US20220243961A1 - Thermal management system - Google Patents

Thermal management system Download PDF

Info

Publication number
US20220243961A1
US20220243961A1 US17/609,770 US202017609770A US2022243961A1 US 20220243961 A1 US20220243961 A1 US 20220243961A1 US 202017609770 A US202017609770 A US 202017609770A US 2022243961 A1 US2022243961 A1 US 2022243961A1
Authority
US
United States
Prior art keywords
heat exchanger
heat exchange
exchange portion
heat
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/609,770
Inventor
Junqi DONG
Shiwei Jia
Yibiao Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Sanhua Research Institute Co Ltd
Original Assignee
Hangzhou Sanhua Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Sanhua Research Institute Co Ltd filed Critical Hangzhou Sanhua Research Institute Co Ltd
Assigned to Hangzhou Sanhua Research Institute Co., Ltd. reassignment Hangzhou Sanhua Research Institute Co., Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DONG, Junqi, JIA, Shiwei, WANG, Yibiao
Publication of US20220243961A1 publication Critical patent/US20220243961A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0212Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during dehumidifying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters

Definitions

  • the present disclosure relates to a field of air conditioning, and in particular to a thermal management system.
  • a thermal management system can realize cooling, heating, ventilation and air purification of indoor air, and provide a comfortable environment for indoor personnel. How to optimize the thermal management system to improve the performance thereof is a current focus.
  • a high-temperature and high-pressure refrigerant flows out of an outlet of the compressor and directly enters an outdoor heat exchanger.
  • the temperature of the refrigerant flowing out of the outlet of the compressor is relatively high.
  • the outdoor environment temperature is high, after the refrigerant exchanges heat with the external environment in the outdoor heat exchanger, the temperature of the refrigerant flowing out of the outdoor heat exchanger is still high, which results in poor cooling effect of the thermal management system.
  • the present disclosure provides a thermal management system to improve the cooling effect of the thermal management system in a high-temperature environment.
  • a thermal management system including: a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger and an air-conditioning box, the third heat exchanger including a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating a coolant;
  • the thermal management system includes a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of absorbing heat of the refrigerant in the first heat exchange portion; and
  • the present disclosure further provides a thermal management system, including: an air-conditioning box, a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and a power device to make a coolant flow; the first heat exchanger being located outside the air-conditioning box, the second heat exchanger being located in the air-conditioning box, the third heat exchanger including a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating the coolant;
  • thermal management system includes a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; and
  • the power device, the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of exchanging heat with the refrigerant in the first heat exchange portion in order to cool down the refrigerant in the first heat exchange portion.
  • FIG. 1 is a schematic structural view of a thermal management system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic view of flow paths of a refrigerant and a coolant in a cooling mode of the thermal management system of FIG. 1 , wherein bold lines represent the flow paths;
  • FIG. 3 is a schematic view of a refrigerant flow path of the heat management system of FIG. 1 in a heating mode, wherein bold lines represent the flow path;
  • FIG. 4 is a schematic view of a refrigerant flow path of the heat management system of FIG. 1 in a heating and dehumidifying mode, wherein bold lines represent the flow path;
  • FIG. 5 is a schematic view of a partial cut-away structure of a third heat exchanger in accordance with an embodiment of the present disclosure.
  • first”, “second”, “third”, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • a first information may also be referred to as a second information.
  • the second information may also be referred to as the first information.
  • the word “if” as used herein can be interpreted as “when” or “during” or “depending on”.
  • the term “communicated” used in the present disclosure is intended to indicate that a certain medium can circulate from one element to another element.
  • the term “connected” used in the present disclosure is intended to indicate a physical relationship, and does not necessarily mean that the components are communicated.
  • the thermal management system may include a compressor 1 , a first heat exchanger 2 , a first throttling device 3 , a second heat exchanger 4 , a third heat exchanger 6 , a fourth heat exchanger 7 , and an air-conditioning box 13 .
  • the third heat exchanger 6 includes a first heat exchange portion 61 and a second heat exchange portion 62 .
  • the first heat exchange portion 61 and the second heat exchange portion 62 can exchange heat with each other.
  • the first heat exchanger 2 and the fourth heat exchanger 7 in this embodiment are located outside the air-conditioning box 13 .
  • the second heat exchanger 4 is located in an indoor air inlet passage.
  • the indoor air inlet passage is a passage of the air-conditioning box 13 , that is, the second heat exchanger 4 is located in the air-conditioning box 13 .
  • the thermal management system of this embodiment includes a cooling mode.
  • the thermal management system in the cooling mode, includes two loops, namely a first refrigerant loop and a coolant loop.
  • an outlet of the compressor 1 , the first heat exchange portion 61 , the first heat exchanger 2 , the first throttling device 3 , the second heat exchanger 4 , and an inlet of the compressor 1 are in communication to form the first refrigerant loop.
  • the outlet of the compressor 1 , the first heat exchange portion 61 , the first heat exchanger 2 , the first throttling device 3 , the second heat exchanger 4 , and the inlet of the compressor 1 are in communication in sequence to form the first refrigerant loop.
  • the second heat exchange portion 62 and the fourth heat exchanger 7 are in communication to form a coolant loop 5 .
  • the second heat exchange portion 62 and the fourth heat exchanger 7 are sequentially communicated to form the coolant loop 5 .
  • the above-mentioned structures in the coolant loop 5 can also be communicated in other arrangement sequences.
  • the sequential communication only describes the sequence relationship between the various components, and the various components may also include other components, such as a shut-off valve.
  • the type of the coolant disclosed in the present disclosure can be selected according to needs.
  • the coolant can be a heat exchange substance such as water and oil, or a mixture of water and ethylene glycol or other mixtures that can exchange heat.
  • the coolant in the second heat exchange portion 62 can cool down the temperature of the refrigerant in the first heat exchange portion 61 .
  • the first heat exchanger 2 is used as a condenser
  • the second heat exchanger 4 is used as an evaporator.
  • the compressor 1 compresses a low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant.
  • the high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1 and enters the first heat exchange portion 61 .
  • the refrigerant in the first heat exchange portion 61 exchanges heat with the coolant in the second heat exchange portion 62 , and the refrigerant releases heat.
  • the released heat is carried by the coolant loop 5 to the fourth heat exchanger 7 .
  • the heated coolant exchanges heat with the outdoor air flow in the fourth heat exchanger 7 .
  • the coolant releases heat, and the released heat is carried by the air flow to the outdoor ambient air.
  • the low-temperature coolant continues to be recycled in the coolant loop 5 .
  • the cooled refrigerant enters the first heat exchanger 2 and exchanges heat with the outdoor air flow in the first heat exchanger 2 , and the refrigerant further releases heat.
  • the released heat is carried by the air flow to the outdoor ambient air, and the refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant.
  • the refrigerant flows out of the first heat exchanger 2 , and is throttled and depressurized by the first throttling device 3 to become a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant enters the second heat exchanger 4 .
  • the low-temperature and low-pressure refrigerant absorbs the heat of the air around the second heat exchanger 4 , so that the temperature of the air around the second heat exchanger 4 is lowered. Under the action of the air flow, the cold air enters the passage of the air-conditioning box 13 and is sent into the cabin, thereby reducing the indoor temperature.
  • the refrigerant undergoes a phase change and partially or completely evaporates into a low-temperature and low-pressure gaseous refrigerant, which flows back into the compressor 1 to realize the recycling of the refrigerant.
  • a third heat exchanger 6 is provided at the outlet of the compressor 1 .
  • the refrigerant in the first heat exchange portion 61 is cooled down by the coolant in the second heat exchange portion 62 , which can reduce the temperature of the refrigerant in the outlet pipe of the compressor 1 , for example, the temperature of the refrigerant decreases from 150° C. to 80° C.
  • the cooled refrigerant then passes through the first heat exchanger 2 to exchange heat with the external environment so as to further reduce the temperature of the refrigerant, for example, the temperature of the refrigerant decreases from 80° C. to 47° C.
  • the refrigerant flowing out of the first heat exchanger 2 sequentially flows through the first throttling device 3 to reduce pressure, flows through the second heat exchanger 4 to absorb heat and evaporate, and then flows back into the compressor 1 to realize the recycling of the refrigerant.
  • the third heat exchanger 6 is provided at the outlet of the compressor 1 .
  • the refrigerant flowing out of the outlet of the compressor 1 will firstly pass through the third heat exchanger 6 .
  • the refrigerant flows into the first heat exchanger 2 (i.e., the outdoor heat exchanger), takes the heat to the outside environment through the coolant loop 5 , and undertakes part of the heat exchange of the outdoor heat exchanger pressure. This effectively solves the problem of insufficient outdoor heat exchanger capacity in high temperature environments (for example, between 35° C. and 50° C.), and improves the cooling capacity of the system.
  • the first heat exchanger 2 , the second heat exchanger 4 , the third heat exchanger 6 , and the fourth heat exchanger 7 may be air-cooled heat exchangers.
  • the third heat exchanger 6 is a water-cooled heat exchanger. Referring to FIG. 5 , the third heat exchanger 6 includes a first collecting member 15 , a second collecting member 16 and a casing 19 .
  • the casing 19 has two ends. The two ends of the casing 19 are sealed and connected to the first collecting member 15 and the second collecting member 16 , respectively so as to enclose a heat exchange cavity 190 .
  • a heat exchange tube 17 and a heat sink 18 are disposed in the third heat exchanger 6 .
  • the heat exchange tube 17 and the heat sink 18 are alternately stacked in the heat exchange cavity 190 one by one.
  • the heat exchange tube 17 and the heat sink 18 are fixedly connected.
  • Two ends of the heat exchange tube 17 are fixedly connected to the first collecting member 15 and the second collecting member 16 , respectively.
  • Each of the first collecting member 15 and the second collecting member 16 defines a collecting cavity.
  • the collecting cavity is in communication with a tube cavity of the heat exchange tube 17 , so that the refrigerant can circulate between the first collecting member 15 and the second collecting member 16 .
  • the two opposite sides of the casing 19 are also provided with an inlet pipe and an outlet pipe, so that the coolant can enter and exit the heat exchange cavity 190 .
  • the coolant enters the heat exchange cavity 190 and exchanges heat with the refrigerant through the heat exchange tube 17 .
  • the heat sink 18 may be corrugated fins for improving heat exchange efficiency.
  • the heat exchange tube 17 may be a microchannel flat tube.
  • Two connecting members are provided on the second current collecting member 16 . The two connecting members are respectively used to connect the refrigerant pipeline, so that the refrigerant can enter and exit the second collecting member 16 .
  • the third heat exchanger 6 may adopt the structure shown in FIG. 5 , which has the characteristics of high pressure resistance and is suitable for using a medium with high pressure resistance requirements, such as carbon dioxide, as the refrigerant.
  • the thermal management system also includes a functional component.
  • the functional component can generate heat and needs to dissipate heat when the temperature exceeds a set value.
  • the coolant loop includes the above-mentioned functional component.
  • the coolant loop is used to dissipate heat from the functional component. Therefore, the coolant loop 5 in this embodiment can also undertake the heat dissipation of the functional component in the thermal management system to ensure the normal operation of the functional component, thereby effectively ensuring the stable operation of the thermal management system in the cooling mode.
  • the functional component may include a motor 51 .
  • the coolant loop 5 can also undertake the heat dissipation of the motor 51 in the thermal management system to ensure the normal operation of the motor 51 , thereby effectively ensuring the stable operation of the thermal management system in the cooling mode.
  • the functional components may also include other components capable of generating heat, such as a battery and so on.
  • the thermal management system can recycle the waste heat generated by the functional component. For example, in a heating mode in winter, the waste heat of functional component is used to improve the heating capacity of the thermal management system.
  • the coolant loop may also include a power device (for example, a pump device 52 ) for flowing the coolant. By providing the pump device 52 , the circulating flow of the coolant in the coolant loop 5 can be driven.
  • the coolant flow path of the coolant loop 5 includes: the pump device 52 -> the motor 51 (or other functional component) -> the second heat exchange portion 62 -> the fourth heat exchanger 7 .
  • the thermal management system may further include a first fan 9 located outside the air-conditioning box 13 .
  • the first heat exchanger 2 and the fourth heat exchanger 7 are disposed along the air flow direction of the first fan 9 . That is, the first heat exchanger 2 is located on an upwind side of the fourth heat exchanger 7 .
  • the first heat exchanger 2 and the second heat exchanger 4 share the fan to dissipate heat from the first heat exchanger 2 and the second heat exchanger 4 , and save installation space; on the other hand, in the cooling mode, since the temperature of the first heat exchanger 2 is usually higher than the temperature of the fourth heat exchanger 7 , this arrangement allows the air to pass through the first heat exchanger 2 with a higher temperature first, and then pass through the fourth heat exchanger 7 with a lower temperature, thereby helping to improve the heat exchange effect and avoid affecting the heat dissipation of the first heat exchanger 2 .
  • the first fan 9 , the first heat exchanger 2 and the fourth heat exchanger 7 are disposed in a row or a column at intervals.
  • the fourth heat exchanger 7 is located between the first fan 9 and the first heat exchanger 2 .
  • the air flow generated by the first fan 9 can more quickly take away the heat of the coolant in the fourth heat exchanger 7 , speed up the cooling effect of the coolant loop 5 , and reduce the temperature of the refrigerant in the second heat exchange portion 62 more quickly.
  • the inlet of the compressor 1 can also be connected with a gas-liquid separator 8 to perform gas-liquid separation of the refluxed refrigerant.
  • the liquid part of the refrigerant is stored in the gas-liquid separator 8 , and the low-temperature and low-pressure gaseous refrigerant part enters the compressor 1 to be compressed again, so as to realize the recycling of the refrigerant.
  • the gas-liquid separator 8 may not be provided.
  • the thermal management system may further include a fifth heat exchanger 10 .
  • the fifth heat exchanger 10 includes a third heat exchange portion 11 and a fourth heat exchange portion 12 .
  • the outlet of the compressor 1 , the first heat exchange portion 61 , the first heat exchanger 2 , the third heat exchange portion 11 , the first throttling device 3 , the second heat exchanger 4 , the gas-liquid separator 8 , the fourth heat exchange portion 12 , and the inlet of the compressor 1 are communicated to form the first refrigerant loop.
  • the refrigerant flowing out of the first heat exchanger 2 passes through the third heat exchange portion 11 again.
  • the refrigerant in the third heat exchange portion 11 exchanges heat with the refrigerant in the fourth heat exchange portion 12 (a low-pressure side pipeline) to further reduce the refrigerant temperature in the third heat exchange portion 11 and further improve the cooling effect of the thermal management system.
  • the refrigerant flowing out of the third heat exchange portion 11 is throttled and depressurized by the first throttling device 3 to become a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant enters the second heat exchanger 4 .
  • the low-temperature and low-pressure refrigerant absorbs the heat of the air around the second heat exchanger 4 , so that the temperature of the air around the second heat exchanger 4 is lowered.
  • the cold air enters the passage of the air-conditioning box 13 and is sent into the cabin, thereby reducing the indoor temperature.
  • the refrigerant undergoes a phase change and most of it evaporates into a low-temperature and low-pressure gas refrigerant, which flows into the gas-liquid separator 8 .
  • the gas-liquid separator 8 separates the refluxed refrigerant, and stores the liquid part of it in the gas-liquid separator 8 , while the low-temperature and low-pressure gaseous refrigerant part enters the compressor 1 through the fourth heat exchange portion 12 to be compressed again so as to realize the recycling of refrigerant.
  • the thermal management system may further include a second throttling device 20 and a sixth heat exchanger 30 .
  • the sixth heat exchanger 30 is located in the passage of the air-conditioning box 13 .
  • the thermal management system of this embodiment also includes a heating mode. In the heating mode, the outlet of the compressor 1 , the first heat exchange portion 61 , the sixth heat exchanger 30 , the second throttling device 20 , the third heat exchange portion 11 , the first heat exchanger 2 , the gas-liquid separator 8 , the fourth heat exchange portion 12 , and the inlet of the compressor 1 are communicated to form a second refrigerant loop. It is understandable to those skilled in the art that only one of the first refrigerant loop in the cooling mode and the second refrigerant loop in the heating mode can be selected in the same working mode.
  • the thermal management system also includes a damper 14 located in the air-conditioning box 13 .
  • the damper 14 is located between the second heat exchanger 4 and the sixth heat exchanger 30 .
  • the damper 14 is used to control whether the air passes through the sixth heat exchanger 30 or not. For example, in the cooling mode, the damper 14 is closed so that the air does not pass through the sixth heat exchanger 30 . In the heating mode, the damper 14 is opened to allow air to pass through the sixth heat exchanger 30 .
  • the first heat exchanger 2 is used as an evaporator
  • the sixth heat exchanger 30 is used as a condenser or an air cooler.
  • the damper 14 is opened so that air can flow through the sixth heat exchanger 30 .
  • the damper 14 at the sixth heat exchanger 30 is closed, which reduces the influence of the sixth heat exchanger 30 .
  • the compressor 1 compresses a low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant.
  • the high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1 and enters the sixth heat exchanger 30 through the first heat exchange portion 61 .
  • the high-temperature and high-pressure refrigerant exchanges heat with the air flow in the sixth heat exchanger 30 , and the refrigerant releases heat.
  • the hot air enters the passage of the air-conditioning box 13 and is sent into the cabin to increase the indoor temperature.
  • the refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant.
  • the refrigerant flows out of the sixth heat exchanger 30 and enters the second throttling device 20 , where it is throttled and depressurized to become a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant enters the first heat exchanger 2 through a third channel, absorbs the heat in the external air flow, and changes phase into a low-pressure gaseous refrigerant.
  • the low-pressure gas refrigerant enters the gas-liquid separator 8 after flowing out of the first heat exchanger 2 .
  • the gas-liquid separator 8 separates the refluxed refrigerant, and stores the liquid part of it in the gas-liquid separator 8 , while the low-temperature and low-pressure gaseous refrigerant part enters the compressor 1 through the fourth heat exchange portion 12 and is compressed again so as to realize the recycling of refrigerant.
  • the thermal management system of the present disclosure also includes a first branch.
  • the first branch is disposed in parallel with the third heat exchanger 6 .
  • a control valve 80 is provided on the first branch.
  • the control valve 80 may be a water valve or other types of valves. Referring to FIG. 3 , the control valve 80 is connected to the first branch.
  • the control valve 80 is disposed in parallel with the third heat exchanger 6 .
  • the control valve 80 may also be a three-way valve.
  • a first port of the three-way valve is connected to the motor 51 through a pipeline.
  • a second port of the three-way valve is connected to the second heat exchange portion 62 of the third heat exchanger 6 through a pipeline.
  • a third port of the three-way valve is connected to the first branch.
  • the coolant flow path of the coolant loop 5 includes: the pump device 52 -> the motor 51 (or other functional component) -> the control valve 80 -> the fourth heat exchanger 7 .
  • the waste heat generated by the motor is released to the external environment through the fourth heat exchanger 7 .
  • the air flow generated by the first fan 9 can take away the heat of the coolant of the fourth heat exchanger 7 more quickly, and the air temperature rises at the same time.
  • the temperature of the surrounding environment of the first heat exchanger 2 rises, and the low-temperature refrigerant in the first heat exchanger 2 can absorb this part of the heat.
  • the control valve 80 can be opened to defrost the first heat exchanger 2 .
  • the thermal management system may also include a heating and dehumidifying mode which can be executed when dehumidification is required in winter.
  • a heating and dehumidifying mode the outlet of the compressor 1 , the first heat exchange portion 61 , the sixth heat exchanger 30 , the second throttling device 20 , the third heat exchange portion 11 , the first heat exchanger 2 , the gas-liquid separator 8 , the fourth heat exchange portion 12 , and the inlet of the compressor 1 are communicated to form the second refrigerant loop.
  • the outlet of the compressor 1 , the first heat exchange portion 61 , the sixth heat exchanger 30 , the first throttling device 3 , the second heat exchanger 4 , the gas-liquid separator 8 , the fourth heat exchange portion 12 , and the inlet of the compressor 1 are communicated to form a third refrigerant loop.
  • the second refrigerant loop is the second refrigerant loop in the heating mode in the above embodiment.
  • the third refrigerant loop is used to cool down the cabin.
  • the working process of the third refrigerant loop is as follows: the compressor 1 compresses a low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant; the high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1 , enters the sixth heat exchanger 30 through the first heat exchange portion 61 , and exchanges heat in the sixth heat exchanger 30 ; the refrigerant releases heat, the released heat is carried into the cabin by the air flow, and the refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant.
  • One path of the refrigerant flows out of the sixth heat exchanger 30 and enters the second throttling device 20 to realize the heating function of the second refrigerant loop.
  • the other path of the refrigerant enters the first throttling device 3 for expansion.
  • the refrigerant is throttled and depressurized to become a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant enters the second heat exchanger 4 .
  • the air circulation mode is an inner circulation, and the air with higher humidity flows through the second heat exchanger 4 with relatively lower temperature.
  • the moisture in the air flow condenses into water droplets to reduce the humidity of the air around the second heat exchanger 4 .
  • the dehumidified air then flows through the sixth heat exchanger 30 for heating, so as to achieve the purpose of heating and dehumidifying.
  • the refrigerant undergoes a phase change and most of it evaporates into a low-temperature and low-pressure gas refrigerant, which flows into the gas-liquid separator 8 .
  • the gas-liquid separator 8 separates the refluxed refrigerant, and stores the liquid part of it in the gas-liquid separator 8 , while the low-temperature and low-pressure gaseous refrigerant enters the compressor 1 to be compressed again so as to realize the recycling of the refrigerant.
  • the thermal management system may further include a four-way valve 40 .
  • the four-way valve 40 includes a first port 401 , a second port 402 , a third port 403 and a fourth port 404 .
  • the first heat exchange portion 61 includes a first inlet 611 and a first outlet 612 .
  • the first heat exchanger 2 includes a first connection port 21 and a second connection port 22 .
  • the second heat exchanger 4 includes a third connection port 41 and a fourth connection port 42 .
  • the sixth heat exchanger 30 includes a fifth connection port 301 and a sixth connection port 302 .
  • the third heat exchange portion 11 includes a seventh connection port 111 and an eighth connection port 112 .
  • the first inlet 611 is in communication with the outlet of the compressor 1 .
  • the first outlet 612 is in communication with the fifth connection port 301 .
  • the first port 401 is in communication with the sixth connection port 302 .
  • the second port 402 is in communication with the first connection port 21 .
  • the second connection port 22 is in communication with the seventh connection port 111 .
  • the eighth connection port 112 is in communication with one end of the second throttling device 20 .
  • the third port 403 is in communication with the other end of the second throttling device 20 .
  • the third port 403 is also in communication with one end of the first throttling device 3 .
  • the third connection port 41 is in communication with the other end of the first throttling device 3 .
  • the fourth connection port 42 and the fourth port 404 are in communication with the inlet of the gas-liquid separator 8 .
  • the fourth connection port 42 and the fourth port 404 are in communication with the inlet of the compressor 1 via the fourth heat exchange portion 12 .
  • the first port 401 and the second port 402 are in communication, and the third port 403 and the fourth port 404 are not in communication.
  • the heating mode and the heating and dehumidifying mode the first port 401 is in communication with the third port 403
  • the second port 402 is in communication with the fourth port 404 .
  • the flow direction of the refrigerant can be switched, thereby realizing the switching of different modes.
  • a three-way valve or a shut-off valve can also be used to replace the four-way valve 40 to control the switching of the refrigerant flow direction and realize the switching of different modes.
  • the thermal management system may further include a shut-off valve 50 .
  • One end of the shut-off valve 50 is in communication with the first outlet 612 and the fifth connection port 301 , and the other end of the shut-off valve 50 is in communication with the first port 401 and the sixth connection port 302 .
  • the shut-off valve 50 in the cooling mode, the shut-off valve 50 is opened. Due to the flow resistance, the sixth heat exchanger 30 can be bypassed through the branch where the shut-off valve 50 is located. Only a small amount or no refrigerant flows through the sixth heat exchanger 30 , which reduces the influence of the sixth heat exchanger 30 on the refrigeration effect.
  • the shut-off valve 50 In the heating mode or the heating and dehumidifying mode, the shut-off valve 50 is closed. By controlling the shut-off valve 50 , the on-off of the branch is realized. Applied to different modes, the shut-off valve 50 has a simple structure and reliable on-off control.
  • the thermal management system also includes a check valve 60 .
  • the check valve 60 is disposed in parallel with the second throttling device 20 . Among them, in the cooling mode, the check valve 60 is opened, and the second throttling device 20 is closed. In the heating mode or the heating and dehumidifying mode, the check valve 60 is closed, and the second throttling device 20 throttles. By controlling the check valve 60 and the second throttling device 20 , the on-off of the branch is realized, which can be applied to different modes.
  • the first throttling device 3 and the second throttling device 20 can play the role of throttling and depressurizing, and blocking in the thermal management system, and may include a throttling valve, an ordinary thermal expansion valve or an electronic expansion valve etc.
  • the thermal management system may further include a second fan 70 located in the passage of the air-conditioning box 13 .
  • the second heat exchanger 4 and the sixth heat exchanger 30 are disposed along the air flow direction of the second fan 70 .
  • the second heat exchanger 4 and the sixth heat exchanger 30 share the fan, which saves installation space.
  • the second fan 70 , the second heat exchanger 4 and the sixth heat exchanger 30 are disposed in a line or a row at intervals.
  • thermal management system of the present embodiments can be applied to houses, vehicles or other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A thermal management system includes a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger and an air-conditioning box. The third heat exchanger includes a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating a coolant. The thermal management system includes a cooling mode. In the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of absorbing heat of the refrigerant in the first heat exchange portion.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority of a Chinese Patent Application No. 201910945514.7, filed on Sep. 30, 2019 and titled “THERMAL MANAGEMENT SYSTEM”, the entire content of which is incorporated herein by reference in the present disclosure.
  • TECHNICAL FIELD
  • The present disclosure relates to a field of air conditioning, and in particular to a thermal management system.
  • BACKGROUND
  • A thermal management system can realize cooling, heating, ventilation and air purification of indoor air, and provide a comfortable environment for indoor personnel. How to optimize the thermal management system to improve the performance thereof is a current focus.
  • In the related thermal management system, in a cooling mode, a high-temperature and high-pressure refrigerant flows out of an outlet of the compressor and directly enters an outdoor heat exchanger. The temperature of the refrigerant flowing out of the outlet of the compressor is relatively high. When the outdoor environment temperature is high, after the refrigerant exchanges heat with the external environment in the outdoor heat exchanger, the temperature of the refrigerant flowing out of the outdoor heat exchanger is still high, which results in poor cooling effect of the thermal management system.
  • SUMMARY
  • The present disclosure provides a thermal management system to improve the cooling effect of the thermal management system in a high-temperature environment.
  • Specifically, the present disclosure is achieved through the following technical solutions:
  • a thermal management system, including: a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger and an air-conditioning box, the third heat exchanger including a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating a coolant;
  • wherein the thermal management system includes a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of absorbing heat of the refrigerant in the first heat exchange portion; and
  • wherein the fourth heat exchanger is located outside the air-conditioning box.
  • The present disclosure further provides a thermal management system, including: an air-conditioning box, a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and a power device to make a coolant flow; the first heat exchanger being located outside the air-conditioning box, the second heat exchanger being located in the air-conditioning box, the third heat exchanger including a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating the coolant;
  • wherein the thermal management system includes a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; and
  • wherein the power device, the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of exchanging heat with the refrigerant in the first heat exchange portion in order to cool down the refrigerant in the first heat exchange portion.
  • It can be seen from the above technical solutions that by providing the third heat exchanger at the outlet of the compressor, in the cooling mode, the refrigerant flowing out of the outlet of the compressor will firstly pass through the third heat exchanger. After cooling by the third heat exchanger, the refrigerant flows into the first heat exchanger (that is, the outdoor heat exchanger), the heat of the refrigerant loop is brought to the outside environment through the coolant loop, thereby bearing part of the heat exchange pressure of the outdoor heat exchanger. This effectively solves the problem of insufficient heat exchange capacity of the outdoor heat exchanger in a high temperature environment, and improves the cooling effect of the thermal management system.
  • It should be understood that the above general description and the following detailed description are only exemplary and explanatory, and cannot limit the present disclosure.
  • BRIEF DESCRIPTION OF DRAWINGS
  • Drawings here are incorporated into the specification and constitute a part of the specification, show embodiments that comply with the present disclosure, and are used together with the specification to explain the principle of the present disclosure.
  • FIG. 1 is a schematic structural view of a thermal management system provided by an embodiment of the present disclosure;
  • FIG. 2 is a schematic view of flow paths of a refrigerant and a coolant in a cooling mode of the thermal management system of FIG. 1, wherein bold lines represent the flow paths;
  • FIG. 3 is a schematic view of a refrigerant flow path of the heat management system of FIG. 1 in a heating mode, wherein bold lines represent the flow path;
  • FIG. 4 is a schematic view of a refrigerant flow path of the heat management system of FIG. 1 in a heating and dehumidifying mode, wherein bold lines represent the flow path; and
  • FIG. 5 is a schematic view of a partial cut-away structure of a third heat exchanger in accordance with an embodiment of the present disclosure.
  • REFERENCE SIGNS
    • 1: compressor; 2: first heat exchanger; 21: first connection port; 22: second connection port; 3: first throttling device; 4: second heat exchanger; 41: third connection port; 42: fourth connection port; 5: coolant loop; 51: motor; 52: pump device; 6: third heat exchanger; 61: first heat exchange portion; 611: first inlet; 612: first outlet; 62: second heat exchange portion; 7: fourth heat exchanger; 8: gas-liquid separator; 9: first fan; 10: fifth heat exchanger; 11: third heat exchange portion; 111: seventh connection port; 112: eighth connection port; 12: fourth heat exchange portion; 13 air-conditioning box; 14: damper; 15: first collecting member; 16: second collecting member; 17: heat exchange tube; 18: heat sink; 19: casing 190: heat exchange cavity; 20: second throttling device; 30: sixth heat exchanger; 301: fifth connection port; 302: sixth connection port; 40: four-way valve; 401: first port; 402: second port; 403: third port; 404: fourth port; 50: shut-off valve; 60: check valve; 70: second fan; 80: control valve.
    DETAILED DESCRIPTION
  • The exemplary embodiments will be described in detail here, and examples thereof are shown in the drawings. When the following description refers to the drawings, unless otherwise indicated, the same numbers in different drawings indicate the same or similar elements. The implementation embodiments described in the following exemplary embodiments do not represent all implementation embodiments consistent with the present disclosure. On the contrary, they are merely examples of devices and methods consistent with some aspects of the present disclosure as detailed in the appended claims.
  • The terms used in the present disclosure are only for the purpose of describing specific embodiments, and are not intended to limit the present disclosure. The singular forms of “a”, “said” and “the” used in the present disclosure and appended claims are also intended to include plural forms, unless the context clearly indicates otherwise. It should also be understood that the term “and/or” as used herein refers to and includes any or all possible combinations of one or more associated listed items.
  • It should be understood that although the terms “first”, “second”, “third”, etc., may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other. For example, without departing from the scope of the present disclosure, a first information may also be referred to as a second information. Similarly, the second information may also be referred to as the first information. Depending on the context, the word “if” as used herein can be interpreted as “when” or “during” or “depending on”.
  • The term “communicated” used in the present disclosure is intended to indicate that a certain medium can circulate from one element to another element. The term “connected” used in the present disclosure is intended to indicate a physical relationship, and does not necessarily mean that the components are communicated.
  • The thermal management system of the present disclosure will be described in detail below with reference to the accompanying drawings. In the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
  • Referring to FIGS. 1 to 4, a thermal management system provided by an embodiment of the present disclosure is disclosed. The thermal management system may include a compressor 1, a first heat exchanger 2, a first throttling device 3, a second heat exchanger 4, a third heat exchanger 6, a fourth heat exchanger 7, and an air-conditioning box 13. Among them, the third heat exchanger 6 includes a first heat exchange portion 61 and a second heat exchange portion 62. The first heat exchange portion 61 and the second heat exchange portion 62 can exchange heat with each other. The first heat exchanger 2 and the fourth heat exchanger 7 in this embodiment are located outside the air-conditioning box 13. The second heat exchanger 4 is located in an indoor air inlet passage. The indoor air inlet passage is a passage of the air-conditioning box 13, that is, the second heat exchanger 4 is located in the air-conditioning box 13.
  • The thermal management system of this embodiment includes a cooling mode. Referring to FIG. 2, in the cooling mode, the thermal management system includes two loops, namely a first refrigerant loop and a coolant loop. Among them, an outlet of the compressor 1, the first heat exchange portion 61, the first heat exchanger 2, the first throttling device 3, the second heat exchanger 4, and an inlet of the compressor 1 are in communication to form the first refrigerant loop. Optionally, the outlet of the compressor 1, the first heat exchange portion 61, the first heat exchanger 2, the first throttling device 3, the second heat exchanger 4, and the inlet of the compressor 1 are in communication in sequence to form the first refrigerant loop.
  • The second heat exchange portion 62 and the fourth heat exchanger 7 are in communication to form a coolant loop 5. Optionally, the second heat exchange portion 62 and the fourth heat exchanger 7 are sequentially communicated to form the coolant loop 5. Of course, the above-mentioned structures in the coolant loop 5 can also be communicated in other arrangement sequences.
  • It should be noted that, in the embodiment of the present disclosure, the sequential communication only describes the sequence relationship between the various components, and the various components may also include other components, such as a shut-off valve. In addition, the type of the coolant disclosed in the present disclosure can be selected according to needs. For example, the coolant can be a heat exchange substance such as water and oil, or a mixture of water and ethylene glycol or other mixtures that can exchange heat.
  • In this embodiment, the coolant in the second heat exchange portion 62 can cool down the temperature of the refrigerant in the first heat exchange portion 61.
  • Specifically, in the cooling mode, the first heat exchanger 2 is used as a condenser, and the second heat exchanger 4 is used as an evaporator. Referring to FIG. 2, the compressor 1 compresses a low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant. The high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1 and enters the first heat exchange portion 61. The refrigerant in the first heat exchange portion 61 exchanges heat with the coolant in the second heat exchange portion 62, and the refrigerant releases heat. The released heat is carried by the coolant loop 5 to the fourth heat exchanger 7. The heated coolant exchanges heat with the outdoor air flow in the fourth heat exchanger 7. The coolant releases heat, and the released heat is carried by the air flow to the outdoor ambient air. The low-temperature coolant continues to be recycled in the coolant loop 5. After the refrigerant in the first heat exchange portion 61 releases heat, the cooled refrigerant enters the first heat exchanger 2 and exchanges heat with the outdoor air flow in the first heat exchanger 2, and the refrigerant further releases heat. The released heat is carried by the air flow to the outdoor ambient air, and the refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant. The refrigerant flows out of the first heat exchanger 2, and is throttled and depressurized by the first throttling device 3 to become a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant enters the second heat exchanger 4. The low-temperature and low-pressure refrigerant absorbs the heat of the air around the second heat exchanger 4, so that the temperature of the air around the second heat exchanger 4 is lowered. Under the action of the air flow, the cold air enters the passage of the air-conditioning box 13 and is sent into the cabin, thereby reducing the indoor temperature. The refrigerant undergoes a phase change and partially or completely evaporates into a low-temperature and low-pressure gaseous refrigerant, which flows back into the compressor 1 to realize the recycling of the refrigerant.
  • A third heat exchanger 6 is provided at the outlet of the compressor 1. In the cooling mode, the refrigerant in the first heat exchange portion 61 is cooled down by the coolant in the second heat exchange portion 62, which can reduce the temperature of the refrigerant in the outlet pipe of the compressor 1, for example, the temperature of the refrigerant decreases from 150° C. to 80° C. This reduces the temperature of the refrigerant flowing into the first heat exchanger 2 and reduces the heat exchange pressure of the first heat exchanger 2. The cooled refrigerant then passes through the first heat exchanger 2 to exchange heat with the external environment so as to further reduce the temperature of the refrigerant, for example, the temperature of the refrigerant decreases from 80° C. to 47° C. The refrigerant flowing out of the first heat exchanger 2 sequentially flows through the first throttling device 3 to reduce pressure, flows through the second heat exchanger 4 to absorb heat and evaporate, and then flows back into the compressor 1 to realize the recycling of the refrigerant.
  • In the thermal management system of the embodiment of the present disclosure, the third heat exchanger 6 is provided at the outlet of the compressor 1. In the cooling mode, the refrigerant flowing out of the outlet of the compressor 1 will firstly pass through the third heat exchanger 6. After the temperature is lowered by the third heat exchanger 6, the refrigerant flows into the first heat exchanger 2 (i.e., the outdoor heat exchanger), takes the heat to the outside environment through the coolant loop 5, and undertakes part of the heat exchange of the outdoor heat exchanger pressure. This effectively solves the problem of insufficient outdoor heat exchanger capacity in high temperature environments (for example, between 35° C. and 50° C.), and improves the cooling capacity of the system.
  • Those of ordinary skill in the art can select the types of the first heat exchanger 2, the second heat exchanger 4, the third heat exchanger 6, and the fourth heat exchanger 7 according to specific scenarios. For example, the first heat exchanger 2, the second heat exchanger 4, and the fourth heat exchanger 7 may be air-cooled heat exchangers. The third heat exchanger 6 is a water-cooled heat exchanger. Referring to FIG. 5, the third heat exchanger 6 includes a first collecting member 15, a second collecting member 16 and a casing 19. The casing 19 has two ends. The two ends of the casing 19 are sealed and connected to the first collecting member 15 and the second collecting member 16, respectively so as to enclose a heat exchange cavity 190. A heat exchange tube 17 and a heat sink 18 are disposed in the third heat exchanger 6. The heat exchange tube 17 and the heat sink 18 are alternately stacked in the heat exchange cavity 190 one by one. The heat exchange tube 17 and the heat sink 18 are fixedly connected. Two ends of the heat exchange tube 17 are fixedly connected to the first collecting member 15 and the second collecting member 16, respectively. Each of the first collecting member 15 and the second collecting member 16 defines a collecting cavity. The collecting cavity is in communication with a tube cavity of the heat exchange tube 17, so that the refrigerant can circulate between the first collecting member 15 and the second collecting member 16. The two opposite sides of the casing 19 are also provided with an inlet pipe and an outlet pipe, so that the coolant can enter and exit the heat exchange cavity 190. The coolant enters the heat exchange cavity 190 and exchanges heat with the refrigerant through the heat exchange tube 17. The heat sink 18 may be corrugated fins for improving heat exchange efficiency. The heat exchange tube 17 may be a microchannel flat tube. Two connecting members are provided on the second current collecting member 16. The two connecting members are respectively used to connect the refrigerant pipeline, so that the refrigerant can enter and exit the second collecting member 16. It is understandable that those of ordinary skill in the art can select other types of heat exchangers as the first heat exchanger 2, the second heat exchanger 4, the third heat exchanger 6 and the fourth heat exchanger 7 according to specific scenarios, which is not limited here. According to the present disclosure, the corresponding type of refrigerant can also be selected and a suitable heat exchanger can be used according to the actual application. For example, the third heat exchanger 6 may adopt the structure shown in FIG. 5, which has the characteristics of high pressure resistance and is suitable for using a medium with high pressure resistance requirements, such as carbon dioxide, as the refrigerant.
  • In this embodiment, the thermal management system also includes a functional component. The functional component can generate heat and needs to dissipate heat when the temperature exceeds a set value. The coolant loop includes the above-mentioned functional component. The coolant loop is used to dissipate heat from the functional component. Therefore, the coolant loop 5 in this embodiment can also undertake the heat dissipation of the functional component in the thermal management system to ensure the normal operation of the functional component, thereby effectively ensuring the stable operation of the thermal management system in the cooling mode. Referring to FIG. 1, the functional component may include a motor 51. The coolant loop 5 can also undertake the heat dissipation of the motor 51 in the thermal management system to ensure the normal operation of the motor 51, thereby effectively ensuring the stable operation of the thermal management system in the cooling mode. It is understandable that the functional components may also include other components capable of generating heat, such as a battery and so on. The thermal management system can recycle the waste heat generated by the functional component. For example, in a heating mode in winter, the waste heat of functional component is used to improve the heating capacity of the thermal management system. In addition, referring to FIG. 1 again, the coolant loop may also include a power device (for example, a pump device 52) for flowing the coolant. By providing the pump device 52, the circulating flow of the coolant in the coolant loop 5 can be driven. Optionally, in an embodiment, the coolant flow path of the coolant loop 5 includes: the pump device 52-> the motor 51 (or other functional component) -> the second heat exchange portion 62-> the fourth heat exchanger 7.
  • Referring to FIG. 1, the thermal management system may further include a first fan 9 located outside the air-conditioning box 13. In this embodiment, the first heat exchanger 2 and the fourth heat exchanger 7 are disposed along the air flow direction of the first fan 9. That is, the first heat exchanger 2 is located on an upwind side of the fourth heat exchanger 7. With this arrangement, on one hand, the first heat exchanger 2 and the second heat exchanger 4 share the fan to dissipate heat from the first heat exchanger 2 and the second heat exchanger 4, and save installation space; on the other hand, in the cooling mode, since the temperature of the first heat exchanger 2 is usually higher than the temperature of the fourth heat exchanger 7, this arrangement allows the air to pass through the first heat exchanger 2 with a higher temperature first, and then pass through the fourth heat exchanger 7 with a lower temperature, thereby helping to improve the heat exchange effect and avoid affecting the heat dissipation of the first heat exchanger 2. Optionally, the first fan 9, the first heat exchanger 2 and the fourth heat exchanger 7 are disposed in a row or a column at intervals. Optionally, the fourth heat exchanger 7 is located between the first fan 9 and the first heat exchanger 2. The air flow generated by the first fan 9 can more quickly take away the heat of the coolant in the fourth heat exchanger 7, speed up the cooling effect of the coolant loop 5, and reduce the temperature of the refrigerant in the second heat exchange portion 62 more quickly.
  • In addition, referring to FIG. 1 again, the inlet of the compressor 1 can also be connected with a gas-liquid separator 8 to perform gas-liquid separation of the refluxed refrigerant. The liquid part of the refrigerant is stored in the gas-liquid separator 8, and the low-temperature and low-pressure gaseous refrigerant part enters the compressor 1 to be compressed again, so as to realize the recycling of the refrigerant. Of course, for some new compressors, such as compressors with a function of storing liquid or a function of gas-liquid separation, the gas-liquid separator 8 may not be provided.
  • In the following, taking the gas-liquid separator 8 provided at the inlet of the compressor 1 as an example, the structure of the thermal management system is further explained.
  • Referring to FIGS. 1 and 2, the thermal management system may further include a fifth heat exchanger 10. The fifth heat exchanger 10 includes a third heat exchange portion 11 and a fourth heat exchange portion 12. Referring to FIG. 2, in the cooling mode, the outlet of the compressor 1, the first heat exchange portion 61, the first heat exchanger 2, the third heat exchange portion 11, the first throttling device 3, the second heat exchanger 4, the gas-liquid separator 8, the fourth heat exchange portion 12, and the inlet of the compressor 1 are communicated to form the first refrigerant loop. Specifically, in the cooling mode, the refrigerant flowing out of the first heat exchanger 2 passes through the third heat exchange portion 11 again. The refrigerant in the third heat exchange portion 11 exchanges heat with the refrigerant in the fourth heat exchange portion 12 (a low-pressure side pipeline) to further reduce the refrigerant temperature in the third heat exchange portion 11 and further improve the cooling effect of the thermal management system. The refrigerant flowing out of the third heat exchange portion 11 is throttled and depressurized by the first throttling device 3 to become a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant enters the second heat exchanger 4. The low-temperature and low-pressure refrigerant absorbs the heat of the air around the second heat exchanger 4, so that the temperature of the air around the second heat exchanger 4 is lowered. Under the action of the air flow, the cold air enters the passage of the air-conditioning box 13 and is sent into the cabin, thereby reducing the indoor temperature. The refrigerant undergoes a phase change and most of it evaporates into a low-temperature and low-pressure gas refrigerant, which flows into the gas-liquid separator 8. The gas-liquid separator 8 separates the refluxed refrigerant, and stores the liquid part of it in the gas-liquid separator 8, while the low-temperature and low-pressure gaseous refrigerant part enters the compressor 1 through the fourth heat exchange portion 12 to be compressed again so as to realize the recycling of refrigerant.
  • Referring to FIG. 1 again, the thermal management system may further include a second throttling device 20 and a sixth heat exchanger 30. The sixth heat exchanger 30 is located in the passage of the air-conditioning box 13. Referring to FIG. 3, the thermal management system of this embodiment also includes a heating mode. In the heating mode, the outlet of the compressor 1, the first heat exchange portion 61, the sixth heat exchanger 30, the second throttling device 20, the third heat exchange portion 11, the first heat exchanger 2, the gas-liquid separator 8, the fourth heat exchange portion 12, and the inlet of the compressor 1 are communicated to form a second refrigerant loop. It is understandable to those skilled in the art that only one of the first refrigerant loop in the cooling mode and the second refrigerant loop in the heating mode can be selected in the same working mode.
  • The thermal management system also includes a damper 14 located in the air-conditioning box 13. The damper 14 is located between the second heat exchanger 4 and the sixth heat exchanger 30. The damper 14 is used to control whether the air passes through the sixth heat exchanger 30 or not. For example, in the cooling mode, the damper 14 is closed so that the air does not pass through the sixth heat exchanger 30. In the heating mode, the damper 14 is opened to allow air to pass through the sixth heat exchanger 30.
  • Specifically, in the heating mode, the first heat exchanger 2 is used as an evaporator, and the sixth heat exchanger 30 is used as a condenser or an air cooler. In the heating mode, the damper 14 is opened so that air can flow through the sixth heat exchanger 30. It should be noted that in the cooling mode, the damper 14 at the sixth heat exchanger 30 is closed, which reduces the influence of the sixth heat exchanger 30. Referring to FIG. 3, the compressor 1 compresses a low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant. The high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1 and enters the sixth heat exchanger 30 through the first heat exchange portion 61. The high-temperature and high-pressure refrigerant exchanges heat with the air flow in the sixth heat exchanger 30, and the refrigerant releases heat. The hot air enters the passage of the air-conditioning box 13 and is sent into the cabin to increase the indoor temperature. The refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant. The refrigerant flows out of the sixth heat exchanger 30 and enters the second throttling device 20, where it is throttled and depressurized to become a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant enters the first heat exchanger 2 through a third channel, absorbs the heat in the external air flow, and changes phase into a low-pressure gaseous refrigerant. The low-pressure gas refrigerant enters the gas-liquid separator 8 after flowing out of the first heat exchanger 2. The gas-liquid separator 8 separates the refluxed refrigerant, and stores the liquid part of it in the gas-liquid separator 8, while the low-temperature and low-pressure gaseous refrigerant part enters the compressor 1 through the fourth heat exchange portion 12 and is compressed again so as to realize the recycling of refrigerant.
  • The thermal management system of the present disclosure also includes a first branch. The first branch is disposed in parallel with the third heat exchanger 6. A control valve 80 is provided on the first branch. The control valve 80 may be a water valve or other types of valves. Referring to FIG. 3, the control valve 80 is connected to the first branch. The control valve 80 is disposed in parallel with the third heat exchanger 6. Optionally, the control valve 80 may also be a three-way valve. A first port of the three-way valve is connected to the motor 51 through a pipeline. A second port of the three-way valve is connected to the second heat exchange portion 62 of the third heat exchanger 6 through a pipeline. A third port of the three-way valve is connected to the first branch.
  • In the heating mode, when the motor generates excess heat, the control valve 80 is opened, and the pump device 52 is turned on. Since the flow resistance of the coolant at the third heat exchanger 6 is greater than the flow resistance at the control valve 80, only a small amount of coolant flows to the third heat exchanger 6. The coolant flow path of the coolant loop 5 includes: the pump device 52-> the motor 51 (or other functional component) -> the control valve 80-> the fourth heat exchanger 7. The waste heat generated by the motor is released to the external environment through the fourth heat exchanger 7. When the fourth heat exchanger 7 is located between the first fan 9 and the first heat exchanger 2 (positions of the fourth heat exchanger 7, the first fan 9 and the first heat exchanger 2 are not limited, which is disposed roughly along the air flow direction), the air flow generated by the first fan 9 can take away the heat of the coolant of the fourth heat exchanger 7 more quickly, and the air temperature rises at the same time. Correspondingly, the temperature of the surrounding environment of the first heat exchanger 2 rises, and the low-temperature refrigerant in the first heat exchanger 2 can absorb this part of the heat. As a result, when the external environment temperature is low in winter, the excess heat generated by the motor will be absorbed by the refrigerant in the first heat exchanger 2, which can increase the heating capacity of the thermal management system. Besides, in the heating mode in winter, the first heat exchanger 2 is prone to frost in a low temperature environment, and the control valve 80 can be opened to defrost the first heat exchanger 2.
  • Referring to FIG. 4, the thermal management system may also include a heating and dehumidifying mode which can be executed when dehumidification is required in winter. In the heating and dehumidifying mode, the outlet of the compressor 1, the first heat exchange portion 61, the sixth heat exchanger 30, the second throttling device 20, the third heat exchange portion 11, the first heat exchanger 2, the gas-liquid separator 8, the fourth heat exchange portion 12, and the inlet of the compressor 1 are communicated to form the second refrigerant loop. And, the outlet of the compressor 1, the first heat exchange portion 61, the sixth heat exchanger 30, the first throttling device 3, the second heat exchanger 4, the gas-liquid separator 8, the fourth heat exchange portion 12, and the inlet of the compressor 1 are communicated to form a third refrigerant loop.
  • Among them, the second refrigerant loop is the second refrigerant loop in the heating mode in the above embodiment. The third refrigerant loop is used to cool down the cabin. The working process of the third refrigerant loop is as follows: the compressor 1 compresses a low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant; the high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1, enters the sixth heat exchanger 30 through the first heat exchange portion 61, and exchanges heat in the sixth heat exchanger 30; the refrigerant releases heat, the released heat is carried into the cabin by the air flow, and the refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant. One path of the refrigerant flows out of the sixth heat exchanger 30 and enters the second throttling device 20 to realize the heating function of the second refrigerant loop. The other path of the refrigerant enters the first throttling device 3 for expansion. The refrigerant is throttled and depressurized to become a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant enters the second heat exchanger 4. At this time, the air circulation mode is an inner circulation, and the air with higher humidity flows through the second heat exchanger 4 with relatively lower temperature. The moisture in the air flow condenses into water droplets to reduce the humidity of the air around the second heat exchanger 4. The dehumidified air then flows through the sixth heat exchanger 30 for heating, so as to achieve the purpose of heating and dehumidifying. The refrigerant undergoes a phase change and most of it evaporates into a low-temperature and low-pressure gas refrigerant, which flows into the gas-liquid separator 8. The gas-liquid separator 8 separates the refluxed refrigerant, and stores the liquid part of it in the gas-liquid separator 8, while the low-temperature and low-pressure gaseous refrigerant enters the compressor 1 to be compressed again so as to realize the recycling of the refrigerant.
  • Referring to FIG. 1 again, the thermal management system may further include a four-way valve 40. The four-way valve 40 includes a first port 401, a second port 402, a third port 403 and a fourth port 404. The first heat exchange portion 61 includes a first inlet 611 and a first outlet 612. The first heat exchanger 2 includes a first connection port 21 and a second connection port 22. The second heat exchanger 4 includes a third connection port 41 and a fourth connection port 42. The sixth heat exchanger 30 includes a fifth connection port 301 and a sixth connection port 302. The third heat exchange portion 11 includes a seventh connection port 111 and an eighth connection port 112. The first inlet 611 is in communication with the outlet of the compressor 1. The first outlet 612 is in communication with the fifth connection port 301. The first port 401 is in communication with the sixth connection port 302. The second port 402 is in communication with the first connection port 21. The second connection port 22 is in communication with the seventh connection port 111. The eighth connection port 112 is in communication with one end of the second throttling device 20. The third port 403 is in communication with the other end of the second throttling device 20. In addition, the third port 403 is also in communication with one end of the first throttling device 3. The third connection port 41 is in communication with the other end of the first throttling device 3. The fourth connection port 42 and the fourth port 404 are in communication with the inlet of the gas-liquid separator 8. For the thermal management system without the gas-liquid separator 8, the fourth connection port 42 and the fourth port 404 are in communication with the inlet of the compressor 1 via the fourth heat exchange portion 12. In the cooling mode, the first port 401 and the second port 402 are in communication, and the third port 403 and the fourth port 404 are not in communication. In the heating mode and the heating and dehumidifying mode, the first port 401 is in communication with the third port 403, and the second port 402 is in communication with the fourth port 404. By controlling the communication state of the four-way valve 40, the flow direction of the refrigerant can be switched, thereby realizing the switching of different modes. Of course, a three-way valve or a shut-off valve can also be used to replace the four-way valve 40 to control the switching of the refrigerant flow direction and realize the switching of different modes.
  • Referring to FIGS. 1 to 4, the thermal management system may further include a shut-off valve 50. One end of the shut-off valve 50 is in communication with the first outlet 612 and the fifth connection port 301, and the other end of the shut-off valve 50 is in communication with the first port 401 and the sixth connection port 302. In this embodiment, in the cooling mode, the shut-off valve 50 is opened. Due to the flow resistance, the sixth heat exchanger 30 can be bypassed through the branch where the shut-off valve 50 is located. Only a small amount or no refrigerant flows through the sixth heat exchanger 30, which reduces the influence of the sixth heat exchanger 30 on the refrigeration effect. In the heating mode or the heating and dehumidifying mode, the shut-off valve 50 is closed. By controlling the shut-off valve 50, the on-off of the branch is realized. Applied to different modes, the shut-off valve 50 has a simple structure and reliable on-off control.
  • Referring to FIGS. 1 to 4 again, the thermal management system also includes a check valve 60. The check valve 60 is disposed in parallel with the second throttling device 20. Among them, in the cooling mode, the check valve 60 is opened, and the second throttling device 20 is closed. In the heating mode or the heating and dehumidifying mode, the check valve 60 is closed, and the second throttling device 20 throttles. By controlling the check valve 60 and the second throttling device 20, the on-off of the branch is realized, which can be applied to different modes.
  • It should be noted that in the embodiment of the present disclosure, the first throttling device 3 and the second throttling device 20 can play the role of throttling and depressurizing, and blocking in the thermal management system, and may include a throttling valve, an ordinary thermal expansion valve or an electronic expansion valve etc.
  • In addition, referring to FIG. 1 again, the thermal management system may further include a second fan 70 located in the passage of the air-conditioning box 13. The second heat exchanger 4 and the sixth heat exchanger 30 are disposed along the air flow direction of the second fan 70. With this arrangement, the second heat exchanger 4 and the sixth heat exchanger 30 share the fan, which saves installation space. Optionally, the second fan 70, the second heat exchanger 4 and the sixth heat exchanger 30 are disposed in a line or a row at intervals.
  • It is noted that the thermal management system of the present embodiments can be applied to houses, vehicles or other equipment.
  • The above descriptions are only preferred embodiments of the present disclosure, and are not intended to limit the present disclosure. Any modification, equivalent replacement, improvement, etc., made within the spirit and principle of the present disclosure shall be included in the protection scope of the present disclosure.

Claims (20)

1. A thermal management system, comprising: a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger and an air-conditioning box, the third heat exchanger comprising a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating a coolant;
wherein the thermal management system comprises a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of absorbing heat of the refrigerant in the first heat exchange portion; and
wherein the fourth heat exchanger is located outside the air-conditioning box.
2. The thermal management system according to claim 1, further comprising a first fan located outside the air-conditioning box, the first heat exchanger and the fourth heat exchanger sharing the first fan for heat dissipation.
3. The thermal management system according to claim 1, further comprising a fifth heat exchanger, the fifth heat exchanger comprising a third heat exchange portion and a fourth heat exchange portion capable of exchanging heat with the third heat exchange portion; wherein
in the cooling mode, the outlet of the compressor, the first heat exchange portion, the first heat exchanger, the third heat exchange portion, the first throttling device, the second heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form the first refrigerant loop.
4. The thermal management system according to claim 1, further comprising a second throttling device and a sixth heat exchanger, the sixth heat exchanger being located in the air-conditioning box;
wherein the thermal management system further comprises a heating mode; in the heating mode, the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the second throttling device, the first heat exchanger and the inlet of the compressor are in communication to form a second refrigerant loop.
5. The thermal management system according to claim 1, further comprising a fifth heat exchanger, a second throttling device and a sixth heat exchanger, the fifth heat exchanger comprising a third heat exchange portion and a fourth heat exchange portion capable of exchanging heat with the third heat exchange portion, the sixth heat exchanger being located in the air-conditioning box;
wherein the thermal management system further comprises a heating and dehumidifying mode; and
wherein in the heating and dehumidifying mode, the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the second throttling device, the third heat exchange portion, the first heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form the second refrigerant loop; and the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the first throttling device, the second heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form a third refrigerant loop.
6. The thermal management system according to claim 5, further comprising a four-way valve, the four-way valve having a first port, a second port, a third port and a fourth port;
wherein the first heat exchange portion comprises a first inlet and a first outlet; the first heat exchanger comprises a first connection port and a second connection port; the second heat exchanger comprises a third connection port and a fourth connection port; the sixth heat exchanger comprises a fifth connection port and a sixth connection port; the third heat exchange portion comprises a seventh connection port and an eighth connection port; and
wherein the first inlet is in communication with the outlet of the compressor; the first outlet is in communication with the fifth connection port; the first port is in communication with the sixth connection port; the second port is in communication with the first connection port; the second connection port is in communication with the seventh connection port; the eighth connection port is in communication with one end of the second throttling device; the third port is in communication with the other end of the second throttling device and in communication with one end of the first throttling device; the third connection port is in communication with the other end of the first throttling device; and the fourth connection port and the fourth port are in communication with the inlet of the compressor through the fourth heat exchange portion.
7. The thermal management system according to claim 6, further comprising a shut-off valve, one end of the shut-off valve being in communication with the first outlet and being in communication with the fifth connection port, the other end of the shut-off valve being in communication with the first port and being in communication with the sixth connection port.
8. The thermal management system according to claim 7, wherein in the cooling mode, the shut-off valve is opened; and in the heating and dehumidifying mode, the shut-off valve is closed.
9. The thermal management system according to claim 6, further comprising a gas-liquid separator, the fourth connection port and the fourth port being in communication with an inlet of the gas-liquid separator, an outlet of the gas-liquid separator being in communication with the fourth heat exchange portion.
10. The thermal management system according to claim 4, further comprising a check valve, the check valve being disposed in parallel with the second throttling device.
11. The thermal management system according to claim 10, wherein in the cooling mode, the check valve is opened and the second throttling device is closed; and in the heating mode, the check valve is closed and the second throttling device is opened.
12. The thermal management system according to claim 1, further comprising a first branch which is disposed in parallel with the third heat exchanger, the first branch being provided with a control valve.
13. The thermal management system according to claim 12, wherein in the cooling mode, the control valve is closed.
14. The thermal management system according to claim 1, further comprising a pump device and a functional component that requires heat dissipation, the pump device and the functional component being disposed in the coolant loop.
15. A thermal management system, comprising: an air-conditioning box, a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and a power device to make a coolant flow; the first heat exchanger and the fourth heat exchanger being located outside the air-conditioning box, the second heat exchanger being located in the air-conditioning box, the third heat exchanger comprising a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating the coolant;
wherein the thermal management system comprises a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; and
wherein the power device, the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of exchanging heat with the refrigerant in the first heat exchange portion in order to cool down the refrigerant in the first heat exchange portion.
16. The thermal management system according to claim 15, further comprising a fifth heat exchanger, the fifth heat exchanger comprising a third heat exchange portion and a fourth heat exchange portion capable of exchanging heat with the third heat exchange portion;
wherein in the cooling mode, the outlet of the compressor, the first heat exchange portion, the first heat exchanger, the third heat exchange portion, the first throttling device, the second heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form the first refrigerant loop.
17. The thermal management system according to claim 15, further comprising a second throttling device and a sixth heat exchanger, the sixth heat exchanger being located in the air-conditioning box;
wherein the thermal management system further comprises a heating mode; in the heating mode, the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the second throttling device, the first heat exchanger and the inlet of the compressor are in communication to form a second refrigerant loop.
18. The thermal management system according to claim 15, further comprising a fifth heat exchanger, a second throttling device and a sixth heat exchanger, the fifth heat exchanger comprising a third heat exchange portion and a fourth heat exchange portion capable of exchanging heat with the third heat exchange portion, the sixth heat exchanger being located in the air-conditioning box;
wherein the thermal management system further comprises a heating and dehumidifying mode; and
wherein in the heating and dehumidifying mode, the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the second throttling device, the third heat exchange portion, the first heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form the second refrigerant loop; and the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the first throttling device, the second heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form a third refrigerant loop.
19. The thermal management system according to claim 15, wherein the coolant loop comprises a functional component that requires heat dissipation, and the functional component comprises a motor and/or a battery.
20. The thermal management system according to claim 15, wherein the third heat exchanger comprises a first collecting member, a second collecting member, a heat exchange tube and a casing; two ends of the heat exchange tube are fixedly connected to the first collecting member and the second collecting member, respectively; each of the first collecting member and the second collecting member defines a collecting cavity, the collecting cavity is in communication with a tube cavity of the heat exchange tube to circulate the refrigerant; the casing is hermetically connected to the first collecting member and the second collecting member to enclose a heat exchange cavity; the casing further comprises an inlet pipe and an outlet pipe, and the inlet pipe and the outlet pipe are in communication with the heat exchange cavity to circulate the coolant.
US17/609,770 2019-09-30 2020-09-25 Thermal management system Pending US20220243961A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910945514.7 2019-09-30
CN201910945514.7A CN112577213A (en) 2019-09-30 2019-09-30 Thermal management system
PCT/CN2020/117923 WO2021063272A1 (en) 2019-09-30 2020-09-25 Heat management system

Publications (1)

Publication Number Publication Date
US20220243961A1 true US20220243961A1 (en) 2022-08-04

Family

ID=75116906

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/609,770 Pending US20220243961A1 (en) 2019-09-30 2020-09-25 Thermal management system

Country Status (4)

Country Link
US (1) US20220243961A1 (en)
EP (1) EP3982059B1 (en)
CN (1) CN112577213A (en)
WO (1) WO2021063272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808026C1 (en) * 2023-03-23 2023-11-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Heat pump unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134217A1 (en) * 2003-01-09 2004-07-15 Satoshi Itoh Air conditioner with dehumidifying and heating operation
US20080223562A1 (en) * 2005-09-12 2008-09-18 Viorel Braic Heat Exchanger, in Particular Charge-Air Cooler or Exhaust Gas Cooler for an Internal Combustion Engine of a Motor Vehicle
FR2971047A1 (en) * 2011-02-01 2012-08-03 Peugeot Citroen Automobiles Sa Reversible heat exchanger for use as e.g. condenser in air-conditioning system of motor vehicle, has valves activated/deactivated when coolant circulates in circulation direction/opposite circulation direction, respectively
US20140069123A1 (en) * 2012-09-07 2014-03-13 Hyundai Motor Company Heat pump system for vehicle and method of controlling the same
US20200148039A1 (en) * 2017-06-27 2020-05-14 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system and flow control device
US20200240678A1 (en) * 2017-06-27 2020-07-30 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system
US20210116153A1 (en) * 2018-06-14 2021-04-22 Hangzhou Sanhua Research Institute Co., Ltd. Heat pump system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517529B2 (en) * 2000-07-21 2010-08-04 株式会社日本自動車部品総合研究所 Heat pump cycle, heating device, vehicle heating device, heating device, and vapor compression refrigeration cycle
JP2002195677A (en) * 2000-10-20 2002-07-10 Denso Corp Heat pump cycle
JP4151236B2 (en) * 2001-06-07 2008-09-17 三菱電機株式会社 Flow control device and air conditioner
DE10201741A1 (en) * 2002-01-18 2003-08-07 Daimler Chrysler Ag Vehicle with air conditioning and a heat source
WO2019069666A1 (en) * 2017-10-02 2019-04-11 カルソニックカンセイ株式会社 Air conditioning device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134217A1 (en) * 2003-01-09 2004-07-15 Satoshi Itoh Air conditioner with dehumidifying and heating operation
US20080223562A1 (en) * 2005-09-12 2008-09-18 Viorel Braic Heat Exchanger, in Particular Charge-Air Cooler or Exhaust Gas Cooler for an Internal Combustion Engine of a Motor Vehicle
FR2971047A1 (en) * 2011-02-01 2012-08-03 Peugeot Citroen Automobiles Sa Reversible heat exchanger for use as e.g. condenser in air-conditioning system of motor vehicle, has valves activated/deactivated when coolant circulates in circulation direction/opposite circulation direction, respectively
US20140069123A1 (en) * 2012-09-07 2014-03-13 Hyundai Motor Company Heat pump system for vehicle and method of controlling the same
US20200148039A1 (en) * 2017-06-27 2020-05-14 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system and flow control device
US20200240678A1 (en) * 2017-06-27 2020-07-30 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system
US20210116153A1 (en) * 2018-06-14 2021-04-22 Hangzhou Sanhua Research Institute Co., Ltd. Heat pump system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FR 2971047 A1 Translation (Year: 2012) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808026C1 (en) * 2023-03-23 2023-11-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Heat pump unit

Also Published As

Publication number Publication date
WO2021063272A1 (en) 2021-04-08
EP3982059B1 (en) 2024-05-15
EP3982059A4 (en) 2022-08-17
CN112577213A (en) 2021-03-30
EP3982059A1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
US10401077B2 (en) Chilled water cooling system
US11760162B2 (en) Thermal management system
US20200070628A1 (en) Thermal management system
CN106828015B (en) Combined heat control system for automobile air conditioner and battery
CN113173050B (en) Thermal management system
CN104515323A (en) Heat pump system for vehicle
CN210951942U (en) Thermal management system
US11358438B2 (en) Automotive air conditioning system
CN111231612B (en) Thermal management system
CN113173049B (en) Thermal management system
JP2005299935A (en) Air conditioner
CN109080409B (en) Heat pump system, air conditioner and car
CN112428771B (en) Thermal management system
JP5246891B2 (en) Heat pump system
JP5373959B2 (en) Air conditioner
US20220243961A1 (en) Thermal management system
KR102061757B1 (en) Module type hybrid outdoor unit for air conditioning apparatus
KR20220033592A (en) Automotive heat pump system
KR100613502B1 (en) Heat pump type air conditioner
US20230398835A1 (en) Thermal management system
KR100624811B1 (en) Circulation Device For Receiver refrigerants
CN118163567A (en) Thermal management system
CN118238578A (en) Thermal management system
KR910009192Y1 (en) Air-conditioner
CN114290870A (en) Carbon dioxide heat pump air conditioner thermal management system for new energy automobile and control method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: HANGZHOU SANHUA RESEARCH INSTITUTE CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DONG, JUNQI;JIA, SHIWEI;WANG, YIBIAO;REEL/FRAME:058055/0260

Effective date: 20210726

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER