US20220212375A1 - Polymeric hollow articles containing chroman-based compounds and made by rotational molding - Google Patents

Polymeric hollow articles containing chroman-based compounds and made by rotational molding Download PDF

Info

Publication number
US20220212375A1
US20220212375A1 US17/697,232 US202217697232A US2022212375A1 US 20220212375 A1 US20220212375 A1 US 20220212375A1 US 202217697232 A US202217697232 A US 202217697232A US 2022212375 A1 US2022212375 A1 US 2022212375A1
Authority
US
United States
Prior art keywords
bis
chosen
tetramethyl
triazine
hydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/697,232
Inventor
Ram Gupta
Sari-Beth Samuels
Thomas Steele
J. Mon Hei ENG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cytec Technology Corp
Original Assignee
Cytec Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytec Technology Corp filed Critical Cytec Technology Corp
Priority to US17/697,232 priority Critical patent/US20220212375A1/en
Publication of US20220212375A1 publication Critical patent/US20220212375A1/en
Assigned to CYTEC TECHNOLOGY CORP. reassignment CYTEC TECHNOLOGY CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAMUELS, SARI-BETH, ENG, J. MON HEI, GUPTA, RAM, STEELE, THOMAS
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/04Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/70Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with two hydrocarbon radicals attached in position 2 and elements other than carbon and hydrogen in position 6
    • C07D311/723,4-Dihydro derivatives having in position 2 at least one methyl radical and in position 6 one oxygen atom, e.g. tocopherols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/138Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0625LLDPE, i.e. linear low density polyethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention generally relates to the production of hollow articles using the rotational molding process. More particularly, the present invention relates to the additives described hereinbelow and their use in such processes to improve molding cycle time (i.e., reducing curing time) while maintaining process stability over a broader range of temperatures.
  • Rotational molding, or rotomolding is a high-temperature, low-pressure forming process that uses heat and biaxial rotation to produce hollow, one-piece parts, typically made of plastic.
  • plastic hollow parts typically made by a rotomolding process include, for example, gasoline containers, garbage cans, agricultural storage vessels, septic tanks, toys, and sporting goods such as kayaks.
  • the process is undertaken by loading a charge of finely divided plastic resin into the mold “shell”, then rotating the mold (usually, on two axes) while heating it to a temperature above the melting point of the plastic resin.
  • the melted plastic flows through the mold cavity under the forces caused by the rotation of the apparatus. The rotation continues for sufficient time to allow the molten plastic to cover the surface of the mold.
  • the mold is then cooled to permit the plastic to freeze into a solid.
  • the final stage of the molding cycle is the removal of the part from the rotomolding machine.
  • the time required to complete the molding cycle is a function of the bulk properties of the plastic which is being molded.
  • the plastic resin which is charged into the mold is preferably finely divided (i.e. ground into powder) and has a high bulk density and a narrow particle size distribution to facilitate the “free flow” of the resin.
  • the physical properties of the rotomolded part are influenced by the use of a proper molding cycle time with “undercooked” parts having poor strength properties and “overcooked” parts suffering from poor appearance (a “burnt” color) and/or a deterioration of strength properties. It is desirable to have a short molding cycle (so as to improve the productivity of the expensive rotomolding machinery) and a broad processing window.
  • the rotomolding composition ideally provides “properly cooked” parts in a short period of time but does not become “overcooked” for an extended period of time.
  • the length of time the resin-filled mold spends in the oven is critical, because if left too long the polymer will yellow and/or degrade, thereby negatively affecting the mechanical and/or physical properties of the molded article (e.g., reducing impact strength). If the time the resin filled mold spends in the oven is too short, the sintering and laydown of the molten polymer will be incomplete, thereby negatively affecting the final physical and/or mechanical properties of the molded article. Thus, there is only a narrow temperature and/or time range for achieving the desired mechanical and/or physical properties of the molded article (i.e., processing window). Accordingly, it would be advantageous to widen/broaden this processing window so that parts that have been processed with longer oven cycle times will still exhibit optimal mechanical and/or physical properties.
  • additives are known and have been used in the rotomolding process to stabilize the polyolefin material and effectively reduce the production of microstructural defects during the heating cycle of the rotomolding process, which negatively affect the molded article.
  • Some of these additives are also known to affect the cycle time of the rotomolding process. See, e.g., Botkin et al., 2004 “An additive approach to cycle time reduction in rotational molding,” Society of Plastics Engineers Rotomolding Conference, Session 2.
  • the use of stabilizer combinations of phosphites or phosphonites with sterically hindered phenols in polyolefins is generally known.
  • Such phenolic/phosphite or phosphonite blends e.g., CYANOX® 2777 antioxidant (available from Cytec Industries Inc., Woodland Park N.J.)
  • CYANOX® 2777 antioxidant available from Cytec Industries Inc., Woodland Park N.J.
  • Other stabilizer compositions e.g., hydroxylamine derivatives blended with phosphites and/or phosphonites and HALS
  • improves to widen the processing window by using sterically hindered amines are disclosed in US Patent Application Publication No. 2009/0085252.
  • a stabilizer composition that effectively reduces the time for sintering and laydown of the polymer melt (with reduced oven cycle time), while maintaining a broad processing window, would be a useful advance in the field, and would find rapid acceptance in the rotational molding industry. Shorter cycle times would lead to greater production yield, higher production efficiency, and, thus, lower energy uses. Formulations exhibiting a broadened process window would be easier to fabricate, without concerns about overcuring and the potential for deterioration of the mechanical properties of the resulting part. Further, formulations exhibiting both a broadened process window and shorter cycle time would enable molders to fabricate parts of different thickness at the same time, thereby further enhancing productivity.
  • stabilizer compositions and processes for using same for reducing cycle time without compromising the processing window in rotational molding processes related to polyolefin articles.
  • These stabilizer compositions and processes effectively reduce the time in the oven needed to reach optimal physical and/or mechanical properties, thereby reducing cycle times of the rotomolding process and consequently increasing production yield and production efficiency, and lowering energy requirements.
  • a stabilizer composition for use in producing a polymeric hollow article in a rotomolding process comprises stabilizing amounts of:
  • R 21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
  • R 22 is chosen from H or C 1 -C 12 hydrocarbyl
  • R 23 is chosen from H or C 1 -C 20 hydrocarbyl
  • each of R 24 -R 25 is independently chosen from H, C 1 -C 12 hydrocarbyl or OR′′′′, wherein R′′′′ is chosen from H or C 1 -C 12 hydrocarbyl;
  • R 26 is H or a bond which together with R 25 forms ⁇ O;
  • a polymeric hollow article is made by a process comprising: a) filling a mold with a polyolefin and a stabilizing amount of the stabilizer composition; b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold; c) cooling the mold; and d) opening the mold to remove the resulting product, thereby producing the polymeric hollow article.
  • the polyolefin, vitamin E acetate, phosphite or phosphonite compound, and at least one basic co-additive, and amounts of the vitamin E acetate, phosphite or phosphonite compound, and at least one basic co-additive are selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of sterically hindered amine light stabilizers (HALS): a maximum mean failure energy (MFE) of the polymeric article is reached at a shorter time interval; a higher MFE of the polymeric article is retained over a longer heating time; or a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
  • MFE maximum mean failure energy
  • PIAT peak internal air temperature
  • FIG. 1 illustrates the mean failure energy (MFE) of rotomolded parts made with control stabilizer system ( ⁇ ) vs. low phenolic stabilizer system ( ⁇ ) vs. a processing stabilizer system according to the invention ( ⁇ ).
  • MFE mean failure energy
  • the rotomolded part formulated according to the invention unexpectedly retains a higher MFE at longer oven times than do the rotomolded parts formulated with either the control or low phenolic stabilizer systems. Accordingly, the benefit of using a processing stabilizer according to the invention in a rotational molding process is due to the use of a chroman-based compound and not due to use of a lower amount of phenolic/phosphite.
  • FIGS. 2A-B illustrate the MFE of 1 ⁇ 4′′ rotomolded parts made with control stabilizer ( ⁇ ) and stabilizer system according to the invention ( ⁇ ) in a LLDPE resin provided by a particular supplier (Resin 1), and the Yellowness Index of the same rotomolded parts as a function of peak internal air temperature.
  • FIGS. 3A-B illustrate the MFE of 1 ⁇ 4′′ rotomolded parts made with control/state-of-the-art stabilizer ( ⁇ ); stabilizer system according to the invention ( ⁇ ); and a second control/state-of-the-art stabilizer ( ⁇ ) in a LLDPE resin provided by a different supplier (Resin 2), and the Yellowness Index of the same rotomolded parts as a function of peak internal air temperature.
  • compositions and processes using same that have now been discovered and disclosed herein for the first time are surprisingly useful for achieving optimal physical and/or mechanical properties of a rotomolded hollow article in a shorter period of time in the oven (i.e., cycle time) compared to those rotomolded articles made with current commercially available polymer stabilizer packages.
  • processes and compositions disclosed herein additionally (and surprisingly) provide a wider/broader processing window within which the desired final properties of the rotomolded article can be obtained before the physical and/or mechanical properties are negatively affected.
  • hydrocarbyl is a generic term encompassing aliphatic, alicyclic and aromatic groups having an all-carbon backbone and consisting of carbon and hydrogen atoms.
  • one or more of the carbon atoms making up the carbon backbone may be replaced or interrupted by a specified atom or group of atoms, such as by one or more heteroatom of N, O, and/or S.
  • hydrocarbyl groups include alkyl, cycloalkyl, cycloalkenyl, carbocyclic aryl, alkenyl, alkynyl, alkylcycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, and carbocyclic aralkyl, alkaryl, aralkenyl and aralkynyl groups.
  • Such hydrocarbyl groups can also be optionally substituted by one or more substituents as defined herein. Accordingly, the chemical groups or moieties discussed in the specification and claims should be understood to include the substituted or unsubstituted forms.
  • the examples and preferences expressed below also apply to each of the hydrocarbyl substituent groups or hydrocarbyl-containing substituent groups referred to in the various definitions of substituents for compounds of the formulas described herein unless the context indicates otherwise.
  • Preferred non-aromatic hydrocarbyl groups are saturated groups such as alkyl and cycloalkyl groups.
  • the hydrocarbyl groups can have up to fifty carbon atoms, unless the context requires otherwise.
  • Hydrocarbyl groups with from 1 to 30 carbon atoms are preferred.
  • C 1-20 hydrocarbyl groups such as C 1-12 hydrocarbyl groups (e.g. C 1-6 hydrocarbyl groups or C 1-4 hydrocarbyl groups), specific examples being any individual value or combination of values selected from C 1 through C 30 hydrocarbyl groups.
  • Alkyl is intended to include linear, branched, or cyclic hydrocarbon structures and combinations thereof.
  • Lower alkyl refers to alkyl groups of from 1 to 6 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s- and t-butyl and the like.
  • Preferred alkyl groups are those of C 30 or below.
  • Alkoxy or alkoxyalkyl refers to groups of from 1 to 20 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like.
  • Acyl refers to formyl and to groups of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 carbon atoms of a straight, branched, cyclic configuration, saturated, unsaturated and aromatic and combinations thereof, attached to the parent structure through a carbonyl functionality. Examples include acetyl, benzoyl, propionyl, isobutyryl, t-butoxycarbonyl, benzyloxycarbonyl and the like. Lower-acyl refers to groups containing one to six carbons.
  • references to “carbocyclic” or “cycloalkyl” groups as used herein shall, unless the context indicates otherwise, include both aromatic and non-aromatic ring systems.
  • the term includes within its scope aromatic, non-aromatic, unsaturated, partially saturated and fully saturated carbocyclic ring systems.
  • such groups may be monocyclic or bicyclic and may contain, for example, 3 to 12 ring members, more usually 5 to 10 ring members.
  • Examples of monocyclic groups are groups containing 3, 4, 5, 6, 7, and 8 ring members, more usually 3 to 7, and preferably 5 or 6 ring members.
  • Examples of bicyclic groups are those containing 8, 9, 10, 11 and 12 ring members, and more usually 9 or 10 ring members.
  • non-aromatic carbocycle/cycloalkyl groups include c-propyl, c-butyl, c-pentyl, c-hexyl, and the like.
  • C 7 to C 10 polycyclic hydrocarbons include ring systems such as norbornyl and adamantyl.
  • Aryl refers to a 5- or 6-membered aromatic carbocycle ring containing; a bicyclic 9- or 10-membered aromatic ring system; or a tricyclic 13- or 14-membered aromatic ring system.
  • the aromatic 6- to 14-membered carbocyclic rings include, e.g., substituted or unsubstituted phenyl groups, benzene, naphthalene, indane, tetralin, and fluorene.
  • Substituted hydrocarbyl, alkyl, aryl, cycloalkyl, alkoxy, etc. refer to the specific substituent wherein up to three H atoms in each residue are replaced with alkyl, halogen, haloalkyl, hydroxy, alkoxy, carboxy, carboalkoxy (also referred to as alkoxycarbonyl), carboxamido (also referred to as alkylaminocarbonyl), cyano, carbonyl, nitro, amino, alkylamino, dialkylamino, mercapto, alkylthio, sulfoxide, sulfone, acylamino, amidino, phenyl, benzyl, halobenzyl, heteroaryl, phenoxy, benzyloxy, heteroaryloxy, benzoyl, halobenzoyl, or loweralkylhydroxy.
  • halogen means fluorine, chlorine, bromine or iodine.
  • chroman-based compound refers to those compounds having a functional chroman group as part of the compound. In certain embodiments the chroman-based compound will be substituted. In other embodiments, the chroman-based compound can include chromanones. Coumarin and tocotrienols are specific examples of chroman-based compounds.
  • cycle time or “molding cycle” as used herein are given their ordinary meaning as commonly understood by those of skill in the rotomolding arts and refer to the time from one point in the cycle to the corresponding point in the next repeated sequence (i.e., the time required to produce a plastic part in a molding operation as measured from a point of one operation to the same point of the first repeat of the operation).
  • optical mechanical property or “optimal physical property” as used herein refer to rotomolded parts having the most desirable: impact strength, coalescence or scintering of polymer particles, and general appearance such as color.
  • Rotational molding technology is well known and described in the literature. Many aspects of the rotational molding process are described, for example, by R. J. Crawford and J. L. Throne in Rotational Molding Technology , Plastics Design Library, William Andrew Publishing, 2001.
  • the rotomolded articles described herein are made from stabilized polymer compositions according to the invention using rotational molding techniques generally accepted by those skilled in the art as being representative of commercial rotational molding processes. In general, these rotational molding techniques involve the use of a rotational mold and an oven.
  • a polymer composition e.g., a stabilized polymer composition including a stabilizer composition and a polymer composition as described herein
  • a polymer composition is placed in a mold possessing a predetermined shape.
  • the mold is heated within the oven at a predetermined rate to a peak temperature. During heating, the resin melts and the mold is rotated in two or three dimensions to ensure that the melted resin evenly coats the interior surfaces of the mold. Optionally, the melted resin may be cured for a predetermined time. After heating is complete, the mold is removed from the oven and cooled (with the mold optionally being in rotation). Once cool, the formed plastic part is removed from the mold.
  • the invention provides a process for reducing cycle time while maintaining an enlarged process window in a rotational molding process for producing a polymeric hollow article by subjecting a polymer composition and a polymer-stabilizing amount of a stabilizer composition to a rotational molding process, wherein the stabilizer composition includes at least one chroman-based compound according to Formula V as described herein.
  • the cycle time of the process will be reduced by at least 4%, at least 5%, at least 10%, at least 15%, or at least 20%, at least 25%, at least 40%, or at least 50% as compared to a process that does not include at least one chroman-based compound in the resin formulation.
  • the invention provides a process for producing a polymeric hollow article by a) filling a mold with a polymer composition and a polymer-stabilizing amount of a stabilizer composition, wherein the stabilizer composition includes at least one chroman-based compound according to Formula V as described herein; b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold; c) cooling the mold; and d) opening the mold to remove the resulting product, thereby producing a polymeric hollow article.
  • the temperature of the oven can reach from 70° C. to 400° C., preferably from 280° C. to 400° C., and more preferably from 310° C. to 400° C.
  • a stabilizer composition for use in producing a polymeric hollow article in a rotomolding process comprises a stabilizing amount of:
  • R 21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
  • R 22 is chosen from H or C 1 -C 12 hydrocarbyl
  • R 23 is chosen from H or C 1 -C 20 hydrocarbyl
  • each of R 24 -R 25 is independently chosen from H, C 1 -C 12 hydrocarbyl or OR′′′′, wherein R′′′′ is chosen from H or C 1 -C 12 hydrocarbyl;
  • R 26 is H or a bond which together with R 25 forms ⁇ O;
  • the stabilizer compositions according to the invention and suitable for use with the polymer compositions for the rotomolding processes as described herein include at least one chroman-based compound according to Formula (V):
  • R 21 is present at from 0 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
  • R 22 is chosen from H or C 1 -C 12 hydrocarbyl
  • R 23 is chosen from H or C 1 -C 20 hydrocarbyl
  • each of R 24 -R 25 is independently chosen from H, C 1 -C 12 hydrocarbyl or OR′′′′, wherein R′′′′ is chosen from H or C 1 -C 12 hydrocarbyl;
  • R 26 is H or a bond which together with R 25 forms ⁇ O.
  • R 21 is present as acyl and methyl.
  • R 23 is a C 1 -C 18 hydrocarbyl.
  • the chroman-based compound according to Formula (V) is a tocotrienol, including, but not limited to, ⁇ -tocotrienol; ⁇ -tocotrienol; ⁇ -tocotrienol, and 6-tocotrienol.
  • the chroman-based compound is a tocopherol including, but not limited to, ⁇ -tocopherol, 0-tocopherol, ⁇ -tocopherol, and 6-tocopherol.
  • the chroman-based compound is vitamin E acetate according to Formula (Va):
  • R 21 is —OC(O)CH 3 .
  • the stabilizer composition includes two or more chroman-based compounds according to Formula (V).
  • the chroman-based compound is present from 0.001% to 5.0% by weight of the total weight of a stabilized polymer composition, preferably from 0.01% to 2.0% by weight of the total weight of the stabilized polymer composition, and more preferably from 0.01% to 1.0% by weight of the total weight of the stabilized polymer composition. In certain embodiments, the chroman-based compound is present at about 0.05% by weight of the total weight of the stabilized polymer composition.
  • the polymer is a polyolefin and the stabilized polymer composition is a polyolefin.
  • the stabilizer composition can further include at least one compound chosen from the group of organic phosphites or phosphonites.
  • the organic phosphite or phosphonite compound includes at least one organic phosphite or phosphonite chosen from:
  • a 1 if n is 2, is C 2 -C 18 alkylene; C 2 -C 12 alkylene interrupted by oxygen, sulfur or —NR 4 —; a radical of the formula
  • a 1 if n or q is 3, is a trivalent radical of the formula —C r H 2r ⁇ 1 —; wherein r is an integer from 4 to 12;
  • B is a direct bond, —CH 2 —, —CHR 4 —, —CR 1 R 4 —, sulfur, C 5 -C 7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C 1 -C 4 alkyl radicals in position 3, 4 and/or 5;
  • D 1 if p is 1, is C 1 -C 4 alkyl and, if p is 2, is —CH 2 OCH 2 —;
  • D 2 is C 1 -C 4 alkyl
  • E if y is 1, is C 1 -C 18 alkyl, —OR 1 or halogen;
  • E if y is 2, is —O-A 2 -O—, wherein A 2 is as defined for A 1 when n is 2;
  • E if y is 3, is a radical of the formula R 4 C(CH 2 O—) 3 or N(CH 2 CH 2 O—) 3 ;
  • Q is the radical of an at least z-valent mono- or poly-alcohol or phenol, this radical being attached via the oxygen atom of the OH group of the mono- or poly-alcohol or phenol to the phosphorus atom;
  • R 1 , R 2 and R 3 independently of one another are C 1 -C 18 alkyl which is unsubstituted or substituted by halogen, —COOR 4 , —CN or —CONR 4 R 4 ; C 2 -C 18 alkyl interrupted by oxygen, sulfur or —NR 4 —; C 7 -C 9 phenylalkyl; C 5 -C 12 cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon atoms or by C 7 -C 9 phenylalkyl; or a radical of the formula
  • n is an integer from the range 3 to 6;
  • R 4 is hydrogen, C 1 -C 5 alkyl, C 5 -C 12 cycloalkyl or C 7 -C 9 phenylalkyl;
  • R 5 and R 6 independently of one another are hydrogen, C 1 -C 5 alkyl or C 5 -C 6 cycloalkyl;
  • R 7 and R 8 if q is 2, independently of one another are C 1 -C 4 alkyl or together are a 2,3-dehydropentamethylene radical;
  • R 7 and R 8 if q is 3, are methyl
  • each instance of R 14 is independently hydrogen, C 1 -C 9 alkyl or cyclohexyl;
  • each instance of R 15 is independently hydrogen or methyl
  • X and Y are each a direct bond or oxygen
  • Z is a direct bond, methylene, —C(R 16 ) 2 — or sulfur
  • R 16 is C 1 -C 8 alkyl
  • R 17 is present at from 0 to 5 positions of the aromatic portion of Formula (8) and in each instance is independently chosen from C 1 -C 20 alkyl, C 3 -C 20 cycloalkyl, C 4 -C 20 alkyl cycloalkyl, C 6 -C 10 aryl or C 7 -C 20 alkylaryl; or
  • the following organic phosphites or phosphonites are preferred: triphenyl phosphite; diphenyl alkyl phosphites; phenyl dialkyl phosphites; trilauryl phosphite; trioctadecyl phosphite; distearyl pentaerythritol phosphite; tris(2,4-di-t-butylphenyl) phosphite; tris(nonylphenyl) phosphite; a compound of formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) or (L):
  • 2-butyl-2-ethyl-1,3-propanediol 2,4,6-tri-t-butylphenol phosphite 2-butyl-2-ethyl-1,3-propanediol 2,4,6-tri-t-butylphenol phosphite; bis-(2,6-di-t-butyl-4-methlphenyl) pentaerythritol diphosphite; 2-butyl-2-ethyl-1,3-propanediol 2,4-di-cumylphenol phosphite; 2-butyl-2-ethyl-1,3-propanediol 4-methyl-2,6-di-t-butylphenol phosphite or bis-(2,4,6-tri-t-butyl-phenyl) pentaerythritol diphosphite.
  • organic phosphites and phosphonites are particularly suitable for use in the rotomolding processes described herein: tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS®168); bis(2,4-dicumylphenyl)pentaerythritol diphosphite (DOVERPHOS® S9228); and tetrakis(2,4-di-t-butylphenyl)4,4′-biphenylene-diphosphonite (IRGAFOS® P-EPQ).
  • the organic phosphites or phosphonites can be present in an amount from 0.01% to 10% by weight based on the weight of the polymer material to be stabilized.
  • the amount of organic phosphite or phosphonite is available from 0.05% to 5%, and more preferably from 0.1% to 3% by weight based on the weight of the polymer material to be stabilized.
  • the stabilizer composition can further include at least one hindered phenol compound.
  • Suitable hindered phenols for use with the rotomolding processes described herein include, but are not limited to, those having a molecular fragment according to one or more of Formula (IVa), (IVb), or (IVc):
  • R 18 of Formula (IVa), (IVb), and (IVc) is independently chosen from hydrogen or a C 1-4 hydrocarbyl
  • R 19 and R 20 of Formula (IVa), (IVb), and (IVc) are the same or different and are independently chosen from hydrogen or a C 1 -C 20 hydrocarbyl
  • R 37 of Formula (IVa), (IVb), and (IVc) is independently chosen from a C 1 -C 12 hydrocarbyl.
  • R 18 and R 37 are independently chosen from methyl or t-butyl.
  • phenols also suitable for use with processes and compositions of the invention are known to those of skill in the art and include, for example:
  • 2,6-di-tert-butyl-4-methylphenol 2-tert-butyl-4,6-dimethylphenol; 2,6-di-tert-butyl-4-ethylphenol; 2,6-di-tert-butyl-4-n-butylphenol; 2,6-di-tert-butyl-4 isobutylphenol; 2,6-dicyclopentyl-4-methylphenol; 2-( ⁇ -methylcyclohexyl)-4,6 dimethylphenol; 2,6-di-octadecyl-4-methylphenol; 2,4,6,-tricyclohexyphenol; and 2,6-di-tert-butyl-4-methoxymethylphenol;
  • Hydroquinones such as 2,6-di-tert-butyl-4-methoxyphenol; 2,5-di-tert-butyihydroquinone; 2,5-di-tert-amyl-hydroquinone; and 2,6-diphenyl-4-octadecyloxyphenol; and
  • Thiodiphenyl ethers such as 2,2′-thio-bis-(6-tert-butyl-4-methylphenol); 2,2′-thio-bis-(4-octylphenol); 4,4′-thio-bis-(6-tert-butyl-3-methylphenol); and 4,4′-thio-bis-(6-tert-butyl-2-methylphenol).
  • a stabilizer composition including at least one chroman-based compound according to Formula V is suitable for stabilizing polyolefin hollow articles which are prepared by the rotomolding process.
  • polyolefins suitable for such use with the stabilizer composition according to the invention include at least the following:
  • A Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE);
  • HDPE high density polyethylene
  • HDPE-HMW high density and high molecular weight polyethylene
  • HDPE-UHMW high density and ultrahigh molecular weight polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low
  • Polyolefins i.e. the polymers of monoolefins exemplified in (A), preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
  • a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table.
  • These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated.
  • These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide.
  • These catalysts may be soluble or insoluble in the polymerisation medium.
  • the catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, IIa and/or IIIa of the Periodic Table.
  • the activators may be modified conveniently with further ester, ether, amine or silyl ether groups.
  • These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler(-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
  • (D) Copolymers of monoolefins and diolefins with each other or with other vinyl monomers for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (i
  • the polyolefin is chosen from:
  • polyethylene chosen from optionally crosslinked polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), or ultralow density polyethylene (ULDPE);
  • HDPE high density polyethylene
  • HDPE-HMW high density and high molecular weight polyethylene
  • HDPE-UHMW high density and ultrahigh molecular weight polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • ULDPE ultralow density polyethylene
  • the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
  • LLDPE linear low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • polypropylene polypropylene
  • the stabilized polymer compositions according to the invention may further include one or more co-stabilizers and/or additives that include, but are not limited to, hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
  • co-stabilizers and/or additives include, but are not limited to, hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
  • Suitable hindered amine light stabilizers for use with the processes and stabilized polymer compositions according to the invention include, for example, compounds having a molecular fragment according to Formula (VI):
  • R 31 is chosen from hydrogen, OH, C 1 -C 20 hydrocarbyl, —CH 2 CN, C 1 -C 12 acyl or C 1 -C 18 alkoxy;
  • R 38 is chosen from hydrogen or C 1 -C 8 hydrocarbyl; and each of R 29 , R 30 , R 32 , and R 33 is independently chosen from C 1 -C 20 hydrocarbyl; or R 29 and R 30 and/or R 32 and R 33 taken together with the carbon to which they are attached form a C 5 -C 1O cycloalkyl; or Formula (VIa)
  • each of G 1 -G 4 is independently a C 1 -C 20 hydrocarbyl.
  • Hindered amine light stabilizers particularly suitable for use with the present invention include, but are not limited to, bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; a condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; 2,2,6,6-tetramethylpiperidin-4-yl stearate; 2,2,6,6-tetramethylpiperidin-4-yl dodecan
  • hydroxyl-substituted N-alkoxy HALS including, but not limited to, those disclosed in U.S. Pat. No. 6,271,377 such as 1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethyl-4-piperdinol; 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine; 1-(4-octadecanoyloxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-2-octadecanoyloxy-2-methylpropane; 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol; or a reaction product of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol and dimethylsuccinate;
  • any of the tetramethylpiperidyl groups disclosed in WO 2007/104689 including, but not limited to, 2,2,4,4-tetramethyl-7-oxa-3,20-diazadispiro[5.1.11.2]heneicosan-21-one (HOSTAVIN® N20); the ester of 2,2,6,6-tetramethyl-4-piperidinol with higher fatty acids (CYASORB® 3853); 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione (SANDUVOR® 3055); and their wax reaction products such as HALS NOW (LS X—N—O—W1); or
  • the hindered amine light stabilizers include, but are not limited to, for example, 1H-Pyrrole-2,5-dione, 1-octadecyl-, polymer with (1-methylethenyl)benzene and 1-(2,2,6,6-tetramethyl-4-piperidinyl)-1H-pyrrole-2,5-dione; piperazinone, 1,1′,1′′-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,5,5-tetramethyl-; piperazinone, 1,1′,1′′-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,4,5,5-pentamethyl-; the reaction product of 7,7,9,9-tetramethyl-2-cycl
  • the hindered amine light stabilizer can be present in an amount from 0.01% to 10% by weight based on the total weight of the polymer material to be stabilized (polyolefin).
  • the amount of hindered amine is available from 0.05% to 5%, and more preferably from 0.1% to 3% by weight based on the total weight of the polymer material to be stabilized.
  • the light stabilizer can be an ultraviolet light absorber chosen from a 2-hydroxybenzophenone, a 2-(2′-hydroxyphenyl)benzotriazole, a 2-(2′-hydroxyphenyl)-1,3,5-triazine, or mixtures thereof.
  • suitable light stabilizers can include one or more of the following:
  • 2-(2′-Hydroxyphenyl)benzotriazoles for example 2-(2′-hydroxy-5′-methylphenyl)-benzotriazole; 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(5′-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(2′-hydroxy-5′-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole; 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-methylphenyl)-5-chloro-benzotriazole; 2-(3′-sec-butyl-5′-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(2′-hydroxy-4′-octyloxyphenyl
  • 2-Hydroxybenzophenones for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, or 4,2′,4′-trihydroxy and 2′-hydroxy-4,4′-dimethoxy derivatives;
  • Esters of substituted and unsubstituted benzoic acids as for example 4-tertbutyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate;
  • Nickel compounds for example nickel complexes of 2,2′-thio-bis-[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenyl undecylketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands; and
  • each of R 34 and R 35 is independently chosen from optionally substituted C 6 -C 10 aryl, C 1 -C 10 hydrocarbyl-substituted amino, C 1 -C 10 acyl or C 1 -C 10 alkoxyl; and wherein R 36 is present at from 0 to 4 positions of the phenoxy portion of Formula (VII) and in each instance is independently chosen from hydroxyl, C 1 -C 12 hydrocarbyl, C 1 -C 12 alkoxyl, C 1 -C 12 alkoxyester, or C 1 -C 12 acyl.
  • Such 2-(2-hydroxyphenyl)-1,3,5-triazines include, but are not limited to, 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine (CYASORB® 1164 available from Cytec Industries Inc.); 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy
  • the stabilized polymer compositions according to the invention include a blend of at least one hindered amine light stabilizer and at least one ultraviolet light absorber.
  • T 1 is chosen from an optionally substituted C 1 -C 36 hydrocarbyl, C 5 -C 12 cycloalkyl, or C 7 -C 9 aralkyl;
  • T 2 is chosen from hydrogen or T1; or
  • each of W 1 and W 2 is independently a C 6 -C 36 hydrocarbyl chosen from a straight or branched chain C 6 -C 36 alkyl, C 6 -C 12 aryl, C 7 -C 36 aralkyl, C 7 -C 36 alkaryl, C 5 -C 36 cycloalkyl, C 6 -C 36 alkcycloalkyl, or C 6 -C 36 cycloalkylalkyl;
  • W 3 is a C 1 -C 36 hydrocarbyl chosen from straight or branched chain C 1 -C 36 alkyl, C 6 -C 12 aryl, C 7 -C 36 aralkyl, C 7 -C 36 alkaryl, C 5 -C 36 cycloalkyl, C 6 -C 36 alkcycloalkyl; or C 6 -C 36 cycloalkylalkyl;
  • alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W 1 , W 2 and W 3 may be interrupted by from one to sixteen groups chosen from —O—, —S—, —SO—, —SO 2 —, —COO—, —OCO—, —CO—, —NW 4 —, —CONW 4 — or —NW 4 CO—, or
  • alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W 1 , W 2 and W 3 are substituted with from one to sixteen groups chosen from —OW 4 , —SW 4 , —COOW 4 , —OCOW 4 , —COW 4 , —N(W 4 ) 2 , —CON(W 4 ) 2 , —NW 4 COW 4 and 5- and 6-membered rings containing the group —C(CH 3 )(CH 2 R x )NL(CH 2 R x )(CH 3 )C—; and
  • W 4 is chosen from hydrogen or C 1 -C 8 alkyl
  • R x is chosen from hydrogen or methyl
  • L is chosen from C 1 -C 30 alkyl, —C(O)R or —OR, wherein R is C 1 -C 30 straight or branched chain alkyl; or
  • alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W 1 , W 2 and W 3 are both interrupted and substituted by any of the groups mentioned above; or
  • aryl groups of W 1 , W 2 and W 3 are substituted with from one to three substituents independently chosen from halogen, C 1 -C 8 alkyl or C 1 -C 8 alkoxy; or (iii) mixtures of (i) and (ii).
  • N,N-dihydrocarbylhydroxylamine compounds according to Formula (VIII) wherein T 1 and T 2 are independently chosen from benzyl, ethyl, octyl, lauryl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl; or wherein T 1 and T are each the alkyl mixture found in hydrogenated tallow amine.
  • hydroxylamine compounds according to Formula (VIII) are chosen from: N,N-dibenzylhydroxylamine; N,N-diethylhydroxylamine; N,N-dioctylhydroxylamine; N,N-dilaurylhydroxylamine; N,N-didodecylhydroxylamine; N,N-ditetradecylhydroxylaamine; N,N-dihexadecylhydroxylamine; N,N-dioctadecylhydroxylamine; N-hexadecyl-N-tetradecylhydroxylamine; N-hexadecyl-N-heptadecylhydroxylamine; N-hexadecyl-N-octadecylhydroxylamine; N-heptadecyl-N-octadecylhydroxylamine; N,N-di(hydrogenated tallow)hydroxylamine; or N,N-di(al
  • W 1 and W 2 are independently benzyl or substituted benzyl. It is also possible for each of W 1 , W 2 , and W 3 to be the same residue.
  • W 1 and W 2 can be alkyl groups of 8 to 26 carbon atoms, more preferably alkyl groups of 10 to 26 carbon atoms.
  • W 3 can be an alkyl group of 1 to 22 carbon atoms, more preferably methyl or substituted methyl.
  • Other preferred amine oxides include those wherein W 1 , W 2 , and W 3 are the same alkyl groups of 6 to 36 carbon atoms.
  • all of the aforementioned residues for W 1 , W 2 , and W 3 are saturated hydrocarbon residues or saturated hydrocarbon residues containing at least one of the aforementioned —O—, —S—, —SO—, —COO—, —CO—, or —CONW 4 — moieties.
  • Those skilled in the art will be able to envision other useful residues for each of W 1 , W 2 , and W 3 without detracting from the present invention.
  • the saturated amine oxides may also include poly(amine oxides).
  • poly(amine oxide) is meant tertiary amine oxides containing at least two tertiary amine oxides per molecule.
  • Illustrative poly(amine oxides), also called “poly(tertiary amine oxides)”, include, but are not limited to, the tertiary amine oxide analogues of aliphatic and alicyclic diamines such as, for example, 1,4-diaminobutane; 1,6-diaminohexane; 1,10-diaminodecane; and 1,4-diaminocyclohexane, and aromatic based diamines such as, for example, diamino anthraquinones and diaminoanisoles.
  • Suitable amine oxides for use with the invention also include tertiary amine oxides derived from oligomers and polymers of the aforementioned diamines.
  • Useful amine oxides also include amine oxides attached to polymers, for example, polyolefins, polyacrylates, polyesters, polyamides, polystyrenes, and the like. When the amine oxide is attached to a polymer, the average number of amine oxides per polymer can vary widely as not all polymer chains need to contain an amine oxide. All of the aforementioned amine oxides may optionally contain at least one —O—, —S—, —SO—, —CO 2 —, —CO—, or —CONW 4 — moiety. In a preferred embodiment, each tertiary amine oxide of the polymeric tertiary amine oxide contains a C 1 residue.
  • the groups W 1 , W 2 and W 3 of Formula (IX) may be attached to a molecule containing a hindered amine.
  • Hindered amines are known in the art and the amine oxide of the present invention may be attached to the hindered amine in any manner and structural position of the hindered amine.
  • Useful hindered amines when part of an amine oxide compound include those of the general Formulas (X) and (XI):
  • L and R x are defined as described above.
  • amine oxides containing more than one hindered amine and more than one saturated amine oxide per molecule.
  • the hindered amine may be attached to a poly(tertiary amine oxide) or attached to a polymeric substrate, as discussed above.
  • the hydroxyl amine derivatives and/or amine oxide derivatives can be used in amounts, in total, of about 0.0005% to about 5%, in particular from about 0.001% to about 2%, typically from about 0.01% to about 2% by weight, based on the weight of the polyolefin.
  • the stabilized polymer composition includes further optional co-additives chosen from nucleating agents, fillers, reinforcing agents, polymer additives or mixtures thereof.
  • Examples of such co-additives include, but are not limited to:
  • Basic co-additives for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate;
  • the basic co-additive (iii) is at least one of calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate or potassium palmitate.
  • Nucleating agents for example, inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate; polymeric compounds such as ionic copolymers (ionomers);
  • Fillers and reinforcing agents for example, calcium carbonate, silicates, glass fibres, glass bulbs, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides (e.g., aluminium hydroxide or magnesium hydroxide, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers; impact modifiers
  • Benzofuranones and indolinones for example those disclosed in U.S. Pat. Nos. 4,325,863; 4,338,244; 5,175,312; 5,216,052; 5,252,643; 5,369,159; 5,488,117; 5,356,966; 5,367,008; 5,428,162; 5,428,177; 5,516,920; DE-A-4316611; DE-A-4316622; DE-A-4316876; EP-A-0589839 or EP-A-0591102 or 3-[4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-one, 5,7-di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one, 3,3′-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofur
  • Metal deactivators for example N,N′-diphenyloxamide, N-salicylal-N′-salicyloyl hydrazine, N,N′-bis(salicyloyl)hydrazine, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl) hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N′-diacetyladipoyl dihydrazide, N,N′-bis(salicyloyl)oxalyl dihydrazide, N,N′-bis(salicyloyl)thiopropionyl dihydrazide;
  • Nitrones for example, N-benzyl-alpha-phenyl-nitrone, N-ethyl-alpha-methyl-nitrone, N-octyl-alpha-heptyl-nitrone, N-lauryl-alpha-undecyl-nitrone, N-tetradecyl-alpha-tridcyl-nitrone, N-hexadecyl-alpha-pentadecyl-nitrone, N-octadecyl-alpha-heptadecyl-nitrone, N-hexadecyl-alpha-heptadecyl-nitrone, N-ocatadecyl-alpha-pentadecyl-nitrone, N-heptadecyl-alpha-heptadecyl-nitrone, N-octadecyl-alpha-hexadecyl-nitrone, nitron
  • Thiosynergists for example, dilauryl thiodipropionate or distearyl thiodipropionate; and/or
  • Peroxide scavengers for example esters of ⁇ -thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis( ⁇ -dodecylmercapto)propionate.
  • esters of ⁇ -thiodipropionic acid for example the lauryl, stearyl, myristyl or tridecyl esters
  • mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole zinc dibutyldithiocarbamate
  • dioctadecyl disulfide pentaerythritol tetrakis( ⁇ -dodecylmercap
  • additives include, for example, plasticisers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flameproofing agents, antistatic agents, clarifying agents and blowing agents.
  • the stabilizer composition is present from 0.001% to 65.0% by weight based on the total weight of the masterbatch composition, and the amount is based on the number and type of stabilizing additives being added and/or the characteristics of the polymer composition to be stabilized.
  • the stabilizer composition is present from 0.01% to 50% by weight of the total weight of the masterbatch composition, and preferably from 0.05% to 25% by weight of the total, or from 0.1% to 10% by weight of the total.
  • Those of ordinary skill in the art will be able to readily determine the amount and type of stabilizing additive(s) that should be added based on preparations as known and/or described in the literature, or through no more than routine experimentation.
  • the stabilized polymer compositions according to the invention can be readily made by any suitable method known to those of skill in the art.
  • the components of the stabilized polymer compositions are mixed by at least one technique chosen from extruding, pelletizing, grinding, and molding.
  • mixing can be performed by at least one of melting, dissolution in a solvent, and dry mixing.
  • the incorporation of components for the stabilizer composition and optional further additives into the polymer composition is carried out by any suitable method known to those of skill in the art, for example before or after molding or also by applying the dissolved or dispersed stabilizer mixture to the polyolefin, with or without subsequent evaporation of the solvent.
  • the stabilizer components and optional further additives can also be added to the polymer compositions to be stabilized in the form of a masterbatch.
  • Components of the stabilizer composition and optional further additives can also be added before or during the polymerization or before crosslinking. They can also be incorporated into the polymer composition to be stabilized in pure form (i.e., neat and directly to the resin) or encapsulated in waxes, oils or polymers. Various additives can also be preblended (i.e., mixed together) for simple addition to the polymer compositions to be stabilized. Components of the stabilizer composition and optional further additives can also be sprayed onto the polymer compositions to be stabilized. They are able to dilute other additives (for example the conventional additives indicated above) or their melts so that they can be sprayed also together with these additives onto the polymer compositions to be stabilized. In the case of spherically polymerized polymers it may, for example, be advantageous to apply components of the stabilizer composition optionally together with other additives, by spraying.
  • the components of the stabilizer compositions and/or polymer compositions described herein may be contained in a kit.
  • the kit may include single or multiple components of at least one stabilizer composition according to the invention, at least one polymer composition according to the invention, and at least one further optional additive, each packaged or formulated individually, or single or multiple components of at least one stabilizer composition according to the invention, at least one polymer composition according to the invention, and at least one further optional additive packaged or formulated in combination.
  • one or more components of a stabilizer composition can be present in first container, and the kit can optionally include one or more components of the stabilizer composition and/or polymer composition in a second or further container.
  • the container or containers are placed within a package, and the package can optionally include administration or mixing instructions in the form of a label or website address on the package, or in the form of an insert included in the packaging of the kit.
  • a kit can include additional components or other means for administering or mixing the components as well as solvents or other means for formulation.
  • the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive can be selected so that the polyolefin remains stable and retains its optimal mechanical and/or physical properties over a longer period of time in the oven, even in the absence of a sterically hindered amine light stabilizer (HALS).
  • HALS sterically hindered amine light stabilizer
  • the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive can be selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of a sterically hindered amine light stabilizer (HALS):
  • HALS sterically hindered amine light stabilizer
  • MFE mean failure energy
  • a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
  • PIAT peak internal air temperature
  • Embodiment 1 A polymeric hollow article made by a process comprising:
  • R 21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
  • R 22 is chosen from H or C 1 -C 12 hydrocarbyl
  • R 23 is chosen from H or C 1 -C 20 hydrocarbyl
  • each of R 24 -R 25 is independently chosen from H, C 1 -C 12 hydrocarbyl or OR′′′′, wherein R′′′′ is chosen from H or C 1 -C 12 hydrocarbyl;
  • R 26 is H or a bond which together with R 25 forms ⁇ O;
  • Embodiment 2 A polymeric hollow article according to embodiment 1, wherein the at least one phosphite or phosphonite is chosen from:
  • a 1 if n or q is 2, is C 2 -C 18 alkylene; C 2 -C 12 alkylene interrupted by oxygen, sulfur or —NR 4 —; a radical of the formula
  • a 1 if n or q is 3, is a trivalent radical of the formula C r H 2r ⁇ 1 ; wherein r is an integer from 4 to 12;
  • B is a direct bond, —CH 2 —, —CHR 4 —, —CR 1 R 4 —, sulfur, C 5 -C 7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C 1 -C 4 alkyl radicals in position 3, 4 and/or 5;
  • D 1 if p is 1, is C 1 -C 4 alkyl and, if p is 2, is —CH 2 OCH 2 —;
  • D 2 if p is 1, is C 1 -C 4 alkyl
  • E if y is 1, is C 1 -C 18 alkyl, —OR 1 or halogen;
  • E if y is 2, is —O-A 2 -O—, wherein A 2 is as defined for A 1 when n is 2;
  • E if y is 3, is a radical of the formula R 4 C(CH 2 O—) 3 or N(CH 2 CH 2 O—) 3 ;
  • Q is the radical of an at least z-valent mono- or poly-alcohol or phenol, this radical being attached via the oxygen atom of the OH group of the mono- or poly-alcohol or phenol to the phosphorus atom;
  • R 1 , R 2 and R 3 independently of one another are C 1 -C 18 alkyl which is unsubstituted or substituted by halogen, —COOR 4 , —CN or —CONR 4 R 4 ; C 2 -C 18 alkyl interrupted by oxygen, sulfur or —NR 4 —; C 7 -C 9 phenylalkyl; C 5 -C 12 cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon atoms or by C 7 -C 9 phenylalkyl; or a radical of the formula
  • n is an integer from the range 3 to 6;
  • R 4 is hydrogen, C 1 -C 8 alkyl, C 5 -C 12 cycloalkyl or C 7 -C 9 phenylalkyl,
  • R 5 and R 6 independently of one another are hydrogen, C 1 -C 8 alkyl or C 5 -C 6 cycloalkyl,
  • R 7 and R 8 if q is 2, independently of one another are C 1 -C 4 alkyl or together are a 2,3-dehydropentamethylene radical;
  • R 7 and R 8 if q is 3, are methyl
  • each instance of R 14 is independently hydrogen, C 1 -C 9 alkyl or cyclohexyl;
  • each instance of R 15 is independently hydrogen or methyl
  • X and Y are each a direct bond or oxygen
  • Z is a direct bond, methylene, —C(R 16 ) 2 — or sulfur
  • R 16 is C 1 -C 8 alkyl
  • R 17 is a substituent that is present at from 0 to 5 positions of the aromatic portion of Formula (8) and in each instance is independently chosen from C 1 -C 20 alkyl, C 3 -C 20 cycloalkyl, C 4 -C 20 alkyl cycloalkyl, C 6 -C 10 aryl or C 7 -C 20 alkylaryl; or
  • Embodiment 3 A polymeric hollow article according to embodiment 1 or 2, wherein the phosphite or phosphonite is chosen from triphenyl phosphite; diphenyl alkyl phosphites; phenyl dialkyl phosphites; trilauryl phosphite; trioctadecyl phosphite; distearyl pentaerythritol phosphite; tris(2,4-di-t-butylphenyl) phosphite; tris(nonylphenyl) phosphite; a compound of formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) or (L):
  • Embodiment 4 A polymeric hollow article according to any of embodiments 1 to 3, wherein the at least one phosphite or phosphonite is chosen from tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS® 168); bis(2,4-dicumylphenyl)pentaerythritol diphosphite (DOVERPHOS® S9228) or tetrakis(2,4-di-t-butylphenyl)4,4′-biphenylene-diphosphonite (IRGAFOS® P-EPQ).
  • IRGAFOS® 168 tris(2,4-di-t-butylphenyl)phosphite
  • DOVERPHOS® S9228 bis(2,4-dicumylphenyl)pentaerythritol diphosphite
  • IRGAFOS® P-EPQ tetrakis(2,4-di-t-buty
  • Embodiment 5 A polymeric hollow article according to any of embodiments 1 to 4, wherein the stabilizer composition further comprises at least one hindered phenol.
  • Embodiment 6 A polymeric hollow article according to embodiment 5, wherein the at least one hindered phenol comprises a molecular fragment according to one or more of Formula (IVa), (IVb), or (IVc):
  • R 18 of Formula (IVa), (IVb), or (IVc) is independently chosen from hydrogen or a C 1-4 hydrocarbyl;
  • each of R 19 and R 20 of Formula (IVa), (IVb), or (IVc) is independently chosen from hydrogen or a C 1 -C 20 hydrocarbyl;
  • R 37 of Formula (IVa), (IVb), or (IVc) is independently chosen from a C 1 -C 12 hydrocarbyl.
  • Embodiment 7 A polymeric hollow article according to embodiment 6, wherein R 18 and R 37 are chosen from methyl or t-butyl.
  • Embodiment 8 A polymeric hollow article according to any of embodiments 5 to 7, wherein the at least one hindered phenol compound is chosen from (1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione; 1,1,3-tris(2′-methyl-4′-hydroxy-5′-t-butylphenyl)butane; triethylene glycol bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate]; 4,4′-thiobis(2-t-butyl-5-methylphenol); 2,2′-thiodiethylene bis[3-(3-t-butyl-4-hydroxyl-5-methylphenyl)propionate]; octadecyl 3-(3′-t-butyl-4′-hydroxy-5′-methylphenyl)propionate; tetrakismethylene(3
  • Embodiment 9 A polymeric hollow article according to any of embodiments 1 to 8, wherein R 21 is present in at least one instance as OR 27 .
  • Embodiment 10 A polymeric hollow article according to any of embodiments 1 to 9, wherein R 21 is present in at least three instances and is chosen from OR 27 or methyl.
  • Embodiment 11 A polymeric hollow article according to any of embodiments 1 to 10, wherein R 23 is a C 1 -C 18 hydrocarbyl.
  • Embodiment 12 A polymeric hollow article according to any of embodiments 1 to 11, wherein the chroman-based compound is vitamin E acetate according to Formula (Va)
  • R 21 is —OC(O)CH 3 .
  • Embodiment 13 A polymeric hollow article according to any of embodiments 1 to 12, wherein the chroman-based compound comprises two or more compounds according to Formula (V).
  • Embodiment 14 A polymeric hollow article according to any of embodiments 1 to 13, wherein the chroman-based compound is present from 0.001% to 5.0% by weight of the weight of the polyolefin.
  • Embodiment 15 A polymeric hollow article according to embodiment 14, wherein the chroman-based compound is present from 0.01% to 1.0% by weight of the weight of the polyolefin.
  • Embodiment 16 A polymeric hollow article according to any of embodiments 1 to 15, wherein the polyolefin is chosen from:
  • polyethylene chosen from optionally crosslinked polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), or ultralow density polyethylene (ULDPE);
  • HDPE high density polyethylene
  • HDPE-HMW high density and high molecular weight polyethylene
  • HDPE-UHMW high density and ultrahigh molecular weight polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • ULDPE ultralow density polyethylene
  • Embodiment 17 A polymeric hollow article according to any of embodiments 1 to 16, wherein the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
  • LLDPE linear low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • polypropylene polypropylene
  • Embodiment 18 A polymeric hollow article according to any of embodiments 1 to 17, wherein the stabilizer composition further comprises a light stabilizer chosen from hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof, in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
  • a light stabilizer chosen from hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof, in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
  • Embodiment 19 A polymeric hollow article according to embodiment 18, wherein the light stabilizer is a hindered amine light stabilizer comprising a molecular fragment according to:
  • R 31 is chosen from hydrogen, OH, C 1 -C 20 hydrocarbyl, —CH 2 CN, C 1 -C 12 acyl or C 1 -C 18 alkoxy;
  • R 38 is chosen from hydrogen or C 1 -C 8 hydrocarbyl
  • each of R 29 , R 30 , R 31 , and R 32 is independently chosen from a C 1 -C 20 hydrocarbyl; or R 60 and R 61 and/or R 63 and R 64 taken together with the carbon to which they are attached form a C 5 -C 10 cycloalkyl; or
  • n is an integer from 1 to 2;
  • R 39 is chosen from hydrogen, OH, C 1 -C 20 hydrocarbyl, —CH 2 CN, C 1 -C 12 acyl or C 1 -C 18 alkoxy;
  • each of G 1 -G 4 is independently a C 1 -C 20 hydrocarbyl.
  • Embodiment 20 A polymeric hollow article according to embodiment 19, wherein the hindered amine light stabilizer is chosen from bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; a condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; 2,2,6,6-tetramethylpiperidin-4-yl stearate; 2,2,6,6-tetramethylpiperidin-4-yl
  • Embodiment 21 A polymeric hollow article according to embodiment 18, wherein the light stabilizer is an ultraviolet light absorber chosen from a 2-hydroxybenzophenone, a 2-(2′-hydroxyphenyl)benzotriazole, a 2-(2′-hydroxyphenyl)-1,3,5-triazine, or mixtures thereof.
  • the light stabilizer is an ultraviolet light absorber chosen from a 2-hydroxybenzophenone, a 2-(2′-hydroxyphenyl)benzotriazole, a 2-(2′-hydroxyphenyl)-1,3,5-triazine, or mixtures thereof.
  • Embodiment 22 A polymeric hollow article according to embodiment 21, wherein the ultraviolet light absorber is a 2-(2′-hydroxyphenyl)-1,3,5-triazine according to Formula (VII):
  • each of R 34 and R 35 is independently chosen from optionally substituted C 6 -C 10 aryl, C 1 -C 10 hydrocarbyl-substituted amino, C 1 -C 10 acyl or C 1 -C 10 alkoxyl; and
  • R 36 is present at from 0 to 4 positions of the phenoxy portion of Formula (VII) and in each instance is independently chosen from hydroxyl, C 1 -C 12 hydrocarbyl, C 1 -C 12 alkoxyl, C 1 -C 12 alkoxyester, or C 1 -C 12 acyl.
  • Embodiment 23 A polymeric hollow article according to embodiment 22, wherein the 2-(2′-hydroxyphenyl)-1,3,5-triazine is chosen from 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine (CYASORB® 1164 available from Cytec Industries Inc.); 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine
  • Embodiment 24 A polymeric hollow article according to embodiment 18, wherein the light stabilizer is a hindered amine light stabilizer and an ultraviolet light absorber.
  • the light stabilizer is a hindered amine light stabilizer and an ultraviolet light absorber.
  • Embodiment 25 A polymeric hollow article according to any of embodiments 1 to 24, wherein the stabilizer composition further comprises at least one of:
  • T 1 is chosen from an optionally substituted C 1 -C 36 hydrocarbyl, C 5 -C 12 cycloalkyl, or C 7 -C 9 aralkyl;
  • T 2 is chosen from hydrogen or T 1 ;
  • each of W 1 and W 2 is independently a C 6 -C 36 hydrocarbyl chosen from straight or branched chain C 6 -C 36 alkyl, C 6 -C 12 aryl, C 7 -C 36 aralkyl, C 7 -C 36 alkaryl, C 6 -C 36 cycloalkyl, C 6 -C 36 alkcycloalkyl, or C 6 -C 36 cycloalkylalkyl;
  • W 3 is a C 1 -C 36 hydrocarbyl is chosen from straight or branched chain C 1 -C 36 alkyl, C 6 -C 12 aryl, C 7 -C 36 aralkyl, C 7 -C 36 alkylaryl, C 5 -C 36 cycloalkyl, C 6 -C 36 alkylcycloalky, and C 6 -C 36 cycloalkylalkyl;
  • alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W 1 , W 2 and W 3 may be interrupted by from one to sixteen groups chosen from —O—, —S—, —SO—, —SO 2 —, —COO—, —OCO—, —CO—, —NW 4 —, —CONW 4 — or —NW 4 CO—, or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W 1 , W 2 and W 3 are substituted with from one to sixteen groups chosen from —OW 4 , —SW 4 , —COOW 4 , —OCOW 4 , —COW 4 , —N(W 4 ) 2 , —CON(W 4 ) 2 , —NW 4 COW 4 and 5-
  • W 4 is chosen from hydrogen or C 1 -C 8 alkyl
  • R x is chosen from hydrogen or methyl
  • L is chosen from C 1 -C 30 alkyl, —C(O)R or —OR, wherein R is C 1 -C 30 straight or branched chain alkyl; or
  • alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W 1 , W 2 and W 3 are both interrupted and substituted by any of the groups mentioned above; or
  • aryl groups of W 1 , W 2 and W 3 are substituted with from one to three substituents independently chosen from halogen, C 1 -C 8 alkyl or C 1 -C 8 alkoxy; or
  • Embodiment 26 A polymeric hollow article according to embodiment 25, wherein the hydroxylamine according to Formula (VIII) is an N,N-dihydrocarbylhydroxylamine wherein each of T 1 and T 2 is independently chosen from benzyl, ethyl, octyl, lauryl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl; or wherein each of T 1 and T 2 is the alkyl mixture found in hydrogenated tallow amine.
  • T 1 and T 2 is independently chosen from benzyl, ethyl, octyl, lauryl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl; or wherein each of T 1 and T 2 is the alkyl mixture found in hydrogenated tallow amine.
  • Embodiment 27 A polymeric hollow article according to embodiment 25 or 26, wherein the hydroxylamine according to Formula (VIII) is an N,N-dihydrocarbylhydroxylamine chosen from N,N-dibenzylhydroxylamine; N,N-diethylhydroxylamine; N,N-dioctylhydroxylamine; N,N-dilaurylhydroxylamine; N,N-didodecylhydroxylamine; N,N-ditetradecylhydroxylaamine; N,N-dihexadecylhydroxylamine; N,N-dioctadecylhydroxylamine; N-hexadecyl-N-tetradecylhydroxylamine; N-hexadecyl-N-heptadecylhydroxylamine; N-hexadecyl-N-octadecylhydroxylamine; N-heptadecyl-N-octadecylhydroxylamine
  • Embodiment 28 A polymeric hollow article according to any of embodiments 1 to 27, wherein the hollow article further comprises at least one co-additive chosen from nucleating agents, fillers, reinforcing agents, polymer additives or mixtures thereof.
  • Embodiment 29 A polymeric hollow article according to any of embodiments 1 to 28, wherein the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
  • LLDPE linear low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • polypropylene polypropylene
  • Embodiment 30 A polymeric hollow article according to any of embodiments 1 to 29, wherein the basic co-additive (iii) is at least one of calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate or potassium palmitate.
  • the basic co-additive (iii) is at least one of calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate or potassium palmitate.
  • Embodiment 31 A polymeric hollow article according to any of embodiments 1 to 30, wherein the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive are selected so that the polyolefin remains stable and retains its optimal mechanical and/or physical properties over a longer period of time in the oven, even in the absence of a sterically hindered amine light stabilizer (HALS).
  • HALS sterically hindered amine light stabilizer
  • Embodiment 32 A polymeric hollow article according to any of embodiments 1 to 31, wherein the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive are selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of sterically hindered amine light stabilizers (HALS):
  • HALS sterically hindered amine light stabilizers
  • MFE mean failure energy
  • a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
  • PIAT peak internal air temperature
  • Embodiment 33 A polymeric hollow article according to embodiment 31 or 32, wherein the results are obtained even in the absence of antistatic agents.
  • Embodiment 34 A stabilizer composition for use in producing a polymeric hollow article in a rotomolding process, the stabilizer composition comprising a stabilizing amount of:
  • R 21 is present at from 0 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
  • R 22 is chosen from H or C 1 -C 12 hydrocarbyl
  • R 23 is chosen from H or C 1 -C 20 hydrocarbyl
  • each of R 24 -R 25 is independently chosen from H, C 1 -C 12 hydrocarbyl or OR′′′′,
  • R′′′′ is chosen from H or C 1 -C 12 hydrocarbyl
  • R 26 is H or a bond which together with R 25 forms ⁇ O;
  • Additional embodiments of the individual elements of the stabilizer composition are substantially similar to those contemplated above for the polymeric hollow article, but are not repeated herewith.
  • batches of LLDPE formulated with any type of commercially available stabilizer additive package is dry blended and compounded at 190° C. on a Davis Standard single screw extruder, with a 24:1 L/D screw with a mixing head running at 65 RPM.
  • the resulting pellets are ground to rotomesh powder (less than 35 micron) on a Reduction Engineering pulverizor.
  • the formulation is rotationally molded using laboratory scale equipment (e.g., a Ferry E-40 shuttle rotational molder).
  • the ground resin is placed in a cast aluminum mold, which is rotated biaxially in a gas fired oven heated to a temperature of 630° F. (332° C.).
  • the arm ratio for the cast aluminum mold is 8:2.
  • the mold is removed from the oven and air cooled for 13 minutes while still rotating, followed by a 2 minute water spray, and then 1 minute in circulating air.
  • the mold is opened and the hollow part is removed and then tested by measuring the mean failure energy (MFE) of the part. Sections can be cut from the part and then tested according to the “Dart Drop Low Temperature Impact Resistance Test Procedure,” per American Rotational Molders (ARM).
  • MFE mean failure energy
  • Formulations that achieve the highest mean fracture energy (MFE) at the shortest rotational molding time interval are desirable (reduced cycle time), as well as formulations that show retention of high MFE at longer cycle times (broad process window).
  • MFE mean fracture energy
  • the color (or yellowness) of the molded part can also be tested. Prior to the impact test, the impact specimen from the upper left corner is read for color. The sample is read using a GretagMacbeth Color i7 spectrophotometer. The yellowness according to ASTM D1925 is reported from the mold side of the roto molded part. Positive yellowness values indicates presence and magnitude of yellowness (generally unfavorable), while a negative yellowness value indicates that a material appears bluish (generally favorable).
  • Control and test samples are prepared and tested according to Example 1 above.
  • the additive formulation for each sample is provided in Table 1 below.
  • the LLDPE resin contains 0.035% by weight of the total polymer composition of zinc stearate.
  • the samples are rotomolded and tested according to the ARM procedure as described in Example 1.
  • the stabilizer formulations of the present invention provide superior and unexpected properties compared to the state-of-the-art stabilizer formulations used in the rotomolding process.
  • the mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than either of the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected ( FIG. 1 ). Accordingly, the rotomolded LLDPE sample containing the stabilizer formulation according to the invention gave superior performance over both the control sample and the low phenolic sample.
  • Example 1 Control and test samples are prepared and tested according to Example 1 above.
  • the LLDPE resin is the same as in Example 2 (Resin 1).
  • the additive formulation for each sample is provided in Table 2 below.
  • the samples are rotomolded and tested according to the ARM procedure as described in Example 1, to 1 ⁇ 4′′ thickness.
  • the stabilizer formulations of the present invention provide superior and unexpected properties compared to the state-of-the-art stabilizer formulations used in the rotomolding process.
  • the mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected ( FIG. 2A ). Accordingly, the rotomolded LLDPE sample containing the stabilizer formulation according to the invention gave superior performance over both the control sample and the low phenolic sample.
  • the Yellowness Index is also tested. As seen in FIG. 2B , the Yellowness Index remains relatively flat in the rotomolded part made with the stabilizer system according to the invention even as the peak internal air temperature rises. Conversely, the Yellowness Index rises as the peak internal air temperature rises in the Control sample.
  • Example 2 Control and test samples are prepared and tested according to Example 1 above. However, in this Example the LLDPE resin (Resin 2) is provided by a different supplier than that of Examples 2 and 3. The additive formulation for each sample is provided in Table 3 below.
  • the samples are rotomolded and tested according to the ARM procedure as described in Example 1, to 1 ⁇ 4′′ thickness.
  • the mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than either of the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected ( FIG. 3A ). Accordingly, the rotomolded LLDPE sample containing the stabilizer formulation according to the invention gave superior performance over both the control samples.
  • the Yellowness Index is also tested. As seen in FIG. 3B , the Yellowness Index remains lower as the peak internal air temperature rises in the rotomolded part made with the stabilizer system according to the invention than with either of the control samples.
  • the new rotomolding processing stabilizer systems described herein are also shown to provide a broad processing window, thereby enabling the production of parts having high impact strength over a broader range of peak internal air temperatures or heating times versus conventional processing stabilizer systems. Accordingly, these new processing stabilizer systems provide an excellent alternative to other approaches and/or systems to accelerate the sintering/densification of the polymer resin during the rotomolding process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Hydrogenated Pyridines (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A stabilizer composition for producing a polymeric hollow article in a rotomolding process has stabilizing amounts of: (i) at least one chroman-based compound according to Formula (V):wherein at least one instance of R21 is OR27, R27 is COR′″ or Si(R28)3, and R′″, R22, R23 R24, R25 and R26 are as defined herein; (ii) at least one phosphite or phosphonite; and (iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids. A polymeric hollow article is made by a process comprising: a) filling a mold with a polyolefin and a stabilizing amount of the stabilizer composition described herewith; b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold; c) cooling the mold; and d) opening the mold to remove the resulting polymeric hollow article.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 13/323,173 filed Dec. 12, 2011 (allowed), which claims priority benefit of U.S. Provisional Application No. 61/422,255 filed Dec. 13, 2010 (expired), each of which is incorporated herein by reference in its entirety. This application is also related in subject matter to U.S. Pat. No. 11,267,951 issued Mar. 8, 2022, and U.S. application Ser. No. 17/591,781 filed Feb. 3, 2022.
  • BACKGROUND OF THE INVENTION Technical Field
  • The present invention generally relates to the production of hollow articles using the rotational molding process. More particularly, the present invention relates to the additives described hereinbelow and their use in such processes to improve molding cycle time (i.e., reducing curing time) while maintaining process stability over a broader range of temperatures.
  • Description of the Related Art
  • Rotational molding, or rotomolding, is a high-temperature, low-pressure forming process that uses heat and biaxial rotation to produce hollow, one-piece parts, typically made of plastic. Such plastic hollow parts typically made by a rotomolding process include, for example, gasoline containers, garbage cans, agricultural storage vessels, septic tanks, toys, and sporting goods such as kayaks.
  • The process is undertaken by loading a charge of finely divided plastic resin into the mold “shell”, then rotating the mold (usually, on two axes) while heating it to a temperature above the melting point of the plastic resin. The melted plastic flows through the mold cavity under the forces caused by the rotation of the apparatus. The rotation continues for sufficient time to allow the molten plastic to cover the surface of the mold. The mold is then cooled to permit the plastic to freeze into a solid. The final stage of the molding cycle is the removal of the part from the rotomolding machine.
  • The time required to complete the molding cycle is a function of the bulk properties of the plastic which is being molded. For example, it is recognized by those skilled in the art that the plastic resin which is charged into the mold is preferably finely divided (i.e. ground into powder) and has a high bulk density and a narrow particle size distribution to facilitate the “free flow” of the resin.
  • It will also be appreciated that the physical properties of the rotomolded part are influenced by the use of a proper molding cycle time with “undercooked” parts having poor strength properties and “overcooked” parts suffering from poor appearance (a “burnt” color) and/or a deterioration of strength properties. It is desirable to have a short molding cycle (so as to improve the productivity of the expensive rotomolding machinery) and a broad processing window. Thus, the rotomolding composition ideally provides “properly cooked” parts in a short period of time but does not become “overcooked” for an extended period of time.
  • Therefore, the length of time the resin-filled mold spends in the oven is critical, because if left too long the polymer will yellow and/or degrade, thereby negatively affecting the mechanical and/or physical properties of the molded article (e.g., reducing impact strength). If the time the resin filled mold spends in the oven is too short, the sintering and laydown of the molten polymer will be incomplete, thereby negatively affecting the final physical and/or mechanical properties of the molded article. Thus, there is only a narrow temperature and/or time range for achieving the desired mechanical and/or physical properties of the molded article (i.e., processing window). Accordingly, it would be advantageous to widen/broaden this processing window so that parts that have been processed with longer oven cycle times will still exhibit optimal mechanical and/or physical properties.
  • Various additives are known and have been used in the rotomolding process to stabilize the polyolefin material and effectively reduce the production of microstructural defects during the heating cycle of the rotomolding process, which negatively affect the molded article. Some of these additives are also known to affect the cycle time of the rotomolding process. See, e.g., Botkin et al., 2004 “An additive approach to cycle time reduction in rotational molding,” Society of Plastics Engineers Rotomolding Conference, Session 2. For example, the use of stabilizer combinations of phosphites or phosphonites with sterically hindered phenols in polyolefins is generally known. Such phenolic/phosphite or phosphonite blends (e.g., CYANOX® 2777 antioxidant (available from Cytec Industries Inc., Woodland Park N.J.)) will stabilize the resin in the oven for a longer time (resulting in a broader process window), but requires a longer time in the oven to achieve maximum physical properties (resulting in a longer cycle time). Other stabilizer compositions (e.g., hydroxylamine derivatives blended with phosphites and/or phosphonites and HALS), allow for faster polymerization and cure times of the resins, but the processing window remains very narrow. For example, improvements to widen the processing window by using sterically hindered amines are disclosed in US Patent Application Publication No. 2009/0085252.
  • Accordingly, the rotational molding of polyolefin resins requires further improvements in cycle time reduction. A stabilizer composition that effectively reduces the time for sintering and laydown of the polymer melt (with reduced oven cycle time), while maintaining a broad processing window, would be a useful advance in the field, and would find rapid acceptance in the rotational molding industry. Shorter cycle times would lead to greater production yield, higher production efficiency, and, thus, lower energy uses. Formulations exhibiting a broadened process window would be easier to fabricate, without concerns about overcuring and the potential for deterioration of the mechanical properties of the resulting part. Further, formulations exhibiting both a broadened process window and shorter cycle time would enable molders to fabricate parts of different thickness at the same time, thereby further enhancing productivity.
  • SUMMARY
  • The discovery described in detail hereinbelow include stabilizer compositions and processes for using same for reducing cycle time without compromising the processing window in rotational molding processes related to polyolefin articles. These stabilizer compositions and processes effectively reduce the time in the oven needed to reach optimal physical and/or mechanical properties, thereby reducing cycle times of the rotomolding process and consequently increasing production yield and production efficiency, and lowering energy requirements.
  • Accordingly, in one aspect of the disclosure, a stabilizer composition for use in producing a polymeric hollow article in a rotomolding process, comprises stabilizing amounts of:
  • (i) at least one chroman-based compound according to Formula (V):
  • Figure US20220212375A1-20220707-C00002
  • wherein
  • R21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
      • C1-C12 hydrocarbyl;
      • NR′R″, wherein each of R′ and R″ is independently chosen from H or C1-C12 hydrocarbyl; or
      • OR27, wherein R27 is chosen from C1-C12 hydrocarbyl, COR′″ or Si(R28)3, wherein R′″ is chosen from H or C1-C20 hydrocarbyl and R28 is chosen from C1-C12 hydrocarbyl or alkoxy; and wherein at least one instance of R21 is OR27;
  • R22 is chosen from H or C1-C12 hydrocarbyl;
  • R23 is chosen from H or C1-C20 hydrocarbyl;
  • each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″, wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
  • R26 is H or a bond which together with R25 forms ═O;
      • (ii) at least one phosphite or phosphonite; and
      • (iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids;
  • In another aspect of the disclosure, a polymeric hollow article is made by a process comprising: a) filling a mold with a polyolefin and a stabilizing amount of the stabilizer composition; b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold; c) cooling the mold; and d) opening the mold to remove the resulting product, thereby producing the polymeric hollow article.
  • In another aspect of the disclosure, the polyolefin, vitamin E acetate, phosphite or phosphonite compound, and at least one basic co-additive, and amounts of the vitamin E acetate, phosphite or phosphonite compound, and at least one basic co-additive are selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of sterically hindered amine light stabilizers (HALS): a maximum mean failure energy (MFE) of the polymeric article is reached at a shorter time interval; a higher MFE of the polymeric article is retained over a longer heating time; or a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
  • These and other objects, features and advantages will become apparent from the following detailed description taken in conjunction with the accompanying Figures and Examples.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the mean failure energy (MFE) of rotomolded parts made with control stabilizer system (♦) vs. low phenolic stabilizer system (▴) vs. a processing stabilizer system according to the invention (▪). As seen, the rotomolded part that was formulated with the stabilizer system according to the invention (▪) achieves the highest MFE (as determined by the Dart Drop Low Temperature Impact Resistance Test Procedure) at a shorter rotational molding time interval (given by peak internal air temperature) compared to the rotomolded part that was formulated with either the control stabilizer system (♦) or the low phenolic stabilizer system (▴). Furthermore, the rotomolded part formulated according to the invention unexpectedly retains a higher MFE at longer oven times than do the rotomolded parts formulated with either the control or low phenolic stabilizer systems. Accordingly, the benefit of using a processing stabilizer according to the invention in a rotational molding process is due to the use of a chroman-based compound and not due to use of a lower amount of phenolic/phosphite.
  • FIGS. 2A-B illustrate the MFE of ¼″ rotomolded parts made with control stabilizer (♦) and stabilizer system according to the invention (▪) in a LLDPE resin provided by a particular supplier (Resin 1), and the Yellowness Index of the same rotomolded parts as a function of peak internal air temperature.
  • FIGS. 3A-B illustrate the MFE of ¼″ rotomolded parts made with control/state-of-the-art stabilizer (♦); stabilizer system according to the invention (▪); and a second control/state-of-the-art stabilizer (▴) in a LLDPE resin provided by a different supplier (Resin 2), and the Yellowness Index of the same rotomolded parts as a function of peak internal air temperature.
  • DETAILED DESCRIPTION
  • As summarized above, the compositions and processes using same that have now been discovered and disclosed herein for the first time are surprisingly useful for achieving optimal physical and/or mechanical properties of a rotomolded hollow article in a shorter period of time in the oven (i.e., cycle time) compared to those rotomolded articles made with current commercially available polymer stabilizer packages. Furthermore, the processes and compositions disclosed herein additionally (and surprisingly) provide a wider/broader processing window within which the desired final properties of the rotomolded article can be obtained before the physical and/or mechanical properties are negatively affected.
  • Definitions
  • As employed above and throughout the disclosure, the following terms are provided to assist the reader. Unless otherwise defined, all terms of art, notations and other scientific terminology used herein are intended to have the meanings commonly understood by those of skill in the chemical arts. As used herein and in the appended claims, the singular forms include plural referents unless the context clearly dictates otherwise.
  • Throughout this specification the terms and substituents retain their definitions. A comprehensive list of abbreviations utilized by organic chemists (i.e. persons of ordinary skill in the art) appears in the first issue of each volume of the Journal of Organic Chemistry. The list, which is typically presented in a table entitled “Standard List of Abbreviations” is incorporated herein by reference.
  • The term “hydrocarbyl” is a generic term encompassing aliphatic, alicyclic and aromatic groups having an all-carbon backbone and consisting of carbon and hydrogen atoms. In certain cases, as defined herein, one or more of the carbon atoms making up the carbon backbone may be replaced or interrupted by a specified atom or group of atoms, such as by one or more heteroatom of N, O, and/or S. Examples of hydrocarbyl groups include alkyl, cycloalkyl, cycloalkenyl, carbocyclic aryl, alkenyl, alkynyl, alkylcycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, and carbocyclic aralkyl, alkaryl, aralkenyl and aralkynyl groups. Such hydrocarbyl groups can also be optionally substituted by one or more substituents as defined herein. Accordingly, the chemical groups or moieties discussed in the specification and claims should be understood to include the substituted or unsubstituted forms. The examples and preferences expressed below also apply to each of the hydrocarbyl substituent groups or hydrocarbyl-containing substituent groups referred to in the various definitions of substituents for compounds of the formulas described herein unless the context indicates otherwise.
  • Preferred non-aromatic hydrocarbyl groups are saturated groups such as alkyl and cycloalkyl groups. Generally, and by way of example, the hydrocarbyl groups can have up to fifty carbon atoms, unless the context requires otherwise. Hydrocarbyl groups with from 1 to 30 carbon atoms are preferred. Within the sub-set of hydrocarbyl groups having 1 to 30 carbon atoms, particular examples are C1-20 hydrocarbyl groups, such as C1-12 hydrocarbyl groups (e.g. C1-6 hydrocarbyl groups or C1-4 hydrocarbyl groups), specific examples being any individual value or combination of values selected from C1 through C30 hydrocarbyl groups.
  • Alkyl is intended to include linear, branched, or cyclic hydrocarbon structures and combinations thereof. Lower alkyl refers to alkyl groups of from 1 to 6 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s- and t-butyl and the like. Preferred alkyl groups are those of C30 or below.
  • Alkoxy or alkoxyalkyl refers to groups of from 1 to 20 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like.
  • Acyl refers to formyl and to groups of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 carbon atoms of a straight, branched, cyclic configuration, saturated, unsaturated and aromatic and combinations thereof, attached to the parent structure through a carbonyl functionality. Examples include acetyl, benzoyl, propionyl, isobutyryl, t-butoxycarbonyl, benzyloxycarbonyl and the like. Lower-acyl refers to groups containing one to six carbons.
  • References to “carbocyclic” or “cycloalkyl” groups as used herein shall, unless the context indicates otherwise, include both aromatic and non-aromatic ring systems. Thus, for example, the term includes within its scope aromatic, non-aromatic, unsaturated, partially saturated and fully saturated carbocyclic ring systems. In general, such groups may be monocyclic or bicyclic and may contain, for example, 3 to 12 ring members, more usually 5 to 10 ring members. Examples of monocyclic groups are groups containing 3, 4, 5, 6, 7, and 8 ring members, more usually 3 to 7, and preferably 5 or 6 ring members. Examples of bicyclic groups are those containing 8, 9, 10, 11 and 12 ring members, and more usually 9 or 10 ring members. Examples of non-aromatic carbocycle/cycloalkyl groups include c-propyl, c-butyl, c-pentyl, c-hexyl, and the like. Examples of C7 to C10 polycyclic hydrocarbons include ring systems such as norbornyl and adamantyl.
  • Aryl (carbocyclic aryl) refers to a 5- or 6-membered aromatic carbocycle ring containing; a bicyclic 9- or 10-membered aromatic ring system; or a tricyclic 13- or 14-membered aromatic ring system. The aromatic 6- to 14-membered carbocyclic rings include, e.g., substituted or unsubstituted phenyl groups, benzene, naphthalene, indane, tetralin, and fluorene.
  • Substituted hydrocarbyl, alkyl, aryl, cycloalkyl, alkoxy, etc. refer to the specific substituent wherein up to three H atoms in each residue are replaced with alkyl, halogen, haloalkyl, hydroxy, alkoxy, carboxy, carboalkoxy (also referred to as alkoxycarbonyl), carboxamido (also referred to as alkylaminocarbonyl), cyano, carbonyl, nitro, amino, alkylamino, dialkylamino, mercapto, alkylthio, sulfoxide, sulfone, acylamino, amidino, phenyl, benzyl, halobenzyl, heteroaryl, phenoxy, benzyloxy, heteroaryloxy, benzoyl, halobenzoyl, or loweralkylhydroxy.
  • The term “halogen” means fluorine, chlorine, bromine or iodine.
  • As used herein, the term “chroman-based compound” refers to those compounds having a functional chroman group as part of the compound. In certain embodiments the chroman-based compound will be substituted. In other embodiments, the chroman-based compound can include chromanones. Coumarin and tocotrienols are specific examples of chroman-based compounds.
  • The terms “cycle time” or “molding cycle” as used herein are given their ordinary meaning as commonly understood by those of skill in the rotomolding arts and refer to the time from one point in the cycle to the corresponding point in the next repeated sequence (i.e., the time required to produce a plastic part in a molding operation as measured from a point of one operation to the same point of the first repeat of the operation).
  • The terms “optimal mechanical property” or “optimal physical property” as used herein refer to rotomolded parts having the most desirable: impact strength, coalescence or scintering of polymer particles, and general appearance such as color.
  • All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
  • Processes
  • Rotational molding technology is well known and described in the literature. Many aspects of the rotational molding process are described, for example, by R. J. Crawford and J. L. Throne in Rotational Molding Technology, Plastics Design Library, William Andrew Publishing, 2001. The rotomolded articles described herein are made from stabilized polymer compositions according to the invention using rotational molding techniques generally accepted by those skilled in the art as being representative of commercial rotational molding processes. In general, these rotational molding techniques involve the use of a rotational mold and an oven. A polymer composition (e.g., a stabilized polymer composition including a stabilizer composition and a polymer composition as described herein) is placed in a mold possessing a predetermined shape. The mold is heated within the oven at a predetermined rate to a peak temperature. During heating, the resin melts and the mold is rotated in two or three dimensions to ensure that the melted resin evenly coats the interior surfaces of the mold. Optionally, the melted resin may be cured for a predetermined time. After heating is complete, the mold is removed from the oven and cooled (with the mold optionally being in rotation). Once cool, the formed plastic part is removed from the mold.
  • Surprisingly, it has now been found that when at least one chroman-based compound is added to the rotomolding resin formulation the time at which it takes to reach peak internal air temperature (PIAT) is reduced and a significantly broader processing window towards higher temperatures is achieved without adversely affecting the physical and/or mechanical properties of the molded article.
  • Consequently, in one aspect the invention provides a process for reducing cycle time while maintaining an enlarged process window in a rotational molding process for producing a polymeric hollow article by subjecting a polymer composition and a polymer-stabilizing amount of a stabilizer composition to a rotational molding process, wherein the stabilizer composition includes at least one chroman-based compound according to Formula V as described herein.
  • In certain embodiments, the cycle time of the process will be reduced by at least 4%, at least 5%, at least 10%, at least 15%, or at least 20%, at least 25%, at least 40%, or at least 50% as compared to a process that does not include at least one chroman-based compound in the resin formulation.
  • In another aspect, the invention provides a process for producing a polymeric hollow article by a) filling a mold with a polymer composition and a polymer-stabilizing amount of a stabilizer composition, wherein the stabilizer composition includes at least one chroman-based compound according to Formula V as described herein; b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold; c) cooling the mold; and d) opening the mold to remove the resulting product, thereby producing a polymeric hollow article.
  • During the rotomolding process, the temperature of the oven can reach from 70° C. to 400° C., preferably from 280° C. to 400° C., and more preferably from 310° C. to 400° C.
  • The stabilized polymer compositions suitable for use with the aforementioned processes are further described below.
  • Stabilizer Compositions
  • A stabilizer composition for use in producing a polymeric hollow article in a rotomolding process, comprises a stabilizing amount of:
  • (i) at least one chroman-based compound according to Formula (V):
  • Figure US20220212375A1-20220707-C00003
  • wherein
  • R21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
      • C1-C12 hydrocarbyl;
      • NR′R″, wherein each of R′ and R″ is independently chosen from H or C1-C12 hydrocarbyl; or
      • OR27, wherein R27 is chosen from C1-C12 hydrocarbyl, COR′″, or Si(R28)3, wherein R′″ is chosen from H or C1-C20 hydrocarbyl and R28 is chosen from C1-C12 hydrocarbyl or alkoxy; and wherein at least one instance of R21 is OR27;
  • R22 is chosen from H or C1-C12 hydrocarbyl;
  • R23 is chosen from H or C1-C20 hydrocarbyl;
  • each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″, wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
  • R26 is H or a bond which together with R25 forms ═O;
  • (ii) at least one phosphite or phosphonite; and
  • (iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids.
  • The stabilizer compositions according to the invention and suitable for use with the polymer compositions for the rotomolding processes as described herein include at least one chroman-based compound according to Formula (V):
  • Figure US20220212375A1-20220707-C00004
  • wherein
  • R21 is present at from 0 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
      • C1-C12 hydrocarbyl;
      • NR′R″, wherein each of R′ and R″ is independently chosen from H or C1-C12 hydrocarbyl; or
      • OR27, wherein R27 is chosen from C1-C12 hydrocarbyl, COR′″ or Si(R28)3, wherein R′″ is chosen from H or C1-C20 hydrocarbyl; and wherein R28 is chosen from C1-C12 hydrocarbyl or alkoxy;
  • R22 is chosen from H or C1-C12 hydrocarbyl;
  • R23 is chosen from H or C1-C20 hydrocarbyl; and
  • each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″, wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
  • R26 is H or a bond which together with R25 forms ═O.
  • In certain embodiments, R21 is present as acyl and methyl.
  • In certain embodiments, R23 is a C1-C18 hydrocarbyl.
  • In some embodiments, the chroman-based compound according to Formula (V) is a tocotrienol, including, but not limited to, α-tocotrienol; β-tocotrienol; γ-tocotrienol, and 6-tocotrienol. In other embodiments, the chroman-based compound is a tocopherol including, but not limited to, α-tocopherol, 0-tocopherol, γ-tocopherol, and 6-tocopherol.
  • In some embodiments, the chroman-based compound is vitamin E acetate according to Formula (Va):
  • Figure US20220212375A1-20220707-C00005
  • wherein R21 is —OC(O)CH3.
  • In certain embodiments, the stabilizer composition includes two or more chroman-based compounds according to Formula (V).
  • The chroman-based compound is present from 0.001% to 5.0% by weight of the total weight of a stabilized polymer composition, preferably from 0.01% to 2.0% by weight of the total weight of the stabilized polymer composition, and more preferably from 0.01% to 1.0% by weight of the total weight of the stabilized polymer composition. In certain embodiments, the chroman-based compound is present at about 0.05% by weight of the total weight of the stabilized polymer composition. In some embodiments the polymer is a polyolefin and the stabilized polymer composition is a polyolefin.
  • In certain embodiments, the stabilizer composition can further include at least one compound chosen from the group of organic phosphites or phosphonites. In some embodiments the organic phosphite or phosphonite compound includes at least one organic phosphite or phosphonite chosen from:
  • (i) a compound according to Formulas (1)-(7):
  • Figure US20220212375A1-20220707-C00006
  • in which the indices are integral and
  • n is 2, 3 or 4; p is 1 or 2; q is 2 or 3; y is 1, 2 or 3; and z is 1 to 6; A1, if n is 2, is C2-C18 alkylene; C2-C12 alkylene interrupted by oxygen, sulfur or —NR4—; a radical of the formula
  • Figure US20220212375A1-20220707-C00007
  • or phenylene;
  • A1, if n or q is 3, is a trivalent radical of the formula —CrH2r−1—; wherein r is an integer from 4 to 12;
  • A1, if n is 4, is
  • Figure US20220212375A1-20220707-C00008
  • B is a direct bond, —CH2—, —CHR4—, —CR1R4—, sulfur, C5-C7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C1-C4 alkyl radicals in position 3, 4 and/or 5;
  • D1, if p is 1, is C1-C4 alkyl and, if p is 2, is —CH2OCH2—;
  • D2 is C1-C4 alkyl;
  • E, if y is 1, is C1-C18 alkyl, —OR1 or halogen;
  • E, if y is 2, is —O-A2-O—, wherein A2 is as defined for A1 when n is 2;
  • E, if y is 3, is a radical of the formula R4C(CH2O—)3 or N(CH2CH2O—)3;
  • Q is the radical of an at least z-valent mono- or poly-alcohol or phenol, this radical being attached via the oxygen atom of the OH group of the mono- or poly-alcohol or phenol to the phosphorus atom;
  • R1, R2 and R3 independently of one another are C1-C18 alkyl which is unsubstituted or substituted by halogen, —COOR4, —CN or —CONR4R4; C2-C18 alkyl interrupted by oxygen, sulfur or —NR4—; C7-C9 phenylalkyl; C5-C12 cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon atoms or by C7-C9 phenylalkyl; or a radical of the formula
  • Figure US20220212375A1-20220707-C00009
  • in which m is an integer from the range 3 to 6;
  • R4 is hydrogen, C1-C5 alkyl, C5-C12 cycloalkyl or C7-C9 phenylalkyl;
  • R5 and R6 independently of one another are hydrogen, C1-C5 alkyl or C5-C6 cycloalkyl;
  • R7 and R8, if q is 2, independently of one another are C1-C4 alkyl or together are a 2,3-dehydropentamethylene radical; and
  • R7 and R8, if q is 3, are methyl;
  • each instance of R14 is independently hydrogen, C1-C9 alkyl or cyclohexyl;
  • each instance of R15 is independently hydrogen or methyl;
  • X and Y are each a direct bond or oxygen;
  • Z is a direct bond, methylene, —C(R16)2— or sulfur; and
  • R16 is C1-C8 alkyl;
  • (ii) a trisarylphosphite according to Formula (8):
  • Figure US20220212375A1-20220707-C00010
  • wherein R17 is present at from 0 to 5 positions of the aromatic portion of Formula (8) and in each instance is independently chosen from C1-C20 alkyl, C3-C20 cycloalkyl, C4-C20 alkyl cycloalkyl, C6-C10 aryl or C7-C20 alkylaryl; or
  • (iii) mixtures of (i) and (ii).
  • In some embodiments, the following organic phosphites or phosphonites are preferred: triphenyl phosphite; diphenyl alkyl phosphites; phenyl dialkyl phosphites; trilauryl phosphite; trioctadecyl phosphite; distearyl pentaerythritol phosphite; tris(2,4-di-t-butylphenyl) phosphite; tris(nonylphenyl) phosphite; a compound of formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) or (L):
  • Figure US20220212375A1-20220707-C00011
    Figure US20220212375A1-20220707-C00012
  • 2-butyl-2-ethyl-1,3- propanediol 2,4,6-tri-t-butylphenol phosphite; bis-(2,6-di-t-butyl-4-methlphenyl) pentaerythritol diphosphite; 2-butyl-2-ethyl-1,3-propanediol 2,4-di-cumylphenol phosphite; 2-butyl-2-ethyl-1,3-propanediol 4-methyl-2,6-di-t-butylphenol phosphite or bis-(2,4,6-tri-t-butyl-phenyl) pentaerythritol diphosphite.
  • The following organic phosphites and phosphonites are particularly suitable for use in the rotomolding processes described herein: tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS®168); bis(2,4-dicumylphenyl)pentaerythritol diphosphite (DOVERPHOS® S9228); and tetrakis(2,4-di-t-butylphenyl)4,4′-biphenylene-diphosphonite (IRGAFOS® P-EPQ).
  • The organic phosphites or phosphonites can be present in an amount from 0.01% to 10% by weight based on the weight of the polymer material to be stabilized. Preferably, the amount of organic phosphite or phosphonite is available from 0.05% to 5%, and more preferably from 0.1% to 3% by weight based on the weight of the polymer material to be stabilized.
  • In certain embodiments, the stabilizer composition can further include at least one hindered phenol compound. Suitable hindered phenols for use with the rotomolding processes described herein include, but are not limited to, those having a molecular fragment according to one or more of Formula (IVa), (IVb), or (IVc):
  • Figure US20220212375A1-20220707-C00013
  • wherein “
    Figure US20220212375A1-20220707-P00001
    ” indicates the point of attachment (via a carbon bond) of the molecular fragment to a parent compound, and wherein R18 of Formula (IVa), (IVb), and (IVc) is independently chosen from hydrogen or a C1-4 hydrocarbyl; R19 and R20 of Formula (IVa), (IVb), and (IVc) are the same or different and are independently chosen from hydrogen or a C1-C20 hydrocarbyl; and R37 of Formula (IVa), (IVb), and (IVc) is independently chosen from a C1-C12 hydrocarbyl. In some embodiments, R18 and R37 are independently chosen from methyl or t-butyl.
  • The following compounds exemplify some hindered phenols that are suitable for use in the compositions and processes disclosed herein: (1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione; 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (IRGANOX® 3114); 1,1,3-tris(2′-methyl-4′-hydroxy-5′-t-butylphenyl)butane; triethylene glycol bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate]; 4,4′-thiobis(2-t-butyl-5-methylphenol); 2,2′-thiodiethylene bis[3-(3-t-butyl-4-hydroxyl-5-methylphenyl)propionate]; octadecyl 3-(3′-t-butyl-4′-hydroxy-5′-methylphenyl)propionate; tetrakismethylene(3-t-butyl-4-hydroxy-5-methylhydrocinnamate)methane; N,N′-hexamethylene bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionamide]; di(4-t-butyl-3-hydroxy-2,6-dimethyl benzyl) thiodipropionate; octadecyl 3,5-di-t-butyl-4-hydroxyhydrocinnamate; or mixtures thereof.
  • Other phenols also suitable for use with processes and compositions of the invention are known to those of skill in the art and include, for example:
  • 2,6-di-tert-butyl-4-methylphenol; 2-tert-butyl-4,6-dimethylphenol; 2,6-di-tert-butyl-4-ethylphenol; 2,6-di-tert-butyl-4-n-butylphenol; 2,6-di-tert-butyl-4 isobutylphenol; 2,6-dicyclopentyl-4-methylphenol; 2-(α-methylcyclohexyl)-4,6 dimethylphenol; 2,6-di-octadecyl-4-methylphenol; 2,4,6,-tricyclohexyphenol; and 2,6-di-tert-butyl-4-methoxymethylphenol;
  • 2,2′-methylene-bis-(6-tert-butyl-4-methylphenol) (CYANOX® 2246); 2,2′-methylene-bis-(6-tert-butyl-4-ethylphenol) (CYANOX® 425); 2,2′-methylene-bis-(4-methyl-6-(α-methylcyclohexyl)phenol); 2,2′-methylene-bis-(4-methyl-6-cyclohexylphenol); 2,2′-methylene-bis-(6-nonyl-4-methylphenol); 2,2′-methylene-bis-(6-nonyl-4methylphenol); 2,2′-methylene-bis-(6-(α-methylbenzyl)-4-nonylphenol); 2,2′-methylene-bis-(6-(α,α-dimethylbenzyl)-4-nonyl-phenol); 2,2′-methylene-bis-(4,6-di-tert-butylphenol); 2,2′-ethylidene-bis-(6-tert-butyl-4-isobutylphenol); 4,4′methylene-bis-(2,6-di-tert-butylphenol); 4,4′-methylene-bis-(6-tert-butyl-2-methylphenol); 1,1-bis-(5-tert-butyl-4-hydroxy-2-methylphenol)butane 2,6-di-(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol; 1,1,3-tris-(5-tert-butyl-4-hydroxy-2-methylphenyl)butane; 1,1-bis-(5-tert-butyl-4-hydroxy2-methylphenyl)-3-dodecyl-mercaptobutane; ethyleneglycol-bis-(3,3,-bis-(3′-tert-butyl-4′-hydroxyphenyl)-butyrate)-di-(3-tert-butyl-4-hydroxy-5-methylpenyl)-dicyclopentadiene; di-(2-(3′-tert-butyl-2′hydroxy-5′-methylbenzyl)-6-tert-butyl-4-methylpheny-1)terephthalate; and other phenolics such as monoacrylate esters of bisphenols such as ethylidiene bis-2,4-di-t-butylphenol monoacrylate ester;
  • Hydroquinones, such as 2,6-di-tert-butyl-4-methoxyphenol; 2,5-di-tert-butyihydroquinone; 2,5-di-tert-amyl-hydroquinone; and 2,6-diphenyl-4-octadecyloxyphenol; and
  • Thiodiphenyl ethers such as 2,2′-thio-bis-(6-tert-butyl-4-methylphenol); 2,2′-thio-bis-(4-octylphenol); 4,4′-thio-bis-(6-tert-butyl-3-methylphenol); and 4,4′-thio-bis-(6-tert-butyl-2-methylphenol).
  • A stabilizer composition including at least one chroman-based compound according to Formula V is suitable for stabilizing polyolefin hollow articles which are prepared by the rotomolding process. Examples of polyolefins suitable for such use with the stabilizer composition according to the invention include at least the following:
  • (A) Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE);
  • (B) Polyolefins, i.e. the polymers of monoolefins exemplified in (A), preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
  • i) radical polymerisation (normally under high pressure and at elevated temperature); or
  • ii) catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerisation medium. The catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, IIa and/or IIIa of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler(-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
  • (C) Mixtures of the polymers mentioned under (A), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE).
  • (D) Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in (A) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
  • In some embodiments, the polyolefin is chosen from:
  • (i) polymers of monoolefins chosen from polypropylene, polyisobutylene, polybut-1-ene, or poly-4-methylpent-1-ene;
  • (ii) polymers of diolefins chosen from polyisoprene or polybutadiene;
  • (iii) polymers of cycloolefins chosen from cyclopentene or norbornene;
  • (iv) polyethylene chosen from optionally crosslinked polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), or ultralow density polyethylene (ULDPE);
  • (v) copolymers of the monoolefins, diolefins, or cycloolefins of any of (i) to (iv); or
  • vi) mixtures of any of (i) to (v).
  • In some embodiments, the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
  • The stabilized polymer compositions according to the invention may further include one or more co-stabilizers and/or additives that include, but are not limited to, hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
  • Suitable hindered amine light stabilizers for use with the processes and stabilized polymer compositions according to the invention include, for example, compounds having a molecular fragment according to Formula (VI):
  • Figure US20220212375A1-20220707-C00014
  • wherein R31 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl or C1-C18 alkoxy; R38 is chosen from hydrogen or C1-C8 hydrocarbyl; and each of R29, R30, R32, and R33 is independently chosen from C1-C20 hydrocarbyl; or R29 and R30 and/or R32 and R33 taken together with the carbon to which they are attached form a C5-C1O cycloalkyl; or Formula (VIa)
  • Figure US20220212375A1-20220707-C00015
  • wherein
      • m is an integer from 1 to 2;
      • R39 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl or C1-C18 alkoxy; and
  • each of G1-G4 is independently a C1-C20 hydrocarbyl.
  • Hindered amine light stabilizers particularly suitable for use with the present invention include, but are not limited to, bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; a condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; 2,2,6,6-tetramethylpiperidin-4-yl stearate; 2,2,6,6-tetramethylpiperidin-4-yl dodecanate; 1,2,2,6,6-pentamethylpiperidin-4-yl stearate; 1,2,2,6,6-pentamethylpiperidin-4-yl dodecanate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; a condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; a condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; a condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; oxo-piperanzinyl-triazines; or a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; N-alkoxy hindered amine light stabilizers including, but not limited to, tetrakis(2,2,6,6-tetramethyl-4-piperidyl) butane-1,2,3,4-tetracarboxylate (MARK® LA-57;); 1,2,3,4-butanetetracarboxylic acid, tetrakis(1,2,2,6,6-pentamethyl-4-piperidinyl)ester (MARK® LA-52); 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperdinyl tridecyl ester (MARK® LA-62); 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester (MARK® LA-67); 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol,1,2,2,6,6-pentamethyl-4-piperdinyl ester (MARK® LA-63); 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperdinyl ester (MARK® LA-68); bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate (MARK® LA-81; aka STAB® LA-81 available from Adeka Palmarole, Saint-Louis, France); TINUVIN® 123; TINUVIN® NOR 371; TINUVIN® XT-850/XT-855; FLAMESTAB® NOR 116; or those disclosed in EP 0 889 085;
  • hydroxyl-substituted N-alkoxy HALS including, but not limited to, those disclosed in U.S. Pat. No. 6,271,377 such as 1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethyl-4-piperdinol; 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine; 1-(4-octadecanoyloxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-2-octadecanoyloxy-2-methylpropane; 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol; or a reaction product of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol and dimethylsuccinate;
  • any of the tetramethylpiperidyl groups disclosed in WO 2007/104689 including, but not limited to, 2,2,4,4-tetramethyl-7-oxa-3,20-diazadispiro[5.1.11.2]heneicosan-21-one (HOSTAVIN® N20); the ester of 2,2,6,6-tetramethyl-4-piperidinol with higher fatty acids (CYASORB® 3853); 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione (SANDUVOR® 3055); and their wax reaction products such as HALS NOW (LS X—N—O—W1); or
  • piperazinone compounds and derivatives thereof disclosed in U.S. Pat. Nos. 6,843,939; 7,109,259; 4,240,961; 4,480,092; 4,629,752; 4,639,479; 5,013,836; 5,310,771; or WO 88/08863.
  • The hindered amine light stabilizers include, but are not limited to, for example, 1H-Pyrrole-2,5-dione, 1-octadecyl-, polymer with (1-methylethenyl)benzene and 1-(2,2,6,6-tetramethyl-4-piperidinyl)-1H-pyrrole-2,5-dione; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,5,5-tetramethyl-; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,4,5,5-pentamethyl-; the reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; the condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; the condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 2-[(2-hydroxyethyl)amino]-4,6-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino-1,3,5-triazine; propanedioic acid, [(4-methoxyphenyl)-methylene]-bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, 1-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-2,2,6,6-tetramethyl-4-piperidinyl ester; N-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-N′-dodecyloxalamide; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl): 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl); the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinyl tridecyl ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester; tetrakis(1,2,2,6,6-pentamethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; mixture of 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-dodecylester and 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-tetradecylester; 1H,4H,5H,8H-2,3a,4a,6,7a,8a-hexaazacyclopenta[def]fluorene-4,8-dione, hexahydro-2,6-bis(2,2,6,6-tetramethyl-4-piperidinyl)-; polymethyl[propyl-3-oxy(2′,2′,6′,6′-tetramethyl-4,4′-piperidinyl)]siloxane; polymethyl[propyl-3-oxy(1′,2′,2′,6′,6′-pentamethyl-4,4′-piperidinyl)]siloxane; copolymer of methylmethacrylate with ethyl acrylate and 2,2,6,6-tetramethylpiperidin-4-yl acrylate; copolymer of mixed C20 to C24 alpha-olefins and (2,2,6,6-tetramethylpiperidin-4-yl)succinimide; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 1,2,2,6,6-pentamethyl-4-piperidinyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperidinyl ester copolymer; 1,3-benzenedicarboxamide, N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl; 1,1′-(1,10-dioxo-1,10-decanediyl)-bis(hexahydro-2,2,4,4,6-pentamethylpyrimidine; ethane diamide, N-(1-acetyl-2,2,6,6-tetramethylpiperidinyl)-N′-dodecyl; formamide, N,N′-1,6-hexanediylbis[N-(2,2,6,6-tetramethyl-4-piperidinyl); D-glucitol, 1,3:2,4-bis-O-(2,2,6,6-tetramethyl-4-piperidinylidene)-; 2,2,4,4-tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]heneicosane; propanamide, 2-methyl-N-(2,2,6,6-tetramethyl-4-piperidinyl)-2-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; 7-oxa-3,20-diazadispiro[5.1.11.2]heneicosane-20-propanoic acid, 2,2,4,4-tetramethyl-21-oxo-, dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-β-aminopropionic acid dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-N′-aminooxalamide; propanamide, N-(2,2,6,6-tetramethyl-4-piperidinyl)-3-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,1′-(1,2-ethanediyl)bis(3,3,5,5-tetramethylpiperazinone); 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl) and 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl); N1-(β-hydroxyethyl)3,3-pentamethylene-5,5-dimethylpiperazin-2-one; N1-tert-octyl-3,3,5,5-tetramethyl-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-hexamethylene-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-dimethylpiperazin-2-one; trans-1,2-cyclohexane-bis-(N1-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-(N1-3,3,5,5-dispiropentamethylene-2-piperazinone); N1-isopropyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-2-piperazinone; N1-isopropyl-1,4-diazadispiro-3,3-pentamethylene-5,5-tetramethylene-2-piperazinone; N1-isopropyl-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-N1-(dimethyl-3,3-pentamethylene-2-piperazinone); N1-octyl-5,5-dimethyl-3,3-pentamethylene-1,4-diazepin-2-one; and N1-octyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-1,5-diazepin-2-one. Other sterically hindered amines suitable for use with the invention include, for example, any of those disclosed in EP 1 308 084.
  • The hindered amine light stabilizer can be present in an amount from 0.01% to 10% by weight based on the total weight of the polymer material to be stabilized (polyolefin). Preferably, the amount of hindered amine is available from 0.05% to 5%, and more preferably from 0.1% to 3% by weight based on the total weight of the polymer material to be stabilized.
  • The light stabilizer can be an ultraviolet light absorber chosen from a 2-hydroxybenzophenone, a 2-(2′-hydroxyphenyl)benzotriazole, a 2-(2′-hydroxyphenyl)-1,3,5-triazine, or mixtures thereof. In particular, suitable light stabilizers can include one or more of the following:
  • 2-(2′-Hydroxyphenyl)benzotriazoles, for example 2-(2′-hydroxy-5′-methylphenyl)-benzotriazole; 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(5′-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(2′-hydroxy-5′-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole; 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-methylphenyl)-5-chloro-benzotriazole; 2-(3′-sec-butyl-5′-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(2′-hydroxy-4′-octyloxyphenyl)benzotriazole; 2-(3′,5′-di-tert-amyl-2′-hydroxyphenyl)benzotriazole; 2-(3′,5′-bis-(α,α-dimethylbenzyl)-2′-hydroxyphenyl)benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-octyloxycarbonylethyl)phenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-5′-[2-(2-ethylhexyloxy)-carbonylethyl]-2′-hydroxyphenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-methoxycarbonylethyl)phenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-methoxycarbonylethyl)phenyl)benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-octyloxycarbonylethyl)phenyl)benzotriazole; 2-(3′-tert-butyl-5′-[2-(2-ethylhexyloxy)carbonyl]-2′-hydroxyphenyl)benzotriazole; 2-(3′-dodecyl-2′-hydroxy-5′-methylphenyl)benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-isooctyloxycarbonylethyl)phenylbenzotriazole; 2,2′-methylene-bis[4-(1,1,3,3-tetramethylbutyl)-6-benzotriazole-2-ylphenol]; the transesterification product of 2-[3′-tert-butyl-5′-(2-methoxycarbonylethyl)-2′-hydroxyphenyl]-2H-benzotriazole with polyethylene glycol 300; [R—CH2CH2—COO—CH2CH2]2 where R=3′-tert-butyl-4′-hydroxy-5′-2H-benzotriazol-2-ylphenyl; 2-[2′-hydroxy-3′-(α,α-dimethylbenzyl)-5′-(1,1,3,3-tetramethylbutyl)-phenyl]benzotriazole; or 2-[2′-hydroxy-3′-(1,1,3,3-tetramethylbutyl)-5′-(α,α-dimethylbenzyl)-phenyl]benzotriazole;
  • 2-Hydroxybenzophenones, for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, or 4,2′,4′-trihydroxy and 2′-hydroxy-4,4′-dimethoxy derivatives;
  • Esters of substituted and unsubstituted benzoic acids, as for example 4-tertbutyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate;
  • Nickel compounds, for example nickel complexes of 2,2′-thio-bis-[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenyl undecylketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands; and
  • 2-(2′-hydroxyphenyl)-1,3,5-triazine compounds according to Formula (VII):
  • Figure US20220212375A1-20220707-C00016
  • wherein each of R34 and R35 is independently chosen from optionally substituted C6-C10 aryl, C1-C10 hydrocarbyl-substituted amino, C1-C10 acyl or C1-C10 alkoxyl; and wherein R36 is present at from 0 to 4 positions of the phenoxy portion of Formula (VII) and in each instance is independently chosen from hydroxyl, C1-C12 hydrocarbyl, C1-C12 alkoxyl, C1-C12 alkoxyester, or C1-C12 acyl. Such 2-(2-hydroxyphenyl)-1,3,5-triazines include, but are not limited to, 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine (CYASORB® 1164 available from Cytec Industries Inc.); 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-acetoxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-[(octyloxycarbonyl)ethylideneoxy]phenyl]-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-(2-ethylhexyloxy)phenyl]-s-triazine; 2-phenyl-4-[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)phenyl]-6-[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4(-3-benzyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2-hydroxy-4-n-butyloxyphenyl)-6-(2,4-di-n-butyloxyphenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-nonyloxy-2-hydroxypropyloxy)-5-α-cumylphenyl]-s-triazine; methylenebis-{2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine}; methylene bridged dimer mixture bridged in the 3:5′, 5:5′ and 3:3′ positions in a 5:4:1 ratio; 2,4,6-tris(2-hydroxy-4-isooctyloxycarbonyliso-propylideneoxy-phenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-hexyloxy-5-α-cumylphenyl)-s-triazine; 2-(2,4,6-trimethylphenyl)-4,6-bis[2-hydroxy-4-(3-butyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4,6-tris[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)-phenyl]-s-triazine; mixture of 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-dodecyloxy-2-hydroxypropoxy)phenyl)-s-triazine and 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-tridecyloxy-2-hydroxypropoxy)phenyl)-s-triazine (TINUVIN® 400 available from BASF Corp.); 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4(3-(2-ethylhexyloxy)-2-hydroxypropoxy)-phenyl)-s-triazine; 4,6-diphenyl-2-(4-hexyloxy-2-hydroxyphenyl)-s-triazine; 2-(4,6-Diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol (ADK STAB® LA-46 available from Adeka Palmarole, Saint-Louis, France); 2,4,6-tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazine; propanoic acid, 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris[(3-hydroxy-4,1-phenylene)oxy]]tris-1,1′,1″-trioctyl ester (TINUVIN® 477 available from BASF Corp.); propanoic acid, 2-[4-[4,6-bis([1,1′-biphenyl]-4-yl)-1,3,5-triazin-2yl]-3-hydroxyphenoxyl]-isooctyl ester (TINUVIN® 479 available from BASF Corp.); or mixtures thereof.
  • In certain embodiments, the stabilized polymer compositions according to the invention include a blend of at least one hindered amine light stabilizer and at least one ultraviolet light absorber.
  • Further embodiments of the stabilized polymer compositions according to the invention include at least one compound chosen from:
      • (i) a hydroxylamine compound according to Formula (VIII):
  • Figure US20220212375A1-20220707-C00017
  • wherein
  • T1 is chosen from an optionally substituted C1-C36 hydrocarbyl, C5-C12 cycloalkyl, or C7-C9 aralkyl; and
  • T2 is chosen from hydrogen or T1; or
      • a tertiary amine oxide compound according to Formula (IX):
  • Figure US20220212375A1-20220707-C00018
  • wherein
  • each of W1 and W2 is independently a C6-C36 hydrocarbyl chosen from a straight or branched chain C6-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkaryl, C5-C36 cycloalkyl, C6-C36 alkcycloalkyl, or C6-C36 cycloalkylalkyl;
  • W3 is a C1-C36 hydrocarbyl chosen from straight or branched chain C1-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkaryl, C5-C36 cycloalkyl, C6-C36 alkcycloalkyl; or C6-C36 cycloalkylalkyl;
  • with the proviso that at least one of W1, W2 and W3 contains a R carbon-hydrogen bond; and
  • wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 may be interrupted by from one to sixteen groups chosen from —O—, —S—, —SO—, —SO2—, —COO—, —OCO—, —CO—, —NW4—, —CONW4— or —NW4CO—, or
  • wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are substituted with from one to sixteen groups chosen from —OW4, —SW4, —COOW4, —OCOW4, —COW4, —N(W4)2, —CON(W4)2, —NW4COW4 and 5- and 6-membered rings containing the group —C(CH3)(CH2Rx)NL(CH2Rx)(CH3)C—; and
  • wherein
  • W4 is chosen from hydrogen or C1-C8 alkyl;
  • Rx is chosen from hydrogen or methyl; and
  • L is chosen from C1-C30 alkyl, —C(O)R or —OR, wherein R is C1-C30 straight or branched chain alkyl; or
  • wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are both interrupted and substituted by any of the groups mentioned above; or
  • wherein said aryl groups of W1, W2 and W3 are substituted with from one to three substituents independently chosen from halogen, C1-C8 alkyl or C1-C8 alkoxy; or (iii) mixtures of (i) and (ii).
  • In particular embodiments, preference is given to N,N-dihydrocarbylhydroxylamine compounds according to Formula (VIII) wherein T1 and T2 are independently chosen from benzyl, ethyl, octyl, lauryl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl; or wherein T1 and T are each the alkyl mixture found in hydrogenated tallow amine.
  • In certain embodiments, hydroxylamine compounds according to Formula (VIII) are chosen from: N,N-dibenzylhydroxylamine; N,N-diethylhydroxylamine; N,N-dioctylhydroxylamine; N,N-dilaurylhydroxylamine; N,N-didodecylhydroxylamine; N,N-ditetradecylhydroxylaamine; N,N-dihexadecylhydroxylamine; N,N-dioctadecylhydroxylamine; N-hexadecyl-N-tetradecylhydroxylamine; N-hexadecyl-N-heptadecylhydroxylamine; N-hexadecyl-N-octadecylhydroxylamine; N-heptadecyl-N-octadecylhydroxylamine; N,N-di(hydrogenated tallow)hydroxylamine; or N,N-di(alkyl)hydroxylamine produced by the direct oxidation of N,N-di(hydrogenated tallow)amine.
  • In certain embodiments, preference is given to those structures of Formula (IX) where W1 and W2 are independently benzyl or substituted benzyl. It is also possible for each of W1, W2, and W3 to be the same residue. In other embodiments, W1 and W2 can be alkyl groups of 8 to 26 carbon atoms, more preferably alkyl groups of 10 to 26 carbon atoms. W3 can be an alkyl group of 1 to 22 carbon atoms, more preferably methyl or substituted methyl. Other preferred amine oxides include those wherein W1, W2, and W3 are the same alkyl groups of 6 to 36 carbon atoms. Preferably, all of the aforementioned residues for W1, W2, and W3 are saturated hydrocarbon residues or saturated hydrocarbon residues containing at least one of the aforementioned —O—, —S—, —SO—, —COO—, —CO—, or —CONW4— moieties. Those skilled in the art will be able to envision other useful residues for each of W1, W2, and W3 without detracting from the present invention.
  • The saturated amine oxides may also include poly(amine oxides). By poly(amine oxide) is meant tertiary amine oxides containing at least two tertiary amine oxides per molecule. Illustrative poly(amine oxides), also called “poly(tertiary amine oxides)”, include, but are not limited to, the tertiary amine oxide analogues of aliphatic and alicyclic diamines such as, for example, 1,4-diaminobutane; 1,6-diaminohexane; 1,10-diaminodecane; and 1,4-diaminocyclohexane, and aromatic based diamines such as, for example, diamino anthraquinones and diaminoanisoles.
  • Suitable amine oxides for use with the invention also include tertiary amine oxides derived from oligomers and polymers of the aforementioned diamines. Useful amine oxides also include amine oxides attached to polymers, for example, polyolefins, polyacrylates, polyesters, polyamides, polystyrenes, and the like. When the amine oxide is attached to a polymer, the average number of amine oxides per polymer can vary widely as not all polymer chains need to contain an amine oxide. All of the aforementioned amine oxides may optionally contain at least one —O—, —S—, —SO—, —CO2—, —CO—, or —CONW4— moiety. In a preferred embodiment, each tertiary amine oxide of the polymeric tertiary amine oxide contains a C1 residue.
  • The groups W1, W2 and W3 of Formula (IX) may be attached to a molecule containing a hindered amine. Hindered amines are known in the art and the amine oxide of the present invention may be attached to the hindered amine in any manner and structural position of the hindered amine. Useful hindered amines when part of an amine oxide compound include those of the general Formulas (X) and (XI):
  • Figure US20220212375A1-20220707-C00019
  • wherein L and Rx are defined as described above.
  • Also included are amine oxides containing more than one hindered amine and more than one saturated amine oxide per molecule. The hindered amine may be attached to a poly(tertiary amine oxide) or attached to a polymeric substrate, as discussed above.
  • The hydroxyl amine derivatives and/or amine oxide derivatives can be used in amounts, in total, of about 0.0005% to about 5%, in particular from about 0.001% to about 2%, typically from about 0.01% to about 2% by weight, based on the weight of the polyolefin.
  • In other embodiments, the stabilized polymer composition (polyolefin) includes further optional co-additives chosen from nucleating agents, fillers, reinforcing agents, polymer additives or mixtures thereof.
  • Examples of such co-additives include, but are not limited to:
  • Basic co-additives, for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate; In some embodiments, the basic co-additive (iii) is at least one of calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate or potassium palmitate.
  • Nucleating agents, for example, inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate; polymeric compounds such as ionic copolymers (ionomers);
  • Fillers and reinforcing agents, for example, calcium carbonate, silicates, glass fibres, glass bulbs, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides (e.g., aluminium hydroxide or magnesium hydroxide, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers; impact modifiers
  • Benzofuranones and indolinones, for example those disclosed in U.S. Pat. Nos. 4,325,863; 4,338,244; 5,175,312; 5,216,052; 5,252,643; 5,369,159; 5,488,117; 5,356,966; 5,367,008; 5,428,162; 5,428,177; 5,516,920; DE-A-4316611; DE-A-4316622; DE-A-4316876; EP-A-0589839 or EP-A-0591102 or 3-[4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-one, 5,7-di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one, 3,3′-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofuran-2-one], 5,7-di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-one, 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(3,5-dimethyl-4-pivaloyloxyphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(3,4-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(2,3-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one;
  • Metal deactivators, for example N,N′-diphenyloxamide, N-salicylal-N′-salicyloyl hydrazine, N,N′-bis(salicyloyl)hydrazine, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl) hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N′-diacetyladipoyl dihydrazide, N,N′-bis(salicyloyl)oxalyl dihydrazide, N,N′-bis(salicyloyl)thiopropionyl dihydrazide;
  • Nitrones, for example, N-benzyl-alpha-phenyl-nitrone, N-ethyl-alpha-methyl-nitrone, N-octyl-alpha-heptyl-nitrone, N-lauryl-alpha-undecyl-nitrone, N-tetradecyl-alpha-tridcyl-nitrone, N-hexadecyl-alpha-pentadecyl-nitrone, N-octadecyl-alpha-heptadecyl-nitrone, N-hexadecyl-alpha-heptadecyl-nitrone, N-ocatadecyl-alpha-pentadecyl-nitrone, N-heptadecyl-alpha-heptadecyl-nitrone, N-octadecyl-alpha-hexadecyl-nitrone, nitrone derived from N,N-di(hydrogenated tallow)hydroxylamine;
  • Thiosynergists, for example, dilauryl thiodipropionate or distearyl thiodipropionate; and/or
  • Peroxide scavengers, for example esters of β-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(β-dodecylmercapto)propionate.
  • Other additives include, for example, plasticisers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flameproofing agents, antistatic agents, clarifying agents and blowing agents.
  • In masterbatch compositions, the stabilizer composition is present from 0.001% to 65.0% by weight based on the total weight of the masterbatch composition, and the amount is based on the number and type of stabilizing additives being added and/or the characteristics of the polymer composition to be stabilized. In some embodiments, the stabilizer composition is present from 0.01% to 50% by weight of the total weight of the masterbatch composition, and preferably from 0.05% to 25% by weight of the total, or from 0.1% to 10% by weight of the total. Those of ordinary skill in the art will be able to readily determine the amount and type of stabilizing additive(s) that should be added based on preparations as known and/or described in the literature, or through no more than routine experimentation.
  • The stabilized polymer compositions according to the invention can be readily made by any suitable method known to those of skill in the art. In certain embodiments, the components of the stabilized polymer compositions are mixed by at least one technique chosen from extruding, pelletizing, grinding, and molding. In other embodiments, mixing can be performed by at least one of melting, dissolution in a solvent, and dry mixing.
  • The incorporation of components for the stabilizer composition and optional further additives into the polymer composition is carried out by any suitable method known to those of skill in the art, for example before or after molding or also by applying the dissolved or dispersed stabilizer mixture to the polyolefin, with or without subsequent evaporation of the solvent. The stabilizer components and optional further additives can also be added to the polymer compositions to be stabilized in the form of a masterbatch.
  • Components of the stabilizer composition and optional further additives can also be added before or during the polymerization or before crosslinking. They can also be incorporated into the polymer composition to be stabilized in pure form (i.e., neat and directly to the resin) or encapsulated in waxes, oils or polymers. Various additives can also be preblended (i.e., mixed together) for simple addition to the polymer compositions to be stabilized. Components of the stabilizer composition and optional further additives can also be sprayed onto the polymer compositions to be stabilized. They are able to dilute other additives (for example the conventional additives indicated above) or their melts so that they can be sprayed also together with these additives onto the polymer compositions to be stabilized. In the case of spherically polymerized polymers it may, for example, be advantageous to apply components of the stabilizer composition optionally together with other additives, by spraying.
  • It is also contemplated that the components of the stabilizer compositions and/or polymer compositions described herein may be contained in a kit. The kit may include single or multiple components of at least one stabilizer composition according to the invention, at least one polymer composition according to the invention, and at least one further optional additive, each packaged or formulated individually, or single or multiple components of at least one stabilizer composition according to the invention, at least one polymer composition according to the invention, and at least one further optional additive packaged or formulated in combination. Thus, one or more components of a stabilizer composition can be present in first container, and the kit can optionally include one or more components of the stabilizer composition and/or polymer composition in a second or further container. The container or containers are placed within a package, and the package can optionally include administration or mixing instructions in the form of a label or website address on the package, or in the form of an insert included in the packaging of the kit. A kit can include additional components or other means for administering or mixing the components as well as solvents or other means for formulation.
  • As can be seen from the following examples, the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive can be selected so that the polyolefin remains stable and retains its optimal mechanical and/or physical properties over a longer period of time in the oven, even in the absence of a sterically hindered amine light stabilizer (HALS).
  • As can be further seen from the following examples, the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive can be selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of a sterically hindered amine light stabilizer (HALS):
  • a maximum mean failure energy (MFE) of the polymeric article is reached at a shorter time interval;
  • a higher MFE of the polymeric article is retained over a longer heating time; or
  • a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
  • Notably, these results were obtained, even in the absence of sterically hindered amine light stabilizers (HALS), for example in the absence of secondary HALS as disclosed in U.S. Patent Publication No. 2009/0085252 A1. These results were also obtained, even in the absence of antistatic agents, for example in the absence of the ethoxylated amines and ethoxylated amides as disclosed in U.S. Patent Application Publication No. 2006/0167146 A1.
  • Embodiments
  • Embodiment 1. A polymeric hollow article made by a process comprising:
  • a) filling a mold with a polyolefin and a stabilizing amount of a stabilizer composition, wherein the stabilizer composition comprises:
      • (i) at least one chroman-based compound according to Formula (V):
        wherein
  • Figure US20220212375A1-20220707-C00020
  • R21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
      • C1-C12 hydrocarbyl;
      • NR′R″, wherein each of R′ and R″ is independently chosen from H or C1-C12 hydrocarbyl; or
      • OR27, wherein R27 is chosen from C1-C12 hydrocarbyl, COR′″ or Si(R28)3, wherein R′″ is chosen from H or C1-C20 hydrocarbyl and R28 is chosen from C1-C12 hydrocarbyl or alkoxy; and wherein at least one instance of R21 is OR27;
  • R22 is chosen from H or C1-C12 hydrocarbyl;
  • R23 is chosen from H or C1-C20 hydrocarbyl;
  • each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″, wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
  • R26 is H or a bond which together with R25 forms ═O;
      • (ii) at least one phosphite or phosphonite; and
      • (iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids;
  • b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold;
  • c) cooling the mold; and
  • d) opening the mold to remove the resulting product,
  • thereby producing the polymeric hollow article.
  • Embodiment 2. A polymeric hollow article according to embodiment 1, wherein the at least one phosphite or phosphonite is chosen from:
  • (i) a compound according to Formulas (1)-(7):
  • Figure US20220212375A1-20220707-C00021
  • in which the indices are integral and
  • n is 2, 3 or 4; p is 1 or 2; q is 2 or 3; y is 1, 2 or 3; and z is 1 to 6;
  • A1, if n or q is 2, is C2-C18 alkylene; C2-C12 alkylene interrupted by oxygen, sulfur or —NR4—; a radical of the formula
  • Figure US20220212375A1-20220707-C00022
  • or phenylene;
  • A1, if n or q is 3, is a trivalent radical of the formula CrH2r−1; wherein r is an integer from 4 to 12;
  • A1, if n is 4, is
  • Figure US20220212375A1-20220707-C00023
  • B is a direct bond, —CH2—, —CHR4—, —CR1R4—, sulfur, C5-C7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C1-C4 alkyl radicals in position 3, 4 and/or 5;
  • D1, if p is 1, is C1-C4 alkyl and, if p is 2, is —CH2OCH2—;
  • D2, if p is 1, is C1-C4 alkyl;
  • E, if y is 1, is C1-C18 alkyl, —OR1 or halogen;
  • E, if y is 2, is —O-A2-O—, wherein A2 is as defined for A1 when n is 2;
  • E, if y is 3, is a radical of the formula R4C(CH2O—)3 or N(CH2CH2O—)3;
  • Q is the radical of an at least z-valent mono- or poly-alcohol or phenol, this radical being attached via the oxygen atom of the OH group of the mono- or poly-alcohol or phenol to the phosphorus atom;
  • R1, R2 and R3 independently of one another are C1-C18 alkyl which is unsubstituted or substituted by halogen, —COOR4, —CN or —CONR4R4; C2-C18 alkyl interrupted by oxygen, sulfur or —NR4—; C7-C9 phenylalkyl; C5-C12 cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon atoms or by C7-C9 phenylalkyl; or a radical of the formula
  • Figure US20220212375A1-20220707-C00024
  • in which m is an integer from the range 3 to 6;
  • R4 is hydrogen, C1-C8 alkyl, C5-C12 cycloalkyl or C7-C9 phenylalkyl,
  • R5 and R6 independently of one another are hydrogen, C1-C8 alkyl or C5-C6 cycloalkyl,
  • R7 and R8, if q is 2, independently of one another are C1-C4 alkyl or together are a 2,3-dehydropentamethylene radical;
  • R7 and R8, if q is 3, are methyl;
  • each instance of R14 is independently hydrogen, C1-C9 alkyl or cyclohexyl;
  • each instance of R15 is independently hydrogen or methyl;
  • X and Y are each a direct bond or oxygen;
  • Z is a direct bond, methylene, —C(R16)2— or sulfur; and
  • R16 is C1-C8 alkyl;
  • (ii) a trisarylphosphite according to Formula 8:
  • Figure US20220212375A1-20220707-C00025
  • wherein R17 is a substituent that is present at from 0 to 5 positions of the aromatic portion of Formula (8) and in each instance is independently chosen from C1-C20 alkyl, C3-C20 cycloalkyl, C4-C20 alkyl cycloalkyl, C6-C10 aryl or C7-C20 alkylaryl; or
  • (iii) mixtures of (i) and (ii).
  • Embodiment 3. A polymeric hollow article according to embodiment 1 or 2, wherein the phosphite or phosphonite is chosen from triphenyl phosphite; diphenyl alkyl phosphites; phenyl dialkyl phosphites; trilauryl phosphite; trioctadecyl phosphite; distearyl pentaerythritol phosphite; tris(2,4-di-t-butylphenyl) phosphite; tris(nonylphenyl) phosphite; a compound of formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) or (L):
  • Figure US20220212375A1-20220707-C00026
    Figure US20220212375A1-20220707-C00027
  • 2-butyl-2-ethyl-1,3- propanediol 2,4,6-tri-t-butylphenol phosphite; bis-(2,6-di-t-butyl-4-methlphenyl) pentaerythritol diphosphite; 2-butyl-2-ethyl-1,3-propanediol 2,4-di-cumylphenol phosphite; 2-butyl-2-ethyl-1,3-propanediol 4-methyl-2,6-di-t-butylphenol phosphite or bis-(2,4,6-t-butyl-phenyl) pentaerythritol diphosphite.
  • Embodiment 4. A polymeric hollow article according to any of embodiments 1 to 3, wherein the at least one phosphite or phosphonite is chosen from tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS® 168); bis(2,4-dicumylphenyl)pentaerythritol diphosphite (DOVERPHOS® S9228) or tetrakis(2,4-di-t-butylphenyl)4,4′-biphenylene-diphosphonite (IRGAFOS® P-EPQ).
  • Embodiment 5. A polymeric hollow article according to any of embodiments 1 to 4, wherein the stabilizer composition further comprises at least one hindered phenol.
  • Embodiment 6. A polymeric hollow article according to embodiment 5, wherein the at least one hindered phenol comprises a molecular fragment according to one or more of Formula (IVa), (IVb), or (IVc):
  • Figure US20220212375A1-20220707-C00028
  • wherein
  • R18 of Formula (IVa), (IVb), or (IVc) is independently chosen from hydrogen or a C1-4 hydrocarbyl;
  • each of R19 and R20 of Formula (IVa), (IVb), or (IVc) is independently chosen from hydrogen or a C1-C20 hydrocarbyl; and
  • R37 of Formula (IVa), (IVb), or (IVc) is independently chosen from a C1-C12 hydrocarbyl.
  • Embodiment 7. A polymeric hollow article according to embodiment 6, wherein R18 and R37 are chosen from methyl or t-butyl.
  • Embodiment 8. A polymeric hollow article according to any of embodiments 5 to 7, wherein the at least one hindered phenol compound is chosen from (1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione; 1,1,3-tris(2′-methyl-4′-hydroxy-5′-t-butylphenyl)butane; triethylene glycol bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate]; 4,4′-thiobis(2-t-butyl-5-methylphenol); 2,2′-thiodiethylene bis[3-(3-t-butyl-4-hydroxyl-5-methylphenyl)propionate]; octadecyl 3-(3′-t-butyl-4′-hydroxy-5′-methylphenyl)propionate; tetrakismethylene(3-t-butyl-4-hydroxy-5-methylhydrocinnamate)methane; N,N′-hexamethylene bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionamide]; di(4-t-butyl-3-hydroxy-2,6-dimethyl benzyl) thiodipropionate; octadecyl 3,5-di-t-butyl-4-hydroxyhydrocinnamate; or mixtures thereof.
  • Embodiment 9. A polymeric hollow article according to any of embodiments 1 to 8, wherein R21 is present in at least one instance as OR27.
  • Embodiment 10. A polymeric hollow article according to any of embodiments 1 to 9, wherein R21 is present in at least three instances and is chosen from OR27 or methyl.
  • Embodiment 11. A polymeric hollow article according to any of embodiments 1 to 10, wherein R23 is a C1-C18 hydrocarbyl.
  • Embodiment 12. A polymeric hollow article according to any of embodiments 1 to 11, wherein the chroman-based compound is vitamin E acetate according to Formula (Va)
  • Figure US20220212375A1-20220707-C00029
  • wherein R21 is —OC(O)CH3.
  • Embodiment 13. A polymeric hollow article according to any of embodiments 1 to 12, wherein the chroman-based compound comprises two or more compounds according to Formula (V).
  • Embodiment 14. A polymeric hollow article according to any of embodiments 1 to 13, wherein the chroman-based compound is present from 0.001% to 5.0% by weight of the weight of the polyolefin.
  • Embodiment 15. A polymeric hollow article according to embodiment 14, wherein the chroman-based compound is present from 0.01% to 1.0% by weight of the weight of the polyolefin.
  • Embodiment 16. A polymeric hollow article according to any of embodiments 1 to 15, wherein the polyolefin is chosen from:
  • (i) polymers of monoolefins chosen from polypropylene, polyisobutylene, polybut-1-ene, or poly-4-methylpent-1-ene;
  • (ii) polymers of diolefins chosen from polyisoprene or polybutadiene;
  • (iii) polymers of cycloolefins chosen from cyclopentene or norbornene;
  • (iv) polyethylene chosen from optionally crosslinked polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), or ultralow density polyethylene (ULDPE);
  • (v) copolymers of the monoolefins, diolefins, or cycloolefins of any of (i) to (iv); or
  • vi) mixtures of any of (i) to (v).
  • Embodiment 17. A polymeric hollow article according to any of embodiments 1 to 16, wherein the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
  • Embodiment 18. A polymeric hollow article according to any of embodiments 1 to 17, wherein the stabilizer composition further comprises a light stabilizer chosen from hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof, in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
  • Embodiment 19. A polymeric hollow article according to embodiment 18, wherein the light stabilizer is a hindered amine light stabilizer comprising a molecular fragment according to:
  • (i) Formula (VI):
  • Figure US20220212375A1-20220707-C00030
  • wherein
  • R31 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl or C1-C18 alkoxy;
  • R38 is chosen from hydrogen or C1-C8 hydrocarbyl; and
  • each of R29, R30, R31, and R32 is independently chosen from a C1-C20 hydrocarbyl; or R60 and R61 and/or R63 and R64 taken together with the carbon to which they are attached form a C5-C10 cycloalkyl; or
  • (ii) Formula (VIa)
  • Figure US20220212375A1-20220707-C00031
  • wherein
  • m is an integer from 1 to 2;
  • R39 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl or C1-C18 alkoxy; and
  • each of G1-G4 is independently a C1-C20 hydrocarbyl.
  • Embodiment 20. A polymeric hollow article according to embodiment 19, wherein the hindered amine light stabilizer is chosen from bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; a condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; 2,2,6,6-tetramethylpiperidin-4-yl stearate; 2,2,6,6-tetramethylpiperidin-4-yl dodecanate; 1,2,2,6,6-pentamethylpiperidin-4-yl stearate; 1,2,2,6,6-pentamethylpiperidin-4-yl dodecanate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; a condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; a condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; a condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; oxo-piperanzinyl-triazines; a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; tetrakis(2,2,6,6-tetramethyl-4-piperidyl) butane-1,2,3,4-tetracarboxylate; 1,2,3,4-butanetetracarboxylic acid, tetrakis(1,2,2,6,6-pentamethyl-4-piperidinyl)ester; 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperdinyl tridecyl ester; 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol,1,2,2,6,6-pentamethyl-4-piperdinyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperdinyl ester; bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate; 1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethyl-4-piperdinol; 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine; 1-(4-octadecanoyloxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-2-octadecanoyloxy-2-methylpropane; 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol; a reaction product of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol and dimethylsuccinate; 2,2,4,4-tetramethyl-7-oxa-3,20-diazadispiro[5.1.11.2]heneicosan-21-one; the ester of 2,2,6,6-tetramethyl-4-piperidinol with higher fatty acids; 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione; 1H-Pyrrole-2,5-dione, 1-octadecyl-, polymer with (1-methylethenyl)benzene and 1-(2,2,6,6-tetramethyl-4-piperidinyl)-1H-pyrrole-2,5-dione; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,5,5-tetramethyl-; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,4,5,5-pentamethyl-; the reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; the condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; the condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 2-[(2-hydroxyethyl)amino]-4,6-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino-1,3,5-triazine; propanedioic acid, [(4-methoxyphenyl)-methylene]-bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, 1-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-2,2,6,6-tetramethyl-4-piperidinyl ester; N-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-N′-dodecyloxalamide; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl): 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl); the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinyl tridecyl ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester; tetrakis(1,2,2,6,6-pentamethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; mixture of 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-dodecylester and 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-tetradecylester; 1H,4H,5H,8H-2,3a,4a,6,7a,8a-hexaazacyclopenta[def]fluorene-4,8-dione, hexahydro-2,6-bis(2,2,6,6-tetramethyl-4-piperidinyl)-; polymethyl[propyl-3-oxy(2′,2′,6′,6′-tetramethyl-4,4′-piperidinyl)]siloxane; polymethyl[propyl-3-oxy(1′,2′,2′,6′,6′-pentamethyl-4,4′-piperidinyl)]siloxane; copolymer of methylmethacrylate with ethyl acrylate and 2,2,6,6-tetramethylpiperidin-4-yl acrylate; copolymer of mixed C20 to C24 alpha-olefins and (2,2,6,6-tetramethylpiperidin-4-yl)succinimide; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 1,2,2,6,6-pentamethyl-4-piperidinyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperidinyl ester copolymer; 1,3-benzenedicarboxamide, N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl; 1,1′-(1,10-dioxo-1,10-decanediyl)-bis(hexahydro-2,2,4,4,6-pentamethylpyrimidine; ethane diamide, N-(1-acetyl-2,2,6,6-tetramethylpiperidinyl)-N′-dodecyl; formamide, N,N′-1,6-hexanediylbis[N-(2,2,6,6-tetramethyl-4-piperidinyl); D-glucitol, 1,3:2,4-bis-O-(2,2,6,6-tetramethyl-4-piperidinylidene)-; 2,2,4,4-tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]heneicosane; propanamide, 2-methyl-N-(2,2,6,6-tetramethyl-4-piperidinyl)-2-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; 7-oxa-3,20-diazadispiro[5.1.11.2]heneicosane-20-propanoic acid, 2,2,4,4-tetramethyl-21-oxo-, dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-β-aminopropionic acid dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-N′-aminooxalamide; propanamide, N-(2,2,6,6-tetramethyl-4-piperidinyl)-3-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,1′-(1,2-ethanediyl)bis(3,3,5,5-tetramethylpiperazinone); 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl) and 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl); N1-(β-hydroxyethyl)3,3-pentamethylene-5,5-dimethylpiperazin-2-one; N1-tert-octyl-3,3,5,5-tetramethyl-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-hexamethylene-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-dimethylpiperazin-2-one; trans-1,2-cyclohexane-bis-(N1-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-(N1-3,3,5,5-dispiropentamethylene-2-piperazinone); N1-isopropyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-2-piperazinone; N1-isopropyl-1,4-diazadispiro-3,3-pentamethylene-5,5-tetramethylene-2-piperazinone; N1-isopropyl-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-N1-(dimethyl-3,3-pentamethylene-2-piperazinone); N1-octyl-5,5-dimethyl-3,3-pentamethylene-1,4-diazepin-2-one; N1-octyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-1,5-diazepin-2-one; or mixtures thereof.
  • Embodiment 21. A polymeric hollow article according to embodiment 18, wherein the light stabilizer is an ultraviolet light absorber chosen from a 2-hydroxybenzophenone, a 2-(2′-hydroxyphenyl)benzotriazole, a 2-(2′-hydroxyphenyl)-1,3,5-triazine, or mixtures thereof.
  • Embodiment 22. A polymeric hollow article according to embodiment 21, wherein the ultraviolet light absorber is a 2-(2′-hydroxyphenyl)-1,3,5-triazine according to Formula (VII):
  • Figure US20220212375A1-20220707-C00032
  • wherein
  • each of R34 and R35 is independently chosen from optionally substituted C6-C10 aryl, C1-C10 hydrocarbyl-substituted amino, C1-C10 acyl or C1-C10 alkoxyl; and
  • R36 is present at from 0 to 4 positions of the phenoxy portion of Formula (VII) and in each instance is independently chosen from hydroxyl, C1-C12 hydrocarbyl, C1-C12 alkoxyl, C1-C12 alkoxyester, or C1-C12 acyl.
  • Embodiment 23. A polymeric hollow article according to embodiment 22, wherein the 2-(2′-hydroxyphenyl)-1,3,5-triazine is chosen from 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine (CYASORB® 1164 available from Cytec Industries Inc.); 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-acetoxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-[(octyloxycarbonyl)ethylideneoxy]phenyl]-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-(2-ethylhexyloxy)phenyl]-s-triazine; 2-phenyl-4-[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)phenyl]-6-[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4(-3-benzyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2-hydroxy-4-n-butyloxyphenyl)-6-(2,4-di-n-butyloxyphenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-nonyloxy-2-hydroxypropyloxy)-5-α-cumylphenyl]-s-triazine; methylenebis-{2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine}; methylene bridged dimer mixture bridged in the 3:5′, 5:5′ and 3:3′ positions in a 5:4:1 ratio; 2,4,6-tris(2-hydroxy-4-isooctyloxycarbonyliso-propylideneoxy-phenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-hexyloxy-5-α-cumylphenyl)-s-triazine; 2-(2,4,6-trimethylphenyl)-4,6-bis[2-hydroxy-4-(3-butyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4,6-tris[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)-phenyl]-s-triazine; mixture of 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-dodecyloxy-2-hydroxypropoxy)phenyl)-s-triazine and 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-tridecyloxy-2-hydroxypropoxy)phenyl)-s-triazine (Tinuvin® 400 available from Ciba Specialty Chemicals Corp.); 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4(3-(2-ethylhexyloxy)-2-hydroxypropoxy)-phenyl)-s-triazine; 4,6-diphenyl-2-(4-hexyloxy-2-hydroxyphenyl)-s-triazine; or mixtures thereof.
  • Embodiment 24. A polymeric hollow article according to embodiment 18, wherein the light stabilizer is a hindered amine light stabilizer and an ultraviolet light absorber.
  • Embodiment 25. A polymeric hollow article according to any of embodiments 1 to 24, wherein the stabilizer composition further comprises at least one of:
  • (i) a hydroxylamine according to Formula (VIII):
  • Figure US20220212375A1-20220707-C00033
  • wherein
  • T1 is chosen from an optionally substituted C1-C36 hydrocarbyl, C5-C12 cycloalkyl, or C7-C9 aralkyl; and
  • T2 is chosen from hydrogen or T1; or
  • (ii) a tertiary amine oxide according to Formula (IX):
  • Figure US20220212375A1-20220707-C00034
  • wherein
  • each of W1 and W2 is independently a C6-C36 hydrocarbyl chosen from straight or branched chain C6-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkaryl, C6-C36 cycloalkyl, C6-C36 alkcycloalkyl, or C6-C36 cycloalkylalkyl;
  • W3 is a C1-C36 hydrocarbyl is chosen from straight or branched chain C1-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkylaryl, C5-C36 cycloalkyl, C6-C36 alkylcycloalky, and C6-C36 cycloalkylalkyl;
  • with the proviso that at least one of W1, W2 or W3 contains a R carbon-hydrogen bond; and
  • wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 may be interrupted by from one to sixteen groups chosen from —O—, —S—, —SO—, —SO2—, —COO—, —OCO—, —CO—, —NW4—, —CONW4— or —NW4CO—, or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are substituted with from one to sixteen groups chosen from —OW4, —SW4, —COOW4, —OCOW4, —COW4, —N(W4)2, —CON(W4)2, —NW4COW4 and 5- and 6-membered rings containing the group —C(CH3)(CH2Rx)NL(CH2Rx)(CH3)C—; and
  • wherein
  • W4 is chosen from hydrogen or C1-C8 alkyl;
  • Rx is chosen from hydrogen or methyl; and
  • L is chosen from C1-C30 alkyl, —C(O)R or —OR, wherein R is C1-C30 straight or branched chain alkyl; or
  • wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are both interrupted and substituted by any of the groups mentioned above; or
  • wherein said aryl groups of W1, W2 and W3 are substituted with from one to three substituents independently chosen from halogen, C1-C8 alkyl or C1-C8 alkoxy; or
  • (iii) mixtures of (i) and (ii).
  • Embodiment 26. A polymeric hollow article according to embodiment 25, wherein the hydroxylamine according to Formula (VIII) is an N,N-dihydrocarbylhydroxylamine wherein each of T1 and T2 is independently chosen from benzyl, ethyl, octyl, lauryl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl; or wherein each of T1 and T2 is the alkyl mixture found in hydrogenated tallow amine.
  • Embodiment 27. A polymeric hollow article according to embodiment 25 or 26, wherein the hydroxylamine according to Formula (VIII) is an N,N-dihydrocarbylhydroxylamine chosen from N,N-dibenzylhydroxylamine; N,N-diethylhydroxylamine; N,N-dioctylhydroxylamine; N,N-dilaurylhydroxylamine; N,N-didodecylhydroxylamine; N,N-ditetradecylhydroxylaamine; N,N-dihexadecylhydroxylamine; N,N-dioctadecylhydroxylamine; N-hexadecyl-N-tetradecylhydroxylamine; N-hexadecyl-N-heptadecylhydroxylamine; N-hexadecyl-N-octadecylhydroxylamine; N-heptadecyl-N-octadecylhydroxylamine; N,N-di(hydrogenated tallow)hydroxylamine; or mixtures thereof.
  • Embodiment 28. A polymeric hollow article according to any of embodiments 1 to 27, wherein the hollow article further comprises at least one co-additive chosen from nucleating agents, fillers, reinforcing agents, polymer additives or mixtures thereof.
  • Embodiment 29. A polymeric hollow article according to any of embodiments 1 to 28, wherein the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
  • Embodiment 30. A polymeric hollow article according to any of embodiments 1 to 29, wherein the basic co-additive (iii) is at least one of calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate or potassium palmitate.
  • Embodiment 31. A polymeric hollow article according to any of embodiments 1 to 30, wherein the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive are selected so that the polyolefin remains stable and retains its optimal mechanical and/or physical properties over a longer period of time in the oven, even in the absence of a sterically hindered amine light stabilizer (HALS).
  • Embodiment 32. A polymeric hollow article according to any of embodiments 1 to 31, wherein the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive are selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of sterically hindered amine light stabilizers (HALS):
  • a maximum mean failure energy (MFE) of the polymeric article is reached at a shorter time interval;
  • a higher MFE of the polymeric article is retained over a longer heating time; or
  • a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
  • Embodiment 33. A polymeric hollow article according to embodiment 31 or 32, wherein the results are obtained even in the absence of antistatic agents.
  • Embodiment 34. A stabilizer composition for use in producing a polymeric hollow article in a rotomolding process, the stabilizer composition comprising a stabilizing amount of:
  • (i) at least one chroman-based compound according to Formula (V):
  • Figure US20220212375A1-20220707-C00035
  • wherein
  • R21 is present at from 0 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
      • C1-C12 hydrocarbyl;
      • NR′R″, wherein each of R′ and R″ is independently chosen from H or C1-C12 hydrocarbyl; or
      • OR27, wherein R27 is chosen from C1-C12 hydrocarbyl, COR′″, or Si(R28)3, wherein R′″ is chosen from H or C1-C20 hydrocarbyl; and wherein
        R28 is chosen from C1-C12 hydrocarbyl or alkoxy;
  • R22 is chosen from H or C1-C12 hydrocarbyl;
  • R23 is chosen from H or C1-C20 hydrocarbyl;
  • each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″,
  • wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
  • R26 is H or a bond which together with R25 forms ═O;
  • (ii) at least one phosphite or phosphonite; and
  • (iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids.
  • Additional embodiments of the individual elements of the stabilizer composition (e.g., chroman-based compound, phosphite or phosphonite, and basic co-additive) are substantially similar to those contemplated above for the polymeric hollow article, but are not repeated herewith.
  • EXAMPLES
  • The following examples are provided to assist one skilled in the art to further understand certain embodiments of the present disclosure. These examples are intended for illustration purposes and are not to be construed as limiting the scope of the various embodiments of the present disclosure.
  • Example 1—Preparation of Polyolefin Hollow Articles Using the Rotational Molding Process
  • 50-lb. batches of LLDPE formulated with any type of commercially available stabilizer additive package is dry blended and compounded at 190° C. on a Davis Standard single screw extruder, with a 24:1 L/D screw with a mixing head running at 65 RPM. The resulting pellets are ground to rotomesh powder (less than 35 micron) on a Reduction Engineering pulverizor.
  • Using enough resin to produce a ⅛″-¼″ thick walled part, the formulation is rotationally molded using laboratory scale equipment (e.g., a Ferry E-40 shuttle rotational molder). The ground resin is placed in a cast aluminum mold, which is rotated biaxially in a gas fired oven heated to a temperature of 630° F. (332° C.). The arm ratio for the cast aluminum mold is 8:2. After rotating in the oven for specific time intervals, the mold is removed from the oven and air cooled for 13 minutes while still rotating, followed by a 2 minute water spray, and then 1 minute in circulating air. After the cooling cycle, the mold is opened and the hollow part is removed and then tested by measuring the mean failure energy (MFE) of the part. Sections can be cut from the part and then tested according to the “Dart Drop Low Temperature Impact Resistance Test Procedure,” per American Rotational Molders (ARM).
  • Formulations that achieve the highest mean fracture energy (MFE) at the shortest rotational molding time interval are desirable (reduced cycle time), as well as formulations that show retention of high MFE at longer cycle times (broad process window).
  • The color (or yellowness) of the molded part can also be tested. Prior to the impact test, the impact specimen from the upper left corner is read for color. The sample is read using a GretagMacbeth Color i7 spectrophotometer. The yellowness according to ASTM D1925 is reported from the mold side of the roto molded part. Positive yellowness values indicates presence and magnitude of yellowness (generally unfavorable), while a negative yellowness value indicates that a material appears bluish (generally favorable).
  • Example 2—Preparation of Polyolefin Hollow Articles Using the Rotational Molding Process—(Comparative)
  • Control and test samples are prepared and tested according to Example 1 above. The additive formulation for each sample is provided in Table 1 below.
  • TABLE 1
    Sample Additive Formulation
    Control (high phenolic) 0.075 % CYANOX® 1790 (phenolic)
    0.06 % IRGAFOS® 168 (phosphite)
    0.035 % zinc stearate (co-stabilizer)
    Comparative 1 (invention) 0.0075 % CYANOX® 1790 (phenolic)
    0.06 % IRGAFOSO 168 (phosphite)
    0.05 % vitamin E (chroman-based
    compound)
    0.035 % zinc stearate (co-stabilizer)
    Comparative 2 (low phenolic) 0.0075 % CYANOXO
    1790 (phenolic)
    0.06 % IRGAFOSO 168 (phosphite)
    0.035 % zinc stearate (co-stabilizer)
  • In all cases the LLDPE resin contains 0.035% by weight of the total polymer composition of zinc stearate. The samples are rotomolded and tested according to the ARM procedure as described in Example 1. The stabilizer formulations of the present invention provide superior and unexpected properties compared to the state-of-the-art stabilizer formulations used in the rotomolding process. The mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than either of the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected (FIG. 1). Accordingly, the rotomolded LLDPE sample containing the stabilizer formulation according to the invention gave superior performance over both the control sample and the low phenolic sample.
  • Example 3—Preparation of Polyolefin Hollow Articles Using the Rotational Molding Process—(Comparative—Resin 1)
  • Control and test samples are prepared and tested according to Example 1 above. The LLDPE resin is the same as in Example 2 (Resin 1). The additive formulation for each sample is provided in Table 2 below.
  • TABLE 2
    Sample Additive Formulation
    Control 0.035 % IRGANOX® 3114 (phenolic antioxidant)
    0.11 % IRGAFOS® 168 (phosphite)
    0.035 % zinc stearate (co-stabilizer)
    Example 0.06 % IRGAFOS® 168 (phosphite)
    0.05 % vitamin E acetate (chroman-based
    compound)
    0.035 % zinc stearate (co-stabilizer)
  • The samples are rotomolded and tested according to the ARM procedure as described in Example 1, to ¼″ thickness. The stabilizer formulations of the present invention provide superior and unexpected properties compared to the state-of-the-art stabilizer formulations used in the rotomolding process. The mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected (FIG. 2A). Accordingly, the rotomolded LLDPE sample containing the stabilizer formulation according to the invention gave superior performance over both the control sample and the low phenolic sample.
  • The Yellowness Index is also tested. As seen in FIG. 2B, the Yellowness Index remains relatively flat in the rotomolded part made with the stabilizer system according to the invention even as the peak internal air temperature rises. Conversely, the Yellowness Index rises as the peak internal air temperature rises in the Control sample.
  • Example 4—Preparation of Polyolefin Hollow Articles Using the Rotational Molding Process—(Comparative—Resin 2)
  • Control and test samples are prepared and tested according to Example 1 above. However, in this Example the LLDPE resin (Resin 2) is provided by a different supplier than that of Examples 2 and 3. The additive formulation for each sample is provided in Table 3 below.
  • TABLE 3
    Sample Additive Formulation
    Control
    1 0.035 % IRGANOX® 3114 (phenolic antioxidant)
    0.09 % IRGAFOS® 168 (phosphite)
    0.035 % zinc stearate (co-stabilizer)
    Example 0.06 % DOVERPHOS® 9228 (phosphite)
    0.05 % vitamin E acetate (chroman-based
    compound)
    0.05 % zinc stearate (co-stabilizer)
    Control 2 0.075 % CYANOX® 2777* (phenolic/phosphite)
    0.35 zinc stearate (co-stabilizer)
    * CYANOX® 2777 =CYANOX® 1790 (phenolic) + IRGAFOS® 168 (phosphite)
  • The samples are rotomolded and tested according to the ARM procedure as described in Example 1, to ¼″ thickness. Again, it is seen that the stabilizer formulations of the present invention provide superior and unexpected properties compared to the state-of-the-art stabilizer formulations used in the rotomolding process. The mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than either of the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected (FIG. 3A). Accordingly, the rotomolded LLDPE sample containing the stabilizer formulation according to the invention gave superior performance over both the control samples.
  • The Yellowness Index is also tested. As seen in FIG. 3B, the Yellowness Index remains lower as the peak internal air temperature rises in the rotomolded part made with the stabilizer system according to the invention than with either of the control samples.
  • The results demonstrate that the heating times required to achieve optimal cure of a polyolefin article using a standard rotomolding process can be reduced by using the processing stabilizer systems described in detail herein. Reduction of heating times provides the direct benefits of lower energy costs and increased production efficiency without compromising physical and/or mechanical properties of the rotomolded article. The new rotomolding processing stabilizer systems described herein are also shown to provide a broad processing window, thereby enabling the production of parts having high impact strength over a broader range of peak internal air temperatures or heating times versus conventional processing stabilizer systems. Accordingly, these new processing stabilizer systems provide an excellent alternative to other approaches and/or systems to accelerate the sintering/densification of the polymer resin during the rotomolding process.
  • Various patent and/or scientific literature references have been referred to throughout this application. The disclosures of these publications in their entireties are hereby incorporated by reference as if written herein. In view of the above description and the examples, one of ordinary skill in the art will be able to practice the disclosure as claimed without undue experimentation.
  • Although the foregoing description has shown, described, and pointed out the fundamental novel features of the present teachings, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated, as well as the uses thereof, may be made by those skilled in the art, without departing from the scope of the present teachings. Consequently, the scope of the present teachings should not be limited to the foregoing discussion, but should be defined by the appended claims.

Claims (34)

We claim:
1. A polymeric hollow article made by a process comprising:
a) filling a mold with a polyolefin and a stabilizing amount of a stabilizer composition, wherein the stabilizer composition comprises:
(i) at least one chroman-based compound according to Formula (V):
Figure US20220212375A1-20220707-C00036
wherein
R21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
C1-C12 hydrocarbyl;
NR′R″, wherein each of R′ and R″ is independently chosen from H or C1-C12 hydrocarbyl; or
OR27, wherein R27 is chosen from C1-C12 hydrocarbyl, COR′″ or Si(R28)3, wherein R′″ is chosen from H or C1-C20 hydrocarbyl and R28 is chosen from C1-C12 hydrocarbyl or alkoxy; and wherein at least one instance of R21 is OR27;
R22 is chosen from H or C1-C12 hydrocarbyl;
R23 is chosen from H or C1-C20 hydrocarbyl;
each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″,
wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
R26 is H or a bond which together with R25 forms ═O;
(ii) at least one phosphite or phosphonite; and
(iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids;
b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold;
c) cooling the mold; and
d) opening the mold to remove the resulting product,
thereby producing the polymeric hollow article.
2. A polymeric hollow article according to claim 1, wherein the at least one phosphite or phosphonite is chosen from:
(i) a compound according to Formulas (1)-(7):
Figure US20220212375A1-20220707-C00037
in which the indices are integral and
n is 2, 3 or 4; p is 1 or 2; q is 2 or 3; y is 1, 2 or 3; and z is 1 to 6;
A1, if n or q is 2, is C2-C18 alkylene; C2-C12 alkylene interrupted by oxygen, sulfur or —NR4—; a radical of the formula
Figure US20220212375A1-20220707-C00038
or phenylene;
A1, if n or q is 3, is a trivalent radical of the formula CrH2r−1; wherein r is an integer from 4 to 12;
A1, if n is 4, is
Figure US20220212375A1-20220707-C00039
B is a direct bond, —CH2—, —CHR4—, —CR1R4—, sulfur, C5-C7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C1-C4 alkyl radicals in position 3, 4 and/or 5;
D1, if p is 1, is C1-C4 alkyl and, if p is 2, is —CH2OCH2—;
D2, if p is 1, is C1-C4 alkyl;
E, if y is 1, is C1-C18 alkyl, —OR1 or halogen;
E, if y is 2, is —O-A2-O—, wherein A2 is as defined for A1 when n is 2;
E, if y is 3, is a radical of the formula R4C(CH2O—)3 or N(CH2CH2O—)3;
Q is the radical of an at least z-valent mono- or poly-alcohol or phenol, this radical being attached via the oxygen atom of the OH group of the mono- or poly-alcohol or phenol to the phosphorus atom;
R1, R2 and R3 independently of one another are C1-C18 alkyl which is unsubstituted or substituted by halogen, —COOR4, —CN or —CONR4R4; C2-C18 alkyl interrupted by oxygen, sulfur or —NR4—; C7-C9 phenylalkyl; C5-C12 cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon atoms or by C7-C9 phenylalkyl; or a radical of the formula
Figure US20220212375A1-20220707-C00040
in which m is an integer from the range 3 to 6;
R4 is hydrogen, C1-C8 alkyl, C5-C12 cycloalkyl or C7-C9 phenylalkyl,
R5 and R6 independently of one another are hydrogen, C1-C8 alkyl or C5-C6 cycloalkyl,
R7 and R8, if q is 2, independently of one another are C1-C4 alkyl or together are a 2,3-dehydropentamethylene radical;
R7 and R8, if q is 3, are methyl;
each instance of R14 is independently hydrogen, C1-C9 alkyl or cyclohexyl;
each instance of R15 is independently hydrogen or methyl;
X and Y are each a direct bond or oxygen;
Z is a direct bond, methylene, —C(R16)2— or sulfur; and
R16 is C1-C8 alkyl;
(ii) a trisarylphosphite according to Formula 8:
Figure US20220212375A1-20220707-C00041
wherein R17 is a substituent that is present at from 0 to 5 positions of the aromatic portion of Formula (8) and in each instance is independently chosen from C1-C20 alkyl, C3-C20 cycloalkyl, C4-C20 alkyl cycloalkyl, C6-C10 aryl or C7-C20 alkylaryl; or
(iii) mixtures of (i) and (ii).
3. A polymeric hollow article according to claim 2, wherein the phosphite or phosphonite is chosen from triphenyl phosphite; diphenyl alkyl phosphites; phenyl dialkyl phosphites; trilauryl phosphite; trioctadecyl phosphite; distearyl pentaerythritol phosphite; tris(2,4-di-t-butylphenyl) phosphite; tris(nonylphenyl) phosphite; a compound of formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) or (L):
Figure US20220212375A1-20220707-C00042
Figure US20220212375A1-20220707-C00043
2-butyl-2-ethyl-1,3-propanediol 2,4,6-tri-t-butylphenol phosphite; bis-(2,6-di-t-butyl-4-methlphenyl) pentaerythritol diphosphite; 2-butyl-2-ethyl-1,3-propanediol 2,4-di-cumylphenol phosphite; 2-butyl-2-ethyl-1,3-propanediol 4-methyl-2,6-di-t-butylphenol phosphite or bis-(2,4,6-tri-t-butyl-phenyl) pentaerythritol diphosphite.
4. A polymeric hollow article according to claim 2, wherein the at least one phosphite or phosphonite is chosen from tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS® 168); bis(2,4-dicumylphenyl)pentaerythritol diphosphite (DOVERPHOS® S9228) or tetrakis(2,4-di-t-butylphenyl)4,4′-biphenylene-diphosphonite (IRGAFOS® P-EPQ).
5. A polymeric hollow article according to claim 1, wherein the stabilizer composition further comprises at least one hindered phenol.
6. A polymeric hollow article according to claim 5, wherein the at least one hindered phenol comprises a molecular fragment according to one or more of Formula (IVa), (IVb), or (IVc):
Figure US20220212375A1-20220707-C00044
wherein
R18 of Formula (IVa), (IVb), or (IVc) is independently chosen from hydrogen or a C1-4 hydrocarbyl;
each of R19 and R20 of Formula (IVa), (IVb), or (IVc) is independently chosen from hydrogen or a C1-C20 hydrocarbyl; and
R37 of Formula (IVa), (IVb), or (IVc) is independently chosen from a C1-C12 hydrocarbyl.
7. A polymeric hollow article according to claim 6, wherein R18 and R37 are chosen from methyl or t-butyl.
8. A polymeric hollow article according to claim 6, wherein the at least one hindered phenol compound is chosen from (1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione; 1,1,3-tris(2′-methyl-4′-hydroxy-5′-t-butylphenyl)butane; triethylene glycol bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate]; 4,4′-thiobis(2-t-butyl-5-methylphenol); 2,2′-thiodiethylene bis[3-(3-t-butyl-4-hydroxyl-5-methylphenyl)propionate]; octadecyl 3-(3′-t-butyl-4′-hydroxy-5′-methylphenyl)propionate; tetrakismethylene(3-t-butyl-4-hydroxy-5-methylhydrocinnamate)methane; N,N′-hexamethylene bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionamide]; di(4-t-butyl-3-hydroxy-2,6-dimethyl benzyl) thiodipropionate; octadecyl 3,5-di-t-butyl-4-hydroxyhydrocinnamate; or mixtures thereof.
9. A polymeric hollow article according to claim 1, wherein R21 is present in at least one instance as OR27.
10. A polymeric hollow article according to claim 9, wherein R21 is present in at least three instances and is chosen from OR27 or methyl.
11. A polymeric hollow article according to claim 9, wherein R23 is a C1-C18 hydrocarbyl.
12. A polymeric hollow article according to claim 1, wherein the chroman-based compound is vitamin E acetate according to Formula (Va)
Figure US20220212375A1-20220707-C00045
wherein R21 is —OC(O)CH3.
13. A polymeric hollow article according to claim 1, wherein the chroman-based compound comprises two or more compounds according to Formula (V).
14. A polymeric hollow article according to claim 1, wherein the chroman-based compound is present from 0.001% to 5.0% by weight of the weight of the polyolefin.
15. A polymeric hollow article according to claim 14, wherein the chroman-based compound is present from 0.01% to 1.0% by weight of the weight of the polyolefin.
16. A polymeric hollow article according to claim 1, wherein the polyolefin is chosen from:
(i) polymers of monoolefins chosen from polypropylene, polyisobutylene, polybut-1-ene, or poly-4-methylpent-1-ene;
(ii) polymers of diolefins chosen from polyisoprene or polybutadiene;
(iii) polymers of cycloolefins chosen from cyclopentene or norbornene;
(iv) polyethylene chosen from optionally crosslinked polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), or ultralow density polyethylene (ULDPE);
(v) copolymers of the monoolefins, diolefins, or cycloolefins of any of (i) to (iv); or
vi) mixtures of any of (i) to (v).
17. A polymeric hollow article according to claim 16, wherein the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
18. A polymeric hollow article according to claim 1, wherein the stabilizer composition further comprises a light stabilizer chosen from hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof, in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
19. A polymeric hollow article according to claim 18, wherein the light stabilizer is a hindered amine light stabilizer comprising a molecular fragment according to:
(i) Formula (VI):
Figure US20220212375A1-20220707-C00046
wherein
R31 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl or C1-C18 alkoxy;
R38 is chosen from hydrogen or C1-C8 hydrocarbyl; and
each of R29, R30, R31, and R32 is independently chosen from a C1-C20 hydrocarbyl; or
R60 and R61 and/or R63 and R64 taken together with the carbon to which they are attached form a C5-C10 cycloalkyl; or
(ii) Formula (VIa)
Figure US20220212375A1-20220707-C00047
wherein
m is an integer from 1 to 2;
R39 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl, or C1-C18 alkoxy; and
each of G1-G4 is independently a C1-C20 hydrocarbyl.
20. A polymeric hollow article according to claim 19, wherein the hindered amine light stabilizer is chosen from bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; a condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; 2,2,6,6-tetramethylpiperidin-4-yl stearate; 2,2,6,6-tetramethylpiperidin-4-yl dodecanate; 1,2,2,6,6-pentamethylpiperidin-4-yl stearate; 1,2,2,6,6-pentamethylpiperidin-4-yl dodecanate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; a condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; a condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; a condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; oxo-piperanzinyl-triazines; a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; tetrakis(2,2,6,6-tetramethyl-4-piperidyl) butane-1,2,3,4-tetracarboxylate; 1,2,3,4-butanetetracarboxylic acid, tetrakis(1,2,2,6,6-pentamethyl-4-piperidinyl)ester; 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperdinyl tridecyl ester; 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol,1,2,2,6,6-pentamethyl-4-piperdinyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperdinyl ester; bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate; 1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethyl-4-piperdinol; 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine; 1-(4-octadecanoyloxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-2-octadecanoyloxy-2-methylpropane; 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol; a reaction product of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol and dimethylsuccinate; 2,2,4,4-tetramethyl-7-oxa-3,20-diazadispiro[5.1.11.2]heneicosan-21-one; the ester of 2,2,6,6-tetramethyl-4-piperidinol with higher fatty acids; 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione; 1H-Pyrrole-2,5-dione, 1-octadecyl-, polymer with (1-methylethenyl)benzene and 1-(2,2,6,6-tetramethyl-4-piperidinyl)-1H-pyrrole-2,5-dione; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,5,5-tetramethyl-; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,4,5,5-pentamethyl-; the reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; the condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; the condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 2-[(2-hydroxyethyl)amino]-4,6-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino-1,3,5-triazine; propanedioic acid, [(4-methoxyphenyl)-methylene]-bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, 1-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-2,2,6,6-tetramethyl-4-piperidinyl ester; N-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-N′-dodecyloxalamide; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl): 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl); the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinyl tridecyl ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester; tetrakis(1,2,2,6,6-pentamethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; mixture of 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-dodecylester and 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-tetradecylester; 1H,4H,5H,8H-2,3a,4a,6,7a,8a-hexaazacyclopenta[def]fluorene-4,8-dione, hexahydro-2,6-bis(2,2,6,6-tetramethyl-4-piperidinyl)-; polymethyl[propyl-3-oxy(2′,2′,6′,6′-tetramethyl-4,4′-piperidinyl)]siloxane; polymethyl[propyl-3-oxy(1′,2′,2′,6′,6′-pentamethyl-4,4′-piperidinyl)]siloxane; copolymer of methylmethacrylate with ethyl acrylate and 2,2,6,6-tetramethylpiperidin-4-yl acrylate; copolymer of mixed C20 to C24 alpha-olefins and (2,2,6,6-tetramethylpiperidin-4-yl)succinimide; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 1,2,2,6,6-pentamethyl-4-piperidinyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperidinyl ester copolymer; 1,3-benzenedicarboxamide, N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl; 1,1′-(1,10-dioxo-1,10-decanediyl)-bis(hexahydro-2,2,4,4,6-pentamethylpyrimidine; ethane diamide, N-(1-acetyl-2,2,6,6-tetramethylpiperidinyl)-N′-dodecyl; formamide, N,N′-1,6-hexanediylbis[N-(2,2,6,6-tetramethyl-4-piperidinyl); D-glucitol, 1,3:2,4-bis-O-(2,2,6,6-tetramethyl-4-piperidinylidene)-; 2,2,4,4-tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]heneicosane; propanamide, 2-methyl-N-(2,2,6,6-tetramethyl-4-piperidinyl)-2-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; 7-oxa-3,20-diazadispiro[5.1.11.2]heneicosane-20-propanoic acid, 2,2,4,4-tetramethyl-21-oxo-, dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-β-aminopropionic acid dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-N′-aminooxalamide; propanamide, N-(2,2,6,6-tetramethyl-4-piperidinyl)-3-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,1′-(1,2-ethanediyl)bis(3,3,5,5-tetramethylpiperazinone); 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl) and 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl); N1-(p-hydroxyethyl)3,3-pentamethylene-5,5-dimethylpiperazin-2-one; N1-tert-octyl-3,3,5,5-tetramethyl-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-hexamethylene-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-dimethylpiperazin-2-one; trans-1,2-cyclohexane-bis-(N1-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-(N1-3,3,5,5-dispiropentamethylene-2-piperazinone); N1-isopropyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-2-piperazinone; N1-isopropyl-1,4-diazadispiro-3,3-pentamethylene-5,5-tetramethylene-2-piperazinone; N1-isopropyl-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-N1-(dimethyl-3,3-pentamethylene-2-piperazinone); N1-octyl-5,5-dimethyl-3,3-pentamethylene-1,4-diazepin-2-one; N1-octyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-1,5-diazepin-2-one; or mixtures thereof.
21. A polymeric hollow article according to claim 18, wherein the light stabilizer is an ultraviolet light absorber chosen from a 2-hydroxybenzophenone, a 2-(2′-hydroxyphenyl)benzotriazole, a 2-(2′-hydroxyphenyl)-1,3,5-triazine, or mixtures thereof.
22. A polymeric hollow article according to claim 21, wherein the ultraviolet light absorber is a 2-(2′-hydroxyphenyl)-1,3,5-triazine according to Formula (VII):
Figure US20220212375A1-20220707-C00048
wherein
each of R34 and R35 is independently chosen from optionally substituted C6-C10 aryl, C1-C10 hydrocarbyl-substituted amino, C1-C10 acyl or C1-C10 alkoxyl; and
R36 is present at from 0 to 4 positions of the phenoxy portion of Formula (VII) and in each instance is independently chosen from hydroxyl, C1-C12 hydrocarbyl, C1-C12 alkoxyl, C1-C12 alkoxyester, or C1-C12 acyl.
23. A polymeric hollow article according to claim 22, wherein the 2-(2′-hydroxyphenyl)-1,3,5-triazine is chosen from 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine (CYASORB® 1164 available from Cytec Industries Inc.); 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-acetoxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-[(octyloxycarbonyl)ethylideneoxy]phenyl]-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-(2-ethylhexyloxy)phenyl]-s-triazine; 2-phenyl-4-[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)phenyl]-6-[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4(-3-benzyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2-hydroxy-4-n-butyloxyphenyl)-6-(2,4-di-n-butyloxyphenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-nonyloxy-2-hydroxypropyloxy)-5-α-cumylphenyl]-s-triazine; methylenebis-{2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine}; methylene bridged dimer mixture bridged in the 3:5′, 5:5′ and 3:3′ positions in a 5:4:1 ratio; 2,4,6-tris(2-hydroxy-4-isooctyloxycarbonyliso-propylideneoxy-phenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-hexyloxy-5-α-cumylphenyl)-s-triazine; 2-(2,4,6-trimethylphenyl)-4,6-bis[2-hydroxy-4-(3-butyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4,6-tris[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)-phenyl]-s-triazine; mixture of 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-dodecyloxy-2-hydroxypropoxy)phenyl)-s-triazine and 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-tridecyloxy-2-hydroxypropoxy)phenyl)-s-triazine (Tinuvin® 400 available from Ciba Specialty Chemicals Corp.); 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4(3-(2-ethylhexyloxy)-2-hydroxypropoxy)-phenyl)-s-triazine; 4,6-diphenyl-2-(4-hexyloxy-2-hydroxyphenyl)-s-triazine; or mixtures thereof.
24. A polymeric hollow article according to claim 18, wherein the light stabilizer is a hindered amine light stabilizer and an ultraviolet light absorber.
25. A polymeric hollow article according to claim 1, wherein the stabilizer composition further comprises at least one of:
(i) a hydroxylamine according to Formula (VIII):
Figure US20220212375A1-20220707-C00049
wherein
T1 is chosen from an optionally substituted C1-C36 hydrocarbyl, C5-C12 cycloalkyl, or C7-C9 aralkyl; and
T2 is chosen from hydrogen or T1; or
(ii) a tertiary amine oxide according to Formula (IX):
Figure US20220212375A1-20220707-C00050
wherein
each of W1 and W2 is independently a C6-C36 hydrocarbyl chosen from straight or branched chain C6-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkaryl, C6-C36 cycloalkyl, C6-C36 alkcycloalkyl, or C6-C36 cycloalkylalkyl;
W3 is a C1-C36 hydrocarbyl is chosen from straight or branched chain C1-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkylaryl, C5-C36 cycloalkyl, C6-C36 alkylcycloalky, and C6-C36 cycloalkylalkyl;
with the proviso that at least one of W1, W2 or W3 contains a R carbon-hydrogen bond; and
wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 may be interrupted by from one to sixteen groups chosen from —O—, —S—, —SO—, —SO2—, —COO—, —OCO—, —CO—, —NW4—, —CONW4— or —NW4CO—, or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are substituted with from one to sixteen groups chosen from —OW4, —SW4, —COOW4, —OCOW4, —COW4, —N(W4)2, —CON(W4)2, —NW4COW4 and 5- and 6-membered rings containing the group —C(CH3)(CH2Rx)NL(CH2Rx)(CH3)C—; and
wherein
W4 is chosen from hydrogen or C1-C8 alkyl;
Rx is chosen from hydrogen or methyl; and
L is chosen from C1-C30 alkyl, —C(O)R or —OR, wherein R is C1-C30 straight or branched chain alkyl; or
wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are both interrupted and substituted by any of the groups mentioned above; or
wherein said aryl groups of W1, W2 and W3 are substituted with from one to three substituents independently chosen from halogen, C1-C8 alkyl or C1-C8 alkoxy; or
(iii) mixtures of (i) and (ii).
26. A polymeric hollow article according to claim 25, wherein the hydroxylamine according to Formula (VIII) is an N,N-dihydrocarbylhydroxylamine wherein each of T1 and T2 is independently chosen from benzyl, ethyl, octyl, lauryl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl; or wherein each of T1 and T2 is the alkyl mixture found in hydrogenated tallow amine.
27. A polymeric hollow article according to claim 25, wherein the hydroxylamine according to Formula (VIII) is an N,N-dihydrocarbylhydroxylamine chosen from N,N-dibenzylhydroxylamine; N,N-diethylhydroxylamine; N,N-dioctylhydroxylamine; N,N-dilaurylhydroxylamine; N,N-didodecylhydroxylamine; N,N-ditetradecylhydroxylaamine; N,N-dihexadecylhydroxylamine; N,N-dioctadecylhydroxylamine; N-hexadecyl-N-tetradecylhydroxylamine; N-hexadecyl-N-heptadecylhydroxylamine; N-hexadecyl-N-octadecylhydroxylamine; N-heptadecyl-N-octadecylhydroxylamine; N,N-di(hydrogenated tallow)hydroxylamine; or mixtures thereof.
28. A polymeric hollow article according to claim 1, wherein the hollow article further comprises at least one co-additive chosen from nucleating agents, fillers, reinforcing agents, polymer additives or mixtures thereof.
29. A polymeric hollow article according to claim 16, wherein the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
30. A polymeric hollow article according to claim 1, wherein the basic co-additive (iii) is at least one of calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate or potassium palmitate.
31. A polymeric hollow article according to claim 29, wherein the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive are selected so that the polyolefin remains stable and retains its optimal mechanical and/or physical properties over a longer period of time in the oven, even in the absence of a sterically hindered amine light stabilizer (HALS).
32. A polymeric hollow article according to claim 29, wherein the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite compound, and at least one basic co-additive are selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of sterically hindered amine light stabilizers (HALS):
a maximum mean failure energy (MFE) of the polymeric article is reached at a shorter time interval;
a higher MFE of the polymeric article is retained over a longer heating time; or
a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
33. A polymeric hollow article according to claim 32, wherein the results are obtained even in the absence of antistatic agents.
34. A stabilizer composition for use in producing a polymeric hollow article in a rotomolding process, the stabilizer composition comprising a stabilizing amounts of:
(i) at least one chroman-based compound according to Formula (V):
Figure US20220212375A1-20220707-C00051
wherein
R21 is present at from 0 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
C1-C12 hydrocarbyl;
NR′R″, wherein each of R′ and R″ is independently chosen from H or C1-C12 hydrocarbyl; or
OR27, wherein R27 is chosen from C1-C12 hydrocarbyl, COR′″, or Si(R28)3,
wherein R′″ is chosen from H or C1-C20 hydrocarbyl; and wherein
R28 is chosen from C1-C12 hydrocarbyl or alkoxy;
R22 is chosen from H or C1-C12 hydrocarbyl;
R23 is chosen from H or C1-C20 hydrocarbyl;
each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″,
wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
R26 is H or a bond which together with R25 forms ═O;
(ii) at least one phosphite or phosphonite; and
(iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids.
US17/697,232 2010-12-13 2022-03-17 Polymeric hollow articles containing chroman-based compounds and made by rotational molding Pending US20220212375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/697,232 US20220212375A1 (en) 2010-12-13 2022-03-17 Polymeric hollow articles containing chroman-based compounds and made by rotational molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US42225510P 2010-12-13 2010-12-13
US13/323,173 US11312043B2 (en) 2010-12-13 2011-12-12 Processing additives and uses of same in rotational molding
US17/697,232 US20220212375A1 (en) 2010-12-13 2022-03-17 Polymeric hollow articles containing chroman-based compounds and made by rotational molding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/323,173 Division US11312043B2 (en) 2010-12-13 2011-12-12 Processing additives and uses of same in rotational molding

Publications (1)

Publication Number Publication Date
US20220212375A1 true US20220212375A1 (en) 2022-07-07

Family

ID=45464860

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/323,173 Active 2032-05-01 US11312043B2 (en) 2010-12-13 2011-12-12 Processing additives and uses of same in rotational molding
US17/697,232 Pending US20220212375A1 (en) 2010-12-13 2022-03-17 Polymeric hollow articles containing chroman-based compounds and made by rotational molding

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/323,173 Active 2032-05-01 US11312043B2 (en) 2010-12-13 2011-12-12 Processing additives and uses of same in rotational molding

Country Status (19)

Country Link
US (2) US11312043B2 (en)
EP (2) EP3786216A1 (en)
JP (2) JP6300526B2 (en)
KR (2) KR102025299B1 (en)
CN (1) CN103502325B (en)
AU (4) AU2011344159B2 (en)
BR (1) BR112013014715B8 (en)
CA (1) CA2821278C (en)
ES (1) ES2807882T3 (en)
IL (2) IL226847B (en)
MX (1) MX363358B (en)
NZ (3) NZ711364A (en)
PL (1) PL2652014T3 (en)
PT (1) PT2652014T (en)
RU (3) RU2016131894A (en)
TW (2) TWI449616B (en)
UA (2) UA123990C2 (en)
WO (1) WO2012082578A2 (en)
ZA (2) ZA201304261B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267951B2 (en) 2010-12-13 2022-03-08 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
US20130168128A1 (en) * 2011-12-29 2013-07-04 Viakable, S. A. De C. V. Sun-light resistant self-lubricated insulated conductor
CN104755470B (en) * 2012-06-13 2019-11-08 塞特克技术公司 Stabiliser compositions and its application method containing the chroman compounds being substituted
KR20160031459A (en) * 2013-05-24 2016-03-22 다우 글로벌 테크놀로지스 엘엘씨 Ethylene-based composition
KR101635519B1 (en) * 2013-11-29 2016-07-04 롯데케미칼 주식회사 Polyethylene resin composition for crosslinking rotational molding and resin molded article manufactured therefrom
US11091615B2 (en) 2014-11-20 2021-08-17 Cytec Industries Inc. Stabilizer compositions and methods for using same for protecting organic materials from UV light and thermal degradation
US10570270B2 (en) 2016-11-18 2020-02-25 Equistar Chemicals, Lp Polyolefin materials for rotational molding applications having improved impact properties and color stability
EP3578599A1 (en) 2018-06-08 2019-12-11 Cytec Industries Inc. Granular stabilizer compositions for use in polymer resins and methods of making same
JP7478135B2 (en) 2018-08-22 2024-05-02 ビーエーエスエフ ソシエタス・ヨーロピア Stabilized rotational molded polyolefin
WO2020217482A1 (en) * 2019-04-26 2020-10-29 株式会社ユポ・コーポレーション Resin composition and resin sheet
KR102270026B1 (en) * 2020-01-31 2021-06-28 현대약품 주식회사 Quality evaluation method of (3S)-3-(4-(3-(1,4-dioxaspiro[4,5]dec-7-en-8-yl)benzyloxy)phenyl)hex-4-ynoic acid
WO2024083872A1 (en) 2022-10-18 2024-04-25 Cytec Industries Inc. Synergistic stabilizer compositions and methods for using same for protecting organic materials from uv light and thermal degradation

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455043A (en) 1977-10-12 1979-05-01 Mitsui Petrochem Ind Ltd Polyolefin compound
GB2042562B (en) 1979-02-05 1983-05-11 Sandoz Ltd Stabilising polymers
US4240961A (en) 1979-05-29 1980-12-23 The B. F. Goodrich Company Synthesis of 2-piperazinones and 1,4-diaza-2-keto-cycloheptanes
JPS5896638A (en) 1981-12-04 1983-06-08 Asahi Chem Ind Co Ltd Polymer composition
US4480092A (en) 1982-02-19 1984-10-30 The B. F. Goodrich Company Alkylated polyalkylenepolyamines, substituted oxo-piperazinyl-triazines
US4639479A (en) 1982-02-19 1987-01-27 The Bfgoodrich Company Polyalkylenepolyamine having pendant substituted oxo-piperazinyltriazines and UV light stabilized compositions
US4489099A (en) 1983-02-28 1984-12-18 The Goodyear Tire & Rubber Company Vitamin E/DLTDP stabilizer system for chewing gum SBR
EP0183869B1 (en) 1984-12-06 1991-04-17 Kuraray Co., Ltd. Chroman compounds and their use
CA1241009A (en) 1984-12-07 1988-08-23 Manzo Shiono Chroman compounds and uses thereof
US4629752A (en) 1985-07-22 1986-12-16 The B. F. Goodrich Company Substituted oxo-piperazinyl-triazines and UV light stabilized compositions
DE3634531A1 (en) 1986-10-10 1988-04-14 Basf Ag STABILIZER MIXTURES FOR PLASTICS
US4797438A (en) 1987-05-11 1989-01-10 The B. F. Goodrich Company Stabilized gamma-irradiated polypropylene and sterilizable articles thereof
DE3735577A1 (en) 1987-10-21 1989-05-03 Basf Ag MIXTURE FOR STABILIZING POLYURETHANES
JPH01170632A (en) * 1987-12-26 1989-07-05 Sakai Chem Ind Co Ltd Resin composition
US5262471A (en) * 1988-11-21 1993-11-16 Fuji Photo Film Co., Ltd. Method of preparing packaging material for photographic photosensitive material and masterbatch therefor
WO1990007547A1 (en) * 1988-12-23 1990-07-12 Basf Aktiengesellschaft Mixtures of stabilizers for plastics
EP0384472B1 (en) 1989-02-23 1997-09-10 Fuji Photo Film Co., Ltd. Resin composition and packaging material for photosensitive materials
JPH0335552A (en) 1989-06-30 1991-02-15 Nec Kansai Ltd High breakdown voltage semiconductor device
JP2813891B2 (en) * 1989-07-07 1998-10-22 住友化学工業株式会社 Food containers
US5175312A (en) 1989-08-31 1992-12-29 Ciba-Geigy Corporation 3-phenylbenzofuran-2-ones
US5013836A (en) 1989-11-21 1991-05-07 The B. F. Goodrich Company Process for methylating a hindered nitrogen atom in a polysubstituted diazacycloalkan-2-one
TW206220B (en) 1991-07-01 1993-05-21 Ciba Geigy Ag
US5252643A (en) 1991-07-01 1993-10-12 Ciba-Geigy Corporation Thiomethylated benzofuran-2-ones
GB9121575D0 (en) * 1991-10-11 1991-11-27 Sandoz Ltd Improvements in or relating to organic compounds
US5308549A (en) 1991-11-12 1994-05-03 Hoffmann-La Roche Inc. Stabilizers for thermo plastic materials
US5218008A (en) 1991-11-13 1993-06-08 The Dow Chemical Company Polyethers stabilized with 6-chromanol derivatives
US5310771A (en) 1992-04-23 1994-05-10 Phillips Petroleum Company Polyolefin stabilization
NL9300801A (en) 1992-05-22 1993-12-16 Ciba Geigy 3- (ACYLOXYPHENYL) BENZOFURAN-2-ON AS STABILIZERS.
TW260686B (en) 1992-05-22 1995-10-21 Ciba Geigy
GB2267490B (en) 1992-05-22 1995-08-09 Ciba Geigy Ag 3-(Carboxymethoxyphenyl)benzofuran-2-one stabilisers
TW255902B (en) 1992-09-23 1995-09-01 Ciba Geigy
MX9305489A (en) 1992-09-23 1994-03-31 Ciba Geigy Ag 3- (DIHIDROBENZOFURAN-5-IL) BENZOFURAN-2-ONAS, STABILIZERS.
CH686306A5 (en) 1993-09-17 1996-02-29 Ciba Geigy Ag 3-aryl-benzofuranones as stabilizers.
US5357020A (en) * 1993-09-29 1994-10-18 Union Carbide Chemicals & Plastics Technology Corporation Polysiloxane with chromanol moiety
AU684911B2 (en) * 1994-01-14 1998-01-08 Exxon Chemical Patents Inc. Gas fade resistant ultraviolet additive formulations for polyethylene
DE4405670A1 (en) * 1994-02-23 1995-08-24 Basf Ag Stabilizer mixture of chroman derivatives, organic phosphites or phosphonites and amines
TW297822B (en) * 1994-04-13 1997-02-11 Ciba Geigy Ag
CA2146034A1 (en) 1994-05-12 1995-11-13 Kenneth W. Willcox Polymer stabilization
DE4420769A1 (en) * 1994-06-15 1995-12-21 Basf Ag Styrene / butadiene block copolymers stabilized with alpha-tocopherol
DE19501053A1 (en) 1995-01-16 1996-07-18 Basf Ag Stabilizer mixture of chroman derivatives and inert organic solvents and microcapsules containing this stabilizer mixture
US5594055A (en) 1995-02-22 1997-01-14 Hoffmann-La Roche Inc. Antioxidant system for polyolefins
USH1600H (en) * 1995-03-27 1996-10-01 Quantum Chemical Company High density polyethylenes with improved processing stability
DE19516283A1 (en) 1995-05-04 1996-11-07 Basf Ag Thermoplastic molding compound
DE19524178A1 (en) 1995-07-03 1997-01-09 Basf Ag Thermoplastic molding compositions and a process for reducing the formation of residual monomers in these molding compositions
WO1997003974A2 (en) 1995-07-20 1997-02-06 Basf Aktiengesellschaft Chroman derivatives, their preparation and their use as stabilizers of organic material against light, oxygen and heat
TW438850B (en) 1995-09-15 2001-06-07 Ciba Sc Holding Ag Stabilization of polyolefin composition in permanent contact with extracting media
US5844027A (en) 1996-05-03 1998-12-01 Ciba Specialty Chemicals Corporation Stabilizer composition for thermoplastic materials
GB9613515D0 (en) 1996-06-27 1996-08-28 Clariant Int Ltd Stabilizer compositions
EP0839623B1 (en) * 1996-10-30 2001-01-31 Ciba SC Holding AG Stabiliser combination for rotomolding process
IT1289935B1 (en) * 1997-02-20 1998-10-19 Great Lakes Chemical Italia SOLID FORM OF A STABILIZER FOR ORGANIC POLYMERS
US5844026A (en) 1997-06-30 1998-12-01 Ciba Specialty Chemicals Corporation N,N',N''-tris{2,4-bis Hydrocarbyloxy-2,2,6,6-tetra-methylpiperidin-4-yl)alkylamino!-s-triazin-6-yl}-3,3'-ethylenediiminodipropylamines, their isomers and bridged derivatives and polymer compositions stabilized therewith
US6468258B1 (en) 1997-07-18 2002-10-22 Baxter International Inc. Plastic compositions including vitamin E for medical containers and methods for providing such compositions and containers
WO1999054394A1 (en) * 1998-04-17 1999-10-28 Yoshitomi Fine Chemicals, Ltd. Stabilizer for organic polymeric material and organic polymeric material composition
US6465548B1 (en) 1997-10-02 2002-10-15 Yoshitomi Fine Chemicals, Ltd. Stabilizer for organic polymer material and organic polymer material composition
WO1999048997A1 (en) * 1998-03-24 1999-09-30 Ciba Specialty Chemicals Holding Inc. Stabilisation of organic materials
US6051164A (en) * 1998-04-30 2000-04-18 Cytec Technology Corp. Methods and compositions for protecting polymers from UV light
GB2344103B (en) 1998-11-24 2003-04-16 Ciba Sc Holding Ag Piperazinone derivatives
US6271377B1 (en) 1999-02-25 2001-08-07 Ciba Specialty Chemicals Corporation Hydroxy-substituted N-alkoxy hindered amines and compositions stabilized therewith
NL1014465C2 (en) * 1999-03-01 2002-01-29 Ciba Sc Holding Ag Stabilizer combination for the rotomolding process.
US6444733B1 (en) 1999-03-01 2002-09-03 Ciba Specialty Chemicals Corporation Stabilizer combination for the rotomolding process
DE19929302A1 (en) * 1999-06-25 2000-12-28 Basf Ag Polycondensate composition, use for the production of motor vehicle components, contains particulate graft copolymer having Tg of less than 0degreesC and average particle size of 50-1000 nm.
DE19948117A1 (en) 1999-10-06 2001-04-12 Basf Ag Stabilizer composition
JP3717360B2 (en) * 2000-02-04 2005-11-16 ナカシマプロペラ株式会社 Method for forming sliding member for artificial joint
US7144919B1 (en) 2000-08-23 2006-12-05 Youngdae Kim Polyoxyethylene-polyoxypropylene vitamin E and process for preparation thereof
MXPA03005053A (en) * 2000-12-06 2003-09-05 Ciba Sc Holding Ag Polypropylene resin compositions.
DE10161863A1 (en) 2001-12-14 2003-07-03 Basf Ag Stabilizer composition II
WO2003057772A2 (en) 2001-12-27 2003-07-17 Cytec Technology Corp. Uv stabilized thermoplastic olefins
CN1302058C (en) * 2002-05-27 2007-02-28 大湖化学公司欧洲分公司 Stabilised polypropylene
AU2003266346A1 (en) * 2002-09-11 2004-04-30 Ciba, Specialty Chemicals Holding Inc. Stabillization of organic materials
WO2004031293A1 (en) 2002-10-01 2004-04-15 Exxonmobil Chemical Patents Inc. Polyethylene compositions for rotational molding
EP1308084A1 (en) 2002-10-02 2003-05-07 Ciba SC Holding AG Synergistic UV absorber combination
DE10254548A1 (en) * 2002-11-21 2004-06-17 Basf Ag Use of polymer powder containing UV absorbers for stabilizing polymers against the action of UV radiation
ATE539058T1 (en) * 2003-02-26 2012-01-15 Basf Se WATER COMPATIBLE STERICALLY HINDERED HYDROXY SUBSTITUTED ALKOXYAMINES
US20050081278A1 (en) * 2003-10-17 2005-04-21 Williams William A. Polymeric glove with lotion coating and method of making same
US20070227087A1 (en) * 2003-10-24 2007-10-04 Crane Plastics Company Llc Method of manufacturing simulated stone, brick, and masonry panels and wall structures
SA07280006B1 (en) * 2006-02-01 2011-05-14 سيبا سبشيالتي كيميكالز هولدينج انك Use of Secondary Sterically Hindered Amines as Processing Additives in Rotomolding Processes
BRPI0709551B1 (en) 2006-03-16 2018-03-06 Clariant Finance Bvi MODIFIED WAXES, PROCESS FOR PREPARING THEM, AND USING THEM
WO2007128672A1 (en) * 2006-05-03 2007-11-15 Ciba Holding Inc. Substituted hexahydro-1,4-diazepin-5-ones and compositions stabilized therewith
JP5718573B2 (en) 2007-03-12 2015-05-13 バイエル オサケユイチア Use of tocopherol
EP2150285B1 (en) 2007-04-10 2012-02-08 Zimmer, Inc. An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
EP2164892A1 (en) 2007-07-10 2010-03-24 Basf Se Stabilizer compositions
PL2014704T3 (en) 2007-07-13 2011-05-31 Borealis Tech Oy Low migration polyolefin composition comprising vitamin E-type stabiliser
JP5411525B2 (en) 2009-02-18 2014-02-12 株式会社Adeka Ultraviolet absorber composition with improved heat resistance and synthetic resin composition containing the same
US8357324B2 (en) 2009-04-21 2013-01-22 Basf Se Rotomolding process for polyethylene articles
JP2010270310A (en) * 2009-04-24 2010-12-02 Sumitomo Chemical Co Ltd Stabilizer composition and thermoplastic polymer composition containing the composition
JP5177575B2 (en) 2010-01-28 2013-04-03 三菱電機株式会社 Recycled polyolefin resin composition and recycled polystyrene resin composition
US11267951B2 (en) 2010-12-13 2022-03-08 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
CN104755470B (en) 2012-06-13 2019-11-08 塞特克技术公司 Stabiliser compositions and its application method containing the chroman compounds being substituted

Also Published As

Publication number Publication date
JP2018079695A (en) 2018-05-24
NZ735860A (en) 2019-05-31
UA123990C2 (en) 2021-07-07
EP2652014B1 (en) 2020-07-01
TWI449616B (en) 2014-08-21
MX363358B (en) 2019-03-21
JP6694423B2 (en) 2020-05-13
WO2012082578A2 (en) 2012-06-21
CA2821278A1 (en) 2012-06-21
RU2013132444A (en) 2015-01-20
RU2016131894A (en) 2018-12-10
RU2016131891A3 (en) 2019-12-19
KR20140006823A (en) 2014-01-16
CN103502325B (en) 2016-08-10
JP6300526B2 (en) 2018-03-28
TW201441285A (en) 2014-11-01
ZA201304261B (en) 2014-12-23
AU2018217320B2 (en) 2019-09-19
AU2011344159B2 (en) 2016-01-07
CA2821278C (en) 2019-06-18
RU2742578C2 (en) 2021-02-08
KR20190110627A (en) 2019-09-30
NZ711364A (en) 2017-11-24
TW201228794A (en) 2012-07-16
US20120146257A1 (en) 2012-06-14
ES2807882T3 (en) 2021-02-24
IL263156B (en) 2020-03-31
BR112013014715B1 (en) 2021-06-29
ZA201406580B (en) 2019-10-30
EP3786216A1 (en) 2021-03-03
JP2014501642A (en) 2014-01-23
AU2015249028A1 (en) 2015-11-12
RU2597918C2 (en) 2016-09-20
PL2652014T3 (en) 2021-01-11
WO2012082578A3 (en) 2012-08-16
MX2013006683A (en) 2013-07-29
UA117334C2 (en) 2018-07-25
KR102025299B1 (en) 2019-09-25
NZ611802A (en) 2015-09-25
AU2017202509A1 (en) 2017-05-11
CN103502325A (en) 2014-01-08
IL263156A (en) 2018-12-31
RU2016131891A (en) 2018-12-10
PT2652014T (en) 2020-09-08
US11312043B2 (en) 2022-04-26
KR102128986B1 (en) 2020-07-02
EP2652014A2 (en) 2013-10-23
BR112013014715A2 (en) 2016-10-04
AU2011344159A1 (en) 2013-06-27
IL226847B (en) 2018-11-29
AU2018217320A1 (en) 2018-09-06
BR112013014715B8 (en) 2021-07-27
TWI534190B (en) 2016-05-21

Similar Documents

Publication Publication Date Title
US20220212375A1 (en) Polymeric hollow articles containing chroman-based compounds and made by rotational molding
US20220153959A1 (en) Polyolefin compositions containing substituted chroman compounds and molded articles produced therefrom
JP2018053252A (en) Stabilizer compositions containing substituted chroman compounds and methods of use
TWI637017B (en) Stabilizer compositions containing substituted chroman compounds and methods of use

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CYTEC TECHNOLOGY CORP., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUPTA, RAM;SAMUELS, SARI-BETH;STEELE, THOMAS;AND OTHERS;SIGNING DATES FROM 20220713 TO 20220805;REEL/FRAME:060832/0095