US20050081278A1 - Polymeric glove with lotion coating and method of making same - Google Patents

Polymeric glove with lotion coating and method of making same Download PDF

Info

Publication number
US20050081278A1
US20050081278A1 US10/688,808 US68880803A US2005081278A1 US 20050081278 A1 US20050081278 A1 US 20050081278A1 US 68880803 A US68880803 A US 68880803A US 2005081278 A1 US2005081278 A1 US 2005081278A1
Authority
US
United States
Prior art keywords
glove
parts
weight
coating
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/688,808
Inventor
William Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEST MANUFACTURING Co
Original Assignee
BEST MANUFACTURING Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEST MANUFACTURING Co filed Critical BEST MANUFACTURING Co
Priority to US10/688,808 priority Critical patent/US20050081278A1/en
Assigned to BEST MANUFACTURING COMPANY reassignment BEST MANUFACTURING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WILLIAMS, WILLIAM ANDRUS
Priority to PCT/US2004/033700 priority patent/WO2005036996A2/en
Publication of US20050081278A1 publication Critical patent/US20050081278A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/08Coating a former, core or other substrate by spraying or fluidisation, e.g. spraying powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • A41D19/0058Three-dimensional gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2400/00Functions or special features of garments
    • A41D2400/52Disposable

Definitions

  • the present invention is directed to disposable gloves. More particularly, the present invention is directed to disposable gloves that have a coating on the inner surface of the glove that facilitates donning of the glove and also provides protective, soothing and healing ingredients for skin. A method of making the gloves is also disclosed.
  • Disposable gloves are frequently worn for extended periods of time by medical and industrial personnel. Due to the non-porous and close fitting nature of these gloves, wearing them for long periods of time frequently results in sweating of the hands. Gloves containing powders or other polymeric donning coatings tend to further dry the hands by wicking moisture away from the hands. This loss of moisture is not conducive to good hand skin health. Furthermore, since medical and industrial laboratory personnel are frequently washing their hands, hands can often become dry, chapped, cracked, red and/or irritated. Thus, a disposable glove that provides protective, soothing and healing ingredients for skin, both during and after use, has long been sought.
  • U.S. Pat. No. 6,274,154 attempts to solve these problems.
  • This patent discloses a moisturizing glove that includes a thin layer of Aloe Vera evenly coated on the inside surface of the glove.
  • the Aloe Vera coating is dehydrated. Specifically, the Aloe Vera coating is formed by immersing, spraying or dipping the glove in an Aloe Vera solution preferably made from 100% Aloe Vera gel and water so as to have a preferred concentration of about 20% Aloe Vera. The solution is then dehydrated to form the Aloe Vera coating.
  • the patent specifically discussed the disadvantages derived from using oil-based substances for the coating material.
  • a glove having a coating on the inner surface which coating comprises a film-forming compound and a oil-based emollient provides protective, soothing and healing ingredients for skin, both during and after wearing of the glove.
  • the present invention is directed to disposable gloves.
  • the glove comprises a polymeric or elastomeric material and having an inside surface for contacting the skin of a wearer.
  • the glove further comprises a dried coating formed on the inside surface thereof. This coating comprises a film forming compound and an oil-based emollient.
  • a method of making a glove comprises forming a coating on the inner surface of a polymeric or elastomeric glove.
  • the coating comprises a film forming compound and an oil-based emollient.
  • the coating is then dried.
  • an alternate method of making a glove comprises placing a polymeric or elastomeric glove on a glove form. Dipping the glove into a bath of a coating formulation so that a coating is formed on the surface of the glove.
  • the coating formulation comprises a film forming compound and an oil-based emollient.
  • the coating on the glove is then dried. And, the glove is removed from the form so that the dried coated surface of the glove is on the inner surface.
  • an alternate method of making a glove comprises applying a coating formulation to the surface of the glove to form a coating thereon.
  • the coating formulation comprises a film forming compound and an oil-based emollient.
  • the coating on the glove is then dried. And, the glove is oriented so that the dried coated surface of the glove is on the inner surface thereof.
  • Another object of the present invention is to provide a glove that provides protective, soothing and healing ingredients for skin, both during and after wearing of the glove.
  • a further object of the present invention is to provide a glove that is relatively easy to don.
  • the present invention comprises a polymeric or elastomeric glove; particularly, a disposable polymeric or elastomeric glove, such as those used by medical personnel for examination and treatment of patients, by dentists and dental hygienists, by doctors and nurses, and the like. These same gloves are also used in industrial applications. Such gloves are well known in the art and the particular construction of the gloves is not critical to the present invention, except to the extent that the coating formulation of the present invention and the polymer from which the glove is made must be compatible such that the coating formulation will adhere to the glove and will not degrade the polymer from which the glove is made.
  • the polymeric or elastomeric glove of the present invention can be made from natural latex, acrylonitrile, butadiene rubber, neoprene, isoprene, polychloroprene, or copolymers, blends and mixtures thereof.
  • U.S. Pat. Nos. 6,274,154 and 5,014,362 disclose polymeric or elastomeric gloves useful in the present invention as well as a method of making such a glove.
  • U.S. Pat. Nos. 6,274,154 and 5,014,362 are all incorporated herein by reference.
  • the coating formulation can be added to the glove as a part of a continuous manufacturing process. Alternately, the coating formulation can be added to the glove after the glove has completed the manufacturing process. Therefore, it would be possible to add the coating formulation of the present invention to polymeric gloves manufactured by a third party.
  • the coating formulation of the present invention in its simplest form, comprises an aqueous solution or suspension of a film-forming compound and an oil-based emollient.
  • Film-forming compounds useful in the present invention preferably include, but are not limited to, polyurethane, acrylonitrile, Neoprene, acrylic latex, styrene butadiene rubber (SBR), and polisoprenecal.
  • An especially preferred film-forming compound is an aqueous, anionic, and aliphatic dispersion of polyurethane with a particle size of less than 5 microns and an ultimate elongation of greater than 600%.
  • the film-forming compound is present in the coating formulation of the present invention at a rate effective to form an elastic coating on the glove; preferably at the rate of approximately 60 parts to 100 parts by weight; especially, approximately 70 parts to 90 parts by weight.
  • Oil-based emollients useful in the present invention preferably include, but are not limited to, petrolatum, cetyl alcohol, C12-15 alkyl benzoate, cyclomethicone or wax emulsifiers, such as cetearyl alcohol, and Ceteareth 20. Many other similar oil-based emollients may also be used.
  • the oil-based emollient is present in the coating formulation of the present invention at a rate effective to provide moisturizing, soothing or healing benefits to the skin of the wearer; preferably at the rate of approximately 5.6 parts to 9.7 parts by weight; especially, approximately 3.05 parts to 11.5 parts by weight.
  • the coating formulation of the present invention desirably includes one or more of the following ingredients: lubricants, thickening agents, preservatives, antimicrobials, skin softeners, antioxidants, emulsifiers and vitamin supplements.
  • Lubricants useful in the present invention preferably include, but are not limited to, C12-C15 alkyl benzoate, cyclomethicone and Ceteareth 20. Lubricants are present in the coating formulation of the present invention at the rate of approximately 2 parts to 7 parts by weight; preferably, approximately 4 parts to 6 parts by weight.
  • Thickening agents useful in the present invention preferably include, but are not limited to, Carbomer and Carbomer 934, 940 & 941, polyvinyl alcohol, carboxymethyl cellulose, hydroxymethyl cellulose, poly acrylate thickeners, and polyethylene oxide. Thickening agents are present in the coating formulation of the present invention at the rate of approximately 0.2 parts to 1 part by weight; preferably, approximately 0.4 parts to 0.6 parts by weight.
  • Preservatives useful in the present invention preferably include, but are not limited to, methyl paraben, propyl paraben Proxcel GXI, Vancide TH, butyl paraben, DMDM hydantoin, and ethyl paraben. Preservatives are present in the coating formulation of the present invention at the rate of approximately 0.05 parts to 0.3 parts by weight; preferably, approximately 0.08 parts to 0.25 parts by weight.
  • Vitamin supplements useful in the present invention preferably include, but are not limited to, tocopheral acetate, magnesium ascorbyl phosphate, vitamin A, retinal palmitate, retinyl acetate, Cetyl PG, hydroxyethyl palmitamide. Vitamin supplements are present in the coating formulation of the present invention at the rate of approximately 0.005 parts to 0.15 parts by weight; preferably, approximately 0.008 parts to 0.15 parts by weight.
  • Antimicrobials useful in the present invention preferably include, but are not limited to, methyl paraben and propyl paraben. Antimicrobials are present in the coating formulation of the present invention at the rate of approximately 0.05 parts to 0.3 parts by weight; preferably, approximately 0.08 parts to 0.25 parts by weight.
  • Skin softeners useful in the present invention preferably include, but are not limited to, glycerine and glyceral oleate, allantoin, aloe barbadensis, bees wax, chamomilla recutita (mattricaria) extract, cocoa butter, collagen, amino acids, colloidal oatmeal, everlasting extract, glycine soja (soybean) sterols, helianthus anuus (sun flower) seed oil, lanolin, palm (elais guineenis) oil, persea gratissima (avocado oil), primula verus extract, sun flower seed oil, and wheat germ oil.
  • Skin softeners are present in the coating formulation of the present invention at the rate of approximately 0.2 parts to 0.7 parts by weight; preferably, approximately 0.4 parts to 0.6 parts by weight.
  • Antioxidants useful in the present invention preferably include, but are not limited to, tocopherol, tocopheral acetate, and tocopheryl linoleate. Antioxidants are present in the coating formulation of the present invention at the rate of approximately 0.05 parts to 0.15 parts by weight; preferably, approximately 0.08 parts to 0.12 parts by weight.
  • Emulsifiers useful in the present invention preferably include, but are not limited to, cetearyl alcohol, cetyl alcohol, stearic acid, lethicin, stearyl alcohol, cetearyl ethylhexanoate, and cetyl acetate. Emulsifiers are present in the coating formulation of the present invention at the rate of approximately 1 part to 3 parts by weight; preferably, approximately 1.5 parts to 2.5 parts by weight.
  • a typical coating formulation may contain the following ingredients in the range of concentrations indicated. All ranges are in parts by weight.
  • Part C Material Range Preferred Water 700-1400 800-1200 Witco 506 60.0-100.0 70.0-90.0 Part A&B 2.0-8.0 2.5-7.0
  • the coating formulation of the present invention can be applied to polymeric or elastomeric glove by any suitable method, such as by spraying, dipping, drum coating, and the like.
  • the gloves can be coated in a continuous manufacturing process or after the gloves have been completely manufactured. If it is desired to coat the gloves in a continuous manufacturing process, the glove should be coated when the polymer or elastomer is in the wet gel stage or dried.
  • the coating formulation be applied to the polymeric or elastomeric glove by dipping the glove in a coating bath. This is may be done by placing the coating formulation in a tank. The gloves, which are typically mounted on a glove form, are inverted so that the fingers of the glove extend downwardly. The glove is then immersed into the coating formulation and withdrawn at a constant speed. The length of time that the glove is in the coating formulation and the exit speed may be varied depending upon the desired pick up weight. Generally, it is desired that the pick up weight of the coating formulation of the present invention should be approximately 0.5 grams to 0.7 grams; preferably approximately 0.4 grams to 0.7 grams. An 11 second withdrawal speed from the cuff to the fingertips of the glove is typical.
  • the coating formulation may be applied to the gloves by tumbling the gloves in the coating formulation in a rotating drum. The gloves are then drained and processed off line in commercial heated dryers.
  • the coating formulation on the polymeric or elastomeric glove may be dried in any suitable fashion known in the art. If the coating formulation is applied by dipping, the dipped coating is generally dried onto the glove while the glove is still mounted on a glove form at temperatures ranging from approximately 160° F. to 215° . However, the drying time and temperature is dependent upon the glove being made and the desired properties of the glove. The coating may be exposed to temperatures much higher (260° F.) for reasons unrelated to the coating. Drying may be accomplished by placing the coated glove on the glove form in a forced air oven. However, tumbling in a heated dryer will allow higher temperatures to be used to speed the drying process. Alternately, the coating on the glove can be partially dried while the glove is on the glove form and then final drying can be done in a tumbling heated dryer.
  • the coating formulation is applied and dried on the outer surface of the glove.
  • the coating formulation In order for the coating formulation to benefit the hand skin of the wearer, the coating formulation must be on the inside surface of the glove; i.e., the surface of the glove that contacts the skin on the hand of the wearer. Therefore, after the coating on the glove has been dried, it is necessary to turn the gloves inside out so that the coated surface is on the inside of the glove. If the coating is applied in a continuous manufacturing process, the reversal of the glove can be done when the dried, coated glove is removed from the glove form.
  • Carbomer is a synthetic compound comprised of a cross-linked polymer of acrylic acid with a high molecular weight. The function of carbomer is to act as an emulsion stabilizer and to adjust viscosity and can therefore also be classed as a thickening agent. Ceteareth 20 Formulated waxes that can serve as complete emulsifier systems. Useful in oil-in-water emulsions such as creams, lotions, and ointments.
  • the completely nonionic waxes are stable in both acid and alkaline formulations and are compatible with cationic ingredients Cetearyl alcohol Formulated wax that can serve as complete emulsifier systems. Useful in oil-in-water emulsions such as creams, lotions, and ointments.
  • the completely nonionic wax is stable in both acid and alkaline formulations and is compatible with cationic ingredients. Cetyl Alcohol 1-hexadecanol, hexadecanol, hexadecan-1-ol, hexadecyl alcohol, cetal, cetylol, n-hexadecyl alcohol, palmityl alcohol.
  • silicone rubber silicone latex, latex, dimethyl silicone, simethicone, dimethyl polysiloxane, dermafilm, silbar, dimethicream, poly(dimethylsiloxane), methyl silicone, dimethicone 350, good-rite, gum, hycar, poly(oxy(dimethylsilylene)).
  • Molecular formula [—Si(CH 3 ) 2 O—] n .
  • Magnesium Ascorbyl Magnesium L-Ascorbic acid-2-phosphate(MAP) is a kind of Phosphate water-soluble whitening agent, and it can catch free oxygen radical to accelerate the formation of collagen.
  • Petrolatum A colorless to yellowish-white hydrocarbon mixture obtained by fractional distillation of petroleum. In its jellylike semisolid form (known as petroleum jelly) it is used in preparing medicinal ointments and for lubrication.
  • liquid petrolatum As a nearly colorless, highly refined liquid known as liquid petrolatum, liquid paraffin, or mineral oil, it is used as a lubricant, as a laxative, and as a base for nasal sprays.
  • Propyl Paraben Propyl 4-hydroxybenzoate and is used as a preservative.
  • Tocopheral Acetate Source of vitamin E Water Deionized or soft water.
  • Witco 506 An aqueous, anionic, and aliphatic dispersion of polyurethane with a particle size of less than 5 microns and an ultimate elongation of greater than 600%.
  • the urethane is hydrophilic in nature.
  • Table II lists the manufacturer or commercial source for each of the ingredients listed above in Table I. TABLE II Ingredient Source Address Carbomer Rita Corporation Woodstock, IL 60098 C12-15 Alkyl Degussa Hopewell, Virginia 23860 Benzoate Cetearth-20 BASF Corp Mount Olive, NJ 07828-1234 Cetearyl Alcohol Rita Corporation Woodstock, IL 60098 Cetyl Alcohol Acme-Hardesty Blue Bell, PA 19422 Products Dimethilcone A&E Connock Hampshire, England Company Methyparaben Acme-Hardesty Blue Bell, PA 19422 Products Retinyl palmitate BASF Corp Mount Olive, NJ 07828-1234 Tocopheral Acetate A&E Connock Hampshire, England Company Petrolatum Penreco Houston, Texas 77002 Propylparaben Acme-Hardesty 1787 Sentry Parkway West Products Blue Bell, PA 19422 Stearic Acid Acme-Hardesty Blue Bell, PA 19422 Products Magnesium Ascorbyl Optima Specialty Hunt
  • Part “A” is a mixture of emollients, lubricants, thickening agents, preservatives, antimicrobials, skin softeners, antioxidants and vitamin supplements. These ingredients act as the foundation of the moisturizing system.
  • a thickener preferably Carbomer, is added to help prevent the settling of other ingredients as they are added by changing the density of the water once the solution cools.
  • Water preferably deionized or soft water, is used to bring the ingredients in to solution by dissolving or dispersing the other ingredients.
  • C12-C15 alkyl benzoate, cyclomethicone and Ceteareth 20 act as emollients and lubricants.
  • Cetearyl alcohol and Cetyl Alcohol are emollients and nonionic surfactants. Emollients are also known in common terms as moisturizers. The purpose of moisturizers is to maintain hydration or to rehydrate the skin. Moisturizers prevent water from evaporating from the skin by providing a protective coating. Dimethicone is a silicone-based spreader that aids in smoothing the compound. Methyl Paraben is a preservative. Retinyl Palmitate is a source of vitamin A and is known for stimulating cell growth in skin resulting in healing dry or irritated skin. Tocopheral Acetate is a source of vitamin “E”. Vitamin E serves two purposes. First, it acts as an antioxidant to help preserve the compound and reduces damage to the skin when applied prior to exposure to UV light sources such as the sun. Glycerine is a skin softener.
  • Part “B” is a mixture of emollients, emulsifies, preservatives and anti-micobials.
  • the further ingredients are primarily to stabilize the compound but also lend to the overall moisturizing affect of the coating system.
  • Water, as in Part A, is used to bring the ingredients into solution. It acts synergistically with the other components to provide a source of moisture to the skin and control the overall percent solids of the compounds so that the desired amount of moisturizer are delivers to the skin when applied.
  • Petrolatum is a petroleum-based emollient that traps moisture under the skin due to its hydrophobic nature. Propyl paraben acts synergistically with the methyl paraben in part A as a preservative.
  • Stearic acid and lethicin is used as an emulsifier to assist the compound in staying in solution.
  • Magnesium Ascorbyl phosphate is a source of vitamin “C” known for its whitening affect on the skin. It also acts to a lesser extent as an emollient within the system.
  • Part “C” is the carrier and film former of the system. Deionized or soft water is used to dilute the coating to the desired percent solids in order to control the amount of coating applied to the article.
  • the base material is Witco 506 polyurethane dispersion.
  • the Witco 506 is an aqueous, anionic, and aliphatic dispersion of polyurethane with a particle size of less than 5 microns and an ultimate elongation of greater than 600%.
  • the urethane is hydrophilic in nature.
  • a typical formula is outlined below: Part A Material Amount Water 34.6 Carbomer 0.5 C12-15 Alkyl Benzoate 5.0 Ceteareth 20 2.5 Cetyl Alcohol 2.5 Cetearyl alcohol 2.0 Dimethicone 0.5 Methyl Paraben 0.2 Retinyl Palmitate 0.01 Tocopheral Acetate 0.1 Cyclomethicone 0.5 Glycerine 2.0
  • Part A the water is first heated to 70-75° C. or 158-167° F. Then, the other ingredients listed in Part “A” are added to the heated water under steady agitation. Agitation is continued until all ingredients are dissolved or dispersed.
  • Part B Material Amount Water 34.6 Petrolatum 5.0 Propyl paraben 0.1 Stearic Acid 0.5 Magnesium Ascorbyl Phosphate 0.1 Lethicin 0.25
  • Part B water is heated to 70-75° C. or 158-167° F. Then, the other ingredients listed in Part “B” are added to the heated water under steady agitation. Agitation is continued until all ingredients are dissolved or dispersed.
  • Propyl paraben is propyl 4-hydroxybenzoate and is used as a preservative.
  • Petrolatum is a colorless to yellowish-white hydrocarbon mixture obtained by fractional distillation of petroleum. In its jellylike semisolid form (known as petroleum jelly) it is used in preparing medicinal ointments and for lubrication. As a nearly colorless, highly refined liquid known as liquid petrolatum, liquid paraffin, or mineral oil, it is used as a lubricant, as a laxative, and as a base for nasal sprays.
  • Parts A and B are then slowly combined under constant agitation. The mixture is then permitted to cool to ambient temperature.
  • Part C Material Amount Water 1000 Witco 506 80.0 Part A&B 5.0
  • Part C is prepared by adding Witco 506 to water under steady agitation at ambient temperature. Agitation is continued until all ingredients are dissolved or dispersed. Then, the previous mixture of Parts A and B is added to the Witco 506 and water mixture and stirred well until dispersed.
  • Part “A” is a mixture of emollients, lubricants, thickening agents, preservatives, antimicrobials, skin softeners, antioxidants and vitamin supplements. These ingredients act as the foundation of the moisturizing system.
  • a thickener preferably Carbomer, is added to help prevent the settling of other ingredients as they are added by changing the density of the water once the solution cools.
  • Water preferably deionized or soft water, is used to bring the ingredients in to solution by dissolving or dispersing the other ingredients.
  • C12-C15 alkyl Benzoate, cyclomethicone and Ceteareth 20 act as emollients and lubricants.
  • Cetearyl alcohol and Cetyl Alcohol are emollients and nonionic surfactants. Emollients are also known in common terms as moisturizers. The purpose of moisturizers is to maintain hydration or to rehydrate the skin. Moisturizers prevent water from evaporating from the skin by providing a protective coating. Dimethicone is a silicone-based spreader that aids in smoothing the compound. Methyl Paraben is a preservative. Retinyl Palmitate is a source of vitamin A and is known for stimulating cell growth in skin resulting in healing dry or irritated skin. Tocopheral Acetate is a source of vitamin “E”. Vitamin E serves two purposes. First, it acts as an antioxidant to help preserve the compound and reduces damage to the skin when applied prior to exposure to UV light sources such as the sun. Glycerine is a skin softener.
  • Part “B” is a mixture of emollients, emulsifies, preservatives and anti-microbials
  • the ingredients further primarily to stabilize the compound but lent to the overall moisturizing affect of the coating system.
  • Water as in Part A is used to bring the ingredients into solution. It acts synergistically with the other components to provide a source of moisture to the skin and control the overall percent solids of the compounds to that the desired amount of moisturizer are delivers to the skin when applied.
  • Petrolatum is a petroleum-based emollient that traps moisture under the skin due to its hydrophobic nature. Propyl paraben acts synergistically with the methyl paraben in part A as a preservative.
  • Stearic acid and lethicin is used as an emulsifier to assist the compound in staying in solution.
  • Magnesium Ascorbyl phosphate is a source of vitamin “C” known for its whitening affect on the skin. It also acts to a lesser extent as an emollient within the system.
  • Part “C” is the carrier and film former of the system. Deionized or soft water is used to dilute the coating to the desired percent solids in order to control the amount of coating applied to the article.
  • the base material is Witco 506 polyurethane dispersion.
  • the Witco 506 is an aqueous, anionic, and aliphatic dispersion of polyurethane with a particle size of less than 5 microns and an ultimate elongation of greater than 600%.
  • the urethane is hydrophilic in nature.
  • the coating is applied to the glove by dipping and produces a pick up weight of approximately 0.6 grams.
  • the coated glove is then placed in a forced air oven at a temperature of approximately 240° F. ⁇ 20° F. for a period of 36 minutes ⁇ 8 minutes.
  • the coating is dried onto the glove and forms an elastic film. This film has sufficient hardness to produce a coefficient of friction of less than 0.5 when measured kinetically on a bisque glass substrate.
  • the polyurethane film When the film is hydrolyzed by a source of moisture, such as perspiration, the polyurethane film releases the emollients and other protective ingredients that then seal the affected area and prevent moisture from leaving the skin.
  • the skin is further supplemented by intimate contact with vitamin sources known to have healing effects when absorbed by the skin.
  • Example 1 The coating formulation of Example 1 is prepared using the same ingredients in the same proportions. However, the following polymers or elastomers are substituted for the Witco 506 polyurethane at equal parts.
  • Polymer/Elastomer Material Source Tylac 68074 acrylonitrile Dow Reichhold Tylac 68073 acrylonitrile Dow Reichhold V-29 acrylic latex Noveon V-49 acrylic latex Noveon 750 7 671 neoprene DuPont
  • the coating is applied to the glove by tumbling.
  • the coating is dried onto the glove in a tumbling dryer and forms an elastic film.
  • This film has sufficient hardness to produce a coefficient of friction of less than 0.5 when measured kinetically on a bisque glass substrate.

Abstract

The present invention is directed to a disposable glove. The glove comprises a polymeric material having an inside surface for contacting the skin of a wearer. The glove further comprises a coating formed on the inside surface thereof. This coating comprises a film-forming compound and an oil-based emollient. A method of making the glove is also disclosed.

Description

    FIELD OF THE INVENTION
  • The present invention is directed to disposable gloves. More particularly, the present invention is directed to disposable gloves that have a coating on the inner surface of the glove that facilitates donning of the glove and also provides protective, soothing and healing ingredients for skin. A method of making the gloves is also disclosed.
  • BACKGROUND OF THE INVENTION
  • Disposable gloves are frequently worn for extended periods of time by medical and industrial personnel. Due to the non-porous and close fitting nature of these gloves, wearing them for long periods of time frequently results in sweating of the hands. Gloves containing powders or other polymeric donning coatings tend to further dry the hands by wicking moisture away from the hands. This loss of moisture is not conducive to good hand skin health. Furthermore, since medical and industrial laboratory personnel are frequently washing their hands, hands can often become dry, chapped, cracked, red and/or irritated. Thus, a disposable glove that provides protective, soothing and healing ingredients for skin, both during and after use, has long been sought.
  • U.S. Pat. No. 6,274,154 attempts to solve these problems. This patent discloses a moisturizing glove that includes a thin layer of Aloe Vera evenly coated on the inside surface of the glove. The Aloe Vera coating is dehydrated. Specifically, the Aloe Vera coating is formed by immersing, spraying or dipping the glove in an Aloe Vera solution preferably made from 100% Aloe Vera gel and water so as to have a preferred concentration of about 20% Aloe Vera. The solution is then dehydrated to form the Aloe Vera coating. The patent specifically discussed the disadvantages derived from using oil-based substances for the coating material.
  • In accordance with the present invention, it has been found that a glove having a coating on the inner surface which coating comprises a film-forming compound and a oil-based emollient provides protective, soothing and healing ingredients for skin, both during and after wearing of the glove.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to disposable gloves. The glove comprises a polymeric or elastomeric material and having an inside surface for contacting the skin of a wearer. The glove further comprises a dried coating formed on the inside surface thereof. This coating comprises a film forming compound and an oil-based emollient.
  • In an alternate embodiment, there is disclosed a method of making a glove. The method comprises forming a coating on the inner surface of a polymeric or elastomeric glove. The coating comprises a film forming compound and an oil-based emollient. The coating is then dried.
  • In another embodiment, there is disclosed an alternate method of making a glove. The method comprises placing a polymeric or elastomeric glove on a glove form. Dipping the glove into a bath of a coating formulation so that a coating is formed on the surface of the glove. The coating formulation comprises a film forming compound and an oil-based emollient. The coating on the glove is then dried. And, the glove is removed from the form so that the dried coated surface of the glove is on the inner surface.
  • In another embodiment, there is disclosed an alternate method of making a glove. The method comprises applying a coating formulation to the surface of the glove to form a coating thereon. The coating formulation comprises a film forming compound and an oil-based emollient. The coating on the glove is then dried. And, the glove is oriented so that the dried coated surface of the glove is on the inner surface thereof.
  • Accordingly, it is an object of the present invention to provide an improved disposable glove.
  • Another object of the present invention is to provide a glove that provides protective, soothing and healing ingredients for skin, both during and after wearing of the glove.
  • A further object of the present invention is to provide a glove that is relatively easy to don.
  • These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.
  • DETAILED DESCRIPTION OF THE DISCLOSED EMBODIMENTS
  • The present invention comprises a polymeric or elastomeric glove; particularly, a disposable polymeric or elastomeric glove, such as those used by medical personnel for examination and treatment of patients, by dentists and dental hygienists, by doctors and nurses, and the like. These same gloves are also used in industrial applications. Such gloves are well known in the art and the particular construction of the gloves is not critical to the present invention, except to the extent that the coating formulation of the present invention and the polymer from which the glove is made must be compatible such that the coating formulation will adhere to the glove and will not degrade the polymer from which the glove is made.
  • The polymeric or elastomeric glove of the present invention can be made from natural latex, acrylonitrile, butadiene rubber, neoprene, isoprene, polychloroprene, or copolymers, blends and mixtures thereof. U.S. Pat. Nos. 6,274,154 and 5,014,362 disclose polymeric or elastomeric gloves useful in the present invention as well as a method of making such a glove. U.S. Pat. Nos. 6,274,154 and 5,014,362 are all incorporated herein by reference.
  • The coating formulation can be added to the glove as a part of a continuous manufacturing process. Alternately, the coating formulation can be added to the glove after the glove has completed the manufacturing process. Therefore, it would be possible to add the coating formulation of the present invention to polymeric gloves manufactured by a third party.
  • The coating formulation of the present invention, in its simplest form, comprises an aqueous solution or suspension of a film-forming compound and an oil-based emollient. Film-forming compounds useful in the present invention preferably include, but are not limited to, polyurethane, acrylonitrile, Neoprene, acrylic latex, styrene butadiene rubber (SBR), and polisoprenecal. An especially preferred film-forming compound is an aqueous, anionic, and aliphatic dispersion of polyurethane with a particle size of less than 5 microns and an ultimate elongation of greater than 600%. The film-forming compound is present in the coating formulation of the present invention at a rate effective to form an elastic coating on the glove; preferably at the rate of approximately 60 parts to 100 parts by weight; especially, approximately 70 parts to 90 parts by weight.
  • Oil-based emollients useful in the present invention preferably include, but are not limited to, petrolatum, cetyl alcohol, C12-15 alkyl benzoate, cyclomethicone or wax emulsifiers, such as cetearyl alcohol, and Ceteareth 20. Many other similar oil-based emollients may also be used. The oil-based emollient is present in the coating formulation of the present invention at a rate effective to provide moisturizing, soothing or healing benefits to the skin of the wearer; preferably at the rate of approximately 5.6 parts to 9.7 parts by weight; especially, approximately 3.05 parts to 11.5 parts by weight.
  • In addition to the film-forming compound and the oil-based emollient, the coating formulation of the present invention desirably includes one or more of the following ingredients: lubricants, thickening agents, preservatives, antimicrobials, skin softeners, antioxidants, emulsifiers and vitamin supplements.
  • Lubricants useful in the present invention preferably include, but are not limited to, C12-C15 alkyl benzoate, cyclomethicone and Ceteareth 20. Lubricants are present in the coating formulation of the present invention at the rate of approximately 2 parts to 7 parts by weight; preferably, approximately 4 parts to 6 parts by weight.
  • Thickening agents useful in the present invention preferably include, but are not limited to, Carbomer and Carbomer 934, 940 & 941, polyvinyl alcohol, carboxymethyl cellulose, hydroxymethyl cellulose, poly acrylate thickeners, and polyethylene oxide. Thickening agents are present in the coating formulation of the present invention at the rate of approximately 0.2 parts to 1 part by weight; preferably, approximately 0.4 parts to 0.6 parts by weight.
  • Preservatives useful in the present invention preferably include, but are not limited to, methyl paraben, propyl paraben Proxcel GXI, Vancide TH, butyl paraben, DMDM hydantoin, and ethyl paraben. Preservatives are present in the coating formulation of the present invention at the rate of approximately 0.05 parts to 0.3 parts by weight; preferably, approximately 0.08 parts to 0.25 parts by weight.
  • Vitamin supplements useful in the present invention preferably include, but are not limited to, tocopheral acetate, magnesium ascorbyl phosphate, vitamin A, retinal palmitate, retinyl acetate, Cetyl PG, hydroxyethyl palmitamide. Vitamin supplements are present in the coating formulation of the present invention at the rate of approximately 0.005 parts to 0.15 parts by weight; preferably, approximately 0.008 parts to 0.15 parts by weight.
  • Antimicrobials useful in the present invention preferably include, but are not limited to, methyl paraben and propyl paraben. Antimicrobials are present in the coating formulation of the present invention at the rate of approximately 0.05 parts to 0.3 parts by weight; preferably, approximately 0.08 parts to 0.25 parts by weight.
  • Skin softeners useful in the present invention preferably include, but are not limited to, glycerine and glyceral oleate, allantoin, aloe barbadensis, bees wax, chamomilla recutita (mattricaria) extract, cocoa butter, collagen, amino acids, colloidal oatmeal, everlasting extract, glycine soja (soybean) sterols, helianthus anuus (sun flower) seed oil, lanolin, palm (elais guineenis) oil, persea gratissima (avocado oil), primula verus extract, sun flower seed oil, and wheat germ oil. Skin softeners are present in the coating formulation of the present invention at the rate of approximately 0.2 parts to 0.7 parts by weight; preferably, approximately 0.4 parts to 0.6 parts by weight.
  • Antioxidants useful in the present invention preferably include, but are not limited to, tocopherol, tocopheral acetate, and tocopheryl linoleate. Antioxidants are present in the coating formulation of the present invention at the rate of approximately 0.05 parts to 0.15 parts by weight; preferably, approximately 0.08 parts to 0.12 parts by weight.
  • Emulsifiers useful in the present invention preferably include, but are not limited to, cetearyl alcohol, cetyl alcohol, stearic acid, lethicin, stearyl alcohol, cetearyl ethylhexanoate, and cetyl acetate. Emulsifiers are present in the coating formulation of the present invention at the rate of approximately 1 part to 3 parts by weight; preferably, approximately 1.5 parts to 2.5 parts by weight.
  • A typical coating formulation may contain the following ingredients in the range of concentrations indicated. All ranges are in parts by weight.
    Part A
    Material Range Preferred
    Water 20-40 32-37
    Carbomer 0.2-1.0 0.4-0.6
    C12-15 Alkyl Benzoate 2.0-7.0 4.0-6.0
    Ceteareth 20 1.0-5.0 2.0-3.0
    Cetyl Alcohol 2.0-3.0 2.3-2.7
    Cetearyl alcohol 1.0-5.0 1.5-2.5
    Dimethicone 0.2-1.0 0.4-0.6
    Methyl Paraben 0.1-.3  0.15-0.25
    Retinyl Palmitate .005-.015 0.008-0.15 
    Tocopheral Acetate .05-.15 0.08-.12 
    Cyclomethicone 0.2-0.7 0.4-0.6
    Glycerine 1.0-3.0 1.5-2.5
  • Part B
    Material Range Preferred
    Water 20-40 32-37
    Petrolatum 2.0-7.0 4.0/6.0
    Propyl paraben .05-.15 .08-.12
    Stearic Acid 0.2-0.7 0.4-0.6
    Magnesium Ascorbyl Phosphate  .05-.015 0.08-.12 
    Lethicin 0.2-0.3 0.23-0.27
  • Part C
    Material Range Preferred
    Water  700-1400  800-1200
    Witco 506  60.0-100.0 70.0-90.0
    Part A&B 2.0-8.0 2.5-7.0
  • The coating formulation of the present invention can be applied to polymeric or elastomeric glove by any suitable method, such as by spraying, dipping, drum coating, and the like. As stated above, the gloves can be coated in a continuous manufacturing process or after the gloves have been completely manufactured. If it is desired to coat the gloves in a continuous manufacturing process, the glove should be coated when the polymer or elastomer is in the wet gel stage or dried.
  • It is preferred that the coating formulation be applied to the polymeric or elastomeric glove by dipping the glove in a coating bath. This is may be done by placing the coating formulation in a tank. The gloves, which are typically mounted on a glove form, are inverted so that the fingers of the glove extend downwardly. The glove is then immersed into the coating formulation and withdrawn at a constant speed. The length of time that the glove is in the coating formulation and the exit speed may be varied depending upon the desired pick up weight. Generally, it is desired that the pick up weight of the coating formulation of the present invention should be approximately 0.5 grams to 0.7 grams; preferably approximately 0.4 grams to 0.7 grams. An 11 second withdrawal speed from the cuff to the fingertips of the glove is typical.
  • If it is desired to apply the coating formulation of the present invention to gloves that are already manufactured, the coating formulation may be applied to the gloves by tumbling the gloves in the coating formulation in a rotating drum. The gloves are then drained and processed off line in commercial heated dryers.
  • The coating formulation on the polymeric or elastomeric glove may be dried in any suitable fashion known in the art. If the coating formulation is applied by dipping, the dipped coating is generally dried onto the glove while the glove is still mounted on a glove form at temperatures ranging from approximately 160° F. to 215° . However, the drying time and temperature is dependent upon the glove being made and the desired properties of the glove. The coating may be exposed to temperatures much higher (260° F.) for reasons unrelated to the coating. Drying may be accomplished by placing the coated glove on the glove form in a forced air oven. However, tumbling in a heated dryer will allow higher temperatures to be used to speed the drying process. Alternately, the coating on the glove can be partially dried while the glove is on the glove form and then final drying can be done in a tumbling heated dryer.
  • In both the dipping and the tumbling coating process, the coating formulation is applied and dried on the outer surface of the glove. In order for the coating formulation to benefit the hand skin of the wearer, the coating formulation must be on the inside surface of the glove; i.e., the surface of the glove that contacts the skin on the hand of the wearer. Therefore, after the coating on the glove has been dried, it is necessary to turn the gloves inside out so that the coated surface is on the inside of the glove. If the coating is applied in a continuous manufacturing process, the reversal of the glove can be done when the dried, coated glove is removed from the glove form.
  • The present invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention and/or the scope of the appended claims.
  • EXAMPLE 1
  • Preparation of the Coating Composition
  • Table I lists various ingredients used in this Example along with their definitions.
    TABLE I
    Material Definition
    C12-C15 Alkyl Emollient and lubricant.
    Benzoate
    Carbomer Carbomer is a synthetic compound comprised of a cross-linked
    polymer of acrylic acid with a high molecular weight. The
    function of carbomer is to act as an emulsion stabilizer and to
    adjust viscosity and can therefore also be classed as a
    thickening agent.
    Ceteareth 20 Formulated waxes that can serve as complete emulsifier
    systems. Useful in oil-in-water emulsions such as creams,
    lotions, and ointments. The completely nonionic waxes are
    stable in both acid and alkaline formulations and are
    compatible with cationic ingredients
    Cetearyl alcohol Formulated wax that can serve as complete emulsifier systems.
    Useful in oil-in-water emulsions such as creams, lotions, and
    ointments. The completely nonionic wax is stable in both acid
    and alkaline formulations and is compatible with cationic
    ingredients.
    Cetyl Alcohol 1-hexadecanol, hexadecanol, hexadecan-1-ol, hexadecyl
    alcohol, cetal, cetylol, n-hexadecyl alcohol, palmityl alcohol.
    Use: cosmetic ingredient, emollient, foam stabilizer, water
    evaporation retardant. Molecular formula: C16H34O. CAS No:
    36653-82-4. EINECS No: 253-149-0.
    Cyclomethicone An emollient and lubricant. Silicone polymer sourced from
    silica, from sands. This produces an excellent skin
    conditioning, emollient and lubricant. Non-greasy, it reduces
    friction and is highly skin protective.
    Dimethicone A silicone-based spreader. Synonyms: silicone rubber, silicone
    latex, latex, dimethyl silicone, simethicone, dimethyl
    polysiloxane, dermafilm, silbar, dimethicream,
    poly(dimethylsiloxane), methyl silicone, dimethicone 350,
    good-rite, gum, hycar, poly(oxy(dimethylsilylene)). Molecular
    formula: [—Si(CH3)2O—]n. CAS No: 9016-00-6
    Glycerine Skin softener.
    Lethicin Surfactant, fat emulsifier.
    Magnesium Ascorbyl Magnesium L-Ascorbic acid-2-phosphate(MAP) is a kind of
    Phosphate water-soluble whitening agent, and it can catch free oxygen
    radical to accelerate the formation of collagen. CAS # 108910-
    78-7.
    Methyl Paraben A preservative. Methyl 4-Hydroxybenzoate.
    Petrolatum A colorless to yellowish-white hydrocarbon mixture obtained
    by fractional distillation of petroleum. In its jellylike semisolid
    form (known as petroleum jelly) it is used in preparing
    medicinal ointments and for lubrication. As a nearly colorless,
    highly refined liquid known as liquid petrolatum, liquid
    paraffin, or mineral oil, it is used as a lubricant, as a laxative,
    and as a base for nasal sprays.
    Propyl Paraben Propyl 4-hydroxybenzoate and is used as a preservative.
    Retinyl Palmitate Source of vitamin A.
    Stearic Acid Synonyms: n-octadecanoate; 1-heptadecanecarboxylic acid;
    stearophanic acid; n-octadecylic acid; cetylacetic acid; barolub
    fta; century 1210; century 1220; century 1230; century 1240;
    dar-chem 14; emersol 120; emersol 132; emersol 150; emersol
    153; emersol 6349; formula 300; glycon dp; glycon s-70;
    glycon s-80; glycon s-90; glycon tp; groco 54; groco 55; groco
    551; groco 58; groco 59; humko industrene r; hydrofol acid
    150; hydrofol acid 1655; hydrofol acid 1855; hydrofol 1895;
    hy-phi 1199; hy-phi 1205; hy-phi 1303; hy-phi 1401; hystrene
    80; hystrene 4516; hystrene 5016; hystrene 7018; hystrene
    9718; hystrene s 97; hystrene t 70; industrene 5016; industrene
    8718; industrene 9018; industrene r; kam 1000; kam 2000;
    kam 3000; loxiol g 20; lunac s 20; naa 173; neo-fat 18; neo-fat
    18-s; neo-fat 18-53; neo-fat 18-54; neo-fat 18-55; neo-fat 18-59;
    neo-fat 18-61; PD 185; pearl stearic; promulsin; proviscol
    wax; stearex beads; tegostearic 254; tegostearic 255;
    tegostearic 272; vanicol. CAS #57-11-4.
    Tocopheral Acetate Source of vitamin E.
    Water Deionized or soft water.
    Witco 506 An aqueous, anionic, and aliphatic dispersion of polyurethane
    with a particle size of less than 5 microns and an ultimate
    elongation of greater than 600%. The urethane is hydrophilic
    in nature.
  • Table II lists the manufacturer or commercial source for each of the ingredients listed above in Table I.
    TABLE II
    Ingredient Source Address
    Carbomer Rita Corporation Woodstock, IL 60098
    C12-15 Alkyl Degussa Hopewell, Virginia 23860
    Benzoate
    Cetearth-20 BASF Corp Mount Olive, NJ 07828-1234
    Cetearyl Alcohol Rita Corporation Woodstock, IL 60098
    Cetyl Alcohol Acme-Hardesty Blue Bell, PA 19422
    Products
    Dimethilcone A&E Connock Hampshire, England
    Company
    Methyparaben Acme-Hardesty Blue Bell, PA 19422
    Products
    Retinyl palmitate BASF Corp Mount Olive, NJ 07828-1234
    Tocopheral Acetate A&E Connock Hampshire, England
    Company
    Petrolatum Penreco Houston, Texas 77002
    Propylparaben Acme-Hardesty 1787 Sentry Parkway West
    Products Blue Bell, PA 19422
    Stearic Acid Acme-Hardesty Blue Bell, PA 19422
    Products
    Magnesium Ascorbyl Optima Specialty Huntington, CT 06484
    Phosphate Chemical Co
    Lethicin Optima Specialty Huntington, CT 06484
    Company
    Witco 506 Crompton Corp Middlebury, CT 06749
  • The coating formulation is made in a series of three steps, as described further below. Part “A” is a mixture of emollients, lubricants, thickening agents, preservatives, antimicrobials, skin softeners, antioxidants and vitamin supplements. These ingredients act as the foundation of the moisturizing system. A thickener, preferably Carbomer, is added to help prevent the settling of other ingredients as they are added by changing the density of the water once the solution cools. Water, preferably deionized or soft water, is used to bring the ingredients in to solution by dissolving or dispersing the other ingredients. C12-C15 alkyl benzoate, cyclomethicone and Ceteareth 20 act as emollients and lubricants. Cetearyl alcohol and Cetyl Alcohol are emollients and nonionic surfactants. Emollients are also known in common terms as moisturizers. The purpose of moisturizers is to maintain hydration or to rehydrate the skin. Moisturizers prevent water from evaporating from the skin by providing a protective coating. Dimethicone is a silicone-based spreader that aids in smoothing the compound. Methyl Paraben is a preservative. Retinyl Palmitate is a source of vitamin A and is known for stimulating cell growth in skin resulting in healing dry or irritated skin. Tocopheral Acetate is a source of vitamin “E”. Vitamin E serves two purposes. First, it acts as an antioxidant to help preserve the compound and reduces damage to the skin when applied prior to exposure to UV light sources such as the sun. Glycerine is a skin softener.
  • Part “B” is a mixture of emollients, emulsifies, preservatives and anti-micobials. The further ingredients are primarily to stabilize the compound but also lend to the overall moisturizing affect of the coating system. Water, as in Part A, is used to bring the ingredients into solution. It acts synergistically with the other components to provide a source of moisture to the skin and control the overall percent solids of the compounds so that the desired amount of moisturizer are delivers to the skin when applied. Petrolatum is a petroleum-based emollient that traps moisture under the skin due to its hydrophobic nature. Propyl paraben acts synergistically with the methyl paraben in part A as a preservative. Stearic acid and lethicin is used as an emulsifier to assist the compound in staying in solution. Magnesium Ascorbyl phosphate is a source of vitamin “C” known for its whitening affect on the skin. It also acts to a lesser extent as an emollient within the system.
  • Part “C” is the carrier and film former of the system. Deionized or soft water is used to dilute the coating to the desired percent solids in order to control the amount of coating applied to the article. The base material is Witco 506 polyurethane dispersion. The Witco 506 is an aqueous, anionic, and aliphatic dispersion of polyurethane with a particle size of less than 5 microns and an ultimate elongation of greater than 600%. The urethane is hydrophilic in nature.
  • A typical formula is outlined below:
    Part A
    Material Amount
    Water 34.6
    Carbomer 0.5
    C12-15 Alkyl Benzoate 5.0
    Ceteareth 20 2.5
    Cetyl Alcohol 2.5
    Cetearyl alcohol 2.0
    Dimethicone 0.5
    Methyl Paraben 0.2
    Retinyl Palmitate 0.01
    Tocopheral Acetate 0.1
    Cyclomethicone 0.5
    Glycerine 2.0
  • To prepare Part A, the water is first heated to 70-75° C. or 158-167° F. Then, the other ingredients listed in Part “A” are added to the heated water under steady agitation. Agitation is continued until all ingredients are dissolved or dispersed.
    Part B
    Material Amount
    Water 34.6
    Petrolatum 5.0
    Propyl paraben 0.1
    Stearic Acid 0.5
    Magnesium Ascorbyl Phosphate 0.1
    Lethicin 0.25
  • To prepare Part B, water is heated to 70-75° C. or 158-167° F. Then, the other ingredients listed in Part “B” are added to the heated water under steady agitation. Agitation is continued until all ingredients are dissolved or dispersed. Propyl paraben is propyl 4-hydroxybenzoate and is used as a preservative. Petrolatum is a colorless to yellowish-white hydrocarbon mixture obtained by fractional distillation of petroleum. In its jellylike semisolid form (known as petroleum jelly) it is used in preparing medicinal ointments and for lubrication. As a nearly colorless, highly refined liquid known as liquid petrolatum, liquid paraffin, or mineral oil, it is used as a lubricant, as a laxative, and as a base for nasal sprays.
  • Parts A and B are then slowly combined under constant agitation. The mixture is then permitted to cool to ambient temperature.
    Part C
    Material Amount
    Water 1000
    Witco 506 80.0
    Part A&B 5.0
  • Part C is prepared by adding Witco 506 to water under steady agitation at ambient temperature. Agitation is continued until all ingredients are dissolved or dispersed. Then, the previous mixture of Parts A and B is added to the Witco 506 and water mixture and stirred well until dispersed.
  • Part “A” is a mixture of emollients, lubricants, thickening agents, preservatives, antimicrobials, skin softeners, antioxidants and vitamin supplements. These ingredients act as the foundation of the moisturizing system. A thickener, preferably Carbomer, is added to help prevent the settling of other ingredients as they are added by changing the density of the water once the solution cools. Water, preferably deionized or soft water, is used to bring the ingredients in to solution by dissolving or dispersing the other ingredients. C12-C15 alkyl Benzoate, cyclomethicone and Ceteareth 20 act as emollients and lubricants. Cetearyl alcohol and Cetyl Alcohol are emollients and nonionic surfactants. Emollients are also known in common terms as moisturizers. The purpose of moisturizers is to maintain hydration or to rehydrate the skin. Moisturizers prevent water from evaporating from the skin by providing a protective coating. Dimethicone is a silicone-based spreader that aids in smoothing the compound. Methyl Paraben is a preservative. Retinyl Palmitate is a source of vitamin A and is known for stimulating cell growth in skin resulting in healing dry or irritated skin. Tocopheral Acetate is a source of vitamin “E”. Vitamin E serves two purposes. First, it acts as an antioxidant to help preserve the compound and reduces damage to the skin when applied prior to exposure to UV light sources such as the sun. Glycerine is a skin softener.
  • Part “B” is a mixture of emollients, emulsifies, preservatives and anti-microbials The ingredients further primarily to stabilize the compound but lent to the overall moisturizing affect of the coating system. Water as in Part A is used to bring the ingredients into solution. It acts synergistically with the other components to provide a source of moisture to the skin and control the overall percent solids of the compounds to that the desired amount of moisturizer are delivers to the skin when applied. Petrolatum is a petroleum-based emollient that traps moisture under the skin due to its hydrophobic nature. Propyl paraben acts synergistically with the methyl paraben in part A as a preservative. Stearic acid and lethicin is used as an emulsifier to assist the compound in staying in solution. Magnesium Ascorbyl phosphate is a source of vitamin “C” known for its whitening affect on the skin. It also acts to a lesser extent as an emollient within the system.
  • Part “C” is the carrier and film former of the system. Deionized or soft water is used to dilute the coating to the desired percent solids in order to control the amount of coating applied to the article. The base material is Witco 506 polyurethane dispersion. The Witco 506 is an aqueous, anionic, and aliphatic dispersion of polyurethane with a particle size of less than 5 microns and an ultimate elongation of greater than 600%. The urethane is hydrophilic in nature.
  • The coating is applied to the glove by dipping and produces a pick up weight of approximately 0.6 grams. The coated glove is then placed in a forced air oven at a temperature of approximately 240° F.±20° F. for a period of 36 minutes±8 minutes. The coating is dried onto the glove and forms an elastic film. This film has sufficient hardness to produce a coefficient of friction of less than 0.5 when measured kinetically on a bisque glass substrate.
  • When the film is hydrolyzed by a source of moisture, such as perspiration, the polyurethane film releases the emollients and other protective ingredients that then seal the affected area and prevent moisture from leaving the skin. The skin is further supplemented by intimate contact with vitamin sources known to have healing effects when absorbed by the skin.
  • EXAMPLE 2
  • Preparation of an Alternate Coating Formulations
  • The coating formulation of Example 1 is prepared using the same ingredients in the same proportions. However, the following polymers or elastomers are substituted for the Witco 506 polyurethane at equal parts.
    Polymer/Elastomer Material Source
    Tylac 68074 acrylonitrile Dow Reichhold
    Tylac 68073 acrylonitrile Dow Reichhold
    V-29 acrylic latex Noveon
    V-49 acrylic latex Noveon
    750 7 671 neoprene DuPont
  • The coating is applied to the glove by tumbling. The coating is dried onto the glove in a tumbling dryer and forms an elastic film. This film has sufficient hardness to produce a coefficient of friction of less than 0.5 when measured kinetically on a bisque glass substrate.
  • EXAMPLE 3
  • The glove made in accordance with Example 1 above is tested for coefficient of friction measured kinetically on a bisque glass substrate. This test produces the following test results.
    Sample Relax Tensile Elong. 500% Block C.O.F.
    Formula #1 60.8 3315 670 1106.5 .217 .3763
  • It should be understood, of course, that the foregoing relates only to certain disclosed embodiments of the present invention and that numerous modifications or alterations may be made therein without departing from the spirit and scope of the invention as set forth in the appended claims.

Claims (18)

1. A glove made from a polymeric or elastomeric material and having an inside surface for contacting the skin of a wearer, said glove comprising a dried coating formed on the inside surface thereof, said coating comprising an effective amount of a film forming compound and an oil-based emollient.
2. The glove of claim 1, wherein said film forming compound comprises polyurethane.
3. The glove of claim 1, wherein said oil-based emollient is selected from petrolatum, cetearyl alcohol, cetyl alcohol, C12-15 alkyl Benzoate, cyclomethicone or Ceteareth 20.
4. The glove of claim 1, wherein said coating further comprises a source of vitamin E.
5. The glove of claim 1, wherein said source of vitamin E is tocopheral acetate.
6. The glove of claim 1, wherein said coating further comprises a skin softener.
7. The glove of claim 1, wherein said polymeric glove is made from a polymeric material selected from natural latex, acrylonitrile, butadiene rubber, neoprene, isoprene, polychloroprene, or copolymers, blends and mixtures thereof.
8. The glove of claim 1, wherein said film forming compound comprises approximately 60 to 100 parts by weight and said oil-based emollient comprises approximately 0.4 to 0.6 parts by weight.
9. A glove made from a polymeric material and having an inside surface for contacting the skin of a wearer, said glove comprising a coating formed on the inside surface thereof, said coating comprising Part A, Part B and Part C, wherein
(A) Part A comprises 20-40 parts by weight water, 0.2-1.0 parts by weight carbomer, 2.0-7.0 parts by weight C12-15 Alkyl Benzoate, 1.0-5.0 parts by weight Ceteareth 20, 2.0-3.0 parts by weight Cetyl Alcohol, 1.0-5.0 parts by weight Cetearyl alcohol, 0.2-1.0 parts by weight Dimethicone, 0.1-0.3 parts by weight Methyl Paraben, 0.005-0.015 parts by weight Retinyl Palmitate, 0.05-0.15 parts by weight Tocopheral Acetate, 0.2-0.7 parts by weight Cyclomethicone, and 1.0-3.0 glycerin;
(B) Part B comprises 20-40 parts by weight water, 2.0-7.0 parts by weight Petrolatum, 0.05-0.15 parts by weight Propyl paraben, 0.2-0.7 parts by weight Stearic Acid, 0.05-0.015 Magnesium Ascorbyl Phosphate, and 0.2-0.3 parts by weight Lethicin; and
(C) Part C comprises 700-1400 parts by weight water, 60.0-100.0 polyurethane, 1.0-4.0 parts by weight Part A and 1.0-4.0 parts by weight Part B.
10. A composition comprising an aqueous solution or dispersion of polyurethane and an oil-based emollient.
11. The composition of claim 10, further comprising an emulsifier.
12. The composition of claim 10, further comprising one or more compounds selected from lubricants, thickening agents, preservatives, antimicrobial agents, skin softeners, antioxidants, emulsifiers or vitamin supplements.
13. A method of making a glove, said glove having an inner surface, said method comprising the steps of:
applying a coating formulation to the inner surface of said glove, said coating formulation comprising an aqueous solution or suspension of an effective amount of a film-forming compound and an effective amount of an oil-based emollient; and
drying said coating formulation on said inner surface of said glove.
14. The method of claim 13, wherein said drying step is performed at a temperature of approximately 180° F. to 260° F.
15. The method of claim 13, wherein said coating formulation is applied to said glove by dipping.
16. The method of claim 13, wherein said coating formulation is applied to said glove by spraying.
17. The method of claim 13, wherein said coating formulation is applied to said glove by tumbling.
18. The method of claim 13, wherein said coating formulation further comprises one or more compounds selected from lubricants, thickening agents, preservatives, antimicrobial agents, skin softeners, antioxidants, emulsifiers or vitamin supplements.
US10/688,808 2003-10-17 2003-10-17 Polymeric glove with lotion coating and method of making same Abandoned US20050081278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/688,808 US20050081278A1 (en) 2003-10-17 2003-10-17 Polymeric glove with lotion coating and method of making same
PCT/US2004/033700 WO2005036996A2 (en) 2003-10-17 2004-10-12 Polymeric glove with lotion coating and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/688,808 US20050081278A1 (en) 2003-10-17 2003-10-17 Polymeric glove with lotion coating and method of making same

Publications (1)

Publication Number Publication Date
US20050081278A1 true US20050081278A1 (en) 2005-04-21

Family

ID=34465611

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/688,808 Abandoned US20050081278A1 (en) 2003-10-17 2003-10-17 Polymeric glove with lotion coating and method of making same

Country Status (2)

Country Link
US (1) US20050081278A1 (en)
WO (1) WO2005036996A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060070167A1 (en) * 2005-12-01 2006-04-06 Ansell Healthcare Products Llc Glove with hand-friendly coating and method of making
US20070053958A1 (en) * 2005-09-07 2007-03-08 Neuser Joseph H Elastomeric gloves and methods of making
US20070184186A1 (en) * 2005-09-07 2007-08-09 The Idea Folder, Llc Elastomeric gloves and methods of making
US20090107007A1 (en) * 2007-10-31 2009-04-30 Mitchellace, Inc. Insole with included aloe extract
US20100008958A1 (en) * 2008-07-11 2010-01-14 Kimberly-Clark Worldwide, Inc. Substrates having formulations with improved transferability
US20100008957A1 (en) * 2008-07-11 2010-01-14 Kimberly-Clark Worldwide, Inc. Formulations having improved compatibility with nonwoven substrates
US20100233223A1 (en) * 2009-03-11 2010-09-16 Ansell Limited Powder-Free Antimicrobial Coated Glove
US20100229282A1 (en) * 2009-03-11 2010-09-16 Ansell Limited Powder-Free Anti-Blocking Coated Glove
US20110145975A1 (en) * 2009-12-21 2011-06-23 Ansell Limited P0wder-free glove with stable and fast acting microbial coating
US20150089714A1 (en) * 2002-10-22 2015-04-02 Allegiance Corporation Coating composition for skin-contacting surface of elastomeric articles and articles containing the same
US9855222B2 (en) 2015-03-27 2018-01-02 The Idea Folder Llc Topical sanitizer that includes avenanthramides
JP2018079695A (en) * 2010-12-13 2018-05-24 サイテク・テクノロジー・コーポレーシヨン Processing additives and use of same in rotational molding
CN108556390A (en) * 2018-04-18 2018-09-21 山东星宇手套有限公司 A kind of production method of anti-skidding chemical defence frosted gloves
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
US10589134B2 (en) 2008-01-30 2020-03-17 Kimberly-Clark Worldwide, Inc. Hand health and hygiene system for hand health and infection control
CN112824461A (en) * 2019-11-20 2021-05-21 顶级手套国际有限公司 Wearable article and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191285A1 (en) * 2008-01-30 2009-07-30 Evonik Degussa Corporation Moisturizing liquid liner for barrier layer
US8202526B2 (en) 2008-02-21 2012-06-19 Semperit Aktiengesellschaft Holding Prophylactic article
CN102488339B (en) * 2011-12-26 2013-09-25 菏泽巨鑫源食品有限公司 Nutritional skin-care skin-moisturizing powder-free PVC glove and manufacturing method thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916036A (en) * 1956-08-09 1959-12-08 Veedip Ltd Rubber gloves and the like
US3116732A (en) * 1962-03-07 1964-01-07 John J Cahill Disposable hand care glove
US3298368A (en) * 1964-04-24 1967-01-17 Charos Peter Heated cream applicator gloves
US3342182A (en) * 1964-06-29 1967-09-19 Charos Peter Packaged cream applicator
US3499446A (en) * 1966-10-07 1970-03-10 Yosoji Tsuneizumi Cosmetic patch
US4122554A (en) * 1977-03-28 1978-10-31 Stager Phyllis H Disposable cosmetic glove
US4185330A (en) * 1977-03-28 1980-01-29 Stager Phyllis H Disposable cosmetic glove
US4186445A (en) * 1977-03-28 1980-02-05 Stager Phyllis H Disposable cosmetic glove
US4775372A (en) * 1987-03-27 1988-10-04 Wilberg Janice L Device for application of liquids to surface of hands
US5026552A (en) * 1987-09-25 1991-06-25 L'oreal Sheet material for performing a skin or hair treatment, method for its manufacture, and articles made of this material
US5417968A (en) * 1993-08-16 1995-05-23 International Laboratory Technology Corp. Antimicrobial barrier composition
US5607921A (en) * 1994-01-31 1997-03-04 L'oreal Stabilized cosmetic or dermatological composition containing several precursors of the same active agent in order to maximize its release, and use thereof
US5614202A (en) * 1994-05-17 1997-03-25 Defina; Linda E. Moisturizing glove
US5862617A (en) * 1996-09-30 1999-01-26 Alvern-Norway A/S Display apparatus
US5869072A (en) * 1997-07-21 1999-02-09 Berry; Craig J. Method for the production of a glove
US5910567A (en) * 1995-03-14 1999-06-08 Fuji Latex Co., Ltd. Process for preparing deproteinized natural rubber latex molding and deproteinizing agent for natural rubber latex
US6117119A (en) * 1998-08-28 2000-09-12 Silipos, Inc. Gelatinous body protection article having a therapeutic additive
US6274154B1 (en) * 1999-04-07 2001-08-14 Belle L Chou Aloe Vera glove and manufacturing method
US20010048934A1 (en) * 1998-09-18 2001-12-06 Hanspeter Reust Dairy based cosmetic product and process for making
US20020025335A1 (en) * 1999-04-07 2002-02-28 Chou Belle L. Aloe Vera glove and manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014362A (en) * 1990-05-11 1991-05-14 Tillotson Corporation Elastomeric covering material and hand glove made therewith

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916036A (en) * 1956-08-09 1959-12-08 Veedip Ltd Rubber gloves and the like
US3116732A (en) * 1962-03-07 1964-01-07 John J Cahill Disposable hand care glove
US3298368A (en) * 1964-04-24 1967-01-17 Charos Peter Heated cream applicator gloves
US3342182A (en) * 1964-06-29 1967-09-19 Charos Peter Packaged cream applicator
US3499446A (en) * 1966-10-07 1970-03-10 Yosoji Tsuneizumi Cosmetic patch
US4122554A (en) * 1977-03-28 1978-10-31 Stager Phyllis H Disposable cosmetic glove
US4185330A (en) * 1977-03-28 1980-01-29 Stager Phyllis H Disposable cosmetic glove
US4186445A (en) * 1977-03-28 1980-02-05 Stager Phyllis H Disposable cosmetic glove
US4775372A (en) * 1987-03-27 1988-10-04 Wilberg Janice L Device for application of liquids to surface of hands
US5026552A (en) * 1987-09-25 1991-06-25 L'oreal Sheet material for performing a skin or hair treatment, method for its manufacture, and articles made of this material
US5417968A (en) * 1993-08-16 1995-05-23 International Laboratory Technology Corp. Antimicrobial barrier composition
US5607921A (en) * 1994-01-31 1997-03-04 L'oreal Stabilized cosmetic or dermatological composition containing several precursors of the same active agent in order to maximize its release, and use thereof
US5614202A (en) * 1994-05-17 1997-03-25 Defina; Linda E. Moisturizing glove
US5910567A (en) * 1995-03-14 1999-06-08 Fuji Latex Co., Ltd. Process for preparing deproteinized natural rubber latex molding and deproteinizing agent for natural rubber latex
US5862617A (en) * 1996-09-30 1999-01-26 Alvern-Norway A/S Display apparatus
US5869072A (en) * 1997-07-21 1999-02-09 Berry; Craig J. Method for the production of a glove
US6117119A (en) * 1998-08-28 2000-09-12 Silipos, Inc. Gelatinous body protection article having a therapeutic additive
US20010048934A1 (en) * 1998-09-18 2001-12-06 Hanspeter Reust Dairy based cosmetic product and process for making
US6274154B1 (en) * 1999-04-07 2001-08-14 Belle L Chou Aloe Vera glove and manufacturing method
US20020025335A1 (en) * 1999-04-07 2002-02-28 Chou Belle L. Aloe Vera glove and manufacturing method
US6423328B2 (en) * 1999-04-07 2002-07-23 Shen Wei (Usa) Inc. Aloe vera glove and manufacturing method
US20020110584A1 (en) * 1999-04-07 2002-08-15 Chou Belle L. Aloe vera glove and manufacturing method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150089714A1 (en) * 2002-10-22 2015-04-02 Allegiance Corporation Coating composition for skin-contacting surface of elastomeric articles and articles containing the same
US20070053958A1 (en) * 2005-09-07 2007-03-08 Neuser Joseph H Elastomeric gloves and methods of making
US20070184186A1 (en) * 2005-09-07 2007-08-09 The Idea Folder, Llc Elastomeric gloves and methods of making
US7718240B2 (en) * 2005-09-07 2010-05-18 The Idea Folder, Llc Elastomeric gloves and methods of making
US7691436B2 (en) * 2005-09-07 2010-04-06 The Idea Folder, Llc Elastomeric gloves and methods of making
WO2007064343A3 (en) * 2005-12-01 2007-12-13 Ansell Healthcare Prod Llc Glove with hand-friendly coating and method of making
US20060070167A1 (en) * 2005-12-01 2006-04-06 Ansell Healthcare Products Llc Glove with hand-friendly coating and method of making
US7971276B2 (en) * 2005-12-01 2011-07-05 Ansell Healthcare Products, Llc Glove with hand-friendly coating and method of making
AU2005338646B2 (en) * 2005-12-01 2012-08-30 Ansell Healthcare Products Llc Glove with hand-friendly coating and method of making
US8458818B2 (en) 2006-08-08 2013-06-11 Sentinal Engineering (M) SDN BHD Elastomeric gloves and methods of making
US8075965B2 (en) * 2006-08-08 2011-12-13 The Idea Folder, Llc Elastomeric gloves and methods of making
US20100229281A1 (en) * 2006-08-08 2010-09-16 The Idea Folder, Llc Elastomeric gloves and methods of making
US20090107007A1 (en) * 2007-10-31 2009-04-30 Mitchellace, Inc. Insole with included aloe extract
US10589134B2 (en) 2008-01-30 2020-03-17 Kimberly-Clark Worldwide, Inc. Hand health and hygiene system for hand health and infection control
WO2010004518A3 (en) * 2008-07-11 2010-04-22 Kimberly-Clark Worldwide, Inc. Formulations having improved compatibility with nonwoven substrates
US10307351B2 (en) 2008-07-11 2019-06-04 Kimberly-Clark Worldwide, Inc. Substrates having formulations with improved transferability
US11234905B2 (en) 2008-07-11 2022-02-01 Kimberly-Clark Worldwide, Inc. Formulations having improved compatibility with nonwoven substrates
US20100008958A1 (en) * 2008-07-11 2010-01-14 Kimberly-Clark Worldwide, Inc. Substrates having formulations with improved transferability
US9949906B2 (en) 2008-07-11 2018-04-24 Kimberly-Clark Worldwide, Inc. Substrates having formulations with improved transferability
WO2010004519A3 (en) * 2008-07-11 2010-04-22 Kimberly-Clark Worldwide, Inc. Substrates having formulations with improved transferability
RU2493821C2 (en) * 2008-07-11 2013-09-27 Кимберли-Кларк Ворлдвайд, Инк. Compositions, which have improved compatibility with nonwoven substrate
US20100008957A1 (en) * 2008-07-11 2010-01-14 Kimberly-Clark Worldwide, Inc. Formulations having improved compatibility with nonwoven substrates
US9149567B2 (en) 2009-03-11 2015-10-06 Ansell Limited Powder-free antimicrobial coated glove
US20100233223A1 (en) * 2009-03-11 2010-09-16 Ansell Limited Powder-Free Antimicrobial Coated Glove
WO2010104924A1 (en) 2009-03-11 2010-09-16 Ansell Healthcare Products Llc Powder-free antimicrobial coated glove
US20100229282A1 (en) * 2009-03-11 2010-09-16 Ansell Limited Powder-Free Anti-Blocking Coated Glove
US20110145975A1 (en) * 2009-12-21 2011-06-23 Ansell Limited P0wder-free glove with stable and fast acting microbial coating
JP2018079695A (en) * 2010-12-13 2018-05-24 サイテク・テクノロジー・コーポレーシヨン Processing additives and use of same in rotational molding
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
US10377893B2 (en) 2013-07-16 2019-08-13 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
US9855222B2 (en) 2015-03-27 2018-01-02 The Idea Folder Llc Topical sanitizer that includes avenanthramides
CN108556390A (en) * 2018-04-18 2018-09-21 山东星宇手套有限公司 A kind of production method of anti-skidding chemical defence frosted gloves
CN112824461A (en) * 2019-11-20 2021-05-21 顶级手套国际有限公司 Wearable article and preparation method thereof

Also Published As

Publication number Publication date
WO2005036996A2 (en) 2005-04-28
WO2005036996A3 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US20050081278A1 (en) Polymeric glove with lotion coating and method of making same
US20200206392A1 (en) Coating composition for skin-contacting surface of elastomeric articles and articles containing the same
AU2005338646B2 (en) Glove with hand-friendly coating and method of making
US8859618B2 (en) Silicone gel-based compositions for wound healing and scar reduction
US9200119B2 (en) Silicon-containing zwitterionic linear copolymer composition
MXPA05006142A (en) Elastomeric articles with beneficial coating on skin-containing surface.
WO1997044008A1 (en) Topical barrier composition containing silicone and bentonite
KR101665756B1 (en) oil-in-water emulsified cosmetic composition with low viscosity comprising high content silicone derivatives for skin moisturing effect
KR20090033395A (en) Nonaqueous coating composition for elastomeric articles and articles containing the same
JPS60228405A (en) Skin treatment composition
EP0930066B1 (en) Low tack lotion, gels and creams
US2698824A (en) Skin protective substance
CN114224785B (en) Organosilicon elastomer composition and preparation method and application thereof
AU2002356300B2 (en) Cosmetic scar management composition
JPH05331019A (en) Protecting film forming agent and cosmetic containing the same
KR20090095344A (en) Hair conditioning composition
US20160051456A1 (en) Moisturizing liquid liner for barrier layer
JP6224303B2 (en) Film-forming composition
KR20220004485A (en) Cosmetic composition with less smear and collapse
JP2005523974A5 (en)
KR20200085067A (en) Dry sheet pack with superior moisturizing effect and preparation method thereof
US20110165209A1 (en) Methodology and Composition for a Skin Lubricant

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEST MANUFACTURING COMPANY, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WILLIAMS, WILLIAM ANDRUS;REEL/FRAME:015130/0425

Effective date: 20040319

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION