relative differences that exist between a female design and a male design. For example, if one or more dimensions (e.g., bearing surface area, widths, radii, curvature, thickness of material, amount of metal, range of motion, flexibility, etc.) or relative proportions (e.g., relative width or relative differences in angles, minimum or maximum sizes, etc.) or an implant design for one sex varies by more than 5 percent, or alternatively by 10 percent or more, or even by about 20 percent or more, from an implant designed for the opposite sex, then the design may qualify as being gender-specific.
  • Referring to FIG. 17, a computer navigation system 160 of the present invention is provided and schematically shown. The computer navigation system 160 includes a central processing unit (CPU) 162, having a processor 164 and memory 166, a display device 168, and input devices, including a keyboard 170 and a stylus 172. A computer program is stored on the CPU 162, where the computer program can be used to aid in the selection, preparation, and insertion of implants into a patient. The stylus 172 can be used to provide single point locations or multiple point locations to outline the contours of a surface of a portion of a joint. The navigation system 160 can further include a printer 174.
  • An anatomical database is stored on the CPU 162 and is accessible by the computer program to determine appropriate implants for use in the patient. In an embodiment, the anatomical database includes information relating to a joint in the body of a patient, for example a knee joint. The anatomical database includes a library of joint mappings, having a broad range of joint sizes, as well as including information relating to gender differences in the joints. For example, the anatomical database can include information on bone thickness, density, the radii of the medial and lateral condyles, the widths of the medial and lateral condyles, the width of the trochlear groove, and the angular relationship of the medial and lateral condyles with respect to the central longitudinal axis of the femur for a broad range of different size joints for male and females. In other words, conventional computer navigation systems include a library or database of anatomical parameters that are used in the registration or other calibrating process, but the anatomical parameters are based on a unisex model that represents a composite of male and female anatomies. In contrast, the computer navigation system of the present invention includes a male library or database and a female library or database. The separate libraries or databases include differences in the anatomy. Exemplary differences have been discussed previously and additional gender differences are described below. Thus, with the computer navigation system of the present invention, the patient's gender is selected and the appropriate library or database is used in the registration or other calibrating process.
  • In a method of use, the stylus 172 is used to the map the joint, with at least three points located on the joint to determine the anatomical parameters of the joint. The joint mapping is displayed on the display device 168. Referring to FIG. 18, in a knee joint 10 the stylus 172 maps the femoral portion 12 of the knee joint 10. The stylus 172 is used to locate a home point “HP” on the femur 12, where the home point lies on the top surface on the femur 10 in a plane defined by the central longitudinal axis “A” of the femur 10. At least two additional points “P1” and “P2” are located with respect to the home point, such as end surfaces of the medial and lateral condyles 14 and 16. The three points (HP, P1 and P2) define a triangular mapping “T1” of the femoral portion 12 of the knee joint 10, which is displayed on the display device 168. In addition to the triangular mapping, gender information is also provided.
  • In an alternative embodiment, the display device 168 displays a generic knee joint, highlighting a point on the joint to be located using the stylus 172. For example, a home point “HP” and the end surfaces of the medial and lateral condyles are highlighted on the generic knee joint. The stylus 172 is utilized to locate the corresponding points on the knee joint 10 of the patient.
  • The computer program utilizes the mapped points and the gender information to provide a preliminary model for the femoral portion 12, which is displayed on the display device 168. The preliminary model is based on a statistical analyzing of the relationship of the mapped points and the gender information, in comparison to the knee joint database. The resulting preliminary model can include information on the radii of the medial and lateral condyles, the widths of the medial and lateral condyles, the width of the trochlear groove, and the angular relationship of the medial and lateral condyles with respect to the central longitudinal axis of the femur. Based on the preliminary model an appropriately size femoral implant can be selected for use, as well as a corresponding cutting pattern for that implant.
  • The above system has been described as using three points to provide a triangular mapping. However, it is understood that additional information can be utilized to provide a more refined model of the femoral portion 12 of the knee joint 10. For examples, the input device 170 can be used to map anterior and posterior points of the medial and lateral condyles, the femoral contacting surface of the medial and lateral condyles, the trochlear groove, etc. Additional information, such as the bone diameter and angular relationship between the femur and the pelvis can be utilized to refine the model.
  • Referring to FIG. 19, in a similar method, the computer navigation system 160 can be used to map the tibial portion 20 of the knee joint 10. The stylus 172 is used to locate reference points on the end portion of the tibia 20 with respect to the home point “HP” on the femur 12. For example, the stylus 172 can be used to map points along the tibial plateau 22, including the tibial plateau end points P3 and P4, to providing a triangular model “T2” of the tibia 20 as well as the angular relationship “α” between the tibia 20 and femur 12.
  • The computer program utilizes the mapped points and the gender information to provide a preliminary model for the tibial portion 20, which is displayed on the display device 168. The tibial portion 20 can be displayed either individually or in relation to the femoral portion 12. The resulting preliminary model can be used to select an appropriately sized tibial implant, as well as a corresponding cutting pattern for that implant. The selection of the femoral and tibial implants is not only based on the inputted data, by also on the implants themselves, and their ability to function appropriately together.
  • Other gender-specific differences may be used to further customize a medical implant such as a prosthetic knee for men or women. For instance, surfaces of the device may have different ingrowth surfaces, porosity, HA, or BMP coated or bonded to it.
  • In addition to the knee joint, additional prosthetic implants can be designed and configured for gender specific use. For example, as noted above, the female pelvis is distinguished from that of the male by its bones being more delicate and shallower in depth. The ilia of the female pelvis are less sloped, and the anterior iliac spines more widely separated; hence the greater lateral prominence of the hips in females. The superior aperture of the lesser pelvis is larger in the female than in the male; it is more nearly circular, and its obliquity is greater. The inferior aperture is larger and the coccyx more movable. The sciatic notches are wider and shallower, and the spines of the ischia project less inward. The ischial tuberosities and the acetabula are wider apart, and the former are more everted. The pubic symphysis is less deep, and the pubic arch is wider and more rounded than in the male, where it is an angle rather than an arch.
  • Because of the differences between the male pelvis and the female pelvis, hip configuration and alignment differ between the genders. Such differences require differing implant configurations. In accordance with the present invention, prosthetic hip implants may be designed and configured for gender specific use, taking into account the structural differences between the female and male pelvis and connecting femurs.
  • Thus, another example of where the present invention may be used to improve currently available implant designs is in treatment of injuries to the pelvis or hip. As mentioned above, an implant designed for women may be designed to provide greater range of motion than a similar implant designed for men. Females often benefit from having a greater range of motion for hips just as they do for knees. Thus, the female design may be more flexible in the acetabular component, more flexible in the femoral stem, or have a greater modulus of elasticity (especially in more osteoporotic bone). Designing the female prosthetic so that the femoral head contacts a thinner acetabulum also may change range of motion and stability to be more suitable for women than men.
  • Additionally, the offset for the femoral head and neck region may be different for men than women. For example, a female design may have less offset while a male design may have a greater offset to increase the lever arm. The difference in offset may be about 5 percent or greater in one embodiment, although as described above the offset may differ by 10 percent or more, or by 20 percent or more.
  • Another way in which prosthetic designs such as the hip may incorporate gender-specific features is with the use of different ingrowth surfaces. For example, the superior portion under compression on the acetabular component may have HA coating and/or a roughened surface texture for one gender while less or no HA coating and/or a smoother surface texture for the opposite gender. Likewise, the inferior coating may be porous or fiber metal coating or porous tantalum coating so that there would be two or more ingrowth surfaces on the same gender-specific implant.
  • Since it may be difficult to immediately recognize some of these gender-specific design differences, one or more components may be color-coded so that they may be more readily identified by visual inspection. For example, the rotating or bearing surface of the femoral head may have one color for women and another color for men. Thus, a component having a pink visible surface may signify that the gender-specific design of the implant is for women, while a black surface may signify that the gender-specific design is for men. This color-coding of one or more components may be used in place of or in conjunction with any other gender identification systems, including those described elsewhere herein.
  • It is further contemplated the gender specific prosthetic implants can be designed and configured for use in the any joint in a body, including ankle, knee, hip, spine, neck, wrist, elbow, and shoulder. In spine treatment, for example, a nucleus pulposes implant for women may have greater elasticity or greater hydrophilic capability. Likewise for spinal implants, the shape, angle, or distance distracted between the disc space may be designed to be gender-specific for men and women. In addition, disc replacement technology may have gender-specific features such as differences in disc height or angulation changes such as lordosis or rotational angle. Likewise, a spinal cage could have gender-specific designs that vary in thickness or forced expansion.
  • Bone cement, such as used in spine treatment or in treating other bones in the body, also may have a different viscosity for men and women, different rates of introduction into the body, or different amounts of bonding or interdigitation, especially with osteoporotic bone in females versus males.
  • The use of gender-specific designs also may result in kits of implants, tools and devices tailored primarily for a particular gender. For instance, a kit of implants of varying sizes intended for women may have a generally smaller size than a kit of similar implants intended for men. Providing a gender-specific kit allows for the reduction or elimination of conventional kit components that might primarily be intended for use on the opposite sex. Likewise, there maybe differences in the tools and instruments provided in one kit versus another due to anatomical, physiological, or other differences between men and women. One benefit of providing gender-specific kits is that it may reduce the amount of variety of devices and instruments that may be prepared for a particular surgery. The potential reduction in complexity and number of devices and instrumentation may in turn allow a physician to perform surgeries more efficiently and successfully.
  • Sutures also may be designed to have gender-specific features. Today, suture materials are all designed to have the same properties for men and women. Under the present invention, however, suture material may have greater elasticity for females than for males.
  • Stents are another example where a currently unisex approach could be improved by taking into account gender-specific differences. Stents are used in a wide variety of applications, such as for aneurysms, aortic, cardiac, carotid, vascular anastomosis, vascular angioplasty, and the like. As is well known stents are typically inserted in a compressed state and then expanded when in position. The expansion of stents today is the same for men and women; yet female vessel tissue tends to be more elastic than in men. Therefore, it is believed the vessels in women would apply a less resistance to an opening stent than in men. While this difference is not currently taken into account, one embodiment of the present invention would be to design a stent to require a lower opening force for women than a stent designed for men. For example, a balloon used to expand a male designed stent may apply a greater opening force than a balloon used to expand a female designed stent.
  • Furthermore, stent expansion may involve less elasticity and greater stiffness in men than in women since male vessel tissue is generally more rigid than for women. Since female tissue often is more pliable, a female stent design may have a lower modulus of elasticity to expand, may be more elastic, and less rigid. In addition, a male stent design may have differences in drug release than in women. For example, a male stent design may have a greater drug release associated with it, may have specific localized drug release, or a greater concentration of drug released over a shorter period. Additionally, different drug combinations may be associated with a male stent design than for a female stent design. The stent may have multiple layers for providing different drug deliveries for men and women. For example, one layer may be porous or permeable that allows a drug to be released from an inner coating or layer. The porous or permeable coating or layer may have different apertures for men than for women, thereby providing a gender-specific drug delivery. In addition, the coatings or layers may react differently to temperature, pH, or other differences in the intended environment that may be present between men and women. For example, a porous or permeable layer may have an outer coating that dissolves when deployed in a female, thereby allowing the inner coating or layer to be released into the body, but remains substantially intact during exposure in a male body. Alternatively, the outer coating may have a different rate of degradation for men than women, thereby allowing for gender-specific rates of drug delivery.
  • FIG. 20 illustrates an embodiment of the invention concerning an arterial stent 180. Stents are particularly useful in the treatment and repair of blood vessels after a stenosis has been compressed by percutaneous transluminal coronary angioplasty (PTCA), percutaneous transluminal angioplasty (PTA), or removed by atherectomy or other means, to help improve the results of the procedure and reduce the possibility of restenosis. Stents also can be used to provide primary compression to a stenosis in cases in which no initial PTCA or PTA procedure is performed. While stents are most often used in the procedures mentioned above, they also can be implanted on another body lumen such as the carotid arteries, peripheral vessels, urethra, esophagus and bile duct.
  • In typical PTCA procedures, a guiding catheter or sheath is percutaneously introduced into the cardiovascular system of a patient through the femoral arteries and advanced through the vasculature until the distal end of the guiding catheter is in the aorta. A guidewire and a dilatation catheter having a balloon on the distal end are introduced through the guiding catheter with the dilatation catheter sliding over the guidewire. The guidewire is first advanced out of the guiding catheter into the patient's vasculature and is directed across the arterial lesion. The dilatation catheter is subsequently advanced over the previously advanced guidewire until the dilatation balloon is properly positioned across the arterial lesion. Once in position across the lesion, the expandable balloon is inflated to a predetermined size, such as with a radiopaque liquid, at relatively high pressure to displace the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery. The balloon is then deflated to a small profile so that the dilatation catheter can be withdrawn from the patient's vasculature and the blood flow resumed through the dilated artery. As should be appreciated by those skilled in the art, while the above-described procedure is typical, it is not the only method used in angioplasty.
  • In angioplasty procedures of the kind referenced above, abrupt reclosure may occur or restenosis of the artery may develop over time, which may require another angioplasty procedure, a surgical bypass operation, or some other method of repairing or strengthening the area. To reduce the likelihood of the occurrence of abrupt reclosure and to strengthen the area, a physician can implant an intravascular prosthesis for maintaining vascular patency, commonly known as a stent, inside the artery across the lesion. Stents are generally cylindrically shaped devices which function to hold open and sometimes expand a segment of a blood vessel or other arterial lumen, such as a coronary artery. Stents are delivered in a radially compressed condition to the target location and then are deployed into an expanded condition to support the vessel and help maintain it in an open position. In one embodiment, the stent may be a self-expanding type formed from, for example, shape memory metals or super-elastic nickel-titanium (NiTi) alloys, which will automatically expand from a compressed state when the stent is advanced out of the distal end of the delivery catheter into the body lumen.
  • Physiological differences between the female and male genders may also be found in the cardiovascular systems of men and women. For example, women, on average, have smaller diameter and thinner-walled arteries than men. The invention accounts for these physiological differences by providing different stent designs for men and women. Thus, the invention provides stents 180 that are configured and dimensioned for gender specific use. As noted above, upon insertion into an artery, the stent 180 expands from an initial, compact condition to an expanded condition having a diameter D1, wherein the rate of expansion E is dependent on the material properties of the stent 180. In the expanded condition, the diameter D1 is of sufficient size to impart an expansive force Fe onto the inner arterial wall.
  • In a first embodiment, the stent 180 is designed and configured for use in angioplasty procedures in males. One or more stents 180 may be provided having at least one rate of expansion E and at least one expanded diameter D 1 configured and dimensioned to span the normal size ranges of male human arteries. Additionally, the expansive force Fe imparted onto the inner arterial wall is a function of the arterial wall thickness, such that the expansive force Fe is of sufficient strength to maintain the artery in an open condition preventing reclosure, without damage to the inner arterial wall. Furthermore, additional dimensions of the arteries can be utilized in the design and configuration of the stent 180.
  • In a second embodiment, shown in FIG. 21, the stent 182 is designed and configured for use in angioplasty procedures in females. Once again, one or more stents 182 may be provided having at least one rate of expansion E and at least one expanded diameter D2 configured and dimensioned to span the normal size ranges of female human arteries. Additionally, the expansive force Fe imparted onto the inner arterial wall is a function of the arterial wall thickness, such that the expansive force is of sufficient strength to maintain the artery in an open condition preventing reclosure, without damage to the inner arterial wall. Furthermore, additional dimensions, gender-specific features, or other parameters of the arteries can be utilized in the designed and configuration of the gender specific stent 182. For instance, the stent 82 also may account for the effect of an illness or medical condition on the strength, size, or thickness of a vessel or vessel wall, which optionally may also be dependent at least in part upon gender. Some of the structural features of the stents that account for gender-specific differences include the following: stent 182 has ends that flare outwardly, while stent 80 is substantially cylindrical; stent 182 has fewer openings than stent 180; and the openings in the sidewall of stent 182 are generally larger than the openings in the sidewall of stent 180.
  • As discussed above, coatings can be used to make stent designs gender specific. It is well known that the stents 180 and 182 can be coated with a pharmaceutical agent 184. As shown in FIG. 22, the pharmaceutical agent 184 can be combined with a coating 186 or other medium used for controlled release rates of the pharmaceutical agent 184. The pharmaceutical agent 184 can be incorporated into or covered by a monolithic layer or coating, wherein the agent 184 diffuses through the coating 186 and is released into the surrounding fluid. Alternatively, the coating 186 can be a degradable coating, such that as the coating 186 degrades the pharmaceutical agent 184 is released.
  • The pharmaceutical agent 184 can be a drug used for the prevention or treatment of restenosis. Formulations useful for restenosis prevention or treatment can include, but are not limited to, heparin and heparin fragments, colchicine, taxol, agiotensin converting enzyme (ACE) inhibitors, angiopeptin, Cyclosporin A, goat-anti-rabbit PDGF antibody, terbinafine, trapidil, interferon-gamma, steroids, ionizing radiation, fusion toxins, antisense oligonucleotides, gene vectors, and rapamycin.
  • In addition to or as an alternative to, the pharmaceutical agent 184 may be a therapeutic biologic agent. Examples of such agents include, but are not limited to, hormones, cells, fetal cells, stem cells, bone morphogenic proteins (BMPs), tissue inductive factors, enzymes, proteins, RNA, viruses, etc.
  • As previously discussed, men and women may metabolize some medications at different rates and react differently to different types of medications. Just as the size, shape, and other performance characteristics of a stent may be tailored or customized primarily for a particular gender, the pharmaceutical agents used with the stents also may be tailored primarily for a particular gender. Thus, one embodiment of the invention provides a coated stents 180, 182 where the coating is formulated differently for different genders.
  • It should be noted that customizations of devices or treatments according to the invention may be used individually or in combination with other embodiments described herein or variations thereto. For instance, a single stent construction used for both men and women may have different coatings intended primarily for different genders. In addition, however, different coatings may also be used on different stent constructions that are designed primarily for a particular gender.
  • In one embodiment using a pharmaceutical agent 184 coated onto the stent 180, 182, the pharmaceutical agent 184 release rate and dosage are selected to correspond to expected male metabolization and reactions. A coating 186 may also be provided on the stent 180, 182 so that the pharmaceutical agent 184 is covered by or incorporated into the coating 186. The coating 186 may be used to control the timing and release rate of the pharmaceutical agent 184. For example, the pharmaceutical agent 184 may be released gradually through diffusion through the coating 184 or after at least partial degradation of the coating 186. In this manner, the coating 186 can be designed and configured to release the pharmaceutical agent 184 at a rate and dosage corresponding to metabolization and potential reactions of primarily either men or women.
  • Similarly, the pharmaceutical agent 184 release rate and dosage may be selected to correspond to expected female metabolization and reactions in the same manner.
  • While in the foregoing a stent 180, 182 was depicted, in other embodiments, similar techniques may be used to coat other types of implantable medical devices, such as hip and knee replacements (total and partial), spinal implants, scaffolds, biological implants or grafts, tissue grafts, screws, plates, rods, prosthetic devices, etc.
  • A gender-specific design may also involve altering or controlling the treated area differently for men than for women. Referring to FIG. 23 a medical implant in the form of a prosthetic knee joint 190, including a femoral and tibial component 192 and 194, is provided. The femoral component 192 is configured to provide a localized environmental change in a body of a patient. A localized increase in temperature can have beneficial effects, which include (but are not limited to): aiding in the alleviation of localized pain, fighting of local infections, and increasing vascular flow and permeability of vessels at the treatment site to control delivery of pharmaceutical agent. For example, a localized increasing in temperature increases the permeability of the local tissue, allowing for an increased and more efficient absorption of the pharmaceutical agent into the treatment site.
  • The femoral component 192 includes an energy sink 196, wherein the energy sink 196 can be used to control the localized temperature of the surrounding tissue. For example, the energy sink 196 can be a heat sink, wherein the heat sink 196 is charged by an internal or external energy unit 198. The heat sink 196 produces a local increase in temperature.
  • The male and female genders react differently to localized changes in temperatures. For example, a localized increase in temperature of B degrees may have beneficial effect on a female, but no effect on a male. As a result of the differing effects on the male and the female genders, the applied energy is gender dependent. For example, in a female X amount of energy may be required to heat the heat sink 196 to sufficiently raise the localize temperature to have a beneficial effect. In contrast, in a male, Y amount of energy may be required to heat the heat sink 196 to sufficiently raise the localize temperature to have a beneficial effect, wherein Y is greater than X. In accordance with the present invention, the applied energy and heat sink of a femoral component 192 are designed and configured for gender specific use, taking into account the reactive differences between the female and male genders.
  • Similarly, a localized change in pH can have similar beneficial effects, which include (but are not limited to): aiding in the alleviation of localized pain, fighting of local infections, and increasing vascular flow and permeability of vessels at the treatment site to control delivery of pharmaceutical agent. For example, a localized increase in pH may increase the permeability of the local tissue, thereby allowing for an increased and more efficient absorption of the pharmaceutical agent into the treatment site.
  • The energy sink 196 in the femoral component 92 can be a pH sink 196. The pH sink 196 can be incorporated into the femoral component 192 or be positioned separate from the femoral component 192. Therefore, the pH sink 196 may be configured to release a chemical to produce either an increase or decrease in the local pH in order to provide a more gender-specific use. An acidic agent would lower the pH and a basic agent would raise the pH. Such agents are well-known to those of ordinary skill.
  • The male and female genders react differently to localized changes in pH. For example, a localized increase or decrease in the acidity of the surrounding tissue may have a beneficial effect on a female, but no effect on a male. As a result of the different effects on the male and the female genders, the chemical and release rate thereof is dependent on the gender of the patient. As such, in accordance with the present invention, the pH sink 196 is designed and configured for gender specific use, taking into account the reactive differences between the female and male genders.
  • Additionally, temperature or pH changes may also be used to induce the release of beneficial enzymes, proteins, hormones, etc. from the cells in the treatment site. For example, a localized increase in acidity and/or temperature can be perceived as a physical damage or an infection to the local area. In response, the local cells may release beneficial proteins, enzymes, hormones, etc.
  • There are several ways to define how a treatment or device may qualify as being gender specific. One way a treatment or device may be considered gender specific is to identify differences in product design or treatment between men and women. Another way to identify whether a device or treatment is gender specific is to determine who the intended patients are. For instance, a product line having two or more models where at least one model is marketed or designed more for men than women and another model is marketed or designed more for women than men would be gender-specific, and therefore within the scope of the invention. If there are measurable differences between the product design or treatment for men versus women, then another way to identify a product or treatment as gender-specific would be by having these differences meet or exceed a threshold amount. For example, in cases where two or more models are offered to account for gender differences at least one of the varying design parameters will differ by about 5 percent or more, and more preferably will differ by about 10 percent or more.
  • Thus, differences in a range of sizes of a device may in some cases be by 5 percent or more or by 10 percent or more. Likewise, other measurable differences, such as quantity, concentration, or release rates of medications may differ by these numerical amounts. Of course, skilled artisans would readily appreciate that these differences may be applied to any other measurable design parameter of a device or treatment, including duration, amount, thickness, forces applied, diameter, width, height, volume, density, temperature, pH changes, or the like.
  • Furthermore, while one exemplary embodiment of a medical implant discussed above refers to a prosthetic knee joint, it is contemplated that the medical implant can be any prosthetic implant for use in a body, including, ankle, knee, hip, spine, neck, wrist, elbow or shoulder implants. Furthermore, the medical implant can be, but is not limited to, tissue, scaffold, biological implants, graft, tissue graft, screws, plate, rods, or similar devices.
  • Pharmaceutical delivery of medication may also be provided in a gender-specific manner. The release and absorption rates of drugs are different for men and women. Oral medication, for instance, may be absorbed differently due to resorption rates in the stomach, intestine, duodenum, abdomen, or the like. Likewise, intravenous medications can react differently for men and women. The present invention contemplates an improved drug delivery that accounts for gender-specific differences. One such example of an improved, gender-specific drug delivery system is in chemotherapy, which is known for being a thermal gradient drug delivery. Since men and women have different temperatures, diurnal changes, and pH, drug-delivery systems would benefit from accounting for one or more of these differences. For example, dosages and the route of administration (e.g. oral release or intravenous) may be varied for men and women. The initial dosage for men may differ from the initial dosage for women, the amount of drugs used in subsequent doses may differ, and the time period between subsequent doses also may differ between men and women. Thus, a medicine given to a man may involve a second dose 8 hours later, while for women the second dose may be 6 hours later, or based on diurnal curves of men and women.
  • As noted previously, one consequence of accounting for gender-specific difference in medical treatment is that medical treatment may become more complicated or difficult. This additional complexity, however, can be reduced by providing gender-specific indictors on the devices, packaging, or instructions.
  • The system includes gender specific packaging material which differentiates use for male and female patients. The packaging material can include labeling or color coding to specify gender usage. For medications, the packaging material can include labeling, inserts, or product information which provides dosage information for both male and female patients.
  • Referring now to FIG. 24, a product packaging material 200 of the present invention is shown. The packaging material 200 includes a label 202 affixed thereto or, in the alternative, incorporated into the packaging material 200. The label 202, illustrated in FIG. 25, provides information identifying the contents and usage of the packaging material 200, which can include a gender specifier 204. The gender specifier 204 identifies the gender that the contents of the packaging material 200 are intended for. For example, the gender specifier 204 can be in pictorial, graphic, or text (or combination) form such as “FEMALE” or “MALE.” It is contemplated that the text form of the gender specifier 204 can be provided in a variety of languages, depending of the intended country of use.
  • Alternatively, the gender specifier 204 can be in the form of a color coding, wherein a first color is used to indicate a female gender and a second color is used to indicate a male gender. The first and second colors may be selected from colors that are recognizable as gender indicators. For example, to indicate a female gender the first color can be pink while blue maybe used to indicate a male gender. However, it is contemplated that first and second colors can be any colors which are readably discernable as indicators of gender. The color coded gender specifier 204 is depicted as incorporating only a portion of the label 202. However, it is contemplated that the entire label 202 can be color coded to specify gender.
  • In a further embodiment, the gender specifier 204 can be a symbolic form for representing female and male genders. For example, the gender specifier 204 can be the western culture ideograms for female and male genders, namely “♀” for the female gender and “♂” for the male gender. However, it is contemplated that gender symbols can be any symbols which are readably discernable as indicators of gender.
  • The label 202 can include additional information, including, the product name 206 and product technical information 208. The product name 206 can be a name used by the company for the product, used to identify the origin of the product, such as CHARITE owned by DePuy Spine, Inc., for an artificial disc. Alternatively, the product name can be a generic or descriptive name of the product, such as ARTIFICIAL DISC. Additional technical information 208 can be provided, such as information relating to the size, material, date of manufacture, lot or control number, etc.
  • In an alternative embodiment, the packaging material 200 is the gender specifier. For example, the packaging material 200 can be color coded to indicate gender, wherein a first color is used to indicate a female gender and a second color is used to indicate a male gender. The first and second color are selected from colors that are recognizable a gender indicators. For example, to indicate a female gender the first color can be the color pink and to indicate a male gender the second color can be the color blue. However, it is contemplated that first and second colors can be any colors which are readily discernable and indicators of gender.
  • Referring to FIG. 26, an exemplary medicine container 210 is provided, wherein the medicine container 210 includes a label 212 affixed thereto. The label 212 provides information identifying the contents 214 and usage of the enclosed medicine. The usage information includes the recommend dosage for each gender, wherein gender specifiers 216 and 218 annotate the gender dosage information 220 and 222. As described above, the gender specifiers 216 and 218 can be in a text form, such as “FEMALE” and “MALE.” Alternatively, the gender specifiers 216 and 218 can be in the form of a color coding or in symbolic representations.
  • In an alternative embodiment, a product insert can be provided in the medicine container 210. Similar to the label 212, the product insert can provide information identifying the contents and usage of the enclosed medicine, which can include gender specifiers used in conjunction with dosage information.
  • Another technology that may be utilized to provide a gender-specific indicator is RFID chips. RFID chips may be associated with equipment, instruments, or in sterile packaging so that identification of the intended gender for the devices may be quickly determined. This may be of particular benefit where it is difficult to visually determine the gender-specific design. For example, it may be difficult to visually confirm the intended gender of light sensitive therapeutics, internal components, sealed materials, or implanted devices. Likewise, instrumentation kits may involve several tools or devices that would be time-consuming to confirm are all intended for the same gender. By associating an RFID tag with these devices, however, the gender-specific information can be quickly retrieved. In one embodiment, RFID chips provided in packaged gender-specific drugs are used to determine remaining quantities of medicine.
  • All references cited herein are expressly incorporated by reference in their entirety.
  • It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. A variety of modifications and variations are possible in light of the above teachings without departing from the scope and spirit of the invention.

Claims (14)

1-30. (canceled)
31. A system of prosthetic implants for a total knee replacement procedure, the system comprising:
a first femoral component of a knee joint implant, the first femoral component of the knee joint implant having a maximum anterior-posterior dimension between bone contacting surfaces and a maximum medial-lateral dimension; and
a second femoral component of a knee joint implant, the second femoral component of the knee joint implant having a maximum anterior-posterior dimension between bone contacting surfaces and a maximum medial-lateral dimension,
wherein the maximum anterior-posterior dimension of the first femoral component is configured to enable the bone contacting surface of the first femoral component to be positioned on a prepared femur of a patient,
wherein the maximum anterior-posterior dimension of the second femoral component is configured to enable the bone contacting surface of the second femoral component to be positioned on the same prepared femur of a patient, and
wherein the maximum medial-lateral dimension of the first femoral component is greater than the maximum medial-lateral dimension of the second femoral component,
wherein a superior portion of the second femoral component is narrower than a superior portion of the first femoral component.
32. The system of claim 31, wherein the superior portion of the second femoral component has a scalloped edge, wherein the superior portion of the first femoral component has a non-scalloped edge.
33. The system of claim 31, wherein each of the first femoral component and the second femoral components is configured and dimensioned to replace at least a portion of the lateral and medial condyles of a femur of a human knee.
34. The system of claim 31, further comprising:
a tibial component of a knee joint implant, the tibial component comprised of a platform having opposite inferior and superior sides, the platform having a surface area, and a tibial fixation component, the tibial fixation component configured to be positioned in a tibia of a patient,
a tibial insert having opposite inferior and superior sides, the inferior side of the tibial insert configured to be positioned against the superior side of the platform of the tibial component, and the superior side of the tibial insert configured to contact at least one of the first femoral component and the second femoral component; and
a patella component configured to correspond to at least one of the first femoral component and the second femoral component.
35. The system of claim 31, wherein the inferior side of the tibial insert is fixedly attachable to the superior side of the platform of the tibial component.
36. The system of claim 35, wherein the tibial insert is movable relative to the tibial fixation component of the tibial component when the tibial insert is attached to the superior side of the platform of the tibial component.
37. The system of claim 34, wherein at least one of the tibial component, the first femoral component, and the second femoral component is configured to be implanted into a patient using surgical instruments.
38. The system of claim 37, further comprising surgical instruments based on anatomical features of the patient.
39. The system of claim 34, wherein at least one of the tibial component, the first femoral component, and the second femoral component is configured to be implanted into a patient using bone cement.
40. The system of claim 34, wherein the tibial fixation component of the tibial component is substantially conical in shape.
41. The system of claim 31, wherein the first and second femoral components include an ingrowth surface.
42. The system of claim 31, wherein each of the first and second femoral components includes at least three bone contacting surfaces configured to contact at least three implant contacting surfaces of the prepared femur.
43. The system of claim 34, wherein the tibial insert is configured to replace at least one of a medial and lateral meniscus of the patient.
US17/812,067 2005-06-15 2022-07-12 Gender Specific Implant and Packaging Pending US20220370206A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/812,067 US20220370206A1 (en) 2005-06-15 2022-07-12 Gender Specific Implant and Packaging

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US69065305P 2005-06-15 2005-06-15
US75580406P 2006-01-03 2006-01-03
US11/454,109 US9301845B2 (en) 2005-06-15 2006-06-15 Implant for knee replacement
US15/003,243 US20160250029A1 (en) 2005-06-15 2016-01-21 Gender Specific Implant and Packaging
US15/597,631 US20170266010A1 (en) 2005-06-15 2017-05-17 Gender Specific Implant and Packaging
US17/812,067 US20220370206A1 (en) 2005-06-15 2022-07-12 Gender Specific Implant and Packaging

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/597,631 Continuation US20170266010A1 (en) 2005-06-15 2017-05-17 Gender Specific Implant and Packaging

Publications (1)

Publication Number Publication Date
US20220370206A1 true US20220370206A1 (en) 2022-11-24

Family

ID=37574443

Family Applications (8)

Application Number Title Priority Date Filing Date
US11/454,109 Active 2029-02-05 US9301845B2 (en) 2005-06-15 2006-06-15 Implant for knee replacement
US15/003,243 Abandoned US20160250029A1 (en) 2005-06-15 2016-01-21 Gender Specific Implant and Packaging
US15/071,965 Active US9750612B2 (en) 2005-06-15 2016-03-16 Methods and systems for providing gender specific pharmaceuticals
US15/457,534 Abandoned US20170181799A1 (en) 2005-06-15 2017-03-13 Knee implant methods and systems
US15/597,631 Abandoned US20170266010A1 (en) 2005-06-15 2017-05-17 Gender Specific Implant and Packaging
US16/376,626 Active US10806590B2 (en) 2005-06-15 2019-04-05 Methods and systems for providing gender specific pharmaceuticals
US17/008,185 Abandoned US20210000604A1 (en) 2005-06-15 2020-08-31 Gender specific pharmaceuticals
US17/812,067 Pending US20220370206A1 (en) 2005-06-15 2022-07-12 Gender Specific Implant and Packaging

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US11/454,109 Active 2029-02-05 US9301845B2 (en) 2005-06-15 2006-06-15 Implant for knee replacement
US15/003,243 Abandoned US20160250029A1 (en) 2005-06-15 2016-01-21 Gender Specific Implant and Packaging
US15/071,965 Active US9750612B2 (en) 2005-06-15 2016-03-16 Methods and systems for providing gender specific pharmaceuticals
US15/457,534 Abandoned US20170181799A1 (en) 2005-06-15 2017-03-13 Knee implant methods and systems
US15/597,631 Abandoned US20170266010A1 (en) 2005-06-15 2017-05-17 Gender Specific Implant and Packaging
US16/376,626 Active US10806590B2 (en) 2005-06-15 2019-04-05 Methods and systems for providing gender specific pharmaceuticals
US17/008,185 Abandoned US20210000604A1 (en) 2005-06-15 2020-08-31 Gender specific pharmaceuticals

Country Status (1)

Country Link
US (8) US9301845B2 (en)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080140212A1 (en) * 2001-05-15 2008-06-12 Robert Metzger Elongated femoral component
US8750983B2 (en) 2004-09-20 2014-06-10 P Tech, Llc Therapeutic system
US9301845B2 (en) * 2005-06-15 2016-04-05 P Tech, Llc Implant for knee replacement
US8211181B2 (en) * 2005-12-14 2012-07-03 New York University Surface guided knee replacement
US9592127B2 (en) 2005-12-15 2017-03-14 Zimmer, Inc. Distal femoral knee prostheses
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US20150335438A1 (en) 2006-02-27 2015-11-26 Biomet Manufacturing, Llc. Patient-specific augments
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8600478B2 (en) 2007-02-19 2013-12-03 Medtronic Navigation, Inc. Automatic identification of instruments used with a surgical navigation system
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
CN102652684B (en) 2007-09-30 2015-09-16 德普伊产品公司 The patient-specific orthopaedic surgical instrumentation of customization
US8357111B2 (en) 2007-09-30 2013-01-22 Depuy Products, Inc. Method and system for designing patient-specific orthopaedic surgical instruments
US8170641B2 (en) 2009-02-20 2012-05-01 Biomet Manufacturing Corp. Method of imaging an extremity of a patient
US9820853B2 (en) * 2009-05-06 2017-11-21 Biomet Manufacturing, Llc Acetabular cup system
WO2011016905A1 (en) * 2009-07-27 2011-02-10 Thomas P Andriacchi Knee replacement system and method for enabling natural knee movement
DE102009028503B4 (en) 2009-08-13 2013-11-14 Biomet Manufacturing Corp. Resection template for the resection of bones, method for producing such a resection template and operation set for performing knee joint surgery
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
US8908937B2 (en) 2010-07-08 2014-12-09 Biomet Manufacturing, Llc Method and device for digital image templating
US9173744B2 (en) 2010-09-10 2015-11-03 Zimmer Gmbh Femoral prosthesis with medialized patellar groove
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8917290B2 (en) 2011-01-31 2014-12-23 Biomet Manufacturing, Llc Digital image templating
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9060868B2 (en) 2011-06-16 2015-06-23 Zimmer, Inc. Femoral component for a knee prosthesis with bone compacting ridge
US8551179B2 (en) 2011-06-16 2013-10-08 Zimmer, Inc. Femoral prosthesis system having provisional component with visual indicators
US8932365B2 (en) 2011-06-16 2015-01-13 Zimmer, Inc. Femoral component for a knee prosthesis with improved articular characteristics
US9308095B2 (en) 2011-06-16 2016-04-12 Zimmer, Inc. Femoral component for a knee prosthesis with improved articular characteristics
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US20130001121A1 (en) 2011-07-01 2013-01-03 Biomet Manufacturing Corp. Backup kit for a patient-specific arthroplasty kit assembly
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
ES2635542T3 (en) 2011-10-27 2017-10-04 Biomet Manufacturing, Llc Glenoid guides specific to the patient
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
KR20130046337A (en) 2011-10-27 2013-05-07 삼성전자주식회사 Multi-view device and contol method thereof, display apparatus and contol method thereof, and display system
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9744044B2 (en) 2013-03-15 2017-08-29 Mako Surgical Corp. Unicondylar tibial knee implant
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
DE102013205156B4 (en) 2013-03-22 2015-02-12 Heraeus Medical Gmbh Knee spacer for temporary replacement of an artificial knee joint
US10441294B2 (en) 2013-06-11 2019-10-15 Depuy Ireland Unlimited Company System for the treatment of a planned volume of a body part
US20150112349A1 (en) 2013-10-21 2015-04-23 Biomet Manufacturing, Llc Ligament Guide Registration
US10552574B2 (en) * 2013-11-22 2020-02-04 Spinal Generations, Llc System and method for identifying a medical device
US9827048B2 (en) 2013-11-22 2017-11-28 Spinal Generations, Llc Integrated surgical implant delivery system and method
US20150230926A1 (en) 2014-02-18 2015-08-20 Biomet Manufacturing, Llc Method and device for reducing implant contamination from handling
US20150289984A1 (en) * 2014-04-15 2015-10-15 Matthew D. BUDGE Total Shoulder Arthroplasty Prosthesis
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US10130375B2 (en) 2014-07-31 2018-11-20 Zimmer, Inc. Instruments and methods in performing kinematically-aligned total knee arthroplasty
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
WO2017058535A1 (en) 2015-09-29 2017-04-06 Zimmer, Inc. Tibial prosthesis for tibia with varus resection
US10004564B1 (en) 2016-01-06 2018-06-26 Paul Beck Accurate radiographic calibration using multiple images
US10010372B1 (en) 2016-01-06 2018-07-03 Paul Beck Marker Positioning Apparatus
WO2017156053A1 (en) * 2016-03-08 2017-09-14 Ticona Llc Orthopedic device and polymer compositions for making same
ES2939164T3 (en) * 2016-08-22 2023-04-19 Link Waldemar Gmbh Co coating for an implant
CN109983076A (en) 2016-10-11 2019-07-05 塞拉尼斯销售德国有限公司 With the abrasion-resistant polymers composition for improving appearance
WO2018112050A2 (en) * 2016-12-13 2018-06-21 Aurora Spine, Inc. Body density scan result-matched orthopedic implants and methods of use
US10195035B1 (en) * 2016-12-30 2019-02-05 Newtonoid Technologies, L.L.C. Responsive biomechanical implants and devices
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
US10022233B1 (en) 2017-12-04 2018-07-17 Duke University Orthopedic implant for sustained drug release
US11051829B2 (en) 2018-06-26 2021-07-06 DePuy Synthes Products, Inc. Customized patient-specific orthopaedic surgical instrument
CN109481105A (en) * 2018-11-01 2019-03-19 镁荷津生物科技(上海)有限公司 A kind of sealer and manufacturing method and angiocarpy bracket with compression
CN116035779B (en) * 2023-03-30 2023-07-28 北京爱康宜诚医疗器材有限公司 Assembled semi-elbow joint prosthesis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944760A (en) * 1983-10-26 1990-07-31 Pfizer Hospital Products Group, Inc. Method and instrumentation for the replacement of a knee prosthesis
US5133758A (en) * 1991-09-16 1992-07-28 Research And Education Institute, Inc. Harbor-Ucla Medical Center Total knee endoprosthesis with fixed flexion-extension axis of rotation
US6589283B1 (en) * 2001-05-15 2003-07-08 Biomet, Inc. Elongated femoral component

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820547B1 (en) 1970-01-22 1973-06-21
US3837478A (en) * 1970-04-30 1974-09-24 Grip Pak Inc Stretchable packaging device for containers
US3627122A (en) * 1970-06-01 1971-12-14 Robert Richard Garbe Jr System and apparatus for the administration of drugs
US4081866A (en) 1977-02-02 1978-04-04 Howmedica, Inc. Total anatomical knee prosthesis
US4340978A (en) 1979-07-02 1982-07-27 Biomedical Engineering Corp. New Jersey meniscal bearing knee replacement
US4457307A (en) 1982-08-20 1984-07-03 Stillwell William T Bone cutting device for total knee replacement
CH657268A5 (en) 1983-03-23 1986-08-29 Sulzer Ag Femme part for a knee joint prosthesis.
DE3315401A1 (en) 1983-04-28 1984-10-31 Feldmühle AG, 4000 Düsseldorf Knee-joint prosthesis
US4822365A (en) * 1986-05-30 1989-04-18 Walker Peter S Method of design of human joint prosthesis
US4750619A (en) * 1987-08-10 1988-06-14 Osteonics Corp. Package with tray for securing and presenting a sterile prosthetic implant element
EP0303467A3 (en) 1987-08-10 1989-12-13 Dow Corning Wright Corporation Prosthesis for femoral component of knee joint
JPS6449908A (en) 1987-08-20 1989-02-27 Mitutoyo Corp Method and instrument for measuring surface roughness
US4944756A (en) 1988-02-03 1990-07-31 Pfizer Hospital Products Group Prosthetic knee joint with improved patellar component tracking
US4883180A (en) * 1988-06-09 1989-11-28 Essie Mae Humphrey Color coded medicine caps and labels for daily dosage
GR1000566B (en) 1988-12-27 1992-08-26 Johnson & Johnson Orthopaedics Independent knee prosthesis which can be replaced
US5007933A (en) 1989-01-31 1991-04-16 Osteonics Corp. Modular knee prosthesis system
US5061271A (en) 1989-02-27 1991-10-29 Boehringer Mannheim Corporation Tool for separating components of a modular joint prosthesis
US4938769A (en) * 1989-05-31 1990-07-03 Shaw James A Modular tibial prosthesis
US4976351A (en) * 1989-06-01 1990-12-11 Pharmedix Kit for distributing pharmaceutical products
JPH03267055A (en) 1990-03-16 1991-11-27 Koshino Nariko Shank side component of artificial knee joint
US5148920A (en) * 1991-03-18 1992-09-22 Zimmer, Inc. Package and package insert
US5193679A (en) * 1991-07-10 1993-03-16 Smith & Nephew Richards Inc. Package for hip prosthesis
JPH0553501A (en) 1991-08-26 1993-03-05 Sumitomo Electric Ind Ltd Optimum course determining method using course table
JPH0568987A (en) 1991-09-11 1993-03-23 Matsushita Electric Ind Co Ltd Rainwater purifying apparatus
US5282861A (en) 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5226915A (en) * 1992-04-03 1993-07-13 Bertin Kim C Femoral prosthesis component system for knee replacement surgery
EP0567705B1 (en) 1992-04-30 1997-07-09 Merck Biomaterial France Posteriorly stabilized total knee prosthesis
US5445642A (en) 1992-09-01 1995-08-29 Depuy Inc. Method for installing a femoral component
US5356006A (en) 1992-12-16 1994-10-18 Ethicon, Inc. Sterile package for surgical devices
US5728162A (en) 1993-01-28 1998-03-17 Board Of Regents Of University Of Colorado Asymmetric condylar and trochlear femoral knee component
US5366006A (en) * 1993-03-01 1994-11-22 Mccord Heat Transfer Corporation Tab joint between coolant tube and header
JP3267055B2 (en) 1994-05-31 2002-03-18 三菱マテリアル株式会社 Pure Au powder for producing pure gold clay with excellent sinterability
US5549686A (en) 1994-06-06 1996-08-27 Zimmer, Inc. Knee prosthesis having a tapered cam
FR2721500B1 (en) 1994-06-22 1996-12-06 Euros Sa Femoral implant, in particular for a three-compartment knee prosthesis.
US5549688A (en) 1994-08-04 1996-08-27 Smith & Nephew Richards Inc. Asymmetric femoral prosthesis
US5755803A (en) * 1994-09-02 1998-05-26 Hudson Surgical Design Prosthetic implant
US5597384A (en) * 1994-09-13 1997-01-28 Zimmer, Inc. Color coding for implant selection
AUPN089495A0 (en) 1995-02-03 1995-03-02 Denupo Pty. Ltd. Knee prosthesis
US5639279A (en) 1995-02-09 1997-06-17 Intermedics Orthopedics, Inc. Posteriorly-stabilized prosthetic knee
US5609643A (en) 1995-03-13 1997-03-11 Johnson & Johnson Professional, Inc. Knee joint prosthesis
FR2737970B1 (en) 1995-08-23 1998-01-09 Chibrac Jean JOINT PROSTHESIS ELEMENTS AND MANUFACTURING METHOD THEREOF
US6540786B2 (en) 1995-08-23 2003-04-01 Jean Chibrac Joint prosthesis members and method for making same
JP3469972B2 (en) 1995-09-29 2003-11-25 京セラ株式会社 Artificial knee joint
US5871546A (en) 1995-09-29 1999-02-16 Johnson & Johnson Professional, Inc. Femoral component condyle design for knee prosthesis
US5776201A (en) * 1995-10-02 1998-07-07 Johnson & Johnson Professional, Inc. Modular femoral trial system
DK0857249T3 (en) * 1995-10-23 2006-08-14 Baker Hughes Inc Drilling facility in closed loop
DE19544162C1 (en) * 1995-11-17 1997-04-24 Ethicon Gmbh Implant for suspension of the bladder in urinary incontinence in women
JP3495161B2 (en) 1995-11-30 2004-02-09 京セラ株式会社 Femoral component of a knee prosthesis
US5681354A (en) 1996-02-20 1997-10-28 Board Of Regents, University Of Colorado Asymmetrical femoral component for knee prosthesis
US6318555B1 (en) * 1996-06-27 2001-11-20 Kimberly-Clark Worldwide, Inc. Flexible packaging bag with visual display feature
US6126690A (en) * 1996-07-03 2000-10-03 The Trustees Of Columbia University In The City Of New York Anatomically correct prosthesis and method and apparatus for manufacturing prosthesis
US5964808A (en) 1996-07-11 1999-10-12 Wright Medical Technology, Inc. Knee prosthesis
US5762125A (en) * 1996-09-30 1998-06-09 Johnson & Johnson Professional, Inc. Custom bioimplantable article
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US7534263B2 (en) 2001-05-25 2009-05-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US20070233269A1 (en) 2001-05-25 2007-10-04 Conformis, Inc. Interpositional Joint Implant
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US20090222103A1 (en) 2001-05-25 2009-09-03 Conformis, Inc. Articular Implants Providing Lower Adjacent Cartilage Wear
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US7618451B2 (en) 2001-05-25 2009-11-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
GB9707717D0 (en) 1997-04-16 1997-06-04 Walker Peter S Knee prosthesis having guide surfaces for control of anterior-posterior translation
US6571790B1 (en) * 1997-05-12 2003-06-03 Robert E. Weinstein Method and device for organizing and coordinating the combined use of liquid medications for continuous nebulization for the treatment of respiratory disorders
US6039764A (en) 1997-08-18 2000-03-21 Arch Development Corporation Prosthetic knee with adjusted center of internal/external rotation
US6258126B1 (en) * 1997-09-09 2001-07-10 Depuy Orthopaedics, Inc. Cushioned joint prosthesis
US6059111A (en) * 1998-03-04 2000-05-09 Medtronic, Inc. Medical device packaging system
CA2266198A1 (en) * 1998-03-20 1999-09-20 Baker Hughes Incorporated Thruster responsive to drilling parameters
US6616696B1 (en) 1998-09-04 2003-09-09 Alan C. Merchant Modular knee replacement system
US6152960A (en) 1998-10-13 2000-11-28 Biomedical Engineering Trust I Femoral component for knee endoprosthesis
FR2784577B1 (en) 1998-10-16 2001-03-09 Depuy France FEMALE IMPLANT FOR KNEE PROSTHESIS
US6106529A (en) 1998-12-18 2000-08-22 Johnson & Johnson Professional, Inc. Epicondylar axis referencing drill guide
US6269892B1 (en) 1998-12-21 2001-08-07 Dresser Industries, Inc. Steerable drilling system and method
DE29906909U1 (en) 1999-03-02 1999-09-30 Plus Endoprothetik Ag, Rotkreuz Femur sledge
FR2791553B1 (en) 1999-04-01 2001-07-06 Merck Biomaterial France ANTERO-POSTERO-STABILIZED KNEE PROSTHESIS
FR2796836B1 (en) 1999-07-26 2002-03-22 Michel Bercovy NEW KNEE PROSTHESIS
US6471060B1 (en) * 2000-01-12 2002-10-29 Leyshon Miller Industries, Inc. Doll case
FR2805455B1 (en) 2000-02-24 2002-04-19 Aesculap Sa FEMORAL COMPONENT OF A THREE-BEND KNEE PROSTHESIS
US6712856B1 (en) 2000-03-17 2004-03-30 Kinamed, Inc. Custom replacement device for resurfacing a femur and method of making the same
SE519763C2 (en) 2000-07-03 2003-04-08 Bofors Weapon Sys Ab Arrangements to meet combatability of targets with function with directed blasting effect
FR2815244B1 (en) 2000-10-18 2003-06-27 Aesculap Sa INCLINED FEMORAL COMPONENT
US6719800B2 (en) 2001-01-29 2004-04-13 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
ATE431110T1 (en) * 2001-02-27 2009-05-15 Smith & Nephew Inc SURGICAL NAVIGATION SYSTEM FOR PARTIAL KNEE JOINT RECONSTRUCTION
US8062377B2 (en) 2001-03-05 2011-11-22 Hudson Surgical Design, Inc. Methods and apparatus for knee arthroplasty
US20080140212A1 (en) 2001-05-15 2008-06-12 Robert Metzger Elongated femoral component
CN100502808C (en) 2001-05-25 2009-06-24 肯弗默斯股份有限公司 Compositions for articular resurfacing
US7892288B2 (en) 2001-08-27 2011-02-22 Zimmer Technology, Inc. Femoral augments for use with knee joint prosthesis
WO2003039636A1 (en) * 2001-11-02 2003-05-15 Eli Lilly And Company Color-coded therapy unit
US6901304B2 (en) * 2002-01-11 2005-05-31 Sap Aktiengesellschaft Item tracking system architectures providing real-time visibility to supply chain
CA2646389A1 (en) 2002-02-20 2003-08-28 Donald M. Smucker Knee arthroplasty prosthesis and method
US20030196929A1 (en) * 2002-04-19 2003-10-23 Govindan Gopinathan Pharmaceutical kit for migraine headache treatment
FR2838634B1 (en) 2002-04-19 2004-06-18 Cabinet Boettcher TOTAL KNEE PROSTHESIS
DE10220591B4 (en) 2002-05-08 2004-03-18 Mathys Medizinaltechnik Ag Joint prosthesis with an intermediate element with different radii of curvature
US20030225458A1 (en) 2002-06-04 2003-12-04 Ron Donkers Universal femoral component for endoprosthetic knee
DE60216157T2 (en) 2002-08-15 2007-09-27 Symbios Orthopedie S.A. KNEE PROSTHESIS
AU2003268109A1 (en) * 2002-08-16 2004-03-03 Plastech, Inc. Multi-component packaging system and method for manufacture
US20040031722A1 (en) * 2002-08-19 2004-02-19 Marlene Reed Thematic candle card set
US6827739B2 (en) 2002-08-26 2004-12-07 Zimmer Technology, Inc. Easily assembled provisional orthopaedic implant
US20040045863A1 (en) * 2002-09-06 2004-03-11 Rhoades Dean L. Container with extractable and retractable instructions
JP2006501977A (en) 2002-10-07 2006-01-19 コンフォーミス・インコーポレイテッド Minimally invasive joint implant with a three-dimensional profile that conforms to the joint surface
JP2006505366A (en) 2002-11-07 2006-02-16 コンフォーミス・インコーポレイテッド Method of determining meniscus size and shape and devised treatment
JP4148316B2 (en) 2002-11-18 2008-09-10 株式会社神戸製鋼所 Artificial knee joint
US20040102852A1 (en) 2002-11-22 2004-05-27 Johnson Erin M. Modular knee prosthesis
WO2004051301A2 (en) 2002-12-04 2004-06-17 Conformis, Inc. Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging
DE60336013D1 (en) 2002-12-20 2011-03-24 Smith & Nephew Inc HIGH POWER KNEE PROSTHESIS
US6988009B2 (en) * 2003-02-04 2006-01-17 Zimmer Technology, Inc. Implant registration device for surgical navigation system
FR2854792B1 (en) 2003-05-12 2005-09-09 Tornier Sa GAME OF PROTHETIC ELEMENTS FOR A TIBIAL PROTHETIC SET
EP1477142A3 (en) 2003-05-13 2005-01-05 Privelop AG Endoprosthesis of the knee
JP2007500583A (en) 2003-06-13 2007-01-18 タイコ・ヘルスケア・グループ・リミテッド・パートナーシップ Multi-member interconnect and absorbable screw fasteners for surgical instruments
US7081137B1 (en) 2003-06-23 2006-07-25 Howmedica Osteonics Corp. Knee prosthesis with extended range of motion
US20050029156A1 (en) * 2003-08-08 2005-02-10 Pfizer Inc Customized medication organizer
AU2004281743B2 (en) 2003-10-17 2011-06-09 Smith & Nephew, Inc. High flexion articular insert
US7387644B2 (en) 2003-11-07 2008-06-17 University Of Vermont And State Agricultural College Knee joint prosthesis with a femoral component which links the tibiofemoral axis of rotation with the patellofemoral axis of rotation
WO2005072657A1 (en) 2004-01-23 2005-08-11 Massachusetts General Hospital Anterior cruciate ligament substituting knee replacement prosthesis
US7442196B2 (en) 2004-02-06 2008-10-28 Synvasive Technology, Inc. Dynamic knee balancer
US7263947B2 (en) * 2004-02-24 2007-09-04 Harry Giewercer Extended use reminder device
US20050240441A1 (en) * 2004-04-26 2005-10-27 Olympus Corporation Hospital information system and program thereof
US7465320B1 (en) 2004-05-06 2008-12-16 Biomet Manufacturing Corp. Knee joint prosthesis
FR2871368B1 (en) * 2004-06-15 2006-08-25 Tornier Sas SET OF HUMERAL COMPONENTS FOR TOTAL SHOULDER PROSTHESIS
FR2871678B1 (en) 2004-06-17 2006-09-01 Transysteme Sa TOTAL KNEE PROSTHESIS
US7662156B2 (en) 2004-06-22 2010-02-16 Smith & Nephew, Inc. Systems and processes for determining proper superior-inferior joint line positioning
US20060042990A1 (en) * 2004-08-24 2006-03-02 Galuten Jerry H Medication kit
US20060085078A1 (en) 2004-10-20 2006-04-20 Steffensmeier Scott J Mobile bearing unicondylar knee prosthesis
US20060111722A1 (en) 2004-11-19 2006-05-25 Hacene Bouadi Surgical cutting tool
US20060224244A1 (en) 2005-03-31 2006-10-05 Zimmer Technology, Inc. Hydrogel implant
US20060235541A1 (en) 2005-04-15 2006-10-19 Zimmer Technology, Inc. Bearing implant
US20060235542A1 (en) 2005-04-15 2006-10-19 Zimmer Technology, Inc. Flexible segmented bearing implant
US9301845B2 (en) * 2005-06-15 2016-04-05 P Tech, Llc Implant for knee replacement
US20070028491A1 (en) * 2005-07-13 2007-02-08 Panella Michael J System to code and identify beverage containers
JP4887292B2 (en) 2005-07-14 2012-02-29 国立大学法人佐賀大学 Artificial knee joint
EP1754456B1 (en) 2005-08-16 2008-06-18 Zimmer GmbH Surgical system.
US20080288080A1 (en) 2005-08-24 2008-11-20 Kantilal Hastimal Sancheti Knee joint prosthesis
BRPI0617050A2 (en) 2005-08-24 2011-07-12 Hastimal Kantilal Sancheti knee joint prosthesis
US7413577B1 (en) 2005-09-22 2008-08-19 Howmedica Osteonics Corp. Total stabilized knee prosthesis with constraint
US20070088444A1 (en) 2005-10-13 2007-04-19 Robert A Hodorek Method for repairing a bone defect using a formable implant which hardens in vivo
US20070123984A1 (en) 2005-10-26 2007-05-31 Zimmer Technology, Inc. Ligament attachment and repair device
EP1973498B1 (en) 2005-11-09 2014-04-23 Zimmer GmbH Implant
US8211181B2 (en) 2005-12-14 2012-07-03 New York University Surface guided knee replacement
US20080058947A1 (en) 2005-12-15 2008-03-06 Zimmer, Inc. Distal femoral knee prostheses
US9592127B2 (en) 2005-12-15 2017-03-14 Zimmer, Inc. Distal femoral knee prostheses
US20070179607A1 (en) 2006-01-31 2007-08-02 Zimmer Technology, Inc. Cartilage resurfacing implant
AU2007226924A1 (en) 2006-03-21 2007-09-27 Conformis, Inc. Interpositional joint implant
US9168156B2 (en) 2006-04-04 2015-10-27 Smith & Nephew, Inc. Trial coupler systems and methods
GR1005477B (en) 2006-04-07 2007-03-26 Total knee arthroplasty consisting in the use of an internal prosthesis composed of a third condylus and a pivoting polyethylene insert
GB0607544D0 (en) 2006-04-13 2006-05-24 Pinskerova Vera Knee prothesis
FR2901689B1 (en) 2006-05-30 2008-08-08 Dedienne Sante Sa TOTAL KNEE JOINT PROSTHESIS
FR2901996B1 (en) 2006-06-12 2008-08-22 Jean Francois Biegun FEMORAL COMPONENT FOR RIGHT OR LEFT KNEE
FR2901995B1 (en) 2006-06-12 2008-08-29 Jean Francois Biegun PROTHESIS TRICOMPARTIMENT A REINFORCEMENT
US20080000786A1 (en) * 2006-06-30 2008-01-03 Steven Collotta Combination Ingestible-Product and Beverage Packaging
US9119734B2 (en) 2006-10-31 2015-09-01 Smith & Nephew, Inc. Trial femoral prosthesis and its use
US7582118B2 (en) 2007-02-06 2009-09-01 Zimmer Technology, Inc. Femoral trochlea prostheses
US8128704B2 (en) 2007-02-06 2012-03-06 Zimmer, Inc. Femoral trochlea prostheses
US20080281428A1 (en) 2007-05-07 2008-11-13 Zimmer, Inc. Methods and apparatuses for attaching soft tissue to orthopaedic implants
US7947066B2 (en) 2007-05-22 2011-05-24 K2M, Inc. Universal transverse connector device
US8382846B2 (en) 2007-08-27 2013-02-26 Kent M. Samuelson Systems and methods for providing deeper knee flexion capabilities for knee prosthesis patients
DE202007014126U1 (en) 2007-10-09 2008-01-03 Wodtke Gmbh Exhaust gas heat exchanger of a fireplace
DE202007014128U1 (en) 2007-10-09 2008-01-10 Kloss, Henning Knee endoprosthesis
JP4369972B2 (en) 2007-12-26 2009-11-25 古河電気工業株式会社 Subscriber premises optical line termination equipment
KR100901524B1 (en) 2008-01-08 2009-06-08 주식회사 코렌텍 Artificial knee joint apparatus having plural curvatures at a femoral component
KR100901528B1 (en) 2008-01-08 2009-06-08 주식회사 코렌텍 Artificial knee joint apparatus for preventing from damaging ligament
KR100930727B1 (en) 2008-01-08 2009-12-09 주식회사 코렌텍 Artificial knee joint with improved post and improved cam structure
JP5665550B2 (en) 2008-02-18 2015-02-04 マックス オーソピディックス、インク. Total replacement artificial knee joint with higher-order NURBS curved surface
EP2254519B1 (en) 2008-02-18 2015-05-06 Maxx Orthopedics, Inc. Total knee replacement prosthesis
US20090255843A1 (en) * 2008-04-11 2009-10-15 Andrew Charles Krakowski Systems and kits for treatment methods
US8790411B2 (en) 2008-04-17 2014-07-29 Steven L. Mandell Femoral component of an artificial knee joint
US8696755B2 (en) 2008-04-17 2014-04-15 Steven L. Mandell Tibial component of an artificial knee joint
AU2009271389B2 (en) 2008-06-24 2013-01-31 Peter Stanley Walker Recess-ramp knee joint prosthesis
US8192498B2 (en) 2008-06-30 2012-06-05 Depuy Products, Inc. Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US8206451B2 (en) 2008-06-30 2012-06-26 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis
US8187335B2 (en) 2008-06-30 2012-05-29 Depuy Products, Inc. Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8075626B2 (en) 2008-06-30 2011-12-13 Depuy Products, Inc. Orthopaedic knee prosthesis having increased axial-rotation
US8828086B2 (en) 2008-06-30 2014-09-09 Depuy (Ireland) Orthopaedic femoral component having controlled condylar curvature
US8236061B2 (en) 2008-06-30 2012-08-07 Depuy Products, Inc. Orthopaedic knee prosthesis having controlled condylar curvature
US20100161067A1 (en) 2008-12-23 2010-06-24 Aesculap Ag Knee prosthesis
US8795282B2 (en) 2009-01-29 2014-08-05 Zimmer, Inc. Apparatus and method for the extramedullary location of the mechanical axis of a femur
CN102448405B (en) 2009-03-27 2015-11-25 史密夫和内修整形外科股份公司 Artificial knee joint
WO2011016905A1 (en) 2009-07-27 2011-02-10 Thomas P Andriacchi Knee replacement system and method for enabling natural knee movement
US10058117B2 (en) * 2009-11-23 2018-08-28 Randall Scott Hickle Dietary health food composition, package and method of use
AU2010327987B2 (en) 2009-12-11 2015-04-02 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
US8771280B2 (en) 2010-03-08 2014-07-08 Zimmer, Inc. Femoral cut guide
US9173744B2 (en) 2010-09-10 2015-11-03 Zimmer Gmbh Femoral prosthesis with medialized patellar groove
AU2012217654B2 (en) 2011-02-15 2016-09-22 Conformis, Inc. Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry
US8551179B2 (en) 2011-06-16 2013-10-08 Zimmer, Inc. Femoral prosthesis system having provisional component with visual indicators
CN103732188B (en) 2011-06-16 2016-05-18 捷迈有限公司 For the femur part that improves joint feature that has of knee-joint prosthesis
US9308095B2 (en) 2011-06-16 2016-04-12 Zimmer, Inc. Femoral component for a knee prosthesis with improved articular characteristics
US9060868B2 (en) 2011-06-16 2015-06-23 Zimmer, Inc. Femoral component for a knee prosthesis with bone compacting ridge
US8932365B2 (en) 2011-06-16 2015-01-13 Zimmer, Inc. Femoral component for a knee prosthesis with improved articular characteristics
US8968412B2 (en) 2011-06-30 2015-03-03 Depuy (Ireland) Trialing system for a knee prosthesis and method of use
US20130006378A1 (en) 2011-06-30 2013-01-03 Wogoman Thomas E Polymer femoral trial component
US8986390B2 (en) 2011-06-30 2015-03-24 Depuy (Ireland) Method of trialing a knee prosthesis
US8951301B2 (en) 2011-06-30 2015-02-10 Depuy (Ireland) Method of using a trialing system for a knee prosthesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944760A (en) * 1983-10-26 1990-07-31 Pfizer Hospital Products Group, Inc. Method and instrumentation for the replacement of a knee prosthesis
US5133758A (en) * 1991-09-16 1992-07-28 Research And Education Institute, Inc. Harbor-Ucla Medical Center Total knee endoprosthesis with fixed flexion-extension axis of rotation
US6589283B1 (en) * 2001-05-15 2003-07-08 Biomet, Inc. Elongated femoral component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hitt et al. (Hitt), "Anthropometric Measurements of the Human Knee: Correlation to the Sizing of Current Knee Arthroplasty Systems," (J. of Bone & Joint Surg., 2003) (Year: 2003) *

Also Published As

Publication number Publication date
US9301845B2 (en) 2016-04-05
US20210000604A1 (en) 2021-01-07
US10806590B2 (en) 2020-10-20
US20160206509A1 (en) 2016-07-21
US20160250029A1 (en) 2016-09-01
US9750612B2 (en) 2017-09-05
US20170181799A1 (en) 2017-06-29
US20190231542A1 (en) 2019-08-01
US20060287733A1 (en) 2006-12-21
US20170266010A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US20220370206A1 (en) Gender Specific Implant and Packaging
Sporer et al. The use of structural distal femoral allografts for acetabular reconstruction: average ten-year follow-up
Parker et al. Arthroplasties (with and without bone cement) for proximal femoral fractures in adults
Lynch et al. Self-assessed outcome at two to four years after shoulder hemiarthroplasty with concentric glenoid reaming
Lewthwaite et al. The Exeter™ Universal Hip in patients 50 years or younger at 10-17 years' followup
Cho et al. Knee joint arthroplasty
Cheung et al. Total elbow prosthesis loosening caused by ulnar component pistoning
Jung et al. High early failure rate of the Columbus® posterior stabilized high-flexion knee prosthesis
Harwin et al. Cementless posteriorly stabilized total knee arthroplasty: seven-year minimum follow-up report
Branson et al. Primary total hip arthroplasty
Klein et al. The effect of tibial polyethylene insert design on range of motion: evaluation of in vivo knee kinematics by a computerized navigation system during total knee arthroplasty
Nunez et al. Short-term results of the Ascension™ pyrolytic carbon metacarpophalangeal Joint replacement arthroplasty for osteoarthritis
Ong et al. Role of surgical position on interface stress and initial bone remodeling stimulus around hip resurfacing arthroplasty
Fuchs et al. 10-year follow-up of the Columbus knee prostheses system in a prospective multicenter study
Freeman Hydroxyapatite coating of prostheses
Marya et al. Total Hip Replacement Surgery: Principles and Techniques
Wickramasinghe 3D Printing in Healthcare: Opportunities, Benefits, Barriers, and Facilitators
Lal et al. Evolving Trends in Total Knee Arthroplasty
Manjunath Evaluation of Clinical and Functional Outcome of Primary Total Hip Replacement–A Prospective Study
Patel et al. Müller straight stem total hip arthroplasty for fractured neck of femur
Van Gorkom Development of Novel Medical Device Technologies: FIX8™: Non-Migrating Biliary Stent Trusst™: Femoroplasty Implant and Injection System
Castiello et al. The first surgical approach for total knee arthroplasty (TKA)
Mont et al. The future of high performance total knee arthroplasty
Shaji Types of implants and evaluation of quality of life in knee replacement patient
Delfosse et al. TKA Component Design: What Do Engineers Need to Know?

Legal Events

Date Code Title Description
AS Assignment

Owner name: P TECH, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARCTEC, LLC;REEL/FRAME:060507/0728

Effective date: 20090505

Owner name: MARCTEC, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BONUTTI, PETER M.;REEL/FRAME:060507/0639

Effective date: 20060803

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED