US20220313455A1 - Hip replacement navigation system and method - Google Patents

Hip replacement navigation system and method Download PDF

Info

Publication number
US20220313455A1
US20220313455A1 US17/693,767 US202217693767A US2022313455A1 US 20220313455 A1 US20220313455 A1 US 20220313455A1 US 202217693767 A US202217693767 A US 202217693767A US 2022313455 A1 US2022313455 A1 US 2022313455A1
Authority
US
United States
Prior art keywords
femur
orientation
probe
jig
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/693,767
Inventor
Nicholas van der Walt
Jonathan Nielsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orthalign Inc
Original Assignee
Orthalign Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orthalign Inc filed Critical Orthalign Inc
Priority to US17/693,767 priority Critical patent/US20220313455A1/en
Assigned to OrthAlign, Inc. reassignment OrthAlign, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NIELSEN, JONATHAN, VAN DER WALT, NICHOLAS
Publication of US20220313455A1 publication Critical patent/US20220313455A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1742Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip
    • A61B17/1746Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip for the acetabulum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4684Trial or dummy prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/568Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor produced with shape and dimensions specific for an individual patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2048Tracking techniques using an accelerometer or inertia sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/067Measuring instruments not otherwise provided for for measuring angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3601Femoral heads ; Femoral endoprostheses for replacing only the epiphyseal or metaphyseal parts of the femur, e.g. endoprosthetic femoral heads or necks directly fixed to the natural femur by internal fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4609Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4658Measuring instruments used for implanting artificial joints for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4668Measuring instruments used for implanting artificial joints for measuring angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4681Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor by applying mechanical shocks, e.g. by hammering

Definitions

  • This application is directed to the field of hip replacement, and particularly to surgical tools and methods for guiding the preparation of the bones in connection therewith.
  • Hip replacement surgery is common and getting more common by the year.
  • One persistent issue with hip replacement is the relatively high incidence of poor placement of the cup and ball components of the prosthetic hip joint.
  • the cup is optimally placed in a specific alignment with a plane including a rim of the acetabulum of the pelvis.
  • an unacceptably high percentage of patients have the cup of the artificial hip joint out of alignment with this plane.
  • the inclination and anteversion angles are with respect to the Anterior Pelvic Plane (defined as a plane created by the two anterior superior iliac spines (ASIS) and the pubic symphysis). While these anatomical features are visible/palpable while the patient is in a supine position, the majority of total hip replacements are accomplished via a posterolateral approach with the patient in some variation of a lateral position, in which most of these landmarks are not accessible or visible.
  • ASIS anterior superior iliac spines
  • leg length is a common patient complaint arising from hip replacement surgery and has been a common cause of medical malpractice lawsuits that arise from hip replacement. Because part of the hip replacement procedure requires precise measurements of patient leg length and joint off-set that are frequently difficult to visualize utilizing conventional instrumentation, there are opportunities to improve the surgeon's performance of these measurements using computer technology.
  • a hip joint navigation system can include a base comprising at least one channel disposed therethrough for receiving a pin for mounting the base to the pelvis and a mount feature disposed on a top surface.
  • the hip joint navigation system can include a registration jig configured to couple with the base and to engage anatomical landmarks.
  • the base has a lower surface configured to be placed on the pelvis and where the at least one channel comprises two channels for receiving threaded members to engage with the pelvis.
  • the mount comprises a latch feature for removably securing a tower to the base.
  • the tower comprises a lower end configured to secure to the mount and an upper end configured to secure to an inertial sensor assembly.
  • the upper end is disposed at an angle (e.g., 35 degrees) to the lower end of the tower.
  • a mount feature is disposed between the lower end and the upper end of the tower, the mount feature configured to be coupled with the registration jig.
  • the registration jig includes an elongate member configured to be coupled with the base, a housing having at least two degrees of freedom relative to the elongate member, and a probe being slideably disposed through the housing.
  • the probe comprises a distal portion angled relative to a proximal portion thereof.
  • the probe is substantially straight along its length.
  • the probe includes a machine readable feature disposed on a side surface thereof.
  • the machine readable feature comprises a binary code or other symbol.
  • the housing of the registration jig includes a sensor mount configured to releasably attach to a sensor unit to position the sensor unit to read the readable feature.
  • the hip joint navigation system can include a sensor unit adapted to optically detect the machine readable feature on the probe when coupled with the sensor mount.
  • a femur jig is provided.
  • the femur jig can include a base configured to securely couple with a proximal aspect of a femur.
  • the femur jig can include a reference frame member configured to be disposed above the base having a plurality of reference frame targets.
  • the base has at least one aperture therethrough configured to receive threaded pins to secure the base to the femur.
  • the member is removably mountable to the base and comprises an elongate upright member and an angled portion configures to be oriented generally along the long axis of the femur.
  • the base is configured to be attached to the proximal femur within an incision prior to dislocation of the hip.
  • the reference frame member is accessible by a reference probe coupled with the pelvis in use.
  • a system includes the femur jig and a module for comparing pre- and post-operative anatomical arrangement of the hip joint is provided.
  • the module is adapted to compare pre- and post-operative anatomical arrangement of the hip joint using anatomical landmark information derived from the acetabular rim.
  • the module is adapted include registration of a plurality points on a rim of an acetabular shell implant to calculate the center of rotation (COR) of the hip.
  • the module is adapted to calculate at least one of a change in angle between the pelvis and femur, a change in leg length, and joint offset.
  • the system displays an error message with guidance on re-positioning the femur if a threshold value of joint angle, leg length or offset is exceeded.
  • the guidance advises the user to abduct/adduct, flex/extend, and/or internally rotate/externally rotate the femur.
  • the base and reference frame member are disposed on opposite sides of the same member.
  • the same member comprises a thin plate structure.
  • the member is configured to conform to the femur to be low profile.
  • a sensor unit for orthopedic navigation can include a housing having an elongate structure.
  • the sensor unit can include an inertial sensor disposed at least partially disposed within the housing.
  • the sensor unit can include a camera at least partially disposed within the housing, the camera oriented transverse to a longitudinal axis of the housing.
  • the sensor unit has a transparent area on a side surface thereof.
  • the sensor unit with a camera disposed in the housing can be combined with one or more other components in one or more systems.
  • a system that includes the sensor unit can be coupled with a jig that includes a coupler that holds the sensor unit fixed relative to a device to be observed by the camera.
  • the sensor unit can be oriented with its width or height extending along an extendable probe.
  • the jig can include a sliding bearing for allowing the probe to be moved along a range and while being moved to pass through a viewing area toward which the camera is directed.
  • the probe can include a binary code or other symbol that the camera can read.
  • the sensor unit is coupled with a user interface device.
  • the user interface device can be located inside the surgical field in use.
  • the user interface device can be coupled with a jig configured to mount to a bone, e.g., a pelvis, in use.
  • a method of orthopedic navigation can include the step of detecting the orientation or positioning of a probe using inertial sensor.
  • the method can include the step of detecting the extension of a probe using a camera.
  • the camera is positioned directly above the probe.
  • a patient specific jig system for hip replacement can include an engagement surface formed to closely mate to acetabular bone contours of a specific patient.
  • the patient specific jig system can include a registration feature configured to be in a pre-determined orientation relative to an acetabulum the patient when the jig is coupled with acetabular bone contours of the specific patient.
  • the patient specific jig system can include an anatomical engagement portion.
  • the patient specific jig system can include a registration portion disposed laterally of the anatomical engagement portion such that the registration portion is disposed in a zone outside the acetabular rim.
  • the patient specific jig system can include a registration channel extending from an anterior surface of the registration portion toward a posterior surface of the registration portion.
  • the patient specific jig system can include a mount base configured to be coupled with the pelvis adjacent to the acetabulum but spaced apart from a closest portion of the jig when the engagement surface is in engagement with acetabular bone contours.
  • the patient specific jig system can include an inertial sensor device.
  • the registration feature comprises a recess extending from an exposed face of the jig.
  • the patient specific jig system can include a channel extending posteriorly from an anterior side of the jig, the channel configured to receive a mounting pin of a navigation system.
  • the patient specific jig system can include at least two channels extending posteriorly from an anterior side of the jig, the channel configured to receive a mounting pin of a navigation system.
  • the channels are disposed at an orientation related to a plane of the acetabulum.
  • a patient specific method can include the step of coupling a patient specific jig to a rim of the acetabulum.
  • the method can include the step of registering the orientation of a proxy for the plane of the acetabular rim using an inertial sensor device coupled with the patient specific jig.
  • the method can include the step of removing the patient specific jig from the acetabulum.
  • the method can include the step of orienting an acetabular shell in the acetabulum using an impactor and an inertial sensor device, wherein during orienting, inertial data from the inertial sensor device is used to confirm a proper orientation of the acetabular shell.
  • the inertial sensor device is a first inertial sensing device and further comprising mounting a base on the pelvis adjacent to the acetabulum and coupling a second inertial sensing device to the base, the second inertial sensing device being fixed relative to the pelvis.
  • the base is mounted at a location that is independent of the patient specific jig.
  • the second inertial sensing device is configured to track motion of the pelvis and to generate an output that eliminates error due to the movement of the pelvis.
  • the second inertial sensing device includes a display providing a user interface.
  • the method can include the step of coupling the first inertial sensing device with the base to relate the orientation data of the first inertial sensing device to a reference frame of the second inertial sensing.
  • mounting the base comprises inserting at least a fixation pin through the patient specific jig along an axis disposed at a pre-defined angle corresponding to the reference frame of the second inertial sensing device.
  • mounting the base comprises inserting at least two fixation pins through the patient specific jig along an axis disposed at a pre-defined angle corresponding to the reference frame of the second inertial sensing device.
  • registering includes coupling the inertial sensor device with an impactor and coupling the impactor with the patient specific jig. In some embodiments, registering includes coupling a distal portion of the impactor with a registration feature of the jig at a specific pre-defined angular position. In some embodiments, registering includes aligning the inertial sensing device with an orientation symbol on the patient specific jig prior to coupling the impactor with the patient specific jig.
  • the method can include the step of coupling the inertial sensor device with the impactor.
  • the method can include the step of changing the orientation of the impactor in response to an output reflecting the inertial data generated by the inertial sensing device.
  • the method can include the step of aligning the acetabular shell to a target anteversion angle.
  • the method can include the step of aligning the acetabular shell to a target inclination angle.
  • the method can include the step of aligning the acetabular shell to a target anteversion angle.
  • a method of performing a hip joint replacement procedure can include the step of placing a patient in a supine position, with a leg of the hip joint in an extended position.
  • the method can include the step of mounting a laser projecting device to the pelvis adjacent to the hip joint.
  • the method can include the step of projecting a laser light onto the leg to illuminate a portion of the leg away from the hip joint.
  • the method can include the step of recording the position of incidence of the laser light.
  • the method can include the step of registering a portion of the proximal femur adjacent to the hip joint.
  • the method can include the step of replacing the hip joint with an artificial hip joint.
  • the method can include the step of projecting the laser light onto the leg and/or foot to confirm orientation of the femur relative to the pelvis.
  • the method can include the step of registering the portion of the proximal femur adjacent to the hip joint to confirm leg length and/or off-set.
  • the method can include the step of mounting an articulated member to the pelvis and coupling the laser projecting device to the articulated member.
  • the articulated member comprises a ball joint.
  • the method can include the step of articulating the laser projecting device to direct the laser light onto a portion of a foot of the leg.
  • the method can include the step of locking the articulating member into a fixed configuration and maintaining the fixed configuration from at least step projecting a laser light onto the leg to illuminate a portion of the leg away from the hip joint to step projecting the laser light onto the leg and/or foot to confirm orientation of the femur relative to the pelvis.
  • recording comprises marking three points on the surface of the leg and foot coincident with the laser light.
  • recording comprises capturing a photographic image of the laser light and the leg and/or foot.
  • registering the portion of the proximal femur comprises registering the femur at the greater trochanter.
  • the step of projecting the laser light onto the leg and/or foot to confirm orientation of the femur relative to the pelvis includes recreating the recorded position by lining up the incidence of light with the leg and or foot.
  • the method can include the step of constraining the motion of the foot relative to the lower in leg in at least one of step of recording the position of incidence of the laser light and projecting the laser light onto the leg and/or foot to confirm orientation of the femur relative to the pelvis.
  • the laser projecting device is disposed in a housing including an inertial measurement unit.
  • a method of performing a hip joint replacement procedure can include the step of mounting a laser projecting device to the pelvis adjacent to the hip joint.
  • the method can include the step of registering a portion of the proximal femur adjacent to the hip joint.
  • the method can include the step of projecting laser light from the laser projecting device onto the leg and/or foot to confirm correspondence between pre-operative orientation of the femur and pelvis and the post-operative orientation of the femur and pelvis.
  • the method can include the step of registering the portion of the proximal femur adjacent to the hip joint to confirm leg length and/or off-set.
  • FIG. 1 is a perspective view of a hip navigation system applied to a patient illustrating a measurement of leg length and/or joint offset after implantation of the prosthetic hip joint.
  • FIG. 2 is an image of hip anatomy illustrating some examples of anatomical landmarks that can be used in a method of navigating a hip prosthesis with the navigation system of FIG. 1 .
  • FIG. 3 shows a navigation base assembly coupled with a first anatomical landmark, in this case the ilium on the pelvis of the patient.
  • FIG. 4 is a perspective view illustrating first and second orientation detecting devices coupled with the base of FIG. 3 .
  • FIG. 5 is a perspective view of the navigating system, illustrating one technique for synchronizing a plurality of orientation and/or position detecting devices of the navigating system of FIG. 1 .
  • FIG. 6 is a perspective view of the navigation system of FIG. 1 coupled with the pelvis and illustrating a step of registering a landmark of a femur prior to resecting the femur.
  • FIG. 7 shows the anatomy after the femoral head has been resected and an optional step of synchronizing a plurality of inertial sensors of the navigation system.
  • FIG. 8 illustrates a step of registering an anatomical landmark disposed about the acetabular rim on the pelvis.
  • FIG. 9 illustrates a step of registering another anatomical landmark disposed about the acetabular rim of the pelvis.
  • FIG. 10 illustrates initial placement of an impactor in the acetabulum.
  • FIG. 11 illustrates a hip prosthesis placement system, including an inertial sensing device.
  • FIGS. 11A-11C illustrate an embodiment of an impactor assembly.
  • FIG. 12 illustrates a step of navigating placement of a cup portion of an artificial hip joint.
  • FIG. 13 is a perspective view of another embodiment of a hip navigation system.
  • FIG. 14 is a detail view of portion of the system of FIG. 13 , with a camera recording linear position of a registration arm.
  • FIG. 15 shows a variation of the embodiment of FIGS. 13 and 14 in which rotational orientation and linear position can be acquired by a camera viewing a radial scale.
  • FIG. 16 is an exploded view of an assembly showing a tilt/rotation mechanism adapted to enable a camera to track at least one rotational position.
  • FIGS. 17-17C-2 illustrate modified systems configured for navigating a posterior approach hip replacement procedure.
  • FIG. 18 is a perspective view of a hip navigation system applied to a patient.
  • FIG. 19 is a perspective view of a fixation pin of the system of FIG. 18 .
  • FIG. 20A-20H illustrate various view of embodiments of a fixation base of FIG. 18 .
  • FIG. 21A-21G illustrate various view of embodiments of a first assembly of FIG. 18 .
  • FIG. 22A-22F illustrate various view of embodiments of a second assembly of FIG. 18 .
  • FIG. 23A-23C illustrate various view of embodiments of an orientation sensing device of FIG. 18 .
  • FIG. 24A-24B illustrate various view of embodiments of a femur tracker of FIG. 18 .
  • FIGS. 25A-25C are views of a hip navigation system applied to a patient.
  • FIG. 26A-26C illustrate various view of embodiments of a fixation base of FIG. 25A .
  • FIG. 27A-28C illustrate various view of embodiments of a femur tracker of FIG. 25C .
  • FIG. 29 is a pre-operative x-ray.
  • FIG. 30 illustrates pre-operative positioning of a patient for a posterior approach technique.
  • FIG. 31 illustrates a configuration of the system of FIG. 18 .
  • FIG. 32 illustrates anatomical landmarks registered during some embodiments.
  • FIG. 33 illustrates a first set of points on the rim of the shell.
  • FIGS. 34-38 illustrate a hip navigation system configured for anterior approach hip replacement procedures, and various aspects of such procedures.
  • FIG. 39 illustrates the positioning of the system of FIG. 18 in an anterior approach.
  • FIGS. 40-42 illustrate the positioning of another hip navigation system in an anterior approach.
  • FIGS. 43-52 illustrate various aspects of methods involving patient-specific positioning jigs.
  • FIGS. 53-60 illustrate various aspects of methods involving patient-specific positioning jigs.
  • FIGS. 61A-63 illustrate various aspects of methods involving patient-specific positioning jigs.
  • FIG. 64 illustrates methods for defining a patient-specific safe zone in a hip placement procedure.
  • FIG. 65 is an embodiment of a system for close range optical tracking.
  • FIGS. 66-67 illustrate various anatomical landmarks that can be used in various methods involving navigating with landmarks.
  • FIG. 68 is a pre-operative image that can be used to enhance alignment in a hip procedure by providing patient specific data.
  • FIGS. 69 and 70 are views of a hip procedure navigation system applied to a pelvis in a posterior approach.
  • FIGS. 71 and 72 are view of the hip procedure navigation system of FIG. 69-70 modified and applied to a pelvis in an anterior approach.
  • FIGS. 73-73A illustrate a first embodiment of pin securement devices.
  • FIGS. 74-74B illustrate a second embodiment of pin securement devices.
  • FIGS. 75-75B illustrate a third embodiment of pin securement devices.
  • FIGS. 76-80 illustrate a modular system with an optical component.
  • Systems and methods described below can improve prosthetic hip joint placement using navigation in connection with referencing anatomical landmarks, incorporating preoperative custom fit jigs based on imaging, and a combination of pre-operative imaging and landmark referencing.
  • These hip procedures generally guide a prosthetic hip to an orientation within the acetabulum that minimizes the chance of dislocation due to impingement of the femoral neck on the cup or on bones around the acetabulum or other reasons related to suboptimal orientation of the prosthetic.
  • Various techniques leverage population averages of proper placement while others are amenable to patient specific refinements. Also various techniques for registering and confirming the position and/or orientation of the femur pre- and post-implantation are discussed herein, which are useful to control leg length and joint offset at the end of the procedure.
  • hip replacement procedures presently are performed from a posterior approach.
  • the patient is positioned on his/her side and the anterior pelvic plane is oriented vertically, e.g., perpendicular to the plane of the table on which the patient is positioned.
  • Most surgeons performing hip replacement are very familiar with this approach and will immediately recognize the benefit of enhanced certainty about the orientation of the relevant anatomy when the patient is in this position.
  • FIGS. 1 and 4 show a hip navigation system 100 adapted to navigate a hip joint procedure with reference to anatomical landmarks without requiring, but not necessarily excluding, pre-operative imaging or other inputs apart from those discussed below.
  • the system 100 is shown mounted on a pelvis in a posterior approach in FIG. 1 .
  • FIG. 4 shows an early phase of a procedure prior to the joint being dislocated but after the system 10 is mounted to the pelvis.
  • FIG. 1 shows a late phase of some variations of techniques for which the system 100 is adapted.
  • such variations involve registering the femur prior to and after the joint is replaced to confirm an aspect of the relative position and/or orientation of the femur, e.g., leg length, joint offset, and rotational orientation of the femoral neck.
  • the system 100 includes a registration jig 104 , an alignment assembly 108 and a landmark acquisition assembly 112 .
  • the alignment assembly 108 is rigidly connected to the hip in the illustrated configuration so that motion of the hip cause corresponding motion of sensor(s) in the assembly 108 as discussed below. Sensing this motion enables the system 100 to eliminate movement of the patient as a source of error in the navigation.
  • the landmark acquisition assembly 112 provides a full range of controlled motion and sensor(s) that are able to track the motion, in concert with sensor(s) in the assembly 108 . Additional details of systems, devices, sensors, and methods are set forth in U.S. Pat. No. 8,118,815; US US2010/0076505; and U.S. Pat. No.
  • the sensors in assemblies 108 , 112 preferably transfer data among themselves and in some cases with external devices and monitors wirelessly, using Bluetooth, Wifi® or other standard wireless telemetry protocol.
  • the registration jig 104 includes a fixation cannula 124 that has a distal end that can be advanced to a pelvic bone at an anatomical location or landmark or other selected location.
  • the cannula 124 is secured by a pin 132 (see FIG. 3 ) that is driven into the ilium on the pelvis through the cannula 124 .
  • a distal end 128 of the pin 132 is shown in FIG. 1 .
  • the cannula 124 can be coupled with other bones in other techniques with a posterior approach.
  • the cannula 124 can be coupled with the ischium or the pubis in other techniques.
  • the cannula 124 is mounted to a pelvic bone but not at a landmark.
  • the hip navigation system 450 discussed below in connection with FIG. 17-17C-2 can be used such that the fixation member 466 is coupled at a point superior to the superior-most point on the acetabular rim.
  • the member 466 is about 10 mm above the superior-most point on the acetabular rim.
  • three or more anatomical landmarks disposed about the acetabulum can be acquired, as discussed below.
  • a clamp can be used to couple with a bone without requiring that the pin 132 be driven through the cannula 124 into the bone.
  • FIG. 2 shows a region where a clamp may be used beneath the point “A” on the ischium.
  • One reason for mounting or clamping the cannula 124 away from the landmarks is that the landmarks may not be visible or accessible before dislocating the hip joint. If the clinician wishes to use the system 100 to reference the femur (as discussed below), it may be required to mount or clamp the cannula 124 away from the landmarks.
  • FIG. 1 illustrates a step toward the end of a navigated hip joint implant procedure discussed in detail below. Some of the preceding steps involve removing the to-be-replaced joint, navigating the hip joint, preparing the implant location for the artificial joint, and placing the joint, as elaborated below. As discussed further below, FIG. 1 illustrates a technique for confirming that these steps were properly performed.
  • FIG. 2 shows some of the anatomy that is relevant to various methods and systems herein.
  • the navigation system 100 is configured to locate a relevant anatomical feature to aid in proper placement of a prosthetic hip joint.
  • a plane can be located using the system 100 that includes at least a portion of a patient's acetabular rim.
  • the acetabular rim may be uneven due to development of ostephytes.
  • locating the anatomical plane can be an approximation of the actual topography, for example an estimate of the plane, a plane including a substantial fraction, e.g., a majority of the surface of the acetabular rim, or some other manner of estimating a relevant anatomical feature.
  • the anatomical landmark being located is used to confirm accurate placement of at least the cup and preferably the complete artificial hip joint.
  • FIG. 2 also shows an example of anatomical landmarks that can be used to approximate the acetabular rim or another plane relevant anatomical landmark.
  • the acetabular rim is not well defined, due to injury, advanced stages of arthritis or other conditions. Accordingly, approximating the acetabular rim for these patients includes calculating in the system 100 a plane that references but may not include most or any of the actual acetabular rim.
  • the plane that is defined is located near the rim but more importantly has a known anteversion and abduction angle relative to the anterior pelvic plane. For example, three points can be used to estimate the plane of the acetabular rim. In one technique, some or all of the points illustrated in FIG. 2 are used.
  • the landmark “H” is located on the ilium at a location that is spaced away from the rim by an amount sufficient to avoid irregular bony growth due to injury, advanced stages of arthritis or other conditions, for example 1 cm superior to the most superior point on the acetabular rim.
  • the landmarks “A” and “B” can be located on the ischium and pubis respectively and can be similarly spaced from the rim to avoid damaged/diseased areas. Each of these landmarks preferably is close enough to the rim, however, to be within the standard open area, e.g., the area exposed by the surgical cut down.
  • the navigation system 100 has one or more processors that receive(s) data and determines the relative position of these (or other) anatomical landmarks from these points.
  • the data can be generated by inertial sensors, as discussed elsewhere herein, or other types of sensors. Preferably the sensors are small enough to be mounted on or in handheld housings or embedded in the instruments.
  • the navigation system 100 preferably also has a memory device to at least temporarily store the position of these points or relevant orientation data.
  • FIG. 3 shows further details of the registration jig 104 and further aspects of methods of navigating an artificial hip joint.
  • a proximal end of the pin 132 is coupled with or disposed above a platform 136 that is configured to couple with the alignment assembly 108 and/or the landmark acquisition assembly 112 .
  • the platform 136 can be connected to both of the alignment assembly 108 and the landmark acquisition assembly 112 at the same time.
  • the platform 136 comprises a rigid bar fixed to the proximal end of the pin 132 and/or the cannula 124 in the illustrated embodiment.
  • the platform 136 includes a plurality of mount features 140 A, 140 B, e.g., a mount feature on each of two lateral ends 144 A, 144 B of the platform.
  • the mount feature 140 A is configured to permit non-rotational attachment to the alignment assembly 108 .
  • FIG. 3 illustrates that the registration jig 104 is configured to be used in left and right hip procedures, for example having a dedicated mount feature 140 A for each hip.
  • the mount feature 140 A provides a post spaced away from the joint being treated so that the alignment assembly 108 can be mounted as far away from the hip joint as possible.
  • FIG. 5 shows the alignment assembly 108 on this post and another post exposed. The exposed post is not used during the procedure on the hip joint illustrated in FIG. 5 .
  • the platform 136 is in the opposite orientation and the posted exposed in FIG. 5 will be coupled with the alignment assembly 108 .
  • a longitudinal axis of the platform 136 extends between two mount posts, each of which can be dedicated to a hip on one side of the medial-lateral mid-plane of the patient.
  • the mount feature 140 B enables rotational mounting of the landmark acquisition assembly 112 .
  • the mount feature 140 B can include a pivotally mounted jig 148 that projects upward to a free end that is adapted to mate with an orientation sensing device as discussed below.
  • the joint 148 permits a registration arm, such as the elongate member 224 discussed below to be tilted downward to touch landmarks at different elevations.
  • the registration jig 104 is preassembled and is driven into a suitable anatomical landmark, such as the ilium.
  • an anchor jig can be mounted off-set from a landmark to be acquired.
  • the ilium will have been previously identified by conventional means, such as by X-ray examination, palpation, or by making an incision and visually inspecting the pelvis.
  • the cannula 124 , the pin 132 , and the platform 136 are separable so that the pin can be placed and the platform 136 coupled to the pin at a later time.
  • the cannula 124 can be coupled with other landmarks in some variations.
  • FIG. 4 illustrates further steps of various techniques.
  • the alignment assembly 108 can be coupled with the mount feature 140 A.
  • the alignment assembly 108 includes a rigid extension 160 that is adapted to be mounted detachably to the mount feature 140 A.
  • the extension 160 has a first end 164 and a second end 168 .
  • the second end 168 is detachably mountable to a surgical orientation device 172 that detects orientation and rotation of the device 172 relative to a reference frame.
  • the orientation device 172 preferably comprises at least one sourceless sensor, such as an accelerometer, a gyroscope, or a combination of these sensors and other sensors.
  • the orientation device includes a three axis accelerometer to detect orientation relative to gravity and a plurality of gyroscopes to detect rotation.
  • Other sensors could be used in various modifications. Examples of specific sensor combinations include Analog Devices ADIS 16445 and Invensense MPU-6050 or MPU-9150 among others.
  • the orientation device 172 can be disposable and so the sensors preferably are less expensive sensors. Sensors on the landmark acquisition assembly 112 may be reusable in some configurations and thus may incorporate more expensive, more rugged or more accurate sensors.
  • the first end 164 of the detachable extension provides several functions.
  • the first end 164 has a device to engage the mount 140 A in a secure but releasable manner.
  • the engagement between the extension 160 and the platform 136 minimizes or prevents relative movement therebetween to avoid any mechanical relative movement during navigation procedures so that movement of the orientation device 172 corresponds to movement of the hip.
  • the first end 164 also has a docking device that, as discussed further below, provides a stable and controlled manner to position the landmark acquisition assembly 112 relative to the orientation device 172 .
  • FIG. 4 also illustrates that the landmark acquisition assembly 112 can be securely coupled to the platform 136 , e.g., at the mount 140 B.
  • the landmark acquisition assembly 112 includes a gimbaled jig 200 and an orientation sensing device 204 .
  • the jig 200 includes a coupler 208 for detachably coupling with the mount feature 140 B of the platform 136 .
  • the coupler 208 is pivotally connected to a sliding support 212 .
  • the sliding support 212 includes a slot that permits slideable extension of an elongate member 224 .
  • the slideable extension permits a range of motion of a distal end 228 of the elongate member to facilitate acquiring a plurality of landmarks that are different distances from the attachment location of the cannula 124 , as discussed further below.
  • the distal end 228 can be extended away from the axis of the sliding support 212 or can be retracted to a position closer to the axis of the sliding support 212 .
  • FIGS. 4 and 6 illustrate the movability of the landmark acquisition assembly 112 relative to the platform 136 between two positions.
  • the elongate member 224 is swung about an axis that may be parallel to a longitudinal axis of the cannula 124 to move the distal end 228 away from the first end 164 of the extension 160 .
  • This is a moving configuration of the gimbaled jig 200 .
  • the pivotally mounted joint 148 can enable the elongate member 224 to pivot about an axis that is not parallel to the axis of the cannula 124 .
  • the axis of rotation of the joint 148 can be perpendicular to the axis of rotation of the sliding support 212 .
  • This rotatability enables the distal end 228 of the elongate member 224 to pivot down to contact anatomical landmarks, as discussed above.
  • the slidability of the elongate member 224 within the sliding support 212 enables the distal end 228 to move to reach anatomical landmarks in the same plane but closer to or farther from the distal end of the cannula 124 or pin 132 .
  • FIG. 6 shows the distal end 228 of the elongate member 224 positioned closer to the platform 136 for referencing landmarks at higher elevation or closer positions, e.g. on the lateral side of the femur.
  • FIG. 4 also shows that the distal end 228 can include an angled length that enables the elongate member 224 to avoid minor irregularities in height adjacent to the anatomical landmarks being registered.
  • Such irregularities may be normal anatomy, osteophytes or irregular bone growth of various types.
  • FIG. 5 illustrates a parked configuration 260 of the landmark acquisition assembly 112 .
  • a portion of the elongate member 224 is moved into a latch 262 disposed at the first end 164 of the upright extension 160 .
  • the parked configuration 260 enables the navigation system 100 to manage errors that can compound in some inertial sensors.
  • gyroscopic sensors in the orientation device 172 and in the orientation sensing device 204 can be synchronized when a stable and known orientation is detected and one or more of the gyroscopes, e.g., the gyroscope in the device 204 , can be zeroed after that condition is met. Further techniques employing the parked configuration 260 will be discussed further below.
  • some jigs have a registration point adjacent to the distal end of the anchor jig or bone connection site.
  • the system 450 is capable of accurately acquiring landmarks based on only accelerometers operating in the device 204 in one mode. In such a mode, a registration feature can provide an analogous function to the parked configuration, e.g., to enhance accuracy of the sensing devices in the system.
  • the parked configuration advantageously includes the ability to stably position and hold the devices 172 , 204 for substantially no relative movement.
  • the orientation sensing device 204 is mounted on the rigid extension 160 .
  • Other arrangements could include a mounting post on the platform 136 adjacent to the rigid extension 160 .
  • the parked configuration 260 can still be useful in that it prevents unwanted swinging or other movement in the surgical field.
  • the jigs discussed above are connected to the pelvic bone, the system 100 is put into the parked configuration 260 , and the sensors are initialized.
  • the initializing can include synchronizing at least two sensors.
  • the initializing can include zeroing one or more sensors.
  • zeroing is a broad term that includes any method of eliminating accumulated error in the system, including any form of resetting of the sensors, and/or confirming in one device that the data from the other device is reliable for at least a fixed period.
  • FIG. 6 illustrates an optional step of acquiring a landmark of a femur in connection with a hip replacement procedure.
  • the hip is positioned in a neutral flexion/abduction position.
  • the landmark acquisition assembly 112 is in a withdrawn configuration 266 with the elongate member 224 moved, such as by sliding in the sliding support 212 , to accommodate the relatively short distance from the platform 136 and a landmark of the proximal femur.
  • the tip of the distal end 228 is brought into contact with a part of the greater trochanter or elsewhere on the proximal femur.
  • the clinician can make a mark Fm on the femur, such as a bovie mark, a pen mark, a stitch or other durable indication.
  • a mark Fm on the femur such as a bovie mark, a pen mark, a stitch or other durable indication.
  • the navigation system 100 processes data from and stores the orientation of one or more sensor(s) in the orientation sensing device 204 .
  • the elongate member 224 is provided with a scale 226 indicating position of the tip of the elongate member 224 , e.g., relative to the cannula 124 or some other relevant fixed feature of the patient or the system 100 . By providing the scale 226 to be read by the clinician, the system is made simple and cost effective.
  • the proximal femur can be resected to remove the natural ball thereon.
  • FIG. 7 illustrates that in one advantageous technique, the user returns the system 100 to the parked configuration 260 .
  • This step may be optional depending on the sensor(s) and the timing of the resecting of the femur.
  • the sensor(s) in the orientation devices 172 , 204 can be initialized again, e.g., zeroed.
  • this is one technique for minimizing accumulation of error in some inertial sensors.
  • less costly sensors can be used enabling the system 100 to deliver highly accurate hip replacement while helping to manage cost for the patient, medical provider and healthcare system generally.
  • FIG. 8 illustrates a first extended configuration 264 provided in a step after the resecting of the proximal femur in which a second anatomical landmark is acquired or referenced.
  • the elongate member 224 can be extended and can be rotated by the jigs 148 , 200 to be in contact with any suitable landmark.
  • contact is made between the distal end 228 and the ischium. To provide maximum accuracy, this contact may be provided within a short period, e.g., within about 20 seconds of being disengaged from the parked configuration 260 .
  • the system 100 is configured to store the orientation of the sensing device 204 .
  • the orientation is stored after a button or other indirect means is pressed on the orientation device 172 .
  • a position value is input to the system.
  • the scale 226 on the elongate member 224 can be read by the user and the value of the scale input into the system.
  • the orientation device 172 has a user interface with an input device for inputting such variables.
  • the scale 226 can in fact be two different scales, one for each of the retracted configuration 266 and the extended configuration 264 .
  • the scale 226 can extend the entire length of the elongate member 224 to provide a greater range of positions that can be read by the clinician or by the system as in FIGS. 13 and 14 .
  • the extended configuration 264 is one in which the distal end 228 of the elongate member 224 is adapted to touch an anatomical landmark located between the medial cephalad-caudal plane of the patient and the acetabulum of the pelvis.
  • the user may return the system 100 to the parked configuration 260 and also may initialize, e.g., zero, the system 100 again.
  • FIG. 9 illustrates a second extended configuration 272 provided in a step after the resecting of the proximal femur in which a third anatomical landmark is acquired or referenced.
  • the third anatomical landmark can be acquired before the second anatomical landmark in some techniques.
  • the distal end 228 of the elongate member 224 moved to contact a landmark, such as the pubis. To provide maximum accuracy, this contact may be provided within a short period, e.g., within about 20 seconds of being disengaged from the parked configuration 260 .
  • the system 100 can store the orientation of the sensing device 204 .
  • the orientation can be stored by pushing a button or other user interface device. In some techniques orientation and position are input into the system.
  • the scale 226 on the elongate member 224 can be read by the user and the value of the scale input into the system.
  • the orientation device 172 has an input device, such as a user interface for inputting such variables.
  • the extended configuration 272 is one in which the distal end 228 of the elongate member 224 is adapted to touch an anatomical landmark located anteriorly of the acetabulum.
  • the system 100 can determine the bearing of three landmarks including that of the attachment location of the cannula 124 , if the pin is attached to a relevant landmark.
  • the system can calculate the orientation of the orientation device 172 relative the plane containing these three (or in other methods another group of three or more) landmarks. From this, a variety of post processing can be performed. For example, the orientation (anteversion and/or abduction) can be adjusted based on the known mean orientation of the plane containing these three (or another three or more, if used) landmarks from the pelvic anatomic reference planes.
  • One variant of the system 100 enables a user to select between multiple sets of landmarks for use in the above calculations.
  • the method discussed above exploits the use of three points that are off of the acetabular rim. These points are less impacted by local prominences at the rim that may be due to disease or deformity. Thus, they have a lower likelihood of requiring intra-operative improvisation.
  • another set of landmarks can be selected where the rim is free of deformities, which might be confirmed pre-operatively.
  • two or three points can be selected on the acetabular rim for landmark acquisition.
  • the on-rim landmarks are advantageous in that they are easier to access through a smaller incision.
  • on-rim points can include the center of the posterior insertion of the transacetabular ligament, the center of the anterior insertion of the transacetabular ligament and the most superior point on the rim.
  • a group of anatomical landmarks including one or more extra-acetabular landmarks can include the ilium (where the registration jig 104 or other anchor member can be inserted), the lowest point of the acetabular sulcus of the ischium, and the prominence of the superior pelvis ramus.
  • the fourth point can be used in connection with some forms of patient specific registration.
  • the fourth point can be extra-acetabular or can be disposed on the acetabular rim.
  • An example of an acetabular landmark is the acetabular notch. Other landmarks are discussed herein, for example in connection with FIGS. 34 and 35 .
  • the posterior approach systems are advantageously configured to allow intra-operative selection between on-rim and off-rim points. For example, if the rim looks free of deformities pre-operatively but when exposed presents differently, the surgeon can select an off-rim landmark set.
  • Several techniques for enhancing the accuracy of the relationship between the sensed landmarks and the location of calculated anatomical features can be employed. For example, user input can be collected indicating whether the hip being treated is on the left or the right side of the patient and whether the patient is male or female.
  • a more refined estimation of the model can be provided based on a characterization of a study group. For example, hip joints of a group of 30 or more patients can be studied to identify the correspondence between a feature that can be accessed in one approach and an anatomical feature of more surgical relevance that cannot.
  • a group of subjects can be studied for any number of demographic characteristics such as gender, age, weight, height or any other variable in a relevant population.
  • a correlation or transformation between a measured parameter and a parameter that cannot be measured but is desirable to know can be generated.
  • transforming a measured feature into the unmeasurable but useful to have feature can be achieved by operating software on a processor.
  • the software can be programmed to calculate one or two angles, e.g., inclination and anteversion based on a registered pelvic plane, such as a proxy acetabular plane.
  • Such a system can be used to generate in real time the angles of a free hand instrument relative to the anatomy, e.g., relative to an acetabulum in placing a hip socket component.
  • the posterior approach systems preferably are configured to take user input directly by actuating buttons on the orientation device 172 or by connecting an auxiliary data storage device, such as a flash memory device, to the system or by any means of other communication with the system, including wifi connection, Bluetooth, Internet connection among others.
  • the posterior approach systems described herein are adapted to determine, monitor, and confirm proper leg length and joint offset outcome in a hip replacement.
  • the system 100 can calculate and store components of a leg length metric, e.g., a vector along the superior-inferior axis (leg length) and/or along the medial-lateral axis (offset).
  • the device 172 has a display that indicates when the femur is in the same position pre- and post-operatively. For example, it can indicate “0” meaning no displacement causing a leg length change and “0” indicating no movement of the femur farther away from the cephalad-caudal mid-plane of the patient pre- and post-operatively.
  • a plurality of points e.g., three points, can be marked acquired and/or marked on the femur.
  • the points can be spaced apart by an amount sufficient to provide increased accuracy. These three points can be used to confirm proper placement of the femur in abduction, rotation, and flexion.
  • One enhancement involves referencing the femoral neck to assure that after implanting the hip joint, the femur is positioned properly rotationally. For example, it may be desired to make sure that a feature of the femur like the greater trochanter resides in the same rotational orientation relative to an axis extending through the center of rotation of the femoral head and perpendicular to the plane of the acetabulum.
  • the system 100 can record one or more, e.g., three points on the femoral neck pre- and post-implantation. Three points that would be convenient from either the posterior approach or the anterior approach (discussed below in connection with FIGS. 18-24B ) are the greater trochanter, lesser trochanter and the insertion of the obdurator externus.
  • the acetabulum can be prepared for receiving a cup.
  • the acetabulum can be reamed in a conventional manner.
  • the reamer can be coupled with an orientation device containing an inertial sensor to guide the reaming process. This is discussed in some detail in US2010/0076505, published Mar. 25, 2010 which is incorporated by reference herein in its entirety for this purpose and for all disclosure therein generally.
  • FIG. 10 shows that after reaming, an impactor 300 may be used to place a cup of an artificial hip joint.
  • the impactor handle 304 may be positioned in the approximate correct orientation, e.g., with a longitudinal axis of the impactor being disposed perpendicular to the plane navigated above or a plane determined based on the navigated plane.
  • FIG. 10 shows that this initial placement can be done while the system 100 is in the park configuration 260 .
  • the impactor 300 can be substantially aligned at this time, based on visual inspection.
  • the sensors can be initialized, e.g., zeroed as discussed above.
  • FIG. 11 shows that in a subsequent step the orientation sensing device 204 can be undocked from the proximal end 230 of the elongate member 224 and thereafter docked to the impactor 300 .
  • this step is performed while the impactor 300 is in place on the hip, close the proper alignment.
  • a third sensing device similar to the sensing device 204 be coupled with, e.g., pre-attached to, the impactor and the data collected above transferred to the third device.
  • the impactor 300 and sensing device 204 comprise a cup orientation navigation assembly.
  • the impactor 300 has a cylindrical shell 312 that is moveable relative to an inner shaft 316 of the handle 304 .
  • the shell has a docking device 320 that can receive the docking device of the sending device 204 .
  • the movability of the shell 312 helps to isolate the sensing device 204 from the forces that are transmitted through the impactor 300 . These forces are applied by a mallet or other device for forcibly moving the cup into position. By providing at least some force isolation between the shell 312 and the sensing device, impact on the sensors in the sensing device 204 can be reduced. Excessive force being applied to the sensing device 204 can put the device 204 out of service, for example until synched with the device 172 .
  • FIG. 11A illustrates a further embodiment of an impactor 300 A in which the movement of a shell 312 A is cushioned by a plurality of spring members 340 , 344 which are configured to absorb at lease some of the shock of the impact on the impactor 300 A.
  • the impactor 300 A also is configured to be modified to suit any of a plurality of hip prostheses.
  • a plurality of tip components 348 can be provided in a kit where each tip component is attachable to and detachable from a distal end of the shaft 316 A of the impactor 300 A.
  • FIGS. 11B-C show more detail of distal features of the impactor 300 A.
  • the tip component 348 is removable from a shaft 316 A of the impactor 300 A.
  • FIG. 11C shows that the tip component 348 can have a recess 352 formed on the proximal side thereof and an engagement device 356 formed on the distal side thereof.
  • the recess 352 can comprises a plurality of flats 350 A corresponding to a plurality of flats 350 B on the distal end of the shaft 316 A.
  • the flats permit proximal-distal sliding of the recess 352 over the distal end of the shaft 316 A.
  • a detent device or other mechanism is provided between the tip component 348 and the shaft 316 A so that the component does not fall off the shaft.
  • the flats prevent the tip components 348 from rotating relative to the shaft 316 A.
  • the engagement device 356 comprises threads in one embodiment so that the cup 360 of the prosthetic hip can be screwed onto the distal end of the tip component 348 .
  • the sliding engagement of the tip component 348 on the shaft 316 A is important because the impactor 300 A is intended to be used with hip prostheses of a variety of manufacturers.
  • the cup 360 will have a hole pattern for securing the cup to the prepared acetabulum that is unique to the manufacturer and that is dictated by the anatomy.
  • the flats enable many discrete alternate relative angular positions of the tip component 348 (and hence the cup 360 ) to the shaft 316 A.
  • a plurality of flutes or elongate axial ridges 364 on the outer surface of the tip component 348 enable the user to securely grasp the tip component for mounting and dismounting the tip component on the shaft 316 A.
  • FIG. 12 shows the cup orientation placement navigation assembly of FIGS. 11A-C adjacent to the anatomy.
  • This figure also illustrates a free-hand navigation configuration 274 , in which at least the orientation devices 172 , 204 are capable of six degrees of motion relative to each other. Any of the variations of FIG. 11A-11C could be substituted in the illustration.
  • the handle 304 is oriented as desired.
  • the system 100 displays in real time the angle of the cup relative to the navigated plane, which was acquired as discussed above. Angles that can be displayed include any one or more of anteversion and abduction for example.
  • the clinician can confirm the position of the cup within a short fixed time, such as within about 20 seconds.
  • the angles displayed can be adjusted by about 40 degrees abduction and 20 degrees anteversion. These angles are not critical, but they relate to the range of motion of the leg. It is preferred to be close to these angles because motion in abduction and anteversion extends on either side of these angles. It is believed that the systems discussed herein can increase the percentage of patients in a “safe zone” close to these angles, typically described as within 10 degrees of these angles. In contrast, studies show that conventional techniques yield close to 50% of patients outside the “safe zone.”
  • the user may mount the sensing device 204 on the elongate member 224 again and may return the system 100 to the parked configuration 260 and also may initialize or zero the system 100 .
  • the system 100 can be configured to provide a pre- and/or post-operative estimation of an angle relative to the angle of the table.
  • the patient In the posterior approach, the patient is placed on his/her side. In this approach, there is more chance for the patient's position to shift intra-operatively.
  • an alignment rod can be coupled with the sensing device 204 and aligned with the plane of the table. The orientation of the sensing device 204 when so aligned is recorded in the system. Later in the procedure, one or more angles is calculated and displayed to the user based on the assumption that the pelvis has not moved. At such later stages, the orientation of the sensing device 204 can be confirmed again relative to the table to provide information about whether the patient has moved.
  • the landmark acquisition steps can be repeated.
  • the movement of the pelvis can be tracked by the sensing device and corrected for. The manner of incorporating the table orientation with landmark acquisition is discussed in greater detail below.
  • the user will have placed the artificial ball of the replacement hip join in the proximal femur and thereafter can place the ball in the cup, which was properly oriented using the techniques discussed above.
  • FIG. 1 shows that thereafter, the user can optionally confirm orientation and/or leg length using the system 100 .
  • the leg with the artificial hip joint assembled is placed in a neutral flexion and/or abduction and/or rotation position.
  • the acquisition assembly 112 can be placed in the retracted configuration 266 .
  • the distal end 228 of the elongate member 224 can be brought into contact with a landmark, which may be the same landmark acquired in FIG. 6 . Once contact is made with this landmark (e.g., the bovie mark), the orientation of the sensing device 204 is determined by the system 100 .
  • the distance indicated on the scale 226 of the elongate member 224 is input into the system in any of the manners discussed above (e.g., manual or sensed).
  • the system 100 can thereafter calculate components of vectors along the S-I axis (leg length) or M-L axis (offset).
  • leg length and offset are determined post-operatively, they can be compared the pre-operative measurements ( FIG. 6 ) to let the surgeon know if any adjustments should be made before completing the hip replacement surgery.
  • FIGS. 13 and 14 show other embodiments of a hip navigation system 400 that can include any of the features discussed above.
  • the system 400 includes a free-hand sensor mount 404 that can be used to mount a freehand orientation device 204 A in one configuration.
  • the freehand orientation device 204 A preferably includes inertial sensors, similar to those hereinbefore described.
  • the device 204 A preferably also includes a camera 412 .
  • the field of view is illustrated by the cone projecting downwardly from the base of the freehand orientation device 204 A.
  • FIG. 14 shows that the field of view includes a window 418 in a sliding support 420 .
  • the window 418 enables the scale 226 to be viewed therethrough.
  • a hood is provided above the window 418 .
  • the hood keeps most of the blood and tissue out of the space where the camera views the scales.
  • a scrubber component e.g., a thin rubber member, can be provided above the scales 226 , 226 A (discussed below) to prevent this tissue or fluids from entering into the field of view laterally.
  • the camera 412 can automatically process the image captured through the window 418 and thereby determine the position of the elongate member 224 relative to the sliding support 420 .
  • a further advantage of this is to eliminate one step from the navigation process, e.g., to eliminate the need to enter the linear dimension into the system 400 . Eliminating the step can reduce time and/or personnel in the operating room.
  • the camera 412 can be configured to read a much higher resolution than can be read by a clinician. This can provide greater accuracy in the system overall. Not only that, but the camera can be configured to make fewer or no errors in reading the position, which can improve outcomes overall.
  • miniature cameras can produce data in JPEG or other image format that a processor in one or both the orientation devices 172 , 204 A can process to extract the linear position of the elongate member 224 .
  • FIG. 15 shows an arcuate scale 226 A that can be positioned on a structure beneath the elongate member 224 , e.g., on a structure beneath the orientation device 204 A that is rotationally fixed relative to an axis extending out of the page.
  • FIG. 16 shows one configuration with this arrangement.
  • a pivot 440 enables the sliding support 420 to rotate about an axis extending upward on the page. Although the pivot 440 is fixed about this upward extending axis, it can rotate about a pivot 444 .
  • a window 418 A in the elongate member 224 enables the camera to see through the support to view the scale 226 A disposed on an arcuate or disk shaped feature of the pivot 440 .
  • the scale 226 A can be read by the camera 412 or a second camera to provide accurate determination of the rotational position of the elongate member 224 . This can enable one of the sensors in the orientation device 204 A to be eliminated or inactivated. In another embodiment, camera date derived from the scale 226 A can be used to confirm the data from sensors in the orientation device 204 A.
  • the scale 226 A has markings over a range of from about 15 to about 90 degrees, for example, between about 30 and about 60 degrees, e.g., at least between about 40 and about 50 degrees.
  • FIGS. 17 - 17 C 2 illustrate further embodiments.
  • a system 450 is adapted for navigating a hip procedure from a posterior approach.
  • the system 450 includes an anchor jig 454 , an alignment system 458 , and a landmark acquisition assembly 462 .
  • the components may be similar in some respects to those discussed above, and such descriptions are incorporated with this embodiment where consistent.
  • the jig 454 includes a hollow fixation member 466 and a platform 468 for coupling a plurality of devices to the pelvis.
  • the platform has a generally T-shaped configuration including a first portion 468 A coupled with the proximal end of the fixation member 466 and a second portion 468 B disposed transversely to the first portion 468 A.
  • the first portion 468 A provides a support for a cradle 476 discussed further below.
  • the second portion 468 B can include a plurality of docking devices 469 for coupling directly or indirectly with the orientation device 172 .
  • the T-shaped configuration provides the advantage that the docking devices 469 can be disposed father away from the surgical site than is the case with the system 100 . This reduces any intrusion of the orientation device 172 into the working field.
  • the fixation member 466 provides adequate stability in anchoring the system 450 to the pelvis.
  • the jig 454 can be coupled with the pelvis from the second portion 468 B.
  • a slot 470 can be formed in the second portion 468 B on one or both sides of location where the first portion 468 A extends from the second portion 468 B.
  • the slots 470 can extend from a lateral edge of the second portion 468 B toward location where the first portion 468 A extends from the second portion 468 B.
  • the slots 470 can include a plurality of channels 471 configured to receive fixation pins (e.g., Steinmann pins) that can be advanced into the pelvis.
  • the channels 471 extend generally parallel to the fixation member 466 .
  • the fixation pins can be securely connected to the second portion 468 B in the channels 471 by a clamp device 472 .
  • the clamp device can include a screw configured to draw the portions of the second portion 468 B on either sides of the slot 470 toward each other and thus to create large frictional forces on the pins in the slots 471 .
  • the slots 470 preferably are aligned such that a plane extends along both of the slots 470 along their length. Because the slots 470 are long and slender this plane can be readily visualized in an X-ray image. It is preferred that the jig 454 be aligned to the pelvis such that the plane extending along the slots 470 is perpendicular to an axis of the patient (e.g., the intersection of the medial lateral plane and the transverse mid-plane of the patient). This feature provides a convenient way to visually confirm proper positioning of the jig 454 in one embodiment.
  • the fixation member 466 includes a registration feature 473 and a foot 474 adjacent to a distal end thereof and a coupling 475 adjacent to the proximal end thereof for connecting to the platform 468 .
  • the foot 474 includes a plurality of spaced apart spikes extending from a distal end thereof capable of preventing or limiting rotation of the jig 454 when the fixation member 466 is connected to the pelvis.
  • FIG. 17 shows that securing the jig 462 to the pelvis can include positioning a pin or other bone engaging device through the fixation member 466 .
  • the pin and spikes extending from the foot 474 can provide three or more points of contact with the pelvis providing secure mounting of the jig 462 .
  • the coupling 475 generally secures the platform 468 to the fixation member 466 .
  • the coupling 475 has a rotational capability that enables the platform to be positioned at selective locations about the longitudinal axis of the pin 466 , for example to enable the platform 468 to be initially positioned in the correct orientation or to be moved during or after the procedure to make space for other surgical devices.
  • One arrangement provides matching splines that extend parallel to the longitudinal axis of the fixation member 466 . This arrangement would permit splines on an upper portion of the coupling 475 to be disengaged from splines on a lower portion of the coupling 475 . When disengaged, the platform 468 and the upper portion of the coupling 475 can be rotated relative to the lower portion of the coupling 475 . The splines can thereafter be re-engaged.
  • the jig 454 also preferably includes a cradle 476 that can be used to hold a probe arm 477 .
  • the cradle 476 includes a U-shaped recess having a width between two upright members that is about equal to the width of an arm 477 of the landmark acquisition system 462 .
  • FIG. 17 shows the probe arm 477 in a parked configuration as discussed above. If the sensor 204 operates with components that are prone to accumulated error sources, the parked configuration can be used to eliminate such error.
  • the system 450 can be configured such that the position and/or orientation of the sensor 204 relative to the orientation device 172 is known. Thus, when the arm 477 is in the cradle 476 any accumulated error of components of the sensor 204 can be eliminated.
  • the cradle 476 can provide other convenient functions even if the sensing devices in the sensor 204 are not subject to sources of accumulated error. As discussed elsewhere herein, for confirmation of accuracy of the system or to provide a simplified reference frame not requiring landmark acquisition, it may be desirable at some point of the procedure to use the probe arm 477 and the sensor 204 to estimate the plane of the surgical table upon which the patient is resting. If, as discussed above, the plane intersecting the slots 470 is oriented perpendicular to the axis of the patient when the jig 454 is mounted to the pelvis, the cradle will be parallel to the axis of the patient.
  • the fixation member 466 is oriented vertically, the arm 477 will be parallel to the plane of the table when in the cradle 476 .
  • the system 450 can thus use the plane of the table as a reference frame for guiding the placement of the cup without registering landmarks.
  • the plane of the table can be used in combination with registering the anatomy about the acetabular rim, as discussed above, to increase the accuracy of navigating the cup.
  • the cradle 476 also provides a convenient home position that keeps the arm 477 stationary and out of the way of other surgical instruments.
  • FIG. 17A illustrates the probe arm 477 withdrawn from the cradle 476 and free to move into contact with landmarks.
  • the jig 454 also includes a pivot feature 478 that is disposed horizontally.
  • FIG. 17B shows that the pivot feature 478 includes two horizontal apertures 480 .
  • One of the apertures 480 is formed in the same structure forming the cradle 476 but at an elevation below the cradle 476 .
  • the other aperture 480 formed between the cradle 476 and a projection of the fixation member 466 .
  • FIG. 17A shows that the probe arm 477 is connected to the pivot feature 478 by a shaft 482 that extends through the apertures.
  • a movement device is provided between the shaft 482 and the arm 477 to enable a distal tip of the arm to be rotated about perpendicular axes and to be advanced linearly relative to the stationary jig 454 .
  • One axis of rotation A of the movement device is disposed parallel to and at an elevation above the platform 468 .
  • Another axis of rotation B is disposed generally perpendicular to the axis A.
  • Sliding of the arm 477 is enabled by a snug but sliding fit of the arm in a housing C.
  • the registration feature 473 is a convenient way to enhance the accuracy of the sensor 204 .
  • a distal tip of the probe arm 477 is brought into contact with the registration feature 473 .
  • the registration feature 473 is a notch configured to receive and temporarily retain the tip.
  • the user can interact with the orientation device 172 to initialize accelerometers within the sensor 204 .
  • the points to be acquired can be sequentially contacted and the orientation and position of the sensor 204 can be sequentially recorded in the system 450 .
  • the jig 454 is configured to enable the landmark acquisition assembly 458 to reach all points to be registered by moving less than about 45 degrees from an initial or home position in some embodiments. In other embodiments, the jig 454 is configured to enable the landmark acquisition assembly 458 to reach all points to be registered by moving less than about 25 degrees from the initial position. In other embodiments, the jig 454 is configured to enable the landmark acquisition assembly 458 to reach all points to be registered by moving less than about 15 degrees from the initial position.
  • the jig 454 also is configured to interact well with the soft tissue that is disposed around the surgical site in the posterior approach. In this approach, an incision is made in soft tissue that is kept as small as possible. In one approach, the fixation member 466 is positioned at the end of the incision. Where the incision is made as minimal as possible, the jig 454 can also function as a retractor.
  • the T-shaped configuration is particularly well suited for this function because the first portion 468 A of the platform 468 can be received between the middle and ring fingers of the user with the second portion 468 B in the palm of the hand. With the foot 474 gripping the pelvis, the jig 454 can be tilted from the platform 468 away from the hip joint to retract the tissue away.
  • FIGS. 17C-1 and 17C-2 illustrate further embodiments of a posterior approach jig 454 A having a mounting device 488 disposed adjacent to the distal end of a fixation member 466 A, which is otherwise similar to the fixation member 466 .
  • the fixation member 466 A includes a tubular body 490 coupled with the fixation member 466 A, which in this embodiment acts as a primary fixation member.
  • the tubular body 490 extends along a lumen that is angled relative to the lumen of the fixation member 466 A.
  • the lumen in the tubular body 490 is configured to accept a fixation pin 492 that can be driven into the bone, as illustrated in FIG. 17C-2 at an oblique angle.
  • the fixation pin 492 supplements the fixation provided by the fixation member 466 A.
  • the fixation pin 492 can be used in conjunction with the optional long pin(s) extending through the channels 471 , e.g., into the ilium or as a substitute for that option.
  • the fixation pin 492 has the advantage of not requiring any additional holes in the skin because it is located within the primary incision made to access the joint in the procedure.
  • the fixation pin 492 can be threaded to engage the bone in one embodiment.
  • a locking device 494 can be provided to secure the pin 492 in the lumen of the tubular body 490 .
  • a set screw is one example of a locking device 494 that can be used.
  • the locking device 494 enables the fixation pin 492 to be headless, which avoids issues with screw threads stripping the hole in the bone into which the pin 492 is inserted.
  • the assignee of this application has been able to calculate a population-based average relationship between multiple planes created by various points in, on or around the acetabulum that are accessible during posterior approach hip replacement (each plane, an “Acetabular Plane”), and the Anterior Pelvic Plane.
  • a module e.g., software incorporated into a processor, which may be on a computer, or one or both of the orientation device 172 and sensor 204 , to calculate a transformation from one reference frame to another.
  • a proxy Acetabular Plane is calculated.
  • a module operable to process an algorithm e.g., by executing software in one or both of the orientation device 172 and sensor 204 alone or with a separate computer, is able to calculate a transformation from the proxy Acetabular Plane to Anterior Pelvic Plane.
  • the approach indirectly registers the Anterior Pelvic Plane without requiring a direct supine registration and subsequent patient movement and re-draping necessary in standard navigation.
  • a module in certain embodiments described herein is then able to provide the user real time navigation data of the orientation of a hip instrument (e.g., the impactors 300 , 300 A) with respect to the Anterior Pelvic Plane.
  • a further advantage is that the systems are able to implement the plane transformation algorithm to calculate an Anterior Pelvic Plane from one of any number of proxy Acetabular Planes that the surgeon chooses to register. This enables the surgeon to have greater flexibility in Acetabular Plane landmark selection to take into account the quality or accessibility of certain landmarks. For example, in cases of minimal deformity around the acetabular rim, the surgeon may choose to register landmarks around the rim, which are easily accessible.
  • the surgeon may instead choose to register an Acetabular Plane based on extra-acetabular landmarks (or described as “off-rim” elsewhere herein) outside of the rim that are unaffected by disease or prior hip replacement surgery.
  • Examples of anatomical landmarks that may be used to create a proxy Acetabular Plane and that are shown in FIG. 2 include but are not limited to:
  • Point D is the midpoint of the inferior border of the acetabular notch. As discussed in connection with FIG. 36 below, point D corresponds to the bottom landmark 380 B used to form the line 382 . Point D is used in that approach to provide patient specific refinements to the positioning.
  • a further key benefit of certain embodiment discussed herein is that the foregoing plane transformation capabilities increase the accuracy of the transformation between the proxy Acetabular Plane registered and the Anterior Pelvic Plane above the general population average data by the user inputting certain patient-specific information, such as gender.
  • certain embodiments of systems including one or more of the orientation device 172 , sensor 204 , or a separate computer may have modules that are operable, e.g., by processing software, to allow the user to input an angular or plane relationship between an proxy Acetabular Plane and Anterior Pelvic Plane that the surgeon measured based on pre-operative imaging, allowing for a partial or whole plane transformation based on patient-specific data rather than population data.
  • the surgeon may choose to pre-operatively measure an angle created by (a) landmarks that are both visible on an A/P pelvis x-ray and that can be referenced during posterior hip replacement, and (b) landmarks that are both visible on the pelvis x-ray and that are directly associated with inclination measurement in the Anterior Pelvic Plane. If this angular relationship is inputted into a module of a system including one or more of the orientation device 172 , the sensor 204 , or a separate computer, which module is capable of making calculations processing software and the surgeon registers the landmarks described in (a), inclination navigation will be based specifically on that patient rather than a population average.
  • Landmarks (D) and (H) listed above are examples of landmarks that are both visible on an A/P pelvis x-ray and that can be referenced to create a proxy Acetabular Plane in posterior hip replacement.
  • FIG. 18 shows a hip navigation system 600 adapted to navigate a hip joint procedure with reference to anatomical landmarks.
  • the system 600 is shown mounted on a pelvis in a posterior approach in FIG. 18 .
  • FIG. 18 shows an early phase of a procedure prior to the joint being dislocated but after the system 600 is mounted to the pelvis.
  • the system 600 can be adapted for various techniques. As discussed further below, such variations involve registering the femur prior to and after the joint is replaced to confirm an aspect of the relative position and/or orientation of the femur, e.g., leg length, joint offset, and rotational orientation of the femoral neck.
  • the system 600 can include any component described herein.
  • the system 600 can be used in any technique or method step described herein.
  • the system 600 can include a fixation base 602 , a first assembly 604 and a second assembly 606 .
  • the first assembly 604 is rigidly connected to the hip in the illustrated configuration so that motion of the hip cause corresponding motion of sensor(s) in the first assembly 604 as discussed below. Sensing this motion enables the system 600 to eliminate movement of the patient as a source of error in the navigation.
  • the second assembly 606 provides a full range of controlled motion and sensor(s) that are able to track the motion, in concert with sensor(s) in the first assembly 604 . Additional details of systems, devices, sensors, and methods are set forth in U.S. Pat. No. 8,118,815; US US2010/0076505; and U.S. Pat. No.
  • the sensors in assemblies 604 , 606 preferably transfer data among themselves and in some cases with external devices and monitors wirelessly, using Bluetooth, Wifi® or other standard wireless telemetry protocol.
  • the system 600 can include one or more fixation pins.
  • a first fixation pin 610 and a second fixation pin 612 are shown.
  • Other configurations are contemplated (e.g., one fixation pin, three fixation pins, four fixation pins, etc.).
  • the fixation pins 610 , 612 can be elongate structures.
  • FIG. 19 shows the fixation pin 610 .
  • the fixation pins 610 , 612 are identical or substantially similar.
  • the fixation pins 610 , 612 are different and can be adapted to be inserted into different anatomic locations.
  • the fixation pin 610 can be substantially cylindrical, as shown in FIG. 19 .
  • the fixation pin 610 can have a distal end 614 that can be advanced to a pelvic bone at an anatomical location or landmark or other selected location. In the illustrated embodiment, the distal end 614 is threaded. The distal end 614 can include a sharpened tip designed to penetrate bone.
  • the fixation pin 610 can have a proximal end 616 .
  • the proximal end 616 can include attachments features to couple the fixation pin 610 with a driver. In the illustrated embodiment, the proximal end 616 includes a tri-flat shape designed to couple with a tri-flat socket.
  • the fixation pin 610 can include one or more markings along the length of the fixation pin 610 . The markings can indicate the orientation of the fixation base 602 relative to the fixation pin 610 .
  • each fixation pin 610 , 612 can be driven into the ilium on the pelvis.
  • each fixation pin 610 , 612 can be coupled with other bones in other techniques.
  • one of the fixation pins 610 , 612 can be coupled with the ischium or the pubis.
  • one of the fixation pins 610 , 612 is mounted to a pelvic bone but not at a landmark.
  • One of the fixation pins 610 , 612 can be coupled at a point superior to the superior-most point on the acetabular rim.
  • one of the fixation pins 610 , 612 is about 10 mm above the superior-most point on the acetabular rim.
  • three or more anatomical landmarks disposed about the acetabulum can be acquired, as discussed below.
  • one of the fixation pins 610 , 612 is coupled with a landmark, only two additional landmarks are acquired in some embodiments as discussed below.
  • One reason for mounting the fixation pins 610 , 612 away from the landmarks is that the landmarks may not be visible or accessible before dislocating the hip joint. If the clinician wishes to use the system 600 to reference the femur as discussed below, it may be required to mount the fixation pins 610 , 612 away from the landmarks.
  • the system 600 can include the fixation base 602 shown in FIGS. 20A-20H .
  • the fixation base 602 can function as a clamp with the one or more fixation pins 610 , 612 .
  • FIG. 20A shows an exploded view of the fixation base 602 .
  • FIGS. 20B-20D show other views of the fixation base 602 .
  • the fixation base 602 can include a platform 620 and a support 622 .
  • the platform 620 can interact with the support 622 to function as a clamp.
  • the fixation base 602 can include one or more fixation devices 624 .
  • two fixation devices are shown but other configurations are contemplated (e.g., one, three, four, etc.).
  • the fixation devices 624 can include one or more threaded sections. In the illustrate embodiment, the fixation devices 624 are screws with a head and a threaded shank.
  • the platform 620 can include one or more holes.
  • the support 622 can include one or more holes.
  • the fixation devices 624 can pass through or engage one or more holes in the support 622 . In some embodiments, each hole in the support 622 is threaded.
  • the fixation devices 624 can pass through or engage one or more holes in the platform 620 . In some embodiments, each hole in the platform 620 is threaded. Rotation of the fixation devices 624 can cause the support 622 to move toward the platform 620 and/or the platform 620 to move toward the support 622 .
  • the platform 620 and the support 622 form one or more channels therebetween, as shown in FIG. 20C .
  • the number of channels can correspond to the number of fixation pins.
  • a first channel 626 and a second channel 628 are shown.
  • the channels extend from a top surface of the platform 620 and/or the support 622 to a bottom surface of the platform 620 and/or the support 622 .
  • the channels 626 , 628 extend in a direction transverse to the direction of the fixation devices 624 when the fixation devices 624 are engaged with the platform 620 and the support 622 .
  • the first channel 626 is sized to accept the first fixation pin 610 and the second channel 628 is sized to accept the second fixation pin 612 .
  • Rotation of the fixation devices 624 can cause the support 622 to move toward the platform 620 .
  • the channels 626 , 628 can decrease in diameter with the rotation of the fixation devices 624 .
  • each fixation pin 610 , 612 is retained between the platform 620 and the support 622 .
  • the fixation base 602 can include divot 630 .
  • the divot 630 can be associated with a parked configuration or home position, as described herein.
  • the divot 630 is an example of a registration feature disposed on the system 600 .
  • the fixation base 602 can include a first coupler 632 .
  • the first coupler 632 can couple to one or more components of the system 600 .
  • the first coupler 632 is a universal coupler.
  • the first coupler 632 can include an elongate post 635 .
  • the first coupler 632 can have a regular shape (e.g., cylindrical).
  • the first coupler 632 can have an irregular shape (e.g., triangular, teardrop, elliptical, rectangular). The irregular shape may facilitate alignment of other components of the system 600 with the platform 620 of the fixation base 602 .
  • the other components of the system 600 can mate with the first coupler 632 in a single orientation.
  • the first coupler 632 can include a slot 634 .
  • the slot 634 can be transverse to the longitudinal axis of the first coupler 632 .
  • the slot 634 can form an angle with an axis transverse to the longitudinal axis. This angle can be approximately 10°, between 5° and 15°, between 0° and 20°, etc.
  • the slot 634 can be designed to interact with detents of other components of the system 600 , as described herein.
  • the first coupler 632 can include a tapered surface 636 .
  • the tapered surface 636 can facilitate entry of the first coupler 632 within other components of the system 600 .
  • the tapered surface 636 can move the detent of other components of the system 600 when the first coupler 632 is inserter within the other component. As shown in FIG.
  • the first coupler 632 can include the elongate post 635 coupled to a hole on the top surface of the platform 620 .
  • the first coupler 632 A is integrally formed with the platform 620 .
  • a post 632 B can be inserted from a bottom surface of the platform 620 to support the first coupler 632 A.
  • the system 600 can include the first assembly 604 shown in FIGS. 21A-21G .
  • the first assembly 604 can include a pelvic bracket 638 .
  • the pelvic bracket 638 can be substantially vertical in use, as shown in FIG. 18 .
  • the first assembly 604 can be designed to couple with the first coupler 632 of the fixation base 602 .
  • the first assembly 604 can include a lock lever 640 .
  • the lock lever 640 can be coupled to the pelvic bracket 638 with pivot pins.
  • the lock lever 640 can be pivoted relative to the pelvic bracket 638 .
  • the tapered surface 636 of the first coupler 632 causes the pivoting of the lock lever 640 .
  • the surgeon causes the pivoting of the lock lever 640 .
  • the lock lever 640 can include a detent 642 .
  • the detent 642 is sized and shaped to be received within the slot 634 .
  • the engagement of the detent 642 and the slot 634 can rigidly couple the first assembly 604 with the fixation base 602 .
  • the first assembly 604 can include an extension 644 .
  • the extension 644 can be coupled to the pelvic bracket 638 .
  • the extension 644 can include a mount 646 designed to couple with the surgical orientation device 172 .
  • the mount 646 includes a lock and release lever that can pivot relative to the extension 644 .
  • the surgical orientation device 172 can include features to mate with the lock and release lever (not shown). Other configurations are contemplated.
  • the surgical orientation device 172 is rigidly coupled to the extension 644 when engaged with the mount 646 .
  • the surgical orientation device 172 can be angled when coupled to the first assembly 604 , as shown in FIG. 18 .
  • the surgical orientation device 172 can be angled approximately 35° from the horizontal axis.
  • angles from the horizontal axis are contemplated, (e.g., 5°, 10°, 15°, 20°, 25°, 30°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, or 85°, between 30°-40°, between 25°-45′).
  • the angle of the surgical orientation device 172 improves visibility. The angle is a compromise between tilting the surgical orientation device 172 up toward the surgeon and allowing another surgeon or surgical assistant on the other side of the patient to still see the display.
  • One reason for angling the surgical orientation device 172 is that in an anterior approach, the surgeon stands toward the patient's feet while impacting the acetabular implant and a horizontal display would be difficult to see.
  • the surgical orientation device 172 detects orientation and rotation of the device 172 relative to a reference frame.
  • the surgical orientation device 172 preferably comprises at least one sourceless sensor, such as an accelerometer, a gyroscope, or a combination of these sensors and other sensors.
  • the surgical orientation device 172 includes a three axis accelerometer to detect orientation relative to gravity and a plurality of gyroscopes to detect rotation.
  • Other sensors could be used in various modifications. Examples of specific sensor combinations include Analog Devices ADIS 16445 and Invensense MPU-6050 or MPU-9150 among others.
  • the surgical orientation device 172 can be disposable and so the sensors preferably are less expensive sensors.
  • the surgical orientation device 172 is disposable.
  • the extension 644 can include a second coupler 648 .
  • the second coupler 648 is a universal coupler.
  • the second coupler 648 can be substantially similar to the first coupler 632 described herein.
  • the second coupler 648 can be designed to couple with the second assembly 606 .
  • the couplers 632 , 648 are designed to secure to other components of the system 600 in a secure but releasable manner.
  • the engagement between the coupler 632 and the first assembly 604 minimizes or prevents relative movement therebetween to avoid any mechanical relative movement during navigation procedures so that movement of the surgical orientation device 172 corresponds to movement of the hip.
  • the second coupler 648 provides a stable manner to position the second assembly 606 relative to the first assembly 604 .
  • the system 600 can include the second assembly 606 shown in FIG. 22A-22F .
  • the second assembly 606 can include a probe bracket 652 .
  • the probe bracket 652 can be substantially angled with respect to the pelvic bracket 638 when in use, as shown in FIG. 18 .
  • the second assembly 606 can be designed to couple with the second coupler 648 of the first assembly 604 .
  • the second assembly 606 can include a lock lever 654 .
  • the lock lever 654 can be coupled to the probe bracket 652 with pivot pins.
  • the lock lever 654 can be pivoted relative to the probe bracket 652 .
  • the tapered surface of the second coupler 648 causes the pivoting of the lock lever 654 .
  • the surgeon causes the pivoting of the lock lever 654 .
  • the lock lever 654 can include a detent 656 .
  • the detent 656 is sized and shaped to be received within the slot of the second coupler 648 .
  • the engagement of the detent 656 and the slot can rigidly couple the second assembly 606 with the first assembly 604 .
  • the second assembly 606 includes a mount 658 .
  • the mount 658 can be coupled to the probe bracket 652 to allow relative movement therebetween.
  • the mount 658 can be received within an opening in the probe bracket 652 .
  • the mount 658 can permit rotation about a longitudinal axis of the mount 658 relative to the probe bracket 652 .
  • the second assembly 606 can include a dock 662 .
  • the dock 662 can be coupled to the mount 658 to allow relative movement therebetween.
  • the dock 662 can be coupled to the mount 658 with one or more pivot pins 660 .
  • the dock 662 can have two degrees of freedom relative to the probe bracket 652 (e.g., rotational motion and pivoting motion).
  • the dock 662 can include a sliding support with a through lumen 664 .
  • the through lumen 664 is sized to accept a probe 678 .
  • the probe 678 has a distal end 680 designed to touch locations, as described herein.
  • the distal end 680 can be straight as shown in FIG. 22A . In other embodiments, the distal end 680 is slanted or curved, e.g., as shown in FIGS. 4 and 17 .
  • the through lumen 664 of the dock 662 permits slideable extension of the probe 678 .
  • the dock 662 is movable relative to the probe bracket 652 (e.g., via rotation of the mount 658 and pivoting of the pivot pin 660 ).
  • the dock 662 can be rotated about a longitudinal axis of the mount 658 to different rotational positions relative to the attachment location of the fixation pins 610 , 612 . This may require movement of the mount 658 in a rotational manner relative to the probe bracket 652 .
  • the dock 662 can be pivoted about the longitudinal axis of the pivot pins 660 to different positions relative to the attachment location of the fixation pins 610 , 612 . This may require movement of the dock 662 in a pivoting manner relative to the mount 658 .
  • the probe 678 can be coupled to the dock 662 such that the probe 678 is movable relative to the probe bracket 652 (e.g., via rotation of the mount 658 and pivoting of the pivot pin 660 ). This maneuverability enables the distal end 680 of the probe 678 to pivot or rotate to contact anatomical landmarks, as discussed herein.
  • the probe 678 can be slid relative to the dock 662 to different translational positions relative to the attachment location of the fixation pins 610 , 612 .
  • the slidability of the probe 678 within the dock 662 enables the distal end 680 to move to reach anatomical landmarks in the same plane of the probe 678 but closer to or farther from the distal end 680 .
  • the second assembly 606 permits a range of motion of a distal end 680 of the probe 678 to facilitate acquiring a plurality of landmarks that are different distances from the attachment location of the fixation pins 610 , 612 , as discussed further below.
  • the distal end 680 of the probe 678 can be extended away from the axis of the sliding support of the dock 662 or can be retracted to a position closer to the axis of the sliding support of the dock 662 .
  • the dock 662 can include a third coupler 668 .
  • the third coupler 668 is a universal coupler.
  • the third coupler 668 is identical or substantially similar to the second coupler 648 . This permits the orientation sensing device 204 to couple to either the second coupler 648 or the third coupler 668 , as described herein.
  • the third coupler 668 can be substantially similar to the first coupler 632 described herein.
  • the third coupler 668 can be designed to couple with the orientation sensing device 204 .
  • FIG. 23A-23C illustrate an embodiment of the orientation sensing device 204 .
  • the second assembly 606 can include an extension 670 .
  • the extension 670 can couple to the third coupler 668 of the dock 662 .
  • the extension 670 can include a mount 672 designed to couple with the orientation sensing device 204 .
  • the mount 672 includes a lock and release lever that can pivot relative to the extension 670 .
  • the orientation sensing device 204 can include features to mate with the lock and release lever. Other configurations are contemplated.
  • the orientation sensing device 204 is rigidly coupled to the extension 670 when engaged with the mount 672 .
  • the orientation sensing device 204 can be angled when coupled to the second assembly 606 , as shown in FIG. 18 .
  • the orientation sensing device 204 can be angled approximately 35° from the horizontal axis. Other angles from the horizontal axis are contemplated, (e.g., 5°, 10°, 15°, 20°, 25°, 30°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, or 85°, between 30°-40°, between 25°-45°). In some embodiments, the angle of the orientation sensing device 204 improves visibility.
  • the orientation sensing device 204 detects orientation and rotation of the probe 678 , as described herein.
  • the orientation sensing device 204 preferably comprises at least one sourceless sensor, such as an accelerometer, a gyroscope, or a combination of these sensors and other sensors.
  • the orientation sensing device 204 includes a three axis accelerometer to detect orientation relative to gravity and a plurality of gyroscopes to detect rotation. Other sensors could be used in various modifications.
  • the orientation sensing device 204 is reusable.
  • the probe 678 can include a marking 682 .
  • the marking 682 can indicate length or extension of the probe 678 relative to the dock 662 .
  • the marking 682 can include a scale. In some embodiments, the marking 682 can be over a range of from about 8 inches, 10 inches, 12 inches, approximately 8-12 inches, etc.
  • the marking 682 can be printed on the probe 678 . In some embodiments, the marking 682 can be on a separate component such as a probe inlay 676 .
  • the probe inlay 676 can be received within a portion of the probe 678 . In some embodiments, the probe inlay 676 is separated a distance from the distal end 680 of the probe 678 .
  • the system 600 can include a camera 684 .
  • the camera 684 can capture images of the marking 682 .
  • the camera 684 and/or the orientation sensing device 204 can include a light to illuminate the marking 682 .
  • the light is a LED.
  • the dock 662 includes a window to permit the camera 684 to capture images.
  • the camera 684 captures images of the marking 682 extending beyond the dock 662 .
  • the camera 684 can read the marking 682 to provide accurate determination of the translational position of the probe 678 relative to the dock 662 . This can enable one of the sensors in the orientation sensing device 204 to be eliminated or inactivated.
  • camera data derived from the marking 682 can be used to confirm the data from sensors in the orientation sensing device 204 .
  • the camera 684 is integrally formed with the orientation sensing device 204 . In some embodiments, the camera 684 is a separate component from the orientation sensing device 204 .
  • the camera 684 can be held in a fixed position relative to the dock 662 .
  • the marking 682 can be positioned on the probe 678 beneath the camera 684 when the probe 678 is positioned within the through lumen 664 .
  • the camera 684 can be directly above the marking 682 .
  • the camera 684 can be fixed relative to the through lumen 664 of the dock 662 .
  • the dock 662 , the camera 684 and the orientation sensing device 204 can move as a unit to allow positioning of the probe 678 .
  • One advantage of orienting the orientation sensing device 204 as illustrated in system 600 is improved visibility.
  • the lower-profile construct is less likely to obstruct the user's view.
  • One advantage of orienting the orientation sensing device 204 as illustrated in system 600 is ease of manufacturing.
  • the camera 684 can be mounted flush on the circuit board.
  • the corresponding transparent window (not shown), which can allow the camera 684 to capture images, in the housing of the orientation sensing device 204 is oriented in the direction of the mold pull.
  • the shorter distance to the marking 682 also better accommodates the available camera, which has a short focal length.
  • the camera 684 captures an image though a lumen (not shown) in the dock 662 .
  • One advantage of having the camera 684 read the marking 682 through the lumen is this shields the camera 684 from outside light sources.
  • Light such as OR light
  • the camera 684 may interfere with the camera function such as the function of capturing an image of the marking 682 .
  • the camera 684 may incorporate a shroud feature to block ambient light.
  • the camera 684 is pointed downward from a back side of the orientation sensing device 204 .
  • the orientation sensing device 204 shields camera 684 from light.
  • the system 600 can include a femur tracker 686 as shown in FIG. 24A-24B .
  • the femur tracker 686 can be coupled to the femur as shown in FIG. 18 .
  • the femur tracker 686 can be used to track the position of the femur during the procedure.
  • the femur tracker 686 can include one or more fixation structures.
  • the fixation structures are holes 688 .
  • the holes 688 are sized to permit a fastener therethrough (e.g., a screw, pin, k-wire, etc.).
  • the femur tracker 686 can include one or more points 690 .
  • the points 690 can include Points A, B, C as described herein and shown in FIG. 24A .
  • the femur tracker 686 can include three points 690 . Other configurations are contemplated (e.g., one point, two points, four points, five points, etc.).
  • the points 690 can include divots as shown in FIG. 24A .
  • the points 690 can include markings.
  • the femur tracker 686 can provide more consistent and repeatable results than a marking the femur.
  • the femur tracker 686 can provide points 690 which are fixed relative to the femur.
  • the femur tracker 686 can provide multiple points 690 .
  • the software in the surgical orientation device 172 can then correct for changes in the femur angle with respect to the pelvis between the baseline measurement and the later measurement.
  • the baseline measurement can be a preoperative measurement.
  • the later measurement can be after the shell is positioned in the acetabulum.
  • the points 690 are located on the femur tracker 686 .
  • one or more points are marks located directly on the femur Fm and one or more points are located on the femur tracker 686 .
  • one or more points are marks located directly on the femur Fm.
  • One advantage to using a femur tracker 686 is that the marks are easier to find for repeat registrations.
  • One advantage to using a femur tracker 686 is that spacing the points 690 at known distances from each other allows software checks to verify that the correct points 690 are registered in the right sequence.
  • One advantage to using a femur tracker 686 is that spacing the points 690 at known distances from each other allows software checks to verify that the femur and the pelvis have not moved in between point registrations.
  • One advantage to using marks located directly on the femur Fm is that the components are not affixed to the femur. The marks do not require any drill holes or fasteners. This may prevent future fractures or damage to the proximal end of the femur.
  • the femur tracker 686 can be a unitary structure.
  • the femur tracker 686 can be a low profile component.
  • the femur tracker 686 can be coupled to the femur throughout the procedure.
  • the femur tracker 686 can form a smooth surface preventing the femur tracker 686 from hooking soft tissue.
  • the femur tracker 686 can form a smooth surface preventing the femur tracker 686 from loosening in the bone.
  • FIG. 18 illustrates a parked configuration or home position of the probe 678 .
  • a portion of the distal end 680 is moved into engagement with the platform 620 .
  • the distal end 680 of the probe 678 engages the divot 630 of the platform 620 .
  • the parked configuration enables the navigation system 600 to manage errors that can compound in some inertial sensors.
  • the parked configuration advantageously includes the ability to position and hold the devices 172 , 204 stable for substantially no relative movement.
  • the relative position of the sensors in the devices 172 , 204 when coupled with the first and second assemblies 604 , 606 can be known from the geometry of the first assembly 604 and the second assembly 606 .
  • gyroscopic sensors in the surgical orientation device 172 and in the orientation sensing device 204 can be synchronized when a stable and known orientation is detected and one or more of the gyroscopes, e.g., the gyroscope in the orientation sensing device 204 , can be zeroed after that condition is met. Further techniques employing the parked configuration will be discussed further below.
  • the system 600 can be used to navigate a condition of the femur prior to hip replacement.
  • the orientation sensing device 204 can be initialized or zeroed such as by placing it back in the parked configuration on the platform 620 as in FIG. 18 . Thereafter, the distal end 680 of the probe 678 can be brought into contact with the points 690 .
  • the orientation sensing device 204 can be stationary relative to the dock 662 .
  • the surgical orientation device 172 can be stationary relative to the pelvis.
  • the surgical orientation device 172 can be signaled to record the orientation of the orientation sensing device 204 .
  • the camera 684 can record the extension of the probe 678 relative to the dock 662 .
  • the distance from the camera 684 to the distal end 680 of the probe 678 or the distance from the system 600 to the anatomy being registered can then be recorded in the surgical orientation device 172 .
  • the position can be based on reading by the camera 684 of the marking 682 .
  • the distance can be captured automatically by the camera 684 .
  • the user reads a measurement from the marking 682 and inputs the distance into the surgical orientation device 172 .
  • the system 600 can include features that provide notable advantages for the surgeon.
  • the system 600 can include modular instruments.
  • the fixation base 602 can include a low profile platform 620 and a low profile support 622 .
  • the low profile fixation base 602 can prevent the obstruction of the surgical field.
  • the fixation base 602 can be easily removed when not in use.
  • the clamping action between the platform 620 and the support 622 allow the fixation base 602 to be easily removed from the fixation pins 610 , 612 .
  • rotation of the fixation devices 624 can cause the support 622 to move away from the platform 620 .
  • the channels 626 , 628 can increase in diameter.
  • the platform 620 and the support 622 can be decoupled from the fixation pins 610 , 612 .
  • the one or more fixation pins 610 , 612 can be spaced apart from one another. This can permit the fixation pins 610 , 612 to be driven into different locations on the anatomy of the patient.
  • two fixation pins 610 , 612 are provided.
  • the utilization of two or more fixation pins may provide more stability for the fixation base 602 .
  • the fixation pins 610 , 612 allow the surgeon much more flexibility when anchoring the system 600 .
  • the surgeon has flexibility in the location and/or depth of placement. The surgeon can optimize the penetration angle. In some techniques, the surgeon can enter the bone more perpendicularly.
  • the fixation pins 610 , 612 can be placed in locations to avoid sensitive anatomical structures.
  • the system 600 can include one or more couplers.
  • the system 600 can include the first coupler 632 coupled to the platform 620 of the fixation base 602 .
  • the first coupler 632 can couple the fixation base 602 to the first assembly 604 as shown in FIG. 18 .
  • the first coupler 632 can couple the fixation base 602 to any other component of the system 600 .
  • the system 600 can include the second coupler 648 coupled to the first assembly 604 .
  • the second coupler 648 can couple the first assembly 604 to the second assembly 606 as shown in FIG. 18 .
  • the second coupler 648 can couple the first assembly 604 to the extension 670 as described herein.
  • the second coupler 648 can couple the first assembly 604 to any other component of the system 600 .
  • the system 600 can include the third coupler 668 coupled to the dock 662 of the second assembly 606 .
  • the third coupler 668 can couple the dock 662 to the extension 670 as shown in FIG. 18 .
  • the third coupler 668 can couple the second assembly 606 to any other component of the system 600 .
  • couplers allow components to rigidly couple.
  • the couplers can couple components in a single orientation.
  • the slot of the couplers, such as slot 634 of the first coupler 632 can be angled relative to the horizontal axis. This can prevent inadvertent detachment of the components from the couplers.
  • the system 600 can include the camera 684 .
  • the camera 684 can be a component of the orientation sensing device 204 .
  • the orientation sensing device 204 can be coupled to the dock 662 with the third coupler 668 .
  • the camera 684 can be in a fixed location relative to the probe 678 .
  • the camera 684 can remain fixed in position as the probe 678 is moved.
  • the camera 684 can be oriented such that the camera 684 faces the marking 682 .
  • the orientation sensing device 204 can be in a fixed location relative to the probe 678 .
  • the orientation sensing device 204 can remain fixed in position as the probe 678 is moved.
  • the orientation sensing device 204 can be oriented such that a flat back side of the orientation sensing device 204 faces the marking 682 .
  • the camera 684 can capture an image of the marking 682 .
  • the image can correspond with a distance of the probe 678 .
  • the distance changes as the probe 678 slides through the through lumen 664 of the dock 662 .
  • the camera 684 can read a binary code of the marking 682 .
  • the camera 684 can read a scale or other markings.
  • the camera 684 can be positioned directly over the marking 682 .
  • the distance related to the extension of the probe 678 can be used in conjunction with the orientation and positional data from the orientation sensing device 204 .
  • the surgical orientation device 172 can use the length measurement from the camera 684 and the data from the orientation sensing device 204 to determine the location of the distal end 680 of the probe 678 .
  • FIGS. 25A-25C show a hip navigation system 600 A adapted to navigate a hip joint procedure with reference to anatomical landmarks.
  • the system 600 A is shown mounted on a pelvis in a posterior approach in FIGS. 25A-25C .
  • the system 600 A can include any of the features described above with reference to system 600 and any component described herein.
  • the system 600 A can be used in any technique or method step described herein.
  • the system 600 A can include the surgical orientation device 172 described herein.
  • the system 600 A can include the orientation sensing device 204 described herein.
  • the system 600 A includes a camera 684 described herein.
  • the system 600 A can include a fixation base 602 A, a first assembly 604 A and a second assembly 606 A.
  • the first assembly 604 A is rigidly connected to the hip in the illustrated configuration so that motion of the hip cause corresponding motion of sensor(s) in the first assembly 604 A as discussed below. Sensing this motion enables the system 600 A to eliminate movement of the patient as a source of error in the navigation.
  • the second assembly 606 A provides a full range of controlled motion and sensor(s) that are able to track the motion, in concert with sensor(s) in the first assembly 604 A.
  • the system 600 A can include the fixation base 602 A as shown in FIGS. 26A-26C .
  • the fixation base can include a platform 620 A.
  • the platform 620 A can include one or more holes 611 A.
  • the holes 611 A can be sized to accept a fastener 613 A to secure the fixation base 602 A to the bone, shown in FIG. 25B .
  • the platform 620 A can include one or more spikes 615 A.
  • the spikes 615 A can secure the fixation base 602 A to the bone.
  • the fixation base 602 A can include divot 630 A.
  • the divot 630 A can be associated with a parked configuration or home position, as shown in FIG. 25B .
  • the divot 630 A can be a registration feature of the system 600 .
  • each fastener 613 A can be driven into the ilium on the pelvis.
  • each fastener 613 A can be coupled with other bones in other techniques.
  • one of the fasteners 613 A can be coupled with the ischium or the pubis.
  • one of the fasteners 613 A is mounted to a pelvic bone but not at a landmark.
  • One of the fasteners 613 A can be coupled at a point superior to the superior-most point on the acetabular rim.
  • one of the fasteners 613 A is about 10 mm above the superior-most point on the acetabular rim.
  • three or more anatomical landmarks disposed about the acetabulum can be acquired, as discussed below.
  • one of the fasteners 613 A is coupled with a landmark, only two additional landmarks are acquired in some embodiments as discussed below.
  • One reason for mounting the fastener 613 A away from the landmarks is that the landmarks may not be visible or accessible before dislocating the hip joint. If the clinician wishes to use the system 600 A to reference the femur as discussed below, it may be required to mount the fasteners 613 A away from the landmarks.
  • the fixation base 602 A can include the first coupler 632 .
  • the first coupler 632 can couple to one or more components of the system 600 A.
  • the system 600 A can include the first assembly 604 A shown in FIGS. 25A-25B .
  • the first assembly 604 A can include a pelvic bracket 638 A.
  • the pelvic bracket 638 A can be substantially vertical in use, as shown in FIG. 25A .
  • the first assembly 604 A can be designed to couple with the first coupler 632 of the fixation base 602 A.
  • the pelvic bracket 638 A of system 600 A can be longer than the pelvic bracket 638 of system 600 .
  • the system 600 A can include the second assembly 606 A shown in FIG. 25A .
  • the distal end 680 A of the probe 678 A can pivot or rotate to contact anatomical landmarks, similar to probe 678 A described herein.
  • the distal end 680 can be angled, slanted or curved.
  • the curvature of the distal end 680 A of the probe 678 A can facilitate the acquisition of landmarks or other points as described herein.
  • the probe 678 A can be slid to different translational positions relative to the attachment location of the fixation base 602 A.
  • the second assembly 606 A permits a range of motion of a distal end 680 A of the probe 678 A to facilitate acquiring a plurality of landmarks that are different locations from the attachment location of the fixation base 602 A.
  • the system 600 A can include a femur tracker 686 A as shown in FIG. 25C .
  • the femur tracker 686 A can be coupled to a femur base 687 A as shown in FIG. 25C .
  • the femur tracker 686 A can be used to track the position of the femur during the procedure.
  • the femur base 687 A can include one or more fixation structures.
  • the fixation structures are holes 688 A shown in FIG. 28C .
  • the holes 688 A are sized to permit a fastener therethrough (e.g., a screw, pin, k-wire, etc.).
  • the femur base 687 A can include spikes 685 A as shown in FIGS. 28A-28B .
  • the spikes 685 A can anchor the femur base 687 A to the femur.
  • the femur tracker 686 A and/or the femur base 687 A can include one or more points 690 .
  • the points 690 can include Points A, B, C as described herein.
  • the femur tracker 686 A and/or the femur base 687 A can include three points 690 .
  • the femur base 687 A includes one point 690 and the femur tracker 686 A includes two points 690 .
  • the points 690 can include divots.
  • the points 690 can include markings.
  • the femur tracker 686 A and the femur base 687 A can be separate components. In other embodiments, the femur tracker 686 A and the femur base 687 A can be a unitary structure.
  • the femur tracker 686 A can include a bracket 689 A as shown in FIG. 27A-27C .
  • the bracket 689 A can be substantially vertical in use, as shown in FIG. 25C .
  • the femur tracker 686 A can include a lock lever 691 A.
  • the lock lever 691 A can be coupled to the bracket 689 A with pivot pins.
  • the lock lever 691 A can be pivoted relative to the bracket 689 A.
  • the femur tracker 686 A can include an extension 693 A.
  • the extension 693 A can include the points 690 .
  • the femur base 687 A can include a fifth coupler 695 A as shown in FIG. 28A-28C .
  • the femur tracker 686 A can be designed to couple with the fifth coupler 695 A of the femur base 687 A.
  • the tapered surface of the fifth coupler 695 A causes the pivoting of the lock lever 691 A.
  • the surgeon causes the pivoting of the lock lever 691 A.
  • the lock lever 691 A can include a detent which is sized and shaped to be received within the slot 697 A. The engagement of the detent and the slot 697 A can rigidly couple the femur tracker 686 A with the femur base 687 A.
  • FIG. 25B illustrates a parked configuration or home position of the probe 678 A.
  • a portion of the distal end 680 A is moved into engagement with the platform 620 A.
  • the distal end 680 A of the probe 678 A engages the divot 630 A of the platform 620 A.
  • the system 600 A can be used to navigate a condition of the femur prior to hip replacement.
  • the system 600 A can include features that provide notable advantages for the surgeon.
  • the system 600 A can include modular instruments.
  • the fixation base 602 A can include a low profile platform 620 A.
  • the low profile fixation base 602 A can prevent the obstruction of the surgical field.
  • the first assembly 604 A can be easily removed when not in use.
  • the distal end 680 A of the probe 678 A can be angled, bent or curved to facilitate acquiring one or more landmarks or points.
  • the distal end 680 A of the probe 678 A can be bent or curved to reach the home position.
  • the femur tracker 686 A can be releasably coupled to the femur base 687 A.
  • the femur tracker 686 A can be easily removed when not in use.
  • the femur tracker 686 A and/or the femur base 687 A can provide points on multiple planes.
  • FIGS. 18 and 25A illustrate a step of a navigated hip joint implant procedure discussed in detail below. Some of the preceding steps involve removing the to-be-replaced joint, navigating the hip joint, preparing the implant location for the artificial joint, and placing the joint, as elaborated below. As discussed further below, FIGS. 18 and 25B illustrate a technique for confirming that these steps were properly performed.
  • Points A-H are locations on the anatomy that may be relevant to various methods and systems herein.
  • the navigation system 600 , 600 A is configured to locate a relevant anatomical feature to aid in proper placement of a prosthetic hip joint.
  • pre-operative imaging techniques are used.
  • the surgeon can use a standing or supine anteroposterior (AP) pelvic x-ray.
  • FIG. 29 shows standing AP radiograph taken with patient standing with feet in neutral rotation and shoulder width apart in stance.
  • the x-ray tube-to-film distance should be 120 cm, with the crosshairs centered on the midpoint between the superior border of the pubic symphysis and a line drawn connecting the anterior superior iliac spines (ASIS).
  • ASIS anterior superior iliac spines
  • the coccyx should be centered in line with the pubic symphysis, and the iliac wings, obturator foramina and radiographic teardrops should be symmetrical in appearance.
  • a 1-3 cm gap should be seen between the tip of the coccyx and the superior border of the pubic symphysis. This positioning can be important for measuring the patient specific Rim Teardrop (RT) angle.
  • RT Rim Teardrop
  • the surgeon can complete one or more of the following steps.
  • the surgeon can draw a line on the x-ray connecting the bottom of the teardrops.
  • the surgeon can draw a line from the most lateral point on the rim of the acetabulum (R) on the operative side through the bottom of the teardrop (T) to the horizontal inter-teardrop line. If osteophytes are present on the rim (R), the surgeon can draw a line through the most lateral osteophyte.
  • the surgeon can measure the angle between the inter-teardrop line and the RT line just drawn. This patient specific RT inclination angle can be an input for the system 600 , 600 A.
  • FIG. 30 shows the patient positioning for the posterior hip approach.
  • the patient In the posterior hip approach, the patient should be placed in the lateral decubitus position.
  • the surgeon When positioning the patient prior to surgery, the surgeon should take care to align the anterior pelvic landmarks (both ASIS and pubic tubercle) in a vertical plane parallel to the long edge of the operating table. The surgeon should ensure that the pelvis is securely held by an appropriate positioning device such as a peg board or vise-type patient positioner.
  • the surgical orientation device 172 and the orientation sensing device 204 should be turned on. If different programs are present, the surgeon should select the hip procedure program. If different programs are present, the surgeon should select the posterior hip approach. The surgeon can verify that patient is positioned in the standard lateral decubitus position.
  • the surgical orientation device 172 can include a display screen. The display screen can confirm the communication between the surgical orientation device 172 and the orientation sensing device 204 .
  • the system 600 , 600 A can be partially assembled for calibration as shown in FIG. 31 .
  • the pelvic bracket 638 can be coupled to the extension 644 , if separate components.
  • the surgical orientation device 172 can be coupled to the mount 646 .
  • the extension 670 can be coupled to the second coupler 648 .
  • the orientation sensing device 204 can be coupled to the mount 672 .
  • the surgical orientation device 172 and the orientation sensing device 204 form a general V-shaped configuration.
  • the orientation sensing device 204 can be fixed in position relative to the surgical orientation device 172 .
  • the surgical orientation device 172 and the orientation sensing device 204 can be calibrated.
  • the assemblies 604 , 606 or 604 A, 606 A can be angled forward so that the backside of the surgical orientation device 172 rests on a level surface.
  • the surgeon can hold the assemblies 604 , 606 or 604 A, 606 A steady until the surgical orientation device 172 indicates completion.
  • the assemblies 604 , 606 or 604 A, 606 A can be angled backward so that the backside of the orientation sensing device 204 rests on a level surface.
  • the surgeon can hold the assemblies 604 , 606 or 604 A, 606 A steady until the surgical orientation device 172 indicates completion.
  • the assemblies 604 , 606 or 604 A, 606 A can be placed on the left side so that the left side of the surgical orientation device 172 rests on a level surface.
  • the surgeon can hold the assemblies 604 , 606 or 604 A, 606 A steady until the surgical orientation device 172 indicates completion.
  • the assemblies 604 , 606 or 604 A, 606 A can be angled forward again so that the backside of the surgical orientation device 172 rests on a level surface to verify calibration.
  • the surgeon can hold the assemblies 604 , 606 or 604 A, 606 A steady until the surgical orientation device 172 indicates completion.
  • the displayed angles should be less than 2°, less than 1°, approximately 0° etc. to verify calibration.
  • the extension 670 can be decoupled to the second coupler 648 .
  • the second assembly 606 , 606 A can be assembled as shown in FIGS. 22B and 25A .
  • the mount 658 can be coupled to the probe bracket 652 .
  • the mount 658 can rotate relative to the probe bracket 652 .
  • the mount 658 can be coupled to the dock 662 .
  • the dock 662 can pivot relative to the mount 658 about one or more pivot pins 660 .
  • the extension 670 can be coupled to the third coupler 668 of the dock 662 .
  • the orientation sensing device 204 can be coupled to the mount 672 .
  • the probe bracket 652 can be coupled to the second coupler 648 .
  • the first assembly 604 , 604 A can be coupled to the second assembly 606 , 606 A as shown in FIGS. 18 and 25A .
  • the probe 678 can be inserted within the through lumen 664 of the dock 662 .
  • the marking 682 can be beneath the camera 684 .
  • the surgeon can verify the camera 684 is capturing the measurements of the marking 682 by sliding the probe 678 to different positions.
  • the surgical orientation device 172 can display different positions of the probe 678 as the probe 678 is moved.
  • the probe 678 A can be similarly positioned within the second assembly 606 A as shown in FIG. 25A .
  • the system 600 , 600 A can be attached to the pelvis.
  • the fixation pins 610 , 612 can be inserted into the bone.
  • one or more of the fixation pins 610 , 612 are positioned approximately 10 mm above the most superior point on the acetabular rim.
  • the fixation pins 610 , 612 can be perpendicular to the long axis of the patient.
  • the fixation pins 610 , 612 can be inserted by use of a driver.
  • the fixation pins 610 , 612 are driven into bone with a mallet until the distal ends are fully seated within the bone.
  • the fixation pins 610 , 612 can be inserted into the channels 626 , 628 prior to or after the fixation pins 610 , 612 are driven into the bone.
  • the support 622 can be brought toward the platform 620 , thereby decreasing the diameter of the channels 626 , 628 .
  • the fixation pins 610 , 612 can be secured to the fixation base 602 .
  • the first assembly 604 can be coupled to the first coupler 632 .
  • the surgical orientation device 172 can be coupled to the first assembly 604 .
  • the second assembly 606 can be coupled to the second coupler 648 .
  • the orientation sensing device 204 can be coupled to the second assembly 606 .
  • the system 600 can be positioned as shown in FIG. 18 .
  • the fixation base 202 A can be affixed with fasteners 613 A, as shown in FIG. 25B .
  • the system 600 A can be positioned as shown in FIG. 25B .
  • the femur tracker 686 , 686 A can be coupled to the femur.
  • the femur tracker 686 can be positioned on the greater trochanter.
  • the curved end of the femur tracker 686 can be pointing toward the head of the patient.
  • One or more fixation devices can be placed through the each hole 688 of the femur tracker 686 to secure the femur tracker 686 to the femur.
  • the femur tracker 686 can be positioned as shown in FIG. 18 .
  • the femur base 687 A can be positioned on the greater trochanter.
  • the femur tracker 686 A can be assembled as shown in FIG. 25C .
  • the femur tracker 686 A can be coupled to the femur base 687 A as described herein.
  • the surgeon should select which hip is being operated on (e.g., right or left hip). The surgeon can verify that patient is positioned in the standard lateral decubitus position. If different programs are present, the surgeon should select the gender of the patient being operated on (e.g., male or female). If different programs are present, the surgeon should select the target cup inclination angle. This angle can be selected based upon the radiographic inclination angle. If different programs are present, the surgeon should select the target cup anteversion angle. This angle can be selected based upon the radiographic anteversion angle. If different programs are present, the surgeon should select the RT inclination angle. This angle can be selected based upon the radiographic RT inclination angle, such as from the A/P pelvic x-ray.
  • the surgeon can register a parked configuration or home position.
  • the distal end 680 , 680 A of the probe 678 , 678 A can be engaged with a point on the platform 620 , 620 A.
  • the platform 620 , 620 A can include the divot 630 , 630 A.
  • the divot 630 , 630 A can be sized to accept the distal end 680 , 680 A of the probe 678 , 678 A. This position is shown in FIGS. 18 and 25B .
  • the probe 678 , 678 A can be angled relative to vertical in the home position.
  • the dock 662 can be angled relative to vertical in the home position.
  • the orientation sensing device 204 coupled to the dock 662 can be angled relative to vertical in the home position.
  • the surgical orientation device 172 can be also angled relative to vertical in the home position.
  • the orientation sensing device 204 can register the operating table, in other words perform table registration.
  • the patient can be positioned so that the sagittal plane of the pelvis is level.
  • the surgeon can align the probe 678 , 678 A with the horizontal.
  • the probe 678 , 678 A can be parallel with the coronal plane.
  • the system 600 , 600 A can calculate cup angles based on the assumption that the pelvis of the patient is correctly positioned during table registration.
  • the femur can be positioned in a neutral reference position with respect to flexion, abduction and rotation. This neutral position can be representative of a standing position of the patient.
  • the femur should be maintained in this position during the initial registration of points 690 , such as Points A, B, and C, shown in FIGS. 24A and 25C .
  • the surgeon can confirm that the orientation sensing device 204 is coupled to the dock 662 .
  • the surgeon can position the distal end 680 , 680 A of the probe at Point A of points 690 .
  • the distal end 680 , 680 A is place within a divot at Point A on the femur tracker 686 , femur base 687 A.
  • the surgeon can enter an input to register Point A (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point A was recorded.
  • the surgeon can position the distal end 680 , 680 A of the probe at Point B of points 690 .
  • the distal end 680 , 680 A is place within a divot at Point B on the femur tracker 686 , 686 A.
  • the surgeon can enter an input to register Point B (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point B was recorded.
  • the surgeon can position the distal end 680 , 680 A of the probe at Point C of points 690 .
  • the distal end 680 , 680 A is place within a divot at Point C on the femur tracker 686 , 686 A.
  • the surgeon can enter an input to register Point C (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point C was recorded.
  • the surgeon can position the distal end 680 , 680 A of the probe 678 , 678 A at various anatomical landmarks.
  • FIG. 32 illustrates four landmarks which can be utilized in some techniques.
  • Point 1 is the most superior point of rim. The surgeon should not remove any osteophytes from this landmark prior to registration of Point 1.
  • Point 1 registered landmark should match the anatomy identified on the pre-operative x-ray.
  • the distal end 680 , 680 A of the probe 678 , 678 A is placed at Point 1.
  • the surgeon can enter an input to register Point 1 (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point 1 was recorded.
  • Point 2 can be the most inferior point of the acetabular notch. The surgeon should not remove any osteophytes from this landmark prior to registration of Point 2. Point 2 registered landmark should match the anatomy identified on the pre-operative x-ray.
  • the transverse acetabular ligament (TAL) straddles the inferior limit of the bony acetabulum. It is a strong load-bearing structure and, in the normal hip, in association with the labrum, provides part of the load-bearing surface for the femoral head.
  • the distal end 680 , 680 A of the probe 678 , 678 A is placed at Point 2. The surgeon can enter an input to register Point 2 (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point 2 was recorded.
  • Point 3 can be the posterior insertion of the transverse acetabular ligament (TAL). The surgeon should remove any osteophytes from this landmark prior to registration of Point 3. This will uncover or replicate native anatomy of the landmark.
  • the distal end 680 , 680 A of the probe 678 , 678 A is placed at Point 3.
  • the surgeon can enter an input to register Point 3 (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point 3 was recorded.
  • Point 4 is the anterior insertion of the transverse acetabular ligament (TAL) in one embodiment.
  • the surgeon should remove any osteophytes from this landmark prior to registration of Point 4. This will uncover or replicate native anatomy of the landmark.
  • the distal end 680 , 680 A of the probe 678 , 678 A is placed at Point 4.
  • the surgeon can enter an input to register Point 4 (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point 4 was recorded.
  • the camera 684 When registering the anatomical points or points 690 on the femur tracker 686 , the camera 684 captures an image of the marking 682 .
  • the camera 684 can read the marking 682 to provide accurate determination of the translational position of the probe 678 relative to the dock 662 .
  • the camera 684 can be directly above the marking 682 . In some methods, the camera 684 can read a binary code of the marking 682 .
  • the orientation sensing device 204 converts the image of the camera 684 into an extension measurement of the probe 678 .
  • the surgical orientation device 172 converts the image of the camera 684 into an extension measurement of the probe 678 .
  • the distance related to the extension of the probe 678 can be used in conjunction with the orientation and positional data from the orientation sensing device 204 .
  • the surgical orientation device 172 can use the length measurement from the camera 684 and the data from the orientation sensing device 204 to determine the location of the distal end 680 of the probe 678 .
  • the surgeon will enter an input (e.g., depress a button) to collect data from the orientation sensing device 204 .
  • the surgeon will enter an input (e.g., depress a button) to collect data from the camera 684 .
  • the surgeon will enter an input (e.g., depress a button) to collect data from the orientation sensing device 204 and the camera 684 simultaneously.
  • the orientation sensing device 204 and/or the camera 684 will only send data to the surgical orientation device 172 if the orientation sensing device 204 is stable or non-moving.
  • the points 690 can include divots to stabilize the distal end 680 , 680 A of the probe 678 , 678 A when the points 690 are registered.
  • the surgeon can set the angle of the cup. Later in the procedure, the surgeon can check cup angle after the angle has been set.
  • the surgeon can remove the second assembly 606 , 606 A from the first assembly 604 , 604 A.
  • the surgeon can remove the extension 670 from the third coupler 668 .
  • the surgeon can couple the extension 670 to an impactor 300 B, shown in FIGS. 56A-56F .
  • the impactor 300 B can have a fourth coupler 338 B.
  • the fourth coupler 338 B is a universal coupler.
  • the fourth coupler 338 B is identical or substantially similar to the second coupler 648 and the third coupler 668 .
  • the fourth coupler 338 B can be similar to the first coupler 632 described herein.
  • the fourth coupler 338 B can extend from a side surface of the impactor 300 B.
  • the fourth coupler 338 B can extend perpendicularly to the longitudinal axis of the impactor 300 B.
  • the extension 670 can couple to the fourth coupler 338 B.
  • the mount 672 can be coupled to the orientation sensing device 204 .
  • the acetabular shell can be threaded onto the shell adaptor, similar to FIG. 11C .
  • the shell adaptor can be snapped onto the end of the impactor 300 B, similar to FIG. 11B .
  • the acetabular shell can be inserted into the acetabulum and positioned at the desired angle.
  • the surgical orientation device 172 can guide the surgeon in setting the appropriate cup angle.
  • the surgical orientation device 172 can graphically display when the orientation sensing device 204 is located at the inclination and anterversion angles entered previously.
  • the surgical orientation device 172 can graphically display the inclination and anterversion angles as the orientation sensing device 204 is moved.
  • the surgeon can enter an input to set the desired angle (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can output all inclination and anteversion angles according to radiographic definitions.
  • Anteversion Radiographic Anteversion is the angle between the acetabular axis and the coronal plane.
  • Inclination is the coronal plane projection of the angle between the acetabular axis and the longitudinal axis of the body.
  • the inclination and anteversion cup angles can be displayed statically.
  • the inclination and anteversion cup angles can be displayed statically.
  • the anatomic angles are those calculated by the system 600 based on the pelvic landmark registration.
  • the table angles are those calculated by the system 600 based on the initial positioning of the pelvis during table registration.
  • the orientation sensing device 204 can register the operating table by aligning the probe 678 , 678 A with the horizontal. In some embodiments, only the direction of the projection of the probe 678 , 678 A onto a horizontal plane is used.
  • the probe 678 , 678 A can be in an infinite number of angles from horizontal, which would result in the same software result. This is convenient due to the mechanical constraints imposed by the pivot configuration of the system 600 .
  • the angles displayed can be an average between the anatomic reference and table reference.
  • the inclination angle is calculated based as an average between the anatomic reference and table reference.
  • the anteversion angle is calculated based on the table reference. The surgeon can check cup
  • the surgeon can register the hip center.
  • the surgeon can couple the second assembly 606 , 606 A to the first assembly 604 , 604 A as shown in FIGS. 18 and 25A .
  • the mount 672 can be coupled to the orientation sensing device 204 .
  • the mount 646 can be coupled to the surgical orientation device 172 .
  • the surgeon can confirm that the components of system 600 , 600 A are rigidly coupled.
  • the surgeon can select the first set of points on the rim of the shell 360 to be registered, as shown in FIG. 33 . In the illustrated method, the first set of points is selected on the rim of the shell.
  • the surgeon can place the distal end 680 , 680 A of the probe 678 , 678 A on each of the first set of points shown in FIG. 33 .
  • the surgeon can select the second set of points on the rim of the shell to be registered. In the illustrated method, the second set of points is selected on the rim of the shell. The surgeon can place the distal end 680 , 680 A of the probe 678 , 678 A on each of the second set of points. In some methods, the surgeon should select the third set of points on the rim of the shell to be registered. In the illustrated method, the third set of points is selected on the rim of the shell. The surgeon should place the distal end 680 , 680 A of the probe 678 , 678 A on each of the third set of points. In some methods, the minimum separation distance allowed between points is 25 mm. In some methods, the maximum separation distance allowed between points is 65 mm.
  • the inclination and anteversion angles of the shell are displayed on the surgical orientation device 172 . These angles are based on the plane determined by the three points registered on the rim.
  • the surgeon can enter the offset of the liner to be used. The offset is the distance from the center of the shell face to the center of the femoral head. If the shell is hemispherical and the head and shell are concentric, the surgeon can enter zero. In some methods, the offset is between 0 mm and 10 mm. The surgeon can repeat this step if the linear offset is changed later in the procedure.
  • the surgical orientation device 172 can calculate the center of rotation (COR) of the hip using the set of points on the rim of the shell.
  • the surgeon can register the leg length and offset after implantation of the acetabular shell.
  • the surgeon can couple the second assembly 606 , 606 A to the first assembly 604 , 604 A as shown in FIGS. 18 and 25A .
  • the mount 672 can be coupled to the orientation sensing device 204 .
  • the mount 646 can be coupled to the surgical orientation device 172 .
  • the surgeon can confirm that the components of system 600 , 600 A are rigidly coupled.
  • the femur can be repositioned within +/ ⁇ 20° flexion from the pre-operative position.
  • the femur can be repositioned within +/ ⁇ 15° abduction from the pre-operative position.
  • the femur can be repositioned within +/ ⁇ 20° rotation from the pre-operative position.
  • the distal end 680 , 680 A of the probe 678 , 678 A is place within a divot at Point A of points 690 .
  • the surgeon can enter an input to register Point A (e.g., depress a button on surgical orientation device 172 ).
  • the surgeon can position the distal end 680 , 680 A of the probe at Point B of points 690 .
  • the surgeon can enter an input to register Point B (e.g., depress a button on surgical orientation device 172 ).
  • the surgeon can position the distal end 680 , 680 A of the probe at Point C of points 690 .
  • the surgeon can enter an input to register Point C (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Points A, B, and C were recorded. Using Points A, B, and C, the surgical orientation device 172 can calculate the change in angle between the pelvis and the femur since the initial registration prior to dislocation.
  • the surgical orientation device 172 can mathematically rotate the femoral points, Points A, B, and C, around the center of rotation (COR) of the hip to align the femur with its initial position.
  • the new position of the centroid of the femoral points, Points A, B, and C is compared to the initial position.
  • the femoral points, Points A, B, and C can be located on the femur tracker 686 , 686 A or femur base 687 .
  • the leg length and offset are displayed on the surgical orientation device 172 .
  • the change in leg length is in the proximal distal direction.
  • the joint offset is in the medial lateral direction. If the angle between the femur and the pelvis has changed by more than a hard coded limit in any axis, then the surgical orientation device 172 can display an error message.
  • the hard coded limit can be 15°, between 10-20°, between 5-25°, etc.
  • the surgical orientation device 172 can display guidance on repositioning the femur (e.g., abduct femur, flex femur, etc.).
  • the surgeon can exchange or reposition the shell to adjust leg length and offset.
  • the surgeon can exchange or reposition the shell based upon goals from pre-operative templates or images. If desired and possible, the leg length and offset may be adjusted according to the surgeon's standard surgical procedure.
  • the surgeon can register the home position.
  • the surgeon can couple the second assembly 606 , 606 A to the first assembly 604 , 604 A as shown in FIGS. 18 and 25A .
  • the mount 672 can be coupled to the orientation sensing device 204 .
  • the mount 646 can be coupled to the surgical orientation device 172 .
  • the surgeon can confirm that the components of system 600 , 600 A are rigidly coupled.
  • the surgeon can verify the parked configuration or home position.
  • the distal end 680 , 680 A of the probe 678 , 678 A can be engaged with a point on the platform 620 , 620 A.
  • the platform 620 , 620 A can include the divot 630 , 630 A.
  • the divot 630 , 630 A can be sized to accept the distal end 680 , 680 A of the probe 678 , 678 A. This position is shown in FIGS. 18 and 25B .
  • the change in the home position is displayed on the surgical orientation device 172 .
  • the number may not be zero due to mechanical play and/or sensor noise. If the displayed number is greater than 3 mm, the surgeon may wish to verify the rigid connection between the components of the system 600 , 600 A.
  • FIGS. 34-38 illustrate a hip navigation system 500 adapted to navigate a hip joint procedure from an anterior approach.
  • Anterior approach to hip replacement advantageously can be less invasive than posterior approach.
  • the anterior approach can enable smaller incisions, less soft tissue dissection, and shorten recovery time for patients.
  • the system 500 includes an anchor system 504 , an alignment assembly 508 and a landmark acquisition assembly 512 .
  • FIG. 34 shows the anchor system 504 in more detail.
  • the system 504 is configured to securely couple the navigation system 500 to the hip, such that movement between the system and the hip are minimized or eliminated.
  • the anchor system 504 includes a cannula 516 having a distal end 520 and a proximal end 524 with a lumen 532 extending between the distal and proximal ends.
  • the proximal end 524 of the cannula 516 is coupled with a platform 536 , for example adjacent to one lateral end of the platform.
  • the platform 536 is similar to those hereinbefore described having a plurality of docking device 538 , 538 A disposed away from the location where the proximal end 524 and the platform 536 are connected.
  • the docking devices 538 are configured to couple with detachable mounting devices that securely but temporarily couple sensor to the anchor system 504 .
  • the two docking device 538 on the top surface of the platform 536 enable the anchor system 504 to be used for either left or right hip procedures.
  • the docking device 538 on the side of the platform 536 closest to the medial plane of the patient is preferably used for docking.
  • the top side docking feature not in use in FIG. 34 would in fact be used in performing a procedure from the other side of the patient.
  • the docking device 538 A on the side surface of the platform 536 is provided for a temporary intra-procedure mounting of a sensor to the platform 536 .
  • this temporary mounting provides a known orientation and/or location of two sensors relative to each other during a procedure, which enables the system 500 to control sources of error with certain types of sensors.
  • the platform 536 also can have a channel 540 disposed away from the cannula 516 .
  • the channel 540 can have a lumen disposed along an axis substantially parallel to the lumen 532 of the cannula 516 .
  • the anchor system 504 is configured to securely couple the platform 536 to the hip by placement of two spaced apart pins 544 A, 544 B.
  • FIG. 34 shows that the pin 544 A can be advanced through the cannula 516 such that a distal end of the pin 544 A contacts and penetrates a bony prominence of the pelvis.
  • the pin 544 A is positioned at or as close as possible to the anterior superior iliac spine (ASIS) of the pelvis.
  • ASIS anterior superior iliac spine
  • the pin 544 B is advanced through the channel 540 and into the pelvis at a location offset form the ASIS.
  • the distance between the pins 544 A, 544 B and the precise positioning of the pin 544 B are not critical, but are determined by the locations of the connection of the cannula 520 to the platform 536 and of the channel 540 .
  • the pins 544 A, 544 B can take any suitable form but preferably have the same cross-sectional profile as the lumens in the cannula 520 and in the channel 540 , e.g., they can be circular in cross-section.
  • the pins 544 A, 544 B can be modified Stienmann pins, e.g., configured to extend at least about 5 cm above the platform 536 and having a diameter of about 4 mm.
  • the anchor system 504 also has a locking device 556 for securing the platform 536 to the pins 544 A, 544 B.
  • the portion of the platform disposed around the pins comprises medial and lateral portions 560 M, 560 L that can move away from each other to release the pins 544 A, 544 B or toward each other to frictionally engage the pins.
  • a pair of hex-driven screws can engage the medial and lateral portion 560 M, 560 L to translate them toward and away from each other respectively.
  • the locking device 556 preferably is quickly and easily removed from the pins such that other instrument, such as X-Ray or other diagnostic devices can be brought into the vicinity of the surgical field during the procedure.
  • the pins 544 A, 544 B have markings along their length such that if the platform 536 is removed for imaging or other reasons it can be quickly re-positioned at the same elevation.
  • the cannula 520 also has a foot 568 adjacent to or at the distal end 528 to minimize or eliminate error that could arise due to uneven penetration depth of the anchor system 504 when compared to the position of a distal probe of the landmark acquisition system 512 when landmarks are being acquired.
  • the foot 568 can include an annular projection disposed outward of the cannula 520 .
  • the foot 568 extends laterally from the outer surface of the cannula 520 by a distance equal to or greater than the wall thickness of the cannula 520 .
  • the surface area beneath the foot is equal to or grater than the surface area of the cannula when viewed in cross-section at a location where the foot 568 is not located, e.g., at an elevation about the foot 568 .
  • the alignment assembly 508 is similar to those hereinbefore described. It can have a rigid extension 570 configured to detachably secure a orientation device 172 to the docking device 538 .
  • the landmark acquisition assembly 512 is similar to those hereinbefore described, but is configured to be unobstructed in use by soft tissue anterior to the pelvis of the patient.
  • an extension 578 is provided to elevate a pivoting and sliding mechanism 582 .
  • the pivoting and sliding mechanism enables a probe arm 584 to slide away from the extension 578 toward the location of landmarks to be acquired.
  • the pivoting and sliding mechanism 582 can be similar to any of those discussed above.
  • the distal (lower) end of the extension 578 can be coupled to the platform 536 in any suitable way.
  • the distal end can include a pin-like projection that is received in, e.g., friction fit in, an aperture 578 A having the same shape.
  • FIG. 35 shows that the aperture 578 A can be formed in a portion of the platform 536 that is elevated compared to the portions of the platform through which the pin 544 A extends. This portion is elevated to provide sufficient bearing engagement to minimize play. It also has a slot generally parallel to the top surface of the platform 536 which serve the function of engaging a ball detent on the lower end of the extension 578 .
  • the probe arm 584 can be configured as an elongate member with a plurality of markings, discussed below.
  • a distal end of the probe arm 584 can include an angled tip 586 that assists in probing anatomy in some techniques, e.g., portions of the femur for leg length and femoral head positioning confirmation. In the posterior approach, the angled tip 586 is used to directly contact anatomy.
  • the angled tip 586 is coupled with a probe extension 590 configured to contact selected anatomy.
  • the probe extension 590 has an upright member 592 that is configured to extend, in the anterior approach, between the elevation of the probe 584 down toward the elevation of the tissue to be probed.
  • a foot 594 on the distal (lower) end of the upright member 592 is configured to engage the tissue in a way that minimizes error due to uneven tissue compression between the point of mounting of the pin 544 A and the foot 594 .
  • the foot 594 can have a cross configuration that spreads out the force or pressure applied by the landmark acquisition system 512 in use.
  • the proximal end of the extension 590 includes a coupler 596 that connects a distal end of the probe arm 584 with the upright member 592 .
  • the coupler 596 is easily manipulable by the user to modify connect to the probe arm 584 .
  • the coupler can include an L-shaped member with an aperture configured to receive the tip 586 of the probe arm 584 .
  • a set screw can be advanced through the L-shaped portion to lock the arm 584 in place.
  • the L-shaped portion is configured to couple to the arm 584 such that the tip of the angled tip 586 rests on a projection of the longitudinal axis of the upright member 592 .
  • the system 500 can be used to navigate from an anterior approach in the following ways.
  • the orientation device 172 and the sensor 204 can be paired such that they are in wireless communication with each other. This permits one or other of the device 172 and sensor 204 to control the other, store data from the other, and/or display information based on signals from the other.
  • the orientation device 172 has a display that confirms to the surgeons certain angles based on the data sensed by the sensor 204 .
  • the pairing the device and sensor 172 , 204 can involve coupling them together and comparing sensor output between the two devices at a plurality of orientations, e.g., horizontal, vertical, and angled at 30 degrees. Some of these positions may be repeated with a plurality of attitudes, e.g., vertical with left side up, vertical with right side up, and vertical with top side up.
  • the components discussed herein can be provided as a kit that enables the surgeon to select among different surgical approaches, e.g., posterior and anterior approaches.
  • the orientation device 172 and sensor 204 may operate differently in these different approaches.
  • the user will enter into one or both of the orientation device and sensor 172 , 204 which approach is being used.
  • This will implement a software module in the orientation device 172 (or in the sensor 204 is the processor running the software is located there) corresponding to the selected approach.
  • the orientation device 172 and the sensor 204 can both have a plurality of sourceless sensors. These components can have both accelerometers and gyroscopes in some embodiments. Some gyroscopes are subject to accumulated error that can be significant in the time frames relevant to these methods. Accordingly, various methods are provided to prevent such errors from affecting the accuracy and reliability of the angles displayed to the surgeon by the system 500 . Some approaches can be performed with accelerometers only. For example, variations of the anterior approach can be performed with accelerometers with somewhat less but still acceptable accuracy using accelerometers only. The reduction in accuracy of the accelerometers is balanced against the benefit of eliminating the accumulated error that arises with some gyroscopes. The resolution of accelerometers is sufficient because the points navigated are relatively far apart.
  • the calculations performed by the system 500 are unique to the hip being treated in some embodiment, so the system receives input of the hip being treated.
  • the foot 568 is placed on a selected anatomical location, e.g., on the ASIS as discussed above.
  • the platform 536 is secured to the hip. Securing the platform 536 to the hip can be done in any suitable way, such as with two spaced apart Stienmann pins.
  • the orientation device 172 and the sensor 204 are attached to the platform 536 in the manner shown in FIG. 36A .
  • certain inertial sensors e.g., some gyroscopes
  • One technique for managing this error source is to periodically initialize or zero out this error. Some techniques involve initialing at this point.
  • a frame of reference based on the plane of the table can be input into the system 500 .
  • the table reference frame can be a secondary reference frame.
  • the sensor 204 is moved from the platform dock position of FIG. 36A to the navigating position on the probe arm 584 as shown in FIG. 34 .
  • the probe arm 584 is then pivoted by the mechanism 582 such that the arm points in a direction that is parallel to the patient's medial-lateral mid-plane and the angled tip 586 superiorly (generally toward the patient's head).
  • the probe arm 584 is also held substantially parallel to the plane of the table.
  • This heading and orientation the user interacts with a user interface on the orientation device 172 to signal to the orientation system 508 to capture the orientation of the sensor 204 .
  • This orientation provides an estimation of the orientation of the anterior pelvic plane. This estimation may be tracked in the system 500 and may alone provide an improvement over the state of the art in un-navigated hip replacement, which involves discrete maneuvers guided by the unaided eye.
  • the system 500 can be used to navigate a condition of the femur prior to hip replacement.
  • a mark Fm may be made on the proximal femur.
  • the sensor 204 can be initialized or zeroed such as by placing it back in the dock position on the platform (as in FIG. 36A ).
  • the probe tip 586 can be brought into contact with the femur mark Fm and locked in place in such contact. See FIG. 37 .
  • the sensor 204 can be transferred to the proximal end of the probe 584 and the orientation device 172 can be signaled to record the orientation of the sensor 204 .
  • a distance from the point of attachment of the cannula 520 to the ASIS to the marked position on the femur can then be recorded in the orientation device 172 .
  • the position can be based on reading graduated marks on the probe 584 or can be captured automatically by a camera system or a sensor built into the system 500 .
  • graduated marks are read at an upright edge 598 within a bight of a sliding portion of the pivoting and sliding mechanism 582 .
  • FIG. 36A illustrates a further step of navigating the anterior pelvic plane.
  • the sensor 204 is docked on the platform 536 , in which position any accumulated error associated with some sensors can be eliminated.
  • the extension 590 is coupled with the distal portion of the probe 584 .
  • the foot 594 is brought into contact with the contralateral ASIS.
  • the sensor 204 can be attached to the proximal end of the probe 284 as shown in FIG. 34 .
  • the landmark acquisition system 512 can be immobilized and the orientation of the sensor 204 can be recorded in memory in the orientation device 172 .
  • the distance that the probe 584 is extended to contact the contralateral ASIS can be recorded in the orientation device 172 . As noted above, that distance can be read from the scale on the probe 584 at the upright edge 598 .
  • the process to record the contralateral ASIS can be repeated for one or more additional points.
  • the sensor 204 can be docked to the platform as in FIG. 36A to eliminate sources of accumulated error.
  • the probe 584 can then be moved to cause the foot 594 to be in contact with a pubic tubercle.
  • the probe 584 can be immobilized and the sensor coupled with the proximal end as shown in FIG. 36B . Thereafter data indicative of the orientation of the sensor 204 and the distance to the pubic tubercle are recorded in the orientation device 172 in any of the manners discussed above.
  • the anterior pelvic plane can be calculated from data indicating the navigated points.
  • the orientation of the anterior pelvic plane is a baseline for placement of the cup portion of a hip prosthesis.
  • the sensor 204 and the orientation device 172 can at this point be used to guide placement of the cup 360 in the prescribed orientation.
  • 300 A Prior to placement the impactor 300 , 300 A is provided.
  • the impactor 300 A can be provided by selecting the appropriate tip component 348 onto the distal end of the shaft 316 A.
  • the tip component 348 is coupled with the cup 360 , e.g., by threads.
  • the rotational orientation of the cup 360 to the shaft 316 A that is most convenient given hole patterns and position of the sensor 204 is selected by matching up the flats 350 A, 350 B as appropriate.
  • the sensor 204 can be docked to the platform 536 and source of accumulated error can be eliminated just prior to navigating the cup 360 into place in the acetabulum.
  • the cup 360 is inserted into the acetabulum and placed to approximately the correct orientation. Thereafter the sensor 204 is connected to a docking device 338 on the impactor as shown in FIG. 11A .
  • the orientation device 172 is the activated to display angles indicative of the orientation of the cup, e.g., degrees of inclination and anteversion with respect to the anterior pelvic plane.
  • the angle displayed can directly reflect the table reference frame discussed above.
  • the angle displayed can directly reflect the frame of reference from the acquisition of landmarks. In some cases, angles can be displayed that directly reflect both table reference frame and landmark reference frame.
  • the table reference frame is not displayed but rather causes a user instruction to be displayed on the orientation device 172 , such as a direction to re-acquire landmarks due to disagreement between the angles generated by the two reference frames.
  • the system 500 includes a module that monitors signals from the sensor 204 and if a large deviation in the readings occurs, the module prevents the angles on the display of the orientation device from changing. This “freezing” of the display is both a safety and an accuracy precaution because a large force due to impact can affect the accuracy of the sensor 204 .
  • the same landmarks can be acquired after the prosthetic joint is placed to confirm that the replacement of the joint has not changed either the length of the leg, the off-set of the leg from the trunk of the patient or both.
  • the sensor 204 can be docked to the docking device 538 A as shown in FIG. 36A . Sources of accumulated error can be eliminated by initializing the sensor 204 . Thereafter, the probe arm 538 can be brought into contact with the same landmark (e.g., Fm) acquired early in the procedure. See FIG. 38 . The probe arm 538 can be locked into place and thereafter the sensor 204 can be coupled with the proximal end of the probe arm 538 . The orientation of the sensor and the distance to the probe arm 538 can be input into the orientation device 172 . These data enable the orientation device 172 to output amounts of change in leg length and leg offset.
  • the same landmark e.g., Fm
  • a plurality of points, e.g., three points, on the femur are acquired before and after the joint is replaced. This approach enables a further confirmation that the rotation orientation of the neck of the femur relative to an axis extending through the center of the cup 360 perpendicular to the plane of the acetabulum is unchanged after the procedure.
  • the femur registration procedures enable correction of diagnosed deformities including excessive leg length offset and joint offset, as well as mal-orientation of the femoral neck in the natural joint.
  • the surgeon can begin the procedure with the intent of adding some offset or changing rotational orientation to improve the patient's bone positions and/or orientations post-operatively.
  • FIG. 39 shows the system 600 adapted to navigate a hip joint procedure with reference to anatomical landmarks from an anterior approach.
  • the system 600 can include the orientation sensing device 204 , not shown in FIG. 39 , as described above
  • the system 600 can be adapted for either a posterior approach as described above, or an anterior approach.
  • FIG. 40-42 shows a hip navigation system 600 B adapted to navigate a hip joint procedure with reference to anatomical landmarks from an anterior approach.
  • the system 600 B can include any of the features described above, including with reference to system 600 .
  • the system 600 B can be used in any technique or method step described herein.
  • the system 600 B can include the surgical orientation device 172 described herein.
  • the system 600 B can include the orientation sensing device 204 described herein.
  • the system 600 B can include a camera 684 described herein.
  • the surgical orientation device 172 and the orientation sensing device 204 can be turned on before the procedure begins. If the system can be used in a posterior or anterior approach, one method can involve a surgeon selecting a module corresponding to the approach. For example, the surgeon can select an anterior hip approach module or a posterior hip approach module in the surgical orientation device 172 . In some embodiments, the method can involve the step of inputting the surgical technique into the surgical orientation device 172 . The surgeon can verify that patient is positioned in an appropriate position, e.g., in a supine position.
  • the surgical orientation device 172 can include a display screen. The display screen can confirm the communication between the surgical orientation device 172 and the orientation sensing device 204 .
  • the system 600 , 600 B can be partially assembled for calibration.
  • the first assembly 604 can be assembled.
  • the pelvic bracket 638 can be coupled to the extension 644 , if separate components.
  • the surgical orientation device 172 can be coupled to the mount 646 .
  • the extension 670 can be coupled to the second coupler 648 .
  • the orientation sensing device 204 can be coupled to the mount 672 .
  • the surgical orientation device 172 and the orientation sensing device 204 form a general V-shaped configuration, similar to the orientation shown in FIG. 31 .
  • the orientation sensing device 204 can be fixed in position relative to the surgical orientation device 172 .
  • the surgical orientation device 172 and the orientation sensing device 204 can be calibrated.
  • the surgical orientation device 172 can be rested on a level horizontal surface with the display pointed upward.
  • the surgeon can hold the assemblies 604 , 606 or 604 B, 606 B steady until the surgical orientation device 172 indicates completion.
  • the surgical orientation device 172 can be rested on a level vertical surface with the display pointed sideways.
  • the surgeon can hold the assemblies 604 , 606 or 604 B, 606 B steady until the surgical orientation device 172 indicates completion.
  • the assemblies 604 , 606 or 604 B, 606 B can be placed on the left side so that the left side of the surgical orientation device 172 rests on a level surface.
  • the surgeon can hold the assemblies 604 , 606 or 604 B, 606 B steady until the surgical orientation device 172 indicates completion.
  • the assemblies 604 , 606 or 604 B, 606 B can be angled forward to verify calibration.
  • the surgeon can hold the assemblies 604 , 606 or 604 B, 606 B steady until the surgical orientation device 172 indicates completion.
  • the extension 670 can be decoupled from the second coupler 648 , as described herein.
  • the second assembly 606 can be assembled as shown in FIGS. 39 and 40 .
  • the first assembly 604 , 604 B can be coupled to the second assembly 606 , 606 B as shown in FIGS. 39 and 40 .
  • the probe 678 , 678 B can be inserted within the through lumen of the dock 662 , 662 B.
  • the marking 682 can be beneath the camera 684 .
  • the surgeon can verify the camera 684 is capturing the measurements of the marking 682 by sliding the probe 678 , 678 B to different positions. An error message can be displayed if the camera 684 is not reading the markings 682 .
  • the system 600 , 600 B can be attached to the pelvis.
  • the fixation pins 610 , 612 can be inserted into the bone.
  • one or more of the fixation pins 610 , 612 are positioned over the ASIS on the operative side.
  • one or more of the fixation pins 610 , 612 are positioned on the iliac crest.
  • the fixation pins 610 , 612 can be approximately vertical.
  • the fixation pins 610 , 612 can be inserted by use of a driver.
  • the fixation base 602 , 602 B can be rotated as needed to place the fixation pins 610 , 612 within the channels 626 , 628 as shown in FIG. 20C .
  • the support 622 can be brought toward the platform 620 , thereby decreasing the diameter of the channels 626 , 628 .
  • the fixation pins 610 , 612 can be secured to the fixation base 602 , 612 B.
  • the first assembly 604 , 604 B can be coupled to the first coupler 632 as described herein.
  • the surgical orientation device 172 can be coupled to the first assembly 604 , 604 B.
  • the second assembly 606 , 606 B can be coupled to the second coupler 648 as described herein.
  • the orientation sensing device 204 can be coupled to the second assembly 606 .
  • the system 600 can be positioned as shown in FIGS. 39 and 41 .
  • the surgeon can register a parked configuration or home position as shown in FIG. 41 .
  • the distal end 680 , 680 B of the probe 678 , 678 B can be engaged with a point on the platform 620 or cannula 621 B.
  • the platform 620 or cannula 621 B can include the divot 630 as described herein.
  • the divot 630 can be sized to accept the distal end 680 , 680 B of the probe 678 , 678 B.
  • the distal end 680 , 680 B of the probe 678 , 678 B can be curved or bent to facilitate locating anatomical landmarks or points, as shown in FIGS. 39 and 40 .
  • the probe 678 , 678 B can be vertical in the home position.
  • the orientation sensing device 204 can be vertical in the home position.
  • the orientation sensing device 204 can register the operating table or perform table registration for the anterior approach.
  • the patient can be positioned so that the coronal plane of the pelvis is level.
  • the surgeon can align the probe 678 , 678 B with the horizontal.
  • only the direction of the probe's 678 , 678 A projection onto a horizontal plane is used.
  • the probe 678 , 678 A can be in an infinite number of angles from horizontal, which would result in the same software result. This is convenient due to the mechanical constraints imposed by the pivot configuration of the system 600 .
  • the probe 678 , 678 B can be parallel with the sagittal plane.
  • the system 600 , 600 B can calculate cup angles based on the assumption that the pelvis of the patient is correctly positioned during table registration.
  • the system 600 , 600 B can be used to navigate a condition of the femur prior to hip replacement.
  • a mark Fm may be made on the proximal femur.
  • the orientation sensing device 204 can be initialized or zeroed such as by placing it back in the home position, as described herein.
  • the distal end 680 , 680 B of the probe 678 , 678 B can be brought into contact with the femur mark Fm.
  • the surgical orientation device 172 can be signaled to record the orientation of the orientation sensing device 204 .
  • a distance from the point of attachment of the fixation pins 610 , 612 to the marked position on the femur can then be recorded in the surgical orientation device 172 .
  • the position can be based on capturing the markings 682 the probe 678 , 678 B or probe inlay 676 by the camera 684 , in combination with inertial data from the orientation sensing device 204 .
  • the femur can be positioned in a neutral reference position with respect to flexion, abduction and rotation. This neutral position can be representative of a standing position of the patient.
  • Point 1 of the system is the mounting point of one or more fixation pins 610 , 612 .
  • each fixation pin 610 , 612 can be driven into the pelvis.
  • one of the fixation pins 610 , 612 is mounted to a pelvic bone at a landmark. When one of the fixation pins 610 , 612 is coupled with a landmark, only two additional landmarks are acquired in some embodiments as discussed below.
  • the distal end 680 , 680 B of the probe 678 , 678 B is placed at the contralateral ASIS landmark.
  • the surgeon can enter an input to register Point 2 (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point 2 was recorded.
  • the probe 678 , 678 B can be immobilized and the orientation of the orientation sensing device 204 can be recorded by the surgical orientation device 172 .
  • the distance that the probe 678 , 678 B is extended, as captured by the camera 684 , to contact the contralateral ASIS can be recorded by the orientation device 172 .
  • the process to record the contralateral ASIS can be repeated for one or more additional points.
  • the distal end 680 , 680 B of the probe 678 , 678 B is placed at the pubic tubercle.
  • the surgeon can enter an input to register Point 3 (e.g., depress a button on surgical orientation device 172 ).
  • the surgical orientation device 172 can indicate that Point 3 was recorded.
  • either pubic tubercle may be used as a reference.
  • the probe 678 , 678 B can be immobilized and the orientation of the orientation sensing device 204 can be recorded by the surgical orientation device 172 . Additionally, the distance that the probe 678 , 678 B is extended, as captured by the camera 684 , to contact the pubic tubercle can be recorded by the orientation device 172 .
  • the camera 684 When registering the anatomical points, the camera 684 captures an image of the marking 682 .
  • the camera 684 can read the marking 682 to provide accurate determination of the translational position of the probe 678 , 678 B relative to the dock 662 .
  • the camera 684 can be directly above the marking 682 . In some methods, the camera 684 can read a binary code of the marking 682 .
  • the orientation sensing device 204 converts the image of the camera 684 into an extension measurement of the probe 678 , 678 B.
  • the surgical orientation device 172 converts the image of the camera 684 into an extension measurement of the probe 678 , 678 B.
  • the distance related to the extension of the probe 678 , 678 B can be used in conjunction with the orientation and positional data from the orientation sensing device 204 .
  • the surgical orientation device 172 can use the length measurement from the camera 684 and the data from the orientation sensing device 204 to determine the location of the distal end 680 , 680 B of the probe 678 , 678 B.
  • the surgeon will enter an input (e.g., depress a button) to collect data from the orientation sensing device 204 .
  • the surgeon will enter an input (e.g., depress a button) to collect data from the camera 684 .
  • the surgeon will enter an input (e.g., depress a button) to collect data from the orientation sensing device 204 and the camera 684 simultaneously.
  • the orientation sensing device 204 and/or the camera 684 will only send data if the orientation sensing device 204 is stable or non-moving.
  • the anterior pelvic plane can be calculated from data indicating the navigated points.
  • the orientation of the anterior pelvic plane is a baseline for placement of the cup portion of a hip prosthesis.
  • the orientation sensing device 204 and the surgical orientation device 172 can at this point be used to guide placement of the cup in the prescribed orientation.
  • the surgeon can set the angle of the cup. Later in the procedure, the surgeon can check cup angle after the angle has been set.
  • the surgeon can remove the second assembly 606 from the first assembly 604 .
  • the surgeon can remove the extension 670 from the third coupler 668 .
  • the surgeon can couple the extension 670 to an impactor 300 B, shown in FIGS. 56A-56F .
  • the impactor 300 B can have the fourth coupler 338 B. This permits the orientation sensing device 204 to couple to the fourth coupler 338 B.
  • the acetabular shell can be threaded onto the shell adaptor, similar to FIG. 11C .
  • the shell adaptor can be snapped onto the end of the impactor 300 B, similar to FIG. 11B .
  • the acetabular shell can be inserted into the acetabulum and positioned at the desired angle.
  • the surgical orientation device 172 can guide the surgeon in setting the appropriate cup angle.
  • the surgical orientation device 172 can graphically display when the orientation sensing device 204 is located at the inclination and anterversion angles entered by the surgeon.
  • the surgical orientation device 172 can graphically display the inclination and anterversion angles as the orientation sensing device 204 is moved.
  • the surgeon can enter an input to set the desired angle (e.g., depress a button on surgical orientation device 172 ).
  • the inclination and anteversion cup angles can be displayed statically.
  • the anatomic angles are those calculated by the system 600 based on the pelvic landmark registration.
  • the table angles are those calculated by the system 600 based on the initial positioning of the pelvis during table registration. The surgeon can check cup angle after the angles are set.
  • femoral landmark Fm is acquired in the procedure prior to separating the natural joint
  • the same landmark can be acquired after the prosthetic joint is placed to confirm that the replacement of the joint has not changed either the length of the leg, the off-set of the leg from the trunk of the patient or both.
  • the distal end 680 , 680 B of the probe 678 , 678 B can be brought into contact with the same landmark (e.g., Fm) acquired early in the procedure.
  • the orientation of the orientation sensing device 204 and the extension of the probe 678 , 678 B can be input into the surgical orientation device 172 . These data enable the surgical orientation device 172 to output amounts of change in leg length and leg offset.
  • a plurality of points, e.g., three points, on the femur are acquired before and after the joint is replaced, for instance with the use of the femur tracker 686 .
  • This approach enables a further confirmation that the rotation orientation of the neck of the femur relative to an axis extending through the center of the cup perpendicular to the plane of the acetabulum is unchanged after the procedure.
  • the surgeon can register the home position.
  • the surgeon can couple the second assembly 606 , 606 B to the first assembly 604 , 604 B as shown in FIGS. 39 and 40 .
  • the mount 672 can be coupled to the orientation sensing device 204 as described herein.
  • the mount 646 can be coupled to the surgical orientation device 172 as described herein.
  • the surgeon can confirm that the components of system 600 , 600 B are rigidly coupled.
  • the surgeon can verify the parked configuration or home position.
  • the distal end 680 , 680 B of the probe 678 , 678 B can be engaged with a point on the platform 620 or cannula 621 B.
  • the platform 620 or cannula 621 B can include the divot 630 as described herein.
  • the divot 630 can be sized to accept the distal end 680 , 680 B of the probe 678 , 678 B.
  • the change in the home position is displayed on the surgical orientation device 172 .
  • FIG. 43 shows the placement of a hip movement tracking sensor 204 on a pin 732 adjacent to the acetabulum. This position is not limiting, in that the hip movement tracking sensor 204 can be mounted anywhere on the pelvis, but adjacent to the acetabulum is convenient.
  • the pin 732 has been placed with the aid of a pre-operative characterization of the hip of the specific patient. In these methods the pin 732 is placed without the need for intra-operative landmark acquisition.
  • a pre-operative three-dimensional characterization of the acetabulum is performed using any suitable technology, such as CT scan or MM.
  • This pre-operative procedure can be performed to fully characterize the pelvis and, in some cases, the proximal femur.
  • the shape, location and orientation of the acetabulum are known.
  • the bony features around the acetabulum are known.
  • a custom jig 700 can be fabricated specific to the patient.
  • the custom jig 700 not only has features that are specific to the individual patient's anatomy but also a registration feature 702 that will be at a known orientation to the plane of the acetabulum and to the anterior pelvic plane.
  • FIG. 44 shows an example of the custom jig 700 .
  • the jig 700 has an anterior side 704 and a posterior side 708 .
  • the posterior side 708 is formed with an acetabular portion 712 configured to mate with at least one feature of the acetabulum in a secure manner.
  • the acetabular portion 712 can fit snugly over the acetabular rim with a central portion of the posterior side 708 positioned in the acetabulum.
  • the jig 700 preferably has only one pre-defined orientation.
  • a surface on a posterior portion of the jig can define a plane that corresponds to a preferred orientation angle of the cup post-implantation.
  • One or more channels 716 can be formed on the posterior side 708 that receive the local bony prominences of the acetabular rim only when the jig 700 is in the proper position and orientation.
  • the registration feature 702 of the jig 700 has a face or a hole that is oriented in the desired orientation for the shell or cup of the implant.
  • the sensing device 204 can be positioned against the face or surface or, if coupled with a pin 732 , the pin can be inserted into the hole. From the orientation of the device when so placed, the orientation of the acetabular rim or a proxy thereof can be recorded in one or both of the devices 172 , 204 .
  • the hole 702 preferably extends from the anterior side 704 to the posterior side 708 of the jig 700 .
  • the distance between the anterior and posterior surfaces 704 , 708 provides the depth of the hole 702 being sufficient to guide a pin to specific anatomy along a specific direction.
  • FIG. 45 shows initial placement of the jig 700 in the acetabulum in an orientation dictated by the fit of the jig 700 over the anatomy.
  • the profile of the posterior side 708 including the channel(s) 716 receives the specific patient's acetabular rim including local prominences and recesses of the bone at and around the acetabulum.
  • the hole 702 is located on a peripheral projection 720 of the jig 700 .
  • the configuration of the projection 720 is such that the hole 702 is disposed over a specific bone or bone region of the hip. In this example, the projection 720 is configured to be disposed over the bone superior to the acetabulum.
  • regions of bone around the acetabulum can be used if sufficiently thick or strong and in a convenient position to not block actions of the surgeon during the procedure.
  • the precise location of the projection 720 chosen can be determined by the pre-operative imaging and factored into the forming the custom jig 700 .
  • FIG. 46 shows that after the jig is placed the pin 732 can be placed through the hole 702 .
  • the pin 732 has a length that extends above the anterior surface 704 of the jig 700 such that the sensor 204 can be mounted thereto. Once the sensor 204 is mounted to the pin, the sensor can track any movement of the pelvis during the procedure. There is no need for registration of landmarks in this technique because the position and orientation of the pin relative to the acetabulum and/or to the anterior pelvic plane are known from the pre-operative imaging.
  • FIG. 47 shows that the plug 700 advantageously can include an alignment guide 736 to control rotational orientation of the sensor 204 on the pin 732 .
  • the alignment guide 736 can be a line extending along a specific direction relative to the registration feature 702 .
  • the sensing devices inside the sensor 204 can be sensitive to the direction of gravity. Tilting of the sensor about the pin 732 can change the readings of these sensing devices.
  • the navigation system incorporating the sensor 204 can be programmed to assume that the sensor will be at a specific rotation position about the longitudinal axis of the pin 732 .
  • the sensor 204 may be mechanically or visually aligned with the guiding mark 738 to assure that this assumption is met in use.
  • the senor 204 has a laser that projects onto the jig 700 and can be aligned with the mark 736 to facilitate alignment.
  • the pin 732 may be configured to only enter the hole in a unique orientation (for example, with an asymmetric non-circular cross-section), and to allow the sensor to mount to the pin in a unique orientation (by including asymmetric coupling features).
  • the jig 700 can be removed from the surgical area.
  • the jig 700 can be made of material can be cut along a line 742 in a lateral edge of the jig.
  • a saw or rongeur can be used to cut through the jig 700 .
  • the majority of the body of the jig 700 can be removed from the surgical area.
  • FIG. 49 shows that in some methods, the projection 720 is left in place so that the position and orientation of the sensor 204 is not disrupted.
  • a second sensor 204 is attached to a cup impactor, which may be the same as in FIGS. 11A-11C .
  • the impactor guides the placement of the cup with reference to the signals from the sensor 204 mounted on the pin 732 on the pelvis. Signals from the sensor on the impactor can be corrected if movement of the hip is detected by the sensor on the pin 732 .
  • FIGS. 50-52 illustrate one way of implementing cannulated guide delivery methods.
  • Cannulated methods are advantageous in that once a guide member is mounted, the tracking of orientation is simplified and may no longer be necessary in some cases, which can eliminate accumulated errors, sensor drift, or erroneous readings of other sorts as a concern.
  • a custom jig 750 is formed by the process discussed above in connection with the jig 700 .
  • the jig 750 has many of the same components as those of the jig 700 , including a registration feature 752 extending between the anterior and posterior surfaces 754 , 758 .
  • a guiding mark 738 can be provided on the anterior surface 754 to align the sensor 204 rotationally about the pin 732 .
  • the jig 750 also has a guide channel 762 located generally centrally in the jig 750 .
  • the guide channel 762 has an anterior opening on the anterior surface 754 , a posterior opening on the posterior surface 758 , and a wall extending between these openings. The wall is disposed about a central axis A.
  • the position and orientation of the axis A can be determined based on the pre-operative characterization of the acetabulum.
  • an MM or CT scan reveals an optimal axis for delivering a prosthetic cup along.
  • the wall forming the guide channel 762 is formed about the axis A which coincides with this optimal axis when the jig 750 is placed on the specific patient's acetabulum.
  • FIG. 51 shows that the impactor 300 A can then be advanced along the axis A into the guide channel 762 .
  • a distally facing shoulder 766 on the impactor 300 A can mate in a pre-defined way with the anterior surface 754 and the entrance to the channel 762 and when so mated the orientation of the sensor 204 on the impactor 300 A can be recorded.
  • the jig 750 is a cannula with the channel 762 configured to receive the impactor 300 A. If patient movement is possible, the sensor 204 on the pin 732 can be retained in place to track such movement. If not, the sensor 204 on the pin 732 can be removed.
  • the sensor 204 on the impactor 300 A will have stored the orientation of the axis A in memory and will be able to inform the user of any variance of the impactor from this axis. It is preferred to retain the sensor 204 on the pin 732 , as the orientation can only be accurate stored by the sensor 204 on the impactor 300 A for a short time due to accumulated error (e.g., drift) of some sensors, e.g., some lower cost gyroscopes.
  • the impactor 300 A has a central channel that coincides with the axis A when the impactor is placed into the guide channel 762 and the shoulder 766 abutted with the surface 754 .
  • a guide pin can be advanced through this channel and into the acetabulum.
  • the guide pin can be lodged in the base of the acetabulum.
  • the sensor 204 coupled with the pelvis by the pin 732 can be removed because the guide pin placed through the channel of the impactor 300 A provides a mechanical way of tracking movement of the hip. Thereafter the impactor 300 A with the cup mounted thereon can be slide over the guide pin and into place in the acetabulum.
  • the sensor 204 coupled with the impactor 300 A can also be removed.
  • the guide pin is configured along with the cup to prevent tilting of the prosthetic cup relative to the axis A.
  • an interface between the guide member and the cup of the hip prosthesis could be made to have sufficient length along the axis A that tilting is prevented by this interface.
  • the cup 360 is coupled to the impactor 300 , 300 A.
  • a variation of the impactor 300 , 300 A can be tubular or have another feature for interfacing with, e.g., tracking along the guide pin in the pelvis.
  • FIGS. 53-60 shows another embodiment of a custom jig.
  • the systems described herein can be used with a patient specific jig 1000 , shown in FIG. 55 .
  • the system 600 , 600 A, 600 B or components thereof, can be used with the patient specific jig 1000 .
  • the system 600 A can include a fixation base 602 A.
  • the fixation base 602 A can include a platform 620 A.
  • the platform 620 A can include one or more holes 611 A.
  • the holes 611 A can be sized to accept a fastener 613 A to secure the fixation base 602 A to the pelvis.
  • the fixation base 602 A can include divot 630 A.
  • the divot 630 A can be a registration feature associated with a parked configuration or home position.
  • Each fastener 613 A can be driven into the ilium on the pelvis. As discussed further below, each fastener 613 A can be coupled with other bones in other techniques.
  • one of the fasteners 613 A can be coupled with the ischium or the pubis.
  • One of the fasteners 613 A can be coupled at a point superior to the superior-most point on the acetabular rim.
  • one of the fasteners 613 A is about 10 mm above the superior-most point on the acetabular rim.
  • the fixation base 602 A can include the first coupler 632 .
  • the first coupler 632 can couple to one or more components of the system 600 A.
  • the system 600 A can include the first assembly 604 A shown in FIG. 54 .
  • the first assembly 604 A is rigidly connected to the hip in the illustrated configuration so that motion of the hip cause corresponding motion of sensor(s) in the first assembly 604 A as discussed below.
  • the first assembly 604 A can include a pelvic bracket 638 A. In the illustrated embodiment, the pelvic bracket 638 A can be substantially vertical in use, as shown in FIG. 54 .
  • the first assembly 604 A can be designed to couple with the first coupler 632 of the fixation base 602 A.
  • the first assembly 604 A can include an extension 644 A.
  • the extension 644 can be coupled to the pelvic bracket 638 A.
  • the extension 644 A can include a mount (not shown) designed to couple with the surgical orientation device 172 .
  • the surgical orientation device 172 can include features to mate with the mount (not shown).
  • the surgical orientation device 172 is rigidly coupled to the extension 644 A when engaged with the mount.
  • the system 600 A can include the second assembly 606 A or a portion thereof.
  • the second assembly 606 A can include an extension 670 .
  • the extension 670 can couple to the second coupler 648 .
  • the engagement between the second coupler 648 and the extension 670 minimizes or prevents relative movement therebetween to avoid any mechanical relative movement during navigation procedures.
  • the extension 670 can include a mount 672 designed to couple with the orientation sensing device 204 .
  • the mount 672 includes a lock and release lever that can pivot relative to the extension 670 .
  • the orientation sensing device 204 can include features to mate with the lock and release lever. Other configurations are contemplated.
  • the orientation sensing device 204 is rigidly coupled to the extension 670 when engaged with the mount 672 .
  • the system 600 is coupled to the pelvis instead of the system 600 A.
  • the surgeon can select the hip (e.g., right or left) using the surgical orientating device 172 .
  • the surgeon can input the target cup inclination angle into the surgical orientation device 172 .
  • the inclination angle can be radiographic inclination as described herein.
  • the surgeon can input the target cup anteversion angle into the surgical orientation device 172 .
  • the anteversion angle can be radiographic anteversion as described herein.
  • the second assembly 606 includes the extension 670 and the mount 672 , as shown in FIG. 23A .
  • the orientation sensing device 204 can be coupled to the mount 672 .
  • the extension 670 can be coupled to the second coupler 648 .
  • the orientation sensing device 204 and the surgical orientation device 172 can be calibrated as described herein.
  • the system 600 can be mounted similar to system 600 A shown in FIG. 54 .
  • the method step of coupling the orientation sensing device 204 with the second coupler 648 can relate the orientation data of the orientation sensing device 204 to a reference frame of the surgical orientation device 172 .
  • a pre-operative three-dimensional characterization of the acetabulum is performed using any suitable technology, such as CT scan or MM.
  • This pre-operative procedure can be performed to fully characterize the pelvis and, in some cases, the proximal femur.
  • the shape, location and orientation of the acetabulum are known.
  • the bony features around the acetabulum are known.
  • the patient specific jig 1000 can be fabricated specific to the patient.
  • the patient specific jig 1000 not only has features that are specific to the individual patient's anatomy but also a registration feature 1002 shown in FIG. 55 that will be at a known orientation to the plane of the acetabulum and to the anterior pelvic plane.
  • FIG. 55 shows an example of the patient specific jig 1000 .
  • the patient specific jig 1000 has an anterior side 1004 and a posterior side 1008 .
  • the posterior side 1008 is formed with a three dimensional shape configured to mate with at least one feature of the acetabulum in a secure manner.
  • an acetabular projection 1012 can be provided that fits snugly over the acetabular rim with a central portion of the posterior side 1008 positioned in the acetabulum.
  • the patient specific jig 1000 preferably has only one pre-defined orientation.
  • a surface on a posterior side 1008 of the patient specific jig 1000 can define a plane that corresponds to a preferred orientation angle of the cup post-implantation.
  • One or more channels 1016 can be formed on the posterior side 1008 that receive the local bony prominences of the acetabular rim only when the patient specific jig 1000 is in the proper position and orientation.
  • the registration feature 1002 of the patient specific jig 1000 can include a recess, a hole, or a projection.
  • the orientation sensing device 204 is coupled to an impactor 300 B.
  • the impactor 300 B can be inserted into the registration feature 1002 .
  • the orientation sensing device 204 can be positioned in a known orientation relative to the registration feature 1002 . From the orientation of the orientation sensing device 204 when so placed, the orientation of the acetabular rim or a proxy thereof can be recorded in one or both of the devices 172 , 204 .
  • the registration feature 1002 preferably extends from the anterior side 1004 toward the posterior side 1008 of the patient specific jig 1000 .
  • the distance between the anterior and posterior surfaces 1004 , 1008 provides the depth of the registration feature 1002 being sufficient to securely couple to the impactor 300 B.
  • the registration feature 1002 extends anteriorly of the anterior side 1004 of the jig 1000 , e.g., as a projection or post.
  • FIGS. 56A-56F show the impactor 300 B.
  • the impactor 300 B can be substantially similar to impactors described herein, and can include any features of impactors described herein.
  • the shaft 316 B can include plurality of flats 350 B on the distal end of the shaft 316 B as shown in FIG. 56F .
  • the flats 350 B permit proximal-distal sliding of the registration feature 1002 of the patient specific jig 1000 over the distal end of the shaft 316 B into or out of the feature 1002 shown in FIG. 57 .
  • a detent device 351 B or other locking mechanism is provided between the shaft 316 B and the registration feature 1002 .
  • This mechanism may prevent inadvertent release of the patient specific jig 1000 from the impactor 300 B.
  • the flats prevent the shaft 316 B from rotating relative to the patient specific jig 1000 .
  • the flats 350 B can enable many discrete alternate relative angular positions of the patient specific jig 1000 to the shaft 316 B.
  • the number of orientations of the impactor 300 B relative to the patient specific jig 1000 can depend on the number of flats.
  • FIG. 58A-58B shows initial placement of the patient specific jig 1000 in the acetabulum in an orientation dictated by the fit of the patient specific jig 1000 over the anatomy.
  • the method can include the step of coupling the patient specific jig 1000 to a rim of the acetabulum.
  • the profile of the posterior side 1008 including the channel(s) 1016 shown in FIG. 55 , receives the specific patient's acetabular rim including local prominences and recesses of the bone at and around the acetabulum.
  • the acetabular projection 1012 can be peripheral projection of the patient specific jig 1000 .
  • the configuration of the acetabular projection 1012 is such that the acetabular projection 1012 is disposed over a specific bone or bone region of the hip.
  • the acetabular projection 1012 is configured to be disposed over the bone superior to the acetabulum.
  • Other regions of bone around the acetabulum can be used if sufficiently thick or strong and in a convenient position to not block actions of the surgeon during the procedure.
  • the precise location of the acetabular projection 1012 chosen can be determined by the pre-operative imaging and factored into the forming the patient specific jig 1000 .
  • the impactor 300 B can be placed in the registration feature 1002 before or after the patient specific jig 1000 is placed in the acetabulum.
  • the impactor 300 B has a length that extends above the anterior surface 1004 of the patient specific jig 1000 such that the sensor 204 can be mounted thereto.
  • the orientation sensing device 204 can be undocked from the second coupler 648 .
  • the orientation sensing device 204 can thereafter docked to the fourth coupler 638 B of the impactor 300 B.
  • the fourth coupler is shown in FIG. 58B .
  • the patient specific jig 1000 can include an alignment guide 1038 to control rotational orientation of the orientation sensing device 204 on the impactor 300 B.
  • the alignment guide 1038 can be a line extending along a specific direction relative to the registration feature 1002 .
  • the orientation sensing device 204 can be sensitive to the direction of gravity. The rotation of the orientation sensing device 204 about the impactor 300 B can change the readings of these sensing devices. To eliminate sources of error associated with this sensitivity, the navigation system incorporating the orientation sensing device 204 can be programmed to assume that the orientation sensing device 204 will be at a specific rotation position around the longitudinal axis of the impactor 300 B.
  • the alignment guide 1038 can correspond to the desired rotation position orientation sensing device 204 .
  • the fourth coupler 338 B may be mechanically or visually aligned with the alignment guide 1038 to assure that this assumption is met in use.
  • the alignment guide 1038 is an elongate arrow.
  • the elongate arrow can align with the longitudinal axis of the fourth coupler 338 B.
  • the surgeon can look down the impactor 300 B from the proximal end to the distal end.
  • the surgeon can verify the alignment of the alignment guide 1038 and the fourth coupler 338 B.
  • the alignment between the alignment guide 1038 and the fourth coupler 338 B constrains the orientation sensing device 204 in the third degree of freedom.
  • the surgical orientation device 172 can be programed with this known angle of the orientation sensing device 204 when the impactor 300 B is coupled to the patient specific jig 1000 .
  • the surgeon will enter an input (e.g., depress a button) when the patient specific jig 1000 is seated with the impactor 300 B and the orientation sensing device 204 coupled thereto.
  • the surgical orientation device 172 can calculate the orientation of the surgical orientation device 172 relative to the pelvis when the input is pressed. This step may replace registering the pelvic landmarks with the probe, as discussed herein.
  • the orientation sensing device 204 has a laser that projects onto the patient specific jig 1000 and can be aligned with the alignment guide 1038 to facilitate alignment.
  • the impactor 300 B may be configured to only enter the registration feature 1002 in a unique orientation (for example, with an asymmetric non-circular cross-section), and to allow the orientation sensing device 204 to mount to the patient specific jig 1000 in a unique orientation (by including asymmetric coupling features).
  • the surgeon can hold the orientation sensing device 204 steady.
  • the surgeon will enter an input (e.g., depress a button) to collect data from orientation sensing device 204 .
  • the data can include the impactor angle.
  • the impactor angle can be fixed during the method such that the angle can be known to the system or in the method in directing placement of the hip implant components.
  • the impactor angle can be 10° inclination, 20° inclination, 30° inclination, 40° inclination, 50° inclination, 60° inclination, 70° inclination, 80° inclination, 90° inclination, between 30°-70° inclination, between 40°-60° inclination, etc.
  • the impactor angle can be 10° anteversion, 20° anteversion, 30° anteversion, 40° anteversion 50° anteversion, 60° anteversion, 70° anteversion, 80° anteversion, 90° anteversion, between 0°-40° anteversion, between 10°-30° anteversion, etc.
  • the impactor angle is 50° inclination, 20° anteversion.
  • the impactor angle can be based upon the orientation of the registration feature 1002 relative to the patient specific jig 1000 .
  • the impactor angle can be set during fabrication of the patient specific jig 1000 .
  • the impactor angle must be known by the software of the surgical orientation device 172 .
  • the impactor angle is constant for all jigs and hard-coded into the surgical orientation device 172 .
  • the impactor angle can be input by the user at the time of surgery. The surgeon can input the impactor angle into the surgical orientation device 172 using the user interface as described herein.
  • the orientation sensing device 204 can transmit orientation and positional data to the surgical orientation device 172 .
  • the surgical orientation device 172 can register the guide angle when the orientation sensing device 204 is coupled to the patient specific jig 1000 .
  • the surgical orientation device 172 can perform a bias elimination step.
  • the surgical orientation device 172 can track motion of the pelvis and to generate an output that eliminates error due to the movement of the pelvis.
  • the surgical orientation device 172 can include a display providing a user interface.
  • the method can include the step of registering the orientation of a proxy for the plane of the acetabular rim using the orientation sensing device 204 coupled with the patient specific jig 1000 .
  • the orientation sensing device 204 can track any movement of the pelvis during the procedure. There is no need for registration of landmarks in this technique because the position and orientation of the impactor 300 B and/or orientation sensing device 204 relative to the acetabulum and/or to the anterior pelvic plane are known from the pre-operative imaging. From the known orientation of the orientation sensing device 204 with respect to the pelvis, the system can calculate the orientation of the surgical orientation device 172 with respect to the pelvis.
  • the surgeon can remove the patient specific guide 1000 from the patient as shown in FIG. 59 .
  • the surgeon can remove the impactor 300 B from the patient specific guide 1000 .
  • the surgeon can prepare the acetabulum. In some embodiments, the surgeon can ream the acetabulum.
  • the impactor 300 B can be used to position a shell in the acetabulum.
  • the shaft 316 B can include plurality of flats 350 B on the distal end of the shaft 316 A as shown in FIG. 56F .
  • the impactors described herein can be coupled with the tip component 348 .
  • FIG. 11C shows that the tip component 348 can have a recess 352 formed on the proximal side thereof.
  • the recess 352 can comprises a plurality of flats 350 B corresponding to a plurality of flats 350 B on the distal end of the shaft 316 B.
  • the flats 350 B permit proximal-distal sliding of the recess 352 over the distal end of the shaft 316 B.
  • a detent device or other mechanism is provided between the tip component 348 and the shaft 316 B so that the tip component 348 does not disengage.
  • the flats 350 B prevent the tip components 348 from rotating relative to the shaft 316 B
  • the engagement device 356 comprises threads in one embodiment so that the cup of the prosthetic hip can be screwed onto the distal end of the tip component 348 .
  • the flats enable many discrete alternate relative angular positions of the tip component 348 (and hence the cup) to the shaft 316 B.
  • a plurality of flutes or elongate axial ridges 364 on the outer surface of the tip component 348 enable the user to securely grasp the tip component for mounting and dismounting the tip component on the shaft 316 B.
  • the surgeon can position the cup in the acetabulum. The surgeon can hold the impactor 300 B steady.
  • inertial data from the orientation sensing device 204 can be used to confirm a proper orientation of the acetabular cup.
  • the surgical orientation device 172 can register the guide angle when the cup is positioned within the acetabulum. In some embodiments, the surgeon will enter an input (e.g., depress a button) to collect data from orientation sensing device 204 .
  • the surgical orientation device 172 can display the cup angle. The surgeon can move the cup to change the inclination angle. The surgeon can move the cup to change the anteversion angle. The surgeon can move the shell until the inclination angle and anterversion angle matches the preoperative angles.
  • the method can include the step of changing the orientation of the impactor 300 B in response to an output reflecting the inertial data generated by the orientation sensing device 204 .
  • the preoperative impactor angle can be 50° inclination, 20° anteversion.
  • the surgical orientation device 172 can perform a bias elimination step.
  • the surgical orientation device 172 can perform a gyro propagation step. Examples of bias elimination steps and gyro propagation steps are discussed in U.S. Ser. No. 13/011,815, filed Jan. 21, 2011, which is hereby incorporated by reference for this and all other purposes.
  • the surgical orientation device 172 and/or the orientation sensing device 204 can include any of the software algorithms described therein.
  • the surgeon can seat the cup in the acetabulum using the impactor 300 B.
  • the surgical orientation device 172 can remain coupled to the first assembly 604 .
  • the orientation sensing device 204 can be coupled to the fourth coupler 338 B on the impactor 300 B, as shown in FIG. 60 .
  • the surgeon will enter an input (e.g., depress a button) to collect data from orientation sensing device.
  • the data can include the impactor angle.
  • the impactor angle can be known.
  • the impactor angle can be 50° inclination, 20° anteversion.
  • the impactor angle can be based upon the orientation of the registration feature 1002 relative to the patient specific jig 1000 .
  • the impactor angle can be set during fabrication of the patient specific jig 1000 .
  • the impactor 300 B can be rotated to a set number of positions within the registration feature 1002 .
  • the impactor 300 B can be rotated by the surgeon to align a feature of the impactor 300 B with the alignment guide 1038 .
  • the fourth coupler 338 B can be aligned with the alignment guide 1038 .
  • the impactor 300 B can be positioned such that the fourth coupler 338 B can be pointed superiorly.
  • the impactor 300 B has a single orientation within the registration feature 1002 .
  • the position of the orientation sensing device 204 can be therefore known relative to the patient specific jig 1000 , when the orientation sensing device 204 is coupled to the impactor 300 B.
  • the surgical orientation device 172 can calculate and record the orientation of the surgical orientation device 172 with respect to the pelvis.
  • the impactor 300 B may be struck to seat the implant.
  • the orientation sensing device 204 remains on the impactor 300 B as the impactor 300 B is struck.
  • the impactor 300 B has a shell 312 B that is moveable relative to the shaft 316 B.
  • the shell 312 B can include the fourth coupler 338 B that can couple to the orientation sensing device 204 .
  • the movability of the shell 312 B helps to isolate the orientation sensing device 204 from the forces that are transmitted through the impactor 300 B. These forces are applied by a mallet or other device for forcibly moving the cup into position.
  • FIGS. 61-63 show an example of the custom jig 1100 .
  • the jig 1100 has an anterior side 1104 and a posterior side 1108 .
  • the posterior side 1108 is formed with an acetabular portion 1112 configured to mate with at least one feature of the acetabulum in a secure manner.
  • the jig 1100 preferably has only one pre-defined orientation.
  • a registration feature 1102 of the jig 1100 has a plurality of, e.g., two, holes.
  • the registration feature 1102 can be located on the acetabular portion 1112 or any other portion of the custom jig 1100 .
  • the holes are sized to accept fixation pins 610 , 612 of the system 600 .
  • a patient specific guide can be provided with a registration feature including a single hole.
  • the hole or holes can accept fixation pin(s) 610 in a single orientation relative to the patient or relative to the custom jig 1100 .
  • the method can include the step of inserting at least a fixation pin 610 through the patient specific jig 700 or jig 1100 along an axis disposed at a pre-defined angle corresponding to the reference frame of the surgical orientation device 172 .
  • the first hole 1105 of the registration feature 1102 can accept a fixation pin 610 and a second hole 1107 can accept fixation pin 612 .
  • the system 600 can be placed in a single orientation relative to the custom jig 1100 .
  • the surgical orientation device 172 and/or the orientation sensing device 204 can be positioned in a known orientation.
  • the orientation of the acetabular rim or a proxy thereof can be recorded in one or both of the devices 172 , 204 .
  • the reference frame can be based directly on more general pelvic landmarks such as the anterior pelvic plane.
  • the acetabular rim or a proxy can be used as an intermediate step to get to the reference frame based directly on more general pelvic landmarks.
  • the registration feature 1102 preferably extends from the anterior side 1104 to the posterior side 1108 of the jig 1100 .
  • the distance between the anterior and posterior surfaces 1104 , 1108 provides the depth of the holes 1105 , 1107 being sufficient to guide the fixation pins 610 , 612 to specific anatomy along a specific direction.
  • the method can include the step of inserting at least two fixation pins 610 , 612 through the patient specific jig 1100 along axes disposed at a pre-defined angle corresponding to the reference frame of the surgical orientation device 172 .
  • the sensors can track any movement of the pelvis during the procedure. There is no need for registration of landmarks in this technique because the position and orientation of the fixation pins 610 , 612 relative to the acetabulum and/or to the anterior pelvic plane are known from the pre-operative imaging.
  • a correspondence between one or more linear dimensions and an angle can be exploited to enhance accuracy.
  • a clinician can use an X-ray or other standard radiographic imaging device to provide an anterior pelvic bone image. This image can be read to derive the location of the anterior pelvic plane and a dimension on the anatomy.
  • an angle between top and bottom landmarks around the acetabulum (as further describe below) and a trans-ischial line or other anatomic medial-lateral reference line can be a useful patient specific variable to minimize patient-to-patient variation in at least one relevant angle, e.g., the abduction angle.
  • Patient specific data can be provided for use by the surgeon based on best medical judgment.
  • any of the systems herein can be used in a mode that is based on broad population studies. Such studies can define a distribution of patients with sufficient clarity and detail to enable significant improvement over the current standard of care.
  • the dimensions taken from radiograph or CT can be used to inform the surgeon whether some patient specific adjustments should be considered.
  • patient specific adjustments can be coded into the system described herein so that they are transparent to the doctor.
  • Such adjustments can be downloaded to either or both of the devices 172 , 204 or into a separate monitor or control device that communicates wirelessly with the devices 172 , 204 .
  • the system described herein can either fully implement patient specific adjustment, e.g., for anteversion, abduction, leg length, joint offset, or other parameter or can enable the surgeon to make a judgment as to whether to do so.
  • FIG. 68 illustrates an example of a pre-operative image that can be used in one technique.
  • the lines 380 point to landmarks which are used intraoperatively and are also visible in an anterior pelvic radiograph.
  • the top landmark 380 A is about 1 cm superior to most superior point of acetabulum. In another approach, the top landmark 380 A can be the most superior point on the acetabular rim.
  • the bottom landmark 380 B is adjacent to or at the acetabular notch (tear drop).
  • An angle between line 382 and the line 384 is a patient-specific abduction of line formed by landmarks, which can be entered into an interface of the system 100 (or the other systems herein) at time of surgery to provide patient specific reference frame.
  • Line 384 may be any anatomic medial-lateral reference line. Examples include trans-ischial line and line across the inferior borders of the obturator foramina (shown in FIG. 68 ).
  • one or both of the devices 172 , 204 can comprise only accelerometers and can be configured as tilt meters, or the devices could be put into a mode that relies mostly on the accelerometer data or otherwise be configured to be insensitive to accumulated errors that arise from integration of data. If the patient is set in a reproducible and stable position, patient movement and mis-orientation can be eliminated. This enables some methods to be performed without using rate sensor data.
  • one or both of the sensors 172 , 204 can be configured to inform the surgeon if a condition is sensed that suggests a landmark acquisition approach would yield a superior alignment outcome. This method can advantageously be used for procedures that do not require complex movements, like freehand motions. Where freehand motion is involved, incorporating some indication of heading (gyroscopes, magnetometer, or other indication of heading) would be useful.
  • a patient-specific “safe zone” is defined by recording the patient's natural range of motion of one more of the patient's joints. For example, if a hip procedure is to be performed, the patient's range of motion can be recorded pre-operatively. If the hip to be replaced is not overly arthritic, the range of motion can be determined on the hip to be replaced. If the range of motion of the hip to be replaced is unnatural due to disease state, the contralateral hip can be characterized.
  • a sensor S is coupled with the femur.
  • the sensor can be coupled above the knee to prevent movements at the knee from affecting the measurements made.
  • the sensor S can be connected below knee if the knee is immobilized.
  • the sensor S can be initialized and otherwise prepared to record accurate readings. Thereafter one or more movements of the hip joint can be performed with the output of the sensor recorded and processed.
  • the movements can include, for example, movement in anterior and posterior (A-P) directions to the full extent of the range of motion and movement in medial and lateral (M-L) directions to the full extent of the range of motion. These motions define the patient's natural range of motions in these planes.
  • a cone of motion CM can be defined.
  • the cone of motion CM can be defined as originating at a point defined as the center of rotation of the femoral head and extending out from the acetabulum to a circular base located a distance from the center of rotation equal to the distance to the mount point of the sensor.
  • the circular base can be defined as having a radius equal to the average extent of motion in the A-P and M-L directions.
  • the cone of motion is shown on the contralateral side for clarity.
  • the data collected to estimate the cone of motion can be based on the leg to be treated or the contralateral leg.
  • Placement of the cup of the hip prosthesis is dictated by some metric of centering within the cone of motion.
  • the cup can be centered such that an axis extending perpendicular to the plane of the entrance to the cup crosses the circular base of the cone of motion precise in the center of the cone.
  • the orientation of the cup is controlled such that the crossing point of the axis so projecting is closer to the center of the circular base than it is to the periphery of the circular base.
  • the orientation of the cup is controlled such that the crossing point of the axis so projecting is within a distance from the center point that is less than 25% of the radius of the circular base.
  • the movement of the hip is not symmetrical in each of the A-P and M-L directions.
  • the cone of motion can have a more complex geometry.
  • the cone of motion can originate at the center of rotation of the femoral head and extend to a base having an oblong shape, for example shortened in the medial direction, but longer in the lateral, anterior, and/or posterior directions.
  • Various metrics of “within the safe zone” can be defined based on these irregular shaped cones.
  • the geometric center of a complex base shape can be calculated and the cup of the prosthetic joint can be centered such that an axis extending perpendicular to the plane of the entrance to the cup crosses the irregular shaped base of the cone of motion at or within some maximum distance of the centroid of the cone.
  • Any suitable set of motions can be used to obtain the center of rotation of the femoral head and/or the boundaries of the base of the cone of motion. Examples of methods for determining the center of rotation of a femoral head using inertial sensors are discussed in U.S. Pat. No. 8,118,815, which is hereby incorporated by reference for this and all other purposes.
  • a more complete perimeter of the base of the cone of motion can be directly recorded using sensors that are capable of tracking both position and orientation. For example, several other points between the A-P and M-L direction can be taken so that six, eight, ten, twelve or more extents are recorded. In other embodiments, arcuate motions of along all or portions of the perimeter of the base of the cone of motion can be traced and recorded.
  • the senor can operate based on accelerometers only in some approaches, which simplifies sensor S and enables it to be disposable and/or less expensive to make. Such approaches may be most accurate if rotations about a vertical axis are minimized or eliminated.
  • the procedure illustrated in FIG. 64 generates an origin and a direction that can be input to a cup placement system.
  • the origin can be the center of rotation of the femoral head and the corresponding center of rotation of a prosthetic socket.
  • the direction can be a line connecting the origin and the point of intersection with the base of the cone of motion.
  • This data is transferred to a cup placement system, such as any of those discussed above.
  • the impactor 300 A can include the sensor 204 to which this data has been saved. Thereafter movements of the impactor 300 A can be tracked with reference to this origin and direction to assure proper placement of the cup. Such placement can be with the aid of a patient movement tracking sensor pinned to the pelvis for example.
  • cannulated systems can be used to minimize the number of steps during which inertial sensors are used. For example, once the origin and direction of the axis connecting the center of rotation and the intersection with the base of the cone of motion are determined, a guide member can be placed via a cannulated impactor (or other cannula). The guide member can dock with an impactor-mounted cup. The cup can be slid over the guide member into place in the acetabulum. The direction and origin information collected in the steps illustrated by FIG. 64 are preserved by the guide member and by the tilt preventing features on the guide member and/or prosthetic cup.
  • a cone of motion can be established by a combination of data collected in motions similar to those discussed above in connection with FIG. 64 and pre-operative imaging. For example, X-rays can be taken when the femoral neck is moved close to the acetabular rim to supplement some of the data points defining the cone of motion.
  • the cone of motion can be in part established by inertial sensing and in part by imaging to characterize the native anatomy.
  • system 600 is shown herein mounted for a posterior approach in FIG. 18 , the anterior approach in FIG. 39 , and in combination with a patient specific jig in FIG. 63 .
  • FIGS. 69-72 illustrate a system 900 for navigating a hip procedure.
  • the system 900 can be adapted for use in both the anterior approach and the posterior approach.
  • the system 900 can be similar to some of those discussed above. But, while some of the foregoing systems are specialized for a particular approach, the system 900 includes a first sub-system 900 A adapted for a posterior approach and a second sub-system 900 B adapted for an anterior approach.
  • both systems 900 A, 900 B are configured to enable navigation to be conducted without requiring gyroscopic or other sensors that are subject to accumulated error (drift). This refinement makes the system simpler to implement and to use in a wider variety of settings and with more patients.
  • drift accumulated error
  • the system 900 A includes a jig 904 A that is adapted for hip joint navigation from a posterior approach.
  • the jig 904 A is similar in some respects to the jig 454 , and any consistent description thereof is incorporated herein.
  • the jig 904 A includes a platform 908 , a cannula coupling device 912 , and a registration jig mounting feature 914 .
  • the platform 908 can have any shape, but in some implementations can be elongate, e.g., having a first end 916 and a second end 920 .
  • the elongate shape enables at least a portion of the jig 904 A to be low profile in one direction and to provide a plurality of positions along a length for coupling devices to the jig.
  • the first end 916 is configured to be oriented inferiorly and the second end 920 to be oriented superiorly when the navigation jig is applied to the patient.
  • the medial-lateral dimensions or extent can be minimized to not obstruct the surgical field or the surgeon.
  • the cannula coupling device 912 is disposed adjacent to the first end 916 and is configured to enable a cannula 924 to be held adjacent to a bottom surface of the platform 908 .
  • the cannula 924 can have a top surface connected to a bottom surface of the platform 908 .
  • a connection between these components can be secured by a device disposed above within or below the platform 908 .
  • a proximal structure of the cannula 924 can be received within a bottom recess of the platform 908 and can be held within the recess by a compression device, such as a set screw S. Details of several variants of cannula coupling devices 912 are discussed below in connection with FIGS. 73-75B .
  • a connection to a bone adjacent to a hip joint is made through the cannula 924 .
  • a pin 928 can be placed through the platform 908 and the cannula 924 into the bone.
  • FIGS. 71 and 72 An anterior approach cannula 926 is shown in FIGS. 71 and 72 and is similar to the cannula 516 , the description of which is incorporated herein.
  • the description of the cannula coupling device 912 applies equally to the cannula 924 for posterior approach and to the cannula 926 for anterior approach.
  • the registration jig mounting feature 914 is disposed on a top surface 932 of the platform 908 adjacent to the first end 916 .
  • the mounting feature 914 includes an elevated portion of the platform.
  • the mounting feature can include one or more, e.g., two recesses into which pins can be received.
  • the elevated portion includes a window, e.g., a through hole, for viewing such a pin to confirm correct placement.
  • a circular recess can be provided for a first pin and an U-shaped slot can be provided for another pin or member.
  • the hip navigation jig 904 A also includes registration jig 940 .
  • the registration jig 940 can have some features similar to those discussed above.
  • the registration jig 940 includes an upright member 942 , a rotatable member 948 , and a probe 952 .
  • the upright member 942 is configured to be detachably coupled to the platform 908 at the registration jig mounting feature 914 .
  • a plurality of (e.g., two) pins can project from a lower surface of the upright member 942 , the pins being configured to be received in corresponding recesses in the registration jig mounting feature 914 .
  • One of such pins is visible through the window in the registration jig mounting feature 914 seen in FIG.
  • the upright member 942 includes a first portion 944 and a second portion 946 disposed above the first portion 944 .
  • the first portion 944 is substantially vertical and increases the elevation of the second portion 946 when the registration jig 940 is mounted to the registration jig mounting feature 914 .
  • the second portion 946 is inclined away from a vertical longitudinal axis of the first portion 944 .
  • the incline of the second portion 946 provides several advantages. It enables the upright member 942 to be out of the way of the range of motion of the probe 952 , as discussed below. This is important because the probe 952 has to be able to easily and quickly reach a plurality of anatomical features.
  • the incline of the second portion 946 also provides a simple way to incline an angle of rotation of the rotatable member 948 relative to a vertical axis.
  • the rotatable member 948 is coupled with the upright member 942 for rotation about an axis A that is not vertical when the jig is mounted to the bone adjacent to a hip joint and the upright member is disposed generally vertically.
  • This arrangement is one way to enable a navigation system employing inertial sensors to eliminate the need to manage sensor drift.
  • certain sensors such as gyroscopes, are more subject to accumulated errors (drift).
  • the orientation of the axis A enables the jig 904 to be used in a system that includes accelerometers and other sensors that are sufficiently sensitive if activated and moved about axes that are not vertical.
  • the probe 952 had a tip 956 for engaging anatomy.
  • the anatomy engaging tip 956 is disposed at a distal end of an elongate body 960 coupled with the rotatable member for rotation about the axis.
  • the orientation and position of the elongate body 960 of the probe can be adjusted to bring the anatomy engaging tip into contact with a plurality of anatomical landmarks during a landmark acquisition maneuver. Such adjustments can be by sliding through a sliding support, similar to those hereinbefore described.
  • the upright member 942 can include a cradle 954 that allows the elongate body 960 of the probe 952 to be held in place when not in use during a procedure.
  • the cradle 954 can be used to latch the sensor 204 , as discussed above.
  • the system 900 does not require any steps of zeroing, however, since the sensors are configured to be generally drift insensitive. Eliminating sensitivity to drift can be achieved by configuring the sensor 204 as a tilt meter, and/or by using any sort of inertial sensor that will not introduce excessive error due to drift during the procedure time. As such, even sensors that have some drift can be used, so long as their accumulation of error does not reach a significant level until during the procedure.
  • the cradle 954 could be used to zero error if a procedure was unexpectedly long and the sensor were subject to some drift.
  • the sensor 204 can operate solely with signals from accelerometers, which are insensitive to drift.
  • FIGS. 69-72 show that the systems 900 A, 900 B can include one or more sensors for detecting orientation of the probe 952 .
  • the sensors can take any form, e.g., can include the surgical orientation device 172 and the sensor 204 discussed above.
  • the jig 904 can include a sensor mounting feature 962 disposed on the platform 908 . Where the platform is elongate, the sensor mounting feature 962 can be disposed at the second end 920 .
  • Another advantage of the jig 904 A, 904 B is that it is symmetrical and can be used on both hips. The jig 904 A, 904 B thus can have a single sensor mounting feature disposed on a plane of symmetry.
  • the sensor mounting feature 962 can be located on a vertical mid-plane of the platform. Vertical here refers to the orientation of the jig 904 A, 904 B when applied to the hip in a posterior or anterior approach.
  • the registration jig 940 can include a sensor mounting feature 964 disposed thereon for movement with the probe 952 .
  • the sensor mounting feature 964 can be located at a proximal end of the elongate body 960 . This location is one of convenience, placing the sensor 204 at the proximal end.
  • the sensor mounting feature 964 and the sensor 204 could be located on a side surface of the elongate body 960 .
  • the orientation of the axis of rotation A of the rotatable member 948 enables the change of orientation of the sensor 204 to be other than in the horizontal plane. This is accomplished by orienting the axis A other than in the vertical direction. With this arrangement, it is possible to configure at least the sensor 204 as a tilt meter, e.g., using primarily or only accelerometers to output a signal indicative of orientation of a component, such as of the prove 952 .
  • Example of angles or ranges of angles of the axis A that can be provided include about 20 degrees from horizontal, about 30 degrees from horizontal, about 45 degrees from horizontal, at less than about 60 degrees from horizontal.
  • FIG. 70 shows a further feature of the system 900 A, which includes the jig 904 A and the cannula 924 .
  • the cannula 924 is adapted for posterior approach is similar to or the same as the hollow fixation member 466 .
  • An upper or first end of the cannula 924 is configured to couple with the cannula coupling device 912 , such as by a set screw as discussed above.
  • a second end of the cannula 924 is configured to couple with a bone adjacent to the hip joint.
  • the bone can be any of those discussed above for coupling the fixation member 466 or other analogous structures discussed in any embodiments above.
  • a home point feature 968 is disposed adjacent to the second (lower) end of the cannula 924 .
  • the home point feature 968 is in a predefined, known position and can receive the anatomy engaging tip 956 of the probe 952 . When these structures contact, they are in a predefined position and orientation.
  • the home point feature 968 can be similar to the registration feature 473 discussed above.
  • the cannula 924 should be made removable from the platform 908 in the operating room or at a back table in preparation for surgery.
  • the connection between the cannula 924 and the platform 908 can be made orientation specific. This reduces a potential source of operator error, i.e., the home point feature 968 always faces toward the surgical field from the hip bone attachment location, e.g., faces inferiorly if the jig 904 is mounted to a superior location of the surgical field.
  • a projection on a proximal portion of the cannula 924 and a corresponding projection in a recess on the lower side of the platform 908 can define only one rotational orientation of the cannula relative to the platform in which these components can be coupled.
  • the cannula 926 is provided in the system 900 to enable a surgeon to switch to an anterior approach.
  • Anterior approach is discussed in great detail above, e.g., in connection with FIGS. 34-42 , which description are incorporated here as well.
  • the system 900 B differs from the system 500 in that the orientation of the axis A of rotation in the system 900 B is not vertical, as discussed above. As such, the sensors can be greatly simplified compared to the system 500 .
  • the cannula 926 has a home point feature 968 B.
  • the home point feature 968 B is in a predefined, known position and can receive the anatomy engaging tip 956 of the probe 952 . When these structures contact, they are in a predefined position and orientation.
  • the home point feature 968 B can be similar to the registration feature 473 discussed above.
  • the cannula 926 and the platform 908 can be configured for limited, e.g., only one, rotational position of attachment. This assures that when the jig 904 B is assembled in the operating room or back table that the jig 904 B will be properly set up.
  • jig 904 B is coupled with the patient in an anterior approach.
  • the tip 956 is put into contact with the home point feature 968 B.
  • user input can be applied to the surgical orientation device 172 A to indicate that the tip 956 is in the home point feature 968 B.
  • the system registers movements and landmark acquisition in the manner discussed above.
  • the placement of the acetabular cup using a device such as the impactor 300 A can be an operation that benefits from inertial sensors that may include one or more drift-sensitive sensors, e.g., gyroscopes.
  • the system 900 provides a calibration mount 998 for coupling a sensor 204 in a known, fixed position and orientation relative to the surgical orientation device 172 A.
  • the calibration mount 998 is a docking device that positions the sensor 204 just prior to a step of eliminating any potential source of accumulated error, e.g., zeroing a drift-sensitive sensor.
  • FIG. 69-70 show that they system 900 A can include two sensors 204 , one mounted to the registration jig 940 and one to the calibration mount 998 .
  • FIGS. 71 and 72 shows only one sensor 204 .
  • a single sensor 204 is used to gather landmark data and to work in combination with the impactor 300 A to place an acetabular implant.
  • FIGS. 73-75B illustrate various features for clamping structures to the platform 908 .
  • fixation pin securement devices 970 that are incorporated into the platform 908 .
  • the fixation pin securement devices 970 can have low profile to be out of the way of other tools in the surgical field.
  • FIG. 73-73A show one embodiment of a pin securement device 970 that includes a compression member 972 .
  • the cannula coupling device 912 can include a similar mechanism to clamp a pin disposed through the cannula 924 .
  • the platform 908 includes a slot or plurality of slots formed on a surface thereof, e.g., on the top surface.
  • the slots 974 are larger in at least one direction than the compression member 972 such that the compression member can fit in the slot and move to some extent therein.
  • the compression member 972 has a tapered channel 976 . Movement of a tapered member 978 vertically in the tapered channel 976 shifts the compression member 972 to narrow a gap G between the compression member 972 and a rigid feature of the platform.
  • the gap G can be between a curved lateral surface of the compression member 972 and a curved surface of the platform 908 .
  • a pin or other fixation member is advanced through the gap G and into the bone.
  • the platform 908 is positioned on the fixation member at an appropriate height and the pin securement device 970 is affixed to the fixation member.
  • the fixation member can be a Steinmann pin or other similar device.
  • the tapered member 978 is a threaded elongate body that is advanced along internal threads formed in the platform 908 until the tapered surface thereof acts on the tapered surface 976 to shift the compression member 972 laterally to narrow the gap G. Further advancement of the tapered member 978 further shifts the compression member 972 to enhanced securement of the fixation member.
  • the method can be repeated for a second pin, where one pin extends through the cannula 924 and one extends parallel to the cannula 924 , but off-set superiorly therefrom on the patient.
  • FIGS. 74-74B illustrate another approach to a fixation pin securement devices 970 A in which the fixation pin securement device comprises a compression member 972 A pivotally mounted to the platform 908 .
  • FIG. 74A shows two compression members 972 A, each of which is mounted to pivot about a pin or shaft 980 .
  • the securement device 970 A on the left in FIG. 74A corresponds to a configuration in which a fixation member can freely pass through a gap G in the mechanism.
  • the securement device 970 A on the right in FIG. 74A corresponds to a configuration in which the gap G is narrowed and a fixation member disposed in the gap G will be securely clamped and unable to move relative to the platform 908 .
  • a rigid surface of the platform 908 opposite the pivoting compression member 972 along with the compression member holds the fixation member in place.
  • pins or other fixation members are placed in the fixation pin securement device 970 A and the cannula coupling device 912 .
  • these devices can employ similar clamping mechanisms.
  • screws 982 are advanced to cause the compression member 972 to pivot about the pin or shaft 980 from a first position in which the gap G provided between a clamping surface of the compression member 972 A and a rigid surface of the platform 908 is larger to a second position in which the gap G is smaller.
  • the second position is a clamped position for the fixation member and will retain the platform in position until the screw 982 is withdrawn enlarging the gap G.
  • FIGS. 75-75B illustrate another approach to a fixation pin securement devices 970 B in which the fixation pin securement device comprises a compression member 972 B configured to clamp a plurality of segments of an outside surface of a fixation member.
  • the platform 908 includes a plurality of projections 984 extending upward from an upper surface of the platform. The projections preferably are threaded.
  • Each projection includes a collet 986 or similar device disposed therein having an inner lumen sized to receive a fixation member.
  • a plurality of slots extends downward from an upper surface of the collet 986 and an angled surface 988 is disposed between top ends of each member defined between a pair of such slots.
  • a corresponding angled surface 990 is provided on an inside of a cap 992 .
  • the cap 992 has internal threads that act on the threads of the projection 984 to advance the angled surfaces 990 onto the angled surfaces 988 . Further advancement collapses the slots of the collet 986 causing compression about the outer surface of the fixation member.
  • FIG. 75 shows that this approach can be used for the fixation pin securement devices 970 B and/or for the cannula coupling device 912 .
  • the system 900 can be adapted for a posterior approach or for an anterior approach. This provides a great deal of flexibility to the surgeon and only adds minimal additional components to a universal kit.
  • the orientation of the axis of rotation A enhances the sensitivity of a system that incorporates accelerometers and other sensor drift insensitive components.
  • the home point features 968 A, 968 B enable the surgeon to obtain maximal accuracy by allowing the acquisition of position and orientation data for a number of anatomical landmarks at close range to the home point position. This allows the system to initialize the sensors near the points to be acquired to enhance accuracy.
  • FIG. 65 illustrates one embodiment of a system 800 that includes close-range optical tracking capabilities.
  • close range is a broad term that means near the patient, such as any of in the surgical field, directly above the pelvis but below the surgeon's head, within the boundaries of the surgical table, etc. This term is intended to exclude systems where cameras are outside the surgical fields. Close range greatly reduces or eliminates “line of sight” problems that plague traditional optical navigation.
  • a jig system 804 is provided for connecting to patient bone.
  • the jig system 804 can include any of the features of any of the jig systems discussed herein.
  • the jig system is illustrated with that of FIG. 1 , e.g., including the cannula 124 and the platform 136 .
  • a surgical orientation device 172 A is mounted to the platform 136 .
  • the orientation device 172 A can be similar to those hereinbefore described, but also includes one or more cameras 812 .
  • the orientation device 172 A includes two or more cameras 812 to enable capture of binocular data.
  • the cameras preferably are small cameras, for example the Aptina MT9T111, which is discussed at http://www.aptina.com/products/soc/m9t111d00stc/.
  • the cones projecting from the lower side of the device 172 A schematically represent the direction of the field of view of the cameras 812 .
  • This data can at least be used to determine the heading of and in some cases six degrees of freedom of a stylus 816 .
  • the stylus has a distal end 828 configured to touch landmarks as part of a landmark acquisition maneuver, as discussed above.
  • a proximal (or other) portion 832 of the stylus 816 has an array of trackers 836 that can be tracked by the cameras 812 to provide orientation, position, heading, attitude, or other combinations of spatial characteristics of portions of the stylus 816 or anatomy with which it is coupled.
  • the cameras 812 can operate without any additional sensor, such as inertial sensors.
  • the cameras 812 are used in concert with inertial sensors to confirm or to improve accuracy of the sensors. For example, drift in a rate sensor, e.g., accumulated errors, can be monitored by comparing the output of the rate sensor with the viewed position from the cameras. The system can intervene if the sensor output drifts too much, for example, telling the user to reset the rate sensors.
  • Another optical device such as a laser or an IR emitter 814 can be provided in the orientation device 172 A.
  • An IR emitter can be useful to illuminate the fiduciaries to make them more readily detectable by the cameras under the intense lighting in the surgical field.
  • FIGS. 76-78 illustrate an embodiment of a system 600 that includes an optical component 674 .
  • optical component is a broad term.
  • the surgical orientation device 172 can comprise optical component 674 that can be located on the top side, the bottom side, or sidewalls of the surgical orientation device 172 .
  • the optical component 674 can comprise transparent window integrated into the surgical orientation device 172 .
  • the windows can permit visible light (e.g. laser light) to emit from the optical component 674 of the surgical orientation device 172 .
  • the optical component 674 can provide a visual guide to replicate the original position of the femur relative to the pelvis.
  • the optical component 674 can comprise one or more lasers, which can be configured to project laser light through the windows described above.
  • the optical component 674 can comprise a forward laser.
  • the laser light can be used to project a point, a plane, and or a cross-hair onto a target or targets, including but not limited to an anatomical feature or landmark.
  • the optical component 674 can provide alternative or additional orientation information to a surgeon regarding the orientation of the surgical orientation device 172 .
  • laser light can be used to project a plane on a portion of bone to indicate a resection line and a cross-hair laser pattern can be used to ensure alignment along two perpendicular axes.
  • the optical component 674 can be used to determine an alignment of an anatomical feature or landmark.
  • the optical component 674 can project laser light to a target such as an anatomical feature.
  • the surgeon can mark one or more points along the line of the projection of the optical component 674 .
  • the surgeon can complete any steps described herein.
  • the surgeon, thereafter, can verify the one or more points are along the line of the projection of the optical component 674 .
  • the optical component 674 is a component of the surgical orientation device 172 .
  • the optical component 674 can be a component of the fixation base 602 .
  • the optical component 674 can be a component of one or more fixation pins 610 , 612 .
  • the optical component 674 can be an integral feature of any component of system 600 .
  • the optical component 674 can be a separate component from any component of system 600 .
  • the optical component 674 can be a stand-alone device which attaches to the pelvis.
  • the system 600 can be modified to accommodate the optical component 674 .
  • the fixation base 602 C can include a platform 620 C as shown in FIGS. 79-80 .
  • the platform 620 C can include a head 609 C.
  • the head 609 C can be coupled to a platform 611 C and a support 613 C.
  • the platform 611 C and the support 613 C can function as a clamp with the head 609 C.
  • FIG. 80 shows an exploded view of the fixation base 602 C.
  • the fixation base 602 C can include one or more fixation devices 615 C.
  • one fixation devices 615 C is shown but other configurations are contemplated (e.g., two, three, four, etc.).
  • the fixation device 615 C can include one or more threaded sections.
  • the fixation device 615 C is a screw with a head and a threaded shank.
  • the platform 611 C can include one or more holes.
  • the support 613 C can include one or more holes.
  • the fixation device 615 C can pass through or engage one or more holes in the support 613 C. In some embodiments, each hole in the support 613 C is threaded.
  • the fixation devices 615 C can pass through or engage one or more holes in the platform 611 C. In some embodiments, each hole in the platform 611 C is threaded. Rotation of the fixation device 615 C can causes the support 613 C to move toward the platform 611 C and/or the platform 611 C to move toward the support 613 C.
  • the platform 611 C and the support 613 C form a channel 617 C.
  • the channel 617 C can be sized to accept the head 609 C.
  • the head 608 can have pivotal or polyaxial movement. When the platform 611 C and the support 613 C are brought together by the fixation device 615 C, the head 608 C can be fixed in position.
  • the platform 611 C can include the first coupler 632 described herein.
  • the first coupler 632 can couple to the first assembly 604 as described herein.
  • the first coupler 632 can be parallel to the pins 610 , 612 .
  • the first coupler 632 can be angled relative to the pins 610 , 612 .
  • the pins 610 , 612 can be offset from vertical.
  • the probe 678 (not shown) can be bent or curved as described herein. The shape of the probe 678 can facilitate the touching of points or anatomical landmarks in the anterior approach.
  • the assembly shown in FIG. 76 can permit the surgical orientation device to be moved relative to the anatomy of the patient.
  • the clamping of the platform 611 C and the support 613 C can fix the position of the surgical orientation device 172 during surgery.
  • the display of the surgical orientation device 172 can indicate whether the optical component 674 is on or off.
  • the display of the surgical orientation device 172 can include an instructions related to the method of using the optical component 674 .
  • the surgical orientation device 172 can be positioned and/or moved until the optical component 674 projects a beam on a portion of the anatomy.
  • the optical component 674 can emit a laser beam or beams distally from the surgical orientation device 172 .
  • This laser beam or beams can illuminate a portion of the femur.
  • This laser beam or beams can illuminate a portion of the knee joint.
  • This laser beam or beams can illuminate a portion of the tibia.
  • This laser beam or beams can illuminate a portion of the ankle.
  • This laser beam or beams can illuminate a portion of the foot.
  • This laser beam or beams can illuminate a portion of the foot constrained within a positioning boot.
  • the surgical orientation device 172 can be moved until the laser beam is aligned with at least one anatomical region.
  • the laser beam is aligned with at least one anatomical region with little soft tissue.
  • the soft tissue may move relative to the underlying bone. The surgeon can select locations to mark where the skin is close to the underlying bone.
  • the optical component 674 can be used in conjunction with the anterior and posterior approach described herein.
  • the apparent changes are sensitive to changes in the orientation of the femur relative to the pelvis.
  • the changes are particularly sensitive to the abduction angle.
  • the changes are moderately sensitive to the rotation about the mechanical axis of the femur.
  • the first method is to reposition the femur prior to measuring the change such that the orientation of the femur relative to the pelvis is the same as that when the preoperative baseline measurement was made. Surgeons attempt to use the first method but this method is not very accurate. The method is not accurate primarily because the surgeon has poor visibility of the pelvis of the patient, which is hidden by soft tissue and surgical drapes.
  • the second method is to measure the orientation of the femur relative to pelvis during preoperative baseline and postoperatively and then correct for changes in orientation by doing a virtual rotation about the postoperative center of rotation of the femur.
  • the second method is described herein with respect to the posterior approach and the anterior approach.
  • the second method may require obtaining three points of the femur, such as points 690 shown in FIGS. 24A and 25C .
  • the second method may require calculating the center of rotation (COR) of the hip using the set of points on the rim of the shell, as shown in FIG. 33 .
  • the second method is usually used in navigation systems but adds extra steps.
  • the optical component 674 can reduce the number of registrations.
  • the optical component 674 can be mounted on the pelvis.
  • the orientation of the optical component 674 can be fixed throughout the procedure.
  • the optical component 674 can project a beam distally onto the leg.
  • the surgeon can mark one or more points. These marks can guide the surgeon in replicating the orientation of the femur relative to the pelvis each time a leg length measurement is needed.
  • the optical component 674 can be a “fan” style laser projection.
  • the optical component 674 can project a line or pattern onto the leg.
  • the method can, in variation, include any of the following steps. The following method is described in the context of an anterior approach in which the patient is supine as shown in FIG. 76 .
  • the method can include positioning the operative leg in a fully extended position to simulate a standing position.
  • the method can include projecting the laser onto the anterior surface of the leg, running up the foot.
  • the laser could be mounted on a lockable ball joint to facilitate adjustments to line up the laser and then lock it in place, as shown in FIG. 79 .
  • the method can include marking one or more marks Lm on the surface of the leg and foot coincident with the laser line.
  • the method can include performing the baseline leg length measurement or registration on the exposed bone of the femur as close to the center of rotation as possible. This may minimize errors.
  • This step can include placing a mark Fm on skin over the femur as described herein.
  • a mark placed at the distal femur may provide enhanced accuracy by eliminating error due to movement of the joints distal thereof. Such a location may also simplify an accurate procedure by eliminating the need to constrain the distal joints including the knee and ankle.
  • the method can include performing the hip replacement.
  • the method can include replicating the orientation of the femur by lining up the one or more marks Lm with the laser line again.
  • the method can include performing the postoperative leg length measurement to determine changes in leg length and lateral offset. This step can include registering the mark Fm on the femur as described herein.
  • the method described herein can reduce the need to add a femur tracker 686 , 686 A or femur base 687 A to the femur.
  • the method described herein can reduce the need to drill holes in the femur to attach the femur tracker 686 , 686 A or femur base 687 A. This can prevent fractures or further damage to the femur.
  • the optical component 674 is used in combination with a camera.
  • the camera can be the camera 684 described herein.
  • the camera can be camera 812 described herein.
  • the camera can capture a photographic image of the laser or laser beam.
  • the camera can capture a photographic image of the one or more marks Lm.
  • the camera can capture a photographical image of the leg and/or foot.
  • the surgical orientation device 172 and/or the orientation sensing device 204 as described herein can convert the photographic image to orientation and/or positional information of the anatomy of the patient.
  • connection hub alone or in combination with any of the other modules could comprise a separate aspect.
  • any one or a combination of the modules could be directly connected to an umbrella hub or overhead support to form another separate aspect. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed embodiments. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.

Abstract

A hip joint navigation system is provided that includes a base having at least one channel disposed therethrough for receiving a pin for mounting the base to the pelvis. A mount feature is disposed on a top surface. A registration jig is configured to couple with the base and to engage anatomical landmarks. In some aspects, a patient specific jig system for hip replacement is provided including an engagement surface formed to closely mate to acetabular bone contours of a specific patient and a registration feature configured to be in a pre-determined orientation relative to an acetabulum the patient when the jig is coupled with acetabular bone contours of the specific patient. In other aspects, methods of using the systems are provided.

Description

    INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/437,546, filed Jun. 11, 2019, which is a continuation of U.S. patent application Ser. No. 14/643,864, filed Mar. 10, 2015, which claims priority benefit to U.S. Provisional Patent Application No. 62/118,987 filed Feb. 20, 2015 the entire contents of each is incorporated in its entirety by reference herein. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • This application is directed to the field of hip replacement, and particularly to surgical tools and methods for guiding the preparation of the bones in connection therewith.
  • Description of the Related Art
  • Hip replacement surgery is common and getting more common by the year. One persistent issue with hip replacement is the relatively high incidence of poor placement of the cup and ball components of the prosthetic hip joint. For example, the cup is optimally placed in a specific alignment with a plane including a rim of the acetabulum of the pelvis. For several reasons an unacceptably high percentage of patients have the cup of the artificial hip joint out of alignment with this plane.
  • Unfortunately, misalignment can lead to dislocation of the hip as soon as within one year of the implantation procedure. This is particularly problematic because recovery from a hip procedure can take many months. Patients undergoing a revision so soon after the initial implantation will certainly be dissatisfied with their care, being subject to addition redundant surgery. Of course, all surgery carries some degree of risk. These poor outcomes are unsatisfactory for patients and surgeons and are inefficient for the healthcare system as a whole.
  • Also, in cup placement in total hip arthroplasty, the inclination and anteversion angles are with respect to the Anterior Pelvic Plane (defined as a plane created by the two anterior superior iliac spines (ASIS) and the pubic symphysis). While these anatomical features are visible/palpable while the patient is in a supine position, the majority of total hip replacements are accomplished via a posterolateral approach with the patient in some variation of a lateral position, in which most of these landmarks are not accessible or visible. Historically, navigation for posterior approach hip replacement has been accomplished by registering the anatomical features of the Anterior Pelvic Plane with the patient first in a supine position and, once this plane is recorded by the navigation computer, moving the patient to a lateral position in order to perform hip surgery—with navigation performed with respect to the directly registered Anterior Pelvic Plane. This approach to hip navigation is sub-optimal for surgical workflow because the extra movement of the patient from supine to lateral position takes more surgeon and staff time and requires breaking sterility and re-draping. This is one of the key reasons why hip navigation has failed to be adopted by most of the market.
  • Additionally, altered leg length is a common patient complaint arising from hip replacement surgery and has been a common cause of medical malpractice lawsuits that arise from hip replacement. Because part of the hip replacement procedure requires precise measurements of patient leg length and joint off-set that are frequently difficult to visualize utilizing conventional instrumentation, there are opportunities to improve the surgeon's performance of these measurements using computer technology.
  • SUMMARY OF THE INVENTION
  • There is a need for improved systems and methods for providing for proper alignment of hip components with a patient's anatomy during a hip replacement procedure. This can involve modular systems with low profile components. This can involve a camera component designed to read a length measurement. This can involve techniques for measuring leg length and joint offset. This can involve techniques for locating one or more points on a fixed femur tracker.
  • In some embodiments, a hip joint navigation system is provided. The hip joint navigation system can include a base comprising at least one channel disposed therethrough for receiving a pin for mounting the base to the pelvis and a mount feature disposed on a top surface. The hip joint navigation system can include a registration jig configured to couple with the base and to engage anatomical landmarks.
  • In some embodiments, the base has a lower surface configured to be placed on the pelvis and where the at least one channel comprises two channels for receiving threaded members to engage with the pelvis. In some embodiments, the mount comprises a latch feature for removably securing a tower to the base. In some embodiments, the tower comprises a lower end configured to secure to the mount and an upper end configured to secure to an inertial sensor assembly. In some embodiments, the upper end is disposed at an angle (e.g., 35 degrees) to the lower end of the tower. In some embodiments, a mount feature is disposed between the lower end and the upper end of the tower, the mount feature configured to be coupled with the registration jig. In some embodiments, the registration jig includes an elongate member configured to be coupled with the base, a housing having at least two degrees of freedom relative to the elongate member, and a probe being slideably disposed through the housing. In some embodiments, the probe comprises a distal portion angled relative to a proximal portion thereof. In some embodiments, the probe is substantially straight along its length. In some embodiments, the probe includes a machine readable feature disposed on a side surface thereof. In some embodiments, the machine readable feature comprises a binary code or other symbol. In some embodiments, the housing of the registration jig includes a sensor mount configured to releasably attach to a sensor unit to position the sensor unit to read the readable feature. The hip joint navigation system can include a sensor unit adapted to optically detect the machine readable feature on the probe when coupled with the sensor mount.
  • In some embodiments, a femur jig is provided. The femur jig can include a base configured to securely couple with a proximal aspect of a femur. The femur jig can include a reference frame member configured to be disposed above the base having a plurality of reference frame targets. In some embodiments, the base has at least one aperture therethrough configured to receive threaded pins to secure the base to the femur. In some embodiments, the member is removably mountable to the base and comprises an elongate upright member and an angled portion configures to be oriented generally along the long axis of the femur. In some embodiments, the base is configured to be attached to the proximal femur within an incision prior to dislocation of the hip. In some embodiments, the reference frame member is accessible by a reference probe coupled with the pelvis in use.
  • In some embodiments, a system includes the femur jig and a module for comparing pre- and post-operative anatomical arrangement of the hip joint is provided. In some embodiments, the module is adapted to compare pre- and post-operative anatomical arrangement of the hip joint using anatomical landmark information derived from the acetabular rim. In some embodiments, the module is adapted include registration of a plurality points on a rim of an acetabular shell implant to calculate the center of rotation (COR) of the hip. In some embodiments, the module is adapted to calculate at least one of a change in angle between the pelvis and femur, a change in leg length, and joint offset. In some embodiments, the system displays an error message with guidance on re-positioning the femur if a threshold value of joint angle, leg length or offset is exceeded. In some embodiments, the guidance advises the user to abduct/adduct, flex/extend, and/or internally rotate/externally rotate the femur. In some embodiments, the base and reference frame member are disposed on opposite sides of the same member. In some embodiments, the same member comprises a thin plate structure. In some embodiments, the member is configured to conform to the femur to be low profile.
  • In some embodiments, a sensor unit for orthopedic navigation is provided. The sensor unit can include a housing having an elongate structure. The sensor unit can include an inertial sensor disposed at least partially disposed within the housing. The sensor unit can include a camera at least partially disposed within the housing, the camera oriented transverse to a longitudinal axis of the housing. In one embodiment, the sensor unit has a transparent area on a side surface thereof.
  • The sensor unit with a camera disposed in the housing can be combined with one or more other components in one or more systems. A system that includes the sensor unit can be coupled with a jig that includes a coupler that holds the sensor unit fixed relative to a device to be observed by the camera. The sensor unit can be oriented with its width or height extending along an extendable probe. The jig can include a sliding bearing for allowing the probe to be moved along a range and while being moved to pass through a viewing area toward which the camera is directed. The probe can include a binary code or other symbol that the camera can read. In another system the sensor unit is coupled with a user interface device. The user interface device can be located inside the surgical field in use. The user interface device can be coupled with a jig configured to mount to a bone, e.g., a pelvis, in use.
  • In some embodiments, a method of orthopedic navigation is provided. The method can include the step of detecting the orientation or positioning of a probe using inertial sensor. The method can include the step of detecting the extension of a probe using a camera. In some embodiments, the camera is positioned directly above the probe.
  • In some embodiments, a patient specific jig system for hip replacement is provided. The patient specific jig system can include an engagement surface formed to closely mate to acetabular bone contours of a specific patient. The patient specific jig system can include a registration feature configured to be in a pre-determined orientation relative to an acetabulum the patient when the jig is coupled with acetabular bone contours of the specific patient.
  • The patient specific jig system can include an anatomical engagement portion. The patient specific jig system can include a registration portion disposed laterally of the anatomical engagement portion such that the registration portion is disposed in a zone outside the acetabular rim. The patient specific jig system can include a registration channel extending from an anterior surface of the registration portion toward a posterior surface of the registration portion.
  • The patient specific jig system can include a mount base configured to be coupled with the pelvis adjacent to the acetabulum but spaced apart from a closest portion of the jig when the engagement surface is in engagement with acetabular bone contours. The patient specific jig system can include an inertial sensor device. In some embodiments, the registration feature comprises a recess extending from an exposed face of the jig. The patient specific jig system can include a channel extending posteriorly from an anterior side of the jig, the channel configured to receive a mounting pin of a navigation system. The patient specific jig system can include at least two channels extending posteriorly from an anterior side of the jig, the channel configured to receive a mounting pin of a navigation system. In some embodiments, the channels are disposed at an orientation related to a plane of the acetabulum.
  • In some embodiments, a patient specific method is provided. The method can include the step of coupling a patient specific jig to a rim of the acetabulum. The method can include the step of registering the orientation of a proxy for the plane of the acetabular rim using an inertial sensor device coupled with the patient specific jig. The method can include the step of removing the patient specific jig from the acetabulum. The method can include the step of orienting an acetabular shell in the acetabulum using an impactor and an inertial sensor device, wherein during orienting, inertial data from the inertial sensor device is used to confirm a proper orientation of the acetabular shell.
  • In some embodiments, the inertial sensor device is a first inertial sensing device and further comprising mounting a base on the pelvis adjacent to the acetabulum and coupling a second inertial sensing device to the base, the second inertial sensing device being fixed relative to the pelvis. In some embodiments, the base is mounted at a location that is independent of the patient specific jig. In some embodiments, the second inertial sensing device is configured to track motion of the pelvis and to generate an output that eliminates error due to the movement of the pelvis. In some embodiments, the second inertial sensing device includes a display providing a user interface. The method can include the step of coupling the first inertial sensing device with the base to relate the orientation data of the first inertial sensing device to a reference frame of the second inertial sensing. In some embodiments, mounting the base comprises inserting at least a fixation pin through the patient specific jig along an axis disposed at a pre-defined angle corresponding to the reference frame of the second inertial sensing device. In some embodiments, mounting the base comprises inserting at least two fixation pins through the patient specific jig along an axis disposed at a pre-defined angle corresponding to the reference frame of the second inertial sensing device. In some embodiments, registering includes coupling the inertial sensor device with an impactor and coupling the impactor with the patient specific jig. In some embodiments, registering includes coupling a distal portion of the impactor with a registration feature of the jig at a specific pre-defined angular position. In some embodiments, registering includes aligning the inertial sensing device with an orientation symbol on the patient specific jig prior to coupling the impactor with the patient specific jig. The method can include the step of coupling the inertial sensor device with the impactor. The method can include the step of changing the orientation of the impactor in response to an output reflecting the inertial data generated by the inertial sensing device. The method can include the step of aligning the acetabular shell to a target anteversion angle. The method can include the step of aligning the acetabular shell to a target inclination angle. The method can include the step of aligning the acetabular shell to a target anteversion angle.
  • In some embodiments, a method of performing a hip joint replacement procedure is provided. The method can include the step of placing a patient in a supine position, with a leg of the hip joint in an extended position. The method can include the step of mounting a laser projecting device to the pelvis adjacent to the hip joint. The method can include the step of projecting a laser light onto the leg to illuminate a portion of the leg away from the hip joint. The method can include the step of recording the position of incidence of the laser light. The method can include the step of registering a portion of the proximal femur adjacent to the hip joint. The method can include the step of replacing the hip joint with an artificial hip joint. The method can include the step of projecting the laser light onto the leg and/or foot to confirm orientation of the femur relative to the pelvis. The method can include the step of registering the portion of the proximal femur adjacent to the hip joint to confirm leg length and/or off-set.
  • The method can include the step of mounting an articulated member to the pelvis and coupling the laser projecting device to the articulated member. In some embodiments, the articulated member comprises a ball joint. The method can include the step of articulating the laser projecting device to direct the laser light onto a portion of a foot of the leg. The method can include the step of locking the articulating member into a fixed configuration and maintaining the fixed configuration from at least step projecting a laser light onto the leg to illuminate a portion of the leg away from the hip joint to step projecting the laser light onto the leg and/or foot to confirm orientation of the femur relative to the pelvis. In some embodiments, recording comprises marking three points on the surface of the leg and foot coincident with the laser light. In some embodiments, recording comprises capturing a photographic image of the laser light and the leg and/or foot. In some embodiments, registering the portion of the proximal femur comprises registering the femur at the greater trochanter. In some embodiments, the step of projecting the laser light onto the leg and/or foot to confirm orientation of the femur relative to the pelvis includes recreating the recorded position by lining up the incidence of light with the leg and or foot. The method can include the step of constraining the motion of the foot relative to the lower in leg in at least one of step of recording the position of incidence of the laser light and projecting the laser light onto the leg and/or foot to confirm orientation of the femur relative to the pelvis. In some embodiments, the laser projecting device is disposed in a housing including an inertial measurement unit.
  • In some embodiments, a method of performing a hip joint replacement procedure is provided. The method can include the step of mounting a laser projecting device to the pelvis adjacent to the hip joint. The method can include the step of registering a portion of the proximal femur adjacent to the hip joint. The method can include the step of projecting laser light from the laser projecting device onto the leg and/or foot to confirm correspondence between pre-operative orientation of the femur and pelvis and the post-operative orientation of the femur and pelvis. The method can include the step of registering the portion of the proximal femur adjacent to the hip joint to confirm leg length and/or off-set.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the inventions. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.
  • FIG. 1 is a perspective view of a hip navigation system applied to a patient illustrating a measurement of leg length and/or joint offset after implantation of the prosthetic hip joint.
  • FIG. 2 is an image of hip anatomy illustrating some examples of anatomical landmarks that can be used in a method of navigating a hip prosthesis with the navigation system of FIG. 1.
  • FIG. 3 shows a navigation base assembly coupled with a first anatomical landmark, in this case the ilium on the pelvis of the patient.
  • FIG. 4 is a perspective view illustrating first and second orientation detecting devices coupled with the base of FIG. 3.
  • FIG. 5 is a perspective view of the navigating system, illustrating one technique for synchronizing a plurality of orientation and/or position detecting devices of the navigating system of FIG. 1.
  • FIG. 6 is a perspective view of the navigation system of FIG. 1 coupled with the pelvis and illustrating a step of registering a landmark of a femur prior to resecting the femur.
  • FIG. 7 shows the anatomy after the femoral head has been resected and an optional step of synchronizing a plurality of inertial sensors of the navigation system.
  • FIG. 8 illustrates a step of registering an anatomical landmark disposed about the acetabular rim on the pelvis.
  • FIG. 9 illustrates a step of registering another anatomical landmark disposed about the acetabular rim of the pelvis.
  • FIG. 10 illustrates initial placement of an impactor in the acetabulum.
  • FIG. 11 illustrates a hip prosthesis placement system, including an inertial sensing device.
  • FIGS. 11A-11C illustrate an embodiment of an impactor assembly.
  • FIG. 12 illustrates a step of navigating placement of a cup portion of an artificial hip joint.
  • FIG. 13 is a perspective view of another embodiment of a hip navigation system.
  • FIG. 14 is a detail view of portion of the system of FIG. 13, with a camera recording linear position of a registration arm.
  • FIG. 15 shows a variation of the embodiment of FIGS. 13 and 14 in which rotational orientation and linear position can be acquired by a camera viewing a radial scale.
  • FIG. 16 is an exploded view of an assembly showing a tilt/rotation mechanism adapted to enable a camera to track at least one rotational position.
  • FIGS. 17-17C-2 illustrate modified systems configured for navigating a posterior approach hip replacement procedure.
  • FIG. 18 is a perspective view of a hip navigation system applied to a patient.
  • FIG. 19 is a perspective view of a fixation pin of the system of FIG. 18.
  • FIG. 20A-20H illustrate various view of embodiments of a fixation base of FIG. 18.
  • FIG. 21A-21G illustrate various view of embodiments of a first assembly of FIG. 18.
  • FIG. 22A-22F illustrate various view of embodiments of a second assembly of FIG. 18.
  • FIG. 23A-23C illustrate various view of embodiments of an orientation sensing device of FIG. 18.
  • FIG. 24A-24B illustrate various view of embodiments of a femur tracker of FIG. 18.
  • FIGS. 25A-25C are views of a hip navigation system applied to a patient.
  • FIG. 26A-26C illustrate various view of embodiments of a fixation base of FIG. 25A.
  • FIG. 27A-28C illustrate various view of embodiments of a femur tracker of FIG. 25C.
  • FIG. 29 is a pre-operative x-ray.
  • FIG. 30 illustrates pre-operative positioning of a patient for a posterior approach technique.
  • FIG. 31 illustrates a configuration of the system of FIG. 18.
  • FIG. 32 illustrates anatomical landmarks registered during some embodiments.
  • FIG. 33 illustrates a first set of points on the rim of the shell.
  • FIGS. 34-38 illustrate a hip navigation system configured for anterior approach hip replacement procedures, and various aspects of such procedures.
  • FIG. 39 illustrates the positioning of the system of FIG. 18 in an anterior approach.
  • FIGS. 40-42 illustrate the positioning of another hip navigation system in an anterior approach.
  • FIGS. 43-52 illustrate various aspects of methods involving patient-specific positioning jigs.
  • FIGS. 53-60 illustrate various aspects of methods involving patient-specific positioning jigs.
  • FIGS. 61A-63 illustrate various aspects of methods involving patient-specific positioning jigs.
  • FIG. 64 illustrates methods for defining a patient-specific safe zone in a hip placement procedure.
  • FIG. 65 is an embodiment of a system for close range optical tracking.
  • FIGS. 66-67 illustrate various anatomical landmarks that can be used in various methods involving navigating with landmarks.
  • FIG. 68 is a pre-operative image that can be used to enhance alignment in a hip procedure by providing patient specific data.
  • FIGS. 69 and 70 are views of a hip procedure navigation system applied to a pelvis in a posterior approach.
  • FIGS. 71 and 72 are view of the hip procedure navigation system of FIG. 69-70 modified and applied to a pelvis in an anterior approach.
  • FIGS. 73-73A illustrate a first embodiment of pin securement devices.
  • FIGS. 74-74B illustrate a second embodiment of pin securement devices.
  • FIGS. 75-75B illustrate a third embodiment of pin securement devices.
  • FIGS. 76-80 illustrate a modular system with an optical component.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A variety of systems and methods are discussed below that can be used to improve outcomes for patients by increasing the likelihood of proper placement of a hip joint. These systems can be focused on inertial navigation techniques, close range optical navigation, or a combination of inertial and optical navigation.
  • I. Hip Navigation Using Inertial Sensors
  • Systems and methods described below can improve prosthetic hip joint placement using navigation in connection with referencing anatomical landmarks, incorporating preoperative custom fit jigs based on imaging, and a combination of pre-operative imaging and landmark referencing. These hip procedures generally guide a prosthetic hip to an orientation within the acetabulum that minimizes the chance of dislocation due to impingement of the femoral neck on the cup or on bones around the acetabulum or other reasons related to suboptimal orientation of the prosthetic. Various techniques leverage population averages of proper placement while others are amenable to patient specific refinements. Also various techniques for registering and confirming the position and/or orientation of the femur pre- and post-implantation are discussed herein, which are useful to control leg length and joint offset at the end of the procedure.
  • A. Navigation Using Inertial Sensors and Jigs for Referencing Anatomical Landmarks with Posterior Approach
  • Most hip replacement procedures presently are performed from a posterior approach. In this approach, the patient is positioned on his/her side and the anterior pelvic plane is oriented vertically, e.g., perpendicular to the plane of the table on which the patient is positioned. Most surgeons performing hip replacement are very familiar with this approach and will immediately recognize the benefit of enhanced certainty about the orientation of the relevant anatomy when the patient is in this position.
  • 1. Posterior Approach: Systems with an Orientation Sensing Device Coupled to a Probe
  • FIGS. 1 and 4 show a hip navigation system 100 adapted to navigate a hip joint procedure with reference to anatomical landmarks without requiring, but not necessarily excluding, pre-operative imaging or other inputs apart from those discussed below. The system 100 is shown mounted on a pelvis in a posterior approach in FIG. 1. FIG. 4 shows an early phase of a procedure prior to the joint being dislocated but after the system 10 is mounted to the pelvis. FIG. 1 shows a late phase of some variations of techniques for which the system 100 is adapted. As discussed further below, such variations involve registering the femur prior to and after the joint is replaced to confirm an aspect of the relative position and/or orientation of the femur, e.g., leg length, joint offset, and rotational orientation of the femoral neck.
  • The system 100 includes a registration jig 104, an alignment assembly 108 and a landmark acquisition assembly 112. The alignment assembly 108 is rigidly connected to the hip in the illustrated configuration so that motion of the hip cause corresponding motion of sensor(s) in the assembly 108 as discussed below. Sensing this motion enables the system 100 to eliminate movement of the patient as a source of error in the navigation. The landmark acquisition assembly 112 provides a full range of controlled motion and sensor(s) that are able to track the motion, in concert with sensor(s) in the assembly 108. Additional details of systems, devices, sensors, and methods are set forth in U.S. Pat. No. 8,118,815; US US2010/0076505; and U.S. Pat. No. 8,057,479 which are all incorporated by reference herein in their entireties for all purposes. The sensors in assemblies 108, 112 preferably transfer data among themselves and in some cases with external devices and monitors wirelessly, using Bluetooth, Wifi® or other standard wireless telemetry protocol.
  • The registration jig 104 includes a fixation cannula 124 that has a distal end that can be advanced to a pelvic bone at an anatomical location or landmark or other selected location. In the illustrated technique, the cannula 124 is secured by a pin 132 (see FIG. 3) that is driven into the ilium on the pelvis through the cannula 124. A distal end 128 of the pin 132 is shown in FIG. 1.
  • As discussed further below, the cannula 124 can be coupled with other bones in other techniques with a posterior approach. For example, the cannula 124 can be coupled with the ischium or the pubis in other techniques. In some techniques, the cannula 124 is mounted to a pelvic bone but not at a landmark. The hip navigation system 450 discussed below in connection with FIG. 17-17C-2 can be used such that the fixation member 466 is coupled at a point superior to the superior-most point on the acetabular rim. In a specific technique, the member 466 is about 10 mm above the superior-most point on the acetabular rim. In such techniques, three or more anatomical landmarks disposed about the acetabulum can be acquired, as discussed below. When the cannula 124 is coupled with a landmark, only two additional landmarks are acquired in some embodiments as discussed below. In another variation, a clamp can be used to couple with a bone without requiring that the pin 132 be driven through the cannula 124 into the bone. For example, if the bone is thinner in the region where the system 100 is to be anchored, placing the pin may be disadvantageous. FIG. 2 shows a region where a clamp may be used beneath the point “A” on the ischium. One reason for mounting or clamping the cannula 124 away from the landmarks is that the landmarks may not be visible or accessible before dislocating the hip joint. If the clinician wishes to use the system 100 to reference the femur (as discussed below), it may be required to mount or clamp the cannula 124 away from the landmarks.
  • FIG. 1 illustrates a step toward the end of a navigated hip joint implant procedure discussed in detail below. Some of the preceding steps involve removing the to-be-replaced joint, navigating the hip joint, preparing the implant location for the artificial joint, and placing the joint, as elaborated below. As discussed further below, FIG. 1 illustrates a technique for confirming that these steps were properly performed.
  • FIG. 2 shows some of the anatomy that is relevant to various methods and systems herein. In some embodiments, the navigation system 100 is configured to locate a relevant anatomical feature to aid in proper placement of a prosthetic hip joint. For example, a plane can be located using the system 100 that includes at least a portion of a patient's acetabular rim. In practice, the acetabular rim may be uneven due to development of ostephytes. So, in the context of this application locating the anatomical plane can be an approximation of the actual topography, for example an estimate of the plane, a plane including a substantial fraction, e.g., a majority of the surface of the acetabular rim, or some other manner of estimating a relevant anatomical feature. Preferably the anatomical landmark being located is used to confirm accurate placement of at least the cup and preferably the complete artificial hip joint.
  • FIG. 2 also shows an example of anatomical landmarks that can be used to approximate the acetabular rim or another plane relevant anatomical landmark. In many patients the acetabular rim is not well defined, due to injury, advanced stages of arthritis or other conditions. Accordingly, approximating the acetabular rim for these patients includes calculating in the system 100 a plane that references but may not include most or any of the actual acetabular rim. The plane that is defined is located near the rim but more importantly has a known anteversion and abduction angle relative to the anterior pelvic plane. For example, three points can be used to estimate the plane of the acetabular rim. In one technique, some or all of the points illustrated in FIG. 2 are used.
  • As illustrated by FIG. 2, three landmarks are defined at “A”, “B”, and “H”. The landmark “H” is located on the ilium at a location that is spaced away from the rim by an amount sufficient to avoid irregular bony growth due to injury, advanced stages of arthritis or other conditions, for example 1 cm superior to the most superior point on the acetabular rim. The landmarks “A” and “B” can be located on the ischium and pubis respectively and can be similarly spaced from the rim to avoid damaged/diseased areas. Each of these landmarks preferably is close enough to the rim, however, to be within the standard open area, e.g., the area exposed by the surgical cut down. Other landmarks that could be used include: anterior insertion point of trans-acetabular ligament to the ischium, mid-point of the inferior aspect of the acetabular notch, the anterior superior iliac spine, anterior inferior iliac spine, convergence of the acetabulum and anterior inferior iliac spine, as well as the other landmarks illustrate on FIGS. 66 and 67. In the techniques discussed below all of the ilium, the pubis, and the ischium are used to locate the acetabular rim. The navigation system 100 has one or more processors that receive(s) data and determines the relative position of these (or other) anatomical landmarks from these points. The data can be generated by inertial sensors, as discussed elsewhere herein, or other types of sensors. Preferably the sensors are small enough to be mounted on or in handheld housings or embedded in the instruments. The navigation system 100 preferably also has a memory device to at least temporarily store the position of these points or relevant orientation data.
  • FIG. 3 shows further details of the registration jig 104 and further aspects of methods of navigating an artificial hip joint. A proximal end of the pin 132 is coupled with or disposed above a platform 136 that is configured to couple with the alignment assembly 108 and/or the landmark acquisition assembly 112. As shown in FIG. 1, the platform 136 can be connected to both of the alignment assembly 108 and the landmark acquisition assembly 112 at the same time. The platform 136 comprises a rigid bar fixed to the proximal end of the pin 132 and/or the cannula 124 in the illustrated embodiment. The platform 136 includes a plurality of mount features 140A, 140B, e.g., a mount feature on each of two lateral ends 144A, 144B of the platform. The mount feature 140A is configured to permit non-rotational attachment to the alignment assembly 108.
  • FIG. 3 illustrates that the registration jig 104 is configured to be used in left and right hip procedures, for example having a dedicated mount feature 140A for each hip. Preferably the mount feature 140A provides a post spaced away from the joint being treated so that the alignment assembly 108 can be mounted as far away from the hip joint as possible. FIG. 5 shows the alignment assembly 108 on this post and another post exposed. The exposed post is not used during the procedure on the hip joint illustrated in FIG. 5. However, if the other hip of the patient is being treated, the platform 136 is in the opposite orientation and the posted exposed in FIG. 5 will be coupled with the alignment assembly 108. Stated another way, a longitudinal axis of the platform 136 extends between two mount posts, each of which can be dedicated to a hip on one side of the medial-lateral mid-plane of the patient.
  • The mount feature 140B enables rotational mounting of the landmark acquisition assembly 112. For example, the mount feature 140B can include a pivotally mounted jig 148 that projects upward to a free end that is adapted to mate with an orientation sensing device as discussed below. The joint 148 permits a registration arm, such as the elongate member 224 discussed below to be tilted downward to touch landmarks at different elevations.
  • In one technique, the registration jig 104 is preassembled and is driven into a suitable anatomical landmark, such as the ilium. In other techniques, an anchor jig can be mounted off-set from a landmark to be acquired. The ilium will have been previously identified by conventional means, such as by X-ray examination, palpation, or by making an incision and visually inspecting the pelvis. In one technique, the cannula 124, the pin 132, and the platform 136 are separable so that the pin can be placed and the platform 136 coupled to the pin at a later time. The cannula 124 can be coupled with other landmarks in some variations.
  • FIG. 4 illustrates further steps of various techniques. For example, the alignment assembly 108 can be coupled with the mount feature 140A. In one embodiment, the alignment assembly 108 includes a rigid extension 160 that is adapted to be mounted detachably to the mount feature 140A. The extension 160 has a first end 164 and a second end 168. The second end 168 is detachably mountable to a surgical orientation device 172 that detects orientation and rotation of the device 172 relative to a reference frame. The orientation device 172 preferably comprises at least one sourceless sensor, such as an accelerometer, a gyroscope, or a combination of these sensors and other sensors. In one preferred embodiment, the orientation device includes a three axis accelerometer to detect orientation relative to gravity and a plurality of gyroscopes to detect rotation. Other sensors could be used in various modifications. Examples of specific sensor combinations include Analog Devices ADIS 16445 and Invensense MPU-6050 or MPU-9150 among others. In some approaches, the orientation device 172 can be disposable and so the sensors preferably are less expensive sensors. Sensors on the landmark acquisition assembly 112 may be reusable in some configurations and thus may incorporate more expensive, more rugged or more accurate sensors.
  • The first end 164 of the detachable extension provides several functions. The first end 164 has a device to engage the mount 140A in a secure but releasable manner. The engagement between the extension 160 and the platform 136 minimizes or prevents relative movement therebetween to avoid any mechanical relative movement during navigation procedures so that movement of the orientation device 172 corresponds to movement of the hip. The first end 164 also has a docking device that, as discussed further below, provides a stable and controlled manner to position the landmark acquisition assembly 112 relative to the orientation device 172.
  • FIG. 4 also illustrates that the landmark acquisition assembly 112 can be securely coupled to the platform 136, e.g., at the mount 140B. In one embodiment, the landmark acquisition assembly 112 includes a gimbaled jig 200 and an orientation sensing device 204. The jig 200 includes a coupler 208 for detachably coupling with the mount feature 140B of the platform 136. The coupler 208 is pivotally connected to a sliding support 212. The sliding support 212 includes a slot that permits slideable extension of an elongate member 224. The slideable extension permits a range of motion of a distal end 228 of the elongate member to facilitate acquiring a plurality of landmarks that are different distances from the attachment location of the cannula 124, as discussed further below. In other words, the distal end 228 can be extended away from the axis of the sliding support 212 or can be retracted to a position closer to the axis of the sliding support 212.
  • FIGS. 4 and 6 illustrate the movability of the landmark acquisition assembly 112 relative to the platform 136 between two positions. In FIG. 4, the elongate member 224 is swung about an axis that may be parallel to a longitudinal axis of the cannula 124 to move the distal end 228 away from the first end 164 of the extension 160. This is a moving configuration of the gimbaled jig 200. In addition to rotation enabled by the pivotal coupling between the coupler 208 and sliding support 212, the pivotally mounted joint 148 can enable the elongate member 224 to pivot about an axis that is not parallel to the axis of the cannula 124. The axis of rotation of the joint 148 can be perpendicular to the axis of rotation of the sliding support 212. This rotatability enables the distal end 228 of the elongate member 224 to pivot down to contact anatomical landmarks, as discussed above. Additionally, the slidability of the elongate member 224 within the sliding support 212, discussed above, enables the distal end 228 to move to reach anatomical landmarks in the same plane but closer to or farther from the distal end of the cannula 124 or pin 132. FIG. 6 shows the distal end 228 of the elongate member 224 positioned closer to the platform 136 for referencing landmarks at higher elevation or closer positions, e.g. on the lateral side of the femur.
  • FIG. 4 also shows that the distal end 228 can include an angled length that enables the elongate member 224 to avoid minor irregularities in height adjacent to the anatomical landmarks being registered. Such irregularities may be normal anatomy, osteophytes or irregular bone growth of various types.
  • FIG. 5 illustrates a parked configuration 260 of the landmark acquisition assembly 112. In particular, a portion of the elongate member 224 is moved into a latch 262 disposed at the first end 164 of the upright extension 160. The parked configuration 260 enables the navigation system 100 to manage errors that can compound in some inertial sensors. For example, in one embodiment, gyroscopic sensors in the orientation device 172 and in the orientation sensing device 204 can be synchronized when a stable and known orientation is detected and one or more of the gyroscopes, e.g., the gyroscope in the device 204, can be zeroed after that condition is met. Further techniques employing the parked configuration 260 will be discussed further below. As discussed below in connection with the system 450, some jigs have a registration point adjacent to the distal end of the anchor jig or bone connection site. The system 450 is capable of accurately acquiring landmarks based on only accelerometers operating in the device 204 in one mode. In such a mode, a registration feature can provide an analogous function to the parked configuration, e.g., to enhance accuracy of the sensing devices in the system.
  • Another example of a parked configuration of the system 100 can be provided. For example, the parked configuration advantageously includes the ability to stably position and hold the devices 172, 204 for substantially no relative movement. In one approach, the orientation sensing device 204 is mounted on the rigid extension 160. Other arrangements could include a mounting post on the platform 136 adjacent to the rigid extension 160.
  • Where error management is less an issue, the parked configuration 260 can still be useful in that it prevents unwanted swinging or other movement in the surgical field.
  • In one basic method, the jigs discussed above are connected to the pelvic bone, the system 100 is put into the parked configuration 260, and the sensors are initialized. The initializing can include synchronizing at least two sensors. In some cases, the initializing can include zeroing one or more sensors. In this context, “zeroing” is a broad term that includes any method of eliminating accumulated error in the system, including any form of resetting of the sensors, and/or confirming in one device that the data from the other device is reliable for at least a fixed period.
  • FIG. 6 illustrates an optional step of acquiring a landmark of a femur in connection with a hip replacement procedure. The hip is positioned in a neutral flexion/abduction position. The landmark acquisition assembly 112 is in a withdrawn configuration 266 with the elongate member 224 moved, such as by sliding in the sliding support 212, to accommodate the relatively short distance from the platform 136 and a landmark of the proximal femur. In one technique the tip of the distal end 228 is brought into contact with a part of the greater trochanter or elsewhere on the proximal femur. After the landmark is found and/or contacted, the clinician can make a mark Fm on the femur, such as a bovie mark, a pen mark, a stitch or other durable indication. Once the tip of the distal end 228 is in contact with the desired landmark, the navigation system 100 processes data from and stores the orientation of one or more sensor(s) in the orientation sensing device 204. Additionally, in some embodiments, the elongate member 224 is provided with a scale 226 indicating position of the tip of the elongate member 224, e.g., relative to the cannula 124 or some other relevant fixed feature of the patient or the system 100. By providing the scale 226 to be read by the clinician, the system is made simple and cost effective.
  • After the optional step illustrated in FIG. 6, the proximal femur can be resected to remove the natural ball thereon.
  • FIG. 7 illustrates that in one advantageous technique, the user returns the system 100 to the parked configuration 260. This step may be optional depending on the sensor(s) and the timing of the resecting of the femur. In this position, the sensor(s) in the orientation devices 172, 204 can be initialized again, e.g., zeroed. As discussed above, this is one technique for minimizing accumulation of error in some inertial sensors. By providing this optional step, less costly sensors can be used enabling the system 100 to deliver highly accurate hip replacement while helping to manage cost for the patient, medical provider and healthcare system generally.
  • FIG. 8 illustrates a first extended configuration 264 provided in a step after the resecting of the proximal femur in which a second anatomical landmark is acquired or referenced. In particular, the elongate member 224 can be extended and can be rotated by the jigs 148, 200 to be in contact with any suitable landmark. In one technique, contact is made between the distal end 228 and the ischium. To provide maximum accuracy, this contact may be provided within a short period, e.g., within about 20 seconds of being disengaged from the parked configuration 260. Once contact is made, the system 100 is configured to store the orientation of the sensing device 204. In one configuration, the orientation is stored after a button or other indirect means is pressed on the orientation device 172. In addition to acquiring the orientation, a position value is input to the system. For example, the scale 226 on the elongate member 224 can be read by the user and the value of the scale input into the system. In one technique where the scale 226 is read and input by the user, the orientation device 172 has a user interface with an input device for inputting such variables. As can be seen in the drawings, the scale 226 can in fact be two different scales, one for each of the retracted configuration 266 and the extended configuration 264. Alternatively, the scale 226 can extend the entire length of the elongate member 224 to provide a greater range of positions that can be read by the clinician or by the system as in FIGS. 13 and 14.
  • The extended configuration 264 is one in which the distal end 228 of the elongate member 224 is adapted to touch an anatomical landmark located between the medial cephalad-caudal plane of the patient and the acetabulum of the pelvis.
  • Depending on the sensors used and the timing of landmark acquiring step of FIG. 8, the user may return the system 100 to the parked configuration 260 and also may initialize, e.g., zero, the system 100 again.
  • FIG. 9 illustrates a second extended configuration 272 provided in a step after the resecting of the proximal femur in which a third anatomical landmark is acquired or referenced. The third anatomical landmark can be acquired before the second anatomical landmark in some techniques. In the second extended configuration the distal end 228 of the elongate member 224 moved to contact a landmark, such as the pubis. To provide maximum accuracy, this contact may be provided within a short period, e.g., within about 20 seconds of being disengaged from the parked configuration 260. Once contact is made, the system 100 can store the orientation of the sensing device 204. The orientation can be stored by pushing a button or other user interface device. In some techniques orientation and position are input into the system. For example, the scale 226 on the elongate member 224 can be read by the user and the value of the scale input into the system. In one technique where the scale is read and input by the user, the orientation device 172 has an input device, such as a user interface for inputting such variables.
  • The extended configuration 272 is one in which the distal end 228 of the elongate member 224 is adapted to touch an anatomical landmark located anteriorly of the acetabulum.
  • Once landmarks have been acquired, the system 100 can determine the bearing of three landmarks including that of the attachment location of the cannula 124, if the pin is attached to a relevant landmark. The system can calculate the orientation of the orientation device 172 relative the plane containing these three (or in other methods another group of three or more) landmarks. From this, a variety of post processing can be performed. For example, the orientation (anteversion and/or abduction) can be adjusted based on the known mean orientation of the plane containing these three (or another three or more, if used) landmarks from the pelvic anatomic reference planes.
  • One variant of the system 100 enables a user to select between multiple sets of landmarks for use in the above calculations. The method discussed above exploits the use of three points that are off of the acetabular rim. These points are less impacted by local prominences at the rim that may be due to disease or deformity. Thus, they have a lower likelihood of requiring intra-operative improvisation. On the other hand, another set of landmarks can be selected where the rim is free of deformities, which might be confirmed pre-operatively. For example, two or three points can be selected on the acetabular rim for landmark acquisition. The on-rim landmarks are advantageous in that they are easier to access through a smaller incision. For example, on-rim points can include the center of the posterior insertion of the transacetabular ligament, the center of the anterior insertion of the transacetabular ligament and the most superior point on the rim. A group of anatomical landmarks including one or more extra-acetabular landmarks can include the ilium (where the registration jig 104 or other anchor member can be inserted), the lowest point of the acetabular sulcus of the ischium, and the prominence of the superior pelvis ramus.
  • Some techniques involve referencing a fourth point. The fourth point can be used in connection with some forms of patient specific registration. The fourth point can be extra-acetabular or can be disposed on the acetabular rim. An example of an acetabular landmark is the acetabular notch. Other landmarks are discussed herein, for example in connection with FIGS. 34 and 35.
  • The posterior approach systems are advantageously configured to allow intra-operative selection between on-rim and off-rim points. For example, if the rim looks free of deformities pre-operatively but when exposed presents differently, the surgeon can select an off-rim landmark set.
  • Several techniques for enhancing the accuracy of the relationship between the sensed landmarks and the location of calculated anatomical features, such as the anterior pelvic plane or angle of the acetabulum can be employed. For example, user input can be collected indicating whether the hip being treated is on the left or the right side of the patient and whether the patient is male or female. A more refined estimation of the model can be provided based on a characterization of a study group. For example, hip joints of a group of 30 or more patients can be studied to identify the correspondence between a feature that can be accessed in one approach and an anatomical feature of more surgical relevance that cannot. A group of subjects can be studied for any number of demographic characteristics such as gender, age, weight, height or any other variable in a relevant population. For those sub-groups, a correlation or transformation between a measured parameter and a parameter that cannot be measured but is desirable to know can be generated. Once such a correlation or transformation is established, transforming a measured feature into the unmeasurable but useful to have feature can be achieved by operating software on a processor. The software can be programmed to calculate one or two angles, e.g., inclination and anteversion based on a registered pelvic plane, such as a proxy acetabular plane. Such a system can be used to generate in real time the angles of a free hand instrument relative to the anatomy, e.g., relative to an acetabulum in placing a hip socket component.
  • Additionally, data from the use of pre-operative imaging or positioning (discussed below) can be used to enhance the accuracy of these calculations. Thus, the posterior approach systems preferably are configured to take user input directly by actuating buttons on the orientation device 172 or by connecting an auxiliary data storage device, such as a flash memory device, to the system or by any means of other communication with the system, including wifi connection, Bluetooth, Internet connection among others.
  • In some techniques, the posterior approach systems described herein are adapted to determine, monitor, and confirm proper leg length and joint offset outcome in a hip replacement. For example, the system 100 can calculate and store components of a leg length metric, e.g., a vector along the superior-inferior axis (leg length) and/or along the medial-lateral axis (offset). In one approach, the device 172 has a display that indicates when the femur is in the same position pre- and post-operatively. For example, it can indicate “0” meaning no displacement causing a leg length change and “0” indicating no movement of the femur farther away from the cephalad-caudal mid-plane of the patient pre- and post-operatively. For enhanced accuracy, a plurality of points, e.g., three points, can be marked acquired and/or marked on the femur. The points can be spaced apart by an amount sufficient to provide increased accuracy. These three points can be used to confirm proper placement of the femur in abduction, rotation, and flexion.
  • One enhancement involves referencing the femoral neck to assure that after implanting the hip joint, the femur is positioned properly rotationally. For example, it may be desired to make sure that a feature of the femur like the greater trochanter resides in the same rotational orientation relative to an axis extending through the center of rotation of the femoral head and perpendicular to the plane of the acetabulum. To assure a substantially unchanged rotation orientation post-implantation, the system 100 can record one or more, e.g., three points on the femoral neck pre- and post-implantation. Three points that would be convenient from either the posterior approach or the anterior approach (discussed below in connection with FIGS. 18-24B) are the greater trochanter, lesser trochanter and the insertion of the obdurator externus.
  • The foregoing are some steps that can be used to determine and store a variety of parameters useful in a navigated hip procedures. After some or all of these steps have been performed, in one embodiment, the acetabulum can be prepared for receiving a cup. For example, the acetabulum can be reamed in a conventional manner. In some embodiments, the reamer can be coupled with an orientation device containing an inertial sensor to guide the reaming process. This is discussed in some detail in US2010/0076505, published Mar. 25, 2010 which is incorporated by reference herein in its entirety for this purpose and for all disclosure therein generally.
  • FIG. 10 shows that after reaming, an impactor 300 may be used to place a cup of an artificial hip joint. The impactor handle 304 may be positioned in the approximate correct orientation, e.g., with a longitudinal axis of the impactor being disposed perpendicular to the plane navigated above or a plane determined based on the navigated plane. FIG. 10 shows that this initial placement can be done while the system 100 is in the park configuration 260. The impactor 300 can be substantially aligned at this time, based on visual inspection. As part of the step illustrated in FIG. 10 or shortly thereafter, the sensors can be initialized, e.g., zeroed as discussed above.
  • FIG. 11 shows that in a subsequent step the orientation sensing device 204 can be undocked from the proximal end 230 of the elongate member 224 and thereafter docked to the impactor 300. Preferably this step is performed while the impactor 300 is in place on the hip, close the proper alignment. In another embodiment, a third sensing device similar to the sensing device 204 be coupled with, e.g., pre-attached to, the impactor and the data collected above transferred to the third device. The impactor 300 and sensing device 204 comprise a cup orientation navigation assembly. Preferably the impactor 300 has a cylindrical shell 312 that is moveable relative to an inner shaft 316 of the handle 304. The shell has a docking device 320 that can receive the docking device of the sending device 204. The movability of the shell 312 helps to isolate the sensing device 204 from the forces that are transmitted through the impactor 300. These forces are applied by a mallet or other device for forcibly moving the cup into position. By providing at least some force isolation between the shell 312 and the sensing device, impact on the sensors in the sensing device 204 can be reduced. Excessive force being applied to the sensing device 204 can put the device 204 out of service, for example until synched with the device 172.
  • FIG. 11A illustrates a further embodiment of an impactor 300A in which the movement of a shell 312A is cushioned by a plurality of spring members 340, 344 which are configured to absorb at lease some of the shock of the impact on the impactor 300A. The impactor 300A also is configured to be modified to suit any of a plurality of hip prostheses. For example, a plurality of tip components 348 can be provided in a kit where each tip component is attachable to and detachable from a distal end of the shaft 316A of the impactor 300A.
  • FIGS. 11B-C show more detail of distal features of the impactor 300A. In particular, the tip component 348 is removable from a shaft 316A of the impactor 300A. FIG. 11C shows that the tip component 348 can have a recess 352 formed on the proximal side thereof and an engagement device 356 formed on the distal side thereof. The recess 352 can comprises a plurality of flats 350A corresponding to a plurality of flats 350B on the distal end of the shaft 316A. The flats permit proximal-distal sliding of the recess 352 over the distal end of the shaft 316A. Preferably a detent device or other mechanism is provided between the tip component 348 and the shaft 316A so that the component does not fall off the shaft. The flats prevent the tip components 348 from rotating relative to the shaft 316A. The engagement device 356 comprises threads in one embodiment so that the cup 360 of the prosthetic hip can be screwed onto the distal end of the tip component 348. The sliding engagement of the tip component 348 on the shaft 316A is important because the impactor 300A is intended to be used with hip prostheses of a variety of manufacturers. Often the cup 360 will have a hole pattern for securing the cup to the prepared acetabulum that is unique to the manufacturer and that is dictated by the anatomy. The flats enable many discrete alternate relative angular positions of the tip component 348 (and hence the cup 360) to the shaft 316A. A plurality of flutes or elongate axial ridges 364 on the outer surface of the tip component 348 enable the user to securely grasp the tip component for mounting and dismounting the tip component on the shaft 316A.
  • FIG. 12 shows the cup orientation placement navigation assembly of FIGS. 11A-C adjacent to the anatomy. This figure also illustrates a free-hand navigation configuration 274, in which at least the orientation devices 172, 204 are capable of six degrees of motion relative to each other. Any of the variations of FIG. 11A-11C could be substituted in the illustration. In particular, the handle 304 is oriented as desired. In one embodiment, the system 100 displays in real time the angle of the cup relative to the navigated plane, which was acquired as discussed above. Angles that can be displayed include any one or more of anteversion and abduction for example. Preferably the clinician can confirm the position of the cup within a short fixed time, such as within about 20 seconds. In one embodiment, the angles displayed can be adjusted by about 40 degrees abduction and 20 degrees anteversion. These angles are not critical, but they relate to the range of motion of the leg. It is preferred to be close to these angles because motion in abduction and anteversion extends on either side of these angles. It is believed that the systems discussed herein can increase the percentage of patients in a “safe zone” close to these angles, typically described as within 10 degrees of these angles. In contrast, studies show that conventional techniques yield close to 50% of patients outside the “safe zone.”
  • Depending on the sensors and the timing of cup placement step of FIG. 12, the user may mount the sensing device 204 on the elongate member 224 again and may return the system 100 to the parked configuration 260 and also may initialize or zero the system 100.
  • The system 100 can be configured to provide a pre- and/or post-operative estimation of an angle relative to the angle of the table. In the posterior approach, the patient is placed on his/her side. In this approach, there is more chance for the patient's position to shift intra-operatively. In one embodiment, an alignment rod can be coupled with the sensing device 204 and aligned with the plane of the table. The orientation of the sensing device 204 when so aligned is recorded in the system. Later in the procedure, one or more angles is calculated and displayed to the user based on the assumption that the pelvis has not moved. At such later stages, the orientation of the sensing device 204 can be confirmed again relative to the table to provide information about whether the patient has moved. If significant movement has occurred, such that any assumptions of no movement are violated, some or all of the landmark acquisition steps can be repeated. Alternatively, the movement of the pelvis can be tracked by the sensing device and corrected for. The manner of incorporating the table orientation with landmark acquisition is discussed in greater detail below.
  • The user will have placed the artificial ball of the replacement hip join in the proximal femur and thereafter can place the ball in the cup, which was properly oriented using the techniques discussed above.
  • FIG. 1 shows that thereafter, the user can optionally confirm orientation and/or leg length using the system 100. The leg with the artificial hip joint assembled is placed in a neutral flexion and/or abduction and/or rotation position. The acquisition assembly 112 can be placed in the retracted configuration 266. The distal end 228 of the elongate member 224 can be brought into contact with a landmark, which may be the same landmark acquired in FIG. 6. Once contact is made with this landmark (e.g., the bovie mark), the orientation of the sensing device 204 is determined by the system 100. Also, the distance indicated on the scale 226 of the elongate member 224 is input into the system in any of the manners discussed above (e.g., manual or sensed). The system 100 can thereafter calculate components of vectors along the S-I axis (leg length) or M-L axis (offset).
  • Once leg length and offset are determined post-operatively, they can be compared the pre-operative measurements (FIG. 6) to let the surgeon know if any adjustments should be made before completing the hip replacement surgery.
  • FIGS. 13 and 14 show other embodiments of a hip navigation system 400 that can include any of the features discussed above. In addition, the system 400 includes a free-hand sensor mount 404 that can be used to mount a freehand orientation device 204A in one configuration. The freehand orientation device 204A preferably includes inertial sensors, similar to those hereinbefore described. The device 204A preferably also includes a camera 412. The field of view is illustrated by the cone projecting downwardly from the base of the freehand orientation device 204A. FIG. 14 shows that the field of view includes a window 418 in a sliding support 420. The window 418 enables the scale 226 to be viewed therethrough.
  • Because hip replacement procedures involve an open surgical field with a substantial amount of exposed tissue and blood the line of sight the camera 412 to the scales can become obstructed. In one embodiment, a hood is provided above the window 418. The hood keeps most of the blood and tissue out of the space where the camera views the scales. Additionally, a scrubber component, e.g., a thin rubber member, can be provided above the scales 226, 226A (discussed below) to prevent this tissue or fluids from entering into the field of view laterally.
  • One advantage of the system 400 is that the camera 412 can automatically process the image captured through the window 418 and thereby determine the position of the elongate member 224 relative to the sliding support 420. A further advantage of this is to eliminate one step from the navigation process, e.g., to eliminate the need to enter the linear dimension into the system 400. Eliminating the step can reduce time and/or personnel in the operating room. Also, the camera 412 can be configured to read a much higher resolution than can be read by a clinician. This can provide greater accuracy in the system overall. Not only that, but the camera can be configured to make fewer or no errors in reading the position, which can improve outcomes overall. For example, miniature cameras can produce data in JPEG or other image format that a processor in one or both the orientation devices 172, 204A can process to extract the linear position of the elongate member 224.
  • A further modified embodiment is described in FIG. 15, which shows an arcuate scale 226A that can be positioned on a structure beneath the elongate member 224, e.g., on a structure beneath the orientation device 204A that is rotationally fixed relative to an axis extending out of the page. FIG. 16 shows one configuration with this arrangement. A pivot 440 enables the sliding support 420 to rotate about an axis extending upward on the page. Although the pivot 440 is fixed about this upward extending axis, it can rotate about a pivot 444. A window 418A in the elongate member 224 enables the camera to see through the support to view the scale 226A disposed on an arcuate or disk shaped feature of the pivot 440. The scale 226A can be read by the camera 412 or a second camera to provide accurate determination of the rotational position of the elongate member 224. This can enable one of the sensors in the orientation device 204A to be eliminated or inactivated. In another embodiment, camera date derived from the scale 226A can be used to confirm the data from sensors in the orientation device 204A. Preferably the scale 226A has markings over a range of from about 15 to about 90 degrees, for example, between about 30 and about 60 degrees, e.g., at least between about 40 and about 50 degrees.
  • 2. Posterior Approach: Systems Adapted for Accelerometer Sensitivity
  • FIGS. 17-17C2 illustrate further embodiments. A system 450 is adapted for navigating a hip procedure from a posterior approach. The system 450 includes an anchor jig 454, an alignment system 458, and a landmark acquisition assembly 462. The components may be similar in some respects to those discussed above, and such descriptions are incorporated with this embodiment where consistent.
  • The jig 454 includes a hollow fixation member 466 and a platform 468 for coupling a plurality of devices to the pelvis. The platform has a generally T-shaped configuration including a first portion 468A coupled with the proximal end of the fixation member 466 and a second portion 468B disposed transversely to the first portion 468A. The first portion 468A provides a support for a cradle 476 discussed further below. The second portion 468B can include a plurality of docking devices 469 for coupling directly or indirectly with the orientation device 172. The T-shaped configuration provides the advantage that the docking devices 469 can be disposed father away from the surgical site than is the case with the system 100. This reduces any intrusion of the orientation device 172 into the working field.
  • In some cases, the fixation member 466 provides adequate stability in anchoring the system 450 to the pelvis. In other situations, the jig 454 can be coupled with the pelvis from the second portion 468B. For example, a slot 470 can be formed in the second portion 468B on one or both sides of location where the first portion 468A extends from the second portion 468B. The slots 470 can extend from a lateral edge of the second portion 468B toward location where the first portion 468A extends from the second portion 468B. The slots 470 can include a plurality of channels 471 configured to receive fixation pins (e.g., Steinmann pins) that can be advanced into the pelvis. The channels 471 extend generally parallel to the fixation member 466. The fixation pins can be securely connected to the second portion 468B in the channels 471 by a clamp device 472. The clamp device can include a screw configured to draw the portions of the second portion 468B on either sides of the slot 470 toward each other and thus to create large frictional forces on the pins in the slots 471.
  • The slots 470 preferably are aligned such that a plane extends along both of the slots 470 along their length. Because the slots 470 are long and slender this plane can be readily visualized in an X-ray image. It is preferred that the jig 454 be aligned to the pelvis such that the plane extending along the slots 470 is perpendicular to an axis of the patient (e.g., the intersection of the medial lateral plane and the transverse mid-plane of the patient). This feature provides a convenient way to visually confirm proper positioning of the jig 454 in one embodiment.
  • The fixation member 466 includes a registration feature 473 and a foot 474 adjacent to a distal end thereof and a coupling 475 adjacent to the proximal end thereof for connecting to the platform 468. The foot 474 includes a plurality of spaced apart spikes extending from a distal end thereof capable of preventing or limiting rotation of the jig 454 when the fixation member 466 is connected to the pelvis. FIG. 17 shows that securing the jig 462 to the pelvis can include positioning a pin or other bone engaging device through the fixation member 466. The pin and spikes extending from the foot 474 can provide three or more points of contact with the pelvis providing secure mounting of the jig 462.
  • The coupling 475 generally secures the platform 468 to the fixation member 466. In some embodiment, the coupling 475 has a rotational capability that enables the platform to be positioned at selective locations about the longitudinal axis of the pin 466, for example to enable the platform 468 to be initially positioned in the correct orientation or to be moved during or after the procedure to make space for other surgical devices. One arrangement provides matching splines that extend parallel to the longitudinal axis of the fixation member 466. This arrangement would permit splines on an upper portion of the coupling 475 to be disengaged from splines on a lower portion of the coupling 475. When disengaged, the platform 468 and the upper portion of the coupling 475 can be rotated relative to the lower portion of the coupling 475. The splines can thereafter be re-engaged.
  • The jig 454 also preferably includes a cradle 476 that can be used to hold a probe arm 477. The cradle 476 includes a U-shaped recess having a width between two upright members that is about equal to the width of an arm 477 of the landmark acquisition system 462. FIG. 17 shows the probe arm 477 in a parked configuration as discussed above. If the sensor 204 operates with components that are prone to accumulated error sources, the parked configuration can be used to eliminate such error. As discussed above, the system 450 can be configured such that the position and/or orientation of the sensor 204 relative to the orientation device 172 is known. Thus, when the arm 477 is in the cradle 476 any accumulated error of components of the sensor 204 can be eliminated.
  • The cradle 476 can provide other convenient functions even if the sensing devices in the sensor 204 are not subject to sources of accumulated error. As discussed elsewhere herein, for confirmation of accuracy of the system or to provide a simplified reference frame not requiring landmark acquisition, it may be desirable at some point of the procedure to use the probe arm 477 and the sensor 204 to estimate the plane of the surgical table upon which the patient is resting. If, as discussed above, the plane intersecting the slots 470 is oriented perpendicular to the axis of the patient when the jig 454 is mounted to the pelvis, the cradle will be parallel to the axis of the patient. If the fixation member 466 is oriented vertically, the arm 477 will be parallel to the plane of the table when in the cradle 476. The system 450 can thus use the plane of the table as a reference frame for guiding the placement of the cup without registering landmarks. Or, the plane of the table can be used in combination with registering the anatomy about the acetabular rim, as discussed above, to increase the accuracy of navigating the cup.
  • The cradle 476 also provides a convenient home position that keeps the arm 477 stationary and out of the way of other surgical instruments. FIG. 17A illustrates the probe arm 477 withdrawn from the cradle 476 and free to move into contact with landmarks.
  • The jig 454 also includes a pivot feature 478 that is disposed horizontally. FIG. 17B shows that the pivot feature 478 includes two horizontal apertures 480. One of the apertures 480 is formed in the same structure forming the cradle 476 but at an elevation below the cradle 476. The other aperture 480 formed between the cradle 476 and a projection of the fixation member 466. FIG. 17A shows that the probe arm 477 is connected to the pivot feature 478 by a shaft 482 that extends through the apertures. A movement device is provided between the shaft 482 and the arm 477 to enable a distal tip of the arm to be rotated about perpendicular axes and to be advanced linearly relative to the stationary jig 454. One axis of rotation A of the movement device is disposed parallel to and at an elevation above the platform 468. Another axis of rotation B is disposed generally perpendicular to the axis A. Sliding of the arm 477 is enabled by a snug but sliding fit of the arm in a housing C. By orienting the axis A in this manner, the sensitivity of accelerometers in the sensor 204 to small angular motions references points about the acetabulum is heighted or maximized. This can enable landmark acquisition with the system 450 based solely on accelerometers, which advantageously are not subject to accumulated error, which can simplify the landmark acquisition process.
  • The registration feature 473 is a convenient way to enhance the accuracy of the sensor 204. In particular, in one variation of the method discussed above, a distal tip of the probe arm 477 is brought into contact with the registration feature 473. In one embodiment, the registration feature 473 is a notch configured to receive and temporarily retain the tip. Thereafter, the user can interact with the orientation device 172 to initialize accelerometers within the sensor 204. Thereafter the points to be acquired can be sequentially contacted and the orientation and position of the sensor 204 can be sequentially recorded in the system 450. Because the accelerometers are initialized close to the points to be acquired, accuracy of the reading is enhanced as the angular error resulting from an error in the scale factor of the accelerometers is minimized due to the small arc from the registration feature. For example, the jig 454 is configured to enable the landmark acquisition assembly 458 to reach all points to be registered by moving less than about 45 degrees from an initial or home position in some embodiments. In other embodiments, the jig 454 is configured to enable the landmark acquisition assembly 458 to reach all points to be registered by moving less than about 25 degrees from the initial position. In other embodiments, the jig 454 is configured to enable the landmark acquisition assembly 458 to reach all points to be registered by moving less than about 15 degrees from the initial position.
  • The jig 454 also is configured to interact well with the soft tissue that is disposed around the surgical site in the posterior approach. In this approach, an incision is made in soft tissue that is kept as small as possible. In one approach, the fixation member 466 is positioned at the end of the incision. Where the incision is made as minimal as possible, the jig 454 can also function as a retractor. The T-shaped configuration is particularly well suited for this function because the first portion 468A of the platform 468 can be received between the middle and ring fingers of the user with the second portion 468B in the palm of the hand. With the foot 474 gripping the pelvis, the jig 454 can be tilted from the platform 468 away from the hip joint to retract the tissue away.
  • FIGS. 17C-1 and 17C-2 illustrate further embodiments of a posterior approach jig 454A having a mounting device 488 disposed adjacent to the distal end of a fixation member 466A, which is otherwise similar to the fixation member 466. The fixation member 466A includes a tubular body 490 coupled with the fixation member 466A, which in this embodiment acts as a primary fixation member. The tubular body 490 extends along a lumen that is angled relative to the lumen of the fixation member 466A. The lumen in the tubular body 490 is configured to accept a fixation pin 492 that can be driven into the bone, as illustrated in FIG. 17C-2 at an oblique angle. The fixation pin 492 supplements the fixation provided by the fixation member 466A. The fixation pin 492 can be used in conjunction with the optional long pin(s) extending through the channels 471, e.g., into the ilium or as a substitute for that option. The fixation pin 492 has the advantage of not requiring any additional holes in the skin because it is located within the primary incision made to access the joint in the procedure. The fixation pin 492 can be threaded to engage the bone in one embodiment. In some embodiments, a locking device 494 can be provided to secure the pin 492 in the lumen of the tubular body 490. A set screw is one example of a locking device 494 that can be used. The locking device 494 enables the fixation pin 492 to be headless, which avoids issues with screw threads stripping the hole in the bone into which the pin 492 is inserted.
  • 3. Posterior Approach: Workflow Considerations
  • As noted above, a workflow problem arises in typical hip replacement procedures in that anatomical features that can be more easily references are unavailable in the traditional posterior approach for operating on the joint.
  • By performing a CT-based study of a large number of human pelvises, the assignee of this application has been able to calculate a population-based average relationship between multiple planes created by various points in, on or around the acetabulum that are accessible during posterior approach hip replacement (each plane, an “Acetabular Plane”), and the Anterior Pelvic Plane. One of the key features of posterior hip navigation for some embodiments disclosed herein is the ability of a module, e.g., software incorporated into a processor, which may be on a computer, or one or both of the orientation device 172 and sensor 204, to calculate a transformation from one reference frame to another. As described in more detail elsewhere herein, several points are referenced in, on or around the acetabulum and from these points a proxy Acetabular Plane is calculated.
  • Next, in certain embodiments described herein a module operable to process an algorithm, e.g., by executing software in one or both of the orientation device 172 and sensor 204 alone or with a separate computer, is able to calculate a transformation from the proxy Acetabular Plane to Anterior Pelvic Plane. The approach indirectly registers the Anterior Pelvic Plane without requiring a direct supine registration and subsequent patient movement and re-draping necessary in standard navigation. A module in certain embodiments described herein is then able to provide the user real time navigation data of the orientation of a hip instrument (e.g., the impactors 300, 300A) with respect to the Anterior Pelvic Plane.
  • In certain systems described herein, a further advantage is that the systems are able to implement the plane transformation algorithm to calculate an Anterior Pelvic Plane from one of any number of proxy Acetabular Planes that the surgeon chooses to register. This enables the surgeon to have greater flexibility in Acetabular Plane landmark selection to take into account the quality or accessibility of certain landmarks. For example, in cases of minimal deformity around the acetabular rim, the surgeon may choose to register landmarks around the rim, which are easily accessible. In cases where there is great deformity or high presence of osteophytes on the acetabular rim, the surgeon may instead choose to register an Acetabular Plane based on extra-acetabular landmarks (or described as “off-rim” elsewhere herein) outside of the rim that are unaffected by disease or prior hip replacement surgery.
  • Examples of anatomical landmarks that may be used to create a proxy Acetabular Plane and that are shown in FIG. 2 include but are not limited to:
  • Extra-acetabular landmarks (Ischium/Ilium/Pubis)
      • (A) The lowest point of the acetabular sulcus of the ischium
      • (B) The prominence of the superior pubic ramus
      • (G) The confluence of the anterior inferior iliac spine (AIIS) and the outer border of the acetabular rim
  • Acetabular Rim Landmarks
      • (E) The center of the anterior insertion of the trans-acetabular ligament
      • (F) The center of the posterior insertion of the trans-acetabular ligament
      • (H) The most superior point of the acetabular rim.
  • Additional points can be combined with either of the groups of points listed above. For example, in one embodiment, point “D” is used. Point D is the midpoint of the inferior border of the acetabular notch. As discussed in connection with FIG. 36 below, point D corresponds to the bottom landmark 380B used to form the line 382. Point D is used in that approach to provide patient specific refinements to the positioning.
  • A further key benefit of certain embodiment discussed herein is that the foregoing plane transformation capabilities increase the accuracy of the transformation between the proxy Acetabular Plane registered and the Anterior Pelvic Plane above the general population average data by the user inputting certain patient-specific information, such as gender.
  • Additionally, certain embodiments of systems including one or more of the orientation device 172, sensor 204, or a separate computer may have modules that are operable, e.g., by processing software, to allow the user to input an angular or plane relationship between an proxy Acetabular Plane and Anterior Pelvic Plane that the surgeon measured based on pre-operative imaging, allowing for a partial or whole plane transformation based on patient-specific data rather than population data. By way of example, the surgeon may choose to pre-operatively measure an angle created by (a) landmarks that are both visible on an A/P pelvis x-ray and that can be referenced during posterior hip replacement, and (b) landmarks that are both visible on the pelvis x-ray and that are directly associated with inclination measurement in the Anterior Pelvic Plane. If this angular relationship is inputted into a module of a system including one or more of the orientation device 172, the sensor 204, or a separate computer, which module is capable of making calculations processing software and the surgeon registers the landmarks described in (a), inclination navigation will be based specifically on that patient rather than a population average. Landmarks (D) and (H) listed above are examples of landmarks that are both visible on an A/P pelvis x-ray and that can be referenced to create a proxy Acetabular Plane in posterior hip replacement.
  • These aspects of the systems adapted for posterior approach hip joint replacement can greatly enhance both workflow and accuracy in such procedures.
  • 4. Posterior Approach: Further Systems with an Orientation Sensing Device and Camera
  • FIG. 18 shows a hip navigation system 600 adapted to navigate a hip joint procedure with reference to anatomical landmarks. The system 600 is shown mounted on a pelvis in a posterior approach in FIG. 18. FIG. 18 shows an early phase of a procedure prior to the joint being dislocated but after the system 600 is mounted to the pelvis. The system 600 can be adapted for various techniques. As discussed further below, such variations involve registering the femur prior to and after the joint is replaced to confirm an aspect of the relative position and/or orientation of the femur, e.g., leg length, joint offset, and rotational orientation of the femoral neck. The system 600 can include any component described herein. The system 600 can be used in any technique or method step described herein.
  • The system 600 can include a fixation base 602, a first assembly 604 and a second assembly 606. The first assembly 604 is rigidly connected to the hip in the illustrated configuration so that motion of the hip cause corresponding motion of sensor(s) in the first assembly 604 as discussed below. Sensing this motion enables the system 600 to eliminate movement of the patient as a source of error in the navigation. The second assembly 606 provides a full range of controlled motion and sensor(s) that are able to track the motion, in concert with sensor(s) in the first assembly 604. Additional details of systems, devices, sensors, and methods are set forth in U.S. Pat. No. 8,118,815; US US2010/0076505; and U.S. Pat. No. 8,057,479 which are all incorporated by reference herein in their entireties for all purposes. The sensors in assemblies 604, 606 preferably transfer data among themselves and in some cases with external devices and monitors wirelessly, using Bluetooth, Wifi® or other standard wireless telemetry protocol.
  • The system 600 can include one or more fixation pins. In the illustrated embodiment, a first fixation pin 610 and a second fixation pin 612 are shown. Other configurations are contemplated (e.g., one fixation pin, three fixation pins, four fixation pins, etc.). The fixation pins 610, 612 can be elongate structures. FIG. 19 shows the fixation pin 610. In some embodiments, the fixation pins 610, 612 are identical or substantially similar. In some embodiments, the fixation pins 610, 612 are different and can be adapted to be inserted into different anatomic locations.
  • The fixation pin 610 can be substantially cylindrical, as shown in FIG. 19. The fixation pin 610 can have a distal end 614 that can be advanced to a pelvic bone at an anatomical location or landmark or other selected location. In the illustrated embodiment, the distal end 614 is threaded. The distal end 614 can include a sharpened tip designed to penetrate bone. The fixation pin 610 can have a proximal end 616. The proximal end 616 can include attachments features to couple the fixation pin 610 with a driver. In the illustrated embodiment, the proximal end 616 includes a tri-flat shape designed to couple with a tri-flat socket. The fixation pin 610 can include one or more markings along the length of the fixation pin 610. The markings can indicate the orientation of the fixation base 602 relative to the fixation pin 610.
  • Referring back to FIG. 18, each fixation pin 610, 612 can be driven into the ilium on the pelvis. As discussed further below, each fixation pin 610, 612 can be coupled with other bones in other techniques. For example, one of the fixation pins 610, 612 can be coupled with the ischium or the pubis. In some techniques, one of the fixation pins 610, 612 is mounted to a pelvic bone but not at a landmark. One of the fixation pins 610, 612 can be coupled at a point superior to the superior-most point on the acetabular rim. In some techniques, one of the fixation pins 610, 612 is about 10 mm above the superior-most point on the acetabular rim. In some techniques, three or more anatomical landmarks disposed about the acetabulum can be acquired, as discussed below. When one of the fixation pins 610, 612 is coupled with a landmark, only two additional landmarks are acquired in some embodiments as discussed below. One reason for mounting the fixation pins 610, 612 away from the landmarks is that the landmarks may not be visible or accessible before dislocating the hip joint. If the clinician wishes to use the system 600 to reference the femur as discussed below, it may be required to mount the fixation pins 610, 612 away from the landmarks.
  • The system 600 can include the fixation base 602 shown in FIGS. 20A-20H. The fixation base 602 can function as a clamp with the one or more fixation pins 610, 612. FIG. 20A shows an exploded view of the fixation base 602. FIGS. 20B-20D show other views of the fixation base 602. The fixation base 602 can include a platform 620 and a support 622. The platform 620 can interact with the support 622 to function as a clamp. In the illustrated embodiment, the fixation base 602 can include one or more fixation devices 624. In the illustrated embodiment, two fixation devices are shown but other configurations are contemplated (e.g., one, three, four, etc.). The fixation devices 624 can include one or more threaded sections. In the illustrate embodiment, the fixation devices 624 are screws with a head and a threaded shank. The platform 620 can include one or more holes. The support 622 can include one or more holes. The fixation devices 624 can pass through or engage one or more holes in the support 622. In some embodiments, each hole in the support 622 is threaded. The fixation devices 624 can pass through or engage one or more holes in the platform 620. In some embodiments, each hole in the platform 620 is threaded. Rotation of the fixation devices 624 can cause the support 622 to move toward the platform 620 and/or the platform 620 to move toward the support 622.
  • The platform 620 and the support 622 form one or more channels therebetween, as shown in FIG. 20C. The number of channels can correspond to the number of fixation pins. In the illustrated embodiment, a first channel 626 and a second channel 628 are shown. The channels extend from a top surface of the platform 620 and/or the support 622 to a bottom surface of the platform 620 and/or the support 622. The channels 626, 628 extend in a direction transverse to the direction of the fixation devices 624 when the fixation devices 624 are engaged with the platform 620 and the support 622. The first channel 626 is sized to accept the first fixation pin 610 and the second channel 628 is sized to accept the second fixation pin 612. Rotation of the fixation devices 624 can cause the support 622 to move toward the platform 620. The channels 626, 628 can decrease in diameter with the rotation of the fixation devices 624. Upon rotation of the fixation devices 624, each fixation pin 610, 612 is retained between the platform 620 and the support 622. The fixation base 602 can include divot 630. The divot 630 can be associated with a parked configuration or home position, as described herein. The divot 630 is an example of a registration feature disposed on the system 600.
  • The fixation base 602 can include a first coupler 632. The first coupler 632 can couple to one or more components of the system 600. In some embodiments, the first coupler 632 is a universal coupler. The first coupler 632 can include an elongate post 635. In some embodiments, the first coupler 632 can have a regular shape (e.g., cylindrical). In some embodiments, the first coupler 632 can have an irregular shape (e.g., triangular, teardrop, elliptical, rectangular). The irregular shape may facilitate alignment of other components of the system 600 with the platform 620 of the fixation base 602. In the illustrated embodiment, the other components of the system 600 can mate with the first coupler 632 in a single orientation.
  • The first coupler 632 can include a slot 634. The slot 634 can be transverse to the longitudinal axis of the first coupler 632. The slot 634 can form an angle with an axis transverse to the longitudinal axis. This angle can be approximately 10°, between 5° and 15°, between 0° and 20°, etc. The slot 634 can be designed to interact with detents of other components of the system 600, as described herein. The first coupler 632 can include a tapered surface 636. The tapered surface 636 can facilitate entry of the first coupler 632 within other components of the system 600. The tapered surface 636 can move the detent of other components of the system 600 when the first coupler 632 is inserter within the other component. As shown in FIG. 20A, the first coupler 632 can include the elongate post 635 coupled to a hole on the top surface of the platform 620. As shown in FIG. 20E, in an alternative embodiment, the first coupler 632A is integrally formed with the platform 620. A post 632B can be inserted from a bottom surface of the platform 620 to support the first coupler 632A.
  • The system 600 can include the first assembly 604 shown in FIGS. 21A-21G. The first assembly 604 can include a pelvic bracket 638. In the illustrated embodiment, the pelvic bracket 638 can be substantially vertical in use, as shown in FIG. 18. The first assembly 604 can be designed to couple with the first coupler 632 of the fixation base 602. The first assembly 604 can include a lock lever 640. The lock lever 640 can be coupled to the pelvic bracket 638 with pivot pins. The lock lever 640 can be pivoted relative to the pelvic bracket 638. In some embodiments, the tapered surface 636 of the first coupler 632 causes the pivoting of the lock lever 640. In some embodiment, the surgeon causes the pivoting of the lock lever 640. The lock lever 640 can include a detent 642. The detent 642 is sized and shaped to be received within the slot 634. The engagement of the detent 642 and the slot 634 can rigidly couple the first assembly 604 with the fixation base 602.
  • The first assembly 604 can include an extension 644. The extension 644 can be coupled to the pelvic bracket 638. The extension 644 can include a mount 646 designed to couple with the surgical orientation device 172. In the illustrated embodiment, the mount 646 includes a lock and release lever that can pivot relative to the extension 644. The surgical orientation device 172 can include features to mate with the lock and release lever (not shown). Other configurations are contemplated. The surgical orientation device 172 is rigidly coupled to the extension 644 when engaged with the mount 646. The surgical orientation device 172 can be angled when coupled to the first assembly 604, as shown in FIG. 18. The surgical orientation device 172 can be angled approximately 35° from the horizontal axis. Other angles from the horizontal axis are contemplated, (e.g., 5°, 10°, 15°, 20°, 25°, 30°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, or 85°, between 30°-40°, between 25°-45′). In some embodiments, the angle of the surgical orientation device 172 improves visibility. The angle is a compromise between tilting the surgical orientation device 172 up toward the surgeon and allowing another surgeon or surgical assistant on the other side of the patient to still see the display. One reason for angling the surgical orientation device 172 is that in an anterior approach, the surgeon stands toward the patient's feet while impacting the acetabular implant and a horizontal display would be difficult to see.
  • The surgical orientation device 172 detects orientation and rotation of the device 172 relative to a reference frame. The surgical orientation device 172 preferably comprises at least one sourceless sensor, such as an accelerometer, a gyroscope, or a combination of these sensors and other sensors. In some embodiments, the surgical orientation device 172 includes a three axis accelerometer to detect orientation relative to gravity and a plurality of gyroscopes to detect rotation. Other sensors could be used in various modifications. Examples of specific sensor combinations include Analog Devices ADIS 16445 and Invensense MPU-6050 or MPU-9150 among others. In some approaches, the surgical orientation device 172 can be disposable and so the sensors preferably are less expensive sensors. In some embodiments, the surgical orientation device 172 is disposable.
  • The extension 644 can include a second coupler 648. In some embodiments, the second coupler 648 is a universal coupler. The second coupler 648 can be substantially similar to the first coupler 632 described herein. The second coupler 648 can be designed to couple with the second assembly 606. The couplers 632, 648 are designed to secure to other components of the system 600 in a secure but releasable manner. The engagement between the coupler 632 and the first assembly 604 minimizes or prevents relative movement therebetween to avoid any mechanical relative movement during navigation procedures so that movement of the surgical orientation device 172 corresponds to movement of the hip. The second coupler 648 provides a stable manner to position the second assembly 606 relative to the first assembly 604.
  • The system 600 can include the second assembly 606 shown in FIG. 22A-22F. The second assembly 606 can include a probe bracket 652. In the illustrated embodiment, the probe bracket 652 can be substantially angled with respect to the pelvic bracket 638 when in use, as shown in FIG. 18. The second assembly 606 can be designed to couple with the second coupler 648 of the first assembly 604. The second assembly 606 can include a lock lever 654. The lock lever 654 can be coupled to the probe bracket 652 with pivot pins. The lock lever 654 can be pivoted relative to the probe bracket 652. In some embodiments, the tapered surface of the second coupler 648 causes the pivoting of the lock lever 654. In some embodiment, the surgeon causes the pivoting of the lock lever 654. The lock lever 654 can include a detent 656. The detent 656 is sized and shaped to be received within the slot of the second coupler 648. The engagement of the detent 656 and the slot can rigidly couple the second assembly 606 with the first assembly 604.
  • In the illustrated embodiment, the second assembly 606 includes a mount 658. The mount 658 can be coupled to the probe bracket 652 to allow relative movement therebetween. The mount 658 can be received within an opening in the probe bracket 652. The mount 658 can permit rotation about a longitudinal axis of the mount 658 relative to the probe bracket 652.
  • The second assembly 606 can include a dock 662. The dock 662 can be coupled to the mount 658 to allow relative movement therebetween. The dock 662 can be coupled to the mount 658 with one or more pivot pins 660. The dock 662 can have two degrees of freedom relative to the probe bracket 652 (e.g., rotational motion and pivoting motion). The dock 662 can include a sliding support with a through lumen 664. The through lumen 664 is sized to accept a probe 678. The probe 678 has a distal end 680 designed to touch locations, as described herein. The distal end 680 can be straight as shown in FIG. 22A. In other embodiments, the distal end 680 is slanted or curved, e.g., as shown in FIGS. 4 and 17.
  • The through lumen 664 of the dock 662 permits slideable extension of the probe 678. The dock 662 is movable relative to the probe bracket 652 (e.g., via rotation of the mount 658 and pivoting of the pivot pin 660). The dock 662 can be rotated about a longitudinal axis of the mount 658 to different rotational positions relative to the attachment location of the fixation pins 610, 612. This may require movement of the mount 658 in a rotational manner relative to the probe bracket 652. The dock 662 can be pivoted about the longitudinal axis of the pivot pins 660 to different positions relative to the attachment location of the fixation pins 610, 612. This may require movement of the dock 662 in a pivoting manner relative to the mount 658.
  • The probe 678 can be coupled to the dock 662 such that the probe 678 is movable relative to the probe bracket 652 (e.g., via rotation of the mount 658 and pivoting of the pivot pin 660). This maneuverability enables the distal end 680 of the probe 678 to pivot or rotate to contact anatomical landmarks, as discussed herein. The probe 678 can be slid relative to the dock 662 to different translational positions relative to the attachment location of the fixation pins 610, 612. The slidability of the probe 678 within the dock 662 enables the distal end 680 to move to reach anatomical landmarks in the same plane of the probe 678 but closer to or farther from the distal end 680.
  • The second assembly 606 permits a range of motion of a distal end 680 of the probe 678 to facilitate acquiring a plurality of landmarks that are different distances from the attachment location of the fixation pins 610, 612, as discussed further below. In other words, the distal end 680 of the probe 678 can be extended away from the axis of the sliding support of the dock 662 or can be retracted to a position closer to the axis of the sliding support of the dock 662.
  • The dock 662 can include a third coupler 668. In some embodiments, the third coupler 668 is a universal coupler. In some embodiments, the third coupler 668 is identical or substantially similar to the second coupler 648. This permits the orientation sensing device 204 to couple to either the second coupler 648 or the third coupler 668, as described herein. In some embodiments, the third coupler 668 can be substantially similar to the first coupler 632 described herein. The third coupler 668 can be designed to couple with the orientation sensing device 204. FIG. 23A-23C illustrate an embodiment of the orientation sensing device 204. The second assembly 606 can include an extension 670. The extension 670 can couple to the third coupler 668 of the dock 662. The engagement between the third coupler 668 and the extension 670 minimizes or prevents relative movement therebetween to avoid any mechanical relative movement during navigation procedures. The extension 670 can include a mount 672 designed to couple with the orientation sensing device 204. In the illustrated embodiment, the mount 672 includes a lock and release lever that can pivot relative to the extension 670. The orientation sensing device 204 can include features to mate with the lock and release lever. Other configurations are contemplated. The orientation sensing device 204 is rigidly coupled to the extension 670 when engaged with the mount 672.
  • The orientation sensing device 204 can be angled when coupled to the second assembly 606, as shown in FIG. 18. The orientation sensing device 204 can be angled approximately 35° from the horizontal axis. Other angles from the horizontal axis are contemplated, (e.g., 5°, 10°, 15°, 20°, 25°, 30°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, or 85°, between 30°-40°, between 25°-45°). In some embodiments, the angle of the orientation sensing device 204 improves visibility.
  • The orientation sensing device 204 detects orientation and rotation of the probe 678, as described herein. The orientation sensing device 204 preferably comprises at least one sourceless sensor, such as an accelerometer, a gyroscope, or a combination of these sensors and other sensors. In some embodiments, the orientation sensing device 204 includes a three axis accelerometer to detect orientation relative to gravity and a plurality of gyroscopes to detect rotation. Other sensors could be used in various modifications. In some embodiments, the orientation sensing device 204 is reusable.
  • Referring back to FIGS. 22A and 22C, the probe 678 can include a marking 682. The marking 682 can indicate length or extension of the probe 678 relative to the dock 662. The marking 682 can include a scale. In some embodiments, the marking 682 can be over a range of from about 8 inches, 10 inches, 12 inches, approximately 8-12 inches, etc. The marking 682 can be printed on the probe 678. In some embodiments, the marking 682 can be on a separate component such as a probe inlay 676. The probe inlay 676 can be received within a portion of the probe 678. In some embodiments, the probe inlay 676 is separated a distance from the distal end 680 of the probe 678.
  • Referring to FIG. 23C, the system 600 can include a camera 684. The camera 684 can capture images of the marking 682. In some embodiments, the camera 684 and/or the orientation sensing device 204 can include a light to illuminate the marking 682. In some embodiments, the light is a LED. In some embodiments, the dock 662 includes a window to permit the camera 684 to capture images. In other embodiments, the camera 684 captures images of the marking 682 extending beyond the dock 662. The camera 684 can read the marking 682 to provide accurate determination of the translational position of the probe 678 relative to the dock 662. This can enable one of the sensors in the orientation sensing device 204 to be eliminated or inactivated. In another embodiment, camera data derived from the marking 682 can be used to confirm the data from sensors in the orientation sensing device 204.
  • In some embodiments, the camera 684 is integrally formed with the orientation sensing device 204. In some embodiments, the camera 684 is a separate component from the orientation sensing device 204. The camera 684 can be held in a fixed position relative to the dock 662. The marking 682 can be positioned on the probe 678 beneath the camera 684 when the probe 678 is positioned within the through lumen 664. The camera 684 can be directly above the marking 682. The camera 684 can be fixed relative to the through lumen 664 of the dock 662. The dock 662, the camera 684 and the orientation sensing device 204 can move as a unit to allow positioning of the probe 678. One advantage of orienting the orientation sensing device 204 as illustrated in system 600 is improved visibility. The lower-profile construct is less likely to obstruct the user's view. One advantage of orienting the orientation sensing device 204 as illustrated in system 600 is ease of manufacturing. The camera 684 can be mounted flush on the circuit board. The corresponding transparent window (not shown), which can allow the camera 684 to capture images, in the housing of the orientation sensing device 204 is oriented in the direction of the mold pull. The shorter distance to the marking 682 also better accommodates the available camera, which has a short focal length. In some embodiments, the camera 684 captures an image though a lumen (not shown) in the dock 662. One advantage of having the camera 684 read the marking 682 through the lumen is this shields the camera 684 from outside light sources. Light, such as OR light, may interfere with the camera function such as the function of capturing an image of the marking 682. In other embodiments, the camera 684 may incorporate a shroud feature to block ambient light. In some embodiments, the camera 684 is pointed downward from a back side of the orientation sensing device 204. In some embodiments, the orientation sensing device 204 shields camera 684 from light.
  • The system 600 can include a femur tracker 686 as shown in FIG. 24A-24B. The femur tracker 686 can be coupled to the femur as shown in FIG. 18. The femur tracker 686 can be used to track the position of the femur during the procedure. The femur tracker 686 can include one or more fixation structures. In the illustrated embodiment, the fixation structures are holes 688. The holes 688 are sized to permit a fastener therethrough (e.g., a screw, pin, k-wire, etc.). The femur tracker 686 can include one or more points 690. The points 690 can include Points A, B, C as described herein and shown in FIG. 24A. The femur tracker 686 can include three points 690. Other configurations are contemplated (e.g., one point, two points, four points, five points, etc.). The points 690 can include divots as shown in FIG. 24A. The points 690 can include markings. The femur tracker 686 can provide more consistent and repeatable results than a marking the femur. The femur tracker 686 can provide points 690 which are fixed relative to the femur. The femur tracker 686 can provide multiple points 690. One advantage to registering multiple points on the femur is that the software in the surgical orientation device 172 can then correct for changes in the femur angle with respect to the pelvis between the baseline measurement and the later measurement. The baseline measurement can be a preoperative measurement. The later measurement can be after the shell is positioned in the acetabulum. In some embodiments, the points 690 are located on the femur tracker 686. In some embodiments, one or more points are marks located directly on the femur Fm and one or more points are located on the femur tracker 686. In some embodiments, one or more points are marks located directly on the femur Fm. One advantage to using a femur tracker 686 is that the marks are easier to find for repeat registrations. One advantage to using a femur tracker 686 is that spacing the points 690 at known distances from each other allows software checks to verify that the correct points 690 are registered in the right sequence. One advantage to using a femur tracker 686 is that spacing the points 690 at known distances from each other allows software checks to verify that the femur and the pelvis have not moved in between point registrations. One advantage to using marks located directly on the femur Fm is that the components are not affixed to the femur. The marks do not require any drill holes or fasteners. This may prevent future fractures or damage to the proximal end of the femur. The femur tracker 686 can be a unitary structure. The femur tracker 686 can be a low profile component. The femur tracker 686 can be coupled to the femur throughout the procedure. The femur tracker 686 can form a smooth surface preventing the femur tracker 686 from hooking soft tissue. The femur tracker 686 can form a smooth surface preventing the femur tracker 686 from loosening in the bone.
  • FIG. 18 illustrates a parked configuration or home position of the probe 678. In some embodiments, a portion of the distal end 680 is moved into engagement with the platform 620. In some techniques, the distal end 680 of the probe 678 engages the divot 630 of the platform 620. The parked configuration enables the navigation system 600 to manage errors that can compound in some inertial sensors. For example, the parked configuration advantageously includes the ability to position and hold the devices 172, 204 stable for substantially no relative movement. Also the relative position of the sensors in the devices 172, 204 when coupled with the first and second assemblies 604, 606 can be known from the geometry of the first assembly 604 and the second assembly 606. For example, in one embodiment, gyroscopic sensors in the surgical orientation device 172 and in the orientation sensing device 204 can be synchronized when a stable and known orientation is detected and one or more of the gyroscopes, e.g., the gyroscope in the orientation sensing device 204, can be zeroed after that condition is met. Further techniques employing the parked configuration will be discussed further below.
  • At the surgeon's discretion the system 600 can be used to navigate a condition of the femur prior to hip replacement. The orientation sensing device 204 can be initialized or zeroed such as by placing it back in the parked configuration on the platform 620 as in FIG. 18. Thereafter, the distal end 680 of the probe 678 can be brought into contact with the points 690. The orientation sensing device 204 can be stationary relative to the dock 662. The surgical orientation device 172 can be stationary relative to the pelvis. The surgical orientation device 172 can be signaled to record the orientation of the orientation sensing device 204. The camera 684 can record the extension of the probe 678 relative to the dock 662. The distance from the camera 684 to the distal end 680 of the probe 678 or the distance from the system 600 to the anatomy being registered can then be recorded in the surgical orientation device 172. The position can be based on reading by the camera 684 of the marking 682. The distance can be captured automatically by the camera 684. In other embodiments, the user reads a measurement from the marking 682 and inputs the distance into the surgical orientation device 172.
  • The system 600 can include features that provide notable advantages for the surgeon. The system 600 can include modular instruments. In some embodiments, the fixation base 602 can include a low profile platform 620 and a low profile support 622. The low profile fixation base 602 can prevent the obstruction of the surgical field. The fixation base 602 can be easily removed when not in use. The clamping action between the platform 620 and the support 622 allow the fixation base 602 to be easily removed from the fixation pins 610, 612. In the illustrated embodiment, rotation of the fixation devices 624 can cause the support 622 to move away from the platform 620. The channels 626, 628 can increase in diameter. The platform 620 and the support 622 can be decoupled from the fixation pins 610, 612.
  • The one or more fixation pins 610, 612 can be spaced apart from one another. This can permit the fixation pins 610, 612 to be driven into different locations on the anatomy of the patient. In the illustrated embodiment, two fixation pins 610, 612 are provided. The utilization of two or more fixation pins may provide more stability for the fixation base 602. The fixation pins 610, 612 allow the surgeon much more flexibility when anchoring the system 600. The surgeon has flexibility in the location and/or depth of placement. The surgeon can optimize the penetration angle. In some techniques, the surgeon can enter the bone more perpendicularly. The fixation pins 610, 612 can be placed in locations to avoid sensitive anatomical structures.
  • The system 600 can include one or more couplers. The system 600 can include the first coupler 632 coupled to the platform 620 of the fixation base 602. The first coupler 632 can couple the fixation base 602 to the first assembly 604 as shown in FIG. 18. The first coupler 632 can couple the fixation base 602 to any other component of the system 600. The system 600 can include the second coupler 648 coupled to the first assembly 604. The second coupler 648 can couple the first assembly 604 to the second assembly 606 as shown in FIG. 18. The second coupler 648 can couple the first assembly 604 to the extension 670 as described herein. The second coupler 648 can couple the first assembly 604 to any other component of the system 600. The system 600 can include the third coupler 668 coupled to the dock 662 of the second assembly 606. The third coupler 668 can couple the dock 662 to the extension 670 as shown in FIG. 18. The third coupler 668 can couple the second assembly 606 to any other component of the system 600.
  • Other tools or assemblies, such as the tools and assemblies described herein can include one or more couplers. The couplers allow components to rigidly couple. In some embodiments wherein the couplers have an irregular shape, the couplers can couple components in a single orientation. The slot of the couplers, such as slot 634 of the first coupler 632, can be angled relative to the horizontal axis. This can prevent inadvertent detachment of the components from the couplers.
  • The system 600 can include the camera 684. The camera 684 can be a component of the orientation sensing device 204. The orientation sensing device 204 can be coupled to the dock 662 with the third coupler 668. The camera 684 can be in a fixed location relative to the probe 678. The camera 684 can remain fixed in position as the probe 678 is moved. The camera 684 can be oriented such that the camera 684 faces the marking 682. In addition, the orientation sensing device 204 can be in a fixed location relative to the probe 678. The orientation sensing device 204 can remain fixed in position as the probe 678 is moved. The orientation sensing device 204 can be oriented such that a flat back side of the orientation sensing device 204 faces the marking 682.
  • The camera 684 can capture an image of the marking 682. The image can correspond with a distance of the probe 678. The distance changes as the probe 678 slides through the through lumen 664 of the dock 662. In some embodiments, the camera 684 can read a binary code of the marking 682. In some embodiments, the camera 684 can read a scale or other markings. The camera 684 can be positioned directly over the marking 682.
  • The distance related to the extension of the probe 678 can be used in conjunction with the orientation and positional data from the orientation sensing device 204. The surgical orientation device 172 can use the length measurement from the camera 684 and the data from the orientation sensing device 204 to determine the location of the distal end 680 of the probe 678.
  • FIGS. 25A-25C show a hip navigation system 600A adapted to navigate a hip joint procedure with reference to anatomical landmarks. The system 600A is shown mounted on a pelvis in a posterior approach in FIGS. 25A-25C. The system 600A can include any of the features described above with reference to system 600 and any component described herein. The system 600A can be used in any technique or method step described herein. As one example, the system 600A can include the surgical orientation device 172 described herein. As another example, the system 600A can include the orientation sensing device 204 described herein. As an example, the system 600A includes a camera 684 described herein.
  • The system 600A can include a fixation base 602A, a first assembly 604A and a second assembly 606A. The first assembly 604A is rigidly connected to the hip in the illustrated configuration so that motion of the hip cause corresponding motion of sensor(s) in the first assembly 604A as discussed below. Sensing this motion enables the system 600A to eliminate movement of the patient as a source of error in the navigation. The second assembly 606A provides a full range of controlled motion and sensor(s) that are able to track the motion, in concert with sensor(s) in the first assembly 604A.
  • The system 600A can include the fixation base 602A as shown in FIGS. 26A-26C. The fixation base can include a platform 620A. The platform 620A can include one or more holes 611A. The holes 611A can be sized to accept a fastener 613A to secure the fixation base 602A to the bone, shown in FIG. 25B. The platform 620A can include one or more spikes 615A. The spikes 615A can secure the fixation base 602A to the bone. The fixation base 602A can include divot 630A. The divot 630A can be associated with a parked configuration or home position, as shown in FIG. 25B. The divot 630A can be a registration feature of the system 600.
  • Referring to FIG. 25B, each fastener 613A can be driven into the ilium on the pelvis. As discussed further below, each fastener 613A can be coupled with other bones in other techniques. For example, one of the fasteners 613A can be coupled with the ischium or the pubis. In some techniques, one of the fasteners 613A is mounted to a pelvic bone but not at a landmark. One of the fasteners 613A can be coupled at a point superior to the superior-most point on the acetabular rim. In some techniques, one of the fasteners 613A is about 10 mm above the superior-most point on the acetabular rim. In some techniques, three or more anatomical landmarks disposed about the acetabulum can be acquired, as discussed below. When one of the fasteners 613A is coupled with a landmark, only two additional landmarks are acquired in some embodiments as discussed below. One reason for mounting the fastener 613A away from the landmarks is that the landmarks may not be visible or accessible before dislocating the hip joint. If the clinician wishes to use the system 600A to reference the femur as discussed below, it may be required to mount the fasteners 613A away from the landmarks.
  • The fixation base 602A can include the first coupler 632. The first coupler 632 can couple to one or more components of the system 600A. The system 600A can include the first assembly 604A shown in FIGS. 25A-25B. The first assembly 604A can include a pelvic bracket 638A. In the illustrated embodiment, the pelvic bracket 638A can be substantially vertical in use, as shown in FIG. 25A. The first assembly 604A can be designed to couple with the first coupler 632 of the fixation base 602A. The pelvic bracket 638A of system 600A can be longer than the pelvic bracket 638 of system 600.
  • The system 600A can include the second assembly 606A shown in FIG. 25A. The distal end 680A of the probe 678A can pivot or rotate to contact anatomical landmarks, similar to probe 678A described herein. The distal end 680 can be angled, slanted or curved. The curvature of the distal end 680A of the probe 678A can facilitate the acquisition of landmarks or other points as described herein. The probe 678A can be slid to different translational positions relative to the attachment location of the fixation base 602A. The second assembly 606A permits a range of motion of a distal end 680A of the probe 678A to facilitate acquiring a plurality of landmarks that are different locations from the attachment location of the fixation base 602A.
  • The system 600A can include a femur tracker 686A as shown in FIG. 25C. The femur tracker 686A can be coupled to a femur base 687A as shown in FIG. 25C. The femur tracker 686A can be used to track the position of the femur during the procedure. The femur base 687A can include one or more fixation structures. In the illustrated embodiment, the fixation structures are holes 688A shown in FIG. 28C. The holes 688A are sized to permit a fastener therethrough (e.g., a screw, pin, k-wire, etc.). The femur base 687A can include spikes 685A as shown in FIGS. 28A-28B. The spikes 685A can anchor the femur base 687A to the femur.
  • The femur tracker 686A and/or the femur base 687A can include one or more points 690. The points 690 can include Points A, B, C as described herein. The femur tracker 686A and/or the femur base 687A can include three points 690. In the illustrated embodiment, the femur base 687A includes one point 690 and the femur tracker 686A includes two points 690. Other configurations are contemplated (e.g., one point on the femur base 687A, two points on the femur base 687A, three points on the femur base 687A, four points on the femur base 687A, five points on the femur base 687A; one point on the femur tracker 686A, two points on the femur tracker 686A, three points on the femur tracker 686A, four points on the femur tracker 686A, five points on the femur tracker 686A, etc.). The points 690 can include divots. The points 690 can include markings. The femur tracker 686A and the femur base 687A can be separate components. In other embodiments, the femur tracker 686A and the femur base 687A can be a unitary structure.
  • The femur tracker 686A can include a bracket 689A as shown in FIG. 27A-27C. In the illustrated embodiment, the bracket 689A can be substantially vertical in use, as shown in FIG. 25C. The femur tracker 686A can include a lock lever 691A. The lock lever 691A can be coupled to the bracket 689A with pivot pins. The lock lever 691A can be pivoted relative to the bracket 689A. The femur tracker 686A can include an extension 693A. The extension 693A can include the points 690.
  • The femur base 687A can include a fifth coupler 695A as shown in FIG. 28A-28C. The femur tracker 686A can be designed to couple with the fifth coupler 695A of the femur base 687A. In some embodiments, the tapered surface of the fifth coupler 695A causes the pivoting of the lock lever 691A. In some embodiment, the surgeon causes the pivoting of the lock lever 691A. The lock lever 691A can include a detent which is sized and shaped to be received within the slot 697A. The engagement of the detent and the slot 697A can rigidly couple the femur tracker 686A with the femur base 687A.
  • FIG. 25B illustrates a parked configuration or home position of the probe 678A. In some embodiments, a portion of the distal end 680A is moved into engagement with the platform 620A. In some techniques, the distal end 680A of the probe 678A engages the divot 630A of the platform 620A. At the surgeon's discretion the system 600A can be used to navigate a condition of the femur prior to hip replacement.
  • The system 600A can include features that provide notable advantages for the surgeon. The system 600A can include modular instruments. In some embodiments, the fixation base 602A can include a low profile platform 620A. The low profile fixation base 602A can prevent the obstruction of the surgical field. The first assembly 604A can be easily removed when not in use. The distal end 680A of the probe 678A can be angled, bent or curved to facilitate acquiring one or more landmarks or points. The distal end 680A of the probe 678A can be bent or curved to reach the home position. The femur tracker 686A can be releasably coupled to the femur base 687A. The femur tracker 686A can be easily removed when not in use. The femur tracker 686A and/or the femur base 687A can provide points on multiple planes.
  • 5. Posterior Approach: Methods an Orientation Sensing Device and a Camera
  • FIGS. 18 and 25A illustrate a step of a navigated hip joint implant procedure discussed in detail below. Some of the preceding steps involve removing the to-be-replaced joint, navigating the hip joint, preparing the implant location for the artificial joint, and placing the joint, as elaborated below. As discussed further below, FIGS. 18 and 25B illustrate a technique for confirming that these steps were properly performed.
  • Referring back to FIG. 2, Points A-H are locations on the anatomy that may be relevant to various methods and systems herein. In some embodiments, the navigation system 600, 600A is configured to locate a relevant anatomical feature to aid in proper placement of a prosthetic hip joint. In some methods, pre-operative imaging techniques are used. In some methods of use, the surgeon can use a standing or supine anteroposterior (AP) pelvic x-ray. FIG. 29 shows standing AP radiograph taken with patient standing with feet in neutral rotation and shoulder width apart in stance. The x-ray tube-to-film distance should be 120 cm, with the crosshairs centered on the midpoint between the superior border of the pubic symphysis and a line drawn connecting the anterior superior iliac spines (ASIS). The coccyx should be centered in line with the pubic symphysis, and the iliac wings, obturator foramina and radiographic teardrops should be symmetrical in appearance. For appropriate pelvic inclination, a 1-3 cm gap should be seen between the tip of the coccyx and the superior border of the pubic symphysis. This positioning can be important for measuring the patient specific Rim Teardrop (RT) angle.
  • To obtain the patient specific Rim Teardrop (RT) angle from the AP pelvic x-ray the surgeon can complete one or more of the following steps. The surgeon can draw a line on the x-ray connecting the bottom of the teardrops. The surgeon can draw a line from the most lateral point on the rim of the acetabulum (R) on the operative side through the bottom of the teardrop (T) to the horizontal inter-teardrop line. If osteophytes are present on the rim (R), the surgeon can draw a line through the most lateral osteophyte. The surgeon can measure the angle between the inter-teardrop line and the RT line just drawn. This patient specific RT inclination angle can be an input for the system 600, 600A.
  • FIG. 30 shows the patient positioning for the posterior hip approach. In the posterior hip approach, the patient should be placed in the lateral decubitus position. When positioning the patient prior to surgery, the surgeon should take care to align the anterior pelvic landmarks (both ASIS and pubic tubercle) in a vertical plane parallel to the long edge of the operating table. The surgeon should ensure that the pelvis is securely held by an appropriate positioning device such as a peg board or vise-type patient positioner.
  • The surgical orientation device 172 and the orientation sensing device 204 should be turned on. If different programs are present, the surgeon should select the hip procedure program. If different programs are present, the surgeon should select the posterior hip approach. The surgeon can verify that patient is positioned in the standard lateral decubitus position. The surgical orientation device 172 can include a display screen. The display screen can confirm the communication between the surgical orientation device 172 and the orientation sensing device 204.
  • The system 600, 600A can be partially assembled for calibration as shown in FIG. 31. The pelvic bracket 638 can be coupled to the extension 644, if separate components. The surgical orientation device 172 can be coupled to the mount 646. In some techniques, the extension 670 can be coupled to the second coupler 648. The orientation sensing device 204 can be coupled to the mount 672. The surgical orientation device 172 and the orientation sensing device 204 form a general V-shaped configuration. The orientation sensing device 204 can be fixed in position relative to the surgical orientation device 172.
  • The surgical orientation device 172 and the orientation sensing device 204 can be calibrated. The assemblies 604, 606 or 604A, 606A can be angled forward so that the backside of the surgical orientation device 172 rests on a level surface. The surgeon can hold the assemblies 604, 606 or 604A, 606A steady until the surgical orientation device 172 indicates completion. The assemblies 604, 606 or 604A, 606A can be angled backward so that the backside of the orientation sensing device 204 rests on a level surface. The surgeon can hold the assemblies 604, 606 or 604A, 606A steady until the surgical orientation device 172 indicates completion. The assemblies 604, 606 or 604A, 606A can be placed on the left side so that the left side of the surgical orientation device 172 rests on a level surface. The surgeon can hold the assemblies 604, 606 or 604A, 606A steady until the surgical orientation device 172 indicates completion. The assemblies 604, 606 or 604A, 606A can be angled forward again so that the backside of the surgical orientation device 172 rests on a level surface to verify calibration. The surgeon can hold the assemblies 604, 606 or 604A, 606A steady until the surgical orientation device 172 indicates completion. In some embodiments, the displayed angles should be less than 2°, less than 1°, approximately 0° etc. to verify calibration.
  • The extension 670 can be decoupled to the second coupler 648. The second assembly 606, 606A can be assembled as shown in FIGS. 22B and 25A. The mount 658 can be coupled to the probe bracket 652. The mount 658 can rotate relative to the probe bracket 652. The mount 658 can be coupled to the dock 662. The dock 662 can pivot relative to the mount 658 about one or more pivot pins 660. The extension 670 can be coupled to the third coupler 668 of the dock 662. The orientation sensing device 204 can be coupled to the mount 672. The probe bracket 652 can be coupled to the second coupler 648. The first assembly 604, 604A can be coupled to the second assembly 606, 606A as shown in FIGS. 18 and 25A.
  • The probe 678 can be inserted within the through lumen 664 of the dock 662. The marking 682 can be beneath the camera 684. The surgeon can verify the camera 684 is capturing the measurements of the marking 682 by sliding the probe 678 to different positions. The surgical orientation device 172 can display different positions of the probe 678 as the probe 678 is moved. The probe 678A can be similarly positioned within the second assembly 606A as shown in FIG. 25A.
  • The system 600, 600A can be attached to the pelvis. The fixation pins 610, 612 can be inserted into the bone. In some techniques, one or more of the fixation pins 610, 612 are positioned approximately 10 mm above the most superior point on the acetabular rim. The fixation pins 610, 612 can be perpendicular to the long axis of the patient. The fixation pins 610, 612 can be inserted by use of a driver. In other embodiments, the fixation pins 610, 612 are driven into bone with a mallet until the distal ends are fully seated within the bone.
  • The fixation pins 610, 612 can be inserted into the channels 626, 628 prior to or after the fixation pins 610, 612 are driven into the bone. The support 622 can be brought toward the platform 620, thereby decreasing the diameter of the channels 626, 628. The fixation pins 610, 612 can be secured to the fixation base 602. The first assembly 604 can be coupled to the first coupler 632. The surgical orientation device 172 can be coupled to the first assembly 604. The second assembly 606 can be coupled to the second coupler 648. The orientation sensing device 204 can be coupled to the second assembly 606. The system 600 can be positioned as shown in FIG. 18. The fixation base 202A can be affixed with fasteners 613A, as shown in FIG. 25B. The system 600A can be positioned as shown in FIG. 25B.
  • The femur tracker 686, 686A can be coupled to the femur. The femur tracker 686 can be positioned on the greater trochanter. The curved end of the femur tracker 686 can be pointing toward the head of the patient. One or more fixation devices can be placed through the each hole 688 of the femur tracker 686 to secure the femur tracker 686 to the femur. The femur tracker 686 can be positioned as shown in FIG. 18. The femur base 687A can be positioned on the greater trochanter. The femur tracker 686A can be assembled as shown in FIG. 25C. The femur tracker 686A can be coupled to the femur base 687A as described herein.
  • If different programs are present, the surgeon should select which hip is being operated on (e.g., right or left hip). The surgeon can verify that patient is positioned in the standard lateral decubitus position. If different programs are present, the surgeon should select the gender of the patient being operated on (e.g., male or female). If different programs are present, the surgeon should select the target cup inclination angle. This angle can be selected based upon the radiographic inclination angle. If different programs are present, the surgeon should select the target cup anteversion angle. This angle can be selected based upon the radiographic anteversion angle. If different programs are present, the surgeon should select the RT inclination angle. This angle can be selected based upon the radiographic RT inclination angle, such as from the A/P pelvic x-ray.
  • The surgeon can register a parked configuration or home position. In some techniques, the distal end 680, 680A of the probe 678, 678A can be engaged with a point on the platform 620, 620A. The platform 620, 620A can include the divot 630, 630A. The divot 630, 630A can be sized to accept the distal end 680, 680A of the probe 678, 678A. This position is shown in FIGS. 18 and 25B. The probe 678, 678A can be angled relative to vertical in the home position. The dock 662 can be angled relative to vertical in the home position. The orientation sensing device 204 coupled to the dock 662 can be angled relative to vertical in the home position. The surgical orientation device 172 can be also angled relative to vertical in the home position.
  • The orientation sensing device 204 can register the operating table, in other words perform table registration. The patient can be positioned so that the sagittal plane of the pelvis is level. The surgeon can align the probe 678, 678A with the horizontal. The probe 678, 678A can be parallel with the coronal plane. The system 600, 600A can calculate cup angles based on the assumption that the pelvis of the patient is correctly positioned during table registration.
  • The femur can be positioned in a neutral reference position with respect to flexion, abduction and rotation. This neutral position can be representative of a standing position of the patient. The femur should be maintained in this position during the initial registration of points 690, such as Points A, B, and C, shown in FIGS. 24A and 25C. The surgeon can confirm that the orientation sensing device 204 is coupled to the dock 662. The surgeon can position the distal end 680, 680A of the probe at Point A of points 690. In some methods, the distal end 680, 680A is place within a divot at Point A on the femur tracker 686, femur base 687A. The surgeon can enter an input to register Point A (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point A was recorded. The surgeon can position the distal end 680, 680A of the probe at Point B of points 690. In some methods, the distal end 680, 680A is place within a divot at Point B on the femur tracker 686, 686A. The surgeon can enter an input to register Point B (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point B was recorded. The surgeon can position the distal end 680, 680A of the probe at Point C of points 690. In some methods, the distal end 680, 680A is place within a divot at Point C on the femur tracker 686, 686A. The surgeon can enter an input to register Point C (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point C was recorded.
  • The surgeon can position the distal end 680, 680A of the probe 678, 678A at various anatomical landmarks. FIG. 32 illustrates four landmarks which can be utilized in some techniques. In one technique, Point 1 is the most superior point of rim. The surgeon should not remove any osteophytes from this landmark prior to registration of Point 1. Point 1 registered landmark should match the anatomy identified on the pre-operative x-ray. In some methods, the distal end 680, 680A of the probe 678, 678A is placed at Point 1. The surgeon can enter an input to register Point 1 (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point 1 was recorded.
  • Point 2 can be the most inferior point of the acetabular notch. The surgeon should not remove any osteophytes from this landmark prior to registration of Point 2. Point 2 registered landmark should match the anatomy identified on the pre-operative x-ray. The transverse acetabular ligament (TAL) straddles the inferior limit of the bony acetabulum. It is a strong load-bearing structure and, in the normal hip, in association with the labrum, provides part of the load-bearing surface for the femoral head. In some methods, the distal end 680, 680A of the probe 678, 678A is placed at Point 2. The surgeon can enter an input to register Point 2 (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point 2 was recorded.
  • Point 3 can be the posterior insertion of the transverse acetabular ligament (TAL). The surgeon should remove any osteophytes from this landmark prior to registration of Point 3. This will uncover or replicate native anatomy of the landmark. In some methods, the distal end 680, 680A of the probe 678, 678A is placed at Point 3. The surgeon can enter an input to register Point 3 (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point 3 was recorded.
  • Point 4 is the anterior insertion of the transverse acetabular ligament (TAL) in one embodiment. The surgeon should remove any osteophytes from this landmark prior to registration of Point 4. This will uncover or replicate native anatomy of the landmark. In some methods, the distal end 680, 680A of the probe 678, 678A is placed at Point 4. The surgeon can enter an input to register Point 4 (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point 4 was recorded.
  • When registering the anatomical points or points 690 on the femur tracker 686, the camera 684 captures an image of the marking 682. The camera 684 can read the marking 682 to provide accurate determination of the translational position of the probe 678 relative to the dock 662. The camera 684 can be directly above the marking 682. In some methods, the camera 684 can read a binary code of the marking 682.
  • In some methods, the orientation sensing device 204 converts the image of the camera 684 into an extension measurement of the probe 678. In some embodiments, the surgical orientation device 172 converts the image of the camera 684 into an extension measurement of the probe 678. The distance related to the extension of the probe 678 can be used in conjunction with the orientation and positional data from the orientation sensing device 204. The surgical orientation device 172 can use the length measurement from the camera 684 and the data from the orientation sensing device 204 to determine the location of the distal end 680 of the probe 678. In some embodiments, the surgeon will enter an input (e.g., depress a button) to collect data from the orientation sensing device 204. In some methods, the surgeon will enter an input (e.g., depress a button) to collect data from the camera 684. In some embodiments, the surgeon will enter an input (e.g., depress a button) to collect data from the orientation sensing device 204 and the camera 684 simultaneously. In some methods, the orientation sensing device 204 and/or the camera 684 will only send data to the surgical orientation device 172 if the orientation sensing device 204 is stable or non-moving. The points 690 can include divots to stabilize the distal end 680, 680A of the probe 678, 678A when the points 690 are registered.
  • The surgeon can set the angle of the cup. Later in the procedure, the surgeon can check cup angle after the angle has been set. The surgeon can remove the second assembly 606, 606A from the first assembly 604, 604A. The surgeon can remove the extension 670 from the third coupler 668. The surgeon can couple the extension 670 to an impactor 300B, shown in FIGS. 56A-56F. The impactor 300B can have a fourth coupler 338B. In some embodiments, the fourth coupler 338B is a universal coupler. In some embodiments, the fourth coupler 338B is identical or substantially similar to the second coupler 648 and the third coupler 668. This permits the orientation sensing device 204 to couple to either the second coupler 648, the third coupler 668 or the fourth coupler 338B, as described herein The fourth coupler 338B can be similar to the first coupler 632 described herein. The fourth coupler 338B can extend from a side surface of the impactor 300B. The fourth coupler 338B can extend perpendicularly to the longitudinal axis of the impactor 300B. The extension 670 can couple to the fourth coupler 338B. The mount 672 can be coupled to the orientation sensing device 204. The acetabular shell can be threaded onto the shell adaptor, similar to FIG. 11C. The shell adaptor can be snapped onto the end of the impactor 300B, similar to FIG. 11B.
  • The acetabular shell can be inserted into the acetabulum and positioned at the desired angle. The surgical orientation device 172 can guide the surgeon in setting the appropriate cup angle. The surgical orientation device 172 can graphically display when the orientation sensing device 204 is located at the inclination and anterversion angles entered previously. The surgical orientation device 172 can graphically display the inclination and anterversion angles as the orientation sensing device 204 is moved. The surgeon can enter an input to set the desired angle (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can output all inclination and anteversion angles according to radiographic definitions. Anteversion (Radiographic Anteversion) is the angle between the acetabular axis and the coronal plane. Inclination (Radiographic Inclination) is the coronal plane projection of the angle between the acetabular axis and the longitudinal axis of the body. Once the orientation sensing device 204 is coupled to the impactor 300B, the surgical orientation device 172 can display the radiographic inclination and anteversion angles of the impactor 300B relative to the frontal pelvic plane.
  • The inclination and anteversion cup angles can be displayed statically. The inclination and anteversion cup angles can be displayed statically. The anatomic angles are those calculated by the system 600 based on the pelvic landmark registration. The table angles are those calculated by the system 600 based on the initial positioning of the pelvis during table registration. In some embodiments, the orientation sensing device 204 can register the operating table by aligning the probe 678, 678A with the horizontal. In some embodiments, only the direction of the projection of the probe 678, 678A onto a horizontal plane is used. The probe 678, 678A can be in an infinite number of angles from horizontal, which would result in the same software result. This is convenient due to the mechanical constraints imposed by the pivot configuration of the system 600. The angles displayed can be an average between the anatomic reference and table reference. The inclination angle is calculated based as an average between the anatomic reference and table reference. The anteversion angle is calculated based on the table reference. The surgeon can check cup angle after the angles are set.
  • The surgeon can register the hip center. The surgeon can couple the second assembly 606, 606A to the first assembly 604, 604A as shown in FIGS. 18 and 25A. The mount 672 can be coupled to the orientation sensing device 204. The mount 646 can be coupled to the surgical orientation device 172. The surgeon can confirm that the components of system 600, 600A are rigidly coupled. The surgeon can select the first set of points on the rim of the shell 360 to be registered, as shown in FIG. 33. In the illustrated method, the first set of points is selected on the rim of the shell. The surgeon can place the distal end 680, 680A of the probe 678, 678A on each of the first set of points shown in FIG. 33. In some methods, the surgeon can select the second set of points on the rim of the shell to be registered. In the illustrated method, the second set of points is selected on the rim of the shell. The surgeon can place the distal end 680, 680A of the probe 678, 678A on each of the second set of points. In some methods, the surgeon should select the third set of points on the rim of the shell to be registered. In the illustrated method, the third set of points is selected on the rim of the shell. The surgeon should place the distal end 680, 680A of the probe 678, 678A on each of the third set of points. In some methods, the minimum separation distance allowed between points is 25 mm. In some methods, the maximum separation distance allowed between points is 65 mm.
  • The inclination and anteversion angles of the shell are displayed on the surgical orientation device 172. These angles are based on the plane determined by the three points registered on the rim. The surgeon can enter the offset of the liner to be used. The offset is the distance from the center of the shell face to the center of the femoral head. If the shell is hemispherical and the head and shell are concentric, the surgeon can enter zero. In some methods, the offset is between 0 mm and 10 mm. The surgeon can repeat this step if the linear offset is changed later in the procedure. The surgical orientation device 172 can calculate the center of rotation (COR) of the hip using the set of points on the rim of the shell.
  • The surgeon can register the leg length and offset after implantation of the acetabular shell. The surgeon can couple the second assembly 606, 606A to the first assembly 604, 604A as shown in FIGS. 18 and 25A. The mount 672 can be coupled to the orientation sensing device 204. The mount 646 can be coupled to the surgical orientation device 172. The surgeon can confirm that the components of system 600, 600A are rigidly coupled. The femur can be repositioned within +/−20° flexion from the pre-operative position. The femur can be repositioned within +/−15° abduction from the pre-operative position. The femur can be repositioned within +/−20° rotation from the pre-operative position.
  • In some methods, the distal end 680, 680A of the probe 678, 678A is place within a divot at Point A of points 690. The surgeon can enter an input to register Point A (e.g., depress a button on surgical orientation device 172). The surgeon can position the distal end 680, 680A of the probe at Point B of points 690. The surgeon can enter an input to register Point B (e.g., depress a button on surgical orientation device 172). The surgeon can position the distal end 680, 680A of the probe at Point C of points 690. The surgeon can enter an input to register Point C (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Points A, B, and C were recorded. Using Points A, B, and C, the surgical orientation device 172 can calculate the change in angle between the pelvis and the femur since the initial registration prior to dislocation. The surgical orientation device 172 can mathematically rotate the femoral points, Points A, B, and C, around the center of rotation (COR) of the hip to align the femur with its initial position. The new position of the centroid of the femoral points, Points A, B, and C, is compared to the initial position. The femoral points, Points A, B, and C, can be located on the femur tracker 686, 686A or femur base 687.
  • The leg length and offset are displayed on the surgical orientation device 172. The change in leg length is in the proximal distal direction. The joint offset is in the medial lateral direction. If the angle between the femur and the pelvis has changed by more than a hard coded limit in any axis, then the surgical orientation device 172 can display an error message. The hard coded limit can be 15°, between 10-20°, between 5-25°, etc. The surgical orientation device 172 can display guidance on repositioning the femur (e.g., abduct femur, flex femur, etc.). The surgeon can exchange or reposition the shell to adjust leg length and offset. The surgeon can exchange or reposition the shell based upon goals from pre-operative templates or images. If desired and possible, the leg length and offset may be adjusted according to the surgeon's standard surgical procedure.
  • The surgeon can register the home position. The surgeon can couple the second assembly 606, 606A to the first assembly 604, 604A as shown in FIGS. 18 and 25A. The mount 672 can be coupled to the orientation sensing device 204. The mount 646 can be coupled to the surgical orientation device 172. The surgeon can confirm that the components of system 600, 600A are rigidly coupled. The surgeon can verify the parked configuration or home position. The distal end 680, 680A of the probe 678, 678A can be engaged with a point on the platform 620, 620A. The platform 620, 620A can include the divot 630, 630A. The divot 630, 630A can be sized to accept the distal end 680, 680A of the probe 678, 678A. This position is shown in FIGS. 18 and 25B. The change in the home position is displayed on the surgical orientation device 172. The number may not be zero due to mechanical play and/or sensor noise. If the displayed number is greater than 3 mm, the surgeon may wish to verify the rigid connection between the components of the system 600, 600A.
  • B. Navigation Using Inertial Sensors and Jigs for Referencing Anatomical Landmarks with Anterior Approach
  • 1. Anterior Approach: Systems with an Orientation Sensing Device Coupled to a Probe
  • FIGS. 34-38 illustrate a hip navigation system 500 adapted to navigate a hip joint procedure from an anterior approach. Anterior approach to hip replacement advantageously can be less invasive than posterior approach. In particular, the anterior approach can enable smaller incisions, less soft tissue dissection, and shorten recovery time for patients. The system 500 includes an anchor system 504, an alignment assembly 508 and a landmark acquisition assembly 512.
  • FIG. 34 shows the anchor system 504 in more detail. The system 504 is configured to securely couple the navigation system 500 to the hip, such that movement between the system and the hip are minimized or eliminated. The anchor system 504 includes a cannula 516 having a distal end 520 and a proximal end 524 with a lumen 532 extending between the distal and proximal ends. The proximal end 524 of the cannula 516 is coupled with a platform 536, for example adjacent to one lateral end of the platform. The platform 536 is similar to those hereinbefore described having a plurality of docking device 538, 538A disposed away from the location where the proximal end 524 and the platform 536 are connected.
  • The docking devices 538 are configured to couple with detachable mounting devices that securely but temporarily couple sensor to the anchor system 504. The two docking device 538 on the top surface of the platform 536 enable the anchor system 504 to be used for either left or right hip procedures. As shown in FIG. 34, the docking device 538 on the side of the platform 536 closest to the medial plane of the patient is preferably used for docking. The top side docking feature not in use in FIG. 34 would in fact be used in performing a procedure from the other side of the patient. The docking device 538A on the side surface of the platform 536 is provided for a temporary intra-procedure mounting of a sensor to the platform 536. As discussed further below, this temporary mounting provides a known orientation and/or location of two sensors relative to each other during a procedure, which enables the system 500 to control sources of error with certain types of sensors.
  • The platform 536 also can have a channel 540 disposed away from the cannula 516. The channel 540 can have a lumen disposed along an axis substantially parallel to the lumen 532 of the cannula 516. In one embodiment, the anchor system 504 is configured to securely couple the platform 536 to the hip by placement of two spaced apart pins 544A, 544B. FIG. 34 shows that the pin 544A can be advanced through the cannula 516 such that a distal end of the pin 544A contacts and penetrates a bony prominence of the pelvis. In one technique the pin 544A is positioned at or as close as possible to the anterior superior iliac spine (ASIS) of the pelvis. The pin 544B is advanced through the channel 540 and into the pelvis at a location offset form the ASIS. The distance between the pins 544A, 544B and the precise positioning of the pin 544B are not critical, but are determined by the locations of the connection of the cannula 520 to the platform 536 and of the channel 540.
  • The pins 544A, 544B can take any suitable form but preferably have the same cross-sectional profile as the lumens in the cannula 520 and in the channel 540, e.g., they can be circular in cross-section. The pins 544A, 544B can be modified Stienmann pins, e.g., configured to extend at least about 5 cm above the platform 536 and having a diameter of about 4 mm.
  • The anchor system 504 also has a locking device 556 for securing the platform 536 to the pins 544A, 544B. In one embodiment, the portion of the platform disposed around the pins comprises medial and lateral portions 560M, 560L that can move away from each other to release the pins 544A, 544B or toward each other to frictionally engage the pins. For example, a pair of hex-driven screws can engage the medial and lateral portion 560M, 560L to translate them toward and away from each other respectively. The locking device 556 preferably is quickly and easily removed from the pins such that other instrument, such as X-Ray or other diagnostic devices can be brought into the vicinity of the surgical field during the procedure. Preferably the pins 544A, 544B have markings along their length such that if the platform 536 is removed for imaging or other reasons it can be quickly re-positioned at the same elevation.
  • The cannula 520 also has a foot 568 adjacent to or at the distal end 528 to minimize or eliminate error that could arise due to uneven penetration depth of the anchor system 504 when compared to the position of a distal probe of the landmark acquisition system 512 when landmarks are being acquired. The foot 568 can include an annular projection disposed outward of the cannula 520. Preferably the foot 568 extends laterally from the outer surface of the cannula 520 by a distance equal to or greater than the wall thickness of the cannula 520. In some embodiment, the surface area beneath the foot is equal to or grater than the surface area of the cannula when viewed in cross-section at a location where the foot 568 is not located, e.g., at an elevation about the foot 568.
  • The alignment assembly 508 is similar to those hereinbefore described. It can have a rigid extension 570 configured to detachably secure a orientation device 172 to the docking device 538.
  • The landmark acquisition assembly 512 is similar to those hereinbefore described, but is configured to be unobstructed in use by soft tissue anterior to the pelvis of the patient. In one embodiment, an extension 578 is provided to elevate a pivoting and sliding mechanism 582. The pivoting and sliding mechanism enables a probe arm 584 to slide away from the extension 578 toward the location of landmarks to be acquired. The pivoting and sliding mechanism 582 can be similar to any of those discussed above. The distal (lower) end of the extension 578 can be coupled to the platform 536 in any suitable way. For example, the distal end can include a pin-like projection that is received in, e.g., friction fit in, an aperture 578A having the same shape. Detents or other locking features can be provided to securely connect the extension to the platform 536 in the aperture 578A. FIG. 35 shows that the aperture 578A can be formed in a portion of the platform 536 that is elevated compared to the portions of the platform through which the pin 544A extends. This portion is elevated to provide sufficient bearing engagement to minimize play. It also has a slot generally parallel to the top surface of the platform 536 which serve the function of engaging a ball detent on the lower end of the extension 578.
  • The probe arm 584 can be configured as an elongate member with a plurality of markings, discussed below. A distal end of the probe arm 584 can include an angled tip 586 that assists in probing anatomy in some techniques, e.g., portions of the femur for leg length and femoral head positioning confirmation. In the posterior approach, the angled tip 586 is used to directly contact anatomy.
  • In the anterior approach, the angled tip 586 is coupled with a probe extension 590 configured to contact selected anatomy. The probe extension 590 has an upright member 592 that is configured to extend, in the anterior approach, between the elevation of the probe 584 down toward the elevation of the tissue to be probed. A foot 594 on the distal (lower) end of the upright member 592 is configured to engage the tissue in a way that minimizes error due to uneven tissue compression between the point of mounting of the pin 544A and the foot 594. For example, the foot 594 can have a cross configuration that spreads out the force or pressure applied by the landmark acquisition system 512 in use. The proximal end of the extension 590 includes a coupler 596 that connects a distal end of the probe arm 584 with the upright member 592. Preferably the coupler 596 is easily manipulable by the user to modify connect to the probe arm 584. The coupler can include an L-shaped member with an aperture configured to receive the tip 586 of the probe arm 584. A set screw can be advanced through the L-shaped portion to lock the arm 584 in place. The L-shaped portion is configured to couple to the arm 584 such that the tip of the angled tip 586 rests on a projection of the longitudinal axis of the upright member 592.
  • 2. Anterior Approach: Methods with an Orientation Sensing Device Coupled to a Probe
  • The system 500 can be used to navigate from an anterior approach in the following ways. The orientation device 172 and the sensor 204 can be paired such that they are in wireless communication with each other. This permits one or other of the device 172 and sensor 204 to control the other, store data from the other, and/or display information based on signals from the other. In one method, the orientation device 172 has a display that confirms to the surgeons certain angles based on the data sensed by the sensor 204. The pairing the device and sensor 172, 204 can involve coupling them together and comparing sensor output between the two devices at a plurality of orientations, e.g., horizontal, vertical, and angled at 30 degrees. Some of these positions may be repeated with a plurality of attitudes, e.g., vertical with left side up, vertical with right side up, and vertical with top side up.
  • As noted above, the components discussed herein can be provided as a kit that enables the surgeon to select among different surgical approaches, e.g., posterior and anterior approaches. The orientation device 172 and sensor 204 may operate differently in these different approaches. Thus, in one method the user will enter into one or both of the orientation device and sensor 172, 204 which approach is being used. This will implement a software module in the orientation device 172 (or in the sensor 204 is the processor running the software is located there) corresponding to the selected approach.
  • In various embodiments suitable for the anterior approach, the orientation device 172 and the sensor 204 can both have a plurality of sourceless sensors. These components can have both accelerometers and gyroscopes in some embodiments. Some gyroscopes are subject to accumulated error that can be significant in the time frames relevant to these methods. Accordingly, various methods are provided to prevent such errors from affecting the accuracy and reliability of the angles displayed to the surgeon by the system 500. Some approaches can be performed with accelerometers only. For example, variations of the anterior approach can be performed with accelerometers with somewhat less but still acceptable accuracy using accelerometers only. The reduction in accuracy of the accelerometers is balanced against the benefit of eliminating the accumulated error that arises with some gyroscopes. The resolution of accelerometers is sufficient because the points navigated are relatively far apart.
  • The calculations performed by the system 500 are unique to the hip being treated in some embodiment, so the system receives input of the hip being treated.
  • The foot 568 is placed on a selected anatomical location, e.g., on the ASIS as discussed above. With the cannula 520 in an approximately vertical orientation the platform 536 is secured to the hip. Securing the platform 536 to the hip can be done in any suitable way, such as with two spaced apart Stienmann pins. Thereafter, the orientation device 172 and the sensor 204 are attached to the platform 536 in the manner shown in FIG. 36A. Depending on the nature of the sensing devices deployed in the sensor 204 it may be advantageous to initialize the sensor at this point of the procedure. As discussed above, certain inertial sensors (e.g., some gyroscopes) are subject to accumulated error. One technique for managing this error source is to periodically initialize or zero out this error. Some techniques involve initialing at this point.
  • In some embodiment, a frame of reference based on the plane of the table can be input into the system 500. The table reference frame can be a secondary reference frame. In one technique, the sensor 204 is moved from the platform dock position of FIG. 36A to the navigating position on the probe arm 584 as shown in FIG. 34. The probe arm 584 is then pivoted by the mechanism 582 such that the arm points in a direction that is parallel to the patient's medial-lateral mid-plane and the angled tip 586 superiorly (generally toward the patient's head). The probe arm 584 is also held substantially parallel to the plane of the table. With this heading and orientation the user interacts with a user interface on the orientation device 172 to signal to the orientation system 508 to capture the orientation of the sensor 204. This orientation provides an estimation of the orientation of the anterior pelvic plane. This estimation may be tracked in the system 500 and may alone provide an improvement over the state of the art in un-navigated hip replacement, which involves discrete maneuvers guided by the unaided eye.
  • At the surgeon's discretion the system 500 can be used to navigate a condition of the femur prior to hip replacement. A mark Fm may be made on the proximal femur. Thereafter the sensor 204 can be initialized or zeroed such as by placing it back in the dock position on the platform (as in FIG. 36A). Thereafter, the probe tip 586 can be brought into contact with the femur mark Fm and locked in place in such contact. See FIG. 37. The sensor 204 can be transferred to the proximal end of the probe 584 and the orientation device 172 can be signaled to record the orientation of the sensor 204. A distance from the point of attachment of the cannula 520 to the ASIS to the marked position on the femur can then be recorded in the orientation device 172. The position can be based on reading graduated marks on the probe 584 or can be captured automatically by a camera system or a sensor built into the system 500. In one embodiment, graduated marks are read at an upright edge 598 within a bight of a sliding portion of the pivoting and sliding mechanism 582.
  • FIG. 36A illustrates a further step of navigating the anterior pelvic plane. As shown, the sensor 204 is docked on the platform 536, in which position any accumulated error associated with some sensors can be eliminated. In a preceding step, the extension 590 is coupled with the distal portion of the probe 584. The foot 594 is brought into contact with the contralateral ASIS. Thereafter, the sensor 204 can be attached to the proximal end of the probe 284 as shown in FIG. 34. The landmark acquisition system 512 can be immobilized and the orientation of the sensor 204 can be recorded in memory in the orientation device 172. Additionally, the distance that the probe 584 is extended to contact the contralateral ASIS can be recorded in the orientation device 172. As noted above, that distance can be read from the scale on the probe 584 at the upright edge 598.
  • The process to record the contralateral ASIS can be repeated for one or more additional points. The sensor 204 can be docked to the platform as in FIG. 36A to eliminate sources of accumulated error. The probe 584 can then be moved to cause the foot 594 to be in contact with a pubic tubercle. The probe 584 can be immobilized and the sensor coupled with the proximal end as shown in FIG. 36B. Thereafter data indicative of the orientation of the sensor 204 and the distance to the pubic tubercle are recorded in the orientation device 172 in any of the manners discussed above.
  • Once the foregoing points of the pelvis have been navigated and the data recorded into the orientation device 172 the anterior pelvic plane can be calculated from data indicating the navigated points. The orientation of the anterior pelvic plane is a baseline for placement of the cup portion of a hip prosthesis.
  • The sensor 204 and the orientation device 172 can at this point be used to guide placement of the cup 360 in the prescribed orientation. Prior to placement the impactor 300, 300A is provided. For example, the impactor 300A can be provided by selecting the appropriate tip component 348 onto the distal end of the shaft 316A. The tip component 348 is coupled with the cup 360, e.g., by threads. The rotational orientation of the cup 360 to the shaft 316A that is most convenient given hole patterns and position of the sensor 204 is selected by matching up the flats 350A, 350B as appropriate. During the process of providing the impactor 300 the sensor 204 can be docked to the platform 536 and source of accumulated error can be eliminated just prior to navigating the cup 360 into place in the acetabulum.
  • In one technique, the cup 360 is inserted into the acetabulum and placed to approximately the correct orientation. Thereafter the sensor 204 is connected to a docking device 338 on the impactor as shown in FIG. 11A. The orientation device 172 is the activated to display angles indicative of the orientation of the cup, e.g., degrees of inclination and anteversion with respect to the anterior pelvic plane. The angle displayed can directly reflect the table reference frame discussed above. The angle displayed can directly reflect the frame of reference from the acquisition of landmarks. In some cases, angles can be displayed that directly reflect both table reference frame and landmark reference frame. In other embodiments, the table reference frame is not displayed but rather causes a user instruction to be displayed on the orientation device 172, such as a direction to re-acquire landmarks due to disagreement between the angles generated by the two reference frames.
  • Any of the foregoing combinations of table and landmark reference frames provides redundancy that ensures that the angle information provided to the user is accurate and reliable such that the procedures performed will be better contained within the “safe zone”.
  • When the correct angles are achieved, a tool is used to strike the proximal end of the impactor 300 to lodge the cup 360 in place at the desired angle. In some techniques, the sensor 204 is removed prior to striking the proximal end of the impactor 300. The system 500 includes a module that monitors signals from the sensor 204 and if a large deviation in the readings occurs, the module prevents the angles on the display of the orientation device from changing. This “freezing” of the display is both a safety and an accuracy precaution because a large force due to impact can affect the accuracy of the sensor 204.
  • If femoral landmarks are acquired in the procedure prior to separating the natural joint, the same landmarks can be acquired after the prosthetic joint is placed to confirm that the replacement of the joint has not changed either the length of the leg, the off-set of the leg from the trunk of the patient or both. For example, the sensor 204 can be docked to the docking device 538A as shown in FIG. 36A. Sources of accumulated error can be eliminated by initializing the sensor 204. Thereafter, the probe arm 538 can be brought into contact with the same landmark (e.g., Fm) acquired early in the procedure. See FIG. 38. The probe arm 538 can be locked into place and thereafter the sensor 204 can be coupled with the proximal end of the probe arm 538. The orientation of the sensor and the distance to the probe arm 538 can be input into the orientation device 172. These data enable the orientation device 172 to output amounts of change in leg length and leg offset.
  • In one variation a plurality of points, e.g., three points, on the femur are acquired before and after the joint is replaced. This approach enables a further confirmation that the rotation orientation of the neck of the femur relative to an axis extending through the center of the cup 360 perpendicular to the plane of the acetabulum is unchanged after the procedure.
  • Of course, the femur registration procedures enable correction of diagnosed deformities including excessive leg length offset and joint offset, as well as mal-orientation of the femoral neck in the natural joint. In other words, the surgeon can begin the procedure with the intent of adding some offset or changing rotational orientation to improve the patient's bone positions and/or orientations post-operatively.
  • 3. Anterior Approach: Systems with an Orientation Sensing Device and Camera
  • FIG. 39 shows the system 600 adapted to navigate a hip joint procedure with reference to anatomical landmarks from an anterior approach. The system 600 can include the orientation sensing device 204, not shown in FIG. 39, as described above The system 600 can be adapted for either a posterior approach as described above, or an anterior approach.
  • FIG. 40-42 shows a hip navigation system 600B adapted to navigate a hip joint procedure with reference to anatomical landmarks from an anterior approach. As noted above, in the anterior approach, the patient is in the supine position. The system 600B can include any of the features described above, including with reference to system 600. The system 600B can be used in any technique or method step described herein. The system 600B can include the surgical orientation device 172 described herein. The system 600B can include the orientation sensing device 204 described herein. The system 600B can include a camera 684 described herein.
  • The surgical orientation device 172 and the orientation sensing device 204 can be turned on before the procedure begins. If the system can be used in a posterior or anterior approach, one method can involve a surgeon selecting a module corresponding to the approach. For example, the surgeon can select an anterior hip approach module or a posterior hip approach module in the surgical orientation device 172. In some embodiments, the method can involve the step of inputting the surgical technique into the surgical orientation device 172. The surgeon can verify that patient is positioned in an appropriate position, e.g., in a supine position. The surgical orientation device 172 can include a display screen. The display screen can confirm the communication between the surgical orientation device 172 and the orientation sensing device 204.
  • The system 600, 600B can be partially assembled for calibration. In some embodiments, the first assembly 604 can be assembled. The pelvic bracket 638 can be coupled to the extension 644, if separate components. The surgical orientation device 172 can be coupled to the mount 646. In some techniques, the extension 670 can be coupled to the second coupler 648. The orientation sensing device 204 can be coupled to the mount 672. The surgical orientation device 172 and the orientation sensing device 204 form a general V-shaped configuration, similar to the orientation shown in FIG. 31. The orientation sensing device 204 can be fixed in position relative to the surgical orientation device 172.
  • The surgical orientation device 172 and the orientation sensing device 204 can be calibrated. The surgical orientation device 172 can be rested on a level horizontal surface with the display pointed upward. The surgeon can hold the assemblies 604, 606 or 604B, 606B steady until the surgical orientation device 172 indicates completion. The surgical orientation device 172 can be rested on a level vertical surface with the display pointed sideways. The surgeon can hold the assemblies 604, 606 or 604B, 606B steady until the surgical orientation device 172 indicates completion. The assemblies 604, 606 or 604B, 606B can be placed on the left side so that the left side of the surgical orientation device 172 rests on a level surface. The surgeon can hold the assemblies 604, 606 or 604B, 606B steady until the surgical orientation device 172 indicates completion. The assemblies 604, 606 or 604B, 606B can be angled forward to verify calibration. The surgeon can hold the assemblies 604, 606 or 604B, 606B steady until the surgical orientation device 172 indicates completion.
  • The extension 670 can be decoupled from the second coupler 648, as described herein. The second assembly 606 can be assembled as shown in FIGS. 39 and 40. The first assembly 604, 604B can be coupled to the second assembly 606, 606B as shown in FIGS. 39 and 40. The probe 678, 678B can be inserted within the through lumen of the dock 662, 662B. The marking 682 can be beneath the camera 684. The surgeon can verify the camera 684 is capturing the measurements of the marking 682 by sliding the probe 678, 678B to different positions. An error message can be displayed if the camera 684 is not reading the markings 682.
  • The system 600, 600B can be attached to the pelvis. The fixation pins 610, 612 can be inserted into the bone. In some techniques, one or more of the fixation pins 610, 612 are positioned over the ASIS on the operative side. In some techniques, one or more of the fixation pins 610, 612 are positioned on the iliac crest. The fixation pins 610, 612 can be approximately vertical. The fixation pins 610, 612 can be inserted by use of a driver. The fixation base 602, 602B can be rotated as needed to place the fixation pins 610, 612 within the channels 626, 628 as shown in FIG. 20C. The support 622 can be brought toward the platform 620, thereby decreasing the diameter of the channels 626, 628. The fixation pins 610, 612 can be secured to the fixation base 602, 612B.
  • The first assembly 604, 604B can be coupled to the first coupler 632 as described herein. The surgical orientation device 172 can be coupled to the first assembly 604, 604B. The second assembly 606, 606B can be coupled to the second coupler 648 as described herein. The orientation sensing device 204 can be coupled to the second assembly 606. The system 600 can be positioned as shown in FIGS. 39 and 41.
  • The surgeon can register a parked configuration or home position as shown in FIG. 41. In some techniques, the distal end 680, 680B of the probe 678, 678B can be engaged with a point on the platform 620 or cannula 621B. The platform 620 or cannula 621B can include the divot 630 as described herein. The divot 630 can be sized to accept the distal end 680, 680B of the probe 678, 678B. The distal end 680, 680B of the probe 678, 678B can be curved or bent to facilitate locating anatomical landmarks or points, as shown in FIGS. 39 and 40. The probe 678, 678B can be vertical in the home position. The orientation sensing device 204 can be vertical in the home position.
  • The orientation sensing device 204 can register the operating table or perform table registration for the anterior approach. The patient can be positioned so that the coronal plane of the pelvis is level. In some embodiments, the surgeon can align the probe 678, 678B with the horizontal. In some embodiments, only the direction of the probe's 678, 678A projection onto a horizontal plane is used. The probe 678, 678A can be in an infinite number of angles from horizontal, which would result in the same software result. This is convenient due to the mechanical constraints imposed by the pivot configuration of the system 600. The probe 678, 678B can be parallel with the sagittal plane. The system 600, 600B can calculate cup angles based on the assumption that the pelvis of the patient is correctly positioned during table registration.
  • At the surgeon's discretion the system 600, 600B can be used to navigate a condition of the femur prior to hip replacement. A mark Fm may be made on the proximal femur. Thereafter the orientation sensing device 204 can be initialized or zeroed such as by placing it back in the home position, as described herein. Thereafter, the distal end 680, 680B of the probe 678, 678B can be brought into contact with the femur mark Fm. The surgical orientation device 172 can be signaled to record the orientation of the orientation sensing device 204. A distance from the point of attachment of the fixation pins 610, 612 to the marked position on the femur can then be recorded in the surgical orientation device 172. The position can be based on capturing the markings 682 the probe 678, 678B or probe inlay 676 by the camera 684, in combination with inertial data from the orientation sensing device 204.
  • The femur can be positioned in a neutral reference position with respect to flexion, abduction and rotation. This neutral position can be representative of a standing position of the patient.
  • The surgeon can position the distal end 680, 680B of the probe 678, 678B at various anatomical landmarks. The surgeon can hold the hip stable. In some methods, Point 1 of the system is the mounting point of one or more fixation pins 610, 612. Referring back to FIG. 39, each fixation pin 610, 612 can be driven into the pelvis. In some techniques, one of the fixation pins 610, 612 is mounted to a pelvic bone at a landmark. When one of the fixation pins 610, 612 is coupled with a landmark, only two additional landmarks are acquired in some embodiments as discussed below. In some methods, the distal end 680, 680B of the probe 678, 678B is placed at the contralateral ASIS landmark. The surgeon can enter an input to register Point 2 (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point 2 was recorded. The probe 678, 678B can be immobilized and the orientation of the orientation sensing device 204 can be recorded by the surgical orientation device 172. Additionally, the distance that the probe 678, 678B is extended, as captured by the camera 684, to contact the contralateral ASIS can be recorded by the orientation device 172.
  • The process to record the contralateral ASIS can be repeated for one or more additional points. In some methods, the distal end 680, 680B of the probe 678, 678B is placed at the pubic tubercle. The surgeon can enter an input to register Point 3 (e.g., depress a button on surgical orientation device 172). The surgical orientation device 172 can indicate that Point 3 was recorded. In some methods, either pubic tubercle may be used as a reference. The probe 678, 678B can be immobilized and the orientation of the orientation sensing device 204 can be recorded by the surgical orientation device 172. Additionally, the distance that the probe 678, 678B is extended, as captured by the camera 684, to contact the pubic tubercle can be recorded by the orientation device 172.
  • When registering the anatomical points, the camera 684 captures an image of the marking 682. The camera 684 can read the marking 682 to provide accurate determination of the translational position of the probe 678, 678B relative to the dock 662. The camera 684 can be directly above the marking 682. In some methods, the camera 684 can read a binary code of the marking 682.
  • In some methods, the orientation sensing device 204 converts the image of the camera 684 into an extension measurement of the probe 678, 678B. In some embodiments, the surgical orientation device 172 converts the image of the camera 684 into an extension measurement of the probe 678, 678B. The distance related to the extension of the probe 678, 678B can be used in conjunction with the orientation and positional data from the orientation sensing device 204. The surgical orientation device 172 can use the length measurement from the camera 684 and the data from the orientation sensing device 204 to determine the location of the distal end 680, 680B of the probe 678, 678B. In some embodiments, the surgeon will enter an input (e.g., depress a button) to collect data from the orientation sensing device 204. In some methods, the surgeon will enter an input (e.g., depress a button) to collect data from the camera 684. In some embodiments, the surgeon will enter an input (e.g., depress a button) to collect data from the orientation sensing device 204 and the camera 684 simultaneously. In some methods, the orientation sensing device 204 and/or the camera 684 will only send data if the orientation sensing device 204 is stable or non-moving.
  • Once the foregoing points of the pelvis have been navigated and the data recorded into the surgical orientation device 172, the anterior pelvic plane can be calculated from data indicating the navigated points. The orientation of the anterior pelvic plane is a baseline for placement of the cup portion of a hip prosthesis.
  • The orientation sensing device 204 and the surgical orientation device 172 can at this point be used to guide placement of the cup in the prescribed orientation. The surgeon can set the angle of the cup. Later in the procedure, the surgeon can check cup angle after the angle has been set. The surgeon can remove the second assembly 606 from the first assembly 604. The surgeon can remove the extension 670 from the third coupler 668. The surgeon can couple the extension 670 to an impactor 300B, shown in FIGS. 56A-56F. The impactor 300B can have the fourth coupler 338B. This permits the orientation sensing device 204 to couple to the fourth coupler 338B. The acetabular shell can be threaded onto the shell adaptor, similar to FIG. 11C. The shell adaptor can be snapped onto the end of the impactor 300B, similar to FIG. 11B.
  • The acetabular shell can be inserted into the acetabulum and positioned at the desired angle. The surgical orientation device 172 can guide the surgeon in setting the appropriate cup angle. The surgical orientation device 172 can graphically display when the orientation sensing device 204 is located at the inclination and anterversion angles entered by the surgeon. The surgical orientation device 172 can graphically display the inclination and anterversion angles as the orientation sensing device 204 is moved. The surgeon can enter an input to set the desired angle (e.g., depress a button on surgical orientation device 172).
  • The inclination and anteversion cup angles can be displayed statically. The anatomic angles are those calculated by the system 600 based on the pelvic landmark registration. The table angles are those calculated by the system 600 based on the initial positioning of the pelvis during table registration. The surgeon can check cup angle after the angles are set.
  • If femoral landmark Fm is acquired in the procedure prior to separating the natural joint, the same landmark can be acquired after the prosthetic joint is placed to confirm that the replacement of the joint has not changed either the length of the leg, the off-set of the leg from the trunk of the patient or both. Thereafter, the distal end 680, 680B of the probe 678, 678B can be brought into contact with the same landmark (e.g., Fm) acquired early in the procedure. The orientation of the orientation sensing device 204 and the extension of the probe 678, 678B can be input into the surgical orientation device 172. These data enable the surgical orientation device 172 to output amounts of change in leg length and leg offset.
  • In one variation described above in connection with the system 600, 600B and FIG. 24A, a plurality of points, e.g., three points, on the femur are acquired before and after the joint is replaced, for instance with the use of the femur tracker 686. This approach enables a further confirmation that the rotation orientation of the neck of the femur relative to an axis extending through the center of the cup perpendicular to the plane of the acetabulum is unchanged after the procedure.
  • The surgeon can register the home position. The surgeon can couple the second assembly 606, 606B to the first assembly 604, 604B as shown in FIGS. 39 and 40. The mount 672 can be coupled to the orientation sensing device 204 as described herein. The mount 646 can be coupled to the surgical orientation device 172 as described herein. The surgeon can confirm that the components of system 600, 600B are rigidly coupled. The surgeon can verify the parked configuration or home position. The distal end 680, 680B of the probe 678, 678B can be engaged with a point on the platform 620 or cannula 621B. The platform 620 or cannula 621B can include the divot 630 as described herein. The divot 630 can be sized to accept the distal end 680, 680B of the probe 678, 678B. The change in the home position is displayed on the surgical orientation device 172.
  • C. Navigation Using Pre-Operative Imaging and Patient Specific Jigs
  • Although the foregoing approaches can improve the standard of care currently in place, further increases in accuracy and even better outcomes and streamlining of the procedure can be provided if the system is configured to account for patient specific anatomical variability.
  • 1. Patient Specific Jigs: Navigation Using Fixation Pins Mounted Therethrough
  • FIG. 43 shows the placement of a hip movement tracking sensor 204 on a pin 732 adjacent to the acetabulum. This position is not limiting, in that the hip movement tracking sensor 204 can be mounted anywhere on the pelvis, but adjacent to the acetabulum is convenient. The pin 732 has been placed with the aid of a pre-operative characterization of the hip of the specific patient. In these methods the pin 732 is placed without the need for intra-operative landmark acquisition.
  • In one approach, a pre-operative three-dimensional characterization of the acetabulum is performed using any suitable technology, such as CT scan or MM. This pre-operative procedure can be performed to fully characterize the pelvis and, in some cases, the proximal femur. Thereafter, the shape, location and orientation of the acetabulum are known. Also, the bony features around the acetabulum are known. From this data, a custom jig 700 can be fabricated specific to the patient. The custom jig 700 not only has features that are specific to the individual patient's anatomy but also a registration feature 702 that will be at a known orientation to the plane of the acetabulum and to the anterior pelvic plane.
  • FIG. 44 shows an example of the custom jig 700. The jig 700 has an anterior side 704 and a posterior side 708. The posterior side 708 is formed with an acetabular portion 712 configured to mate with at least one feature of the acetabulum in a secure manner. For example, the acetabular portion 712 can fit snugly over the acetabular rim with a central portion of the posterior side 708 positioned in the acetabulum. The jig 700 preferably has only one pre-defined orientation. A surface on a posterior portion of the jig can define a plane that corresponds to a preferred orientation angle of the cup post-implantation. One or more channels 716 can be formed on the posterior side 708 that receive the local bony prominences of the acetabular rim only when the jig 700 is in the proper position and orientation. In another approach, the registration feature 702 of the jig 700 has a face or a hole that is oriented in the desired orientation for the shell or cup of the implant. Thus, once the jig 700 is placed, the sensing device 204 can be positioned against the face or surface or, if coupled with a pin 732, the pin can be inserted into the hole. From the orientation of the device when so placed, the orientation of the acetabular rim or a proxy thereof can be recorded in one or both of the devices 172, 204. The hole 702 preferably extends from the anterior side 704 to the posterior side 708 of the jig 700. The distance between the anterior and posterior surfaces 704, 708 provides the depth of the hole 702 being sufficient to guide a pin to specific anatomy along a specific direction.
  • FIG. 45 shows initial placement of the jig 700 in the acetabulum in an orientation dictated by the fit of the jig 700 over the anatomy. The profile of the posterior side 708 including the channel(s) 716 receives the specific patient's acetabular rim including local prominences and recesses of the bone at and around the acetabulum. The hole 702 is located on a peripheral projection 720 of the jig 700. The configuration of the projection 720 is such that the hole 702 is disposed over a specific bone or bone region of the hip. In this example, the projection 720 is configured to be disposed over the bone superior to the acetabulum. Other regions of bone around the acetabulum can be used if sufficiently thick or strong and in a convenient position to not block actions of the surgeon during the procedure. The precise location of the projection 720 chosen can be determined by the pre-operative imaging and factored into the forming the custom jig 700.
  • FIG. 46 shows that after the jig is placed the pin 732 can be placed through the hole 702. The pin 732 has a length that extends above the anterior surface 704 of the jig 700 such that the sensor 204 can be mounted thereto. Once the sensor 204 is mounted to the pin, the sensor can track any movement of the pelvis during the procedure. There is no need for registration of landmarks in this technique because the position and orientation of the pin relative to the acetabulum and/or to the anterior pelvic plane are known from the pre-operative imaging.
  • FIG. 47 shows that the plug 700 advantageously can include an alignment guide 736 to control rotational orientation of the sensor 204 on the pin 732. The alignment guide 736 can be a line extending along a specific direction relative to the registration feature 702. As noted above, the sensing devices inside the sensor 204 can be sensitive to the direction of gravity. Tilting of the sensor about the pin 732 can change the readings of these sensing devices. To eliminate sources of error associated with this sensitivity, the navigation system incorporating the sensor 204 can be programmed to assume that the sensor will be at a specific rotation position about the longitudinal axis of the pin 732. The sensor 204 may be mechanically or visually aligned with the guiding mark 738 to assure that this assumption is met in use. In one variation, the sensor 204 has a laser that projects onto the jig 700 and can be aligned with the mark 736 to facilitate alignment. Alternatively, the pin 732 may be configured to only enter the hole in a unique orientation (for example, with an asymmetric non-circular cross-section), and to allow the sensor to mount to the pin in a unique orientation (by including asymmetric coupling features).
  • Once the sensor 204 is mounted to the pin 732, the jig 700 can be removed from the surgical area. For example, the jig 700 can be made of material can be cut along a line 742 in a lateral edge of the jig. A saw or rongeur can be used to cut through the jig 700. Thereafter, the majority of the body of the jig 700 can be removed from the surgical area. FIG. 49 shows that in some methods, the projection 720 is left in place so that the position and orientation of the sensor 204 is not disrupted.
  • A second sensor 204 is attached to a cup impactor, which may be the same as in FIGS. 11A-11C. The impactor guides the placement of the cup with reference to the signals from the sensor 204 mounted on the pin 732 on the pelvis. Signals from the sensor on the impactor can be corrected if movement of the hip is detected by the sensor on the pin 732.
  • FIGS. 50-52 illustrate one way of implementing cannulated guide delivery methods. Cannulated methods are advantageous in that once a guide member is mounted, the tracking of orientation is simplified and may no longer be necessary in some cases, which can eliminate accumulated errors, sensor drift, or erroneous readings of other sorts as a concern.
  • A custom jig 750 is formed by the process discussed above in connection with the jig 700. The jig 750 has many of the same components as those of the jig 700, including a registration feature 752 extending between the anterior and posterior surfaces 754, 758. A guiding mark 738 can be provided on the anterior surface 754 to align the sensor 204 rotationally about the pin 732. The jig 750 also has a guide channel 762 located generally centrally in the jig 750. The guide channel 762 has an anterior opening on the anterior surface 754, a posterior opening on the posterior surface 758, and a wall extending between these openings. The wall is disposed about a central axis A. The position and orientation of the axis A can be determined based on the pre-operative characterization of the acetabulum. In one embodiment, an MM or CT scan reveals an optimal axis for delivering a prosthetic cup along. The wall forming the guide channel 762 is formed about the axis A which coincides with this optimal axis when the jig 750 is placed on the specific patient's acetabulum.
  • FIG. 51 shows that the impactor 300A can then be advanced along the axis A into the guide channel 762. A distally facing shoulder 766 on the impactor 300A can mate in a pre-defined way with the anterior surface 754 and the entrance to the channel 762 and when so mated the orientation of the sensor 204 on the impactor 300A can be recorded. In this technique, the jig 750 is a cannula with the channel 762 configured to receive the impactor 300A. If patient movement is possible, the sensor 204 on the pin 732 can be retained in place to track such movement. If not, the sensor 204 on the pin 732 can be removed. The sensor 204 on the impactor 300A will have stored the orientation of the axis A in memory and will be able to inform the user of any variance of the impactor from this axis. It is preferred to retain the sensor 204 on the pin 732, as the orientation can only be accurate stored by the sensor 204 on the impactor 300A for a short time due to accumulated error (e.g., drift) of some sensors, e.g., some lower cost gyroscopes.
  • In one variation, the impactor 300A has a central channel that coincides with the axis A when the impactor is placed into the guide channel 762 and the shoulder 766 abutted with the surface 754. A guide pin can be advanced through this channel and into the acetabulum. The guide pin can be lodged in the base of the acetabulum. The sensor 204 coupled with the pelvis by the pin 732 can be removed because the guide pin placed through the channel of the impactor 300A provides a mechanical way of tracking movement of the hip. Thereafter the impactor 300A with the cup mounted thereon can be slide over the guide pin and into place in the acetabulum.
  • In a further variation, the sensor 204 coupled with the impactor 300A can also be removed. In this further variation, the guide pin is configured along with the cup to prevent tilting of the prosthetic cup relative to the axis A. In particular, an interface between the guide member and the cup of the hip prosthesis could be made to have sufficient length along the axis A that tilting is prevented by this interface. In some cases, the cup 360 is coupled to the impactor 300, 300A. A variation of the impactor 300, 300A can be tubular or have another feature for interfacing with, e.g., tracking along the guide pin in the pelvis.
  • 2. Patient Specific Jigs: Navigation Using Inertial Sensors Mounted on Impactor
  • FIGS. 53-60 shows another embodiment of a custom jig. The systems described herein can be used with a patient specific jig 1000, shown in FIG. 55. In some embodiments, the system 600, 600A, 600B or components thereof, can be used with the patient specific jig 1000.
  • Referring to FIG. 53, the system 600A can include a fixation base 602A. The fixation base 602A can include a platform 620A. The platform 620A can include one or more holes 611A. The holes 611A can be sized to accept a fastener 613A to secure the fixation base 602A to the pelvis. The fixation base 602A can include divot 630A. The divot 630A can be a registration feature associated with a parked configuration or home position. Each fastener 613A can be driven into the ilium on the pelvis. As discussed further below, each fastener 613A can be coupled with other bones in other techniques. For example, one of the fasteners 613A can be coupled with the ischium or the pubis. One of the fasteners 613A can be coupled at a point superior to the superior-most point on the acetabular rim. In some techniques, one of the fasteners 613A is about 10 mm above the superior-most point on the acetabular rim.
  • The fixation base 602A can include the first coupler 632. The first coupler 632 can couple to one or more components of the system 600A. The system 600A can include the first assembly 604A shown in FIG. 54. The first assembly 604A is rigidly connected to the hip in the illustrated configuration so that motion of the hip cause corresponding motion of sensor(s) in the first assembly 604A as discussed below. The first assembly 604A can include a pelvic bracket 638A. In the illustrated embodiment, the pelvic bracket 638A can be substantially vertical in use, as shown in FIG. 54. The first assembly 604A can be designed to couple with the first coupler 632 of the fixation base 602A.
  • The first assembly 604A can include an extension 644A. The extension 644 can be coupled to the pelvic bracket 638A. The extension 644A can include a mount (not shown) designed to couple with the surgical orientation device 172. The surgical orientation device 172 can include features to mate with the mount (not shown). The surgical orientation device 172 is rigidly coupled to the extension 644A when engaged with the mount.
  • The system 600A can include the second assembly 606A or a portion thereof. The second assembly 606A can include an extension 670. The extension 670 can couple to the second coupler 648. The engagement between the second coupler 648 and the extension 670 minimizes or prevents relative movement therebetween to avoid any mechanical relative movement during navigation procedures. The extension 670 can include a mount 672 designed to couple with the orientation sensing device 204. In the illustrated embodiment, the mount 672 includes a lock and release lever that can pivot relative to the extension 670. The orientation sensing device 204 can include features to mate with the lock and release lever. Other configurations are contemplated. The orientation sensing device 204 is rigidly coupled to the extension 670 when engaged with the mount 672. In some methods of use, the system 600, or a portion thereof, is coupled to the pelvis instead of the system 600A. [0285] The surgeon can select the hip (e.g., right or left) using the surgical orientating device 172. The surgeon can input the target cup inclination angle into the surgical orientation device 172. The inclination angle can be radiographic inclination as described herein. The surgeon can input the target cup anteversion angle into the surgical orientation device 172. The anteversion angle can be radiographic anteversion as described herein.
  • The second assembly 606 includes the extension 670 and the mount 672, as shown in FIG. 23A. The orientation sensing device 204 can be coupled to the mount 672. The extension 670 can be coupled to the second coupler 648. The orientation sensing device 204 and the surgical orientation device 172 can be calibrated as described herein. The system 600 can be mounted similar to system 600A shown in FIG. 54. The method step of coupling the orientation sensing device 204 with the second coupler 648 can relate the orientation data of the orientation sensing device 204 to a reference frame of the surgical orientation device 172.
  • In some embodiments, a pre-operative three-dimensional characterization of the acetabulum is performed using any suitable technology, such as CT scan or MM. This pre-operative procedure can be performed to fully characterize the pelvis and, in some cases, the proximal femur. Thereafter, the shape, location and orientation of the acetabulum are known. Also, the bony features around the acetabulum are known. From this data, the patient specific jig 1000 can be fabricated specific to the patient. The patient specific jig 1000 not only has features that are specific to the individual patient's anatomy but also a registration feature 1002 shown in FIG. 55 that will be at a known orientation to the plane of the acetabulum and to the anterior pelvic plane.
  • FIG. 55 shows an example of the patient specific jig 1000. The patient specific jig 1000 has an anterior side 1004 and a posterior side 1008. The posterior side 1008 is formed with a three dimensional shape configured to mate with at least one feature of the acetabulum in a secure manner. For example, an acetabular projection 1012 can be provided that fits snugly over the acetabular rim with a central portion of the posterior side 1008 positioned in the acetabulum. The patient specific jig 1000 preferably has only one pre-defined orientation. A surface on a posterior side 1008 of the patient specific jig 1000 can define a plane that corresponds to a preferred orientation angle of the cup post-implantation. One or more channels 1016 can be formed on the posterior side 1008 that receive the local bony prominences of the acetabular rim only when the patient specific jig 1000 is in the proper position and orientation.
  • In some embodiments, the registration feature 1002 of the patient specific jig 1000 can include a recess, a hole, or a projection. In one method of using the illustrated embodiment, the orientation sensing device 204, not shown but described herein, is coupled to an impactor 300B. The impactor 300B can be inserted into the registration feature 1002. Thus, once the patient specific jig 1000 is placed, the orientation sensing device 204 can be positioned in a known orientation relative to the registration feature 1002. From the orientation of the orientation sensing device 204 when so placed, the orientation of the acetabular rim or a proxy thereof can be recorded in one or both of the devices 172, 204. The registration feature 1002 preferably extends from the anterior side 1004 toward the posterior side 1008 of the patient specific jig 1000. The distance between the anterior and posterior surfaces 1004, 1008 provides the depth of the registration feature 1002 being sufficient to securely couple to the impactor 300B. In other embodiments, the registration feature 1002 extends anteriorly of the anterior side 1004 of the jig 1000, e.g., as a projection or post.
  • FIGS. 56A-56F show the impactor 300B. The impactor 300B can be substantially similar to impactors described herein, and can include any features of impactors described herein. The shaft 316B can include plurality of flats 350B on the distal end of the shaft 316B as shown in FIG. 56F. The flats 350B permit proximal-distal sliding of the registration feature 1002 of the patient specific jig 1000 over the distal end of the shaft 316B into or out of the feature 1002 shown in FIG. 57. In some embodiments, a detent device 351B or other locking mechanism is provided between the shaft 316B and the registration feature 1002. This mechanism may prevent inadvertent release of the patient specific jig 1000 from the impactor 300B. The flats prevent the shaft 316B from rotating relative to the patient specific jig 1000. The flats 350B can enable many discrete alternate relative angular positions of the patient specific jig 1000 to the shaft 316B. The number of orientations of the impactor 300B relative to the patient specific jig 1000 can depend on the number of flats.
  • FIG. 58A-58B shows initial placement of the patient specific jig 1000 in the acetabulum in an orientation dictated by the fit of the patient specific jig 1000 over the anatomy. The method can include the step of coupling the patient specific jig 1000 to a rim of the acetabulum. The profile of the posterior side 1008 including the channel(s) 1016, shown in FIG. 55, receives the specific patient's acetabular rim including local prominences and recesses of the bone at and around the acetabulum. The acetabular projection 1012 can be peripheral projection of the patient specific jig 1000. The configuration of the acetabular projection 1012 is such that the acetabular projection 1012 is disposed over a specific bone or bone region of the hip. In this example, the acetabular projection 1012 is configured to be disposed over the bone superior to the acetabulum. Other regions of bone around the acetabulum can be used if sufficiently thick or strong and in a convenient position to not block actions of the surgeon during the procedure. The precise location of the acetabular projection 1012 chosen can be determined by the pre-operative imaging and factored into the forming the patient specific jig 1000.
  • The impactor 300B can be placed in the registration feature 1002 before or after the patient specific jig 1000 is placed in the acetabulum. The impactor 300B has a length that extends above the anterior surface 1004 of the patient specific jig 1000 such that the sensor 204 can be mounted thereto. Referring back to FIG. 54, the orientation sensing device 204 can be undocked from the second coupler 648. The orientation sensing device 204 can thereafter docked to the fourth coupler 638B of the impactor 300B. The fourth coupler is shown in FIG. 58B.
  • The patient specific jig 1000 can include an alignment guide 1038 to control rotational orientation of the orientation sensing device 204 on the impactor 300B. The alignment guide 1038 can be a line extending along a specific direction relative to the registration feature 1002. As noted above, the orientation sensing device 204 can be sensitive to the direction of gravity. The rotation of the orientation sensing device 204 about the impactor 300B can change the readings of these sensing devices. To eliminate sources of error associated with this sensitivity, the navigation system incorporating the orientation sensing device 204 can be programmed to assume that the orientation sensing device 204 will be at a specific rotation position around the longitudinal axis of the impactor 300B. The alignment guide 1038 can correspond to the desired rotation position orientation sensing device 204.
  • In the illustrated embodiment, the fourth coupler 338B may be mechanically or visually aligned with the alignment guide 1038 to assure that this assumption is met in use. In the illustrated embodiment, the alignment guide 1038 is an elongate arrow. The elongate arrow can align with the longitudinal axis of the fourth coupler 338B. The surgeon can look down the impactor 300B from the proximal end to the distal end. The surgeon can verify the alignment of the alignment guide 1038 and the fourth coupler 338B. The alignment between the alignment guide 1038 and the fourth coupler 338B constrains the orientation sensing device 204 in the third degree of freedom. The surgical orientation device 172 can be programed with this known angle of the orientation sensing device 204 when the impactor 300B is coupled to the patient specific jig 1000. In some embodiments, the surgeon will enter an input (e.g., depress a button) when the patient specific jig 1000 is seated with the impactor 300B and the orientation sensing device 204 coupled thereto. The surgical orientation device 172 can calculate the orientation of the surgical orientation device 172 relative to the pelvis when the input is pressed. This step may replace registering the pelvic landmarks with the probe, as discussed herein.
  • In some embodiments, the orientation sensing device 204 has a laser that projects onto the patient specific jig 1000 and can be aligned with the alignment guide 1038 to facilitate alignment. Alternatively, the impactor 300B may be configured to only enter the registration feature 1002 in a unique orientation (for example, with an asymmetric non-circular cross-section), and to allow the orientation sensing device 204 to mount to the patient specific jig 1000 in a unique orientation (by including asymmetric coupling features).
  • Once the orientation sensing device 204 is mounted to the impactor 300B, the surgeon can hold the orientation sensing device 204 steady. In some embodiments, the surgeon will enter an input (e.g., depress a button) to collect data from orientation sensing device 204. The data can include the impactor angle. The impactor angle can be fixed during the method such that the angle can be known to the system or in the method in directing placement of the hip implant components. In some embodiments, the impactor angle can be 10° inclination, 20° inclination, 30° inclination, 40° inclination, 50° inclination, 60° inclination, 70° inclination, 80° inclination, 90° inclination, between 30°-70° inclination, between 40°-60° inclination, etc. In some embodiments, the impactor angle can be 10° anteversion, 20° anteversion, 30° anteversion, 40° anteversion 50° anteversion, 60° anteversion, 70° anteversion, 80° anteversion, 90° anteversion, between 0°-40° anteversion, between 10°-30° anteversion, etc. In the illustrated embodiment, the impactor angle is 50° inclination, 20° anteversion. The impactor angle can be based upon the orientation of the registration feature 1002 relative to the patient specific jig 1000. The impactor angle can be set during fabrication of the patient specific jig 1000. In some embodiments, the impactor angle must be known by the software of the surgical orientation device 172. In some embodiments, the impactor angle is constant for all jigs and hard-coded into the surgical orientation device 172. In some embodiments, the impactor angle can be input by the user at the time of surgery. The surgeon can input the impactor angle into the surgical orientation device 172 using the user interface as described herein.
  • The orientation sensing device 204 can transmit orientation and positional data to the surgical orientation device 172. The surgical orientation device 172 can register the guide angle when the orientation sensing device 204 is coupled to the patient specific jig 1000. In some methods, the surgical orientation device 172 can perform a bias elimination step. The surgical orientation device 172 can track motion of the pelvis and to generate an output that eliminates error due to the movement of the pelvis. The surgical orientation device 172 can include a display providing a user interface. The method can include the step of registering the orientation of a proxy for the plane of the acetabular rim using the orientation sensing device 204 coupled with the patient specific jig 1000.
  • The orientation sensing device 204 can track any movement of the pelvis during the procedure. There is no need for registration of landmarks in this technique because the position and orientation of the impactor 300B and/or orientation sensing device 204 relative to the acetabulum and/or to the anterior pelvic plane are known from the pre-operative imaging. From the known orientation of the orientation sensing device 204 with respect to the pelvis, the system can calculate the orientation of the surgical orientation device 172 with respect to the pelvis.
  • The surgeon can remove the patient specific guide 1000 from the patient as shown in FIG. 59. The surgeon can remove the impactor 300B from the patient specific guide 1000. The surgeon can prepare the acetabulum. In some embodiments, the surgeon can ream the acetabulum. The impactor 300B can be used to position a shell in the acetabulum. The shaft 316B can include plurality of flats 350B on the distal end of the shaft 316A as shown in FIG. 56F. Referring to FIGS. 11B-C and 60, the impactors described herein can be coupled with the tip component 348. FIG. 11C shows that the tip component 348 can have a recess 352 formed on the proximal side thereof. The recess 352 can comprises a plurality of flats 350B corresponding to a plurality of flats 350B on the distal end of the shaft 316B. The flats 350B permit proximal-distal sliding of the recess 352 over the distal end of the shaft 316B. Preferably a detent device or other mechanism is provided between the tip component 348 and the shaft 316B so that the tip component 348 does not disengage. The flats 350B prevent the tip components 348 from rotating relative to the shaft 316B The engagement device 356 comprises threads in one embodiment so that the cup of the prosthetic hip can be screwed onto the distal end of the tip component 348. The flats enable many discrete alternate relative angular positions of the tip component 348 (and hence the cup) to the shaft 316B. A plurality of flutes or elongate axial ridges 364 on the outer surface of the tip component 348 enable the user to securely grasp the tip component for mounting and dismounting the tip component on the shaft 316B. The surgeon can position the cup in the acetabulum. The surgeon can hold the impactor 300B steady.
  • During orienting, inertial data from the orientation sensing device 204 can be used to confirm a proper orientation of the acetabular cup. The surgical orientation device 172 can register the guide angle when the cup is positioned within the acetabulum. In some embodiments, the surgeon will enter an input (e.g., depress a button) to collect data from orientation sensing device 204. The surgical orientation device 172 can display the cup angle. The surgeon can move the cup to change the inclination angle. The surgeon can move the cup to change the anteversion angle. The surgeon can move the shell until the inclination angle and anterversion angle matches the preoperative angles. The method can include the step of changing the orientation of the impactor 300B in response to an output reflecting the inertial data generated by the orientation sensing device 204. In the illustrated embodiment, the preoperative impactor angle can be 50° inclination, 20° anteversion. In some methods, the surgical orientation device 172 can perform a bias elimination step. In some methods, the surgical orientation device 172 can perform a gyro propagation step. Examples of bias elimination steps and gyro propagation steps are discussed in U.S. Ser. No. 13/011,815, filed Jan. 21, 2011, which is hereby incorporated by reference for this and all other purposes. The surgical orientation device 172 and/or the orientation sensing device 204 can include any of the software algorithms described therein.
  • The surgeon can seat the cup in the acetabulum using the impactor 300B. The surgical orientation device 172 can remain coupled to the first assembly 604. The orientation sensing device 204 can be coupled to the fourth coupler 338B on the impactor 300B, as shown in FIG. 60.
  • In some embodiments, the surgeon will enter an input (e.g., depress a button) to collect data from orientation sensing device. The data can include the impactor angle. The impactor angle can be known. At this step, the impactor angle can be 50° inclination, 20° anteversion. The impactor angle can be based upon the orientation of the registration feature 1002 relative to the patient specific jig 1000. The impactor angle can be set during fabrication of the patient specific jig 1000. In some embodiments, the impactor 300B can be rotated to a set number of positions within the registration feature 1002. The impactor 300B can be rotated by the surgeon to align a feature of the impactor 300B with the alignment guide 1038. The fourth coupler 338B can be aligned with the alignment guide 1038. The impactor 300B can be positioned such that the fourth coupler 338B can be pointed superiorly. In other embodiments, the impactor 300B has a single orientation within the registration feature 1002. The position of the orientation sensing device 204 can be therefore known relative to the patient specific jig 1000, when the orientation sensing device 204 is coupled to the impactor 300B. The surgical orientation device 172 can calculate and record the orientation of the surgical orientation device 172 with respect to the pelvis.
  • The impactor 300B may be struck to seat the implant. In some embodiments, the orientation sensing device 204 remains on the impactor 300B as the impactor 300B is struck. Referring to FIG. 60, the impactor 300B has a shell 312B that is moveable relative to the shaft 316B. The shell 312B can include the fourth coupler 338B that can couple to the orientation sensing device 204. The movability of the shell 312B helps to isolate the orientation sensing device 204 from the forces that are transmitted through the impactor 300B. These forces are applied by a mallet or other device for forcibly moving the cup into position. By providing at least some force isolation between the shell 312 and the orientation sensing device 204, impact on the sensors in the orientation sensing device 204 can be reduced. Excessive force being applied to the orientation sensing device 204 can put the orientation sensing device 204 out of service, for example until synched with the surgical orientation device 172. The movement of a shell 312B is cushioned by a plurality of spring members 340B, 344B which are configured to absorb at least some of the shock of the impact on the impactor 300B.
  • 3. Custom Jigs: Navigation Using Fixation Pins Mounted Therethrough
  • FIGS. 61-63 show an example of the custom jig 1100. The jig 1100 has an anterior side 1104 and a posterior side 1108. The posterior side 1108 is formed with an acetabular portion 1112 configured to mate with at least one feature of the acetabulum in a secure manner. The jig 1100 preferably has only one pre-defined orientation. In some embodiments, a registration feature 1102 of the jig 1100 has a plurality of, e.g., two, holes. The registration feature 1102 can be located on the acetabular portion 1112 or any other portion of the custom jig 1100. The holes are sized to accept fixation pins 610, 612 of the system 600. In a variation of FIGS. 44-52, a patient specific guide can be provided with a registration feature including a single hole. The hole or holes can accept fixation pin(s) 610 in a single orientation relative to the patient or relative to the custom jig 1100. The method can include the step of inserting at least a fixation pin 610 through the patient specific jig 700 or jig 1100 along an axis disposed at a pre-defined angle corresponding to the reference frame of the surgical orientation device 172.
  • The first hole 1105 of the registration feature 1102 can accept a fixation pin 610 and a second hole 1107 can accept fixation pin 612. The system 600 can be placed in a single orientation relative to the custom jig 1100. Thus, once the jig 1100 is placed, the surgical orientation device 172 and/or the orientation sensing device 204 can be positioned in a known orientation. In some embodiments, from the orientation of the system 600 when so placed, the orientation of the acetabular rim or a proxy thereof can be recorded in one or both of the devices 172, 204. In some embodiments, the reference frame can be based directly on more general pelvic landmarks such as the anterior pelvic plane. The acetabular rim or a proxy can be used as an intermediate step to get to the reference frame based directly on more general pelvic landmarks. The registration feature 1102 preferably extends from the anterior side 1104 to the posterior side 1108 of the jig 1100. The distance between the anterior and posterior surfaces 1104, 1108 provides the depth of the holes 1105, 1107 being sufficient to guide the fixation pins 610, 612 to specific anatomy along a specific direction. The method can include the step of inserting at least two fixation pins 610, 612 through the patient specific jig 1100 along axes disposed at a pre-defined angle corresponding to the reference frame of the surgical orientation device 172.
  • Once the devices 172, 204 are mounted to the system 600, the sensors can track any movement of the pelvis during the procedure. There is no need for registration of landmarks in this technique because the position and orientation of the fixation pins 610, 612 relative to the acetabulum and/or to the anterior pelvic plane are known from the pre-operative imaging.
  • 4. Navigation Using Inertial Sensors and Pre-Operative Imaging
  • In another technique using less comprehensive imaging, a correspondence between one or more linear dimensions and an angle can be exploited to enhance accuracy. For example, a clinician can use an X-ray or other standard radiographic imaging device to provide an anterior pelvic bone image. This image can be read to derive the location of the anterior pelvic plane and a dimension on the anatomy. For example, an angle between top and bottom landmarks around the acetabulum (as further describe below) and a trans-ischial line or other anatomic medial-lateral reference line can be a useful patient specific variable to minimize patient-to-patient variation in at least one relevant angle, e.g., the abduction angle.
  • Patient specific data can be provided for use by the surgeon based on best medical judgment. For example, any of the systems herein can be used in a mode that is based on broad population studies. Such studies can define a distribution of patients with sufficient clarity and detail to enable significant improvement over the current standard of care. In one mode, the dimensions taken from radiograph or CT can be used to inform the surgeon whether some patient specific adjustments should be considered. Alternatively, patient specific adjustments can be coded into the system described herein so that they are transparent to the doctor. Such adjustments can be downloaded to either or both of the devices 172, 204 or into a separate monitor or control device that communicates wirelessly with the devices 172, 204. Thus, the system described herein can either fully implement patient specific adjustment, e.g., for anteversion, abduction, leg length, joint offset, or other parameter or can enable the surgeon to make a judgment as to whether to do so.
  • FIG. 68 illustrates an example of a pre-operative image that can be used in one technique. The lines 380 point to landmarks which are used intraoperatively and are also visible in an anterior pelvic radiograph. The top landmark 380A is about 1 cm superior to most superior point of acetabulum. In another approach, the top landmark 380A can be the most superior point on the acetabular rim. The bottom landmark 380B is adjacent to or at the acetabular notch (tear drop). An angle between line 382 and the line 384 is a patient-specific abduction of line formed by landmarks, which can be entered into an interface of the system 100 (or the other systems herein) at time of surgery to provide patient specific reference frame. Line 384 may be any anatomic medial-lateral reference line. Examples include trans-ischial line and line across the inferior borders of the obturator foramina (shown in FIG. 68).
  • 5. Navigation Using Drift Insensitive Inertial Sensors
  • In one variation, one or both of the devices 172, 204 can comprise only accelerometers and can be configured as tilt meters, or the devices could be put into a mode that relies mostly on the accelerometer data or otherwise be configured to be insensitive to accumulated errors that arise from integration of data. If the patient is set in a reproducible and stable position, patient movement and mis-orientation can be eliminated. This enables some methods to be performed without using rate sensor data. In one variation of this tilt-meter approach, one or both of the sensors 172, 204 can be configured to inform the surgeon if a condition is sensed that suggests a landmark acquisition approach would yield a superior alignment outcome. This method can advantageously be used for procedures that do not require complex movements, like freehand motions. Where freehand motion is involved, incorporating some indication of heading (gyroscopes, magnetometer, or other indication of heading) would be useful.
  • 6. Navigation Using Inertial Sensors to Track Motion to Define a Patient-Specific Safe Zone
  • In another technique illustrated by FIG. 64, a patient-specific “safe zone” is defined by recording the patient's natural range of motion of one more of the patient's joints. For example, if a hip procedure is to be performed, the patient's range of motion can be recorded pre-operatively. If the hip to be replaced is not overly arthritic, the range of motion can be determined on the hip to be replaced. If the range of motion of the hip to be replaced is unnatural due to disease state, the contralateral hip can be characterized.
  • In one hip replacement technique a sensor S is coupled with the femur. The sensor can be coupled above the knee to prevent movements at the knee from affecting the measurements made. The sensor S can be connected below knee if the knee is immobilized. The sensor S can be initialized and otherwise prepared to record accurate readings. Thereafter one or more movements of the hip joint can be performed with the output of the sensor recorded and processed. The movements can include, for example, movement in anterior and posterior (A-P) directions to the full extent of the range of motion and movement in medial and lateral (M-L) directions to the full extent of the range of motion. These motions define the patient's natural range of motions in these planes.
  • Based on the extents of motion in the A-P and M-L directions, a cone of motion CM can be defined. The cone of motion CM can be defined as originating at a point defined as the center of rotation of the femoral head and extending out from the acetabulum to a circular base located a distance from the center of rotation equal to the distance to the mount point of the sensor. The circular base can be defined as having a radius equal to the average extent of motion in the A-P and M-L directions. In FIG. 64, the cone of motion is shown on the contralateral side for clarity. As noted above, the data collected to estimate the cone of motion can be based on the leg to be treated or the contralateral leg.
  • Placement of the cup of the hip prosthesis is dictated by some metric of centering within the cone of motion. For example, the cup can be centered such that an axis extending perpendicular to the plane of the entrance to the cup crosses the circular base of the cone of motion precise in the center of the cone. In some systems, the orientation of the cup is controlled such that the crossing point of the axis so projecting is closer to the center of the circular base than it is to the periphery of the circular base. In other systems, the orientation of the cup is controlled such that the crossing point of the axis so projecting is within a distance from the center point that is less than 25% of the radius of the circular base.
  • In a class of patients, the movement of the hip is not symmetrical in each of the A-P and M-L directions. As such, the cone of motion can have a more complex geometry. For example, the cone of motion can originate at the center of rotation of the femoral head and extend to a base having an oblong shape, for example shortened in the medial direction, but longer in the lateral, anterior, and/or posterior directions. Various metrics of “within the safe zone” can be defined based on these irregular shaped cones. For example the geometric center of a complex base shape can be calculated and the cup of the prosthetic joint can be centered such that an axis extending perpendicular to the plane of the entrance to the cup crosses the irregular shaped base of the cone of motion at or within some maximum distance of the centroid of the cone.
  • Any suitable set of motions can be used to obtain the center of rotation of the femoral head and/or the boundaries of the base of the cone of motion. Examples of methods for determining the center of rotation of a femoral head using inertial sensors are discussed in U.S. Pat. No. 8,118,815, which is hereby incorporated by reference for this and all other purposes. A more complete perimeter of the base of the cone of motion can be directly recorded using sensors that are capable of tracking both position and orientation. For example, several other points between the A-P and M-L direction can be taken so that six, eight, ten, twelve or more extents are recorded. In other embodiments, arcuate motions of along all or portions of the perimeter of the base of the cone of motion can be traced and recorded. Because several degrees of freedom of the sensor S are constrained, the sensor can operate based on accelerometers only in some approaches, which simplifies sensor S and enables it to be disposable and/or less expensive to make. Such approaches may be most accurate if rotations about a vertical axis are minimized or eliminated.
  • In one embodiment, the procedure illustrated in FIG. 64 generates an origin and a direction that can be input to a cup placement system. The origin can be the center of rotation of the femoral head and the corresponding center of rotation of a prosthetic socket. The direction can be a line connecting the origin and the point of intersection with the base of the cone of motion. This data is transferred to a cup placement system, such as any of those discussed above. For example, the impactor 300A can include the sensor 204 to which this data has been saved. Thereafter movements of the impactor 300A can be tracked with reference to this origin and direction to assure proper placement of the cup. Such placement can be with the aid of a patient movement tracking sensor pinned to the pelvis for example.
  • In other embodiments, cannulated systems can be used to minimize the number of steps during which inertial sensors are used. For example, once the origin and direction of the axis connecting the center of rotation and the intersection with the base of the cone of motion are determined, a guide member can be placed via a cannulated impactor (or other cannula). The guide member can dock with an impactor-mounted cup. The cup can be slid over the guide member into place in the acetabulum. The direction and origin information collected in the steps illustrated by FIG. 64 are preserved by the guide member and by the tilt preventing features on the guide member and/or prosthetic cup.
  • If the patient's joint is subject to extensive disease, a cone of motion can be established by a combination of data collected in motions similar to those discussed above in connection with FIG. 64 and pre-operative imaging. For example, X-rays can be taken when the femoral neck is moved close to the acetabular rim to supplement some of the data points defining the cone of motion. Thus, the cone of motion can be in part established by inertial sensing and in part by imaging to characterize the native anatomy.
  • D. Adaptable Systems for Anterior or Posterior Approach
  • The systems described herein can be adapted for use in the anterior approach, the posterior approach or both the anterior and posterior approach. As one example, system 600 is shown herein mounted for a posterior approach in FIG. 18, the anterior approach in FIG. 39, and in combination with a patient specific jig in FIG. 63.
  • FIGS. 69-72 illustrate a system 900 for navigating a hip procedure. The system 900 can be adapted for use in both the anterior approach and the posterior approach. The system 900 can be similar to some of those discussed above. But, while some of the foregoing systems are specialized for a particular approach, the system 900 includes a first sub-system 900A adapted for a posterior approach and a second sub-system 900B adapted for an anterior approach. As discussed more below, both systems 900A, 900B are configured to enable navigation to be conducted without requiring gyroscopic or other sensors that are subject to accumulated error (drift). This refinement makes the system simpler to implement and to use in a wider variety of settings and with more patients.
  • The system 900A includes a jig 904A that is adapted for hip joint navigation from a posterior approach. The jig 904A is similar in some respects to the jig 454, and any consistent description thereof is incorporated herein. The jig 904A includes a platform 908, a cannula coupling device 912, and a registration jig mounting feature 914. The platform 908 can have any shape, but in some implementations can be elongate, e.g., having a first end 916 and a second end 920. The elongate shape enables at least a portion of the jig 904A to be low profile in one direction and to provide a plurality of positions along a length for coupling devices to the jig. The first end 916 is configured to be oriented inferiorly and the second end 920 to be oriented superiorly when the navigation jig is applied to the patient. The medial-lateral dimensions or extent can be minimized to not obstruct the surgical field or the surgeon.
  • The cannula coupling device 912 is disposed adjacent to the first end 916 and is configured to enable a cannula 924 to be held adjacent to a bottom surface of the platform 908. The cannula 924 can have a top surface connected to a bottom surface of the platform 908. A connection between these components can be secured by a device disposed above within or below the platform 908. In one form, a proximal structure of the cannula 924 can be received within a bottom recess of the platform 908 and can be held within the recess by a compression device, such as a set screw S. Details of several variants of cannula coupling devices 912 are discussed below in connection with FIGS. 73-75B. A connection to a bone adjacent to a hip joint is made through the cannula 924. For example, a pin 928 can be placed through the platform 908 and the cannula 924 into the bone.
  • An anterior approach cannula 926 is shown in FIGS. 71 and 72 and is similar to the cannula 516, the description of which is incorporated herein. The description of the cannula coupling device 912 applies equally to the cannula 924 for posterior approach and to the cannula 926 for anterior approach.
  • The registration jig mounting feature 914 is disposed on a top surface 932 of the platform 908 adjacent to the first end 916. In one form, the mounting feature 914 includes an elevated portion of the platform. The mounting feature can include one or more, e.g., two recesses into which pins can be received. In one embodiment, the elevated portion includes a window, e.g., a through hole, for viewing such a pin to confirm correct placement. As illustrated in FIG. 73, in one variant, a circular recess can be provided for a first pin and an U-shaped slot can be provided for another pin or member.
  • The hip navigation jig 904A also includes registration jig 940. The registration jig 940 can have some features similar to those discussed above. The registration jig 940 includes an upright member 942, a rotatable member 948, and a probe 952. The upright member 942 is configured to be detachably coupled to the platform 908 at the registration jig mounting feature 914. For example, a plurality of (e.g., two) pins can project from a lower surface of the upright member 942, the pins being configured to be received in corresponding recesses in the registration jig mounting feature 914. One of such pins is visible through the window in the registration jig mounting feature 914 seen in FIG. 70. The upright member 942 includes a first portion 944 and a second portion 946 disposed above the first portion 944. The first portion 944 is substantially vertical and increases the elevation of the second portion 946 when the registration jig 940 is mounted to the registration jig mounting feature 914. The second portion 946 is inclined away from a vertical longitudinal axis of the first portion 944. The incline of the second portion 946 provides several advantages. It enables the upright member 942 to be out of the way of the range of motion of the probe 952, as discussed below. This is important because the probe 952 has to be able to easily and quickly reach a plurality of anatomical features.
  • The incline of the second portion 946 also provides a simple way to incline an angle of rotation of the rotatable member 948 relative to a vertical axis. The rotatable member 948 is coupled with the upright member 942 for rotation about an axis A that is not vertical when the jig is mounted to the bone adjacent to a hip joint and the upright member is disposed generally vertically. This arrangement is one way to enable a navigation system employing inertial sensors to eliminate the need to manage sensor drift. As discussed above, certain sensors, such as gyroscopes, are more subject to accumulated errors (drift). The orientation of the axis A enables the jig 904 to be used in a system that includes accelerometers and other sensors that are sufficiently sensitive if activated and moved about axes that are not vertical.
  • As in the registration devices discussed above, other degrees of freedom of rotation and position can be provided in the registration jig 940 and such description is incorporated here.
  • The probe 952 had a tip 956 for engaging anatomy. The anatomy engaging tip 956 is disposed at a distal end of an elongate body 960 coupled with the rotatable member for rotation about the axis. The orientation and position of the elongate body 960 of the probe can be adjusted to bring the anatomy engaging tip into contact with a plurality of anatomical landmarks during a landmark acquisition maneuver. Such adjustments can be by sliding through a sliding support, similar to those hereinbefore described.
  • The upright member 942 can include a cradle 954 that allows the elongate body 960 of the probe 952 to be held in place when not in use during a procedure. The cradle 954 can be used to latch the sensor 204, as discussed above. In various implementations, the system 900 does not require any steps of zeroing, however, since the sensors are configured to be generally drift insensitive. Eliminating sensitivity to drift can be achieved by configuring the sensor 204 as a tilt meter, and/or by using any sort of inertial sensor that will not introduce excessive error due to drift during the procedure time. As such, even sensors that have some drift can be used, so long as their accumulation of error does not reach a significant level until during the procedure. The cradle 954 could be used to zero error if a procedure was unexpectedly long and the sensor were subject to some drift. In one advantageous embodiment, the sensor 204 can operate solely with signals from accelerometers, which are insensitive to drift.
  • FIGS. 69-72 show that the systems 900A, 900B can include one or more sensors for detecting orientation of the probe 952. The sensors can take any form, e.g., can include the surgical orientation device 172 and the sensor 204 discussed above. Accordingly, the jig 904 can include a sensor mounting feature 962 disposed on the platform 908. Where the platform is elongate, the sensor mounting feature 962 can be disposed at the second end 920. Another advantage of the jig 904A, 904B is that it is symmetrical and can be used on both hips. The jig 904A, 904B thus can have a single sensor mounting feature disposed on a plane of symmetry. If the platform 908 is elongate, the sensor mounting feature 962 can be located on a vertical mid-plane of the platform. Vertical here refers to the orientation of the jig 904A, 904B when applied to the hip in a posterior or anterior approach.
  • The registration jig 940 can include a sensor mounting feature 964 disposed thereon for movement with the probe 952. For example, the sensor mounting feature 964 can be located at a proximal end of the elongate body 960. This location is one of convenience, placing the sensor 204 at the proximal end. However, the sensor mounting feature 964 and the sensor 204 could be located on a side surface of the elongate body 960.
  • As discussed herein, the orientation of the axis of rotation A of the rotatable member 948 enables the change of orientation of the sensor 204 to be other than in the horizontal plane. This is accomplished by orienting the axis A other than in the vertical direction. With this arrangement, it is possible to configure at least the sensor 204 as a tilt meter, e.g., using primarily or only accelerometers to output a signal indicative of orientation of a component, such as of the prove 952. Example of angles or ranges of angles of the axis A that can be provided include about 20 degrees from horizontal, about 30 degrees from horizontal, about 45 degrees from horizontal, at less than about 60 degrees from horizontal.
  • FIG. 70 shows a further feature of the system 900A, which includes the jig 904A and the cannula 924. The cannula 924 is adapted for posterior approach is similar to or the same as the hollow fixation member 466. An upper or first end of the cannula 924 is configured to couple with the cannula coupling device 912, such as by a set screw as discussed above. A second end of the cannula 924 is configured to couple with a bone adjacent to the hip joint. The bone can be any of those discussed above for coupling the fixation member 466 or other analogous structures discussed in any embodiments above. A home point feature 968 is disposed adjacent to the second (lower) end of the cannula 924. The home point feature 968 is in a predefined, known position and can receive the anatomy engaging tip 956 of the probe 952. When these structures contact, they are in a predefined position and orientation. The home point feature 968 can be similar to the registration feature 473 discussed above.
  • Because the system 900 can be adapted for posterior approach or for anterior approach (discussed below), the cannula 924 should be made removable from the platform 908 in the operating room or at a back table in preparation for surgery. As such, the connection between the cannula 924 and the platform 908 can be made orientation specific. This reduces a potential source of operator error, i.e., the home point feature 968 always faces toward the surgical field from the hip bone attachment location, e.g., faces inferiorly if the jig 904 is mounted to a superior location of the surgical field. For example, a projection on a proximal portion of the cannula 924 and a corresponding projection in a recess on the lower side of the platform 908 can define only one rotational orientation of the cannula relative to the platform in which these components can be coupled.
  • As discussed above, the cannula 926 is provided in the system 900 to enable a surgeon to switch to an anterior approach. Anterior approach is discussed in great detail above, e.g., in connection with FIGS. 34-42, which description are incorporated here as well. The system 900B differs from the system 500 in that the orientation of the axis A of rotation in the system 900B is not vertical, as discussed above. As such, the sensors can be greatly simplified compared to the system 500. The cannula 926 has a home point feature 968B. The home point feature 968B is in a predefined, known position and can receive the anatomy engaging tip 956 of the probe 952. When these structures contact, they are in a predefined position and orientation. The home point feature 968B can be similar to the registration feature 473 discussed above. The cannula 926 and the platform 908 can be configured for limited, e.g., only one, rotational position of attachment. This assures that when the jig 904B is assembled in the operating room or back table that the jig 904B will be properly set up.
  • In one method to maximize the accuracy of the landmark acquisition, jig 904B is coupled with the patient in an anterior approach. The tip 956 is put into contact with the home point feature 968B. Thereafter, user input can be applied to the surgical orientation device 172A to indicate that the tip 956 is in the home point feature 968B. Thereafter, the system registers movements and landmark acquisition in the manner discussed above. These data provide a basis to guide the placement of the acetabular cup, as discussed above.
  • The placement of the acetabular cup using a device such as the impactor 300A can be an operation that benefits from inertial sensors that may include one or more drift-sensitive sensors, e.g., gyroscopes. The system 900 provides a calibration mount 998 for coupling a sensor 204 in a known, fixed position and orientation relative to the surgical orientation device 172A. The calibration mount 998 is a docking device that positions the sensor 204 just prior to a step of eliminating any potential source of accumulated error, e.g., zeroing a drift-sensitive sensor. FIG. 69-70 show that they system 900A can include two sensors 204, one mounted to the registration jig 940 and one to the calibration mount 998. These two sensors 204 can be identical or can be dedicated for their specific function. FIGS. 71 and 72 shows only one sensor 204. In this system, a single sensor 204 is used to gather landmark data and to work in combination with the impactor 300A to place an acetabular implant.
  • FIGS. 73-75B illustrate various features for clamping structures to the platform 908. In particular, these figures show fixation pin securement devices 970 that are incorporated into the platform 908. The fixation pin securement devices 970 can have low profile to be out of the way of other tools in the surgical field. FIG. 73-73A show one embodiment of a pin securement device 970 that includes a compression member 972. The cannula coupling device 912 can include a similar mechanism to clamp a pin disposed through the cannula 924. The platform 908 includes a slot or plurality of slots formed on a surface thereof, e.g., on the top surface. The slots 974 are larger in at least one direction than the compression member 972 such that the compression member can fit in the slot and move to some extent therein. The compression member 972 has a tapered channel 976. Movement of a tapered member 978 vertically in the tapered channel 976 shifts the compression member 972 to narrow a gap G between the compression member 972 and a rigid feature of the platform. The gap G can be between a curved lateral surface of the compression member 972 and a curved surface of the platform 908.
  • In one method, a pin or other fixation member is advanced through the gap G and into the bone. The platform 908 is positioned on the fixation member at an appropriate height and the pin securement device 970 is affixed to the fixation member. The fixation member can be a Steinmann pin or other similar device. In one technique, the tapered member 978 is a threaded elongate body that is advanced along internal threads formed in the platform 908 until the tapered surface thereof acts on the tapered surface 976 to shift the compression member 972 laterally to narrow the gap G. Further advancement of the tapered member 978 further shifts the compression member 972 to enhanced securement of the fixation member. The method can be repeated for a second pin, where one pin extends through the cannula 924 and one extends parallel to the cannula 924, but off-set superiorly therefrom on the patient.
  • FIGS. 74-74B illustrate another approach to a fixation pin securement devices 970A in which the fixation pin securement device comprises a compression member 972A pivotally mounted to the platform 908. FIG. 74A shows two compression members 972A, each of which is mounted to pivot about a pin or shaft 980. The securement device 970A on the left in FIG. 74A corresponds to a configuration in which a fixation member can freely pass through a gap G in the mechanism. The securement device 970A on the right in FIG. 74A corresponds to a configuration in which the gap G is narrowed and a fixation member disposed in the gap G will be securely clamped and unable to move relative to the platform 908. A rigid surface of the platform 908 opposite the pivoting compression member 972 along with the compression member holds the fixation member in place.
  • In one method, pins or other fixation members are placed in the fixation pin securement device 970A and the cannula coupling device 912. In the illustrated embodiment, these devices can employ similar clamping mechanisms. Thereafter, screws 982 are advanced to cause the compression member 972 to pivot about the pin or shaft 980 from a first position in which the gap G provided between a clamping surface of the compression member 972A and a rigid surface of the platform 908 is larger to a second position in which the gap G is smaller. The second position is a clamped position for the fixation member and will retain the platform in position until the screw 982 is withdrawn enlarging the gap G.
  • FIGS. 75-75B illustrate another approach to a fixation pin securement devices 970B in which the fixation pin securement device comprises a compression member 972B configured to clamp a plurality of segments of an outside surface of a fixation member. The platform 908 includes a plurality of projections 984 extending upward from an upper surface of the platform. The projections preferably are threaded. Each projection includes a collet 986 or similar device disposed therein having an inner lumen sized to receive a fixation member. A plurality of slots extends downward from an upper surface of the collet 986 and an angled surface 988 is disposed between top ends of each member defined between a pair of such slots. A corresponding angled surface 990 is provided on an inside of a cap 992. The cap 992 has internal threads that act on the threads of the projection 984 to advance the angled surfaces 990 onto the angled surfaces 988. Further advancement collapses the slots of the collet 986 causing compression about the outer surface of the fixation member. FIG. 75 shows that this approach can be used for the fixation pin securement devices 970B and/or for the cannula coupling device 912.
  • While the systems discussed above are well suited for specific approaches, the system 900 can be adapted for a posterior approach or for an anterior approach. This provides a great deal of flexibility to the surgeon and only adds minimal additional components to a universal kit. The orientation of the axis of rotation A (see FIGS. 70 and 72) enhances the sensitivity of a system that incorporates accelerometers and other sensor drift insensitive components. The home point features 968A, 968B enable the surgeon to obtain maximal accuracy by allowing the acquisition of position and orientation data for a number of anatomical landmarks at close range to the home point position. This allows the system to initialize the sensors near the points to be acquired to enhance accuracy.
  • II. Navigation Using Optical Components
  • Many of the foregoing systems advantageously use inertial sensors to aid in navigation of procedures. Certain embodiments discussed herein can advantageously use optical techniques alone or in combination with inertial sensor systems discussed herein to provide additional features and advantages.
  • A. Optical Tracking of System Components
  • FIG. 65 illustrates one embodiment of a system 800 that includes close-range optical tracking capabilities. In this context “close range” is a broad term that means near the patient, such as any of in the surgical field, directly above the pelvis but below the surgeon's head, within the boundaries of the surgical table, etc. This term is intended to exclude systems where cameras are outside the surgical fields. Close range greatly reduces or eliminates “line of sight” problems that plague traditional optical navigation.
  • In the illustrated embodiment, a jig system 804 is provided for connecting to patient bone. The jig system 804 can include any of the features of any of the jig systems discussed herein. For simplicity, the jig system is illustrated with that of FIG. 1, e.g., including the cannula 124 and the platform 136. A surgical orientation device 172A is mounted to the platform 136. The orientation device 172A can be similar to those hereinbefore described, but also includes one or more cameras 812. Preferably the orientation device 172A includes two or more cameras 812 to enable capture of binocular data. The cameras preferably are small cameras, for example the Aptina MT9T111, which is discussed at http://www.aptina.com/products/soc/m9t111d00stc/. The cones projecting from the lower side of the device 172A schematically represent the direction of the field of view of the cameras 812.
  • This data can at least be used to determine the heading of and in some cases six degrees of freedom of a stylus 816. The stylus has a distal end 828 configured to touch landmarks as part of a landmark acquisition maneuver, as discussed above. A proximal (or other) portion 832 of the stylus 816 has an array of trackers 836 that can be tracked by the cameras 812 to provide orientation, position, heading, attitude, or other combinations of spatial characteristics of portions of the stylus 816 or anatomy with which it is coupled.
  • The cameras 812 can operate without any additional sensor, such as inertial sensors. In some embodiments, the cameras 812 are used in concert with inertial sensors to confirm or to improve accuracy of the sensors. For example, drift in a rate sensor, e.g., accumulated errors, can be monitored by comparing the output of the rate sensor with the viewed position from the cameras. The system can intervene if the sensor output drifts too much, for example, telling the user to reset the rate sensors.
  • Another optical device such as a laser or an IR emitter 814 can be provided in the orientation device 172A. An IR emitter can be useful to illuminate the fiduciaries to make them more readily detectable by the cameras under the intense lighting in the surgical field.
  • B. Optical Component for Femur Tracking
  • FIGS. 76-78 illustrate an embodiment of a system 600 that includes an optical component 674. In this context, optical component is a broad term. The surgical orientation device 172 can comprise optical component 674 that can be located on the top side, the bottom side, or sidewalls of the surgical orientation device 172. The optical component 674 can comprise transparent window integrated into the surgical orientation device 172. The windows can permit visible light (e.g. laser light) to emit from the optical component 674 of the surgical orientation device 172. The optical component 674 can provide a visual guide to replicate the original position of the femur relative to the pelvis.
  • With continued reference to FIG. 76, the optical component 674 can comprise one or more lasers, which can be configured to project laser light through the windows described above. For example, the optical component 674 can comprise a forward laser. The laser light can be used to project a point, a plane, and or a cross-hair onto a target or targets, including but not limited to an anatomical feature or landmark.
  • The optical component 674 can provide alternative or additional orientation information to a surgeon regarding the orientation of the surgical orientation device 172. For example, laser light can be used to project a plane on a portion of bone to indicate a resection line and a cross-hair laser pattern can be used to ensure alignment along two perpendicular axes. In certain embodiments, the optical component 674 can be used to determine an alignment of an anatomical feature or landmark. For example, the optical component 674 can project laser light to a target such as an anatomical feature. The surgeon can mark one or more points along the line of the projection of the optical component 674. The surgeon can complete any steps described herein. The surgeon, thereafter, can verify the one or more points are along the line of the projection of the optical component 674.
  • In the illustrated embodiment, the optical component 674 is a component of the surgical orientation device 172. Other configurations are contemplated. The optical component 674 can be a component of the fixation base 602. The optical component 674 can be a component of one or more fixation pins 610, 612. The optical component 674 can be an integral feature of any component of system 600. The optical component 674 can be a separate component from any component of system 600. The optical component 674 can be a stand-alone device which attaches to the pelvis.
  • The system 600 can be modified to accommodate the optical component 674. The fixation base 602C can include a platform 620C as shown in FIGS. 79-80. The platform 620C can include a head 609C. The head 609C can be coupled to a platform 611C and a support 613C. The platform 611C and the support 613C can function as a clamp with the head 609C. FIG. 80 shows an exploded view of the fixation base 602C.
  • In the illustrated embodiment, the fixation base 602C can include one or more fixation devices 615C. In the illustrated embodiment, one fixation devices 615C is shown but other configurations are contemplated (e.g., two, three, four, etc.). The fixation device 615C can include one or more threaded sections. In the illustrate embodiment, the fixation device 615C is a screw with a head and a threaded shank. The platform 611C can include one or more holes. The support 613C can include one or more holes. The fixation device 615C can pass through or engage one or more holes in the support 613C. In some embodiments, each hole in the support 613C is threaded. The fixation devices 615C can pass through or engage one or more holes in the platform 611C. In some embodiments, each hole in the platform 611C is threaded. Rotation of the fixation device 615C can causes the support 613C to move toward the platform 611C and/or the platform 611C to move toward the support 613C. The platform 611C and the support 613C form a channel 617C. The channel 617C can be sized to accept the head 609C. When the platform 611C and the support 613C are separated, the head 608 can have pivotal or polyaxial movement. When the platform 611C and the support 613C are brought together by the fixation device 615C, the head 608C can be fixed in position.
  • The platform 611C can include the first coupler 632 described herein. The first coupler 632 can couple to the first assembly 604 as described herein. In FIG. 18, the first coupler 632 can be parallel to the pins 610, 612. In FIG. 76, the first coupler 632 can be angled relative to the pins 610, 612. In the anterior approach, the pins 610, 612 can be offset from vertical. The probe 678 (not shown) can be bent or curved as described herein. The shape of the probe 678 can facilitate the touching of points or anatomical landmarks in the anterior approach.
  • The assembly shown in FIG. 76 can permit the surgical orientation device to be moved relative to the anatomy of the patient. The clamping of the platform 611C and the support 613C can fix the position of the surgical orientation device 172 during surgery. The display of the surgical orientation device 172 can indicate whether the optical component 674 is on or off. The display of the surgical orientation device 172 can include an instructions related to the method of using the optical component 674.
  • In a preferred arrangement, the surgical orientation device 172 can be positioned and/or moved until the optical component 674 projects a beam on a portion of the anatomy. To achieve this centering, the optical component 674 can emit a laser beam or beams distally from the surgical orientation device 172. This laser beam or beams can illuminate a portion of the femur. This laser beam or beams can illuminate a portion of the knee joint. This laser beam or beams can illuminate a portion of the tibia. This laser beam or beams can illuminate a portion of the ankle. This laser beam or beams can illuminate a portion of the foot. This laser beam or beams can illuminate a portion of the foot constrained within a positioning boot. The surgical orientation device 172 can be moved until the laser beam is aligned with at least one anatomical region. In some methods, the laser beam is aligned with at least one anatomical region with little soft tissue. The soft tissue may move relative to the underlying bone. The surgeon can select locations to mark where the skin is close to the underlying bone.
  • The optical component 674 can be used in conjunction with the anterior and posterior approach described herein. When measuring changes in leg length and lateral joint offset, the apparent changes are sensitive to changes in the orientation of the femur relative to the pelvis. The changes are particularly sensitive to the abduction angle. The changes are moderately sensitive to the rotation about the mechanical axis of the femur. There may be two methods available to the surgeon. The first method is to reposition the femur prior to measuring the change such that the orientation of the femur relative to the pelvis is the same as that when the preoperative baseline measurement was made. Surgeons attempt to use the first method but this method is not very accurate. The method is not accurate primarily because the surgeon has poor visibility of the pelvis of the patient, which is hidden by soft tissue and surgical drapes.
  • The second method is to measure the orientation of the femur relative to pelvis during preoperative baseline and postoperatively and then correct for changes in orientation by doing a virtual rotation about the postoperative center of rotation of the femur. The second method is described herein with respect to the posterior approach and the anterior approach. The second method may require obtaining three points of the femur, such as points 690 shown in FIGS. 24A and 25C. The second method may require calculating the center of rotation (COR) of the hip using the set of points on the rim of the shell, as shown in FIG. 33. The second method is usually used in navigation systems but adds extra steps. In the case of the posterior approach described above, for example, three points 690 on the femur, femur tracker 686, 686A or femur base 687A must be registered to resolve for the femur orientation preoperatively and then postoperatively each time the leg length is to be measured. Also, the center of rotation must be determined which is done by registering three points on the acetabular cup after it has been inserted.
  • The optical component 674 can reduce the number of registrations. The optical component 674 can be mounted on the pelvis. The orientation of the optical component 674 can be fixed throughout the procedure. The optical component 674 can project a beam distally onto the leg. The surgeon can mark one or more points. These marks can guide the surgeon in replicating the orientation of the femur relative to the pelvis each time a leg length measurement is needed.
  • In some embodiments, the optical component 674 can be a “fan” style laser projection. The optical component 674 can project a line or pattern onto the leg. The method can, in variation, include any of the following steps. The following method is described in the context of an anterior approach in which the patient is supine as shown in FIG. 76. The method can include positioning the operative leg in a fully extended position to simulate a standing position. The method can include projecting the laser onto the anterior surface of the leg, running up the foot. The laser could be mounted on a lockable ball joint to facilitate adjustments to line up the laser and then lock it in place, as shown in FIG. 79. The method can include marking one or more marks Lm on the surface of the leg and foot coincident with the laser line. The method can include performing the baseline leg length measurement or registration on the exposed bone of the femur as close to the center of rotation as possible. This may minimize errors. This step can include placing a mark Fm on skin over the femur as described herein. For example, a mark placed at the distal femur may provide enhanced accuracy by eliminating error due to movement of the joints distal thereof. Such a location may also simplify an accurate procedure by eliminating the need to constrain the distal joints including the knee and ankle. The method can include performing the hip replacement. The method can include replicating the orientation of the femur by lining up the one or more marks Lm with the laser line again. The method can include performing the postoperative leg length measurement to determine changes in leg length and lateral offset. This step can include registering the mark Fm on the femur as described herein.
  • The method described herein can reduce the need to add a femur tracker 686, 686A or femur base 687A to the femur. The method described herein can reduce the need to drill holes in the femur to attach the femur tracker 686, 686A or femur base 687A. This can prevent fractures or further damage to the femur. In some methods, the optical component 674 is used in combination with a camera. The camera can be the camera 684 described herein. The camera can be camera 812 described herein. The camera can capture a photographic image of the laser or laser beam. The camera can capture a photographic image of the one or more marks Lm. The camera can capture a photographical image of the leg and/or foot. The surgical orientation device 172 and/or the orientation sensing device 204 as described herein can convert the photographic image to orientation and/or positional information of the anatomy of the patient.
  • Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that this application extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the inventions have been shown and described in detail, other modifications, which are within the scope of the inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the application. For example, the application contemplates the connection hub alone or in combination with any of the other modules could comprise a separate aspect. Or, any one or a combination of the modules could be directly connected to an umbrella hub or overhead support to form another separate aspect. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed embodiments. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
  • Similarly, this method of disclosure, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (21)

1-64. (canceled)
65. A method of performing a hip joint replacement procedure, the hip joint comprises a pelvis and a femur that is movable relative to the pelvis, the method comprising:
registering the femur prior to positioning an acetabular shell in the hip joint comprising:
registering a rotational position of the femur about a mechanical axis of the femur;
positioning a tip of the probe in contact with a point on the femur or a fixation structure coupled to the femur;
positioning an acetabular shell in the hip joint; and
determining an aspect of the relative position and/or orientation of the femur after positioning the acetabular shell in the hip joint comprising:
moving the femur to the rotational position of the femur after positioning the acetabular shell; and
positioning the tip of the probe in contact with the point on the femur or the fixation structure coupled to the femur.
66. The method of claim 65, further comprising coupling the fixation structure to the femur, wherein the point comprises a divot.
67. The method of claim 65, wherein registering the rotational position of the femur comprises projecting light onto a target.
68. The method of claim 65, wherein registering the rotational position of the femur comprises marking a target along a pattern of light.
69. The method of claim 68, wherein moving the femur to the rotational position of the femur comprises aligning the marking with the pattern of light.
70. The method of claim 65, wherein moving the femur to the rotational position of the femur comprises projecting light onto a target.
71. The method of claim 65, further comprising positioning the patient in a supine position.
72. The method of claim 65, further comprising mounting a laser projecting device to the pelvis, wherein registering the rotational position of the femur and moving the femur to the rotational position of the femur utilize the laser projecting device.
73. The method of claim 65, further comprising displaying a change in leg length.
74. The method of claim 65, further comprising displaying a change in joint offset.
75. A method of performing a hip joint replacement procedure, the hip joint comprises a pelvis and a femur that is movable relative to the pelvis, the method comprising:
registering an orientation of a probe when a tip of the probe contacts a point on the femur or a fixation structure coupled to the femur;
registering rotation of the femur about a mechanical axis of the femur;
positioning an acetabular shell in the hip joint;
moving the femur to the registered rotation of the femur about the mechanical axis of the femur; and
positioning the tip of the probe in contact with the point on the femur or the fixation structure to determine an aspect of the relative position and/or orientation of the femur after positioning the acetabular shell.
76. The method of claim 75, wherein registering rotation of the femur about the mechanical axis of the femur comprises projecting light onto a target and marking the incidence of light.
77. The method of claim 76, wherein moving the femur to the registered rotation of the femur comprises projecting light onto the target and aligning the marking with the incidence of light.
78. The method of claim 75, further comprising displaying a change in leg length and/or joint offset.
79. A method of performing a hip joint replacement procedure, the hip joint comprises a pelvis and a femur that is movable relative to the pelvis, the method comprising:
registering an orientation of a probe when a tip of the probe contacts a point on the femur or a fixation structure coupled to the femur, wherein the femur comprises an initial rotation about a mechanical axis of the femur;
positioning an acetabular shell in the hip joint;
replicating the initial rotation of the femur about the mechanical axis of the femur; and
positioning the tip of the probe in contact with the point on the femur or the fixation structure to determine an aspect of the relative position and/or orientation of the femur after positioning the acetabular shell.
80. The method of claim 79, wherein replicating the initial rotation of the femur about the mechanical axis of the femur comprises projecting a pattern of light onto a target.
81. The method of claim 79, wherein replicating the initial rotation of the femur about the mechanical axis of the femur comprises aligning a marking on a target with light projecting from a light projecting device.
82. The method of claim 79, wherein a change in leg length and/or joint offset is determined based on positioning the tip of the probe in contact with the point on the femur or the fixation structure.
83. The method of claim 79, wherein at least one of a change in leg length and a change in joint offset is displayed.
84. The method of claim 79, further comprising coupling the fixation structure to the femur, wherein the point comprises a divot.
US17/693,767 2015-02-20 2022-03-14 Hip replacement navigation system and method Pending US20220313455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/693,767 US20220313455A1 (en) 2015-02-20 2022-03-14 Hip replacement navigation system and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562118987P 2015-02-20 2015-02-20
US14/643,864 US10363149B2 (en) 2015-02-20 2015-03-10 Hip replacement navigation system and method
US16/437,546 US20190350728A1 (en) 2015-02-20 2019-06-11 Hip replacement navigation system and method
US17/693,767 US20220313455A1 (en) 2015-02-20 2022-03-14 Hip replacement navigation system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/437,546 Continuation US20190350728A1 (en) 2015-02-20 2019-06-11 Hip replacement navigation system and method

Publications (1)

Publication Number Publication Date
US20220313455A1 true US20220313455A1 (en) 2022-10-06

Family

ID=56689164

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/643,864 Active 2037-07-29 US10363149B2 (en) 2015-02-20 2015-03-10 Hip replacement navigation system and method
US15/550,564 Active 2036-08-17 US11020245B2 (en) 2015-02-20 2016-02-18 Hip replacement navigation system and method
US16/437,546 Abandoned US20190350728A1 (en) 2015-02-20 2019-06-11 Hip replacement navigation system and method
US17/244,101 Pending US20210315716A1 (en) 2015-02-20 2021-04-29 Hip replacement navigation system and method
US17/693,767 Pending US20220313455A1 (en) 2015-02-20 2022-03-14 Hip replacement navigation system and method

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US14/643,864 Active 2037-07-29 US10363149B2 (en) 2015-02-20 2015-03-10 Hip replacement navigation system and method
US15/550,564 Active 2036-08-17 US11020245B2 (en) 2015-02-20 2016-02-18 Hip replacement navigation system and method
US16/437,546 Abandoned US20190350728A1 (en) 2015-02-20 2019-06-11 Hip replacement navigation system and method
US17/244,101 Pending US20210315716A1 (en) 2015-02-20 2021-04-29 Hip replacement navigation system and method

Country Status (6)

Country Link
US (5) US10363149B2 (en)
EP (1) EP3258860A4 (en)
JP (3) JP6850256B2 (en)
AU (1) AU2016219992B2 (en)
CA (1) CA3011960A1 (en)
WO (1) WO2016134168A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540746B2 (en) 2008-09-10 2023-01-03 OrthAlign, Inc. Hip surgery systems and methods
US11547451B2 (en) 2008-07-24 2023-01-10 OrthAlign, Inc. Systems and methods for joint replacement
US11633293B2 (en) 2009-07-24 2023-04-25 OrthAlign, Inc. Systems and methods for joint replacement
US11653981B2 (en) 2012-08-14 2023-05-23 OrthAlign, Inc. Hip replacement navigation system and method
US11786261B2 (en) 2017-03-14 2023-10-17 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods
US11903597B2 (en) 2003-06-09 2024-02-20 OrthAlign, Inc. Surgical orientation system and method

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118815B2 (en) 2009-07-24 2012-02-21 OrthAlign, Inc. Systems and methods for joint replacement
EP2849683A4 (en) 2012-05-18 2015-11-25 Orthalign Inc Devices and methods for knee arthroplasty
FR3010628B1 (en) 2013-09-18 2015-10-16 Medicrea International METHOD FOR REALIZING THE IDEAL CURVATURE OF A ROD OF A VERTEBRAL OSTEOSYNTHESIS EQUIPMENT FOR STRENGTHENING THE VERTEBRAL COLUMN OF A PATIENT
US10463415B2 (en) 2013-10-14 2019-11-05 Navbit Holdings Pty Ltd Alignment apparatus for use in hip arthroplasty
FR3012030B1 (en) 2013-10-18 2015-12-25 Medicrea International METHOD FOR REALIZING THE IDEAL CURVATURE OF A ROD OF A VERTEBRAL OSTEOSYNTHESIS EQUIPMENT FOR STRENGTHENING THE VERTEBRAL COLUMN OF A PATIENT
US9801735B2 (en) * 2014-07-23 2017-10-31 Renovis Surgical Technologies, Inc. Modular surgical tool assembly
US10363149B2 (en) 2015-02-20 2019-07-30 OrthAlign, Inc. Hip replacement navigation system and method
PL228801B1 (en) * 2015-02-24 2018-05-30 Politechnika Lodzka Device for measurements of changes in the position of a femoral bone during the complete endoprosthetics of the hip joint
US10881464B2 (en) * 2015-07-13 2021-01-05 Mako Surgical Corp. Lower extremities leg length calculation method
EP3370657B1 (en) 2015-11-04 2023-12-27 Medicrea International Apparatus for spinal reconstructive surgery and measuring spinal length
DE102015225986B4 (en) * 2015-12-18 2019-07-04 Kuka Deutschland Gmbh A method for performing power supply operations between at least one power supply unit and a plurality of motor vehicles to be supplied with energy
US11064904B2 (en) * 2016-02-29 2021-07-20 Extremity Development Company, Llc Smart drill, jig, and method of orthopedic surgery
AU2017295728B2 (en) 2016-07-15 2021-03-25 Mako Surgical Corp. Systems for a robotic-assisted revision procedure
CA3034071A1 (en) 2016-08-30 2018-03-08 Mako Surgical Corp. Systems and methods for intra-operative pelvic registration
US10004609B2 (en) * 2016-09-23 2018-06-26 Warsaw Orthopedic, Inc. Surgical instrument and method
US20200237446A1 (en) 2016-10-26 2020-07-30 Prichard Medical, LLC Surgical instrument with led lighting and absolute orientation
EP3537970A4 (en) 2016-11-14 2020-03-18 Navbit Holdings Pty Limited Alignment apparatus for use in surgery
WO2018109556A1 (en) 2016-12-12 2018-06-21 Medicrea International Systems and methods for patient-specific spinal implants
US10307267B2 (en) 2017-02-17 2019-06-04 James W. Pritchett System for implanting a prosthesis
CA3056382A1 (en) * 2017-03-14 2018-09-20 OrthAlign, Inc. Hip replacement navigation systems and methods
EP3381414B1 (en) * 2017-03-31 2019-12-18 Tornier Positioning system for a bone resecting instrumentation and positioning kit
CN106880425B (en) * 2017-04-10 2018-12-28 清华大学 Total hip arthroplasty midpelvis posture and prosthese setting angle acquisition methods and system
US10643330B2 (en) * 2017-04-21 2020-05-05 Biosense Webster (Israel) Ltd. Registration of an anatomical image with a position-tracking coordinate system based on proximity to bone tissue
US11185369B2 (en) 2017-04-21 2021-11-30 Medicrea Nternational Systems, methods, and devices for developing patient-specific spinal treatments, operations, and procedures
AU2018265160B2 (en) 2017-05-10 2023-11-16 Mako Surgical Corp. Robotic spine surgery system and methods
US11033341B2 (en) 2017-05-10 2021-06-15 Mako Surgical Corp. Robotic spine surgery system and methods
JP7186762B2 (en) 2017-07-27 2022-12-09 インブイティ・インコーポレイテッド projection scanning system
KR102019889B1 (en) * 2017-08-24 2019-09-10 주식회사 코렌텍 Smart surgical instruments for artificial joint replacement
US11647920B2 (en) * 2017-09-15 2023-05-16 Mirus Llc Systems and methods for measurement of anatomic alignment
AU2018346706B2 (en) 2017-10-06 2022-02-10 Med-El Elektromedizinische Geraete Gmbh Drilling platform tool for surgeries
US10918422B2 (en) 2017-12-01 2021-02-16 Medicrea International Method and apparatus for inhibiting proximal junctional failure
US11234775B2 (en) 2018-01-26 2022-02-01 Mako Surgical Corp. End effectors, systems, and methods for impacting prosthetics guided by surgical robots
GB2573011B (en) * 2018-04-20 2021-03-03 Metlase Ltd Device for illuminating and monitoring an insertion site of an orthopaedic pin or wire
CA3094852C (en) * 2018-06-20 2022-07-12 Techmah Medical Llc Methods and devices for knee surgery with inertial sensors
US11925417B2 (en) 2019-04-02 2024-03-12 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
WO2020201353A1 (en) 2019-04-02 2020-10-08 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
KR102269027B1 (en) * 2019-05-21 2021-06-25 오스템임플란트 주식회사 Method for planning implant surgery using HU information of CT device and medical image processing device for the same
US11951020B2 (en) 2019-09-03 2024-04-09 Russell J. Bodner Methods and systems for targeted alignment and sagittal plane positioning for hip replacement surgery
US11832893B2 (en) * 2019-10-01 2023-12-05 Smith & Nephew, Inc. Methods of accessing joints for arthroscopic procedures
US11769251B2 (en) 2019-12-26 2023-09-26 Medicrea International Systems and methods for medical image analysis
JP2023518089A (en) * 2020-03-17 2023-04-27 アイカーン・スクール・オブ・メディシン・アット・マウント・サイナイ Patient bone registration and/or tracking using patient-specific bone jigs
US11107586B1 (en) * 2020-06-24 2021-08-31 Cuptimize, Inc. System and method for analyzing acetabular cup position
US20230329833A1 (en) * 2020-09-22 2023-10-19 Mobius Imaging, Llc Mount Assemblies For Use With Navigated Surgical Systems
WO2022079674A1 (en) * 2020-10-16 2022-04-21 Mathys Ag Bettlach Tool for inter operative use during direct anterior approach total hip arthroplasty and related methods
US10952775B1 (en) * 2020-12-14 2021-03-23 Prichard Medical, LLC Surgical instrument with orientation sensor having a user identified heading

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157887A1 (en) * 2010-12-17 2012-06-21 Richard Tyler Fanson Method and system for aligning a prosthesis during surgery
US20140052149A1 (en) * 2012-08-14 2014-02-20 OrthAlign, Inc. Hip replacement navigation system and method
US20140275940A1 (en) * 2013-03-15 2014-09-18 Avenir Medical Inc. System and method for intra-operative leg position measurement

Family Cites Families (414)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174080A (en) 1961-06-12 1965-03-16 Lockheed Aircraft Corp Relay flip-flop
US3670324A (en) 1970-03-27 1972-06-13 John B Trevor Analog-digital shaft position encoder
US4349018A (en) 1980-12-29 1982-09-14 Chambers Gary R Osteotomy apparatus
US4436099A (en) 1981-08-14 1984-03-13 The University Of Toledo Instrument for measuring the range of motion associated with a human body joint
US4567885A (en) 1981-11-03 1986-02-04 Androphy Gary W Triplanar knee resection system
US4738253A (en) 1981-12-31 1988-04-19 Biomedical Engineering Trust Guides for inclined surgical cuts or resections
US4524766A (en) 1982-01-07 1985-06-25 Petersen Thomas D Surgical knee alignment method and system
US4475549A (en) 1982-01-18 1984-10-09 Indong Oh Acetabular cup positioner and method
US4646729A (en) 1982-02-18 1987-03-03 Howmedica, Inc. Prosthetic knee implantation
US4421112A (en) 1982-05-20 1983-12-20 Minnesota Mining And Manufacturing Company Tibial osteotomy guide assembly and method
US4518855A (en) 1982-09-30 1985-05-21 Spring-Mornne, Inc. Method and apparatus for statically aligning shafts and monitoring shaft alignment
US4567886A (en) 1983-01-06 1986-02-04 Petersen Thomas D Flexion spacer guide for fitting a knee prosthesis
US4501266A (en) 1983-03-04 1985-02-26 Biomet, Inc. Knee distraction device
US4459985A (en) 1983-03-04 1984-07-17 Howmedica Inc. Tibial prosthesis extractor and method for extracting a tibial implant
US4509393A (en) 1983-03-04 1985-04-09 Castiglione Frank J Drive attachment for J-hook
US4529348A (en) 1983-04-06 1985-07-16 Deere & Company Spout aimer
US4621630A (en) 1983-04-15 1986-11-11 Pfizer Hospital Products Group, Inc. Guide for femoral neck osteotomy
US4944760A (en) 1983-10-26 1990-07-31 Pfizer Hospital Products Group, Inc. Method and instrumentation for the replacement of a knee prosthesis
US4718078A (en) 1985-08-19 1988-01-05 Siemens Aktiengesellschaft System for controlling motion of a robot
US4716894A (en) 1986-08-27 1988-01-05 Zimmer, Inc. Acetabular cup inserting instrument
US4759350A (en) 1986-10-17 1988-07-26 Dunn Harold K Instruments for shaping distal femoral and proximal tibial surfaces
GB2197790B (en) 1986-11-17 1991-01-16 Jonathan Paul Beacon Apparatus for use in accurately inserting prostheses
US5002547A (en) 1987-02-07 1991-03-26 Pfizer Hospital Products Group, Inc. Apparatus for knee prosthesis
US5116338A (en) 1988-02-03 1992-05-26 Pfizer Hospital Products Group, Inc. Apparatus for knee prosthesis
US4938762A (en) 1987-12-16 1990-07-03 Protek Ag Reference system for implantation of condylar total knee prostheses
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5122146A (en) 1988-02-04 1992-06-16 Pfizer Hospital Products Group, Inc. Apparatus for reducing a fracture
US4823807A (en) 1988-02-11 1989-04-25 Board Of Regents, Univ. Of Texas System Device for non-invasive diagnosis and monitoring of articular and periarticular pathology
JPH0291513A (en) 1988-09-28 1990-03-30 Sumitomo Electric Ind Ltd Method and device for correcting zero point of gyro
US4952213A (en) 1989-02-03 1990-08-28 Boehringer Mannheim Corporation Tibial cutting guide
US4945799A (en) 1989-03-24 1990-08-07 Knetzer Marvin D Tool guide
US5024226A (en) 1989-08-17 1991-06-18 Critikon, Inc. Epidural oxygen sensor
US5141512A (en) 1989-08-28 1992-08-25 Farmer Malcolm H Alignment of hip joint sockets in hip joint replacement
US5171244A (en) 1990-01-08 1992-12-15 Caspari Richard B Methods and apparatus for arthroscopic prosthetic knee replacement
US5129908A (en) 1990-01-23 1992-07-14 Petersen Thomas D Method and instruments for resection of the patella
US5343391A (en) 1990-04-10 1994-08-30 Mushabac David R Device for obtaining three dimensional contour data and for operating on a patient and related method
GB9025431D0 (en) 1990-11-22 1991-01-09 Advanced Tech Lab Three dimensional ultrasonic imaging
JP3018497B2 (en) 1990-11-30 2000-03-13 住友電気工業株式会社 Offset correction device for turning angular velocity sensor
US5053037A (en) 1991-03-07 1991-10-01 Smith & Nephew Richards Inc. Femoral instrumentation for long stem surgery
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5249581A (en) 1991-07-15 1993-10-05 Horbal Mark T Precision bone alignment
FR2681520B1 (en) 1991-09-24 1993-12-24 Henry Graf DEVICE FOR MEASURING THE AMPLITUDES OF TWO VERTEBRES IN THREE ORTHOGONAL PLANS.
GB9123555D0 (en) 1991-11-06 1992-01-02 Attfield Stephen F Tensile balancer
US5514143A (en) 1991-11-27 1996-05-07 Apogee Medical Products, Inc. Apparatus and method for use during surgery
EP0551572B1 (en) 1991-12-10 1998-12-30 Bristol-Myers Squibb Company Tibial resector guide
FR2685633B1 (en) 1991-12-27 1998-02-27 Tornier Sa MODULAR HUMER PROSTHESIS.
US5213112A (en) 1992-01-29 1993-05-25 Pfizer Hospital Products Group, Inc. Tension meter for orthopedic surgery
US5275603A (en) 1992-02-20 1994-01-04 Wright Medical Technology, Inc. Rotationally and angularly adjustable tibial cutting guide and method of use
DE4205869A1 (en) 1992-02-26 1993-09-02 Teldix Gmbh DEVICE FOR DETERMINING THE RELATIVE ORIENTATION OF A BODY
US5462548A (en) 1992-07-06 1995-10-31 Pappas; Michael J. Acetabular reamer
DE4225112C1 (en) 1992-07-30 1993-12-09 Bodenseewerk Geraetetech Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit
US5324293A (en) 1992-11-13 1994-06-28 U.S. Medical Products, Inc. Surgical broach and broach holder
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5325029A (en) 1992-11-30 1994-06-28 Eaton Corporation Method of controlling an automated mechanical transmission shift mechanism
US5376093A (en) 1992-12-09 1994-12-27 Newman; Michael H. Tibiofemoral alignment guide
US5320625A (en) 1993-01-21 1994-06-14 Bertin Kim C Apparatus and method for implanting a prosthetic acetabular cup and then testing the stability of the implant
US5540697A (en) 1993-02-12 1996-07-30 U.S. Medical Products, Inc. Prosthetic socket installation apparatus and method
AU680267B2 (en) 1993-06-21 1997-07-24 Howmedica Osteonics Corp. Method and apparatus for locating functional structures of the lower leg during knee surgery
US5431653A (en) 1993-07-06 1995-07-11 Callaway; George H. Knee joint flexion-gap distraction device
WO1995002801A1 (en) 1993-07-16 1995-01-26 Immersion Human Interface Three-dimensional mechanical mouse
US5724264A (en) 1993-07-16 1998-03-03 Immersion Human Interface Corp. Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
US5584837A (en) 1993-08-13 1996-12-17 Petersen; Thomas D. Acetabular cup inserter for orthopedic
US5395377A (en) 1993-09-21 1995-03-07 Petersen; Thomas D. Extramedullary proximal tibial guide
US5720752A (en) 1993-11-08 1998-02-24 Smith & Nephew, Inc. Distal femoral cutting guide apparatus with anterior or posterior referencing for use in knee joint replacement surgery
US5417694A (en) 1993-11-08 1995-05-23 Smith & Nephew Richards Inc. Distal femoral cutting guide apparatus with anterior or posterior referencing for use in knee joint replacement surgery
US5474088A (en) 1993-12-09 1995-12-12 The Research Foundation Of State University Of New York Device for measuring motion characteristics of a human joint
AU7601094A (en) 1993-12-15 1995-07-03 Computer Motion, Inc. Automated endoscope system for optimal positioning
JPH07184929A (en) 1993-12-27 1995-07-25 Olympus Optical Co Ltd Surgical instrument
US5653764A (en) 1994-02-17 1997-08-05 Murphy; Stephen B. Modular hip prosthesis with discrete selectable angular orientation
US5423827A (en) 1994-06-02 1995-06-13 Intermedics Orthopedics, Inc. Surgical jig for femoral knee prosthesis
US5645077A (en) 1994-06-16 1997-07-08 Massachusetts Institute Of Technology Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body
US5597379A (en) 1994-09-02 1997-01-28 Hudson Surgical Design, Inc. Method and apparatus for femoral resection alignment
US6695848B2 (en) 1994-09-02 2004-02-24 Hudson Surgical Design, Inc. Methods for femoral and tibial resection
GB9422007D0 (en) 1994-11-01 1994-12-21 Beacon Jonathan P An orthopaedic measurement and display system
US5486177A (en) 1994-12-20 1996-01-23 Intermedics Orthopedics, Inc. Patella planer with adjustable stop
US5540696A (en) 1995-01-06 1996-07-30 Zimmer, Inc. Instrumentation for use in orthopaedic surgery
US5624444A (en) 1995-02-10 1997-04-29 Wixon; Richard Femoral resection instrumentation including three-dimensional jig and method of use
JPH08240611A (en) 1995-03-02 1996-09-17 Hitachi Building Syst Eng & Service Co Ltd Calibrating device for three-axis accelerometer
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5776137A (en) 1995-05-31 1998-07-07 Katz; Lawrence Method and apparatus for locating bone cuts at the distal condylar femur region to receive a knee prosthesis
US5628750A (en) 1995-06-30 1997-05-13 U.S. Medical Products, Inc. Tibial resection guide alignment apparatus and method
EP0845959A4 (en) 1995-07-16 1998-09-30 Ultra Guide Ltd Free-hand aiming of a needle guide
FR2737967B1 (en) 1995-08-24 1997-11-28 Benoist Girard & Cie KNEE PROSTHESIS CORRECTION APPARATUS
US5769861A (en) 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
DE19546405A1 (en) 1995-12-12 1997-06-19 Busch Dieter & Co Prueftech Process for the mutual alignment of bodies and position measuring probe therefor
AU709081B2 (en) 1996-02-15 1999-08-19 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5683398A (en) 1996-02-20 1997-11-04 Smith & Nephew Inc. Distal femoral cutting block assembly
US5919149A (en) 1996-03-19 1999-07-06 Allum; John H. Method and apparatus for angular position and velocity based determination of body sway for the diagnosis and rehabilitation of balance and gait disorders
US5840047A (en) 1996-04-16 1998-11-24 Prosthetic Sensing Technologies, Llc Sensor device for monitoring a prosthetic device
US5681316A (en) 1996-08-22 1997-10-28 Johnson & Johnson Professional, Inc. Tibial resection guide
US5824085A (en) 1996-09-30 1998-10-20 Integrated Surgical Systems, Inc. System and method for cavity generation for surgical planning and initial placement of a bone prosthesis
US5788700A (en) 1996-10-30 1998-08-04 Osteonics Corp. Apparatus and method for the alignment of a total knee prosthesis
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US6122538A (en) 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
US5916219A (en) 1997-02-10 1999-06-29 Matsuno; Shigeo Tibial plateau resection guide
US6090114A (en) 1997-02-10 2000-07-18 Stryker Howmedica Osteonics Corp. Tibial plateau resection guide
GB9703421D0 (en) 1997-02-19 1997-04-09 Howmedica Profile gauge for measuring and indicating the profile of bone openings
DE29704393U1 (en) 1997-03-11 1997-07-17 Aesculap Ag Device for preoperative determination of the position data of endoprosthesis parts
US6332086B2 (en) 1997-04-07 2001-12-18 Graham Avis Discontinuous receive operation in a wireless terminal
FR2768613B1 (en) 1997-09-23 1999-12-17 Tornier Sa KNEE PROSTHESIS WITH ROTATABLE PLATFORM
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US20030163142A1 (en) 1997-11-27 2003-08-28 Yoav Paltieli System and method for guiding the movements of a device to a target particularly for medical applications
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6036696A (en) 1997-12-19 2000-03-14 Stryker Technologies Corporation Guide-pin placement device and method of use
EP2261919A3 (en) * 1998-02-23 2011-03-09 Kabushiki Kaisha Toshiba Information storage medium, information playback method and apparatus and information recording method
US6258095B1 (en) 1998-03-28 2001-07-10 Stryker Technologies Corporation Methods and tools for femoral intermedullary revision surgery
DE29805908U1 (en) 1998-04-01 1998-05-28 Aesculap Ag & Co Kg Device for handling an implant covering a bone canal
US6027507A (en) 1998-04-30 2000-02-22 Innomed, Inc. Leg length gauge for total hip surgery
JP3406834B2 (en) 1998-05-19 2003-05-19 株式会社東海理化電機製作所 Motor drive circuit
WO1999059487A1 (en) 1998-05-19 1999-11-25 Mcgann William A An acetabular total hip component alignment system for accurate intraoperative positioning in inclination
ES2228043T3 (en) 1998-05-28 2005-04-01 Orthosoft, Inc. INTERACTIVE SURGICAL SYSTEM ASSISTED BY COMPUTER.
FR2779339B1 (en) 1998-06-09 2000-10-13 Integrated Surgical Systems Sa MATCHING METHOD AND APPARATUS FOR ROBOTIC SURGERY, AND MATCHING DEVICE COMPRISING APPLICATION
CA2241359A1 (en) 1998-06-19 1999-12-19 The Governors Of The University Of Alberta Goniometer and method of use thereof
DE19830359A1 (en) 1998-07-07 2000-01-20 Helge Zwosta Spatial position and movement determination of body and body parts for remote control of machine and instruments
US6056756A (en) 1998-08-11 2000-05-02 Johnson & Johnson Professional, Inc. Femoral tensing and sizing device
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6120509A (en) 1998-09-01 2000-09-19 Sulzer Orthopedics Inc. Intramedullary reference datum instrument
US6585666B2 (en) 1998-10-13 2003-07-01 The Administrators Of The Tulane Educational Fund Arthroscopic diagnostic probe to measure mechanical properties of articular cartilage
US6534982B1 (en) 1998-12-23 2003-03-18 Peter D. Jakab Magnetic resonance scanner with electromagnetic position and orientation tracking device
US6447448B1 (en) 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
WO2000038571A1 (en) 1998-12-31 2000-07-06 Ball Semiconductor, Inc. Position sensing system
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
DE19917867B4 (en) 1999-04-20 2005-04-21 Brainlab Ag Method and device for image support in the treatment of treatment objectives with integration of X-ray detection and navigation system
US6126608A (en) 1999-05-18 2000-10-03 Pie Medical Equipment B.V. Portable ultrasound diagnostic system with handsfree display
US6471637B1 (en) 1999-09-24 2002-10-29 Karl Storz Imaging, Inc. Image orientation for endoscopic video displays
DE19946948A1 (en) 1999-09-30 2001-04-05 Philips Corp Intellectual Pty Method and arrangement for determining the position of a medical instrument
AUPQ363999A0 (en) 1999-10-25 1999-11-18 Sher, Doron Device for measuring leg length
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6770078B2 (en) 2000-01-14 2004-08-03 Peter M. Bonutti Movable knee implant and methods therefor
US6757068B2 (en) 2000-01-28 2004-06-29 Intersense, Inc. Self-referenced tracking
US6354011B1 (en) 2000-02-01 2002-03-12 Pruftechnik Dieter Busch Ag Orientation measuring device
US6477421B1 (en) 2000-02-24 2002-11-05 Pacesetter, Inc. Method and apparatus for position and motion sensing
WO2001064124A1 (en) 2000-03-01 2001-09-07 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US6395005B1 (en) 2000-04-14 2002-05-28 Howmedica Osteonics Corp. Acetabular alignment apparatus and method
US6361508B1 (en) 2000-04-20 2002-03-26 The United States Of America As Represented By The Secretary Of The Army Personal event monitor with linear omnidirectional response
US7000469B2 (en) 2000-04-21 2006-02-21 Intersense, Inc. Motion-tracking
GB0015683D0 (en) 2000-06-28 2000-08-16 Depuy Int Ltd Apparatus for positioning a surgical instrument
US6478799B1 (en) 2000-06-29 2002-11-12 Richard V. Williamson Instruments and methods for use in performing knee surgery
US6361506B1 (en) 2000-07-20 2002-03-26 Sulzer Orthopedics Inc. Incremental varus/valgus and flexion/extension measuring instrument
US6468280B1 (en) 2000-07-24 2002-10-22 Sulzer Orthopedics Inc. Unicompartmental replacement instrument and method
US6928742B2 (en) 2000-08-31 2005-08-16 Plus Orthopedics Ag Method and apparatus for finding the position of a mechanical axis of a limb
US6725173B2 (en) 2000-09-02 2004-04-20 American Gnc Corporation Digital signal processing method and system thereof for precision orientation measurements
EP1190676B1 (en) 2000-09-26 2003-08-13 BrainLAB AG Device for determining the position of a cutting guide
EP1190675B1 (en) 2000-09-26 2004-04-28 BrainLAB AG System for navigation-assisted orientation of elements on a body
US6383149B1 (en) 2000-10-05 2002-05-07 Innovative Medical Products Laser length discrepancy device
WO2002037827A2 (en) 2000-10-30 2002-05-10 Naval Postgraduate School Method and apparatus for motion tracking of an articulated rigid body
US6917827B2 (en) 2000-11-17 2005-07-12 Ge Medical Systems Global Technology Company, Llc Enhanced graphic features for computer assisted surgery system
DE10062580B4 (en) 2000-12-15 2006-07-13 Aesculap Ag & Co. Kg Method and device for determining the mechanical axis of a femur
EP1219260B1 (en) 2000-12-19 2003-06-25 BrainLAB AG Method and device for dental treatment assisted by a navigation system
US6607487B2 (en) 2001-01-23 2003-08-19 The Regents Of The University Of California Ultrasound image guided acetabular implant orientation during total hip replacement
US6514259B2 (en) 2001-02-02 2003-02-04 Carnegie Mellon University Probe and associated system and method for facilitating planar osteotomy during arthoplasty
US20050113846A1 (en) 2001-02-27 2005-05-26 Carson Christopher P. Surgical navigation systems and processes for unicompartmental knee arthroplasty
US6827723B2 (en) 2001-02-27 2004-12-07 Smith & Nephew, Inc. Surgical navigation systems and processes for unicompartmental knee arthroplasty
US7547307B2 (en) 2001-02-27 2009-06-16 Smith & Nephew, Inc. Computer assisted knee arthroplasty instrumentation, systems, and processes
US6685711B2 (en) 2001-02-28 2004-02-03 Howmedica Osteonics Corp. Apparatus used in performing femoral and tibial resection in knee surgery
US6595997B2 (en) 2001-02-28 2003-07-22 Howmedica Osteonics Corp. Methods used in performing femoral and tibial resection in knee surgery
ATE281116T1 (en) 2001-03-29 2004-11-15 Ct Pulse Orthopedics Ltd EXPANDER FOR KNEE JOINTS
NO20011769D0 (en) 2001-04-06 2001-04-06 Bjoern Franc Iversen Device and system for mutual positioning of prosthetic parts
US6488713B1 (en) 2001-04-25 2002-12-03 Biomet, Inc. Hip joint prosthesis with integral bearing extraction member
DE50110247D1 (en) 2001-04-27 2006-08-03 Zimmer Gmbh Drill lower for fixing the axis of a femoral head prosthesis
FR2826254B1 (en) 2001-06-25 2004-06-18 Aesculap Sa DEVICE FOR POSITIONING A CUTTING PLAN OF A BONE CUTTING GUIDE
KR20030002219A (en) 2001-06-30 2003-01-08 한국과학기술원 Femur clamping robot mount for robotic total hip arthroplasty
WO2003009680A1 (en) 2001-07-24 2003-02-06 The Regents Of The University Of Michigan Electronic measurement of the motion of a moving body of sports equipment
US6715213B2 (en) 2001-07-27 2004-04-06 Lars Richter 3D angle measurement instrument
US6685655B2 (en) 2001-10-18 2004-02-03 Innovative Medical Products Surgical leg length control
FR2831426B1 (en) 2001-10-30 2004-07-16 Tornier Sa JOINT IMPLANT AND KNEE PROSTHESIS INCORPORATING SUCH AN IMPLANT
US6645214B2 (en) 2001-11-12 2003-11-11 Depuy Orthopaedics, Inc. Apparatus and method for bone positioning
US7001346B2 (en) 2001-11-14 2006-02-21 Michael R. White Apparatus and methods for making intraoperative orthopedic measurements
US6671975B2 (en) 2001-12-10 2004-01-06 C. William Hennessey Parallel kinematic micromanipulator
US6997882B1 (en) 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
US20030120282A1 (en) 2001-12-24 2003-06-26 Scouten Charles W. Stereotaxic manipulator with retrofitted linear scales and digital display device
DE10200690B4 (en) 2002-01-10 2005-03-03 Intraplant Ag Aid for implantation of a hip joint endoprosthesis
US7634306B2 (en) 2002-02-13 2009-12-15 Kinamed, Inc. Non-image, computer assisted navigation system for joint replacement surgery with modular implant system
US6711431B2 (en) 2002-02-13 2004-03-23 Kinamed, Inc. Non-imaging, computer assisted navigation system for hip replacement surgery
US6986181B2 (en) 2002-02-21 2006-01-17 Ges Company Patient positioning device
US7831292B2 (en) 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
EP1487385A2 (en) 2002-03-19 2004-12-22 The Board of Trustees for the University of Illinois System and method for prosthetic fitting and balancing in joints
US7611522B2 (en) 2003-06-02 2009-11-03 Nuvasive, Inc. Gravity dependent pedicle screw tap hole guide and data processing device
US6638281B2 (en) 2002-03-21 2003-10-28 Spinecore, Inc. Gravity dependent pedicle screw tap hole guide
US20030199882A1 (en) 2002-03-21 2003-10-23 Gorek Josef E. Gravity dependent pedicle screw tap hole guide and data processing device
ATE357190T1 (en) 2002-03-27 2007-04-15 Brainlab Ag MEDICAL NAVIGATION OR PRE-OPERATIVE TREATMENT PLANNING SUPPORTED BY GENERIC PATIENT DATA
US6679916B1 (en) 2002-04-29 2004-01-20 Mark A. Frankle Shoulder prosthesis system
US8257360B2 (en) 2002-04-30 2012-09-04 Orthosoft Inc. Determining femoral cuts in knee surgery
US7048741B2 (en) 2002-05-10 2006-05-23 Swanson Todd V Method and apparatus for minimally invasive knee arthroplasty
US20030229356A1 (en) 2002-06-10 2003-12-11 Donald Dye Curved acetabular shell impaction instrument and method of use
US7585301B2 (en) 2002-06-12 2009-09-08 Howmedica Osteonics Corp. Modular hip inserter/positioner
US20040006393A1 (en) 2002-07-03 2004-01-08 Brian Burkinshaw Implantable prosthetic knee for lateral compartment
DE60332038D1 (en) 2002-08-09 2010-05-20 Kinamed Inc NON-IMAGE POSITIONING PROCEDURES FOR A HIP OPERATION
US20040039396A1 (en) 2002-08-23 2004-02-26 Orthosoft Inc. Universal positioning block
US7736368B2 (en) 2002-08-23 2010-06-15 Orthosoft Inc. Surgical universal positioning block and tool guide
US7027477B2 (en) 2002-08-30 2006-04-11 Spectra Physics Inc. Expansion matched thin disk laser and method for cooling
DE50205880D1 (en) 2002-09-27 2006-04-27 Aesculap Ag & Co Kg DEVICE FOR DETERMINING THE POSITION OF THE TIBIAL EXIT POINT OF THE FRONT CROSSBAND
US6856828B2 (en) 2002-10-04 2005-02-15 Orthosoft Inc. CAS bone reference and less invasive installation method thereof
US6743235B2 (en) 2002-10-15 2004-06-01 Goli V. Subba Rao Modular instrument for positioning acetabular prosthetic socket
US7326215B2 (en) 2002-10-30 2008-02-05 Symmetry Medical, Inc. Curved surgical tool driver
EP1558150B1 (en) 2002-11-05 2006-03-22 Aesculap AG & Co. KG Device for determining the position of a knee-joint endoprosthesis
EP3075356B1 (en) 2002-11-07 2023-07-05 ConforMIS, Inc. Method of selecting a meniscal implant
US7094241B2 (en) 2002-11-27 2006-08-22 Zimmer Technology, Inc. Method and apparatus for achieving correct limb alignment in unicondylar knee arthroplasty
US7209776B2 (en) 2002-12-03 2007-04-24 Aesculap Ag & Co. Kg Method of determining the position of the articular point of a joint
JP4095919B2 (en) 2002-12-09 2008-06-04 ジンマー株式会社 Measuring device for total knee replacement surgery
US7029477B2 (en) 2002-12-20 2006-04-18 Zimmer Technology, Inc. Surgical instrument and positioning method
US20070282347A9 (en) 2002-12-20 2007-12-06 Grimm James E Navigated orthopaedic guide and method
FR2850010B1 (en) 2003-01-17 2005-12-02 Tornier Sa ANCILLARY FOR THE INSTALLATION OF A PROTHETIC COTYL FOR A HIP PROSTHESIS
US8355773B2 (en) 2003-01-21 2013-01-15 Aesculap Ag Recording localization device tool positional parameters
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US20040153066A1 (en) 2003-02-03 2004-08-05 Coon Thomas M. Apparatus for knee surgery and method of use
EP1615577A2 (en) 2003-02-04 2006-01-18 Orthosoft, Inc. Cas modular bone reference assembly and limb position measurement system
US7887544B2 (en) 2003-03-10 2011-02-15 Tornier Sas Ancillary tool for positioning a glenoid implant
FR2852226B1 (en) 2003-03-10 2005-07-15 Univ Grenoble 1 LOCALIZED MEDICAL INSTRUMENT WITH ORIENTABLE SCREEN
US20040243148A1 (en) 2003-04-08 2004-12-02 Wasielewski Ray C. Use of micro- and miniature position sensing devices for use in TKA and THA
US20050021037A1 (en) 2003-05-29 2005-01-27 Mccombs Daniel L. Image-guided navigated precision reamers
AU2004251653A1 (en) 2003-06-02 2005-01-06 Stephen B. Murphy Virtual trial reduction system for hip arthroplasty and coordinate systems therefor
US7559931B2 (en) 2003-06-09 2009-07-14 OrthAlign, Inc. Surgical orientation system and method
JP2007503289A (en) 2003-06-09 2007-02-22 ヴィトルヴィアン・オーソピーディクス・エルエルシイ Surgical orientation machine and method
WO2004112610A2 (en) 2003-06-09 2004-12-29 Vitruvian Orthopaedics, Llc Surgical orientation device and method
FR2857576B1 (en) 2003-07-16 2005-10-14 Depuy France ASSISTING DEVICE FOR THE IMPLANTATION OF TOTAL KNEE PROSTHESES
JP4865550B2 (en) 2003-07-24 2012-02-01 サン−テック サージカル ソシエテ ア レスポンサビリテ リミテ Positioning device for a surgical instrument
AU2003904336A0 (en) 2003-08-15 2003-08-28 Medcare Systems Pty Ltd An automated personal alarm monitor
JP2007504852A (en) 2003-09-08 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Retrospectively activated MRI for active or passive joint movement
US7037310B2 (en) 2003-10-21 2006-05-02 Wright Medical Technology Inc Acetabular impactor
US7105028B2 (en) 2003-10-21 2006-09-12 Wright Medical Technology, Inc. Tissue preserving and minimally invasive hip replacement surgical procedure
US7392076B2 (en) 2003-11-04 2008-06-24 Stryker Leibinger Gmbh & Co. Kg System and method of registering image data to intra-operatively digitized landmarks
JP2007523696A (en) 2004-01-16 2007-08-23 スミス アンド ネフュー インコーポレーテッド Computer-aided ligament balancing in total knee arthroplasty
DE502004009884D1 (en) 2004-02-03 2009-09-24 Brainlab Ag Device for determining the position of a cutting block
US7442196B2 (en) 2004-02-06 2008-10-28 Synvasive Technology, Inc. Dynamic knee balancer
US7383164B2 (en) 2004-03-05 2008-06-03 Depuy Products, Inc. System and method for designing a physiometric implant system
WO2005087116A2 (en) 2004-03-11 2005-09-22 Branch Thomas P Method and apparatus for aligning a knee for surgery or the like
US7710888B2 (en) 2004-04-05 2010-05-04 Verizon Business Global Llc Apparatus and method for testing and fault isolation in a communication network
GB0411487D0 (en) 2004-05-22 2004-06-23 Depuy Int Ltd Surgical jig
KR100786703B1 (en) 2004-07-24 2007-12-21 삼성전자주식회사 Device and method for measuring physical exercise using acceleration sensor
US7377924B2 (en) 2004-09-09 2008-05-27 Howmedica Osteonics Corp. Navigated drill guided resection block
US7373271B1 (en) 2004-09-20 2008-05-13 Ascension Technology Corporation System and method for measuring position and orientation using distortion-compensated magnetic fields
US7396360B2 (en) 2004-09-29 2008-07-08 The Cleveland Clinic Foundation Minimally invasive method and apparatus for fusing adjacent vertebrae
EP1645241B1 (en) 2004-10-05 2011-12-28 BrainLAB AG Position marker system with point light sources
US8446473B2 (en) 2004-10-05 2013-05-21 Brainlab Ag Tracking system with scattering effect utilization, in particular with star effect and/or cross effect utilization
US7636595B2 (en) 2004-10-28 2009-12-22 Medtronic Navigation, Inc. Method and apparatus for calibrating non-linear instruments
DE102004057933A1 (en) 2004-12-01 2006-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method and apparatus for navigating and positioning an object relative to a patient
WO2006060632A1 (en) 2004-12-02 2006-06-08 Smith & Nephew, Inc. Systems for providing a reference plane for mounting an acetabular cup
GB2420717A (en) 2004-12-06 2006-06-07 Biomet Uk Ltd Surgical Instrument
EP1833390B1 (en) 2004-12-09 2010-05-12 Stryker Corporation Wireless system for providing instrument and implant data to a surgical navigation unit
US20060161051A1 (en) 2005-01-18 2006-07-20 Lauralan Terrill-Grisoni Method of computer-assisted ligament balancing and component placement in total knee arthroplasty
JP2008526427A (en) 2005-01-18 2008-07-24 スミス アンド ネフュー インコーポレーテッド Computer-aided ligament balancing in knee arthroplasty
EP1690503B1 (en) 2005-02-15 2013-07-24 BrainLAB AG User guidance for adjusting the cutting guides for the bones
US7219033B2 (en) 2005-02-15 2007-05-15 Magneto Inertial Sensing Technology, Inc. Single/multiple axes six degrees of freedom (6 DOF) inertial motion capture system with initial orientation determination capability
US8979853B2 (en) 2005-02-17 2015-03-17 Lucas Anissian Method and system for determining resection guidelines for joint replacement surgical procedures
ES2784219T3 (en) 2005-03-07 2020-09-23 Hector O Pacheco Cannula for improved access to vertebral bodies for kyphoplasty, vertebroplasty, vertebral body biopsy or screw placement
US20060217734A1 (en) 2005-03-09 2006-09-28 Zimmer Technology, Inc. Femoral resection guide apparatus and method
US20100100011A1 (en) 2008-10-22 2010-04-22 Martin Roche System and Method for Orthopedic Alignment and Measurement
US20100204551A1 (en) 2008-10-22 2010-08-12 Martin William Roche Detection, Prevention and Treatment of Infections in Implantable Devices
US8099168B2 (en) 2008-10-22 2012-01-17 Martin William Roche Post-operative pain inhibitor for joint replacement and method thereof
JP2006314775A (en) 2005-04-12 2006-11-24 Olympus Corp Endoscope system
KR100706030B1 (en) 2005-04-12 2007-04-11 한국과학기술원 Navigation system for hip replacement surgery having reference device and method using the same
FR2884408B1 (en) 2005-04-13 2007-05-25 Tornier Sas SURGICAL DEVICE FOR IMPLANTATION OF A PARTIAL OR TOTAL KNEE PROSTHESIS
FR2884407B1 (en) 2005-04-13 2007-05-25 Tornier Sas SURGICAL DEVICE FOR IMPLANTATION OF A PARTIAL OR TOTAL KNEE PROSTHESIS
US7601154B2 (en) 2005-04-18 2009-10-13 Uni-Knee, Llc Unicondylar knee instrument system
EP1922010A2 (en) 2005-05-02 2008-05-21 Smith & Nephew, Inc. System and method for determining tibial rotation
FR2885293A1 (en) 2005-05-06 2006-11-10 Michel Collette INSTRUMENT OF VISEEE OF THE FEMEC MECHANICAL AXIS
JP2008539913A (en) 2005-05-12 2008-11-20 オーエム サージカル(ユーケイ)リミテッド Systems, methods, and tools for ensuring accurate insertion of a hip prosthesis
US7621920B2 (en) 2005-06-13 2009-11-24 Zimmer, Inc. Adjustable cut guide
US20070162142A1 (en) 2005-06-15 2007-07-12 Vitruvian Orthopaedics, Llc Knee surgery method and apparatus
US20070032748A1 (en) 2005-07-28 2007-02-08 608442 Bc Ltd. System for detecting and analyzing body motion
US7468077B2 (en) 2005-08-02 2008-12-23 Tornier Sas Patellar retractor and method of surgical procedure on knee
US8388627B2 (en) 2005-09-13 2013-03-05 Board Of Regents, The University Of Texas System Surgical laser guide and method of use
GB0519829D0 (en) 2005-09-30 2005-11-09 Depuy Int Ltd Distractor instrument
DE202005015975U1 (en) 2005-10-10 2007-02-08 Synthes Gmbh target device
US20070100346A1 (en) 2005-10-27 2007-05-03 Wyss Joseph G Support for locating instrument guides
US8000926B2 (en) 2005-11-28 2011-08-16 Orthosensor Method and system for positional measurement using ultrasonic sensing
US8098544B2 (en) 2005-11-29 2012-01-17 Orthosensor, Inc. Method and system for enhancing accuracy in ultrasonic alignment
US20070179626A1 (en) 2005-11-30 2007-08-02 De La Barrera Jose L M Functional joint arthroplasty method
US7834847B2 (en) 2005-12-01 2010-11-16 Navisense Method and system for activating a touchless control
US8814810B2 (en) 2005-12-01 2014-08-26 Orthosensor Inc. Orthopedic method and system for mapping an anatomical pivot point
US7520880B2 (en) 2006-01-09 2009-04-21 Zimmer Technology, Inc. Adjustable surgical support base with integral hinge
FR2896684B1 (en) 2006-02-01 2008-09-26 Tornier Soc Par Actions Simplifiee TIBIAL IMPLANT WITH OFFSET SHAFT
US7885705B2 (en) 2006-02-10 2011-02-08 Murphy Stephen B System and method for facilitating hip surgery
WO2007097853A2 (en) 2006-02-15 2007-08-30 Otismed Corp Arthroplasty jigs and related methods
CA2537711A1 (en) 2006-02-27 2007-08-27 Orthosoft Inc. Universal positioning block assembly
US9173661B2 (en) * 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8323290B2 (en) 2006-03-03 2012-12-04 Biomet Manufacturing Corp. Tensor for use in surgical navigation
EP1993483B1 (en) 2006-03-13 2013-06-19 Mako Surgical Corp. Prosthetic device and method for planning the implantation
US8882777B2 (en) 2006-03-17 2014-11-11 Zimmer Technology, Inc. Indicator device for use with a surgical guide instrument
US8337508B2 (en) 2006-03-20 2012-12-25 Perception Raisonnement Action En Medecine Distractor system
US7949386B2 (en) 2006-03-21 2011-05-24 A2 Surgical Computer-aided osteoplasty surgery system
GB0607027D0 (en) 2006-04-07 2006-05-17 Depuy Int Ltd Patella tracking
US20070270973A1 (en) 2006-04-10 2007-11-22 Alexandria Research Technologies, Llc Apparatus and method for sculpting the surface of a joint
US7846092B2 (en) 2006-05-05 2010-12-07 Wright Medical Technology, Inc. Surgical retractor with impactor
WO2007136784A2 (en) 2006-05-17 2007-11-29 Nuvasive, Inc. Surgical trajectory monitoring system and related methods
EP1873666B1 (en) 2006-06-27 2009-03-25 BrainLAB AG Medical marker tracking system with determination of the marker characteristics
DE102006032127B4 (en) 2006-07-05 2008-04-30 Aesculap Ag & Co. Kg Calibration method and calibration device for a surgical referencing unit
US20080071195A1 (en) 2006-09-18 2008-03-20 Cuellar Alberto D Non-invasive tracking device and method
PT2526876E (en) 2006-10-11 2015-08-05 Ignace Ghijselings Device for installing femoral prosthetic knee joint
US7776098B2 (en) 2006-10-12 2010-08-17 Murphy Stephen B Modular femoral prosthesis with on-axis junction
DE502006002276D1 (en) 2006-10-26 2009-01-15 Brainlab Ag Integrated medical tracking system
US20080211768A1 (en) 2006-12-07 2008-09-04 Randy Breen Inertial Sensor Input Device
US20090234360A1 (en) 2006-12-12 2009-09-17 Vladimir Alexander Laser assisted total joint arthroplasty
DE502007002254D1 (en) 2007-01-31 2010-01-21 Brainlab Ag Medical laser target marker and its use
EP1952779B1 (en) 2007-02-01 2012-04-04 BrainLAB AG Method and system for Identification of medical instruments
US8814874B2 (en) 2007-02-13 2014-08-26 Medtronic Navigation, Inc. Navigated cut guide for total knee reconstruction
US8417318B2 (en) 2007-02-22 2013-04-09 Accuray Incorporated Calibrating tracking systems to remove position-dependent bias
EP1970005B1 (en) 2007-03-15 2012-10-03 Xsens Holding B.V. A system and a method for motion tracking using a calibration unit
US20080249394A1 (en) 2007-04-03 2008-10-09 The Board Of Trustees Of The Leland Stanford Junior University Method for improved rotational alignment in joint arthroplasty
US9161844B2 (en) * 2007-04-03 2015-10-20 Finsbury (Development) Limited Method of using a trial acetabular cup for insertion of an acetabular prosthesis
AU2007351804B2 (en) 2007-04-19 2013-09-05 Mako Surgical Corp. Implant planning using captured joint motion information
ITMI20070844A1 (en) 2007-04-23 2008-10-24 Istituto Ortopedico Galeazzi Spa DEVICE FOR DETECTION OF ARTICULAR FORCES
US7985226B2 (en) 2007-05-04 2011-07-26 Mcallister Craig M Distal femoral cutting guide
US20110028865A1 (en) 2009-08-03 2011-02-03 Xsens Technologies, B.V. Inertial Sensor Kinematic Coupling
US8425616B2 (en) 2007-07-09 2013-04-23 Moximed, Inc. Surgical implantation method and devices for an extra-articular mechanical energy absorbing apparatus
EP2166969B1 (en) 2007-07-09 2015-04-08 Orthosoft, Inc. Universal positioning device for orthopedic surgery
JP2009042811A (en) 2007-08-06 2009-02-26 Univ Of Tokyo Three-dimensional shape development device, three-dimensional shape development method, and program for three-dimensional shape development
DE102007043366A1 (en) 2007-09-12 2009-03-19 Degudent Gmbh Method for determining the position of an intraoral measuring device
US7892240B2 (en) 2007-09-13 2011-02-22 Zimmer, Inc. Femoral head center locating apparatus and method
GB2452967A (en) 2007-09-21 2009-03-25 Rolls Royce Plc A seal and rotor arrangement including a rotor section and a circumferential movable seal around the rotor section
EP2194836B1 (en) 2007-09-25 2015-11-04 Perception Raisonnement Action En Medecine Apparatus for assisting cartilage diagnostic and therapeutic procedures
US8398645B2 (en) 2007-09-30 2013-03-19 DePuy Synthes Products, LLC Femoral tibial customized patient-specific orthopaedic surgical instrumentation
US8267938B2 (en) 2007-11-01 2012-09-18 Murphy Stephen B Method and apparatus for determining acetabular component positioning
US9017335B2 (en) 2007-11-19 2015-04-28 Blue Ortho Hip implant registration in computer assisted surgery
US8480679B2 (en) 2008-04-29 2013-07-09 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
WO2009089629A1 (en) 2008-01-16 2009-07-23 Orthosoft Inc. Pinless technique for computer assisted orthopedic surgery
EP2242453B1 (en) 2008-02-20 2018-11-28 Mako Surgical Corp. Implant planning using corrected captured joint motion information
EP2262448A4 (en) 2008-03-03 2014-03-26 Arthrosurface Inc Bone resurfacing system and method
US8828008B2 (en) 2008-03-05 2014-09-09 Allston J. Stubbs Apparatus for arthroscopic assisted arthroplasty of the hip joint
US8494825B2 (en) 2008-03-13 2013-07-23 Robert L. Thornberry Computer-guided system for orienting the acetabular cup in the pelvis during total hip replacement surgery
JP5651579B2 (en) 2008-03-25 2015-01-14 オーソソフト インコーポレイテッド Method and system for planning / inducing changes to bone
EP2257771A4 (en) 2008-03-25 2014-03-12 Orthosoft Inc Tracking system and method
US20090270928A1 (en) 2008-04-25 2009-10-29 Stone Ross G Navigation tracker fixation device and method for use thereof
US8123753B2 (en) 2008-04-28 2012-02-28 Depuy (Ireland) Ltd. Cutting guide assembly
US8197487B2 (en) 2008-04-28 2012-06-12 Depuy (Ireland) Ltd. Reaming guide alignment instrument
US8197492B2 (en) 2008-04-28 2012-06-12 Depuy (Ireland) Ltd. Measuring instrument for version angle
US8814811B2 (en) 2008-05-23 2014-08-26 Medtronic, Inc. Fall detection algorithm utilizing a three-axis accelerometer
US8165840B2 (en) 2008-06-12 2012-04-24 Cardiac Pacemakers, Inc. Posture sensor automatic calibration
US8249345B2 (en) 2008-06-27 2012-08-21 Mako Surgical Corp. Automatic image segmentation using contour propagation
DE102008030534A1 (en) 2008-06-27 2009-12-31 Bort Medical Gmbh Device for determining the stability of a knee joint
US20100023018A1 (en) 2008-07-23 2010-01-28 Theofilos Charles S Spinous process fixated bilateral drilling guide
EP3381382A1 (en) 2008-07-24 2018-10-03 OrthAlign, Inc. Systems for joint replacement
US8421854B2 (en) 2008-07-24 2013-04-16 Noah Zerkin System and method for motion capture
EP2349120B1 (en) 2008-09-04 2017-03-22 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
EP2358310B1 (en) 2008-09-10 2019-07-31 OrthAlign, Inc. Hip surgery systems
EP2179703B1 (en) 2008-10-21 2012-03-28 BrainLAB AG Integration of surgical instrument and display device for supporting image-based surgery
DE102008052680A1 (en) 2008-10-22 2010-04-29 Surgitaix Ag Device for the controlled adjustment of a surgical positioning unit
US8506571B2 (en) 2008-10-23 2013-08-13 Synvasive Technology, Inc. Knee balancing for revision procedures
EP2373235B1 (en) 2008-10-30 2016-05-04 Synvasive Technology, Inc. Force sensing distal femoral alignment system
WO2010063117A1 (en) 2008-12-02 2010-06-10 Andre Novomir Hladio Method and system for aligning a prosthesis during surgery using active sensors
US20100324457A1 (en) 2008-12-10 2010-12-23 Jacob Bean Skeletal-muscular position monitoring device
US9364291B2 (en) 2008-12-11 2016-06-14 Mako Surgical Corp. Implant planning using areas representing cartilage
US8459094B2 (en) 2009-01-30 2013-06-11 Research In Motion Limited Method for calibrating an accelerometer of an electronic device, an accelerometer, and an electronic device having an accelerometer with improved calibration features
US8444564B2 (en) 2009-02-02 2013-05-21 Jointvue, Llc Noninvasive diagnostic system
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US20100250284A1 (en) 2009-03-26 2010-09-30 Martin Roche System and method for an orthopedic dynamic data repository and registry for request
US8556830B2 (en) 2009-03-31 2013-10-15 Depuy Device and method for displaying joint force data
US8956293B2 (en) 2009-05-20 2015-02-17 Sotera Wireless, Inc. Graphical ‘mapping system’ for continuously monitoring a patient's vital signs, motion, and location
US20100331738A1 (en) 2009-06-30 2010-12-30 Orthosensor Integrated sensor and interconnect for measuring a parameter of the muscular-skeletal system
US20100331733A1 (en) 2009-06-30 2010-12-30 Orthosensor Sensing device and method for an orthopedic joint
US8427176B2 (en) 2009-06-30 2013-04-23 Orthosensor Inc Pulsed waveguide sensing device and method for measuring a parameter
US20100331679A1 (en) 2009-06-30 2010-12-30 Orthosensor Pulsed echo sensing device and method for an orthopedic joint
US10869771B2 (en) 2009-07-24 2020-12-22 OrthAlign, Inc. Systems and methods for joint replacement
US8118815B2 (en) 2009-07-24 2012-02-21 OrthAlign, Inc. Systems and methods for joint replacement
BR112012008268A2 (en) 2009-10-06 2017-08-08 Northern Digital Inc marking of orthopedic device landmarks
JP5235856B2 (en) 2009-12-25 2013-07-10 パナソニック株式会社 Vibration type actuator
CA2825042C (en) 2010-01-21 2021-01-05 OrthAlign, Inc. Systems and methods for joint replacement
US9901405B2 (en) 2010-03-02 2018-02-27 Orthosoft Inc. MEMS-based method and system for tracking a femoral frame of reference
GB201006173D0 (en) 2010-04-14 2010-06-02 Depuy Ireland A distractor
US9706948B2 (en) 2010-05-06 2017-07-18 Sachin Bhandari Inertial sensor based surgical navigation system for knee replacement surgery
AU2011276468C1 (en) 2010-06-29 2014-09-25 George Frey Patient matching surgical guide and method for using the same
US9262802B2 (en) 2010-07-21 2016-02-16 Arthromeda, Inc. Independent digital templating software, and methods and systems using same
US9597156B2 (en) 2010-07-30 2017-03-21 Orthosoft Inc. Bone tracking with a gyroscope sensor in computer-assisted surgery
US8551108B2 (en) 2010-08-31 2013-10-08 Orthosoft Inc. Tool and method for digital acquisition of a tibial mechanical axis
EP2611379B1 (en) 2010-08-31 2017-12-27 Orthosoft Inc. Tool for digital acquisition of a tibial mechanical axis
US8696675B2 (en) 2010-08-31 2014-04-15 Orthosoft Inc. Proximity-triggered computer-assisted surgery system and method
CA2808661C (en) 2010-08-31 2018-07-17 Orthosoft Inc. Proximity-triggered computer-assisted surgery system and method
US9414770B2 (en) 2010-12-29 2016-08-16 Biosense Webster (Israel) Ltd. Respiratory effect reduction in catheter position sensing
CN103491893A (en) 2011-02-08 2014-01-01 通用医疗公司 Patient positioning systems and methods
CA2827758C (en) 2011-02-25 2018-12-04 Orthosoft Inc. Bone and tool tracking with mems in computer-assisted surgery
US9949665B2 (en) 2011-06-17 2018-04-24 Brainlab Ag Method, system and device for positioning an implant
US10540479B2 (en) 2011-07-15 2020-01-21 Stephen B. Murphy Surgical planning system and method
US8784339B2 (en) 2011-09-23 2014-07-22 Orthosensor Inc Spinal instrument for measuring load and position of load
US9839374B2 (en) 2011-09-23 2017-12-12 Orthosensor Inc. System and method for vertebral load and location sensing
US20130079678A1 (en) 2011-09-23 2013-03-28 Orthosensor Active spine insert instrument for prosthetic component placement
US9414940B2 (en) 2011-09-23 2016-08-16 Orthosensor Inc. Sensored head for a measurement tool for the muscular-skeletal system
US8945133B2 (en) 2011-09-23 2015-02-03 Orthosensor Inc Spinal distraction tool for load and position measurement
AU2012315809B2 (en) 2011-09-29 2017-06-08 Arthromeda, Inc. System and method for precise prosthesis positioning in hip arthroplasty
US9314188B2 (en) 2012-04-12 2016-04-19 Intellijoint Surgical Inc. Computer-assisted joint replacement surgery and navigation systems
US20150150569A1 (en) 2012-05-08 2015-06-04 OrthAlign, Inc. Devices and methods for intra-operative spinal alignment
EP2849683A4 (en) 2012-05-18 2015-11-25 Orthalign Inc Devices and methods for knee arthroplasty
CA2875594C (en) * 2012-06-05 2019-09-24 Optimized Ortho Pty Ltd A method, guide, guide indicia generation means, computer readable storage medium, reference marker and impactor for aligning an implant
WO2013188960A1 (en) 2012-06-20 2013-12-27 Avenir Medical Inc. Computer-assisted joint replacement surgery and patient-specific jig systems
WO2014015433A1 (en) 2012-07-24 2014-01-30 Orthosoft Inc. Patient specific instrumentation with mems in surgery
GB2506139A (en) * 2012-09-21 2014-03-26 David Langton Prosthetic Hip Alignment Apparatus
US9237885B2 (en) 2012-11-09 2016-01-19 Orthosensor Inc. Muscular-skeletal tracking system and method
US9351782B2 (en) 2012-11-09 2016-05-31 Orthosensor Inc. Medical device motion and orientation tracking system
US20140134586A1 (en) 2012-11-09 2014-05-15 Orthosensor Inc Orthopedic tool position and trajectory gui
US20140182062A1 (en) 2012-12-31 2014-07-03 Mehran S. Aghazadeh Safe Lateral Decubitus Positioning Apparatus
US20140276000A1 (en) 2013-03-15 2014-09-18 Vector Sight Inc. Laser Tracking of Surgical Instruments and Implants
AU2014232933A1 (en) 2013-03-15 2015-10-29 Arthromeda, Inc. Systems and methods for providing alignment in total knee arthroplasty
US9566020B2 (en) 2013-03-18 2017-02-14 Orthosensor Inc System and method for assessing, measuring, and correcting an anterior-posterior bone cut
ITMI20130432A1 (en) * 2013-03-21 2014-09-22 Dial Medicali S R L ORIENTATION EQUIPMENT AND POSITIONING OF SURGICAL INSTRUMENTS AND IMPLANT PROSTHESIS IN A BONE SEAT.
US20140303631A1 (en) 2013-04-05 2014-10-09 Thornberry Technologies, LLC Method and apparatus for determining the orientation and/or position of an object during a medical procedure
JP6635515B2 (en) 2013-06-11 2020-01-29 オーソソフト アンリミティド ライアビリティ コーポレイション Acetabular cup prosthesis positioning instrument and method
CA2917591A1 (en) 2013-07-12 2015-01-15 Arthromeda, Inc. Systems and methods for aligning a medical device with a pelvic axis
US20150018718A1 (en) 2013-07-12 2015-01-15 Arthromeda, Inc. Sensor for Measuring the Tilt of a Patient's Pelvic Axis
US10350089B2 (en) * 2013-08-13 2019-07-16 Brainlab Ag Digital tool and method for planning knee replacement
US20150142372A1 (en) * 2013-11-19 2015-05-21 Polaris Surgical, LLC Prosthetic placement tool and associated methods
WO2015168415A1 (en) * 2014-04-30 2015-11-05 Zimmer, Inc. Acetabular cup impacting using patient-specific instrumentation
US9554745B2 (en) * 2014-06-02 2017-01-31 Orthosoft Inc. Device and method for hip-knee-ankle angle verification and femoral mechanical axis digitization
AU2015337755B2 (en) * 2014-10-29 2019-07-25 Intellijoint Surgical Inc. Systems, methods and devices for anatomical registration and surgical localization
EP3215042A4 (en) 2014-11-06 2018-06-20 Orthosoft Inc. Instrument navigation in computer-assisted hip surgery
WO2016123703A1 (en) * 2015-02-02 2016-08-11 Orthosoft Inc. Acetabulum rim digitizer device and method
US10881470B2 (en) 2015-02-02 2021-01-05 Orthosoft Ulc Method and device for cup implanting using inertial sensors
EP3253336A1 (en) 2015-02-02 2017-12-13 Orthosoft, Inc. Mechanically guided impactor for hip arthroplasty
US10363149B2 (en) 2015-02-20 2019-07-30 OrthAlign, Inc. Hip replacement navigation system and method
CA2985705C (en) 2015-05-28 2023-02-21 Biomet Manufacturing, Llc Flexibly planned kitted knee protocol
WO2018169980A1 (en) 2017-03-14 2018-09-20 OrthAlign, Inc. Soft tissue measurement & balancing systems and methods
CA3056382A1 (en) 2017-03-14 2018-09-20 OrthAlign, Inc. Hip replacement navigation systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157887A1 (en) * 2010-12-17 2012-06-21 Richard Tyler Fanson Method and system for aligning a prosthesis during surgery
US20140052149A1 (en) * 2012-08-14 2014-02-20 OrthAlign, Inc. Hip replacement navigation system and method
US20140275940A1 (en) * 2013-03-15 2014-09-18 Avenir Medical Inc. System and method for intra-operative leg position measurement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11903597B2 (en) 2003-06-09 2024-02-20 OrthAlign, Inc. Surgical orientation system and method
US11547451B2 (en) 2008-07-24 2023-01-10 OrthAlign, Inc. Systems and methods for joint replacement
US11684392B2 (en) 2008-07-24 2023-06-27 OrthAlign, Inc. Systems and methods for joint replacement
US11871965B2 (en) 2008-07-24 2024-01-16 OrthAlign, Inc. Systems and methods for joint replacement
US11540746B2 (en) 2008-09-10 2023-01-03 OrthAlign, Inc. Hip surgery systems and methods
US11633293B2 (en) 2009-07-24 2023-04-25 OrthAlign, Inc. Systems and methods for joint replacement
US11653981B2 (en) 2012-08-14 2023-05-23 OrthAlign, Inc. Hip replacement navigation system and method
US11911119B2 (en) 2012-08-14 2024-02-27 OrthAlign, Inc. Hip replacement navigation system and method
US11786261B2 (en) 2017-03-14 2023-10-17 OrthAlign, Inc. Soft tissue measurement and balancing systems and methods

Also Published As

Publication number Publication date
JP6850256B2 (en) 2021-03-31
US20160242934A1 (en) 2016-08-25
AU2016219992A1 (en) 2017-10-05
US20210315716A1 (en) 2021-10-14
WO2016134168A1 (en) 2016-08-25
US20190350728A1 (en) 2019-11-21
JP7227289B2 (en) 2023-02-21
US20180193171A1 (en) 2018-07-12
EP3258860A4 (en) 2018-11-21
JP2018506361A (en) 2018-03-08
JP2021087853A (en) 2021-06-10
JP2023059904A (en) 2023-04-27
US11020245B2 (en) 2021-06-01
AU2016219992B2 (en) 2021-01-07
EP3258860A1 (en) 2017-12-27
CA3011960A1 (en) 2016-08-25
US10363149B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
US20220313455A1 (en) Hip replacement navigation system and method
US11911119B2 (en) Hip replacement navigation system and method
US11547580B2 (en) Hip replacement navigation systems and methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORTHALIGN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN DER WALT, NICHOLAS;NIELSEN, JONATHAN;REEL/FRAME:060237/0888

Effective date: 20151217

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED