US20220202687A1 - Use Of A Bio-Based Polymer In A Cosmetic, Dermatological Or Pharmaceutical Composition - Google Patents

Use Of A Bio-Based Polymer In A Cosmetic, Dermatological Or Pharmaceutical Composition Download PDF

Info

Publication number
US20220202687A1
US20220202687A1 US17/698,467 US202217698467A US2022202687A1 US 20220202687 A1 US20220202687 A1 US 20220202687A1 US 202217698467 A US202217698467 A US 202217698467A US 2022202687 A1 US2022202687 A1 US 2022202687A1
Authority
US
United States
Prior art keywords
mol
group
polymer
cream
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/698,467
Inventor
Dirk Fischer
Christoph Kayser
Gundula Starkulla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Priority to US17/698,467 priority Critical patent/US20220202687A1/en
Publication of US20220202687A1 publication Critical patent/US20220202687A1/en
Assigned to CLARIANT INTERNATIONAL LTD reassignment CLARIANT INTERNATIONAL LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STARKULLA, Gundula, FISCHER, DIRK, KAYSER, CHRISTOPH
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions

Definitions

  • the present invention relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1), wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content.
  • Bio-based propylene can directly been used in the so-called SOHIO process to form acrylonitrile.
  • U.S. Pat. No. 2,904,580 STANDARD OIL CO describes the ammoxidation of propylene according to the so-called SOHIO process.
  • WO 2014086780 discloses a fermentation method for several olefins including propene and isobutene.
  • Propene can be used as a raw material for the ammoxidation to acrylonitrile.
  • Isobutene is an important raw material for polyisobutene rubbers and other downstream products such as tert.-butanol, iso-octanol, branched alkanes or branched alcohols.
  • WO 2016/042011 describes an enzymatic method for the production of isobutene from 3-methylcrotonyl-CoA.
  • WO 2014/004616 (Gevo Inc) discloses the synthesis of isobutanol by recombinant yeast microorganisms. The catalytic dehydration leads to isobutene.
  • WO 2015/034948 describes the synthesis of bio-based acrylic acid by dehydration of 1,3-propandiol and subsequent oxidation of the allylic alcohol.
  • the present invention relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • R 1 and R 2 are independently selected from H, methyl or ethyl; A is a linear or branched C 1 -C 12 -alkyl group; and Q + is H + , NH 4 + , organic ammonium ions [NHR 5 R 6 R 7 ] + wherein R 5 , R 6 , and R 7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C 6 -C 22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R 5 , R 6 , and R 7 is not hydrogen, or Q + is Li + , Na + , K + , 1 ⁇ 2Ca ++ , 1 ⁇ 2M
  • compositions, methods, uses, and processes related to the polymer disclosed in the first aspect relate to compositions, methods, uses, and processes related to the polymer disclosed in the first aspect.
  • FIG. 1 Viscosity dependence on polymer concentration; measured in deionized water (Brookfield RVDV-1, 20° C., 20 rpm).
  • the x-axis shows the concentration of polymer in wt.-%.
  • the y-axis shows the viscosity in mPa ⁇ s.
  • Polymer B1/16 (according to the invention; solid line) and a comparative polymer B1/16 # are compared (broken line).
  • FIG. 2 Viscosity dependence on pH; 1.0 wt. % polymer measured in deionized water (Brookfield RVDV-1, 20° C., 20 rpm). The x-axis shows the pH. The y-axis shows the viscosity in mPa ⁇ s. Polymer B1/16 (according to the invention; solid line) and a comparative polymer B1/16 # are compared (broken line).
  • FIG. 3 Viscosity dependence on pH; 1.0 wt. % polymer measured in deionized water (Brookfield RVDV-1, 20° C., 20 rpm). The x-axis shows the pH. The y-axis shows the viscosity in mPa ⁇ s. Polymer A1/2 (according to the invention; solid line) and a comparative polymer A1/2 # are compared (broken line).
  • compositions, formulations, methods, uses, kits, and processes of the present invention can comprise, consist of, and consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein.
  • Embodiments and aspects described herein may comprise or be combinable with elements, features or components of other embodiments and/or aspects despite not being expressly exemplified in combination, unless an incompatibility is stated.
  • “In at least one embodiment” means that one or more embodiments, optionally all embodiments or a large subset of embodiments, of the present invention has/have the subsequently described feature. Where amount ranges are given, these are to be understood as being the total amount of said ingredient in the composition, or where more than one species fall within the scope of the ingredient definition, the total amount of all ingredients fitting that definition, in the composition. For example, if the composition comprises from 1% to 5% fatty alcohol, then a composition comprising 2% stearyl alcohol and 1% cetyl alcohol and no other fatty alcohol, would fall within this scope.
  • ACDMT acryloyldimethyltaurate
  • AM acrylamide
  • AN acrylonitrile
  • tBAM tert.-butyl acrylamide
  • IBSA isobutene sulfonic acid
  • IBDSA 2-methylidene-1,3-propylenedisulfonic acid.
  • viscosity herein is measured at 20° C. viscosity in centipoise (cP) or mPa ⁇ s using a Brookfield viscometer model LV, RVT DV-II or LVT DV-II with 10-90% torque at 20 rpm.
  • Molecular weight or “M.Wt.” “Mw”, “Mw” or “MW” and grammatical equivalents mean the weight average molecular weight, unless otherwise stated. Also relevant for the determination of the molecular weight distribution is the number average molecular weight “Mn”, “Me” and grammatical equivalents, and the polydispersity “D” or “PD”.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC), also referred to as size exclusion chromatography (SEC).
  • GPC gel permeation chromatography
  • SEC size exclusion chromatography
  • Water-soluble refers to any material that is sufficiently soluble in water to form a clear solution to the naked eye at a concentration of 0.1% by weight of the material in water at 25° C.
  • water-insoluble refers to any material that is not “water-soluble”.
  • “Substantially free from” or “substantially free of” means less than 1%, or less than 0.8%, or less than 0.5%, or less than 0.3%, or about 0%, by total weight of the composition or formulation.
  • “Monomer” means a discrete, non-polymerised chemical moiety capable of undergoing polymerisation in the presence of an initiator or any suitable reaction that creates a macromolecule e.g. such as polycondensation, polyaddition, radical, anionic or cationic polymerization. “Unit” means a monomer that has already been polymerised i.e. is part of a polymer.
  • Polymer means a chemical formed from the polymerisation of two or more monomers.
  • the term “polymer” shall include all materials made by the polymerisation of monomers as well as natural polymers. Polymers made from only one type of monomer are called homopolymers.
  • a polymer comprises at least two monomers. Polymers made from two or more different types of monomers are called copolymers. The distribution of the different monomers can be random, alternating or block-wise (i.e. block copolymer).
  • the term “polymer” used herein includes any type of polymer including homopolymers and copolymers.
  • Fuming sulfuric acid herein means a solution of sulfur trioxide in sulfuric acid. Fuming sulfuric acid is also known as oleum and is identified by the CAS number 8014-95-7, and can be described by the formula H 2 SO 4 .xSO 3 where x is the molar free sulfur trioxide content.
  • biobased content is reported in ASTM D6866-12, Method B (see section 3.3.9 of ASTM D6866-12).
  • Biobased carbon content “biobased content”, “biogenic carbon content”, “bio-based content”, “biomass-derived carbon” herein refer to the same thing and are all measured in wt.-%.
  • bio-based carbon content is used.
  • ASTM D6866-12, Method B lab results report the percentage of bio-based carbon content relative to total carbon, and not to total mass of the sample or molecular weight.
  • bio-based carbon content As used herein is defined by the equation:
  • “Hair” means mammalian keratin fibres including scalp hair, facial hair and body hair. It includes such hair still being attached to a living subject and also hair that has been removed therefrom such as hair swatches and hair on a doll/mannequin.
  • hair means human hair.
  • “Hair shaft” or “hair fibre” means an individual hair strand and may be used interchangeably with the term “hair.”
  • Cosmetically acceptable means that the compositions, formulations or components described are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like. All compositions and formulations described herein which have the purpose of being directly applied to keratinous tissue are limited to those being cosmetically acceptable.
  • bio-based ACDMT can be used for synthesising a polymer for use in the cosmetic or dermatological composition according to the present invention.
  • bio-based ACDMT itself is not similar to any other products that typical microbes would produce naturally. Furthermore, there are few natural microbial pathways capable of converting sulfonic acid groups. Therefore, the person skilled in the art naturally has a bias in his mind that it would be difficult to produce bio-based ACDMT in view of its more synthetic-type chemical moieties. The person skilled in the art may, however, consider that the reaction of acrylic acid with taurine as bio-based materials could form the corresponding acryl-amido taurate compound, which is a similar structure as compared to ACDMT. However, the reactants would preferentiality react to form a Michael adduct, rather than an acryl-amido taurate compound. Hence, it would be known to the person skilled in the art that synthesising bio-based ACDMT is no trivial matter.
  • WO 2014086780A2 on pages 5 and 6 mentions various by-products and impurities that may result from when the bio-based isobutene is synthesised. Indeed, on page 14 of WO 2014086780A2 it states “The fermentation off-gas (i.e. a gas stream originating from the fermenter) typically comprises the hydrocarbon as the desired product and the intermediate together with additional gaseous components.
  • the total content of the desired product, such as isobutene, and the intermediate, such as acetone, in the fermentation off-gas is in a range of 3 to 30 vol.-%, preferably 3 to 20 vol.-%.”.
  • the desired product such as isobutene
  • the intermediate such as acetone
  • polymers containing such novel bio-based components can be synthesised.
  • Such polymers may be, for example, crosslinked copolymers.
  • the present invention relates inter alia to a cosmetic or dermatological composition
  • a cosmetic or dermatological composition comprising polymers comprising at least one unit from bio-based ACDMT or similar compounds.
  • the bio-based ACDMT is characterized in that at least one portion of the carbons thereof is biologically sourced and, more specifically, in that it can contain between 38 wt.-% and 100 wt.-% bio-based carbon content in relation to total carbon weight according to the ASTM D6866-12, Method B standard.
  • the preparation method of ACDMT typically comprises the use of acrylonitrile, isobutene and a mixture of sulfuric acid and fuming sulfuric acid comprising sulfur trioxide.
  • at least one of the raw materials, acrylonitrile or isobutene are of bio-based origin.
  • the bio-based ACDMT is suitable to make polymers comprising a bio-based carbon content stemming from its bio-based ACDMT share.
  • the present invention provides the use of such polymers in a cosmetic, dermatolog
  • ACDMT (see Formula [3]) consists of seven carbon atoms. Preferably a minimum of three, preferably four and most preferred all seven carbon atoms of the ACDMT molecule can become renewable, bio-based carbon atoms. In this way, a high proportion of bio-based and/or biodegradable (polymer) products made from the bio-based monomer ACDMT are recyclable and part of the natural carbon cycle. If these kinds of products are incinerated or biodegraded, the quantity of carbon dioxide that is emitted corresponds to the quantity fixed by photosynthesis during biomass growth.
  • the first aspect relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • R 1 and R 2 are independently selected from H, methyl or ethyl; A is a linear or branched C 1 -C 12 -alkyl group; and Q + is H + , NH 4 + , organic ammonium ions [NHR 5 R 6 R 7 ] + wherein R 5 , R 6 , and R 7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C 6 -C 22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R 5 , R 6 , and R 7 is not hydrogen, or Q + is Li + , Na + , K + , 1 ⁇ 2Ca ++ , 1 ⁇ 2M
  • composition For brevity, cosmetic, dermatological or pharmaceutical composition is referred to simply as “composition” herein.
  • the composition is for treating keratinous material, preferably for treating hair and/or skin.
  • the use of the polymer according to the first aspect is as a thickening agent or rheology modifier in a cosmetic, dermatological or pharmaceutical composition.
  • the composition comprises a cosmetically acceptable component.
  • Suitable cosmetically acceptable components are mentioned in the second aspect—such cosmetically acceptable components are compatible and combinable with the first aspect.
  • the cosmetically acceptable component is selected from the group consisting of surfactants, auxiliaries, hair conditioning agents, hairstyling polymers, and combinations thereof. Surfactants, auxiliaries, hair conditioning agents and hairstyling polymers are disclosed in the second aspect—such cosmetically acceptable components are compatible and combinable with the first aspect.
  • the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot
  • the first aspect relates to the use of a polymer in a composition as defined herein.
  • the composition comprises at least 0.1 wt.-%, or at least 0.2 wt.-%, or at least 0.3 wt.-%, or at least 0.4 wt.-%, or at least 0.5 wt.-%, or at least 0.6 wt.-%, or at least 0.7 wt.-%, or at least 0.8 wt.-%, or at least 0.9 wt.-%, or at least 1.0 wt.-%, or at least 1.1 wt.-%, or at least 1.2 wt.-%, or at least 1.3 wt.-%, or at least 1.4 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.5 wt.-%, or at least
  • the polymer is a crosslinked or non-crosslinked homopolymer. In at least one embodiment, the polymer is a crosslinked or non-crosslinked copolymer. In at least one embodiment, the polymer has a weight average molecular weight of at least 700 g/mol, preferably from 700 g/mol to 10 million g/mol.
  • the polymer is a derived natural cosmetic ingredient.
  • a polymer is a derived natural cosmetic ingredient if it is of greater than 50% natural origin by renewable carbon content.
  • the degree of natural origin can be quantified by renewable carbon content according to analytical procedure ASTM 6866-12, Method B.
  • the polymer comprises from 9.49 mol-% to 98 mol-%, preferably from 27.5 mol-% to 97.4 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • the polymer comprises from 40 to 98 mol-%, preferably from 55 mol-% to 98 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • the polymer comprises from 90 mol-% to 99.9 mol-%, preferably from 95 mol-% to 99.5 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • the polymer comprises at least 99 mol-%, preferably about 100 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • the polymer comprises at least 99 mol-%, preferably about 100 mol-% of repeating units (a) according to Formula (1) wherein at least 50 wt.-%, preferably at least 80 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • the polymer comprises at least one repeating unit according to Formula (1) wherein R 1 and R 2 are independently selected from H, methyl or ethyl; A is a linear or branched C 1 -C 12 -alkyl group; and Q + is H + , NH 4 + , Li + , Na + , K + , 1 ⁇ 2Ca ++ , 1 ⁇ 2Mg ++ , 1 ⁇ 2Zn ++ , 1 ⁇ 3Al +++ , or combinations thereof, preferably wherein Q + is Na + or NH 4 + .
  • NH 4 + is preferred because it is more soluble the favored solvent used in the polymer synthesis. Na + is preferred because of reduced likelihood of unpreferred gases being produced during synthesis and also due to economic advantages.
  • Q + is NH 4 + .
  • Q + is selected from the group monoalkylammonium, dialkylammonium, trialkylammonium and/or tetraalkylammonium salts, in which the alkyl substituents of the amines may independently of one another be (C 1 to C 22 )-alkyl radicals or (C 2 to C 10 )-hydroxyalkyl radicals.
  • the polymer comprises at least one repeating unit according to Formula (1). In at least one embodiment, the polymer comprises two or more different repeating units according to Formula (1), such as repeating units according to Formula (1) having different Q + counterions.
  • the repeating units according to Formula (1) have a degree of neutralisation of between 0 mol-% and 100 mol-%. In at least one embodiment, the repeating units according to Formula (1) have a degree of neutralisation of from 50.0 to 100 mol-%, preferably from 80 mol-% to 100 mol-%, more preferably from 90.0 to 100 mol-%, even more preferably from 95.0 to 100 mol-%. Particular preference being given to a degree of neutralisation of more than 80 mol-%, more preferably more than 90 mol-%, even more preferably more than 95 mol-%. The degree of neutralisation is important in view of the molecular weight of the polymer and the yield of polymer produced.
  • the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B.
  • the repeating unit comprises from 35 wt.-%, preferably from 40 wt.-%, more preferably from 54 wt.-%, even more preferably from 57 wt.-% to 100 wt.-%, most preferably about 100 wt.-%, by mass of bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B.
  • the repeating units according to Formula (1) result from the incorporation of a monomer selected from the group consisting of acryloyldimethyltaurates, acryloyl-1,1-dimethyl-2-methyltaurates (ACDMT), acryloyltaurates, acryloyl-N-methyltaurates, and combinations thereof.
  • a monomer selected from the group consisting of acryloyldimethyltaurates, acryloyl-1,1-dimethyl-2-methyltaurates (ACDMT), acryloyltaurates, acryloyl-N-methyltaurates, and combinations thereof.
  • ACDMT acryloyltaurates
  • acryloyl-N-methyltaurates acryloyl-N-methyltaurates
  • the polymer comprises from 55 mol-% to 98 mol-% of repeating units according to Formula (1) wherein at least 30 wt.-%, preferably at least 50 wt.-%, more preferably at least 70 wt.-% of the repeating units comprises from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B.
  • the repeating units according to Formula (1) are formed by polymerization of a compound according Formula (3). More preferably the compound according to Formula (3) is ACDMT.
  • the compound according to Formula (3) comprises from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the compound, measured according to standard ASTM D6866-12, Method B.
  • the compound comprises from 35 wt.-%, preferably from 40 wt.-%, more preferably from 54 wt.-%, even more preferably from 57 wt.-% to 100 wt.-%, most preferably about 100 wt.-%, by mass of bio-based carbon content, relative to the total mass of carbon in the compound, measured according to standard ASTM D6866-12, Method B.
  • the compound according to Formula (3) is ACDMT.
  • the bio-based carbon content is measured according to standard ASTM D6866-12, Method B. More details on the analytical procedure for determination of bio-based carbon content: the provided sample material does not undergo any pre-treatment procedure and is converted to graphite as is using the following procedure: Depending on the estimated amount of carbon content, typically a few milligrams of sample material is combusted in an elemental analyzer (EA). The resulting gas mixture is cleaned and CO 2 is automatically separated by the EA using the purge and trap technology. The remaining CO 2 is transferred into a custom-made graphitization system, converted into carbon (graphite) catalytically using H 2 and an iron-powder catalyst. The 14 C determination of the graphite is performed at the Klaus-Tschira-Archaeometrie-Center using an accelerator mass-spectrometer (AMS) of the type MICADAS (developed at the ETH Zurich, Switzerland).
  • AMS accelerator mass-spectrometer
  • the polymer comprises crosslinking or branching units (b), wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds.
  • the polymer comprises from 0.01 mol-% to 5 mol-%, preferably 0.01 mol-% to 4 mol-%, more preferably from 0.01 mol-% to 2 mol-% of crosslinking or branching units.
  • the crosslinking or branching units comprise least one oxygen, nitrogen, and sulfur or phosphorus atom. In at least one embodiment, the crosslinking or branching units result from monomers having a molecular weight of less than 500 g/mol. In at least one embodiment, the units (b) are bifunctional or trifunctional crosslinking agents.
  • the polymer comprises two or more different crosslinking or branching units.
  • the crosslinking or branching units result from the incorporation of a monomer according to Formula (2):
  • a monomer according to Formula (2) has the advantage that the polymer can be predicted as being more brush-like.
  • brush-like polymers show different properties, versus linear ones. For example, depending on the different comonomer units the solubility can be in- or decreased.
  • the crosslinking or branching units result from the incorporation of a monomer according to Formula (4)
  • a monomer according to Formula (4) has the advantage that a polymer can be predicted as being highly branched.
  • the crosslinking or branching units result from the incorporation of a monomer selected from the group consisting of methylenebisacrylamide; methylenebismethacrylamide; esters of unsaturated monocarboxylic and polycarboxylic acids with polyols, preferably di-acrylates and tri-acrylatees and -methacrylates (e.g.
  • glycerol propoxylate triacrylatee [GPTA]), more preferably butanediol and ethylene glycol diacrylate and poly ethylene glycol diacrylate and -methacrylate, trimethylolpropane triacrylate (TMPTA) and trimethylolpropane trimethacrylate (TMPTMA); allyl compounds, preferably allyl (meth)acrylate, triallyl cyanurate, diallyl maleate, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine; allyl esters of phosphoric acid; and/or vinylphosphonic acid derivatives.
  • TMPTA trimethylolpropane triacrylate
  • TMPTMA trimethylolpropane trimethacrylate
  • allyl compounds preferably allyl (meth)acrylate, triallyl cyanurate, diallyl maleate, polyallyl esters, tetraallyloxyethane, trially
  • the crosslinking or branching units result from the incorporation of a crosslinker selected from the group consisting of trimethylolpropane triacrylatee (TMPTA) and/or glycerol propoxylate triacrylate (GPTA).
  • a crosslinker selected from the group consisting of trimethylolpropane triacrylatee (TMPTA) and/or glycerol propoxylate triacrylate (GPTA).
  • TMPTA trimethylolpropane triacrylate
  • PEAS pentaerythritol diacrylate mono stearate
  • HDDA hexanediol diacrylate
  • PEG-DA poly ethylene glycol diacrylate
  • HDDMA hexanediol dimethacrylate
  • GPTA trimethylolpropane triacrylatee
  • TMPTA trimethylolpropane triacrylatee
  • TMPTA trimethylolpropane triacrylatee
  • GPTA trimethylolpropane tri
  • the polymer at least one repeating neutral structural unit (c).
  • the polymer comprises (c) from 0.99 mol-% to 59.99 mol-%, preferably from 1.99 mol-% to 44.99 mol-% of repeating neutral structural units; wherein the repeating neutral units comprises up to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit, measured according to standard ASTM D6866-12, Method B.
  • the polymer comprises at least one repeating neutral structural unit selected from the group consisting of N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylformamide, N-methyl-N-vinylacetamide, N-vinyl-2-pyrrolidone, N-vinylcaprolactam, vinylacetate, N,N-dimethylacrylamide, N-isopropylacrylamide, acrylamide, methylacrylate, behenylpolyethoxy-(25)-methacrylate, laurylpoly-ethoxy-(7)-methacrylate, cetylpolyethoxy-(10)-methacrylate, stearylpoly-ethoxy-(8)-methacrylate, methoxypoly-ethoxy-(12)-methacrylate, and combinations thereof.
  • N-vinylformamide N-vinylacetamide
  • N-methyl-N-vinylformamide N-methyl-N-vinylacetamide
  • the polymer comprises at least one repeating anionic structural unit. In at least one embodiment, the polymer comprises from 1.98 mol-% to 20 mol-%, preferably from 2.5 mol-% to 18 mol-% of repeating anionic structural units, wherein the repeating anionic structural units result from the incorporation of a monomer comprising at least one carboxylate anion, and wherein the repeating anionic structural units are different from units (a) and wherein the repeating anionic structural units comprises up to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit, measured according to standard ASTM D6866-12, Method B.
  • repeating anionic structural unit results from the incorporation of monomers according to formula (A):
  • the polymer comprises at least one repeating anionic structural unit selected from the group consisting of acrylic acid or acrylate methacrylic acid or methacrylate, itaconic acid or itaconate, carboxyethylacrylic acid or carboxyethylacrylate, carboxyethylacrylic acid oligomers or carboxyethylacrylate oligomers, 2-propylacrylic acid or 2-propylacrylate, 2-ethylacrylic acid or 2-ethylacrylate, and their respective alkali or alkaline earth metal salts.
  • anionic structural unit selected from the group consisting of acrylic acid or acrylate methacrylic acid or methacrylate, itaconic acid or itaconate, carboxyethylacrylic acid or carboxyethylacrylate, carboxyethylacrylic acid oligomers or carboxyethylacrylate oligomers, 2-propylacrylic acid or 2-propylacrylate, 2-ethylacrylic acid or 2-
  • the polymer comprises at least one repeating anionic structural unit selected from the group consisting of acrylic acid or acrylate methacrylic acid or methacrylate, itaconic acid or itaconate, carboxyethylacrylic acid or carboxyethylacrylate, carboxyethylacrylic acid oligomers or carboxyethylacrylate oligomers, and their respective alkali or alkaline earth metal salts.
  • These repeating anionic structural units are preferred because they can easily be synthesised from bio-based sources.
  • the polymer comprises at least one optional unit.
  • the optional unit results from the incorporation of a monomer selected from the group consisting of unsaturated carboxylic acids and their anhydrides and salts, and also their esters with aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic alcohols having a carbon number of from 1 to 22.
  • the optional unit results from the incorporation of at least one monomer selected from the group consisting of functionalised (meth)acrylic acid esters, acrylic or methacrylic acid amides, polyglycol acrylic or methacrylic acid esters, polyglycol acrylic or methacrylic acid amides, dipropyleneglycolacrylic or methacrylic acid esters, dipropylenglycolacrylic or methacrylic acid amides, ethoxylated fatty alcohol acrylates or -methacrylates, propoxylated fatty alcohol acrylates or linear or cyclic N-vinylamides or N-methylvinyl amides.
  • functionalised (meth)acrylic acid esters acrylic or methacrylic acid amides
  • polyglycol acrylic or methacrylic acid esters polyglycol acrylic or methacrylic acid amides
  • dipropyleneglycolacrylic or methacrylic acid esters dipropylenglycolacrylic or methacrylic acid amides
  • the optional unit results from the incorporation of monomers according to formula (A):
  • the optional unit results from the incorporation of a monomer according to formula (A) wherein X is a covalent bond or is CH 2 . In at least one embodiment, the optional unit results from the incorporation of a monomer according to formula (A) wherein Y is a covalent bond, CH 2 , C(O)O, or C(O)NR 3 . In at least one embodiment, the optional unit results from the incorporation of a monomer according to formula (A) wherein M is a covalent bond, —[C(O)O—CH 2 —CH 2 ] n —, a linear or branched alkylene group with 1 to 6 carbon atoms.
  • the optional unit results from the incorporation of a monomer according to formula (A) wherein R 1 is H, methyl or ethyl; X is a covalent bond or is CH 2 ; Y is a covalent bond, CH 2 , C(O)O, or C(O)NR 3 ; R 3 is H, methyl or ethyl; M is a covalent bond, —[C(O)O—CH 2 —CH 2 ] n —, a linear or branched alkylene group with 1 to 6 carbon atoms; Z + is H + , NH 4 + , Li + , Na + , K + , 1 ⁇ 2Ca ++ , 1 ⁇ 2Mg ++ , 1 ⁇ 2Zn ++ , or 1 ⁇ 3Al +++ , or combinations thereof.
  • the optional unit results from the incorporation of a monomer selected from the group consisting of N-vinylformamide, N-vinylacetamide, N methyl-N-vinylformamide, N-methyl-N-vinylacetamide, N-vinyl-2-pyrrolidone (NVP), N vinylcaprolactam, vinylacetate, methylvinylether, ethylvinylether, methylallylether, ethylmethallylether, styrol, acetoxystyrol, methylmethallylether, ethylallylether, tert-butylacrylamide, N,N-diethylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-dipropylacrylamide, N-isopropylacrylamide, N-propylacrylamide, acrylamide, methacrylamide, methylacrylate, methymethylacrylate, ter
  • the optional unit results from the incorporation of a monomer selected from the group consisting of glycerine propoxylate triacrylate (GPTA) and trimethylolpropantriacrylate (TMPTA).
  • GPTA glycerine propoxylate triacrylate
  • TMPTA trimethylolpropantriacrylate
  • the optional unit results from the incorporation of a monomer selected from the group consisting of N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinyl-2-pyrrolidone (NVP), N,N-diethylacrylamide, acrylamide, methacrylamide, methylacrylate, methylmethylacrylate, tert-Butylacrylate, acrylic acid, methacrylic acid, 2-carboxyethylacrylate, 2-carboxyethylacrylate oligomers, itaconic acid glycerine propoxylate triacrylate (GPTA), trimethylolpropane triacrylate (TMPTA), pentaerythritol diacrylate monostearate (PEAS) and polyethyleneglycol diacrylate.
  • GPTA glycerine propoxylate triacrylate
  • TMPTA trimethylolpropane triacrylate
  • PEAS pentaerythritol diacrylate monoste
  • the optional unit results from the incorporation of a monomer selected from the group consisting of acrylic acid, methacrylic acid, styrenesulfonic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, and senecic acid.
  • the optional unit results from monomers selected from the group consisting of open-chain N-vinyl amides, preferably N-vinylformamide (VIFA), N-vinylmethylformamide, N-vinylmethylacetamide (VIMA) and N-vinylacetamides; cyclic N-vinyl amides (N-vinyl lactams) with a ring size of 3 to 9, preferably N-vinylpyrrolidones (NVP) and N-vinylcaprolactam; amides of acrylic and methacrylic acid, preferably acrylamide, methacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, and N,N-diisopropylacrylamide; alkoxylated acrylamides and methacrylamides, preferably hydroxyethyl methacrylate, hydroxymethylmethacrylamide; hydroxyethylmethacryl amide, hydroxypropylmethacrylamide,
  • VIFA N
  • the first aspect relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
  • the polymer comprises from 96 mol-% to 99.7 mol-%, preferably from 97 mol-% to 99.5 mol-% units (a) and from 0.3 mol-% to 4 mol-%, preferably from 0.5 mol-% to 3 mol-% units (b). In at least one embodiment, the polymer comprises units (a) and (b), such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the first aspect relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
  • the polymer comprises from 45 mol-% to 97 mol-%, preferably from 65 mol-% to 96 mol-% units (a), from 0.25 mol-% to 4 mol-%, preferably from 0.3 mol-% to 3 mol-% units (b), from 2 mol-% to 54.7 mol-%%, preferably from 2.5 mol-% to 34.5 mol-% units (c).
  • the polymer comprises units (a), (b) and (c) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the polymer comprises from 70 mol-% to 98 mol-%, preferably from 73 mol-% to 96 mol-% units (a), from 0.6 mol-% to 2.5 mol-%, preferably from 0.75 mol-% to 2 mol-% units (b), from 1.4 mol-% to 54.7 mol-%, preferably from 2.5 mol-% to 34.5 mol-% units (c).
  • the polymer comprises units (a), (b) and (c) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the first aspect relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
  • the polymer comprises from 37 mol-% to 96.4 mol-%, preferably from 43 mol-% to 95.3 mol-% units (a), from 0.1 mol-% to 3 mol-%, preferably from 0.2 mol-% to 2 mol-% units (b), from 0.1 mol-% to 59.3 mol-%, preferably from 0.5 mol-% to 52.8 mol-% units (c), and from 3.5 mol-% to 16 mol-%, preferably from 4 mol-% to 14 mol-% units (d).
  • the polymer comprises units (a), (b), (c) and (d) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the polymer comprises from 70 mol-% to 94.5 mol-%, units (a), from 0.35 mol-% to 1.5 mol-%, units (b), from 0.65 mol-% to 25.65 mol-% units (c), and from 4.5 mol-% to 12 mol-% units (d). In at least one embodiment, the polymer comprises units (a), (b), (c) and (d) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the first aspect relates to the use of the cosmetic, dermatological or pharmaceutical composition according to the second aspect.
  • a second aspect relates to a cosmetic, dermatological or pharmaceutical composition
  • a cosmetic, dermatological or pharmaceutical composition comprising:
  • the polymer is the polymer according to the first aspect.
  • the cosmetic, dermatological or pharmaceutical composition comprises a cosmetically acceptable component.
  • the cosmetically acceptable component is selected from the group consisting of surfactants, auxiliaries, hair conditioning agents, hairstyling polymers, and combinations thereof.
  • the composition comprises a surfactant.
  • the composition comprises a surfactant system comprising a plurality of different surfactants.
  • the surfactant system comprises a surfactant selected from the group consisting of anionic surfactants, cationic surfactants, non-ionic surfactants, zwitterionic surfactants and/or amphoteric surfactants.
  • the surfactant is selected from the group consisting of anionic surfactants, cationic surfactants, non-ionic surfactants, zwitterionic surfactants and/or amphoteric surfactants.
  • the composition comprises a total amount of surfactant of from 0.01 wt.-% to 70 wt.-%, from 0.1 wt.-% to 40 wt.-%, from 1 wt.-% to 30 wt.-%, from 2 wt.-% to 20 wt.-%.
  • the composition comprises an anionic surfactant.
  • the composition comprises an anionic surfactant as cosmetically acceptable component (II).
  • the anionic surfactant is selected from the group consisting of (C 10 -C 20 )-alkyl and alkylene carboxylates, alkyl ether carboxylates, fatty alcohol sulfates, fatty alcohol ether sulfates, alkylamide sulfates and sulfonates, fatty acid alkylamide polyglycol ether sulfates, alkanesulfonates and hydroxyalkanesulfonates, olefinsulfonates, acyl esters of isethionates, ⁇ -sulfo fatty acid esters, alkylbenzenesulfonates, alkyl-phenol glycol ether sulfonates, sulfosuccinates, sulfosuccinic monoesters and die
  • the anionic surfactants can be used in the form of their water-soluble or water-dispersible salts, examples being the sodium, potassium, magnesium, ammonium, mono-, di-, and triethanolammonium, and analogous alkylammonium salts.
  • the anionic surfactant is the salt of an anionic surfactant comprising 12 to 14 carbon atoms.
  • the anionic surfactant is selected from the group consisting of sodium lauryl sulfate, sodium laureth sulfate, sodium tridecyl sulfate, sodium trideceth sulfate, sodium myristyl sulfate, sodium myreth sulfate, and mixtures thereof.
  • Typical anionic surfactants for use in compositions of the invention include sodium oleyl succinate, ammonium lauryl sulphosuccinate, sodium lauryl sulphate, sodium lauryl ether sulphate, sodium lauryl ether sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium dodecyl benzene sulphonate, triethanolamine dodecylbenzene sulphonate, sodium cocoyl isethionate, sodium lauryl isethionate, lauryl ether carboxylic acid and sodium N-lauryl sarcosinate.
  • the level of alkyl ether sulphate is from 0.5 wt.-% to 25 wt.-% of the total composition, more preferably from 3 wt.-% to 18 wt.-%, most preferably from 6 wt.-% to 15 wt.-% of the total composition.
  • the total amount of anionic surfactant in the composition may range from 0.5 wt.-% to 45 wt.-%, more preferably from 1.5 wt.-% to 20 wt.-%.
  • the composition comprises a fatty acyl isethionate.
  • the composition comprises fatty acyl isethionate at a level of from 1 to 10 wt.-%, more preferably from 2 to 8 wt.-%, most preferably from 2.5 to 7.5 wt.-%.
  • a preferred fatty acyl isethionate product comprises fatty acyl isethionate surfactant at a level of from 40 to 80 wt.-% of the product, as well as free fatty acid and/or fatty acid salt at a level of from 15 to 50 wt.-%.
  • compositions may contain isethionates salts which are present typically at levels less than 5 wt.-%, and traces (less than 2 wt.-%) of other impurities.
  • a mixture of aliphatic fatty acids is used for the preparation of commercial fatty acyl isethionates surfactants.
  • the resulting fatty acyl isethionate surfactants e.g., resulting from reaction of alkali metal isethionate and aliphatic fatty acid
  • These longer chain fatty acyl isethionate surfactants and fatty acids i.e. fatty acyl group and fatty acid with 16 or more carbons, can typically form insoluble surfactant/fatty acid crystals in water at ambient temperatures.
  • the composition comprises an acylglycinate surfactant.
  • the acylglycinate surfactant conforms to the formula (Y):
  • R 1a is a linear or branched, saturated alkenoyl group having 6 to 30, preferably 8 to 22, particularly preferably 8 to 18, carbon atoms or is a linear or branched, mono- or polyunsaturated alkenoyl group having 6 to 30, preferably 8 to 22 and particularly preferably 12 to 18 carbon atoms, and Q a + is a cation.
  • Q a + is selected from the group consisting of Li + , Na + , K + , Mg ++ , Ca ++ , Al +++ , NH 4 + , a monoalkylammmonium ion, a dialkylammonium ion, a trialkylammonium ion and a tetraalkylammonium ion, or combinations thereof.
  • R 1a is independently from one another, are (C 1 -C 22 )-alkyl radicals or (C 2 -C 10 )-hydroxyalkyl radicals.
  • the acylglycinate surfactant is selected from sodium cocoylglycinate and potassium cocoylglycinate.
  • the composition comprises a glutamate surfactant corresponding to formula (Z) or a salt thereof:
  • R′ is HOOC—CH 2 —CH 2 — or M + ⁇ OOC—CH 2 —CH 2 — wherein M + is a cation; and wherein R is a linear or branched, saturated alkanoyl group having 6 to 30, preferably 8 to 22, more preferably 8 to 18, carbon atoms or is a linear or branched, mono- or polyunsaturated alkenoyl group having 6 to 30, preferably 8 to 22 and more preferably 12 to 18 carbon atoms.
  • M + is a metal cation.
  • M + is selected from the group consisting of Li + , Na + , K + , Mg ++ , Ca ++ , Al +++ , NH 4 + , a monoalkylammmonium ion, a dialkylammonium ion, a trialkylammonium ion and a tetraalkylammonium ion, or combinations thereof.
  • the glutamate surfactant is selected from sodium cocoyl glutamate and potassium cocoyl glutamate.
  • the composition comprises a non-ionic surfactant.
  • the non-ionic surfactants may be present in the range 0 to 5 wt.-%.
  • the non-ionic surfactants that can be included in the compositions herein include condensation products of aliphatic primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups.
  • Alkyl ethoxylates are particularly preferred. Most preferred are alky ethoxylates having the formula R—(OCH 2 CH 2 ) n OH, where R is an alkyl chain of C12 to C15, and n is 5 to 9.
  • Other suitable nonionic surfactants include mono- or di-alkyl alkanolamides. Examples include coco mono- or di-ethanolamide and coco mono-isopropanolamide.
  • APG alkyl polyglycosides
  • APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups.
  • the non-ionic surfactant has an HLB (Hydrophilic Lipophilic Balance) of greater than 12.
  • the non-ionic surfactant is selected from the group consisting of ethoxylated or ethoxylated/propoxylated fatty alcohols with a fatty chain comprising from 12 to 22 carbon atoms, ethoxylated sterols, such as stearyl- or lauryl alcohol (EO-7), PEG-16 soya sterol or PEG-10 soya sterol, polyoxyethylene polyoxypropylene block polymers (poloxamers), and mixtures thereof.
  • HLB Hydrophilic Lipophilic Balance
  • the non-ionic surfactant is selected from the group consisting of ethoxylated fatty alcohols, fatty acids, fatty acid glycerides or alkylphenols, in particular addition products of from 2 to 30 mol of ethylene oxide and/or 1 to 5 mol of propylene oxide onto C8- to C22-fatty alcohols, onto C12- to C22-fatty acids or onto alkyl phenols having 8 to 15 carbon atoms in the alkyl group, C12- to C22-fatty acid mono- and diesters of addition products of from 1 to 30 mol of ethylene oxide onto glycerol, addition products of from 5 to 60 mol of ethylene oxide onto castor oil or onto hydrogenated castor oil, fatty acid sugar esters, in particular esters of sucrose and one or two C8- to C22-fatty acids, INCI: Sucrose Cocoate, Sucrose Dilaurate, Sucrose Distearate, Sucrose Laurate, Sucrose Myristate, Su
  • the non-ionic surfactant is selected from the group consisting of fatty alcohol ethoxylates (alkylpolyethylene glycols), alkylphenol polyethylene glycols, alkylmercaptan polyethylene glycols, fatty amine ethoxylates (alkylaminopolyethylene glycols), fatty acid ethoxylates (acylpolyethylene glycols), polypropylene glycol ethoxylates (Pluronics®), fatty acid alkylol amides, (fatty acid amide polyethylene glycols), N-alkyl-, N-alkoxypolyhydroxy-fatty acid amide, sucrose esters, sorbitol esters, polyglycol ethers, and mixtures thereof.
  • fatty alcohol ethoxylates alkylpolyethylene glycols
  • alkylphenol polyethylene glycols alkylmercaptan polyethylene glycols
  • fatty amine ethoxylates alkylaminopolyethylene
  • the composition comprises a fatty N-methyl-N-glucamide surfactant.
  • the fatty N-methyl-N-glucamide surfactant conforms to the formula (X):
  • R is a linear or branched alkyl or alkenyl group having from 3 to 30 carbon atoms.
  • R is an alkyl group having from 3 to 30 carbon atoms.
  • R is a saturated aliphatic hydrocarbon group which can be linear or branched and can have from 3 to 20 carbon atoms in the hydrocarbon chain, preferably linear or branched. Branched means that a lower alkyl group such as methyl, ethyl or propyl is present as substituent on a linear alkyl chain.
  • Suitable fatty N-methyl-N-glucamide surfactants are described in WO2013/178700 and EP0550637, which are incorporated herein by reference.
  • the fatty N-methyl-N-glucamide surfactant is selected from those conforming to formula (X), wherein R is C12 alkyl or C14 alkyl. In at least one embodiment, the fatty N-methyl-N-glucamide surfactant is selected from those conforming to formula (X), wherein R is C16 alkyl or C18 alkyl.
  • Amphoteric or zwitterionic surfactant(s) can be included in the composition in an amount ranging from 0.5 wt.-% to about 8 wt.-%, preferably from 1 wt.-% to 4 wt.-% of the total composition.
  • the amphoteric surfactants are selected from the group consisting of N—(C 12 -C 18 )-alkyl- ⁇ -aminopropionates and N—(C 12 -C 18 )-alkyl- ⁇ -iminodipropionates as alkali metal salts and mono-, di-, and trialkylammonium salts; N-acylaminoalkyl-N,N-dimethylacetobetaine, preferably N—(C 8 -C 18 )-acylaminopropyl-N,N-dimethylacetobetaine, (C 12 -C 18 )-alkyl-dimethyl-sulfopropylbetaine, amphosurfactants based on imidazoline (trade name: Miranol®, Steinapon®), preferably the sodium salt of 1-( ⁇ -carboxymethyloxyethyl)-1-(carboxymethyl)-2-laurylimidazolinium; amine oxide, e
  • the composition comprises a betaine surfactant.
  • the betaine surfactant is selected from C8- to C18-alkylbetaines.
  • the betaine surfactant is selected from the group consisting of cocodimethylcarboxymethylbetaine, lauryldimethylcarboxymethylbetaine, lauryldimethylalphacarboxyethylbetaine, cetyldimethylcarboxymethylbetaine, oleyldimethylgammacarboxypropylbetaine and laurylbis(2-hydroxypropyl)alphacarboxyethylbetaine and combinations thereof.
  • the betaine surfactant is selected from C8- to C18-sulfobetaines.
  • the betaine surfactant is selected from the group consisting of cocodimethylsulfopropylbetaine, stearyldimethylsulfopropylbetaine, lauryldimethyl-sulfoethylbetaine, laurylbis(2-hydroxyethyl)sulfopropylbetaine, and combinations thereof.
  • the betaine surfactant is selected from carboxyl derivatives of imidazole, the C8- to C18-alkyldimethylammonium acetates, the C8- to C18-alkyldimethylcarbonylmethylammonium salts, and the C8- to C18-fatty acid alkylamidobetaines, and mixtures thereof.
  • the C8- to C18-fatty acid alkylamidobetaine is selected from coconut fatty acid amidopropylbetaine, N-coconut fatty acid amidoethyl-N-[2-(carboxymethoxy)ethyl]glycerol (CTFA name: Cocoamphocarboxyglycinate), and mixtures thereof.
  • a particularly preferred amphoteric or zwitterionic surfactant is cocamidopropyl betaine. Mixtures of any of the foregoing amphoteric or zwitterionic surfactants may also be suitable. Preferred mixtures are those of cocamidopropyl betaine with further amphoteric or zwitterionic surfactants as described above. A preferred further amphoteric or zwitterionic surfactant is sodium cocoamphoacetate.
  • the composition comprises at least one additive common in cosmetology, pharmacy, and dermatology, which are hereinafter called auxiliaries.
  • the composition comprises an auxiliary.
  • the auxiliary is cosmetically acceptable.
  • the auxiliary is selected from the group consisting of oily substances, waxes, emulsifiers, coemulsifiers, solubilizers, cationic polymers, film formers, superfatting agents, refatting agents, foam stabilizers, stabilizers, active biogenic substances, preservatives, preservation boosting ingredients, anti-fungal substance, anti-dandruff agents, dyes or pigments, particulate substances, opacifiers, abrasives, absorbents, anticaking agents, bulking agents, pearlizing agents, direct dyes, perfumes or fragrances, carriers, solvents or diluents, propellants, functional acids, active ingredients, skin-brightening agents, self-tanning agents, exfolia, opacifiers, abrasives, absorbents
  • the composition comprises an oily substance or wax.
  • the oily substance or wax is selected from the group consisting of silicone oils, volatile or nonvolatile, linear, branched or cyclic, optionally with organic modification; phenylsilicones; silicone resins and silicone gums; mineral oils such as paraffin oil or vaseline oil; oils of animal origin such as perhydrosqualene, lanolin; oils of plant origin such as liquid triglycerides, e.g., sunflower oil, corn oil, soybean oil, rice oil, jojoba oil, babassu oil, pumpkin oil, grapeseed oil, sesame oil, walnut oil, apricot oil, macadamia oil, avocado oil, sweet almond oil, lady's-smock oil, castor oil, triglycerides of caprylic/capric acids, olive oil, peanut oil, rapeseed oil, argan oil, abyssinian oil, and coconut oil; synthetic oils such as purcellin oil, iso
  • the composition comprises an oily substance, which is any fatty substance which is liquid at room temperature (25° C.).
  • the oily substance is selected from the group consisting of sweet almond oil, caprylic/capric triglycerides, dimethicone, mineral oil, squalane, castor oil, isopropyl isostearate, jojoba oil, dicaprylyl carbonate, isohexadecane, C12-15 alkyl benzoate, and combinations thereof.
  • the composition comprises from 0.001 wt % to 60 wt %, preferably from 0.05 wt % to 50 wt %, even more preferably from 0.1 wt % to 40 wt % of at least one oily substance.
  • the wax is selected from the group consisting of carnauba wax, beeswax, candelilla wax, synthetic wax, polyethylene, paraffin wax, microcrystalline wax, hydrogenated vegetable oil, hydrogenated castor oil, rice bran wax, cetyl dimethicone, bis-PEG-18 methyl ether dimethyl silane, and combinations thereof.
  • the composition comprises from 0.001 wt % to 30 wt %, preferably from 0.05 wt % to 20 wt %, even more preferably from 0.1 wt % to 10 wt % of at least one wax.
  • the composition comprises an emulsifier, coemulsifier or solubilizer.
  • emulsifier emulsifier
  • anionic, cationic or amphoteric surface active compounds can be used as emulsifiers, coemulsifiers and solubilizers.
  • nonionogenic surface active compounds consideration may preferably be given to: addition products of 0 to 30 mol ethylene oxide and/or 0 to 5 mol propylene oxide on linear fatty alcohols with 8 to 22 carbon atoms, on fatty acids with 12 to 22 carbon atoms, on alkyl phenols with 8 to 15 carbon atoms in the alkyl group and on sorbitan or sorbitol esters; (012-018)-fatty acid mono- and diesters of addition products of 0 to 30 mol ethylene oxide on glycerol; glycerol mono- and diesters and sorbitan mono- and diesters of saturated and unsaturated fatty acids with 6 to 22 carbon atoms and optionally their ethylene oxide addition products; addition products of 15 to 60 mol ethylene oxide on castor oil and/or hardened castor oil; polyol and especially polyglycerol esters, e.g.
  • polyglycerol polyricinoleate and polyglycerol poly-12-hydroxystearate Ethoxylated fatty amines, fatty acid amides, fatty acid alkanolamides and mixtures of compounds from several of these classes of substances are also preferably suitable.
  • Polymeric ethers formed by block polymerization of ethylene or propylene oxide known as poloxamers are also suitable.
  • Suitable ionogenic coemulsifiers are e.g. anionic emulsifiers, such as mono-, di- or triphosphoric acid esters, soaps (e.g. sodium stearate), fatty alcohol sulfates as well as cationic emulsifiers such as mono-, di- and tri-alkyl quats and polymeric derivatives thereof.
  • Amphoteric emulsifiers that are available are preferably alkyl aminoalkyl carboxylic acids, betaines, sulfobetaines and imidazoline derivatives.
  • Fatty alcohol ethoxylates are used especially preferably.
  • Fatty acid ethoxylates are also preferred.
  • Sodium laureth-11-carboxylate can be used advantageously as ethoxylated alkyl ether carboxylic acid or salts thereof.
  • Polyethylene glycol (60) evening primrose glycerides can be used advantageously as ethoxylated triglycerides.
  • the composition comprises from 0.1 wt % to 20 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer.
  • the composition comprises a cationic polymer.
  • Suitable cationic polymers include those known under the INCI designation “polyquaternium”, especially polyquaternium-31, polyquaternium-16, polyquaternium-24, Polyquaternium-7, polyquaternium-22, polyquaternium-39, polyquaternium-28, polyquaternium-2, polyquaternium-10, polyquaternium-11, and also polyquaternium-37 & mineral oil & PPG trideceth (Salcare SC95), PVP-dimethylaminoethyl methacrylate copolymer, guar-hydroxypropyltriammonium chlorides, and also calcium alginate and ammonium alginate.
  • cationic cellulose derivatives cationic starch; copolymers of diallylammonium salts and acrylamides; quaternized vinylpyrrolidone/vinylimidazole polymers; condensation products of polyglycols and amines; quaternized collagen polypeptides; quaternized wheat polypeptides; polyethyleneimines; cationic silicone polymers, such as amidomethicones, for example; copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine; polyaminopolyamide and cationic chitin derivatives, such as chitosan, for example.
  • the composition comprises a film former.
  • Film formers are materials which produce a continuous film on skin, hair, or nails such as synthetic or natural polymers and their derivatives.
  • the compositions according to the invention can contain film formers, which are, depending on the intended use, selected from salts of phenylbenzimidazole sulfonic acid, water-soluble polyurethanes, for example C10-polycarbamyl polyglyceryl ester, polyvinyl alcohol, polyvinylpyrrolidone (PVP) copolymers, vinylpyrrolidone/vinyl acetate copolymer or PVP/eicosene copolymers, vinylpyrrolidone/alkene copolymers, for example VP/eicosene copolymer or VP/hexadecene copolymer, PVM/MA copolymer or esters thereof, maleinized polypropylene polymers, water-soluble acrylic acid polymers/copolymers or esters or salt
  • the composition comprises a superfatting agent and/or a refatting agent.
  • superfatting agents it is possible to use substances such as, for example, lanolin, polyethoxylated lanolin derivatives, lecithin, lecithin derivatives, non-ethoxylated and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters such as glyceryl oleate, mono-, di- and triglycerides and/or fatty acid alkanolamides, can preferably be used as overfatting agents or refatting agents. These compounds can also simultaneously serve as foam stabilizers.
  • the superfatting agent and/or a refatting agent is selected from the group consisting of, lanolin, glyceryl ricinoleate, PEG-8 glyceryl laurate, glyceryl oleate, cocamide MEA, PEG-75 lanolin, and combinations thereof.
  • the composition comprises a stabiliser.
  • stabiliser it is possible to use metal salts of fatty acids, such as magnesium, aluminum and/or zinc stearate, for example.
  • the stabilizer is selected from the group consisting of, aluminum stearate, aluminum isostearates/myristates, magnesium stearate, magnesium cocoate, zinc palmitate, zinc stearate, and combinations thereof.
  • the composition comprises a biogenic substance.
  • the composition comprises a preservative, preservation boosting ingredient, anti-fungal agent, and/or anti-dandruff agent.
  • the preservative is selected from the group consisting of benzyl alcohol, piroctone olamine, phenoxyethanol, parabens, pentanediol, benzoic acid/sodium benzoate, sorbic acid/potassium sorbate, and combinations thereof.
  • Other organic acids can also be used to provide antimicrobial protection.
  • the preservation boosting ingredient is selected from the group consisting of anisic acid, lactic acid, sorbitan caprylate, ethylhexylglycerin, caprylyl glycol, octanediol, and mixtures thereof.
  • a suitable preservation boosting ingredient is also disclosed in International patent application PCT/EP2017/065927 (claiming priority from European patent application 16176830.4 filed on 29 Jun. 2016) by Clariant International Ltd (see in particular claim 1 therein), which is incorporated herein by reference.
  • the composition comprises 0.01 to 5.0 wt %, particularly preferably from 0.05 wt % to 1.0 wt % of at least one preservative.
  • Suitable preservatives include the substances listed in the International Cosmetic Ingredient Dictionary and Handbook, 9th Edition with the function “preservatives”.
  • the preservative is selected from the group consisting of phenoxyethanol, benzyl paraben, butyl paraben, ethyl paraben, isobutyl paraben, isopropyl paraben, methyl paraben, propyl paraben, iodopropynyl butylcarbamate, methyldibromoglutaronitrile, DMDM hydantoin and combinations thereof.
  • the composition comprises a preservative selected from the group consisting of cetyltrimethyl ammonium chloride, cetylpyridinium chloride, benzethonium chloride, diisobutylethoxyethyldimethyl benzylammonium chloride, sodium N-lauryl sarcosinate, sodium-N-palmethyl sarcosinate, lauroyl sarcosine, N-myristoylglycine, potassium-N-laurylsarcosine, trimethylammonium chloride, sodium aluminium chlorohydroxylactate, triethylcitrate, tricetylmethylammonium chloride, 2,4,4′-trichloro-2′-hydroxydiphenylether (Triclosan), phenoxyethanol, 1,5-pentandiol, 1,6-hexandiol, 3,4,4′-trichlorocarbanilide (Triclocarban), diaminoalkylamide, L-lys
  • the preservative is selected from the group consisting of phenoxyethanol, benzyl paraben, butyl paraben, ethyl paraben, isobutyl paraben, isopropyl paraben, methyl paraben, propyl paraben, iodopropynyl butylcarbamate, methyldibromoglutaronitrile, DMDM hydantoin and combinations thereof.
  • the composition is substantially free of parabens.
  • the composition comprises from 0.1 wt % to 5.0 wt % antimicrobial agents.
  • the antimicrobial agent is chlorhexidine.
  • the composition comprises an anti-fungal substance.
  • the anti-fungal substance is selected from the group consisting of ketoconazole, oxiconazole, bifonazole, butoconazole, cloconazole, clotrimazole, econazole, enilconazole, fenticonazole, isoconazole, miconazole, sulconazole, tioconazole, fluconazole, itraconazole, terconazole, naftifine, terbinafine, zinc pyrithione, piroctone olamine (Octopirox®), (RS)-1-(4-chlorophenoxy)-1-imidazol-1-yl-3,3-dimethylbutan-2-one (climbazole), and combinations thereof.
  • the composition comprises a total amount of anti-fungal substance in the composition of from 0.1 wt % to 1.0 wt %.
  • the composition comprises pyridinethione anti-dandruff particulates, for example 1-hydroxy-2-pyridinethione salts, are highly preferred particulate anti-dandruff agents.
  • concentration of pyridinethione anti-dandruff particulate may ranges from 0.1% to 4.0%, by weight of the formulation, preferably from 0.1% to 3.0%, more preferably from 0.3% to 2.0%.
  • Preferred pyridinethione salts include those formed from heavy metals such as zinc, tin, cadmium, magnesium, aluminum and zirconium, preferably zinc, more preferably the zinc salt of 1-hydroxy-2-pyridinethione (known as “zinc pyridinethione” or “ZPT”), more preferably 1-hydroxy-2-pyridinethione salts in platelet particle form. Salts formed from other cations, such as sodium, may also be suitable.
  • the composition comprises a dye or pigment. In at least one embodiment, the composition comprises at least one dye or pigment. Suitable dyes and pigments are disclosed in WO2013/017262A1 in the table spanning pages 36 to 43. In at least one embodiment, the composition comprises a total amount of from 0.01 wt % to 25 wt %, preferably from 0.1 wt % to 15 wt %, even more preferably from 0.5 wt % to 10 wt % of at least one pigment. In at least one embodiment, the inorganic pigment is selected from the group consisting of chalk, ochre, umber, green earth, burnt sienna, graphite, and combinations thereof.
  • the pigments may be white pigments, such as, for example, titanium dioxide or zinc oxide, black pigments, such as, for example, iron oxide black, colored pigments, such as, for example, ultramarine or iron oxide red, lustre pigments, metal effect pigments, pearlescent pigments, and fluorescent or phosphorescent pigments, where preferably at least one pigment is a colored, nonwhite pigment.
  • white pigments such as, for example, titanium dioxide or zinc oxide
  • black pigments such as, for example, iron oxide black
  • colored pigments such as, for example, ultramarine or iron oxide red, lustre pigments, metal effect pigments, pearlescent pigments, and fluorescent or phosphorescent pigments, where preferably at least one pigment is a colored, nonwhite pigment.
  • the composition comprises a particulate substance. In at least one embodiment, the composition comprises at least one particulate substance. Suitable substances are, for example, substances which are solid at room temperature (25° C.) and are in the form of particles. Suitable substances are, for example, substances which serve as opacifiers, abrasives, absorbents, anti-caking agents, bulking agents or performance fillers. In at least one embodiment, the particulate substance is selected from the group consisting of silica, silicates (e.g.
  • sepiolite sepiolite, montmorillonite, bentonite, kaolin, hectorite), aluminates, clay earths, mica, talc, starch, perlite, charcoal, pulp powder, seed powder, insoluble salts, in particular insoluble inorganic metal salts, metal oxides (e.g. titanium dioxide), minerals and insoluble polymer particles, such as polyimide derivatives (e.g. nylon-12, nylon-6, polyamide-5), silicones (e.g. polymethylsilsesquioxane), polyesters (e.g. polyester-12), polyethylene and polymethyl methacrylates.
  • polyimide derivatives e.g. nylon-12, nylon-6, polyamide-5
  • silicones e.g. polymethylsilsesquioxane
  • polyesters e.g. polyester-12
  • polyethylene and polymethyl methacrylates polyethylene and polymethyl methacrylates.
  • the composition comprises pearlizing agents. In at least one embodiment, the composition comprises at least one pearlizing agent.
  • the particulate substance is selected from the group consisting of, fatty acid monoalkanolamides, fatty acid dialkanolamides, monoesters or diesters of alkylene glycols, especially ethylene glycol and/or propylene glycol or oligomers thereof, with higher fatty acids, e.g. palmitic acid, stearic acid and behenic acid, monoesters or polyesters of glycerol with carboxylic acids, fatty acids and metal salts thereof, ketosulfones or mixtures of the aforementioned compounds.
  • the composition comprises a direct dye.
  • the composition comprises at least one direct dye.
  • Preferred among the direct dyes are the following compounds, alone or in combination with one another: hydroxyethyl-2-nitro-p-toluidine, 2-hydroxyethylpicramic acid, 4-nitrophenylaminourea, tri(4-amino-3-methylphenyl)carbenium chloride (Basic Violet 2), 1,4-di-amino-9,10-anthracenedione (Disperse Violet 1), 1-(2-hydroxy-ethyl)amino-2-nitro-4-[di(2-hydroxyethyl)amino]benzene (HC Blue No.
  • the composition comprises a perfume or fragrance ingredient.
  • perfume or fragrance ingredient Individual fragrance compounds, e.g. the synthetic products of the type of esters, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used as fragrance or perfume oils. Fragrance compounds of the ester type are e.g.
  • Perfume oils can also contain mixtures of natural odoriferous substances that can be obtained from vegetable or animal sources. Essential oils of lower volatility, which are used mostly as flavor components, are also suitable as perfume oils.
  • the composition comprises a carrier, solvent or diluent.
  • the composition comprises a solvent, wherein the solvent comprises water and/or alcohol.
  • Solvent is useful for providing the compounds used in present invention in liquid form.
  • the solvent is cosmetically acceptable.
  • the composition comprises at least 10 wt % water. Water is useful for economic reasons but also because it is cosmetically acceptable.
  • the composition comprises water-miscible or water-soluble solvents such as lower alkyl alcohols.
  • the composition comprises C1-C5 alkyl monohydric alcohols, preferably C2-C3 alkyl alcohols.
  • the alcohols which may be present are in particular lower monohydric or polyhydric alcohols having 1 to 4 carbon atoms customarily used for cosmetic purposes, such as preferably ethanol and isopropanol.
  • the composition comprises a water-soluble polyhydric alcohol.
  • the water-soluble polyhydric alcohols are polyhydric alcohols having two or more hydroxyl groups in the molecule.
  • the composition comprises a solvent selected from the group consisting of water, glycols, ethanol, and combinations thereof.
  • the composition comprises an aqueous, alcoholic or aqueous-alcoholic solvent
  • the aqueous, alcoholic or aqueous-alcoholic solvent comprises water, ethanol, propanol, isopropanol, 1,2-propylene glycol, 1,3-propylene glycol, isobutanol, butanol, butyl glycol, butyl diglycol, glycerol, or a mixture thereof;
  • the aqueous, alcoholic or aqueous-alcoholic solvent comprises water, ethanol, propanol, isopropanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, or mixtures thereof.
  • Natural solvents can also be used.
  • the composition comprises a solvent selected from the group consisting of plant oil, honey, plant-derived sugar compositions, and mixtures thereof. In at least one embodiment, the composition comprises from 0.5 wt % to 90 wt %, preferably from 1.0 wt % to 80 wt %, even more preferably from 5.0 wt % to 70 wt % of at least one carrier, solvent and/or diluent.
  • the composition comprises a propellant.
  • the propellant is selected from compressed gas propellants and liquefied gas propellants.
  • the compressed gas propellants are selected from the group consisting of air, nitrogen (N 2 ), nitrous oxide (N 2 O), carbon dioxide (CO 2 ), and mixtures thereof.
  • the liquefied gas propellants are selected from the group consisting of dimethylether (DME), 1,1-difluoroethane (HFC-152a), 1,1,1,2-tetrafluoroethane (HFC-134a), pentane, n-butane, iso-butane, propane, trans-1,3,3,3-tetrafluoropropene (HF0-1234ze), and mixtures thereof.
  • DME dimethylether
  • HFC-152a 1,1-difluoroethane
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • pentane n-butane
  • iso-butane propane
  • trans-1,3,3,3-tetrafluoropropene HF0-1234ze
  • the composition comprises a functional acid or an active ingredient.
  • Functional acids and active ingredients are substances used to impart a clinical functionality to the skin or hair upon application. Functional acids and active ingredients are for example used as exfoliants, skin-brightening agents, self-tanning agents, anti-acne agents and anti-ageing agents.
  • the composition comprises a deodorant or an anti-perspirants.
  • the composition comprises a deodorising agent.
  • the deodorising agent is selected from the group consisting of allantoin, bisabolol, and combinations thereof.
  • the composition may comprise an antiperspirant.
  • antiperspirant it is possible to use aluminium chloride, aluminum chloride hydroxide, aluminum chloride dihydroxide, aluminum chlorohydrex polyethylene glycol complex, magnesium zirconium complexes or aluminum zirconium chloride hydroxide, for example.
  • the composition comprises at least one viscosity modifier or thickening and/or gelling agent.
  • the desired viscosity and rheology profile of the compositions can be adjusted by adding further thickeners and gelling agents.
  • the viscosity-modifying substance is preferably a thickening polymer.
  • the thickening polymer selected from the group consisting of: copolymers of at least one first monomer type, which is chosen from acrylic acid and methacrylic acid, and at least one second monomer type, which is chosen from esters of acrylic acid and ethoxylated fatty alcohol, crosslinked polyacrylic acid, crosslinked copolymers of at least one first monomer type, which is chosen from acrylic acid and methacrylic acid, and at least one second monomer type, which is chosen from esters of acrylic acid with C10- to C30-alcohols; copolymers of at least one first monomer type, which is chosen from acrylic acid and methacrylic acid, and at least one second monomer type, which is chosen from esters of itaconic acid and ethoxylated fatty alcohol; copolymers of at least one first monomer type, which is chosen from acrylic acid and methacrylic acid, at least one second monomer type, which is chosen from esters of itaconic acid and ethoxylated C10-
  • the viscosity modifier or thickening and/or gelling agent is selected from the group consisting of carbomers, acrylates copolymers, xanthan gum, hydroxyethylcellulose, laureth-2, and combinations thereof.
  • the composition comprises an alkalizing agent or pH adjusting agent.
  • ammonia or caustic soda is suitable, but water-soluble, physiologically tolerable salts of organic and inorganic bases can also be considered.
  • the pH adjusting agent is selected from ammonium hydrogen carbonate, ammonia, monoethanolamine, ammonium hydroxide, ammonium carbonate.
  • the alkalizing agents is selected from the group consisting of 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, tris(hydroxyl-methyl)-aminomethane, 2-amino-1-butanole, tris-(2-hydroxypropyl)-amine, 2,2-iminobisethanol, lysine, iminourea (guanidine carbonate), tetrahydro-1,4-oxazine, 2-amino-5-guanidin-valeric acid, 2-aminoethansulfonic acid, diethanolamine, triethanolamine, N-methyl ethanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, glucamine, sodium hydroxide, potassium hydroxide, lithium hydroxide and magnesium oxide, and mixtures thereof.
  • an acidic pH value 2-amino-2
  • the composition/formulation comprises an anti-oxidant.
  • the anti-oxidant is selected from the group consisting of amino acids, peptides, sugars, imidazoles, carotinoids, carotenes, chlorogenic acid, lipoic acid, thiols, thiol glycosyl esters, thiol N-acetyl esters, thiol methyl esters, thiol ethyl esters, thiol propyl esters, thiol amyl esters, thiol butyl esters, thiol lauryl esters, thiol palmitoyl esters, thiol oleyl esters, thiol linoleyl esters, thiol cholesteryl esters, thiol glyceryl esters, dilaurylthiodipropionate, distearylthiodipropionate, thiodipropionic acid
  • the composition/formulation comprises a chelant.
  • the chelant is selected from the group consisting of EDTA, caprylhydroxamic acid, oxalate derivatives, disodium hydroxyethyliminodiacetate, galacturonic acid and derivatives, glucuronic acid and derivatives, lauroyl ethylenediamine triacetic acid, methyl dihydroxybenzoate, trisodium ethylenediamine disuccinate, phytic acid, itaconic acid, propane tricarboxylic acid, citric acid and derivatives (e.g.,
  • the chelant is selected from the group consisting EDTA, oxalate derivatives, disodium salicylphosphate, and combinations thereof.
  • the composition comprises an astringent.
  • the astringent is selected from the group consisting of magnesium oxide, aluminium oxide, titanium dioxide, zirconium dioxide, zinc oxide, oxide hydrates, aluminium oxide hydrate (boehmite) and hydroxide, chlorohydrates of calcium, magnesium, aluminium, titanium, zirconium or zinc.
  • the composition comprises a sun protection agent and/or UV filter.
  • Suitable sun protection agents and UV filters are disclosed in WO2013/017262A1 (published on 7 Feb. 2013), from page 32, line 11 to the end of page 33.
  • the photoprotective substances include, in particular, all of the photoprotective substances specified in EP1084696, which is incorporated herein by reference.
  • the compositions according to the invention contain one or more substances selected from inorganic and organic UV filters and especially preferably are in the form of sunscreen compositions.
  • the composition comprises a skin conditioning agent.
  • Skin conditioning agents such as emollients, humectants and occlusive agents are ingredients which help to maintain the soft and smooth appearance of the skin or which help to improve the condition of dry or damaged skin.
  • the skin conditioning agent is selected from the group consisting of oily substances (description see above), functional acids or active ingredients (description see above), fatty acid N-alkylpolyhydroxyalkyl amides, fatty acids, triglycerides, panthenol, allantoin, bisabolol, glycerol, sorbitol, urea and derivatives thereof, trehalose, erythrulose, pyrrolidone carboxylic acid (PCA) and its salts, polyglucuronic acid, gluconolactone, petrolatum, ubichinon-10 and ubiquinol.
  • the skin conditioning agent is selected from the group consisting of urea, glycerine, pyrrolidone carboxylic acid (PCA) and its salts, panthenol, petrolatum, and combinations thereof.
  • the composition comprises an anti-foaming agent.
  • Antifoams are chemicals which reduce the tendency of finished products to generate foam on shaking or agitation.
  • the anti-foaming agent is selected from the group consisting of alcohols (e.g. ethanol, isopropyl alcohol or propyl alcohol), alkoxylated alcohols (e.g. laureth-5 butyl ether), silicon oils and resins (e.g.
  • dimethicone and its derivatives such as cetyl dimethicone, phenyl dimethicone, PEG/PPG-12/18 dimethicone and hydrogen trifluoropropyl dimethicone, trimethylsiloxysilicate/dimethicone crosspolymer or polysilicone-10) and hydrophobic silica derivatives (e.g. silica silylate).
  • the composition comprises a flavouring agent.
  • the flavouring agent is selected from the group consisting of 1-acetonaphthalene, 1-decen-3-ol, p-methylbenzaldehyde, p-propenylphenyl methyl ether, aspartame, benzaldehyde, bromocinnamal, calcium cyclohexylsulfamate, calcium o-benzolufimide, carvone, cinnamic aldehyde, 3,7-dimethyl-6-octenoic acid, fruit sugar, glucose, glucosyl stevioside, honey, 3-methyl-1-butanol, 4-hydroxy-3-methoxy-1-propenylbenzene, malt sugar, menthol, eucalyptol, thymol, potassium 6-methyl-1,2,2-oxathiazin-4(3H)-one 2,2′-dioxide, isodulcitol, saccharin, a cyclohe
  • the composition comprises an electrolyte.
  • the electrolyte is selected from the group consisting of salts preferably ammonium or metal salts, especially preferably halides, for example CaCl 2 , MgCl 2 , LiCl, KCl and NaCl, carbonates, hydrogen carbonates, phosphates, sulfates, nitrates, especially preferably sodium chloride, sodium fluoride, sodium monofluorophosphate, stannous fluoride, and/or organic salts.
  • the composition comprises an oxidizing or reducing agent.
  • the oxidizing or reducing agent is selected from the group consisting of ammonium persulfate, calcium peroxide, hydrogen peroxide, hypochlorous acid, sodium hypochlorite, potassium monopersulfate, sodium carbonate peroxide, ammonium thioglycolate, cysteine, glutathione, hydroquinone, mercaptopropionic acid, superoxide dismutase, thioglycerin, thioglycolic acid, thiolactic acid, sodium sulfite, sodium thioglycolate, potassium thioglycolate, and cysteine.
  • the composition comprises a hair conditioning agent.
  • the hair conditioning agent is a water insoluble, water dispersible, non-volatile, liquid that forms emulsified, liquid particles.
  • the hair conditioning agent is a silicone (e.g., silicone oil, cationic silicone, silicone gum, high refractive silicone, and silicone resin), an organic conditioning oil (e.g., hydrocarbon oils, polyolefins, and fatty esters), or combinations thereof.
  • the hair conditioning agent is a silicone, and wherein the composition comprises from 0.01% to 10%, or from 0.1% to 5% silicone hair conditioning agent, by total weight of the composition. Suitable silicone hair conditioning agents, and optional suspending agents for the silicone, are described in U.S. Pat. No. 5,104,646.
  • the composition comprises a silicone gum selected from the group consisting of polydimethylsiloxane, (polydimethylsiloxane) (methylvinylsiloxane) copolymer, poly(dimethylsiloxane) (diphenylsiloxane) (methylvinylsiloxane) copolymer, and mixtures thereof.
  • the composition comprises a terminal aminosilicone. “Terminal aminosilicone” as defined herein means silicone comprising one or more amino groups at one or both ends of the silicone backbone.
  • the composition comprises a high melting point fatty compound.
  • the high melting point fatty compound has a melting point of 25° C. or higher.
  • the high melting point fatty compound is selected from the group consisting of a fatty alcohol, fatty acid, fatty alcohol derivative, fatty acid derivative, and mixtures thereof.
  • Non-limiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
  • the composition may comprise from 0.1% to 40%, or from 1% to 30%, or from 1.5% to 16%, or from 1.5% to 8% of a high melting point fatty compound, by total weight of the composition.
  • the composition comprises a cationic surfactant.
  • cationic surfactant is according to Formula (C):
  • R 71 , R 72 , R 73 and R 74 is selected from an aliphatic group of from 8 to 30 carbon atoms, an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl, or an alkylaryl group having up to 22 carbon atoms; the remainder of R 71 , R 72 , R 73 and R 74 are independently selected from the group consisting of an aliphatic group consisting of from 1 to 22 carbon atoms, and an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to 22 carbon atoms; X is selected from the group consisting of: halogen, acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfonate, sulfate, alkylsulfate, alkyl sulfonate radicals, and combinations thereof.
  • the cationic surfactant is selected from the group consisting of cetyltrimonium chloride (CTAC), stearyltrimonium chloride (STAG), behentrimonium methosulfate, stearoylamidopropyldimethyl amine (SAPDMA), distearyldimethylammonium chloride, and mixtures thereof.
  • CTAC cetyltrimonium chloride
  • STAG stearyltrimonium chloride
  • SAPDMA stearoylamidopropyldimethyl amine
  • distearyldimethylammonium chloride distearyldimethylammonium chloride
  • the composition comprises a hairstyling polymer.
  • the hairstyling polymer is selected from the group consisting of: amphoteric hairstyling polymers, zwitterionic hairstyling polymers, anionic hairstyling polymers, non-ionic hairstyling polymers, cationic hairstyling polymers, and mixtures thereof.
  • the composition comprises from 0.01% to 20%, or from 0.01% to 16%, or from 0.01% to 10%, or from 1% to 8%, or from 2% to 6% of hairstyling polymer.
  • the cosmetic, dermatological or pharmaceutical composition according to the invention comprise the one or more polymers (I) in a total amount of from 0.01 to 10 wt %, preferably from 0.1 to 5.0 wt %, even more preferably from 0.25 to 2.0 wt %.
  • the cosmetic, dermatological or pharmaceutical compositions comprise further from 0.5 wt % to 90 wt %, preferably from 1.0 wt % to 80 wt %, even more preferably from 5.0 wt % to 70 wt % of at least one carrier, solvent and/or diluent. Carriers, solvents and/or diluents are listed above.
  • the carrier, solvent and/or diluent is selected from the group consisting of water, glycols, ethanol, and combinations thereof.
  • the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot
  • the cosmetic, dermatological or pharmaceutical composition is for use on skin.
  • the composition is for use on the face, the neck, the body and/or around the eye area.
  • the composition is an emulsion or gel, preferably an oil-in-water (o/w), cream gel, hydro-alcoholic gel or hydrogel composition.
  • the composition has a viscosity from 100 000 to 200 000 mPa ⁇ s, preferably from 1 000 to 100 000 mPa ⁇ s, even more preferably from 2 000 to 50 000 mPa ⁇ s and very preferably from 5 000 to 30 000 mPa ⁇ s (measured at 25° C., Brookfield RVT, T-C spindle at 20 revolutions per minute).
  • the composition is a body or face care composition such as face creams, neck creams, body lotions, body milks, face serums, blemish balm creams, hand creams, foot creams, body butters, lip creams, eye creams, after-sun lotions, make-up removing lotions or body mists, diaper creams or baby lotions.
  • the body or face care composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer.
  • the body or face care composition comprises from 0.01 wt % to 40 wt %, preferably from 0.05 wt % to 30 wt %, even more preferably from 0.1 wt % to 20 wt % of at least one oily substance. Oily substances are listed above.
  • the body or face care composition comprises from 0.01 wt % to 20 wt %, preferably from 0.05 wt % to 10 wt %, even more preferably from 0.1 wt % to 5.0 wt % of at least one wax. Waxes are listed above.
  • the body or face care composition comprises from 0.01 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.3 wt % to 5.0 wt % of at least one viscosity modifier or thickening and/or gelling agent. Viscosity modifiers or thickening and/or gelling agents are listed above.
  • the body or face care composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one skin conditioning agent. Skin conditioning agents are listed above.
  • the body or face care composition comprises from 0.001 wt % to 10 wt %, preferably from 0.05 wt % to 5.0 wt %, even more preferably from 0.1 wt % to 3.0 wt %, most preferably from 0.05 wt % to 1.0 wt % of at least one antioxidant.
  • Antioxidants are listed above.
  • the body or face care composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.01 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 2.0 wt % of at least one biogenic active substance.
  • the body or face care composition comprises from 0.01 wt % to 4.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient.
  • Preservatives or preservation boosting ingredients are listed above.
  • the body or face care composition comprises from 0.01 wt % to 3.0 wt %, preferably from 0.05 wt % to 2.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one perfume or fragrance ingredient. Perfume or fragrance ingredients or are listed above.
  • the body or face care composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary.
  • auxiliary preferably from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary.
  • Auxiliaries are listed above.
  • the composition is a skin-whitening composition.
  • the skin-whitening composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer.
  • Emulsifiers, coemulsifiers and/or solubilizers are listed above.
  • the skin-whitening composition comprises from 0.01 wt % to 10 wt %, preferably from 0.1 wt % to 7.5 wt %, even more preferably from 0.3 wt % to 5.0 wt % of at least one viscosity modifier or thickening and/or gelling agent. Viscosity modifiers or thickening and/or gelling agents are listed above.
  • the skin-whitening composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above.
  • the skin-whitening composition has a pH value from 1.0 to 8.0, preferably from 2.0 to 7.0, even more preferably from 3.0 to 6.0.
  • the composition is a self-tanning composition.
  • the self-tanning composition comprises from 0.001 wt % to 40 wt %, preferably from 0.05 wt % to 30 wt %, even more preferably from 0.1 wt % to 20 wt % of at least one oily substance. Oily substances are listed above.
  • the self-tanning composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • the composition is a cleansing composition such as body washes, face washes, micellar waters or gels, body scrubs, face peeling, facial exfoliators, liquid soaps, bath additives, bubble baths, shower creams or milks, shower foams and face masks.
  • the cleansing composition comprises from 0.5 wt % to 25 wt %, preferably from 1.0 wt % to 20 wt %, even more preferably from 2.0 wt % to 15 wt % of at least one surfactant.
  • surfactants are listed above.
  • the cleansing composition comprises from 0.01 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one viscosity modifier or thickening agent. Viscosity modifier or thickening agents are listed above.
  • the cleansing composition comprises from 0.01 wt % to 15 wt %, preferably from 0.05 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one particulate substance. Particulate substances are listed above.
  • the cleansing composition comprises from 0.001 wt % to 30 wt %, preferably from 0.05 wt % to 20 wt %, even more preferably from 0.1 wt % to 10 wt % of at least one oily substance. Oily substances are listed above.
  • the cleansing composition comprises from 0.05 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one functional acid or/and an active ingredient. Functional acids or/and an active ingredients are listed above.
  • the cleansing composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one electrolyte. Electrolytes are listed above.
  • the cleansing composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient.
  • the cleansing composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary.
  • Auxiliaries are listed above.
  • the composition is a sun care composition such as sun sprays, sun milks, sun lotions, sun gels.
  • Body and face care compositions with sun protection agents and/or UV filters such as day creams, hand creams, foundations, lip balms and face serums can also serve as sun care compositions.
  • the sun care composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer.
  • the sun care composition comprises from 0.001 wt % to 50 wt %, preferably from 0.05 wt % to 40 wt %, even more preferably from 0.1 wt % to 30 wt % of at least one oily substance. Oily substances are listed above.
  • the sun care composition comprises from 0.001 wt % to 30 wt %, preferably from 0.05 wt % to 20 wt %, even more preferably from 0.1 wt % to 10 wt %, most preferably from 0.05 wt % to 5.0 wt % of at least one sun protection agent and/or UV filter. Sun protection agents and/or UV filters are listed above.
  • the sun care composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one film former. Film formers are listed above.
  • the sun care composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3. wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above.
  • the sun care composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary.
  • Auxiliaries are listed above.
  • the composition is a color cosmetic composition such as foundations, fluid Illuminators, eye brow products, primers, concealers, blushes, bronzers, eye shadows, eye lash products, eye liners, face powders, lipsticks, lip glosses, lip balms or nail polishes.
  • the color cosmetic composition comprises from 0.01 wt % to 25 wt %, preferably from 0.1 wt % to 15 wt %, even more preferably from 0.5 wt % to 10 wt % of at least one dye or pigment. Dyes and pigments are listed above.
  • the color cosmetic composition comprises from 0.01 wt % to 15 wt %, preferably from 0.05 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one particulate substance.
  • the color cosmetic composition comprises from 0.001 wt % to 60 wt %, preferably from 0.05 wt % to 50 wt %, even more preferably from 0.1 wt % to 40 wt % of at least one oily substance. Oily substances are listed above.
  • the color cosmetic composition comprises from 0.001 wt % to 30 wt %, preferably from 0.05 wt % to 20 wt %, even more preferably from 0.1 wt % to 10 wt % of at least one wax. Waxes are listed above.
  • the color cosmetic composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer.
  • the color cosmetics composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient.
  • Preservatives or preservation boosting ingredients are listed above.
  • the color cosmetic composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • the composition is a face toner.
  • the face toner composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one skin conditioning agent. Skin conditioning agents are listed above.
  • the face toner composition comprises from 0.01 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one viscosity modifier or thickening agent.
  • the face toner composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient.
  • the composition is a bar soap or syndet composition.
  • the bar soap or syndet composition comprises from 1.0 wt % to 50 wt %, preferably from 2.0 wt % to 30 wt %, even more preferably from 5.0 wt % to 20 wt % of at least one surfactant.
  • Surfactants are listed above.
  • the bar soap or syndet composition comprises from 0.01 wt % to 20 wt %, preferably from 0.05 wt % to 15 wt %, even more preferably from 0.5 wt % to 10 wt % of at least one particulate substance. Particulate substances are listed above.
  • the bar soap or syndet composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one electrolyte. Electrolytes are listed above.
  • the bar soap or syndet composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • the composition is a deodorizing and/or antiperspirant composition.
  • the composition is in the form of a cream, a roll-on, a solid, an aerosol or a gel.
  • the deodorizing and/or antiperspirant composition comprises from 0.001 wt % to 10 wt %, or from 0.01 wt % to 9.0 wt %, or from 0.05 wt % to 8.0 wt %, or from 0.1 wt % to 5.0 wt % of at least one antiperspirant and/or deodorizing agent.
  • the deodorizing and/or antiperspirant composition comprises 0.01 wt % to 3.0 wt %, preferably from 0.05 wt % to 2.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one perfume or fragrance ingredient. Perfume or fragrance ingredients or are listed above.
  • the deodorizing and/or antiperspirant composition comprises from 0.5 wt % to 60 wt %, preferably from 1.0 wt % to 50 wt %, even more preferably from 2.0 wt % to 40 wt % of at least one propellant. Propellants are listed above.
  • the deodorizing and/or antiperspirant composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary.
  • auxiliary preferably from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary.
  • Auxiliaries are listed above.
  • the composition is a depilating composition.
  • the composition is a shaving composition.
  • the composition is a fragrance composition.
  • the composition is a hand sanitizing composition.
  • the cosmetic, dermatological or pharmaceutical composition is for use on hair and/or scalp.
  • the composition is an emulsion or gel, preferably an oil-in-water (o/w), cream gel, hydro-alcoholic gel or hydrogel composition.
  • the hair care composition has a viscosity from 100 000 to 150 000 mPa ⁇ s, preferably from 1 000 to 100 000 mPa ⁇ s, more preferably from 2 000 to 50 000 mPa ⁇ s and very preferably from 5 000 to 30 000 mPa ⁇ s (25° C., Brookfield RVT, T-C spindle at 20 revolutions per minute).
  • the composition is a shampoo composition.
  • the shampoo composition comprises from 0.5 wt % to 30 wt %, preferably from 1.0 wt % to 15 wt %, even more preferably from 2.0 wt % to 10 wt % of at least one surfactant.
  • surfactants are listed above.
  • the surfactant is selected from the group consisting of sodium laureth sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauroyl sarcosinate, sodium methyl cocoyl taurate, cocamidopropyl betaine, sodium cocoyl glutamate, lauryl glucoside, cocoyl methyl glucamide, and combinations thereof.
  • the shampoo composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one cationic polymer.
  • the shampoo composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one pearlizing agent.
  • the shampoo composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one electrolyte.
  • the shampoo composition comprises from 0.01 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one viscosity modifier or thickening agent. Viscosity modifier or thickening agents are listed above.
  • the shampoo composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above.
  • the composition is a hair conditioning and/or hair and/or scalp treatment composition such as leave-in and rinse-off conditioners, masks, lotions, combing creams, detangling creams, anti-frizz liquids, hair serums, scalp serums, color protection creams.
  • the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer.
  • Emulsifiers, coemulsifiers and/or solubilizers are listed above.
  • the emulsifier, coemulsifier and/or solubilizer is selected from the group consisting of cetearyl alcohol, cetrimonium chloride, behentrimonium chloride, steartrimonium chloride, cetyl alcohol, stearyl alcohol, stearic acid, isostearamidopropyl dimethylamine, and combinations thereof.
  • the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.01 wt % to 20 wt %, preferably from 0.05 wt % to 10 wt %, even more preferably from 0.1 wt % to 5.0 wt % of at least one oily substance. Oily substances are listed above.
  • the oily substance is selected from the group consisting of dimethicone, squalene, amodimethicone, argan oil, jojoba oil, cyclopentasiloxane, mineral oil, castor oil, shea butter, and combinations thereof.
  • the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one cationic polymer. Cationic polymers are listed above.
  • the cationic polymer is selected from the group consisting of polyquaternium-10, guar hydroxypropyltrimonium chloride, polyquaternium-7, polyquaternium-6, and combinations thereof.
  • the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.01 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 2.0 wt % of at least one biogenic active substance.
  • Biogenic active substances are listed above.
  • the biogenic active substance is selected from the group aloe collagen hydrolysates, bisabolol, allantoin, hydrolyzed wheat protein, hydrolyzed silk, hydrolyzed keratin, amino acids and its derivatives, glycoproteins, and combinations thereof.
  • the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient.
  • Preservatives or preservation boosting ingredients are listed above.
  • the preservative or preservation boosting ingredient is selected from the group consisting of sodium benzoate, methylparaben, phenoxyethanol, methylisothiazolinone, DMDM hydantoin, methylchloroisothiazolinone, pyrithione, octopirox, and combinations thereof.
  • the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • the hair conditioning and/or hair and/or scalp treatment composition has a pH value from 2.0 to 8.0, preferably from 3.0 to 7.0, even more preferably from 4.0 to 6.0.
  • the composition is a hair styling composition such as mousses, gels, sprays and waxes.
  • the hair styling composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one film former or hairstyling polymer. Film formers and hairstyling polymers are listed above.
  • the cationic polymer is selected from the group consisting of polyquaternium-10, guar hydroxypropyltrimonium chloride, polyquaternium-7, polyquaternium-6, and combinations thereof.
  • the hair styling composition comprises from 0.5 wt % to 60 wt %, preferably from 1.0 wt % to 50 wt %, even more preferably from 2.0 wt % to 40 wt % of at least one propellant.
  • propellant is selected from the group consisting of nitrogen, carbon dioxide, pentane, n-butane, iso-butane, propane, and combinations thereof.
  • the hair styling composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient.
  • preservatives or preservation boosting ingredients are listed above.
  • the preservative or preservation boosting ingredient is selected from the group consisting of sodium benzoate, methylparaben, phenoxyethanol, methylisothiazolinone, DMDM hydantoin, methylchloroisothiazolinone, pyrithione, octopirox, and combinations thereof.
  • the hair styling composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10.0 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • the hair styling composition has a pH value from 2.0 to 9.0, preferably from 3.0 to 8.0, even more preferably from 4.0 to 7.0.
  • the composition is a hair coloring/hair bleaching composition.
  • the hair coloring/hair bleaching composition comprises from 0.5 wt % to 60 wt %, preferably from 1.0 wt % to 50 wt %, even more preferably from 2.0 wt % to 40 wt % of at least one direct dye. Direct dyes are listed above.
  • the hair coloring/hair bleaching composition comprises from 00.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one oxidizing or reducing agent. Oxidizing or reducing agents are listed above.
  • the hair coloring/hair bleaching composition comprises a primary intermediate and a coupling agent.
  • the primary intermediate is selected from the group consisting of 2,4,5,6-tetraaminopyrimidine, 4-aminophenol, 4-amino-3-methylphonol, 2,5-diamino-toluene and 2-(2,5-diaminophenyl) ethanol, 2-methoxymethyl-1,4-benzenediamine, and combinations thereof.
  • the coupling agent is selected from the group consisting of 5-amino-4-chloro-o-cresol, 2,6-diaminopyridine, 2,6-dihydroxyethylaminotoluene, resorcinol, 2-methyl resorcinol, 4-amino-2-methylphenol, and combinations thereof.
  • the hair coloring/hair bleaching composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer.
  • the hair coloring/hair bleaching composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.01 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one alkalizing or pH adjusting agent.
  • Alkalizing or pH adjusting agents are listed above.
  • the hair coloring/hair bleaching composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10.0 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • the hair coloring/hair bleaching composition has a pH value from 6.0 to 14.0, preferably from 7.0 to 13.0, even more preferably from 8.0 to 12.0.
  • the cosmetic, dermatological or pharmaceutical composition is for use on mucous membranes.
  • the composition is an emulsion, gel or paste, preferably an oil-in-water (o/w), cream gel or hydrogel composition.
  • the composition suitable for mucous membranes has a viscosity from 100 000 to 300 000 mPa ⁇ s, preferably from 1 000 to 200 000 mPa ⁇ s, more preferably from 2 000 to 100 000 mPa ⁇ s and very preferably from 5 000 to 30 000 mPa ⁇ s (25° C., Brookfield RVT, T-C spindle at 20 revolutions per minute).
  • the composition is a toothpaste composition. In at least one embodiment, the composition is a mouthwash composition.
  • the composition is a lubricant composition.
  • the second aspect relates to a cosmetic, dermatological or pharmaceutical composition
  • a cosmetic, dermatological or pharmaceutical composition comprising:
  • the polymer comprises from 96 mol-% to 99.7 mol-%, preferably from 97 mol-% to 99.5 mol-% units (a) and from 0.3 mol-% to 4 mol-%, preferably from 0.5 mol-% to 3 mol-% units (b). In at least one embodiment, the polymer comprises units (a) and (b), such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the second aspect relates to a cosmetic, dermatological or pharmaceutical composition
  • a cosmetic, dermatological or pharmaceutical composition comprising:
  • the polymer comprises from 45 mol-% to 97 mol-%, preferably from 65 mol-% to 96 mol-% units (a), from 0.25 mol-% to 4 mol-%, preferably from 0.3 mol-% to 3 mol-% units (b), from 2 mol-% to 54.7 mol-%, preferably from 2.5 mol-% to 34.5 mol-% units (c).
  • the polymer comprises units (a), (b) and (c) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the polymer comprises from 70 mol-% to 98 mol-%, preferably from 73 mol-% to 96 mol-% units (a), from 0.6 mol-% to 2.5 mol-%, preferably from 0.75 mol-% to 2 mol-% units (b), from 1.4 mol-% to 54.7 mol-%, preferably from 2.5 mol-% to 34.5 mol-% units (c).
  • the polymer comprises units (a), (b) and (c) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the second aspect relates to a cosmetic, dermatological or pharmaceutical composition
  • a cosmetic, dermatological or pharmaceutical composition comprising:
  • the polymer comprises from 37 mol-% to 96.4 mol-%, preferably from 43 mol-% to 95.3 mol-% units (a), from 0.1 mol-% to 3 mol-%, preferably from 0.2 mol-% to 2 mol-% units (b), from 0.1 mol-% to 59.3 mol-%, preferably from 0.5 mol-% to 52.8 mol-% units (c), and from 3.5 mol-% to 16 mol-%, preferably from 4 mol-% to 14 mol-% units (d).
  • the polymer comprises units (a), (b), (c) and (d) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the polymer comprises from 70 mol-% to 94.5 mol-%, units (a), from 0.35 mol-% to 1.5 mol-%, units (b), from 0.65 mol-% to 25.65 mol-% units (c), and from 4.5 mol-% to 12 mol-% units (d). In at least one embodiment, the polymer comprises units (a), (b), (c) and (d) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • the second aspect relates to a cosmetic, dermatological or pharmaceutical composition
  • a cosmetic, dermatological or pharmaceutical composition comprising:
  • a third aspect of the invention relates to a process of formulating a cosmetic, dermatological or pharmaceutical composition
  • a process of formulating a cosmetic, dermatological or pharmaceutical composition comprising incorporating a polymer into the composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • R 1 and R 2 are independently selected from H, methyl or ethyl; A is a linear or branched C 1 -C 12 -alkyl group; and Q + is H + , NH 4 + , organic ammonium ions [NHR 5 R 6 R 7 ] + wherein R 5 , R 6 , and R 7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C 6 -C 22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R 5 , R 6 , and R 7 is not hydrogen, or Q + is Li + , Na + , K + , 1 ⁇ 2Ca ++ , 1 ⁇ 2
  • the cosmetic, dermatological or pharmaceutical composition is according to the second aspect.
  • the composition comprises a cosmetically acceptable component.
  • the polymer is mixed with the cosmetically acceptable component.
  • the composition comprises a plurality of cosmetically acceptable components.
  • Suitable cosmetically acceptable components are mentioned in the second aspect—such cosmetically acceptable components are compatible and combinable with the third aspect.
  • the cosmetically acceptable component is selected from the group consisting of surfactants, auxiliaries, hair conditioning agents, hairstyling polymers, and combinations thereof.
  • Surfactants, auxiliaries, hair conditioning agents and hairstyling polymers are disclosed in the second aspect—such cosmetically acceptable components are compatible and combinable with the third aspect.
  • the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot
  • the composition comprises at least 0.1 wt.-%, or at least 0.2 wt.-%, or at least 0.3 wt.-%, or at least 0.4 wt.-%, or at least 0.5 wt.-%, or at least 0.6 wt.-%, or at least 0.7 wt.-%, or at least 0.8 wt.-%, or at least 0.9 wt.-%, or at least 1.0 wt.-%, or at least 1.1 wt.-%, or at least 1.2 wt.-%, or at least 1.3 wt.-%, or at least 1.4 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.7 wt.-%, or at least 1.8 wt.-%, or at least 1.9 wt.
  • the polymer is a crosslinked or non-crosslinked homopolymer. In at least one embodiment, the polymer is a crosslinked or non-crosslinked copolymer. Preferably the polymer is crosslinked.
  • the polymer has a weight average molecular weight of at least 700 g/mol, preferably from 700 g/mol to 10 million g/mol.
  • the polymer is obtained by polymerising at least one compound according to Formula (3), wherein the compound comprises from 28 wt.-% to 100 wt.-%, preferably from 40 wt.-% to 100 wt.-%, bio-based carbon content, relative to the total mass of carbon in the compound, measured according to standard ASTM D6866-12, Method B;
  • the compound is neutralised with a base prior to polymerisation.
  • the polymer has been neutralized following polymerization using a base.
  • the repeating units according to Formula (1) have a degree of neutralisation of between 0 mol-% and 100 mol-%.
  • the repeating units according to Formula (1) have a degree of neutralisation of from 50.0 to 100 mol-%, preferably from 80 mol-% to 100 mol-%, more preferably from 90.0 to 100 mol-%, even more preferably from 95.0 to 100 mol-%. Particular preference being given to a degree of neutralisation of more than 80 mol-%, more preferably more than 90 mol-%, even more preferably more than 95 mol-%.
  • the polymer is substantially free of units not being those according to Formula (1), wherein R 1 and R 2 are H; A is —C(CH 3 ) 2 —H 2 C; and Q + is a cation. In at least one embodiment, the polymer is a homopolymer.
  • the polymer is a copolymer of units according to those according to Formula (1), wherein R 1 and R 2 are H; A is —C(CH 3 ) 2 —H 2 C; and Q + is a cation, and at least one further unit.
  • the polymer is a rheology modifier or a thickening agent, or is suitable for use therefor.
  • a fourth aspect relates to a method for treating keratinous material, comprising applying the composition according to the second aspect to the keratinous material.
  • the composition is a cosmetic composition.
  • the keratinous material is keratin fibres. In at least one embodiment, the keratinous material is selected from human skin and/or human hair.
  • the composition comprises a cosmetically acceptable component. In at least one embodiment, the composition comprises a plurality of cosmetically acceptable components.
  • Suitable cosmetically acceptable components are mentioned in the second aspect—such cosmetically acceptable components are compatible and combinable with the fourth aspect.
  • the cosmetically acceptable component is selected from the group consisting of surfactants, auxiliaries, hair conditioning agents, hairstyling polymers, and combinations thereof.
  • Surfactants, auxiliaries, hair conditioning agents and hairstyling polymers are disclosed in the second aspect—such cosmetically acceptable components are compatible and combinable with the fourth aspect.
  • the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot
  • the composition comprises at least 0.1 wt.-%, or at least 0.2 wt.-%, or at least 0.3 wt.-%, or at least 0.4 wt.-%, or at least 0.5 wt.-%, or at least 0.6 wt.-%, or at least 0.7 wt.-%, or at least 0.8 wt.-%, or at least 0.9 wt.-%, or at least 1.0 wt.-%, or at least 1.1 wt.-%, or at least 1.2 wt.-%, or at least 1.3 wt.-%, or at least 1.4 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.7 wt.-%, or at least 1.8 wt.-%, or at least 1.9 wt.
  • the polymer is a crosslinked or non-crosslinked homopolymer. In at least one embodiment, the polymer is a crosslinked or non-crosslinked copolymer.
  • the polymer has a weight average molecular weight of at least 700 g/mol, preferably from 700 g/mol to 10 million g/mol.
  • a fifth aspect relates to a product comprising the composition according to the second aspect.
  • the product comprises a receptacle comprising the composition according to the second aspect.
  • the product comprises an opening for dispensing the composition.
  • the opening is equipped with a closure.
  • the receptacle comprises plastics.
  • a sixth aspect relates to kit comprising the product of the fifth aspect and a further product or implement.
  • the composition of petroleum-based isobutene is different from bio-based isobutene.
  • Bio-based isobutene contains exclusively contemporary carbon and hence has a different distribution of carbon isotopes as compared to fossil, petrochemical-based carbon.
  • Fossil carbon was cut off from the natural carbon equilibrium for millions of years and all the natural 14 C has already degraded, and hence the concentration of 14 C is zero in fossil carbon sources.
  • Contemporary carbon, produced by living organisms is part of the atmospheric carbon isotope equilibrium.
  • 14 C or radiocarbon is constantly being created in the atmosphere by the interaction of cosmic rays with atmospheric nitrogen. The resulting radiocarbon combines with atmospheric oxygen to form radioactive carbon dioxide, which is incorporated into plants by photosynthesis; animals then acquire 14 C by eating the plants.
  • Table 1 shows differences in the composition for the isobutene samples used in the present invention.
  • Petrochemical-based isobutene contains small amounts of petrochemical by-products such as propane, propene, butane and isobutane, but it does not contain any traces of metabolic products (Type Petro, IB1).
  • the bio-based samples contain carbon dioxide and small quantities of ethanol as metabolic products from the microorganisms (Type Bio, samples IB2 to IB5).
  • the bio-based isobutene samples do not contain any propane, propene, butane or isobutane.
  • the amount of impurities in the bio-based isobutene are significantly higher and the composition is different.
  • IB4 contains only 21.94% isobutene and 18% carbon dioxide.
  • the reactor was a 5 neck 250 ml round bottom flask, equipped with an overhead agitator, thermocouple, sub surface gas injection pipe, intensive condenser and dropping funnel with pressure compensation.
  • the head of the condenser was equipped with a dry tube containing 50 g of 4 Angstrom molecular sieve.
  • a PTFE plate stirrer with precision glass joint seal was connected to the overhead stirrer.
  • 150 ml dry acrylonitrile was dosed to the reactor. Under stirring at 150 rpm the acrylonitrile was cooled with a bath consisting of a mixture of 300 g ice and 100 g NaCl. As soon as the reactor temperature reaches ⁇ 10° C., 39.30 g of 100% sulfuric acid was slowly dosed. The temperature was kept in a range of ⁇ 10° C. to ⁇ 7.5° C. The time for dosing the sulfuric acid was 40 minutes. The liquid stayed clear.
  • the solid was separated by vacuum filtration over glass fiber filter, stirred with 50 g fresh acrylonitrile in a 250 ml Erlenmeyer-flask for 10 minutes using a magnetic stirrer, PTFE coated stirrer bar and covered with a glass lid.
  • the solids of the suspension was removed again by vacuum filtration over a glass fiber filter (Whatman Grade GF/D).
  • the solid was dried for 4 hours in a laboratory rotation evaporator at a bath temperature of 60° C., starting at a pressure of 300 mbar. After 30 minutes the pressure was ramped down to 10 mbar in 3 h.
  • ACDMT With a yield of 85 wt.-% ACDMT was isolated with a purity of 95.9 wt.-%. And 0.3 wt.-% acrylonitrile, 0.6 wt.-% acrylamide, 2.9 wt.-% tert. butylacrylamide and 0.3 wt.-% 2-methylprop-2-en-1-sulfonic acid were detected.
  • MCompEx4 Monomer Comparative Example 4 (See US2010/0274048, which is Incorporated Herein by Reference) for a Continuous Process with Conventional Petrochemical Raw Materials:
  • the second reactor was a three neck 250 ml round bottom reactor, modified with a side neck to allow overflow of the reactor to a beaker. It was connected with an overhead stirrer, glass stirrer with PTFE stirrer blades and an intensive condenser.
  • isobutylene gas (IB1) was blown sub surface with a flow rate of 30.8 g/h into the mixed fluid to synthesize ACDMT.
  • the reaction (synthesis) was conducted continuously with an average residence time of 90 minutes at a temperature of 40 ⁇ 2.5° C. After 11 h continuously conducted reaction a sample of the reaction mixture was taken and analyzed.
  • the ACDMT slurry obtained in the above production was suction-filtered using a glass filter to obtain a cake on the glass filter.
  • Acrylonitrile of an amount (mass) shown in Table 5, relative to the mass of the cake was poured onto the cake. Suction filtering was conducted again to wash the cake with acrylonitrile.
  • the washed cake was dried for 360 minutes at a temperature of 80° C. with a rotational evaporator at reduced pressure. A vacuum of 400 mbar was applied for 30 minutes. Then the pressure was ramped down to 10 mbar in 2 hours and maintained at 10 mbar until drying was completed.
  • the yield determined was related to the sample size drawn.
  • the ACDMT powder obtained was analyzed by HPLC to measure the concentrations of acrylonitrile (abbreviated as AN), acrylamide (abbreviated as AM), tert.-butylacrylamide (abbreviated as tBAM), 2-methyl-2-propenyl-1-sulfonic acid (abbreviated as IBSA).
  • AN acrylonitrile
  • AM acrylamide
  • tBAM tert.-butylacrylamide
  • IBSA 2-methyl-2-propenyl-1-sulfonic acid
  • the reactor was a 5 neck 250 ml round bottom flask, equipped with an overhead agitator, thermocouple, sub-surface gas injection pipe, intensive condenser and dropping funnel with pressure compensation.
  • the head of the condenser was equipped with a dry tube containing 50 g of 4 Angstrom molecular sieve.
  • a PTFE plate stirrer with precision glass joint seal was connected to the overhead stirrer.
  • 150 ml dry acrylonitrile was dosed to the reactor. Under stirring at 150 rpm the acrylonitrile was cooled with a bath consisting of a mixture of 300 g ice and 100 g NaCl. Alternatively the mixture could be cooled down with a combination of acetone and dry ice.
  • the solid was separated by vacuum filtration over glass fiber filter, stirred with 50 g fresh acrylonitrile in a 250 ml Erlenmeyer-flask for 10 minutes using a magnetic stirrer, PTFE coated stirrer bar and covered with a glass lid.
  • the solids of the suspension was removed again by vacuum filtration over a glass fiber filter (Whatman Grade GF/D).
  • the solid was dried for 4 hours in a laboratory rotation evaporator at a bath temperature of 80° C., starting at a pressure of 300 mbar, after 30 minutes the pressure was ramped down to 10 mbar in 3 h.
  • a surprising advantage of the invention is that bio-based isobutene can be used in the ACDMT production process with a lower quality as compared to petrochemically-manufactured isobutene to produce an as good or better quality of ACDMT.
  • bio-based isobutene achieve high yields of ACDMT as well as high purities of ACDMT. Indeed, the use of bio-isobutene leads to a purer ACDMT as compared to petrochemical ACDMT.
  • reaction mixture is raised and stabilized to 60° C. with help of a water bath. Readjust the pH at 60° C. to a pH of 7 to 8.
  • the reaction is initiated by the dosage of radical building compound, 1.1 g V-601.
  • Polymerization Process X Solution Homopolymer of ACDMT in Water.
  • the resulting polymer powder was dissolved 0.5% in water and the Fickenscher k-value was measured.
  • Polymerization Process Z Synthesis of a Co-Polymer of ACDMT and Acrylamide by Precipitation Polymerisation in Tert.-Butanol.
  • the resulting polymer powder was dissolved 0.5% in water and the Fickenscher k-value was measured.
  • 500 ml acrylonitrile ⁇ 99% contained 35-45 ppm monomethyl ether hydroquinone as inhibitor from Sigma-Aldrich, contained 0.41% water before drying. It was dried by adding 50 g molecular sieve 0.4 nm from Merck Millipore, Merck KGaA. The residual water content of the acrylonitrile was 19 ppm, measured by Karl-Fischer titration (DIN 51777).
  • a k-value measurement was a way to indirectly analyze the molecular weight/size of a polymer.
  • a comparatively higher K-value corresponds to a larger molecular weight/size as compared to a polymer with the same composition and made by the same process.
  • the k-value can be evaluated from lists provided by the manufacturer of the equipment.
  • the IT unit calculated the k-value.
  • Brookfield viscosity was determined with a Brookfield viscometer model LV, RVT DV-II or LVT DV-II.
  • Brookfield viscosity was determined with a Brookfield viscometer model LV, RVT DV-II or LVT DV-II.
  • the polymer solution free of entrapped air, was tempered for 2 h at 20° C.
  • the spindle was chosen to measure between 20 to 80% of the scale at 20 rpm.
  • the provided sample material did not undergo any pre-treatment procedure and was converted to graphite as was using the following procedure.
  • the remaining CO 2 was transferred into a custom-made graphitization system, converted into carbon (graphite) catalytically using H 2 and an iron-powder catalyst.
  • the carbon-14 determination of the graphite was performed at the Klaus-Tschira-Archaeomtrie-Center using an accelerator mass-spectrometer (AMS) of the type MICADAS (developed at the ETH Zurich, Switzerland).
  • AMS accelerator mass-spectrometer
  • composition examples comprise the polymer according to the present invention e.g. as Polymer X.
  • Polymer X can relate to any of Polymers A1/1 to A1/15, B1/1 to B1/20, A2/1 to A2/24, B2/1 to B2/25, A3/1 to A3/25 and to B3/1 to B3/20 (see above Polymer Tables for their respective compositions).
  • Example Composition 1 After-Sun Cream Gel
  • Example Composition 2 Sun Milk SPF 15
  • Example Composition 3 Liquid Soap
  • Genapol ® LRO liquid (Clariant) 30.00% Sodium Laureth Sulfate Genagen ® CAB 818 (Clariant) 6.00% Cocamidopropyl Betaine Hostapon ® KCG (Clariant) 5.00% Sodium Cocoyl Glutamate Water Ad 100% Polymer X 1.40% Nipaguard ® DMDMH (Clariant) 0.50% DMDM Hydantoin Cirebelle 104 Blue 1.00% Sythetic Wax
  • Example Composition 5 Facial Cleanser
  • Example Composition 6 Mascara
  • Example Composition 7 BB Cream SPF 15
  • Example Composition 8 O/W Foundation
  • Example Composition 9 Liquid Highlighter
  • Example Composition 10 Lipstain
  • Example Composition 11 Eyeliner Gel
  • Example Composition 12 After-Shave Balm
  • Example Composition 13 Sprayable Body Milk
  • Example Composition 14 Body Lotion for Men
  • Caprylic/Capric Triglyceride 3.50% Plantasens ® Olive LD (Clariant) 3.00% Hydrogenated Ethylhexyl Olivate (and) Hydrogenated Olive Oil Unsaponifiables Myristyl Myristate 2.50% Cetearyl Alcohol 2.00% Octyldodecanol 1.00% Glyceryl Stearate Citrate 1.50% Polymer X 1.20% Water ad 100% Glycerin 5.00% Ethanol 3.00% Tocopheryl Acetate 1.00% Aloe Barbadensis Leaf Juice 1.00% Nipaguard ® POM (Clariant) 1.00% Phenoxyethanol, Methylparaben, Piroctone Olamine Fragrance 0.20% Sodium Hydroxide q.s.
  • Example Composition 15 Anti-Ageing Cream Gel
  • Caprylic/Capric Triglyceride 5.00% Dicaprylyl Ether 5.00% Cetearyl Alcohol 2.00% Nipaguard ® POB (Clariant) 0.80% Phenoxyethanol (and) Piroctone Olamine (and) Benzoic Acid Ubiquinone 0.10% Aristoflex ® HMB (Clariant) 0.40% Ammonium Acryoyldimethyltaurate/ Beheneth-25 Methacrylate Crosspolymer Polymer X 0.40% Sodium Hyaluronate 0.30% Water Ad 100% Tocopheryl Acetate 0.30% Fragrance 0.30%
  • Example Composition 16 Light Day Cream
  • Example Composition 17 Caring Night Cream
  • Example Composition 18 Sprayable Hair Styling Gel
  • Polymer X 0.90% Water Ad 100% Genapol ® LA-230 (Clariant) 4.00% Laureth-23 Diaformer ® Z-632N (Clariant) 4.50% Acrylates/Stearyl Acrylate/Ethylamine Oxide Methacrylate Copolymer Dipropylene Glycol 1.00% Polyglykol 400 0.50% PEG-8 Nipaguard TM DMDMH (Clariant) 0.50% DMDM Hydantoin Panthenol 0.50% Emulsogen ® HCO 040 (Clariant) 0.50% PEG-40 Hydrogenated Castor Oil Fragrance 0.30%
  • Example Composition 19 Conditioning Shampoo
  • Example Composition 20 Nail Varnish Remover Gel
  • Example Composition 21 Skin-Whitening Gel
  • Genapol ® T 250 (Clariant) 2.00% Ceteareth-25 Genapol ® DAT 100 (Clariant) 1.10% PEG-150 Polyglyceryl-2 Tristearate Water Ad 100% Ascorbic Acid 2- Glucoside 3.00% Polymer X 1.50% Nipaguard TM DMDMH Plus (Clariant) 2.00% DMDM Hydantoin
  • Example Composition 22 Self-Tanning Cream
  • Hostaphat ® CC 100 (Clariant) 1.00% Cetyl Phosphate Glyceryl Stearate 0.50% Cetearyl Alcohol 0.50% Mineral Oil 8.00% Isopropyl Palmitate 7.00% Tocopheryl Acetate 1.00% SilCare ® Silicone 41M15 (Clariant) 1.00% Caprylyl Methicone Polymer X 2.00% Water ad 100% Hostapon ® KCG (Clariant) 0.50% Sodium Cocoyl Glutamate Glycerin 5.00% Fragrance 0.20% Phenonip TM ME (Clariant) 1.00% Phenoxyethanol, Methylparaben, Ethylparaben Dihydroxyacetone 5.00% Water 8.00% Sodium Hydroxide q.s.
  • Example Composition 24 Insect Repellent Lotion
  • Example Composition 25 Facial Toner
  • Example Composition 26 Depilating Cream
  • Example Composition 27 Face Mask
  • Example Composition 28 Micellar Gel
  • Example Composition 30 Emulsion for Wet Wipes
  • Emulsogen ® CCT Green (Clariant) 2.50% Caprylic/Capric Triglyceride, Water, Lauryl Glucoside, Glycerin, Sodium Lauroyl Lactylate, Glyceryl Stearate, Cetearyl Alcohol, Sodium Stearoyl Lactylate Isopropyl Stearate 5.00% Plantasens ® Abyssinian Oil (Clariant) 0.50% Crambe Abyssinica Seed Oil Tocopheryl Acetate 0.10% Fragrance 0.20% Water ad 100% Polymer X 0.10% Panthenol 0.10% Nipaguard ® SCE (Clariant) 1.50% Sorbitan Caprylate (and) Propanediol (and) Benzoic Acid
  • Example Composition 31 Antiperspirant for Roll-Ons
  • Example Composition 33 Hand Sanitizer
  • Example Composition 34 Hair Serum
  • Example Composition 35 Hair Detangling Cream
  • Genapol ® LRO liquid (Clariant) 30.00% Sodium Laureth Sulfate Genagen ® CAB 818 (Clariant) 6.00% Cocamidopropyl Betaine Hostapon ® KCG (Clariant) 5.00% Sodium Cocoyl Glutamate Water Ad 100% Polymer-A1/2 1.40% (according to polymerization process A1) Nipaguard ® DMDMH (Clariant) 0.50% DMDM Hydantoin Cirebelle 104 Blue 1.00% Sythetic Wax
  • Example Composition 37 O/W Foundation
  • Example Composition 38 Anti-Ageing Cream Gel
  • Caprylic/Capric Triglyceride 5.00% Dicaprylyl Ether 5.00% Cetearyl Alcohol 2.00% Nipaguard ® POB (Clariant) 0.80% Phenoxyethanol (and) Piroctone Olamine (and) Benzoic Acid Ubiquinone 0.10% Aristoflex ® HMB (Clariant) 0.40% Ammonium Acryoyldimethyltaurate/ Beheneth-25 Methacrylate Crosspolymer Polymer-A1/2 0.40% (according to polymerization process A1) Sodium Hyaluronate 0.30% Water Ad 100% Tocopheryl Acetate 0.30% Fragrance 0.30%
  • Example Composition 39 Caring Night Cream
  • Example Composition 40 Hand Sanitizer
  • Example Composition 19 is applied to wet hair in an amount of about 2 ml per 2 gram of hair (dry weight). Tap water is employed to create a lather and spread the composition throughout the hair and scalp. The composition is immediately rinsed from the hair. The hair may further be conditioned.
  • Example Compositions 1, 2, 12, 13, 14, 15, 16, 17, 22, 24, and 37 to 39 are applied to human skin and left on the skin to sink in, and the skin allowed to dry.
  • the following example comprises a polymer according to the present invention as Polymer B1/16 compared with Polymer B1/16 #.
  • Polymer B1/16 # being a comparative example in that is the same as Polymer B1/16 but with common building blocks derived from petrochemicals.
  • the following example comprises a polymer according to the present invention as Polymer B1/16 compared with Polymer B1/16 #.
  • Polymer B1/16 # being a comparative example in that is the same as Polymer B1/16 but with common building blocks derived from petrochemicals.
  • the following example comprises a polymer according to the present invention as Polymer-A3/8 compared with Polymer-A3/8 #.
  • Polymer A3/8 # being a comparative example in that is the same as Polymer-A3/8 but with common building blocks derived from petrochemicals.
  • the following example comprises a polymer according to the present invention as Polymer A1/2 compared with Polymer A1/2 #.
  • Polymer A1/2 # being a comparative example in that is the same as Polymer A1/2 but with common building blocks derived from petrochemicals.

Abstract

The present invention relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B

Description

    FIELD OF THE INVENTION
  • The present invention relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1), wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content.
  • BACKGROUND OF THE INVENTION
  • Many materials employed for use as thickeners or rheology modifiers are traditionally derived from crude oil. Environmental, economic and sustainability questions are restricting the use of products derived from this limited resource: synthetic surfactants, for example, have been blamed for environmental incidents, particularly vis-à-vis aquatic problems in rivers and lakes. Therefore, there is a desire to identify more sustainable and biodegradable, yet gentle and effective materials. Indeed, consumers are very interested in “natural” products including products with a high percentage of “natural” compounds and/or compounds that are derived from renewable materials. Consumers perceive compounds derived from natural materials to be gentler and more environmentally friendly. Recent industrial developments in “bio-based” chemicals are summarised, for example, in de Jong et al, “Product developments in the bio-based chemicals arena”, Biofuels, Bioprod. Bioref. 6:606-624 (2012).
  • Recently, classical monomers such as ethylene, acrylic acid or methyl methacrylate have been disclosed as being produced with renewable raw materials. US 2014/0154758 (Arkema) discloses the preparation of methyl methacrylate wherein the method comprises the use of acetone cyanohydrin as a raw material, said acetone cyanohydrin being obtained by condensing cyanohydric acid in acetone, and the methyl methacrylate is prepared using a process involving the addition of methanol. Acetone and methanol can be sourced from renewable feedstock. DE 2655891 (DU PONT) discloses the oxidation from 1-propanol to acrylates. U.S. Pat. No. 4,138,430 (DU PONT) discloses the ammoxidation of 1-propanol to form acrylonitrile.
  • Different synthetic routes for the synthesis of bio-based acrylonitrile are described by M. Olga Guerrero-Péreza and Miguel A. Bañares in Catalysis Today 239 (2015) 25-30. The process for the direct production of acrylonitrile from glycerol was described recently by M. O. Guerrero-Pérez, M. A. Bañares, ChemSusChem 1 (2008) 511 and by M. A. Bañares, M. O. Guerrero-Pérez, Appl. Catal. B (2013), as well as in US 20100048850A1 (Arkema) and WO 2009063120A1 (CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS).
  • Bio-based propylene can directly been used in the so-called SOHIO process to form acrylonitrile. U.S. Pat. No. 2,904,580 (STANDARD OIL CO) describes the ammoxidation of propylene according to the so-called SOHIO process.
  • WO 2014086780 (Global Bioenergies) discloses a fermentation method for several olefins including propene and isobutene. Propene can be used as a raw material for the ammoxidation to acrylonitrile. Isobutene is an important raw material for polyisobutene rubbers and other downstream products such as tert.-butanol, iso-octanol, branched alkanes or branched alcohols. WO 2016/042011 (Global Bioenergies) describes an enzymatic method for the production of isobutene from 3-methylcrotonyl-CoA. WO 2014/004616 (Gevo Inc) discloses the synthesis of isobutanol by recombinant yeast microorganisms. The catalytic dehydration leads to isobutene.
  • WO 2015/034948 (MYRIANT CORP) describes the synthesis of bio-based acrylic acid by dehydration of 1,3-propandiol and subsequent oxidation of the allylic alcohol.
  • Nevertheless, the availability of more renewable polymers suitable for use as components in cosmetic, dermatological or pharmaceutical composition e.g. as thickening agents, is highly limited. Furthermore, there is a need for components that can be used as thickening agents and rheology modifiers, where such components that are not only more renewable, but also provide excellent performance in cosmetic, dermatological or pharmaceutical composition. There is a need, therefore, for providing polymers that can provide the excellent performance of modern polymers yet from more sustainable sources.
  • SUMMARY OF THE INVENTION
  • In a first aspect, the present invention relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00002
  • wherein
    R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof.
  • Other aspects relate to compositions, methods, uses, and processes related to the polymer disclosed in the first aspect.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1: Viscosity dependence on polymer concentration; measured in deionized water (Brookfield RVDV-1, 20° C., 20 rpm). The x-axis shows the concentration of polymer in wt.-%. The y-axis shows the viscosity in mPa·s. Polymer B1/16 (according to the invention; solid line) and a comparative polymer B1/16 # are compared (broken line).
  • FIG. 2: Viscosity dependence on pH; 1.0 wt. % polymer measured in deionized water (Brookfield RVDV-1, 20° C., 20 rpm). The x-axis shows the pH. The y-axis shows the viscosity in mPa·s. Polymer B1/16 (according to the invention; solid line) and a comparative polymer B1/16 # are compared (broken line).
  • FIG. 3: Viscosity dependence on pH; 1.0 wt. % polymer measured in deionized water (Brookfield RVDV-1, 20° C., 20 rpm). The x-axis shows the pH. The y-axis shows the viscosity in mPa·s. Polymer A1/2 (according to the invention; solid line) and a comparative polymer A1/2 # are compared (broken line).
  • DETAILED DESCRIPTION OF THE INVENTION Definitions and General
  • In this document, including in all embodiments of all aspects of the present invention, the following definitions apply unless specifically stated otherwise. All percentages are by weight (w/w) of the total composition. “wt.-%” means percentage by weight; “vol.-%” means percentage by volume; “mol-%” means percentage by mole. All ratios are weight ratios. References to ‘parts’ e.g. a mixture of 1 part X and 3 parts Y, is a ratio by weight. “QS” or “QSP” means sufficient quantity for 100% or for 100 g. +/− indicates the standard deviation. All ranges are inclusive and combinable. The number of significant digits conveys neither a limitation on the indicated amounts nor on the accuracy of the measurements. All numerical amounts are understood to be modified by the word “about”. All measurements are understood to be made at 23° C. and at ambient conditions, where “ambient conditions” means at 1 atmosphere (atm) of pressure and at 50% relative humidity. “Relative humidity” refers to the ratio (stated as a percent) of the moisture content of air compared to the saturated moisture level at the same temperature and pressure. Relative humidity can be measured with a hygrometer, in particular with a probe hygrometer from VWR® International. Herein “min” means “minute” or “minutes”. Herein “mol” means mole. Herein “g” following a number means “gram” or “grams”. “Ex.” means “example”. All amounts as they pertain to listed ingredients are based on the active level (‘solids’) and do not include carriers or by-products that may be included in commercially available materials. Herein, “comprising” means that other steps and other ingredients can be in addition. “Comprising” encompasses the terms “consisting of” and “consisting essentially of”. The compositions, formulations, methods, uses, kits, and processes of the present invention can comprise, consist of, and consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein. Embodiments and aspects described herein may comprise or be combinable with elements, features or components of other embodiments and/or aspects despite not being expressly exemplified in combination, unless an incompatibility is stated. “In at least one embodiment” means that one or more embodiments, optionally all embodiments or a large subset of embodiments, of the present invention has/have the subsequently described feature. Where amount ranges are given, these are to be understood as being the total amount of said ingredient in the composition, or where more than one species fall within the scope of the ingredient definition, the total amount of all ingredients fitting that definition, in the composition. For example, if the composition comprises from 1% to 5% fatty alcohol, then a composition comprising 2% stearyl alcohol and 1% cetyl alcohol and no other fatty alcohol, would fall within this scope.
  • The following acronyms are used herein: ACDMT=acryloyldimethyltaurate; AM=acrylamide; AN=acrylonitrile; tBAM=tert.-butyl acrylamide; IBSA=isobutene sulfonic acid; IBDSA=2-methylidene-1,3-propylenedisulfonic acid.
  • Unless otherwise stated, “viscosity” herein is measured at 20° C. viscosity in centipoise (cP) or mPa·s using a Brookfield viscometer model LV, RVT DV-II or LVT DV-II with 10-90% torque at 20 rpm.
  • “Molecular weight” or “M.Wt.” “Mw”, “Mw” or “MW” and grammatical equivalents mean the weight average molecular weight, unless otherwise stated. Also relevant for the determination of the molecular weight distribution is the number average molecular weight “Mn”, “Me” and grammatical equivalents, and the polydispersity “D” or “PD”.
  • The weight average molecular weight can be measured by gel permeation chromatography (GPC), also referred to as size exclusion chromatography (SEC). The molecular weight of polymers and its measurement is described in the textbook “Principles of Polymerization” by Georg Odian, third edition, Wiley-Interscience, New York, in chapter 1-4, page 19 to 24, ISBN 0-471-61020-8. The process to determine the weight average molecular weight is described in detail in chapter 3 of Makromolekulare Chemie: Eine Einführung” by Bernd Tieke, Wiley-VCH, 2. vollständig überarbeitete and erweiterte Auflage (3. Nachdruck 2010) ISBN-13: 978-3-527-31379-2, page 259-261.
  • Determination of molecular weight and distribution of ACDMT samples by GPC was determines under the following conditions.
  • Column: PSS Suprema 30,000 Å 10 μm, 300 mm×8 mm
  • Detector: RID
  • Oven temperature: 23° C.
    Flow: 1 ml/min
    Injection volume: 20 μl
    Eluent: 0.07 mol/l disodium hydrogen phosphate in water
    Calibration method: Conventional poly(styrene sulfonate) sodium salt calibration
    Sample preparation: Weigh approx. 10 mg sample in 10 ml 0.07 mol/l disodium hydrogen phosphate in water and shake for 15 min.
  • “Water-soluble” refers to any material that is sufficiently soluble in water to form a clear solution to the naked eye at a concentration of 0.1% by weight of the material in water at 25° C. The term “water-insoluble” refers to any material that is not “water-soluble”.
  • “Substantially free from” or “substantially free of” means less than 1%, or less than 0.8%, or less than 0.5%, or less than 0.3%, or about 0%, by total weight of the composition or formulation.
  • “Monomer” means a discrete, non-polymerised chemical moiety capable of undergoing polymerisation in the presence of an initiator or any suitable reaction that creates a macromolecule e.g. such as polycondensation, polyaddition, radical, anionic or cationic polymerization. “Unit” means a monomer that has already been polymerised i.e. is part of a polymer.
  • “Polymer” means a chemical formed from the polymerisation of two or more monomers. The term “polymer” shall include all materials made by the polymerisation of monomers as well as natural polymers. Polymers made from only one type of monomer are called homopolymers. Herein, a polymer comprises at least two monomers. Polymers made from two or more different types of monomers are called copolymers. The distribution of the different monomers can be random, alternating or block-wise (i.e. block copolymer). The term “polymer” used herein includes any type of polymer including homopolymers and copolymers.
  • “Fuming sulfuric acid” herein means a solution of sulfur trioxide in sulfuric acid. Fuming sulfuric acid is also known as oleum and is identified by the CAS number 8014-95-7, and can be described by the formula H2SO4.xSO3 where x is the molar free sulfur trioxide content.
  • The “biobased content” is reported in ASTM D6866-12, Method B (see section 3.3.9 of ASTM D6866-12). “Biobased carbon content”, “biobased content”, “biogenic carbon content”, “bio-based content”, “biomass-derived carbon” herein refer to the same thing and are all measured in wt.-%. Herein, the term ‘bio-based carbon content’ is used. ASTM D6866-12, Method B lab results report the percentage of bio-based carbon content relative to total carbon, and not to total mass of the sample or molecular weight. A comment on bio-based carbon content calculation: Presently ASTM D6866-12, Method B (see section 9 of ASTM D6866-12) requires the percent modern carbon value (pMC) reported to be multiplied by a correction factor of 0.95 to account for excess carbon-14 in the atmosphere due to nuclear weapons testing. However, a revision is pending for ASTM D6866-12, Method B to update the correction factor to 0.98 due to ongoing decrease in excess atmospheric 14CO2. For the purposes of accuracy, the new correction factor of 0.98 is often reported in the field e.g. by suppliers. Generally, results below ˜20% bio-based carbon will not be affected. However, results close to 100% will be ˜2-3% bio-based carbon higher using the 0.98 factor vs 0.95. Results between ˜20-90% will increase by 0-3%. Hence the term “bio-based carbon content” as used herein is defined by the equation:

  • Bio-based carbon content=pMC*0.95(%)
  • A review on measurement methods of bio-based carbon content for biomass-based chemicals and plastics is given by Massao Kunioka in Radioisotopes, 62, 901-925 (2013).
  • “Hair” means mammalian keratin fibres including scalp hair, facial hair and body hair. It includes such hair still being attached to a living subject and also hair that has been removed therefrom such as hair swatches and hair on a doll/mannequin. In at least one embodiment, “hair” means human hair. “Hair shaft” or “hair fibre” means an individual hair strand and may be used interchangeably with the term “hair.”
  • “Cosmetically acceptable” means that the compositions, formulations or components described are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like. All compositions and formulations described herein which have the purpose of being directly applied to keratinous tissue are limited to those being cosmetically acceptable.
  • Explanation of and Benefits Provided by the Invention
  • Surprisingly, it has now been found that it is possible to synthesise good quality bio-based ACDMT at acceptable yields. This bio-based ACDMT can be used for synthesising a polymer for use in the cosmetic or dermatological composition according to the present invention.
  • Indeed, when considering genetically engineered microbes for use in creating bio-based ACDMT, currently no such microbes are commercially available. ACDMT itself is not similar to any other products that typical microbes would produce naturally. Furthermore, there are few natural microbial pathways capable of converting sulfonic acid groups. Therefore, the person skilled in the art naturally has a bias in his mind that it would be difficult to produce bio-based ACDMT in view of its more synthetic-type chemical moieties. The person skilled in the art may, however, consider that the reaction of acrylic acid with taurine as bio-based materials could form the corresponding acryl-amido taurate compound, which is a similar structure as compared to ACDMT. However, the reactants would preferentiality react to form a Michael adduct, rather than an acryl-amido taurate compound. Hence, it would be known to the person skilled in the art that synthesising bio-based ACDMT is no trivial matter.
  • Bianca et al (Appl Microbiol Biotechnol (2012) 93:1377-1387) states that a high level of impurities are produced when bio-based isobutene is synthesised (⅔ carbon dioxide). WO 2014086780A2 on pages 5 and 6 mentions various by-products and impurities that may result from when the bio-based isobutene is synthesised. Indeed, on page 14 of WO 2014086780A2 it states “The fermentation off-gas (i.e. a gas stream originating from the fermenter) typically comprises the hydrocarbon as the desired product and the intermediate together with additional gaseous components. Generally, the total content of the desired product, such as isobutene, and the intermediate, such as acetone, in the fermentation off-gas is in a range of 3 to 30 vol.-%, preferably 3 to 20 vol.-%.”. In other words, it is known in the art that a very low yield results when known bio-based isobutene synthesis processes are employed, as well as that a significant level of by-products is produced. Indeed, normally at least 98%, typically at least 99.5% purity of isobutene is used in conventional synthesis techniques. Surprisingly, it is possible to produce bio-based ACDMT despite using bio-based components that are typically impure in view of the microbes that produce the bio-based component creating by-products as a result of their natural enzymatic action. International patent application PCT/EP2017/064977 (claiming priority from European patent application 16175218.3 filed on 20 Jun. 2016) in the name of Clariant International Ltd, the disclosure of which is incorporated herein by reference, discloses the synthesis of bio-based acryloyldimethyltaurate, which can be used as a monomer for the polymer according to the present invention.
  • Furthermore it has surprisingly been found that polymers containing such novel bio-based components can be synthesised. Such polymers may be, for example, crosslinked copolymers.
  • The present invention relates inter alia to a cosmetic or dermatological composition comprising polymers comprising at least one unit from bio-based ACDMT or similar compounds. The bio-based ACDMT is characterized in that at least one portion of the carbons thereof is biologically sourced and, more specifically, in that it can contain between 38 wt.-% and 100 wt.-% bio-based carbon content in relation to total carbon weight according to the ASTM D6866-12, Method B standard. The preparation method of ACDMT typically comprises the use of acrylonitrile, isobutene and a mixture of sulfuric acid and fuming sulfuric acid comprising sulfur trioxide. Preferably, at least one of the raw materials, acrylonitrile or isobutene, are of bio-based origin. The bio-based ACDMT is suitable to make polymers comprising a bio-based carbon content stemming from its bio-based ACDMT share. The present invention provides the use of such polymers in a cosmetic, dermatological or pharmaceutical composition and the compositions themselves.
  • ACDMT (see Formula [3]) consists of seven carbon atoms. Preferably a minimum of three, preferably four and most preferred all seven carbon atoms of the ACDMT molecule can become renewable, bio-based carbon atoms. In this way, a high proportion of bio-based and/or biodegradable (polymer) products made from the bio-based monomer ACDMT are recyclable and part of the natural carbon cycle. If these kinds of products are incinerated or biodegraded, the quantity of carbon dioxide that is emitted corresponds to the quantity fixed by photosynthesis during biomass growth.
  • Figure US20220202687A1-20220630-C00003
  • To date several high performance water soluble or water swellable polymers such as Fluid Loss Additives for the construction and (oil and gas) well construction industry as well as rheology modifiers, comprise ACDMT. Independent from the excellent performance in their applications, such polymers have so-far all been made from petrochemical based, fossil hydrocarbon based ACDMT. The present invention provides new polymers comprising units from bio-based ACDMT or similar compounds (see Formula (1)), thus giving access to the use of such polymers in a cosmetic, dermatological or pharmaceutical composition and the compositions themselves. Such new compositions having the excellent performance benefits that compositions absent of bio-based polymers are already known for.
  • The details of the invention and its aspects are provided hereinafter.
  • First Aspect
  • The first aspect relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00004
  • wherein
    R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof.
  • For brevity, cosmetic, dermatological or pharmaceutical composition is referred to simply as “composition” herein.
  • In at least one embodiment, the composition is for treating keratinous material, preferably for treating hair and/or skin. In at least one embodiment, the use of the polymer according to the first aspect is as a thickening agent or rheology modifier in a cosmetic, dermatological or pharmaceutical composition.
  • In at least one embodiment, the composition comprises a cosmetically acceptable component. Suitable cosmetically acceptable components are mentioned in the second aspect—such cosmetically acceptable components are compatible and combinable with the first aspect. In at least one embodiment, the cosmetically acceptable component is selected from the group consisting of surfactants, auxiliaries, hair conditioning agents, hairstyling polymers, and combinations thereof. Surfactants, auxiliaries, hair conditioning agents and hairstyling polymers are disclosed in the second aspect—such cosmetically acceptable components are compatible and combinable with the first aspect.
  • In at least one embodiment, the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot cream, exfoliator, body scrub, cellulite treatment, bar soap, cuticle cream, lip balm, hair treatment, eye shadow, bath additive, body mist, eau de toilette, mouthwash, toothpaste, lubricating gel, moisturizer, serum, toner, aqua sorbet, cream gel, styling mousse, dry shampoo, lip stick, lip gloss, hydro-alcoholic gel, body oil, shower milk, illuminator, lip crayon, hair spray, combing cream, and sunblock.
  • The first aspect relates to the use of a polymer in a composition as defined herein. In at least one embodiment, the composition comprises at least 0.1 wt.-%, or at least 0.2 wt.-%, or at least 0.3 wt.-%, or at least 0.4 wt.-%, or at least 0.5 wt.-%, or at least 0.6 wt.-%, or at least 0.7 wt.-%, or at least 0.8 wt.-%, or at least 0.9 wt.-%, or at least 1.0 wt.-%, or at least 1.1 wt.-%, or at least 1.2 wt.-%, or at least 1.3 wt.-%, or at least 1.4 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.7 wt.-%, or at least 1.8 wt.-%, or at least 1.9 wt.-%, or at least 2.0 wt.-% of the polymer.
  • In at least one embodiment, the polymer is a crosslinked or non-crosslinked homopolymer. In at least one embodiment, the polymer is a crosslinked or non-crosslinked copolymer. In at least one embodiment, the polymer has a weight average molecular weight of at least 700 g/mol, preferably from 700 g/mol to 10 million g/mol.
  • In at least one embodiment, the polymer is a derived natural cosmetic ingredient. According to ISO 16128-1:2016(E) a polymer is a derived natural cosmetic ingredient if it is of greater than 50% natural origin by renewable carbon content. The degree of natural origin can be quantified by renewable carbon content according to analytical procedure ASTM 6866-12, Method B.
  • Units (a)
  • In at least one embodiment, the polymer comprises from 9.49 mol-% to 98 mol-%, preferably from 27.5 mol-% to 97.4 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • In at least one embodiment, the polymer comprises from 40 to 98 mol-%, preferably from 55 mol-% to 98 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • In at least one embodiment, the polymer comprises from 90 mol-% to 99.9 mol-%, preferably from 95 mol-% to 99.5 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • In at least one embodiment, the polymer comprises at least 99 mol-%, preferably about 100 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method. In at least one embodiment, the polymer comprises at least 99 mol-%, preferably about 100 mol-% of repeating units (a) according to Formula (1) wherein at least 50 wt.-%, preferably at least 80 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method.
  • In at least one embodiment, the polymer comprises at least one repeating unit according to Formula (1) wherein R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof, preferably wherein Q+ is Na+ or NH4 +. NH4 + is preferred because it is more soluble the favored solvent used in the polymer synthesis. Na+ is preferred because of reduced likelihood of unpreferred gases being produced during synthesis and also due to economic advantages.
  • In at least one embodiment, Q+ is NH4 +. In at least one embodiment, Q+ is selected from the group monoalkylammonium, dialkylammonium, trialkylammonium and/or tetraalkylammonium salts, in which the alkyl substituents of the amines may independently of one another be (C1 to C22)-alkyl radicals or (C2 to C10)-hydroxyalkyl radicals.
  • In at least one embodiment, the polymer comprises at least one repeating unit according to Formula (1). In at least one embodiment, the polymer comprises two or more different repeating units according to Formula (1), such as repeating units according to Formula (1) having different Q+ counterions.
  • In at least one embodiment, the repeating units according to Formula (1) have a degree of neutralisation of between 0 mol-% and 100 mol-%. In at least one embodiment, the repeating units according to Formula (1) have a degree of neutralisation of from 50.0 to 100 mol-%, preferably from 80 mol-% to 100 mol-%, more preferably from 90.0 to 100 mol-%, even more preferably from 95.0 to 100 mol-%. Particular preference being given to a degree of neutralisation of more than 80 mol-%, more preferably more than 90 mol-%, even more preferably more than 95 mol-%. The degree of neutralisation is important in view of the molecular weight of the polymer and the yield of polymer produced.
  • The repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B. In at least one embodiment, the repeating unit comprises from 35 wt.-%, preferably from 40 wt.-%, more preferably from 54 wt.-%, even more preferably from 57 wt.-% to 100 wt.-%, most preferably about 100 wt.-%, by mass of bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B.
  • In at least one embodiment, the repeating units according to Formula (1) result from the incorporation of a monomer selected from the group consisting of acryloyldimethyltaurates, acryloyl-1,1-dimethyl-2-methyltaurates (ACDMT), acryloyltaurates, acryloyl-N-methyltaurates, and combinations thereof. Preferably the repeating units according to Formula (1) result from the incorporation of acryloyldimethyltaurate.
  • In at least one embodiment, the polymer comprises from 55 mol-% to 98 mol-% of repeating units according to Formula (1) wherein at least 30 wt.-%, preferably at least 50 wt.-%, more preferably at least 70 wt.-% of the repeating units comprises from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B.
  • Preferably the repeating units according to Formula (1) are formed by polymerization of a compound according Formula (3). More preferably the compound according to Formula (3) is ACDMT.
  • Figure US20220202687A1-20220630-C00005
  • wherein X is a proton.
  • In at least one embodiment, the compound according to Formula (3) comprises from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the compound, measured according to standard ASTM D6866-12, Method B. In at least one embodiment, the compound comprises from 35 wt.-%, preferably from 40 wt.-%, more preferably from 54 wt.-%, even more preferably from 57 wt.-% to 100 wt.-%, most preferably about 100 wt.-%, by mass of bio-based carbon content, relative to the total mass of carbon in the compound, measured according to standard ASTM D6866-12, Method B. Preferably the compound according to Formula (3) is ACDMT.
  • The bio-based carbon content, relative to the total mass of carbon in the compound or unit, is measured according to standard ASTM D6866-12, Method B. More details on the analytical procedure for determination of bio-based carbon content: the provided sample material does not undergo any pre-treatment procedure and is converted to graphite as is using the following procedure: Depending on the estimated amount of carbon content, typically a few milligrams of sample material is combusted in an elemental analyzer (EA). The resulting gas mixture is cleaned and CO2 is automatically separated by the EA using the purge and trap technology. The remaining CO2 is transferred into a custom-made graphitization system, converted into carbon (graphite) catalytically using H2 and an iron-powder catalyst. The 14C determination of the graphite is performed at the Klaus-Tschira-Archaeometrie-Center using an accelerator mass-spectrometer (AMS) of the type MICADAS (developed at the ETH Zurich, Switzerland).
  • Units (b)
  • In at least one embodiment, the polymer comprises crosslinking or branching units (b), wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds. In at least one embodiment, the polymer comprises from 0.01 mol-% to 5 mol-%, preferably 0.01 mol-% to 4 mol-%, more preferably from 0.01 mol-% to 2 mol-% of crosslinking or branching units.
  • In at least one embodiment, the crosslinking or branching units comprise least one oxygen, nitrogen, and sulfur or phosphorus atom. In at least one embodiment, the crosslinking or branching units result from monomers having a molecular weight of less than 500 g/mol. In at least one embodiment, the units (b) are bifunctional or trifunctional crosslinking agents.
  • In at least one embodiment, the polymer comprises two or more different crosslinking or branching units. In at least one embodiment, the crosslinking or branching units result from the incorporation of a monomer according to Formula (2):
  • Figure US20220202687A1-20220630-C00006
  • wherein
    • R1 is independently selected from H, methyl or ethyl; and
    • R2 is a linear or branched alkyl group having 1 to 6 carbon atoms, or is a linear or branched, mono- or polyunsaturated alkylene group having 2 to 6 carbon atoms, —(CH2—CH2—O)n
    • n is a integer from 1 to 100.
  • A monomer according to Formula (2) has the advantage that the polymer can be predicted as being more brush-like. However, brush-like polymers show different properties, versus linear ones. For example, depending on the different comonomer units the solubility can be in- or decreased.
  • In at least one embodiment, the crosslinking or branching units result from the incorporation of a monomer according to Formula (4)
  • Figure US20220202687A1-20220630-C00007
  • wherein
    • R1 is independently selected from H, methyl or ethyl; and
    • R2 is a linear or branched alkyl group having 1 to 6 carbon atoms, or is a linear or branched, mono- or polyunsaturated alkylene group having 2 to 6 carbon atoms;
    • D, E, and F are independently methyleneoxy (—CH2O), ethyleneoxy (—CH2—CH2—O—), propyleneoxy (—CH(CH3)—CH2—O—), a linear or branched alkylene group having 1 to 6 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenylene group having 2 to 6 carbon atoms, a linear mono-hydroxyalkylene group having 2 to 6 carbon atoms or a linear or branched dihydroxyalkylene group having 3 to 6 carbon atoms; and
    • o, p, and q each independently are an integer from 1 to 50.
  • A monomer according to Formula (4) has the advantage that a polymer can be predicted as being highly branched.
  • In at least one embodiment, the crosslinking or branching units result from the incorporation of a monomer selected from the group consisting of methylenebisacrylamide; methylenebismethacrylamide; esters of unsaturated monocarboxylic and polycarboxylic acids with polyols, preferably di-acrylates and tri-acrylatees and -methacrylates (e.g. glycerol propoxylate triacrylatee [GPTA]), more preferably butanediol and ethylene glycol diacrylate and poly ethylene glycol diacrylate and -methacrylate, trimethylolpropane triacrylate (TMPTA) and trimethylolpropane trimethacrylate (TMPTMA); allyl compounds, preferably allyl (meth)acrylate, triallyl cyanurate, diallyl maleate, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine; allyl esters of phosphoric acid; and/or vinylphosphonic acid derivatives. The choice of crosslinking or branching units is important in view of the flexibility of the crosslinks between the main chains of the polymer which affects the final performance of the polymer.
  • In at least one embodiment, the crosslinking or branching units result from the incorporation of a crosslinker selected from the group consisting of trimethylolpropane triacrylatee (TMPTA) and/or glycerol propoxylate triacrylate (GPTA). Particularly preferred as crosslinkers for the polymers of the invention are glycerol propoxylate triacrylate (GPTA), trimethylolpropane triacrylate (TMPTA), pentaerythritol diacrylate mono stearate (PEAS), hexanediol diacrylate (HDDA), poly ethylene glycol diacrylate (PEG-DA) and hexanediol dimethacrylate (HDDMA). Especially preferred is glycerol propoxylate triacrylatee (GPTA) and trimethylolpropane triacrylatee (TMPTA).
  • Units (c)
  • In at least one embodiment, the polymer at least one repeating neutral structural unit (c). In at least one embodiment, the polymer comprises (c) from 0.99 mol-% to 59.99 mol-%, preferably from 1.99 mol-% to 44.99 mol-% of repeating neutral structural units; wherein the repeating neutral units comprises up to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit, measured according to standard ASTM D6866-12, Method B.
  • In at least one embodiment, the polymer comprises at least one repeating neutral structural unit selected from the group consisting of N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylformamide, N-methyl-N-vinylacetamide, N-vinyl-2-pyrrolidone, N-vinylcaprolactam, vinylacetate, N,N-dimethylacrylamide, N-isopropylacrylamide, acrylamide, methylacrylate, behenylpolyethoxy-(25)-methacrylate, laurylpoly-ethoxy-(7)-methacrylate, cetylpolyethoxy-(10)-methacrylate, stearylpoly-ethoxy-(8)-methacrylate, methoxypoly-ethoxy-(12)-methacrylate, and combinations thereof.
  • Units (d)
  • In at least one embodiment, the polymer comprises at least one repeating anionic structural unit. In at least one embodiment, the polymer comprises from 1.98 mol-% to 20 mol-%, preferably from 2.5 mol-% to 18 mol-% of repeating anionic structural units, wherein the repeating anionic structural units result from the incorporation of a monomer comprising at least one carboxylate anion, and wherein the repeating anionic structural units are different from units (a) and wherein the repeating anionic structural units comprises up to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit, measured according to standard ASTM D6866-12, Method B.
  • In at least one embodiment, the repeating anionic structural unit results from the incorporation of monomers according to formula (A):
  • Figure US20220202687A1-20220630-C00008
  • wherein
    • R1 and R3 are H, methyl or ethyl, or C(O)OZ+;
    • X, Y are selected from a covalent bond, O, CH2, C(O)O, OC(O), C(O)NR3 or NR3C(O);
    • M are selected from a covalent bond, —[C(O)O—CH2—CH2]n—, a linear or branched alkylene group with 1 to 6 carbon atoms, a linear or branched, mono- or polyunsaturated alkenylene group with 2 to 6 carbon atoms, a linear mono-hydroxyalkylene group with 2 to 6 carbon atoms or a linear or branched di-hydroxyalkylene group with 3 to 6 carbon atoms;
    • n is an integer from 1 to 5; and
    • Z+ is H+, NH4 +, an organic ammonium ion [HNR5R6R7]+
      • wherein R5, R6 and R7 are independently hydrogen, a linear or branched alkyl group with 1 to 22 carbon atoms, a linear or branched, mono- or polyunsaturated alkenyl group with 2 to 22 carbon atoms, a C6 to C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group with 2 to 10 carbon atoms or a linear or branched di-hydroxyalkyl group with 3 to 10 carbon atoms, and wherein at least one of R5, R6 and R7 is not hydrogen, or Z+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof. In at least one embodiment, the Z+ is H+, NH4 +, Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, or ⅓Al+++, preferably H+, NH4 +, Li+, Na+ or K+.
  • In at least one embodiment, the polymer comprises at least one repeating anionic structural unit selected from the group consisting of acrylic acid or acrylate methacrylic acid or methacrylate, itaconic acid or itaconate, carboxyethylacrylic acid or carboxyethylacrylate, carboxyethylacrylic acid oligomers or carboxyethylacrylate oligomers, 2-propylacrylic acid or 2-propylacrylate, 2-ethylacrylic acid or 2-ethylacrylate, and their respective alkali or alkaline earth metal salts. In at least one embodiment, the polymer comprises at least one repeating anionic structural unit selected from the group consisting of acrylic acid or acrylate methacrylic acid or methacrylate, itaconic acid or itaconate, carboxyethylacrylic acid or carboxyethylacrylate, carboxyethylacrylic acid oligomers or carboxyethylacrylate oligomers, and their respective alkali or alkaline earth metal salts. These repeating anionic structural units are preferred because they can easily be synthesised from bio-based sources.
  • Optional Units
  • In at least one embodiment, the polymer comprises at least one optional unit. In at least one embodiment, the optional unit results from the incorporation of a monomer selected from the group consisting of unsaturated carboxylic acids and their anhydrides and salts, and also their esters with aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic alcohols having a carbon number of from 1 to 22. In at least one embodiment, the optional unit results from the incorporation of at least one monomer selected from the group consisting of functionalised (meth)acrylic acid esters, acrylic or methacrylic acid amides, polyglycol acrylic or methacrylic acid esters, polyglycol acrylic or methacrylic acid amides, dipropyleneglycolacrylic or methacrylic acid esters, dipropylenglycolacrylic or methacrylic acid amides, ethoxylated fatty alcohol acrylates or -methacrylates, propoxylated fatty alcohol acrylates or linear or cyclic N-vinylamides or N-methylvinyl amides.
  • In at least one embodiment, the optional unit results from the incorporation of monomers according to formula (A):
  • Figure US20220202687A1-20220630-C00009
  • wherein:
    • X, Y are selected from a covalent bond, O, CH2, C(O)O, OC(O), C(O)NR3 or NR3C(O);
    • R1 and R3 are H, methyl or ethyl, or C(O)OZ+;
    • M is selected from a covalent bond, —[C(O)O—CH2—CH2]n—, a linear or branched alkylene group with 1 to 6 carbon atoms, a linear or branched, mono- or polyunsaturated alkenylene group with 2 to 6 carbon atoms, a linear mono-hydroxyalkylene group with 2 to 6 carbon atoms or a linear or branched di-hydroxyalkylene group with 3 to 6 carbon atoms;
    • n is an integer from 1-5, and
    • Z+ is H+, NH4 +, an organic ammonium ion [HNR5R6R7]+
      • wherein R5, R6 and R7 are independently hydrogen, a linear or branched alkyl group with 1 to 22 carbon atoms, a linear or branched, mono- or polyunsaturated alkenyl group with 2 to 22 carbon atoms, a C6 to C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group with 2 to 10 carbon atoms or a linear or branched di-hydroxyalkyl group with 3 to 10 carbon atoms, and wherein at least one of R5, R6 and R7 is not hydrogen, or Z+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof. In at least one embodiment, the Z+ is H+, NH4 +, Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, or ⅓Al+++, preferably H+, NH4 +, Li+, Na+ or K+.
  • In at least one embodiment, the optional unit results from the incorporation of a monomer according to formula (A) wherein X is a covalent bond or is CH2. In at least one embodiment, the optional unit results from the incorporation of a monomer according to formula (A) wherein Y is a covalent bond, CH2, C(O)O, or C(O)NR3. In at least one embodiment, the optional unit results from the incorporation of a monomer according to formula (A) wherein M is a covalent bond, —[C(O)O—CH2—CH2]n—, a linear or branched alkylene group with 1 to 6 carbon atoms. In at least one embodiment, the optional unit results from the incorporation of a monomer according to formula (A) wherein R1 is H, methyl or ethyl; X is a covalent bond or is CH2; Y is a covalent bond, CH2, C(O)O, or C(O)NR3; R3 is H, methyl or ethyl; M is a covalent bond, —[C(O)O—CH2—CH2]n—, a linear or branched alkylene group with 1 to 6 carbon atoms; Z+ is H+, NH4 +, Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, or ⅓Al+++, or combinations thereof.
  • In at least one embodiment, the optional unit results from the incorporation of a monomer selected from the group consisting of N-vinylformamide, N-vinylacetamide, N methyl-N-vinylformamide, N-methyl-N-vinylacetamide, N-vinyl-2-pyrrolidone (NVP), N vinylcaprolactam, vinylacetate, methylvinylether, ethylvinylether, methylallylether, ethylmethallylether, styrol, acetoxystyrol, methylmethallylether, ethylallylether, tert-butylacrylamide, N,N-diethylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-dipropylacrylamide, N-isopropylacrylamide, N-propylacrylamide, acrylamide, methacrylamide, methylacrylate, methymethylacrylate, tert-butylacrylate, tert-butylmethacrylate, n-butylacrylate, n-butylmethacrylate, laurylacrylate, laurylmethacrylate, behenylacrylate, behenylmethacrylate, cetylacrylate, cetylmethacrylate, stearylacrylate, stearylmethacrylate, tridecylacrylate, tridecylmethacrylate, polyethoxy-(5)-methacrylate, polyethoxy-(5)-acrylate, polyethoxy-(10)-methacrylate, polyethoxy-(10)-acrylate, behenylpolyethoxy-(7)-methacrylate, behenylpolyethoxy-(7)-acrylate, behenylpolyethoxy-(8)-methacrylate, behenylpoly-ethoxy-(8)-acrylate, behenylpolyethoxy-(12)-methacrylate, behenylpoly-ethoxy-(12)-acrylate, behenylpolyethoxy-(16)-methacrylate, behenylpolyethoxy-(16)-acrylate, behenylpolyethoxy-(25)-methacrylate, behenylpolyethoxy-(25)-acrylate, laurylpoly-ethoxy-(7)-methacrylate, laurylpolyethoxy-(7)-acrylate, laurylpolyethoxy-(8)-methacrylate, laurylpolyethoxy-(8)-acrylate, laurylpolyethoxy-(12)-methacrylate, laurylpolyethoxy-(12)-acrylate, laurylpolyethoxy-(16)-methacrylate, laurylpolyethoxy-(16)-acrylate, laurylpolyethoxy-(22)-methacrylate, laurylpolyethoxy-(22)-acrylate, laurylpolyethoxy-(23)-methacrylate, laurylpolyethoxy-(23)-acrylate, cetylpolyethoxy-(2)-methacrylate, cetylpolyethoxy-(2)-acrylate, cetylpolyethoxy-(7)-methacrylate, cetylpolyethoxy-(7)-acrylate, cetylpolyethoxy-(10)-methacrylate, cetylpolyethoxy-(10)-acrylate, cetylpolyethoxy-(12)-methacrylate, cetylpolyethoxy-(12)-acrylate cetylpoly-ethoxy-(16)-methacrylate, cetylpolyethoxy-(16)-acrylate cetylpolyethoxy-(20)-methacrylate, cetylpolyethoxy-(20)-acrylate, cetylpolyethoxy-(25)-methacrylate, cetylpolyethoxy-(25)-acrylate, cetylpolyethoxy-(25)-methacrylate, cetylpolyethoxy-(25)-acrylate, stearylpolyethoxy-(7)-methacrylate, stearylpolyethoxy-(7)-acrylate, stearylpoly-ethoxy-(8)-methacrylate, stearylpolyethoxy-(8)-acrylate, stearylpolyethoxy-(12)-methacrylate, stearylpolyethoxy-(12)-acrylate, stearylpolyethoxy-(16)-methacrylate, stearylpolyethoxy-(16)-acrylate, stearylpolyethoxy-(22)-methacrylate, stearylpoly-ethoxy-(22)-acrylate, stearylpolyethoxy-(23)-methacrylate, stearylpolyethoxy-(23)-acrylate, stearylpolyethoxy-(25)-methacrylate, stearylpolyethoxy-(25)-acrylate, tridecylpolyethoxy-(7)-methacrylate, tridecylpolyethoxy-(7)-acrylate, tridecylpolythoxy-(10)-methacrylate, tridecylpolyethoxy-(10)-acrylate, tridecylpolyethoxy-(12)-methacrylate, tridecylpolyethoxy-(12)-acrylate, tridecylpolyethoxy-(16)-methacrylate, tridecylpolyethoxy-(16)-acrylate, tridecylpolyethoxy-(22)-methacrylate, tridecylpoly-ethoxy-(22)-acrylate, tridecylpolyethoxy-(23)-methacrylate, tridecylpolyethoxy-(23)-acrylate, tridecylpoly-ethoxy-(25)-methacrylate, tridecylpolyethoxy-(25)-acrylate, methoxypolyethoxy-(7)-methacrylate, methoxy-polyethoxy-(7)-acrylate, methoxypoly-ethoxy-(12)-methacrylate, methoxypolyethoxy-(12)-acrylate, methoxypolyethoxy-(16)-methacrylate, methoxypolyethoxy-(16)-acrylate, methoxypolyethoxy-(25)-methacrylate, methoxy-polyethoxy-(25)-acrylate, acrylic acid, ammonium acrylate, sodium acrylate, potassium acrylate, lithium acrylate, zinc acrylate, calcium acrylate, magnesium acrylate, zirconium acrylate, methacrylic acid, ammonium methacrylate, sodium methacrylate, potassium methacrylate, lithium methacrylate, calcium methacrylate, magnesium methacrylate, zirconium methacrylate, zinc methacrylate, 2-carboxyethylacrylate, ammonium 2-carboxyethylacrylate, sodium 2-carboxyethylacrylate, potassium 2-carboxyethylacrylate, lithium 2 carboxyethylacrylate, zinc 2-carboxyethylacrylate, calcium 2-carboxyethylacrylate, magnesium 2-carboxyethylacrylate, zirconium 2-carboxyethylacrylate, 2-carboxyethylacrylate-oligomere, ammonium 2-carboxyethylacrylate-oligomers, sodium 2-carboxyethylacrylate-oligomers, potassium 2-carboxyethylacrylate-oligomers, lithium 2 carboxyethylacrylate-oligomers, zinc 2-carboxyethylacrylate-oligomers, calcium 2-carboxyethylacrylate-oligomers, magnesium 2-carboxyethylacrylate-oligomers, zirconium 2-carboxyethylacrylate-oligomers, itaconic acid, sodium itaconate, potassium itaconate, lithium itaconate, calcium itaconate, magnesium itaconate, zirconium itaconate, zinc itaconate,2-ethylacryl acid, ammonium 2-ethylacrylate, sodium 2-ethylacrylate, potassium 2-ethylacrylate, lithium 2-ethylacrylate, calcium 2-ethylacrylate, magnesium 2-ethylacrylate, zirconium 2-ethylacrylate, zinc 2-ethylacrylate, 2-propylacryl acid, ammonium 2-propylacrylate, sodium 2-propylacrylate, potassium 2-propylacrylate, lithium 2-propylacrylate, calcium 2-propylacrylate, magnesium 2-propylacrylate, magnesium 2-propylacrylate, zirconium 2-propylacrylate, zinc 2-propylacrylate, glycerin propoxylate triacrylate (GPTA), trimethylolpropane triacrylate (TMPTA), pentaerythritoldiacrylate monostearate (PEAS), polyethyleneglycol diacrylate, hexanediol diacrylate (HDDA), hexanediol dimethacrylate (HDDMA), and combinations thereof.
  • In a preferred embodiment, the optional unit results from the incorporation of a monomer selected from the group consisting of glycerine propoxylate triacrylate (GPTA) and trimethylolpropantriacrylate (TMPTA).
  • In a preferred embodiment, the optional unit results from the incorporation of a monomer selected from the group consisting of N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinyl-2-pyrrolidone (NVP), N,N-diethylacrylamide, acrylamide, methacrylamide, methylacrylate, methylmethylacrylate, tert-Butylacrylate, acrylic acid, methacrylic acid, 2-carboxyethylacrylate, 2-carboxyethylacrylate oligomers, itaconic acid glycerine propoxylate triacrylate (GPTA), trimethylolpropane triacrylate (TMPTA), pentaerythritol diacrylate monostearate (PEAS) and polyethyleneglycol diacrylate.
  • In at least one embodiment, the optional unit results from the incorporation of a monomer selected from the group consisting of acrylic acid, methacrylic acid, styrenesulfonic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, and senecic acid. In at least one embodiment, the optional unit results from monomers selected from the group consisting of open-chain N-vinyl amides, preferably N-vinylformamide (VIFA), N-vinylmethylformamide, N-vinylmethylacetamide (VIMA) and N-vinylacetamides; cyclic N-vinyl amides (N-vinyl lactams) with a ring size of 3 to 9, preferably N-vinylpyrrolidones (NVP) and N-vinylcaprolactam; amides of acrylic and methacrylic acid, preferably acrylamide, methacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, and N,N-diisopropylacrylamide; alkoxylated acrylamides and methacrylamides, preferably hydroxyethyl methacrylate, hydroxymethylmethacrylamide; hydroxyethylmethacryl amide, hydroxypropylmethacrylamide, and mono[2-(methacryloyloxy)ethyl]succinate; N,N-dimethylaminomethacrylate; diethylaminomethylmethacrylate; acrylamideo- and methacrylamideoglycolic acid; 2- and 4-vinylpyridine; vinyl acetate; glycidyl methacrylate; styrene; acrylonitrile; vinyl chloride; stearyl acrylate; lauryl methacrylate; vinylidene chloride; tetrafluoroethylene; and combinations thereof.
  • Example Embodiments of the First Aspect
  • In a preferred embodiment, the first aspect relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
    • a) from 90 mol-% to 99.9 mol-%, preferably from 95 mol-% to 99.5 mol-% of repeating units according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00010
      • wherein:
      • R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof; and
    • (b) optionally from 0.01 mol-% to 10 mol-%, preferably from 0.01 mol-% to 5 mol-% of crosslinking or branching units, wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds.
  • In at least one embodiment, the polymer comprises from 96 mol-% to 99.7 mol-%, preferably from 97 mol-% to 99.5 mol-% units (a) and from 0.3 mol-% to 4 mol-%, preferably from 0.5 mol-% to 3 mol-% units (b). In at least one embodiment, the polymer comprises units (a) and (b), such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In a preferred embodiment, the first aspect relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
    • a) from 40 mol-% to 98 mol-%, preferably from 55 mol-% to 98 mol-% repeating units according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units comprises from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00011
      • wherein:
      • R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof;
    • (b) optionally from 0.01 mol-% to 5 mol-%, preferably from 0.01 mol-% to 3 mol-% crosslinking or branching units, wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds; and
    • (c) optionally from 0.99 mol-% to 59.99 mol-%, preferably from 1.99 mol-% to 44.99 mol-% of repeating neutral structural units wherein at least 10 wt.-%, preferably at least 20 wt.-% of the neutral structural units comprises from 0 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit, measured according to standard ASTM D6866-12, Method B.
  • In at least one embodiment, the polymer comprises from 45 mol-% to 97 mol-%, preferably from 65 mol-% to 96 mol-% units (a), from 0.25 mol-% to 4 mol-%, preferably from 0.3 mol-% to 3 mol-% units (b), from 2 mol-% to 54.7 mol-%%, preferably from 2.5 mol-% to 34.5 mol-% units (c). In at least one embodiment, the polymer comprises units (a), (b) and (c) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In at least one embodiment, the polymer comprises from 70 mol-% to 98 mol-%, preferably from 73 mol-% to 96 mol-% units (a), from 0.6 mol-% to 2.5 mol-%, preferably from 0.75 mol-% to 2 mol-% units (b), from 1.4 mol-% to 54.7 mol-%, preferably from 2.5 mol-% to 34.5 mol-% units (c). In at least one embodiment, the polymer comprises units (a), (b) and (c) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In a preferred embodiment, the first aspect relates to the use of a polymer in a cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
    • a) from 9.49 mol-% to 98 mol-%, preferably from 27.5 mol-% to 97.4 mol-% repeating units according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00012
      • wherein:
      • R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof;
    • (b) optionally from 0.01 mol-% to 5 mol-%, preferably from 0.01 mol-% to 4 mol-% crosslinking or branching units, wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds;
    • (c) optionally from 0.01 mol-% to 88.52 mol-%, preferably from 0.05 mol-% to 72.4 mol-% of repeating neutral structural units, preferably wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating neutral structural units comprises from 0 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating neutral structural unit, measured according to standard ASTM D6866-12, Method B;
    • (d) optionally from 1.98 mol-% to 20 mol-%, preferably from 2.5 mol-% to 18 mol-% of repeating anionic structural units, wherein the repeating anionic structural units result from the incorporation of a monomer comprising at least one carboxylate anion, and wherein the repeating anionic structural units are different from units (a) and preferably wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating anionic structural units comprise from 0 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating anionic structural unit, measured according to standard ASTM D6866-12, Method B.
  • In at least one embodiment, the polymer comprises from 37 mol-% to 96.4 mol-%, preferably from 43 mol-% to 95.3 mol-% units (a), from 0.1 mol-% to 3 mol-%, preferably from 0.2 mol-% to 2 mol-% units (b), from 0.1 mol-% to 59.3 mol-%, preferably from 0.5 mol-% to 52.8 mol-% units (c), and from 3.5 mol-% to 16 mol-%, preferably from 4 mol-% to 14 mol-% units (d). In at least one embodiment, the polymer comprises units (a), (b), (c) and (d) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In at least one embodiment, the polymer comprises from 70 mol-% to 94.5 mol-%, units (a), from 0.35 mol-% to 1.5 mol-%, units (b), from 0.65 mol-% to 25.65 mol-% units (c), and from 4.5 mol-% to 12 mol-% units (d). In at least one embodiment, the polymer comprises units (a), (b), (c) and (d) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In a preferred embodiment, the first aspect relates to the use of the cosmetic, dermatological or pharmaceutical composition according to the second aspect.
  • Second Aspect
  • A second aspect relates to a cosmetic, dermatological or pharmaceutical composition comprising:
  • (I) a polymer;
    (II) a cosmetically acceptable component;
      • wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00013
      • wherein:
      • R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof.
  • In at least one embodiment, the polymer is the polymer according to the first aspect.
  • The cosmetic, dermatological or pharmaceutical composition—or for brevity herein “composition”, comprises a cosmetically acceptable component. In at least one embodiment, the cosmetically acceptable component is selected from the group consisting of surfactants, auxiliaries, hair conditioning agents, hairstyling polymers, and combinations thereof.
  • Surfactant
  • In at least one embodiment, the composition comprises a surfactant. In at least one embodiment, the composition comprises a surfactant system comprising a plurality of different surfactants. In at least one embodiment, the surfactant system comprises a surfactant selected from the group consisting of anionic surfactants, cationic surfactants, non-ionic surfactants, zwitterionic surfactants and/or amphoteric surfactants. In at least one embodiment, the surfactant is selected from the group consisting of anionic surfactants, cationic surfactants, non-ionic surfactants, zwitterionic surfactants and/or amphoteric surfactants.
  • In at least one embodiment, the composition comprises a total amount of surfactant of from 0.01 wt.-% to 70 wt.-%, from 0.1 wt.-% to 40 wt.-%, from 1 wt.-% to 30 wt.-%, from 2 wt.-% to 20 wt.-%.
  • In at least one embodiment, the composition comprises an anionic surfactant. In at least one embodiment, the composition comprises an anionic surfactant as cosmetically acceptable component (II). In at least one embodiment, the anionic surfactant is selected from the group consisting of (C10-C20)-alkyl and alkylene carboxylates, alkyl ether carboxylates, fatty alcohol sulfates, fatty alcohol ether sulfates, alkylamide sulfates and sulfonates, fatty acid alkylamide polyglycol ether sulfates, alkanesulfonates and hydroxyalkanesulfonates, olefinsulfonates, acyl esters of isethionates, α-sulfo fatty acid esters, alkylbenzenesulfonates, alkyl-phenol glycol ether sulfonates, sulfosuccinates, sulfosuccinic monoesters and diesters, fatty alcohol ether phosphates, protein/fatty acid condensation products, alkyl monoglyceride sulfates and sulfonates, alkylglyceride ether sulfonates, fatty acid methyltaurides, fatty acid sarcosinates, sulforicinoleates, acylglutamates, and mixtures thereof. The anionic surfactants (and their mixtures) can be used in the form of their water-soluble or water-dispersible salts, examples being the sodium, potassium, magnesium, ammonium, mono-, di-, and triethanolammonium, and analogous alkylammonium salts. In at least one embodiment, the anionic surfactant is the salt of an anionic surfactant comprising 12 to 14 carbon atoms. In at least one embodiment, the anionic surfactant is selected from the group consisting of sodium lauryl sulfate, sodium laureth sulfate, sodium tridecyl sulfate, sodium trideceth sulfate, sodium myristyl sulfate, sodium myreth sulfate, and mixtures thereof. Typical anionic surfactants for use in compositions of the invention include sodium oleyl succinate, ammonium lauryl sulphosuccinate, sodium lauryl sulphate, sodium lauryl ether sulphate, sodium lauryl ether sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium dodecyl benzene sulphonate, triethanolamine dodecylbenzene sulphonate, sodium cocoyl isethionate, sodium lauryl isethionate, lauryl ether carboxylic acid and sodium N-lauryl sarcosinate. Preferred anionic surfactants are selected from sodium lauryl sulphate and sodium lauryl ether sulphate(n)EO, (where n is from 1 to 3); more preferably sodium lauryl ether sulphate(n)EO, (where n is from 1 to 3); most preferably sodium lauryl ether sulphate(n)EO where n=1. Preferably the level of alkyl ether sulphate is from 0.5 wt.-% to 25 wt.-% of the total composition, more preferably from 3 wt.-% to 18 wt.-%, most preferably from 6 wt.-% to 15 wt.-% of the total composition.
  • The total amount of anionic surfactant in the composition may range from 0.5 wt.-% to 45 wt.-%, more preferably from 1.5 wt.-% to 20 wt.-%.
  • In at least one embodiment, the composition comprises a fatty acyl isethionate. In at least one embodiment, the composition comprises fatty acyl isethionate at a level of from 1 to 10 wt.-%, more preferably from 2 to 8 wt.-%, most preferably from 2.5 to 7.5 wt.-%. A preferred fatty acyl isethionate product comprises fatty acyl isethionate surfactant at a level of from 40 to 80 wt.-% of the product, as well as free fatty acid and/or fatty acid salt at a level of from 15 to 50 wt.-%. Preferably, greater than 20 wt.-% and less than 45 wt.-%, more preferably greater than 25 wt.-% and less than 45 wt.-% of the fatty acyl isethionate are of chain length greater than or equal to C6; and greater than 50 wt.-%, preferably greater than 60 wt.-% of the free fatty acid/soap is of chain length C6 to C20. In addition, the composition may contain isethionates salts which are present typically at levels less than 5 wt.-%, and traces (less than 2 wt.-%) of other impurities. Preferably, a mixture of aliphatic fatty acids is used for the preparation of commercial fatty acyl isethionates surfactants. The resulting fatty acyl isethionate surfactants (e.g., resulting from reaction of alkali metal isethionate and aliphatic fatty acid) preferably should have more than 20 wt.-%, preferably more than 25 wt.-%, but no more than 45 wt.-%, preferably 35 wt.-% (on basis of fatty acyl isethionates reaction product) of fatty acyl group with 16 or greater carbon atoms to provide both excellent lather and mildness of the resulting fatty acyl isethionate product. These longer chain fatty acyl isethionate surfactants and fatty acids, i.e. fatty acyl group and fatty acid with 16 or more carbons, can typically form insoluble surfactant/fatty acid crystals in water at ambient temperatures.
  • In at least one embodiment, the composition comprises an acylglycinate surfactant. In at least one embodiment, the acylglycinate surfactant conforms to the formula (Y):
  • Figure US20220202687A1-20220630-C00014
  • wherein
    R1a is a linear or branched, saturated alkenoyl group having 6 to 30, preferably 8 to 22, particularly preferably 8 to 18, carbon atoms or is a linear or branched, mono- or polyunsaturated alkenoyl group having 6 to 30, preferably 8 to 22 and particularly preferably 12 to 18 carbon atoms, and Qa + is a cation. In at least one embodiment, Qa + is selected from the group consisting of Li+, Na+, K+, Mg++, Ca++, Al+++, NH4 +, a monoalkylammmonium ion, a dialkylammonium ion, a trialkylammonium ion and a tetraalkylammonium ion, or combinations thereof. Optionally R1a is independently from one another, are (C1-C22)-alkyl radicals or (C2-C10)-hydroxyalkyl radicals. In at least one embodiment, the acylglycinate surfactant is selected from sodium cocoylglycinate and potassium cocoylglycinate.
  • In at least one embodiment, the composition comprises a glutamate surfactant corresponding to formula (Z) or a salt thereof:
  • Figure US20220202687A1-20220630-C00015
  • wherein
    R′ is HOOC—CH2—CH2— or M+−OOC—CH2—CH2— wherein M+ is a cation; and wherein R is a linear or branched, saturated alkanoyl group having 6 to 30, preferably 8 to 22, more preferably 8 to 18, carbon atoms or is a linear or branched, mono- or polyunsaturated alkenoyl group having 6 to 30, preferably 8 to 22 and more preferably 12 to 18 carbon atoms. In at least one embodiment, M+ is a metal cation. In at least one embodiment, M+ is selected from the group consisting of Li+, Na+, K+, Mg++, Ca++, Al+++, NH4 +, a monoalkylammmonium ion, a dialkylammonium ion, a trialkylammonium ion and a tetraalkylammonium ion, or combinations thereof. In at least one embodiment, the glutamate surfactant is selected from sodium cocoyl glutamate and potassium cocoyl glutamate.
  • In at least one embodiment, the composition comprises a non-ionic surfactant. The non-ionic surfactants may be present in the range 0 to 5 wt.-%. The non-ionic surfactants that can be included in the compositions herein include condensation products of aliphatic primary or secondary linear or branched chain alcohols or phenols with alkylene oxides, usually ethylene oxide and generally having from 6 to 30 ethylene oxide groups. Alkyl ethoxylates are particularly preferred. Most preferred are alky ethoxylates having the formula R—(OCH2CH2)nOH, where R is an alkyl chain of C12 to C15, and n is 5 to 9. Other suitable nonionic surfactants include mono- or di-alkyl alkanolamides. Examples include coco mono- or di-ethanolamide and coco mono-isopropanolamide.
  • Further nonionic surfactants which can be included in compositions of the invention are the alkyl polyglycosides (APGs). Typically, APG is one which comprises an alkyl group connected (optionally via a bridging group) to a block of one or more glycosyl groups.
  • In at least one embodiment, the non-ionic surfactant has an HLB (Hydrophilic Lipophilic Balance) of greater than 12. Optionally, the non-ionic surfactant is selected from the group consisting of ethoxylated or ethoxylated/propoxylated fatty alcohols with a fatty chain comprising from 12 to 22 carbon atoms, ethoxylated sterols, such as stearyl- or lauryl alcohol (EO-7), PEG-16 soya sterol or PEG-10 soya sterol, polyoxyethylene polyoxypropylene block polymers (poloxamers), and mixtures thereof.
  • In at least one embodiment, the non-ionic surfactant is selected from the group consisting of ethoxylated fatty alcohols, fatty acids, fatty acid glycerides or alkylphenols, in particular addition products of from 2 to 30 mol of ethylene oxide and/or 1 to 5 mol of propylene oxide onto C8- to C22-fatty alcohols, onto C12- to C22-fatty acids or onto alkyl phenols having 8 to 15 carbon atoms in the alkyl group, C12- to C22-fatty acid mono- and diesters of addition products of from 1 to 30 mol of ethylene oxide onto glycerol, addition products of from 5 to 60 mol of ethylene oxide onto castor oil or onto hydrogenated castor oil, fatty acid sugar esters, in particular esters of sucrose and one or two C8- to C22-fatty acids, INCI: Sucrose Cocoate, Sucrose Dilaurate, Sucrose Distearate, Sucrose Laurate, Sucrose Myristate, Sucrose Oleate, Sucrose Palmitate, Sucrose Ricinoleate, Sucrose Stearate, esters of sorbitan and one, two or three C8- to C22-fatty acids and a degree of ethoxylation of from 4 to 20, polyglyceryl fatty acid esters, in particular of one, two or more C8- to C22-fatty acids and polyglycerol having preferably 2 to 20 glyceryl units, alkyl glucosides, alkyl oligoglucosides and alkyl polyglucosides having C8 to C22-alkyl groups, e.g. decylglucoside or laurylglucoside, and mixtures thereof.
  • In at least one embodiment, the non-ionic surfactant is selected from the group consisting of fatty alcohol ethoxylates (alkylpolyethylene glycols), alkylphenol polyethylene glycols, alkylmercaptan polyethylene glycols, fatty amine ethoxylates (alkylaminopolyethylene glycols), fatty acid ethoxylates (acylpolyethylene glycols), polypropylene glycol ethoxylates (Pluronics®), fatty acid alkylol amides, (fatty acid amide polyethylene glycols), N-alkyl-, N-alkoxypolyhydroxy-fatty acid amide, sucrose esters, sorbitol esters, polyglycol ethers, and mixtures thereof.
  • In at least one embodiment, the composition comprises a fatty N-methyl-N-glucamide surfactant. In at least one embodiment, the fatty N-methyl-N-glucamide surfactant conforms to the formula (X):
  • Figure US20220202687A1-20220630-C00016
  • wherein
    R is a linear or branched alkyl or alkenyl group having from 3 to 30 carbon atoms. In at least one embodiment, R is an alkyl group having from 3 to 30 carbon atoms. In at least one embodiment, R is a saturated aliphatic hydrocarbon group which can be linear or branched and can have from 3 to 20 carbon atoms in the hydrocarbon chain, preferably linear or branched. Branched means that a lower alkyl group such as methyl, ethyl or propyl is present as substituent on a linear alkyl chain. Suitable fatty N-methyl-N-glucamide surfactants are described in WO2013/178700 and EP0550637, which are incorporated herein by reference. In at least one embodiment, the fatty N-methyl-N-glucamide surfactant is selected from those conforming to formula (X), wherein R is C12 alkyl or C14 alkyl. In at least one embodiment, the fatty N-methyl-N-glucamide surfactant is selected from those conforming to formula (X), wherein R is C16 alkyl or C18 alkyl.
  • Amphoteric or zwitterionic surfactant(s) can be included in the composition in an amount ranging from 0.5 wt.-% to about 8 wt.-%, preferably from 1 wt.-% to 4 wt.-% of the total composition.
  • In at least one embodiment, the amphoteric surfactants are selected from the group consisting of N—(C12-C18)-alkyl-β-aminopropionates and N—(C12-C18)-alkyl-β-iminodipropionates as alkali metal salts and mono-, di-, and trialkylammonium salts; N-acylaminoalkyl-N,N-dimethylacetobetaine, preferably N—(C8-C18)-acylaminopropyl-N,N-dimethylacetobetaine, (C12-C18)-alkyl-dimethyl-sulfopropylbetaine, amphosurfactants based on imidazoline (trade name: Miranol®, Steinapon®), preferably the sodium salt of 1-(β-carboxymethyloxyethyl)-1-(carboxymethyl)-2-laurylimidazolinium; amine oxide, e.g., (012-018)-alkyl-dimethyl-amine oxide, fatty acid amidoalkyldimethylamine oxide, and mixtures thereof.
  • In at least one embodiment, the composition comprises a betaine surfactant. Optionally, the betaine surfactant is selected from C8- to C18-alkylbetaines. In at least one embodiment, the betaine surfactant is selected from the group consisting of cocodimethylcarboxymethylbetaine, lauryldimethylcarboxymethylbetaine, lauryldimethylalphacarboxyethylbetaine, cetyldimethylcarboxymethylbetaine, oleyldimethylgammacarboxypropylbetaine and laurylbis(2-hydroxypropyl)alphacarboxyethylbetaine and combinations thereof. Optionally, the betaine surfactant is selected from C8- to C18-sulfobetaines. In at least one embodiment, the betaine surfactant is selected from the group consisting of cocodimethylsulfopropylbetaine, stearyldimethylsulfopropylbetaine, lauryldimethyl-sulfoethylbetaine, laurylbis(2-hydroxyethyl)sulfopropylbetaine, and combinations thereof. Optionally, the betaine surfactant is selected from carboxyl derivatives of imidazole, the C8- to C18-alkyldimethylammonium acetates, the C8- to C18-alkyldimethylcarbonylmethylammonium salts, and the C8- to C18-fatty acid alkylamidobetaines, and mixtures thereof. Optionally, the C8- to C18-fatty acid alkylamidobetaine is selected from coconut fatty acid amidopropylbetaine, N-coconut fatty acid amidoethyl-N-[2-(carboxymethoxy)ethyl]glycerol (CTFA name: Cocoamphocarboxyglycinate), and mixtures thereof. A particularly preferred amphoteric or zwitterionic surfactant is cocamidopropyl betaine. Mixtures of any of the foregoing amphoteric or zwitterionic surfactants may also be suitable. Preferred mixtures are those of cocamidopropyl betaine with further amphoteric or zwitterionic surfactants as described above. A preferred further amphoteric or zwitterionic surfactant is sodium cocoamphoacetate.
  • Auxiliary
  • In at least one embodiment, the composition comprises at least one additive common in cosmetology, pharmacy, and dermatology, which are hereinafter called auxiliaries. In at least one embodiment, the composition comprises an auxiliary. In at least one embodiment, the auxiliary is cosmetically acceptable. In at least one embodiment, the auxiliary is selected from the group consisting of oily substances, waxes, emulsifiers, coemulsifiers, solubilizers, cationic polymers, film formers, superfatting agents, refatting agents, foam stabilizers, stabilizers, active biogenic substances, preservatives, preservation boosting ingredients, anti-fungal substance, anti-dandruff agents, dyes or pigments, particulate substances, opacifiers, abrasives, absorbents, anticaking agents, bulking agents, pearlizing agents, direct dyes, perfumes or fragrances, carriers, solvents or diluents, propellants, functional acids, active ingredients, skin-brightening agents, self-tanning agents, exfoliants, enzymes, anti-acne agents, deodorants and anti-perspirants, viscosity modifiers, thickening and gelling agents, pH adjusting agents, buffering agents, anti-oxidants, chelants, astringents, sunscreens, sun protection agents, UV filters, skin conditioning agents, emollients, humectants, occlusive agents, pediculocides, anti-foaming agents, flavouring agents, electrolytes, oxidizing agents and reducing agents. In at least one embodiment, the cosmetically acceptable component is an auxiliary or mixture of auxiliaries.
  • In at least one embodiment, the composition comprises an oily substance or wax. Preferably the oily substance or wax is selected from the group consisting of silicone oils, volatile or nonvolatile, linear, branched or cyclic, optionally with organic modification; phenylsilicones; silicone resins and silicone gums; mineral oils such as paraffin oil or vaseline oil; oils of animal origin such as perhydrosqualene, lanolin; oils of plant origin such as liquid triglycerides, e.g., sunflower oil, corn oil, soybean oil, rice oil, jojoba oil, babassu oil, pumpkin oil, grapeseed oil, sesame oil, walnut oil, apricot oil, macadamia oil, avocado oil, sweet almond oil, lady's-smock oil, castor oil, triglycerides of caprylic/capric acids, olive oil, peanut oil, rapeseed oil, argan oil, abyssinian oil, and coconut oil; synthetic oils such as purcellin oil, isoparaffins, linear and/or branched fatty alcohols and fatty acid esters, preferably guerbet alcohols having 6 to 18, preferably 8 to 10, carbon atoms; esters of linear (C6-C13) fatty acids with linear (C6-C20) fatty alcohols; esters of branched (C6-C13) carboxylic acids with linear (C6-C20) fatty alcohols, esters of linear (C6-C18) fatty acids with branched alcohols, especially 2-ethylhexanol; esters of linear and/or branched fatty acids with polyhydric alcohols (such as dimerdiol or trimerdiol, for example) and/or guerbet alcohols; triglycerides based on (C6-C10) fatty acids; esters such as dioctyl adipate, diisopropyl dimer dilinoleate; propylene glycols/dicaprylate or waxes such as beeswax, paraffin wax or microwaxes, alone or in combination with hydrophilic waxes, such as cetylstearyl alcohol, for example; fluorinated and perfluorinated oils; fluorinated silicone oils; mixtures of the aforementioned compounds.
  • In at least one embodiment, the composition comprises an oily substance, which is any fatty substance which is liquid at room temperature (25° C.). In a preferred embodiment, the oily substance is selected from the group consisting of sweet almond oil, caprylic/capric triglycerides, dimethicone, mineral oil, squalane, castor oil, isopropyl isostearate, jojoba oil, dicaprylyl carbonate, isohexadecane, C12-15 alkyl benzoate, and combinations thereof. In at least one embodiment, the composition comprises from 0.001 wt % to 60 wt %, preferably from 0.05 wt % to 50 wt %, even more preferably from 0.1 wt % to 40 wt % of at least one oily substance.
  • In a preferred embodiment, the wax is selected from the group consisting of carnauba wax, beeswax, candelilla wax, synthetic wax, polyethylene, paraffin wax, microcrystalline wax, hydrogenated vegetable oil, hydrogenated castor oil, rice bran wax, cetyl dimethicone, bis-PEG-18 methyl ether dimethyl silane, and combinations thereof. In at least one embodiment, the composition comprises from 0.001 wt % to 30 wt %, preferably from 0.05 wt % to 20 wt %, even more preferably from 0.1 wt % to 10 wt % of at least one wax.
  • In at least one embodiment, the composition comprises an emulsifier, coemulsifier or solubilizer. Non-ionic, anionic, cationic or amphoteric surface active compounds can be used as emulsifiers, coemulsifiers and solubilizers.
  • As nonionogenic surface active compounds, consideration may preferably be given to: addition products of 0 to 30 mol ethylene oxide and/or 0 to 5 mol propylene oxide on linear fatty alcohols with 8 to 22 carbon atoms, on fatty acids with 12 to 22 carbon atoms, on alkyl phenols with 8 to 15 carbon atoms in the alkyl group and on sorbitan or sorbitol esters; (012-018)-fatty acid mono- and diesters of addition products of 0 to 30 mol ethylene oxide on glycerol; glycerol mono- and diesters and sorbitan mono- and diesters of saturated and unsaturated fatty acids with 6 to 22 carbon atoms and optionally their ethylene oxide addition products; addition products of 15 to 60 mol ethylene oxide on castor oil and/or hardened castor oil; polyol and especially polyglycerol esters, e.g. polyglycerol polyricinoleate and polyglycerol poly-12-hydroxystearate. Ethoxylated fatty amines, fatty acid amides, fatty acid alkanolamides and mixtures of compounds from several of these classes of substances are also preferably suitable. Polymeric ethers formed by block polymerization of ethylene or propylene oxide known as poloxamers are also suitable.
  • Suitable ionogenic coemulsifiers are e.g. anionic emulsifiers, such as mono-, di- or triphosphoric acid esters, soaps (e.g. sodium stearate), fatty alcohol sulfates as well as cationic emulsifiers such as mono-, di- and tri-alkyl quats and polymeric derivatives thereof. Amphoteric emulsifiers that are available are preferably alkyl aminoalkyl carboxylic acids, betaines, sulfobetaines and imidazoline derivatives.
  • Fatty alcohol ethoxylates are used especially preferably. Fatty acid ethoxylates are also preferred. Sodium laureth-11-carboxylate can be used advantageously as ethoxylated alkyl ether carboxylic acid or salts thereof. Polyethylene glycol (60) evening primrose glycerides can be used advantageously as ethoxylated triglycerides.
  • In at least one embodiment, the composition comprises from 0.1 wt % to 20 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer.
  • In at least one embodiment, the composition comprises a cationic polymer. Suitable cationic polymers include those known under the INCI designation “polyquaternium”, especially polyquaternium-31, polyquaternium-16, polyquaternium-24, Polyquaternium-7, polyquaternium-22, polyquaternium-39, polyquaternium-28, polyquaternium-2, polyquaternium-10, polyquaternium-11, and also polyquaternium-37 & mineral oil & PPG trideceth (Salcare SC95), PVP-dimethylaminoethyl methacrylate copolymer, guar-hydroxypropyltriammonium chlorides, and also calcium alginate and ammonium alginate. It is additionally possible to employ cationic cellulose derivatives; cationic starch; copolymers of diallylammonium salts and acrylamides; quaternized vinylpyrrolidone/vinylimidazole polymers; condensation products of polyglycols and amines; quaternized collagen polypeptides; quaternized wheat polypeptides; polyethyleneimines; cationic silicone polymers, such as amidomethicones, for example; copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine; polyaminopolyamide and cationic chitin derivatives, such as chitosan, for example.
  • In at least one embodiment, the composition comprises a film former. Film formers are materials which produce a continuous film on skin, hair, or nails such as synthetic or natural polymers and their derivatives. The compositions according to the invention can contain film formers, which are, depending on the intended use, selected from salts of phenylbenzimidazole sulfonic acid, water-soluble polyurethanes, for example C10-polycarbamyl polyglyceryl ester, polyvinyl alcohol, polyvinylpyrrolidone (PVP) copolymers, vinylpyrrolidone/vinyl acetate copolymer or PVP/eicosene copolymers, vinylpyrrolidone/alkene copolymers, for example VP/eicosene copolymer or VP/hexadecene copolymer, PVM/MA copolymer or esters thereof, maleinized polypropylene polymers, water-soluble acrylic acid polymers/copolymers or esters or salts thereof, for example partial-ester copolymers of acrylic/methacrylic acid, polyalkylsilsesquioxanes, polyacrylamide, water-soluble cellulose, for example hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, water-soluble quaterniums, polyquaterniums, carboxyvinyl polymers, such as carbomers and salts thereof, polysaccharides, for example polydextrose and glucan, vinyl acetate/crotonate.
  • In at least one embodiment, the composition comprises a superfatting agent and/or a refatting agent. As superfatting agents it is possible to use substances such as, for example, lanolin, polyethoxylated lanolin derivatives, lecithin, lecithin derivatives, non-ethoxylated and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters such as glyceryl oleate, mono-, di- and triglycerides and/or fatty acid alkanolamides, can preferably be used as overfatting agents or refatting agents. These compounds can also simultaneously serve as foam stabilizers. In a preferred embodiment, the superfatting agent and/or a refatting agent is selected from the group consisting of, lanolin, glyceryl ricinoleate, PEG-8 glyceryl laurate, glyceryl oleate, cocamide MEA, PEG-75 lanolin, and combinations thereof.
  • In at least one embodiment, the composition comprises a stabiliser. As stabiliser it is possible to use metal salts of fatty acids, such as magnesium, aluminum and/or zinc stearate, for example. In a preferred embodiment, the stabilizer is selected from the group consisting of, aluminum stearate, aluminum isostearates/myristates, magnesium stearate, magnesium cocoate, zinc palmitate, zinc stearate, and combinations thereof.
  • In at least one embodiment, the composition comprises a biogenic substance.
  • In at least one embodiment, the composition comprises a preservative, preservation boosting ingredient, anti-fungal agent, and/or anti-dandruff agent. In at least one embodiment, the preservative is selected from the group consisting of benzyl alcohol, piroctone olamine, phenoxyethanol, parabens, pentanediol, benzoic acid/sodium benzoate, sorbic acid/potassium sorbate, and combinations thereof. Other organic acids can also be used to provide antimicrobial protection. In at least one embodiment, the preservation boosting ingredient is selected from the group consisting of anisic acid, lactic acid, sorbitan caprylate, ethylhexylglycerin, caprylyl glycol, octanediol, and mixtures thereof. A suitable preservation boosting ingredient is also disclosed in International patent application PCT/EP2017/065927 (claiming priority from European patent application 16176830.4 filed on 29 Jun. 2016) by Clariant International Ltd (see in particular claim 1 therein), which is incorporated herein by reference. In at least one embodiment, the composition comprises 0.01 to 5.0 wt %, particularly preferably from 0.05 wt % to 1.0 wt % of at least one preservative. Suitable preservatives include the substances listed in the International Cosmetic Ingredient Dictionary and Handbook, 9th Edition with the function “preservatives”. In at least one embodiment, the preservative is selected from the group consisting of phenoxyethanol, benzyl paraben, butyl paraben, ethyl paraben, isobutyl paraben, isopropyl paraben, methyl paraben, propyl paraben, iodopropynyl butylcarbamate, methyldibromoglutaronitrile, DMDM hydantoin and combinations thereof. In at least one embodiment, the composition comprises a preservative selected from the group consisting of cetyltrimethyl ammonium chloride, cetylpyridinium chloride, benzethonium chloride, diisobutylethoxyethyldimethyl benzylammonium chloride, sodium N-lauryl sarcosinate, sodium-N-palmethyl sarcosinate, lauroyl sarcosine, N-myristoylglycine, potassium-N-laurylsarcosine, trimethylammonium chloride, sodium aluminium chlorohydroxylactate, triethylcitrate, tricetylmethylammonium chloride, 2,4,4′-trichloro-2′-hydroxydiphenylether (Triclosan), phenoxyethanol, 1,5-pentandiol, 1,6-hexandiol, 3,4,4′-trichlorocarbanilide (Triclocarban), diaminoalkylamide, L-lysine hexadecylamide, heavy metal citrate salts, salicylate, piroctose, zinc salts, pyrithione and its heavy metal salts, zinc pyrithione, zinc phenol sulfate, farnesol, ketoconazol, oxiconazol, bifonazole, butoconazole, cloconazole, clotrimazole, econazole, enilconazole, fenticonazole, isoconazole, miconazole, sulconazole, tioconazole, fluconazole, itraconazole, terconazole, naftifine, terbinafine, selenium disulfide, piroctone olamine (Octopirox®), methylchloroisothiazolinone, methyl isothiazolinone, methyldibromo glutaronitrile, silver chloride (AgCl), diazolidinyl urea, imidazolidinyl urea, dehydroacetic acid, undecylenic acid, chlorphenesin, proprionic acid, salicylic acid, chloroxylenol, sodium salts of diethylhexylsulfosuccinate, sodiumbenzoate, phenoxyethanol, (RS)-1-(4-chlorophenoxy)-1-imidazol-1-yl-3,3-dimethylbutan-2-one (climbazole), benzyl alcohol, phenoxyisopropanol, parabens such as butyl-, ethyl-, methyl- and propylparaben and their salts, 2-Bromo-2-nitropropane-1,3-diol, polyaminopropyl biguanide, phenoxyisopropanol, iodopropynyl butylcarbamate, benzalkonium chloride, benzethonium chloride, pentandiol, 1,2-octanediol, ethylhexylglycerin, sorbic acid, benzoic acid, lactic acid, imidazolidinyl urea, diazolidinyl urea, dimethylol dimethyl hydantoin (DMDMH), chlorhexidine, sodium salts of hydroxymethyl glycinate, hydroxyethylglycine of sorbic acid, and combinations thereof. In at least one embodiment, the preservative is selected from the group consisting of phenoxyethanol, benzyl paraben, butyl paraben, ethyl paraben, isobutyl paraben, isopropyl paraben, methyl paraben, propyl paraben, iodopropynyl butylcarbamate, methyldibromoglutaronitrile, DMDM hydantoin and combinations thereof. In at least one embodiment, the composition is substantially free of parabens.
  • In at least one embodiment, the composition comprises from 0.1 wt % to 5.0 wt % antimicrobial agents. In at least one embodiment, the antimicrobial agent is chlorhexidine.
  • In at least one embodiment, the composition comprises an anti-fungal substance. In at least one embodiment, the anti-fungal substance is selected from the group consisting of ketoconazole, oxiconazole, bifonazole, butoconazole, cloconazole, clotrimazole, econazole, enilconazole, fenticonazole, isoconazole, miconazole, sulconazole, tioconazole, fluconazole, itraconazole, terconazole, naftifine, terbinafine, zinc pyrithione, piroctone olamine (Octopirox®), (RS)-1-(4-chlorophenoxy)-1-imidazol-1-yl-3,3-dimethylbutan-2-one (climbazole), and combinations thereof. In at least one embodiment, the composition comprises a total amount of anti-fungal substance in the composition of from 0.1 wt % to 1.0 wt %. In at least one embodiment, the composition comprises pyridinethione anti-dandruff particulates, for example 1-hydroxy-2-pyridinethione salts, are highly preferred particulate anti-dandruff agents. The concentration of pyridinethione anti-dandruff particulate may ranges from 0.1% to 4.0%, by weight of the formulation, preferably from 0.1% to 3.0%, more preferably from 0.3% to 2.0%. Preferred pyridinethione salts include those formed from heavy metals such as zinc, tin, cadmium, magnesium, aluminum and zirconium, preferably zinc, more preferably the zinc salt of 1-hydroxy-2-pyridinethione (known as “zinc pyridinethione” or “ZPT”), more preferably 1-hydroxy-2-pyridinethione salts in platelet particle form. Salts formed from other cations, such as sodium, may also be suitable.
  • In at least one embodiment, the composition comprises a dye or pigment. In at least one embodiment, the composition comprises at least one dye or pigment. Suitable dyes and pigments are disclosed in WO2013/017262A1 in the table spanning pages 36 to 43. In at least one embodiment, the composition comprises a total amount of from 0.01 wt % to 25 wt %, preferably from 0.1 wt % to 15 wt %, even more preferably from 0.5 wt % to 10 wt % of at least one pigment. In at least one embodiment, the inorganic pigment is selected from the group consisting of chalk, ochre, umber, green earth, burnt sienna, graphite, and combinations thereof. The pigments may be white pigments, such as, for example, titanium dioxide or zinc oxide, black pigments, such as, for example, iron oxide black, colored pigments, such as, for example, ultramarine or iron oxide red, lustre pigments, metal effect pigments, pearlescent pigments, and fluorescent or phosphorescent pigments, where preferably at least one pigment is a colored, nonwhite pigment.
  • In at least one embodiment, the composition comprises a particulate substance. In at least one embodiment, the composition comprises at least one particulate substance. Suitable substances are, for example, substances which are solid at room temperature (25° C.) and are in the form of particles. Suitable substances are, for example, substances which serve as opacifiers, abrasives, absorbents, anti-caking agents, bulking agents or performance fillers. In at least one embodiment, the particulate substance is selected from the group consisting of silica, silicates (e.g. sepiolite, montmorillonite, bentonite, kaolin, hectorite), aluminates, clay earths, mica, talc, starch, perlite, charcoal, pulp powder, seed powder, insoluble salts, in particular insoluble inorganic metal salts, metal oxides (e.g. titanium dioxide), minerals and insoluble polymer particles, such as polyimide derivatives (e.g. nylon-12, nylon-6, polyamide-5), silicones (e.g. polymethylsilsesquioxane), polyesters (e.g. polyester-12), polyethylene and polymethyl methacrylates.
  • In at least one embodiment, the composition comprises pearlizing agents. In at least one embodiment, the composition comprises at least one pearlizing agent. In at least one embodiment, the particulate substance is selected from the group consisting of, fatty acid monoalkanolamides, fatty acid dialkanolamides, monoesters or diesters of alkylene glycols, especially ethylene glycol and/or propylene glycol or oligomers thereof, with higher fatty acids, e.g. palmitic acid, stearic acid and behenic acid, monoesters or polyesters of glycerol with carboxylic acids, fatty acids and metal salts thereof, ketosulfones or mixtures of the aforementioned compounds.
  • In at least one embodiment, the composition comprises a direct dye. In at least one embodiment, the composition comprises at least one direct dye. Preferred among the direct dyes are the following compounds, alone or in combination with one another: hydroxyethyl-2-nitro-p-toluidine, 2-hydroxyethylpicramic acid, 4-nitrophenylaminourea, tri(4-amino-3-methylphenyl)carbenium chloride (Basic Violet 2), 1,4-di-amino-9,10-anthracenedione (Disperse Violet 1), 1-(2-hydroxy-ethyl)amino-2-nitro-4-[di(2-hydroxyethyl)amino]benzene (HC Blue No. 2), 4-[ethyl-(2-hydroxyethyl)amino]-1-[(2-hydroxyethyl)amino]-2-nitrobenzene hydrochloride (HC Blue No. 12), 1-amino-4-[di(2-hydroxyethyl)amino]-2-nitrobenzene hydrochloride (HC Red No. 13), 4-amino-1-[(2-hydroxyethyl)amino]-2-nitrobenzene (HC Red No. 3), 4-amino-3-nitrophenol, 4-[(2-hydroxyethyl)amino]-3-nitrophenol, 1-amino-5-chloro-4-[(2,3-dihydroxypropyl)amino]-2-nitrobenzene (HC Red No. 10), 5-chloro-1,4-[di(2,3-dihydroxypropyl)amino]-2-nitrobenzene (HC Red No. 11), 2-chloro-6-ethylamino-4-nitrophenol, 2-amino-6-chloro-4-nitrophenol, 4-[(2-hydroxyethyl)amino]-3-nitro-1-trifluoromethylbenzene (HC Yellow No. 13), 8-amino-2-bromo-5-hydroxy-4-imino-6-{[3-(trimethylammonio)-phenyl]amino}-1(4H)-naphthalenone chloride (C.I. 56059; Basic Blue No. 99), 1-[(4-aminophenyl)azo]-7-(trimethylammonio)-2-naphthol chloride (C.I. 12250; Basic Brown No. 16), 1-[(4-amino-2-nitrophenyl)azo]-7-(trimethylammonio)-2-naphthol chloride (Basic Brown No. 17), 2-hydroxy-1-[(2-methoxyphenyl)azo]-7-(trimethylammonio)naphthalene chloride (C.I. 12245; Basic Red No. 76), 3-methyl-1-phenyl-4-{[3-(trimethylammonio)phenyl]azo}pyrazol-5-one chloride (C.I. 12719; Basic Yellow No. 57) and 2,6-diamino-3-[(pyridin-3-yl)azo]pyridine as well as the salts thereof.
  • In at least one embodiment, the composition comprises a perfume or fragrance ingredient. Individual fragrance compounds, e.g. the synthetic products of the type of esters, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used as fragrance or perfume oils. Fragrance compounds of the ester type are e.g. benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl-methylphenyl glycinate, allylcyclohexyl propionate, styrallyl propionate and benzyl salicylate. Perfume oils can also contain mixtures of natural odoriferous substances that can be obtained from vegetable or animal sources. Essential oils of lower volatility, which are used mostly as flavor components, are also suitable as perfume oils.
  • In at least one embodiment, the composition comprises a carrier, solvent or diluent. In at least one embodiment, the composition comprises a solvent, wherein the solvent comprises water and/or alcohol. Solvent is useful for providing the compounds used in present invention in liquid form. In at least one embodiment, the solvent is cosmetically acceptable. In at least one embodiment, the composition comprises at least 10 wt % water. Water is useful for economic reasons but also because it is cosmetically acceptable. Optionally the composition comprises water-miscible or water-soluble solvents such as lower alkyl alcohols. In at least one embodiment, the composition comprises C1-C5 alkyl monohydric alcohols, preferably C2-C3 alkyl alcohols. The alcohols which may be present are in particular lower monohydric or polyhydric alcohols having 1 to 4 carbon atoms customarily used for cosmetic purposes, such as preferably ethanol and isopropanol. Optionally, the composition comprises a water-soluble polyhydric alcohol. In at least one embodiment, the water-soluble polyhydric alcohols are polyhydric alcohols having two or more hydroxyl groups in the molecule. In a preferred embodiment, the composition comprises a solvent selected from the group consisting of water, glycols, ethanol, and combinations thereof. In a preferred embodiment, the composition comprises an aqueous, alcoholic or aqueous-alcoholic solvent, and wherein the aqueous, alcoholic or aqueous-alcoholic solvent comprises water, ethanol, propanol, isopropanol, 1,2-propylene glycol, 1,3-propylene glycol, isobutanol, butanol, butyl glycol, butyl diglycol, glycerol, or a mixture thereof; preferably wherein the aqueous, alcoholic or aqueous-alcoholic solvent comprises water, ethanol, propanol, isopropanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, or mixtures thereof. Natural solvents can also be used. In at least one embodiment, the composition comprises a solvent selected from the group consisting of plant oil, honey, plant-derived sugar compositions, and mixtures thereof. In at least one embodiment, the composition comprises from 0.5 wt % to 90 wt %, preferably from 1.0 wt % to 80 wt %, even more preferably from 5.0 wt % to 70 wt % of at least one carrier, solvent and/or diluent.
  • In at least one embodiment, the composition comprises a propellant. In at least one embodiment, the propellant is selected from compressed gas propellants and liquefied gas propellants. In at least one embodiment, the compressed gas propellants are selected from the group consisting of air, nitrogen (N2), nitrous oxide (N2O), carbon dioxide (CO2), and mixtures thereof. In at least one embodiment, the liquefied gas propellants are selected from the group consisting of dimethylether (DME), 1,1-difluoroethane (HFC-152a), 1,1,1,2-tetrafluoroethane (HFC-134a), pentane, n-butane, iso-butane, propane, trans-1,3,3,3-tetrafluoropropene (HF0-1234ze), and mixtures thereof.
  • In at least one embodiment, the composition comprises a functional acid or an active ingredient. Functional acids and active ingredients are substances used to impart a clinical functionality to the skin or hair upon application. Functional acids and active ingredients are for example used as exfoliants, skin-brightening agents, self-tanning agents, anti-acne agents and anti-ageing agents.
  • In at least one embodiment, the composition comprises a deodorant or an anti-perspirants. In at least one embodiment, the composition comprises a deodorising agent. In at least one embodiment, the deodorising agent is selected from the group consisting of allantoin, bisabolol, and combinations thereof. The composition may comprise an antiperspirant. As antiperspirant it is possible to use aluminium chloride, aluminum chloride hydroxide, aluminum chloride dihydroxide, aluminum chlorohydrex polyethylene glycol complex, magnesium zirconium complexes or aluminum zirconium chloride hydroxide, for example.
  • In at least one embodiment, the composition comprises at least one viscosity modifier or thickening and/or gelling agent. The desired viscosity and rheology profile of the compositions can be adjusted by adding further thickeners and gelling agents. The viscosity-modifying substance is preferably a thickening polymer. In at least one embodiment, the thickening polymer selected from the group consisting of: copolymers of at least one first monomer type, which is chosen from acrylic acid and methacrylic acid, and at least one second monomer type, which is chosen from esters of acrylic acid and ethoxylated fatty alcohol, crosslinked polyacrylic acid, crosslinked copolymers of at least one first monomer type, which is chosen from acrylic acid and methacrylic acid, and at least one second monomer type, which is chosen from esters of acrylic acid with C10- to C30-alcohols; copolymers of at least one first monomer type, which is chosen from acrylic acid and methacrylic acid, and at least one second monomer type, which is chosen from esters of itaconic acid and ethoxylated fatty alcohol; copolymers of at least one first monomer type, which is chosen from acrylic acid and methacrylic acid, at least one second monomer type, which is chosen from esters of itaconic acid and ethoxylated C10- to C30-alcohol and a third monomer type, chosen from C1- to C4-aminoalkyl acrylates; copolymers of two or more monomers chosen from acrylic acid, methacrylic acid, acrylic esters and methacrylic esters; copolymers of vinylpyrrolidone and ammonium acryloyldimethyltaurate; copolymers of ammonium acryloyldimethyltaurate and monomers chosen from esters of methacrylic acid and ethoxylated fatty alcohols, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylguar, glyceryl polyacrylate, glyceryl polymethacrylate, copolymers of at least one C2-, C3- or C4-alkylene and styrene, polyurethanes, hydroxypropyl starch phosphate, polyacrylamide, copolymer of maleic anhydride and methyl vinyl ether crosslinked with decadiene, carob seed flour, gums such as guar gum, karaya gum, xanthan gum or dehydroxanthan gum, carrageenan, hydrolyzed corn starch; copolymers of polyethylene oxide, fatty alcohols and saturated methylenediphenyl diisocyanate (e.g. PEG-150/stearyl alcohol/SMDI copolymer), and mixtures thereof. In a preferred embodiment, the viscosity modifier or thickening and/or gelling agent is selected from the group consisting of carbomers, acrylates copolymers, xanthan gum, hydroxyethylcellulose, laureth-2, and combinations thereof.
  • In at least one embodiment, the composition comprises an alkalizing agent or pH adjusting agent. In at least one embodiment, ammonia or caustic soda is suitable, but water-soluble, physiologically tolerable salts of organic and inorganic bases can also be considered. Optionally, the pH adjusting agent is selected from ammonium hydrogen carbonate, ammonia, monoethanolamine, ammonium hydroxide, ammonium carbonate. In at least one embodiment, the alkalizing agents is selected from the group consisting of 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, tris(hydroxyl-methyl)-aminomethane, 2-amino-1-butanole, tris-(2-hydroxypropyl)-amine, 2,2-iminobisethanol, lysine, iminourea (guanidine carbonate), tetrahydro-1,4-oxazine, 2-amino-5-guanidin-valeric acid, 2-aminoethansulfonic acid, diethanolamine, triethanolamine, N-methyl ethanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, glucamine, sodium hydroxide, potassium hydroxide, lithium hydroxide and magnesium oxide, and mixtures thereof. To establish an acidic pH value, an acid can be included.
  • In at least one embodiment, the composition/formulation comprises an anti-oxidant. In at least one embodiment, the anti-oxidant is selected from the group consisting of amino acids, peptides, sugars, imidazoles, carotinoids, carotenes, chlorogenic acid, lipoic acid, thiols, thiol glycosyl esters, thiol N-acetyl esters, thiol methyl esters, thiol ethyl esters, thiol propyl esters, thiol amyl esters, thiol butyl esters, thiol lauryl esters, thiol palmitoyl esters, thiol oleyl esters, thiol linoleyl esters, thiol cholesteryl esters, thiol glyceryl esters, dilaurylthiodipropionate, distearylthiodipropionate, thiodipropionic acid, metal chelators, hydroxy acids, fatty acids, folic acids, vitamin C, tocopherol, vitamin A, stilbenes, derivatives and combinations thereof.
  • In at least one embodiment, the composition/formulation comprises a chelant. In at least one embodiment, the chelant is selected from the group consisting of EDTA, caprylhydroxamic acid, oxalate derivatives, disodium hydroxyethyliminodiacetate, galacturonic acid and derivatives, glucuronic acid and derivatives, lauroyl ethylenediamine triacetic acid, methyl dihydroxybenzoate, trisodium ethylenediamine disuccinate, phytic acid, itaconic acid, propane tricarboxylic acid, citric acid and derivatives (e.g. diammonium citrate, bismuth citrate and acetyl trihexyl citrate 2,6-dicarboxy pyridine), phosphoric and phosphonic acid derivatives (e.g. diethylenetriamine pentamethylene phosphonic acid, disodium azacycloheptane diphosphonate, glycereth-26 phosphate, disodium pyrophosphate, disodium salicylphosphate, aminotrimethylene phosphonic acid, phosphonobutanetricarboxylic acid, potassium trisphosphonomethylamine oxidebeta-alanine diacetic acid or cyclohexanediamine tetraacetic acid). In at least one embodiment, the chelant is selected from the group consisting EDTA, oxalate derivatives, disodium salicylphosphate, and combinations thereof.
  • In at least one embodiment, the composition comprises an astringent. In at least one embodiment, the astringent is selected from the group consisting of magnesium oxide, aluminium oxide, titanium dioxide, zirconium dioxide, zinc oxide, oxide hydrates, aluminium oxide hydrate (boehmite) and hydroxide, chlorohydrates of calcium, magnesium, aluminium, titanium, zirconium or zinc.
  • In at least one embodiment, the composition comprises a sun protection agent and/or UV filter. Suitable sun protection agents and UV filters are disclosed in WO2013/017262A1 (published on 7 Feb. 2013), from page 32, line 11 to the end of page 33. The photoprotective substances include, in particular, all of the photoprotective substances specified in EP1084696, which is incorporated herein by reference. In another preferred embodiment of the invention, the compositions according to the invention contain one or more substances selected from inorganic and organic UV filters and especially preferably are in the form of sunscreen compositions.
  • In at least one embodiment, the composition comprises a skin conditioning agent. Skin conditioning agents such as emollients, humectants and occlusive agents are ingredients which help to maintain the soft and smooth appearance of the skin or which help to improve the condition of dry or damaged skin. In at least one embodiment, the skin conditioning agent is selected from the group consisting of oily substances (description see above), functional acids or active ingredients (description see above), fatty acid N-alkylpolyhydroxyalkyl amides, fatty acids, triglycerides, panthenol, allantoin, bisabolol, glycerol, sorbitol, urea and derivatives thereof, trehalose, erythrulose, pyrrolidone carboxylic acid (PCA) and its salts, polyglucuronic acid, gluconolactone, petrolatum, ubichinon-10 and ubiquinol. In a preferred embodiment, the skin conditioning agent is selected from the group consisting of urea, glycerine, pyrrolidone carboxylic acid (PCA) and its salts, panthenol, petrolatum, and combinations thereof.
  • In at least one embodiment, the composition comprises an anti-foaming agent. Antifoams are chemicals which reduce the tendency of finished products to generate foam on shaking or agitation. In at least one embodiment, the anti-foaming agent is selected from the group consisting of alcohols (e.g. ethanol, isopropyl alcohol or propyl alcohol), alkoxylated alcohols (e.g. laureth-5 butyl ether), silicon oils and resins (e.g. dimethicone and its derivatives such as cetyl dimethicone, phenyl dimethicone, PEG/PPG-12/18 dimethicone and hydrogen trifluoropropyl dimethicone, trimethylsiloxysilicate/dimethicone crosspolymer or polysilicone-10) and hydrophobic silica derivatives (e.g. silica silylate).
  • In at least one embodiment, the composition comprises a flavouring agent. In at least one embodiment, the flavouring agent is selected from the group consisting of 1-acetonaphthalene, 1-decen-3-ol, p-methylbenzaldehyde, p-propenylphenyl methyl ether, aspartame, benzaldehyde, bromocinnamal, calcium cyclohexylsulfamate, calcium o-benzolufimide, carvone, cinnamic aldehyde, 3,7-dimethyl-6-octenoic acid, fruit sugar, glucose, glucosyl stevioside, honey, 3-methyl-1-butanol, 4-hydroxy-3-methoxy-1-propenylbenzene, malt sugar, menthol, eucalyptol, thymol, potassium 6-methyl-1,2,2-oxathiazin-4(3H)- one 2,2′-dioxide, isodulcitol, saccharine, stevioside, 1′,4,6′-trichloro-galacto-sucrose, sorbitol, saccharose, sodium saccharin, methyl salicylate vanillaldehyde, xylite, xylose and plant extracts.
  • In at least one embodiment, the composition comprises an electrolyte. In at least one embodiment, the electrolyte is selected from the group consisting of salts preferably ammonium or metal salts, especially preferably halides, for example CaCl2, MgCl2, LiCl, KCl and NaCl, carbonates, hydrogen carbonates, phosphates, sulfates, nitrates, especially preferably sodium chloride, sodium fluoride, sodium monofluorophosphate, stannous fluoride, and/or organic salts.
  • In at least one embodiment, the composition comprises an oxidizing or reducing agent. In at least one embodiment, the oxidizing or reducing agent is selected from the group consisting of ammonium persulfate, calcium peroxide, hydrogen peroxide, hypochlorous acid, sodium hypochlorite, potassium monopersulfate, sodium carbonate peroxide, ammonium thioglycolate, cysteine, glutathione, hydroquinone, mercaptopropionic acid, superoxide dismutase, thioglycerin, thioglycolic acid, thiolactic acid, sodium sulfite, sodium thioglycolate, potassium thioglycolate, and cysteine.
  • Hair Conditioning Agent
  • In at least one embodiment, the composition comprises a hair conditioning agent. In at least one embodiment, the hair conditioning agent is a water insoluble, water dispersible, non-volatile, liquid that forms emulsified, liquid particles. In at least one embodiment, the hair conditioning agent is a silicone (e.g., silicone oil, cationic silicone, silicone gum, high refractive silicone, and silicone resin), an organic conditioning oil (e.g., hydrocarbon oils, polyolefins, and fatty esters), or combinations thereof.
  • In at least one embodiment, the hair conditioning agent is a silicone, and wherein the composition comprises from 0.01% to 10%, or from 0.1% to 5% silicone hair conditioning agent, by total weight of the composition. Suitable silicone hair conditioning agents, and optional suspending agents for the silicone, are described in U.S. Pat. No. 5,104,646. In at least one embodiment, the composition comprises a silicone gum selected from the group consisting of polydimethylsiloxane, (polydimethylsiloxane) (methylvinylsiloxane) copolymer, poly(dimethylsiloxane) (diphenylsiloxane) (methylvinylsiloxane) copolymer, and mixtures thereof. In at least one embodiment, the composition comprises a terminal aminosilicone. “Terminal aminosilicone” as defined herein means silicone comprising one or more amino groups at one or both ends of the silicone backbone.
  • In at least one embodiment, the composition comprises a high melting point fatty compound. The high melting point fatty compound has a melting point of 25° C. or higher. In at least one embodiment, the high melting point fatty compound is selected from the group consisting of a fatty alcohol, fatty acid, fatty alcohol derivative, fatty acid derivative, and mixtures thereof. Non-limiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992. The composition may comprise from 0.1% to 40%, or from 1% to 30%, or from 1.5% to 16%, or from 1.5% to 8% of a high melting point fatty compound, by total weight of the composition.
  • In at least one embodiment, the composition comprises a cationic surfactant. In an embodiment, cationic surfactant is according to Formula (C):
  • Figure US20220202687A1-20220630-C00017
  • wherein
    at least one of R71, R72, R73 and R74 is selected from an aliphatic group of from 8 to 30 carbon atoms, an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl, or an alkylaryl group having up to 22 carbon atoms;
    the remainder of R71, R72, R73 and R74 are independently selected from the group consisting of an aliphatic group consisting of from 1 to 22 carbon atoms, and an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to 22 carbon atoms;
    X is selected from the group consisting of: halogen, acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfonate, sulfate, alkylsulfate, alkyl sulfonate radicals, and combinations thereof.
  • In at least one embodiment, the cationic surfactant is selected from the group consisting of cetyltrimonium chloride (CTAC), stearyltrimonium chloride (STAG), behentrimonium methosulfate, stearoylamidopropyldimethyl amine (SAPDMA), distearyldimethylammonium chloride, and mixtures thereof.
  • Hairstyling Polymers
  • In at least one embodiment, the composition comprises a hairstyling polymer. In at least one embodiment, the hairstyling polymer is selected from the group consisting of: amphoteric hairstyling polymers, zwitterionic hairstyling polymers, anionic hairstyling polymers, non-ionic hairstyling polymers, cationic hairstyling polymers, and mixtures thereof. In at least one embodiment, the composition comprises from 0.01% to 20%, or from 0.01% to 16%, or from 0.01% to 10%, or from 1% to 8%, or from 2% to 6% of hairstyling polymer.
  • Cosmetic, Dermatological or Pharmaceutical Compositions
  • In at least one embodiment, the cosmetic, dermatological or pharmaceutical composition according to the invention comprise the one or more polymers (I) in a total amount of from 0.01 to 10 wt %, preferably from 0.1 to 5.0 wt %, even more preferably from 0.25 to 2.0 wt %. In at least one embodiment, the cosmetic, dermatological or pharmaceutical compositions comprise further from 0.5 wt % to 90 wt %, preferably from 1.0 wt % to 80 wt %, even more preferably from 5.0 wt % to 70 wt % of at least one carrier, solvent and/or diluent. Carriers, solvents and/or diluents are listed above. In at least one embodiment, the carrier, solvent and/or diluent is selected from the group consisting of water, glycols, ethanol, and combinations thereof.
  • In at least one embodiment, the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot cream, exfoliator, body scrub, cellulite treatment, bar soap, cuticle cream, lip balm, hair treatment, eye shadow, bath additive, body mist, eau de toilette, mouthwash, toothpaste, lubricating gel, moisturizer, serum, toner, aqua sorbet, cream gel, styling mousse, dry shampoo, lip stick, lip gloss, hydro-alcoholic gel, body oil, shower milk, illuminator, lip crayon, hair spray, combing cream, and sunblock.
  • In at least one embodiment, the cosmetic, dermatological or pharmaceutical composition is for use on skin. In at least one embodiment, the composition is for use on the face, the neck, the body and/or around the eye area. In at least one embodiment, the composition is an emulsion or gel, preferably an oil-in-water (o/w), cream gel, hydro-alcoholic gel or hydrogel composition. In a preferred embodiment, the composition has a viscosity from 100 000 to 200 000 mPa·s, preferably from 1 000 to 100 000 mPa·s, even more preferably from 2 000 to 50 000 mPa·s and very preferably from 5 000 to 30 000 mPa·s (measured at 25° C., Brookfield RVT, T-C spindle at 20 revolutions per minute).
  • In at least one embodiment, the composition is a body or face care composition such as face creams, neck creams, body lotions, body milks, face serums, blemish balm creams, hand creams, foot creams, body butters, lip creams, eye creams, after-sun lotions, make-up removing lotions or body mists, diaper creams or baby lotions. Optionally the body or face care composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer. Emulsifiers, coemulsifiers and/or solubilizers are listed above. Optionally the body or face care composition comprises from 0.01 wt % to 40 wt %, preferably from 0.05 wt % to 30 wt %, even more preferably from 0.1 wt % to 20 wt % of at least one oily substance. Oily substances are listed above. Optionally the body or face care composition comprises from 0.01 wt % to 20 wt %, preferably from 0.05 wt % to 10 wt %, even more preferably from 0.1 wt % to 5.0 wt % of at least one wax. Waxes are listed above. Optionally the body or face care composition comprises from 0.01 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.3 wt % to 5.0 wt % of at least one viscosity modifier or thickening and/or gelling agent. Viscosity modifiers or thickening and/or gelling agents are listed above. Optionally the body or face care composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one skin conditioning agent. Skin conditioning agents are listed above. Optionally the body or face care composition comprises from 0.001 wt % to 10 wt %, preferably from 0.05 wt % to 5.0 wt %, even more preferably from 0.1 wt % to 3.0 wt %, most preferably from 0.05 wt % to 1.0 wt % of at least one antioxidant. Antioxidants are listed above. Optionally the body or face care composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.01 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 2.0 wt % of at least one biogenic active substance. Optionally the body or face care composition comprises from 0.01 wt % to 4.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above. Optionally the body or face care composition comprises from 0.01 wt % to 3.0 wt %, preferably from 0.05 wt % to 2.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one perfume or fragrance ingredient. Perfume or fragrance ingredients or are listed above. Optionally the body or face care composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • In at least one embodiment, the composition is a skin-whitening composition. Optionally the skin-whitening composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer. Emulsifiers, coemulsifiers and/or solubilizers are listed above. Optionally the skin-whitening composition comprises from 0.01 wt % to 10 wt %, preferably from 0.1 wt % to 7.5 wt %, even more preferably from 0.3 wt % to 5.0 wt % of at least one viscosity modifier or thickening and/or gelling agent. Viscosity modifiers or thickening and/or gelling agents are listed above. Optionally the skin-whitening composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above. In a preferred embodiment, the skin-whitening composition has a pH value from 1.0 to 8.0, preferably from 2.0 to 7.0, even more preferably from 3.0 to 6.0.
  • In at least one embodiment, the composition is a self-tanning composition. Optionally the self-tanning composition comprises from 0.001 wt % to 40 wt %, preferably from 0.05 wt % to 30 wt %, even more preferably from 0.1 wt % to 20 wt % of at least one oily substance. Oily substances are listed above. Optionally the self-tanning composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • In at least one embodiment, the composition is a cleansing composition such as body washes, face washes, micellar waters or gels, body scrubs, face peeling, facial exfoliators, liquid soaps, bath additives, bubble baths, shower creams or milks, shower foams and face masks. Optionally the cleansing composition comprises from 0.5 wt % to 25 wt %, preferably from 1.0 wt % to 20 wt %, even more preferably from 2.0 wt % to 15 wt % of at least one surfactant. Surfactants are listed above. Optionally the cleansing composition comprises from 0.01 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one viscosity modifier or thickening agent. Viscosity modifier or thickening agents are listed above. Optionally the cleansing composition comprises from 0.01 wt % to 15 wt %, preferably from 0.05 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one particulate substance. Particulate substances are listed above. Optionally the cleansing composition comprises from 0.001 wt % to 30 wt %, preferably from 0.05 wt % to 20 wt %, even more preferably from 0.1 wt % to 10 wt % of at least one oily substance. Oily substances are listed above. Optionally the cleansing composition comprises from 0.05 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one functional acid or/and an active ingredient. Functional acids or/and an active ingredients are listed above. Optionally the cleansing composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one electrolyte. Electrolytes are listed above. Optionally the cleansing composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Optionally the cleansing composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • In at least one embodiment, the composition is a sun care composition such as sun sprays, sun milks, sun lotions, sun gels. Body and face care compositions with sun protection agents and/or UV filters such as day creams, hand creams, foundations, lip balms and face serums can also serve as sun care compositions. Optionally the sun care composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer. Optionally the sun care composition comprises from 0.001 wt % to 50 wt %, preferably from 0.05 wt % to 40 wt %, even more preferably from 0.1 wt % to 30 wt % of at least one oily substance. Oily substances are listed above. Optionally the sun care composition comprises from 0.001 wt % to 30 wt %, preferably from 0.05 wt % to 20 wt %, even more preferably from 0.1 wt % to 10 wt %, most preferably from 0.05 wt % to 5.0 wt % of at least one sun protection agent and/or UV filter. Sun protection agents and/or UV filters are listed above. Optionally the sun care composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one film former. Film formers are listed above. Optionally the sun care composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3. wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above. Optionally the sun care composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • In at least one embodiment, the composition is a color cosmetic composition such as foundations, fluid Illuminators, eye brow products, primers, concealers, blushes, bronzers, eye shadows, eye lash products, eye liners, face powders, lipsticks, lip glosses, lip balms or nail polishes. Optionally the color cosmetic composition comprises from 0.01 wt % to 25 wt %, preferably from 0.1 wt % to 15 wt %, even more preferably from 0.5 wt % to 10 wt % of at least one dye or pigment. Dyes and pigments are listed above. Optionally the color cosmetic composition comprises from 0.01 wt % to 15 wt %, preferably from 0.05 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one particulate substance. Optionally the color cosmetic composition comprises from 0.001 wt % to 60 wt %, preferably from 0.05 wt % to 50 wt %, even more preferably from 0.1 wt % to 40 wt % of at least one oily substance. Oily substances are listed above. Optionally the color cosmetic composition comprises from 0.001 wt % to 30 wt %, preferably from 0.05 wt % to 20 wt %, even more preferably from 0.1 wt % to 10 wt % of at least one wax. Waxes are listed above. Optionally the color cosmetic composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer. Optionally the color cosmetics composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above. Optionally the color cosmetic composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • In at least one embodiment, the composition is a face toner. Optionally the face toner composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one skin conditioning agent. Skin conditioning agents are listed above. Optionally the face toner composition comprises from 0.01 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one viscosity modifier or thickening agent. Optionally the face toner composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient.
  • In at least one embodiment, the composition is a bar soap or syndet composition. Optionally the bar soap or syndet composition comprises from 1.0 wt % to 50 wt %, preferably from 2.0 wt % to 30 wt %, even more preferably from 5.0 wt % to 20 wt % of at least one surfactant. Surfactants are listed above. Optionally the bar soap or syndet composition comprises from 0.01 wt % to 20 wt %, preferably from 0.05 wt % to 15 wt %, even more preferably from 0.5 wt % to 10 wt % of at least one particulate substance. Particulate substances are listed above. Optionally the bar soap or syndet composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one electrolyte. Electrolytes are listed above. Optionally the bar soap or syndet composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • In at least one embodiment, the composition is a deodorizing and/or antiperspirant composition. In at least one embodiment, the composition is in the form of a cream, a roll-on, a solid, an aerosol or a gel. Optionally the deodorizing and/or antiperspirant composition comprises from 0.001 wt % to 10 wt %, or from 0.01 wt % to 9.0 wt %, or from 0.05 wt % to 8.0 wt %, or from 0.1 wt % to 5.0 wt % of at least one antiperspirant and/or deodorizing agent. Optionally the deodorizing and/or antiperspirant composition comprises 0.01 wt % to 3.0 wt %, preferably from 0.05 wt % to 2.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one perfume or fragrance ingredient. Perfume or fragrance ingredients or are listed above. Optionally the deodorizing and/or antiperspirant composition comprises from 0.5 wt % to 60 wt %, preferably from 1.0 wt % to 50 wt %, even more preferably from 2.0 wt % to 40 wt % of at least one propellant. Propellants are listed above. Optionally the deodorizing and/or antiperspirant composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above.
  • In at least one embodiment, the composition is a depilating composition.
  • In at least one embodiment, the composition is a shaving composition.
  • In at least one embodiment, the composition is a fragrance composition.
  • In at least one embodiment, the composition is a hand sanitizing composition.
  • In at least one embodiment, the cosmetic, dermatological or pharmaceutical composition is for use on hair and/or scalp. In at least one embodiment, the composition is an emulsion or gel, preferably an oil-in-water (o/w), cream gel, hydro-alcoholic gel or hydrogel composition. In a preferred embodiment, the hair care composition has a viscosity from 100 000 to 150 000 mPa·s, preferably from 1 000 to 100 000 mPa·s, more preferably from 2 000 to 50 000 mPa·s and very preferably from 5 000 to 30 000 mPa·s (25° C., Brookfield RVT, T-C spindle at 20 revolutions per minute).
  • In at least one embodiment, the composition is a shampoo composition. Optionally the shampoo composition comprises from 0.5 wt % to 30 wt %, preferably from 1.0 wt % to 15 wt %, even more preferably from 2.0 wt % to 10 wt % of at least one surfactant. Surfactants are listed above. In at least one embodiment, the surfactant is selected from the group consisting of sodium laureth sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauroyl sarcosinate, sodium methyl cocoyl taurate, cocamidopropyl betaine, sodium cocoyl glutamate, lauryl glucoside, cocoyl methyl glucamide, and combinations thereof. Optionally the shampoo composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one cationic polymer. Optionally the shampoo composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one pearlizing agent. Optionally the shampoo composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one electrolyte. Optionally the shampoo composition comprises from 0.01 wt % to 15 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one viscosity modifier or thickening agent. Viscosity modifier or thickening agents are listed above. Optionally the shampoo composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above. Optionally the shampoo composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above. In a preferred embodiment, the shampoo composition has a pH value of from 2.0 to 8.0, preferably from 3.0 to 7.0, even more preferably from 4.0 to 6.0.
  • In at least one embodiment, the composition is a hair conditioning and/or hair and/or scalp treatment composition such as leave-in and rinse-off conditioners, masks, lotions, combing creams, detangling creams, anti-frizz liquids, hair serums, scalp serums, color protection creams. Optionally the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer. Emulsifiers, coemulsifiers and/or solubilizers are listed above. In at least one embodiment, the emulsifier, coemulsifier and/or solubilizer is selected from the group consisting of cetearyl alcohol, cetrimonium chloride, behentrimonium chloride, steartrimonium chloride, cetyl alcohol, stearyl alcohol, stearic acid, isostearamidopropyl dimethylamine, and combinations thereof. Optionally the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.01 wt % to 20 wt %, preferably from 0.05 wt % to 10 wt %, even more preferably from 0.1 wt % to 5.0 wt % of at least one oily substance. Oily substances are listed above. In at least one embodiment, the oily substance is selected from the group consisting of dimethicone, squalene, amodimethicone, argan oil, jojoba oil, cyclopentasiloxane, mineral oil, castor oil, shea butter, and combinations thereof. Optionally the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one cationic polymer. Cationic polymers are listed above. In at least one embodiment, the cationic polymer is selected from the group consisting of polyquaternium-10, guar hydroxypropyltrimonium chloride, polyquaternium-7, polyquaternium-6, and combinations thereof. Optionally the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.01 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 2.0 wt % of at least one biogenic active substance. Biogenic active substances are listed above. In at least one embodiment, the biogenic active substance is selected from the group aloe collagen hydrolysates, bisabolol, allantoin, hydrolyzed wheat protein, hydrolyzed silk, hydrolyzed keratin, amino acids and its derivatives, glycoproteins, and combinations thereof. Optionally the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above. In at least one embodiment, the preservative or preservation boosting ingredient is selected from the group consisting of sodium benzoate, methylparaben, phenoxyethanol, methylisothiazolinone, DMDM hydantoin, methylchloroisothiazolinone, pyrithione, octopirox, and combinations thereof. Optionally the hair conditioning and/or hair and/or scalp treatment composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above. In a preferred embodiment, the hair conditioning and/or hair and/or scalp treatment composition has a pH value from 2.0 to 8.0, preferably from 3.0 to 7.0, even more preferably from 4.0 to 6.0.
  • In at least one embodiment, the composition is a hair styling composition such as mousses, gels, sprays and waxes. Optionally the hair styling composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one film former or hairstyling polymer. Film formers and hairstyling polymers are listed above. In at least one embodiment, the film former is selected from the group consisting of PVP, VPNA copolymer, styrene/acrylates copolymer, acrylates copolymer, butyl ester of PVM/MA copolymer, hydroxyethylcellulose, chitosan, polyquaternium-10, polypropylsilsesquioxane, polyurethane-64, and combinations thereof. Optionally the hair styling composition comprises from 0.1 wt % to 10 wt %, preferably from 0.5 wt % to 7.5 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one cationic polymer. Cationic polymers are listed above. In at least one embodiment, the cationic polymer is selected from the group consisting of polyquaternium-10, guar hydroxypropyltrimonium chloride, polyquaternium-7, polyquaternium-6, and combinations thereof. Optionally the hair styling composition comprises from 0.5 wt % to 60 wt %, preferably from 1.0 wt % to 50 wt %, even more preferably from 2.0 wt % to 40 wt % of at least one propellant. Propellants are listed above. In at least one embodiment, the propellant is selected from the group consisting of nitrogen, carbon dioxide, pentane, n-butane, iso-butane, propane, and combinations thereof. Optionally the hair styling composition comprises from 0.01 wt % to 5.0 wt %, preferably from 0.1 wt % to 3.0 wt %, even more preferably from 0.4 wt % to 1.0 wt % of at least one preservative or preservation boosting ingredient. Preservatives or preservation boosting ingredients are listed above. In at least one embodiment, the preservative or preservation boosting ingredient is selected from the group consisting of sodium benzoate, methylparaben, phenoxyethanol, methylisothiazolinone, DMDM hydantoin, methylchloroisothiazolinone, pyrithione, octopirox, and combinations thereof. Optionally the hair styling composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10.0 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above. In a preferred embodiment, the hair styling composition has a pH value from 2.0 to 9.0, preferably from 3.0 to 8.0, even more preferably from 4.0 to 7.0.
  • In at least one embodiment, the composition is a hair coloring/hair bleaching composition. Optionally the hair coloring/hair bleaching composition comprises from 0.5 wt % to 60 wt %, preferably from 1.0 wt % to 50 wt %, even more preferably from 2.0 wt % to 40 wt % of at least one direct dye. Direct dyes are listed above. Optionally the hair coloring/hair bleaching composition comprises from 00.001 wt % to 5.0 wt %, preferably from 0.05 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one oxidizing or reducing agent. Oxidizing or reducing agents are listed above. In at least one embodiment, the hair coloring/hair bleaching composition comprises a primary intermediate and a coupling agent. In at least one embodiment, the primary intermediate is selected from the group consisting of 2,4,5,6-tetraaminopyrimidine, 4-aminophenol, 4-amino-3-methylphonol, 2,5-diamino-toluene and 2-(2,5-diaminophenyl) ethanol, 2-methoxymethyl-1,4-benzenediamine, and combinations thereof. In at least one embodiment, the coupling agent is selected from the group consisting of 5-amino-4-chloro-o-cresol, 2,6-diaminopyridine, 2,6-dihydroxyethylaminotoluene, resorcinol, 2-methyl resorcinol, 4-amino-2-methylphenol, and combinations thereof. Optionally the hair coloring/hair bleaching composition comprises from 0.1 wt % to 15 wt %, preferably from 0.5 wt % to 10 wt %, even more preferably from 1.0 wt % to 5.0 wt % of at least one emulsifier, coemulsifier and/or solubilizer. Optionally the hair coloring/hair bleaching composition comprises from 0.001 wt % to 5.0 wt %, preferably from 0.01 wt % to 3.0 wt %, even more preferably from 0.1 wt % to 1.0 wt % of at least one alkalizing or pH adjusting agent. Alkalizing or pH adjusting agents are listed above. Optionally the hair coloring/hair bleaching composition comprises from 0.01 wt % to 20 wt %, preferably from 0.1 wt % to 10.0 wt %, even more preferably from 0.5 wt % to 5.0 wt % of at least one further auxiliary. Auxiliaries are listed above. In a preferred embodiment, the hair coloring/hair bleaching composition has a pH value from 6.0 to 14.0, preferably from 7.0 to 13.0, even more preferably from 8.0 to 12.0.
  • In at least one embodiment, the cosmetic, dermatological or pharmaceutical composition is for use on mucous membranes. In at least one embodiment, the composition is an emulsion, gel or paste, preferably an oil-in-water (o/w), cream gel or hydrogel composition. In a preferred embodiment, the composition suitable for mucous membranes has a viscosity from 100 000 to 300 000 mPa·s, preferably from 1 000 to 200 000 mPa·s, more preferably from 2 000 to 100 000 mPa·s and very preferably from 5 000 to 30 000 mPa·s (25° C., Brookfield RVT, T-C spindle at 20 revolutions per minute).
  • In at least one embodiment, the composition is a toothpaste composition. In at least one embodiment, the composition is a mouthwash composition.
  • In at least one embodiment, the composition is a lubricant composition.
  • Example Embodiments of the Second Aspect
  • In a preferred embodiment, the second aspect relates to a cosmetic, dermatological or pharmaceutical composition comprising:
  • (I) a polymer; and
    (II) a cosmetically acceptable component;
      • wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
      • (a) from 90 mol-% to 99.9 mol-%, preferably from 95 mol-% to 99.5 mol-% of repeating units according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00018
        • wherein:
        • R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is W, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof;
      • (b) optionally from 0.01 mol-% to 10 mol-%, preferably from 0.01 mol-% to 5 mol-% of crosslinking or branching units, wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds.
  • In at least one embodiment, the polymer comprises from 96 mol-% to 99.7 mol-%, preferably from 97 mol-% to 99.5 mol-% units (a) and from 0.3 mol-% to 4 mol-%, preferably from 0.5 mol-% to 3 mol-% units (b). In at least one embodiment, the polymer comprises units (a) and (b), such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In a preferred embodiment, the second aspect relates to a cosmetic, dermatological or pharmaceutical composition comprising:
  • (I) a polymer; and
    (II) a cosmetically acceptable component;
      • wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
      • (a) from 40 mol-% to 98 mol-%, preferably from 55 mol-% to 98 mol-% repeating units according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units comprises from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00019
        • wherein:
        • R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof;
      • (b) optionally from 0.01 mol-% to 5 mol-%, preferably from 0.01 mol-% to 3 mol-% crosslinking or branching units, wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds;
      • (c) optionally from 0.99 mol-% to 59.99 mol-%, preferably from 1.99 mol-% to 44.99 mol-% of repeating neutral structural units wherein at least 10 wt.-%, preferably at least 20 wt.-% of the neutral structural units comprises from 0 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit, measured according to standard ASTM D6866-12, Method B.
  • In at least one embodiment, the polymer comprises from 45 mol-% to 97 mol-%, preferably from 65 mol-% to 96 mol-% units (a), from 0.25 mol-% to 4 mol-%, preferably from 0.3 mol-% to 3 mol-% units (b), from 2 mol-% to 54.7 mol-%, preferably from 2.5 mol-% to 34.5 mol-% units (c). In at least one embodiment, the polymer comprises units (a), (b) and (c) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In at least one embodiment, the polymer comprises from 70 mol-% to 98 mol-%, preferably from 73 mol-% to 96 mol-% units (a), from 0.6 mol-% to 2.5 mol-%, preferably from 0.75 mol-% to 2 mol-% units (b), from 1.4 mol-% to 54.7 mol-%, preferably from 2.5 mol-% to 34.5 mol-% units (c). In at least one embodiment, the polymer comprises units (a), (b) and (c) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In a preferred embodiment, the second aspect relates to a cosmetic, dermatological or pharmaceutical composition comprising:
  • (I) a polymer; and
    (II) a cosmetically acceptable component;
      • wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises:
      • (a) from 9.49 mol-% to 98 mol-%, preferably from 27.5 mol-% to 97.4 mol-% repeating units according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00020
        • wherein:
        • R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof;
      • (b) optionally from 0.01 mol-% to 5 mol-%, preferably from 0.01 mol-% to 4 mol-% crosslinking or branching units, wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds;
      • (c) optionally from 0.01 mol-% to 88.52 mol-%, preferably from 0.05 mol-% to 72.4 mol-% of repeating neutral structural units, preferably wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating neutral structural units comprises from 0 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating neutral structural unit, measured according to standard ASTM D6866-12, Method B;
      • (d) optionally from 1.98 mol-% to 20 mol-%, preferably from 2.5 mol-% to 18 mol-% of repeating anionic structural units, wherein the repeating anionic structural units result from the incorporation of a monomer comprising at least one carboxylate anion, and wherein the repeating anionic structural units are different from units (a) and preferably wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating anionic structural units comprise from 0 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating anionic structural unit, measured according to standard ASTM D6866-12, Method B;
        and wherein the polymer has a weight average molecular weight of at least 700 g/mol, preferably from 700 g/mol to 10 million g/mol.
  • In at least one embodiment, the polymer comprises from 37 mol-% to 96.4 mol-%, preferably from 43 mol-% to 95.3 mol-% units (a), from 0.1 mol-% to 3 mol-%, preferably from 0.2 mol-% to 2 mol-% units (b), from 0.1 mol-% to 59.3 mol-%, preferably from 0.5 mol-% to 52.8 mol-% units (c), and from 3.5 mol-% to 16 mol-%, preferably from 4 mol-% to 14 mol-% units (d). In at least one embodiment, the polymer comprises units (a), (b), (c) and (d) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In at least one embodiment, the polymer comprises from 70 mol-% to 94.5 mol-%, units (a), from 0.35 mol-% to 1.5 mol-%, units (b), from 0.65 mol-% to 25.65 mol-% units (c), and from 4.5 mol-% to 12 mol-% units (d). In at least one embodiment, the polymer comprises units (a), (b), (c) and (d) such that the sum thereof is at least 99 mol-%, by total weight of the polymer.
  • In a preferred embodiment, the second aspect relates to a cosmetic, dermatological or pharmaceutical composition comprising:
  • (I) a polymer; and
    (II) a cosmetically acceptable component;
      • wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer consists of:
      • (a) from 9.49 mol-% to 98 mol-%, preferably from 27.5 mol-% to 97.4 mol-% repeating units according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00021
        • wherein:
        • R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof;
      • (b) optionally from 0.01 mol-% to 5 mol-%, preferably from 0.01 mol-% to 4 mol-% crosslinking or branching units, wherein the crosslinking or branching units result from the incorporation of a monomer comprising at least two olefinically unsaturated double bonds;
      • (c) optionally from 0.01 mol-% to 88.52 mol-%, preferably from 0.05 mol-% to 72.4 mol-% of repeating neutral structural units, preferably wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating neutral structural units comprises from 0 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating neutral structural unit, measured according to standard ASTM D6866-12, Method B;
      • (d) optionally from 1.98 mol-% to 20 mol-%, preferably from 2.5 mol-% to 18 mol-% of repeating anionic structural units, wherein the repeating anionic structural units result from the incorporation of a monomer comprising at least one carboxylate anion, and wherein the repeating anionic structural units are different from units (a) and preferably wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating anionic structural units comprise from 0 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating anionic structural unit, measured according to standard ASTM D6866-12, Method B;
      • (e) optionally at least one optional unit.
    Third Aspect
  • A third aspect of the invention relates to a process of formulating a cosmetic, dermatological or pharmaceutical composition comprising incorporating a polymer into the composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol-% of repeating units (a) according to Formula (1) wherein at least 10 wt.-%, preferably at least 20 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00022
  • wherein:
    R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, ½Ca++, ½Mg++, ½Zn++, ⅓Al+++, or combinations thereof.
  • In at least one embodiment of the third aspect, the cosmetic, dermatological or pharmaceutical composition is according to the second aspect.
  • In at least one embodiment of the third aspect, the composition comprises a cosmetically acceptable component. In at least one embodiment, the polymer is mixed with the cosmetically acceptable component. In at least one embodiment, the composition comprises a plurality of cosmetically acceptable components.
  • Suitable cosmetically acceptable components are mentioned in the second aspect—such cosmetically acceptable components are compatible and combinable with the third aspect. In at least one embodiment, the cosmetically acceptable component is selected from the group consisting of surfactants, auxiliaries, hair conditioning agents, hairstyling polymers, and combinations thereof. Surfactants, auxiliaries, hair conditioning agents and hairstyling polymers are disclosed in the second aspect—such cosmetically acceptable components are compatible and combinable with the third aspect.
  • In at least one embodiment, the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot cream, exfoliator, body scrub, cellulite treatment, bar soap, cuticle cream, lip balm, hair treatment, eye shadow, bath additive, body mist, eau de toilette, mouthwash, toothpaste, lubricating gel, moisturizer, serum, toner, aqua sorbet, cream gel, styling mousse, dry shampoo, lip stick, lip gloss, hydro-alcoholic gel, body oil, shower milk, illuminator, lip crayon, hair spray, combing cream, and sunblock.
  • In at least one embodiment, the composition comprises at least 0.1 wt.-%, or at least 0.2 wt.-%, or at least 0.3 wt.-%, or at least 0.4 wt.-%, or at least 0.5 wt.-%, or at least 0.6 wt.-%, or at least 0.7 wt.-%, or at least 0.8 wt.-%, or at least 0.9 wt.-%, or at least 1.0 wt.-%, or at least 1.1 wt.-%, or at least 1.2 wt.-%, or at least 1.3 wt.-%, or at least 1.4 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.7 wt.-%, or at least 1.8 wt.-%, or at least 1.9 wt.-%, or at least 2.0 wt.-% of the polymer.
  • In at least one embodiment, the polymer is a crosslinked or non-crosslinked homopolymer. In at least one embodiment, the polymer is a crosslinked or non-crosslinked copolymer. Preferably the polymer is crosslinked.
  • In at least one embodiment, the polymer has a weight average molecular weight of at least 700 g/mol, preferably from 700 g/mol to 10 million g/mol.
  • In at least one embodiment, the polymer is obtained by polymerising at least one compound according to Formula (3), wherein the compound comprises from 28 wt.-% to 100 wt.-%, preferably from 40 wt.-% to 100 wt.-%, bio-based carbon content, relative to the total mass of carbon in the compound, measured according to standard ASTM D6866-12, Method B;
  • Figure US20220202687A1-20220630-C00023
  • and wherein X+ is a proton. In at least one embodiment, the compound is neutralised with a base prior to polymerisation.
  • In at least one embodiment, the polymer has been neutralized following polymerization using a base. In at least one embodiment, the repeating units according to Formula (1) have a degree of neutralisation of between 0 mol-% and 100 mol-%. In at least one embodiment, the repeating units according to Formula (1) have a degree of neutralisation of from 50.0 to 100 mol-%, preferably from 80 mol-% to 100 mol-%, more preferably from 90.0 to 100 mol-%, even more preferably from 95.0 to 100 mol-%. Particular preference being given to a degree of neutralisation of more than 80 mol-%, more preferably more than 90 mol-%, even more preferably more than 95 mol-%.
  • In at least one embodiment, the polymer is substantially free of units not being those according to Formula (1), wherein R1 and R2 are H; A is —C(CH3)2—H2C; and Q+ is a cation. In at least one embodiment, the polymer is a homopolymer.
  • In at least one embodiment, the polymer is a copolymer of units according to those according to Formula (1), wherein R1 and R2 are H; A is —C(CH3)2—H2C; and Q+ is a cation, and at least one further unit.
  • In at least one embodiment, the polymer is a rheology modifier or a thickening agent, or is suitable for use therefor.
  • Fourth Aspect
  • A fourth aspect relates to a method for treating keratinous material, comprising applying the composition according to the second aspect to the keratinous material. In at least one embodiment of the fourth aspect, the composition is a cosmetic composition.
  • In at least one embodiment, the keratinous material is keratin fibres. In at least one embodiment, the keratinous material is selected from human skin and/or human hair.
  • In at least one embodiment of the fourth aspect, the composition comprises a cosmetically acceptable component. In at least one embodiment, the composition comprises a plurality of cosmetically acceptable components.
  • Suitable cosmetically acceptable components are mentioned in the second aspect—such cosmetically acceptable components are compatible and combinable with the fourth aspect. In at least one embodiment, the cosmetically acceptable component is selected from the group consisting of surfactants, auxiliaries, hair conditioning agents, hairstyling polymers, and combinations thereof. Surfactants, auxiliaries, hair conditioning agents and hairstyling polymers are disclosed in the second aspect—such cosmetically acceptable components are compatible and combinable with the fourth aspect.
  • In at least one embodiment, the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot cream, exfoliator, body scrub, cellulite treatment, bar soap, cuticle cream, lip balm, hair treatment, eye shadow, bath additive, body mist, eau de toilette, mouthwash, toothpaste, lubricating gel, moisturizer, serum, toner, aqua sorbet, cream gel, styling mousse, dry shampoo, lip stick, lip gloss, hydro-alcoholic gel, body oil, shower milk, illuminator, lip crayon, hair spray, combing cream, and sunblock.
  • In at least one embodiment, the composition comprises at least 0.1 wt.-%, or at least 0.2 wt.-%, or at least 0.3 wt.-%, or at least 0.4 wt.-%, or at least 0.5 wt.-%, or at least 0.6 wt.-%, or at least 0.7 wt.-%, or at least 0.8 wt.-%, or at least 0.9 wt.-%, or at least 1.0 wt.-%, or at least 1.1 wt.-%, or at least 1.2 wt.-%, or at least 1.3 wt.-%, or at least 1.4 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.5 wt.-%, or at least 1.6 wt.-%, or at least 1.7 wt.-%, or at least 1.8 wt.-%, or at least 1.9 wt.-%, or at least 2.0 wt.-% of the polymer.
  • In at least one embodiment, the polymer is a crosslinked or non-crosslinked homopolymer. In at least one embodiment, the polymer is a crosslinked or non-crosslinked copolymer.
  • In at least one embodiment, the polymer has a weight average molecular weight of at least 700 g/mol, preferably from 700 g/mol to 10 million g/mol.
  • Fifth Aspect
  • A fifth aspect relates to a product comprising the composition according to the second aspect. In at least one embodiment, the product comprises a receptacle comprising the composition according to the second aspect. In at least one embodiment, the product comprises an opening for dispensing the composition. In at least one embodiment, the opening is equipped with a closure. In at least one embodiment, the receptacle comprises plastics.
  • Sixth Aspect
  • A sixth aspect relates to kit comprising the product of the fifth aspect and a further product or implement.
  • Examples
  • The examples which follow are intended to illustrate the subject matter of the invention, without restricting it thereto.
  • Monomer
  • International patent application PCT/EP2017/064977 (claiming priority from European patent application 16175218.3 filed on 20 Jun. 2016) in the name of Clariant International Ltd, the disclosure of which is incorporated herein by reference, discloses the synthesis of bio-based acryloyldimethyltaurate, which can be used as a monomer for the polymer according to the present invention.
  • Isobutene Samples Used:
  • The composition of petroleum-based isobutene is different from bio-based isobutene. Bio-based isobutene contains exclusively contemporary carbon and hence has a different distribution of carbon isotopes as compared to fossil, petrochemical-based carbon. Fossil carbon was cut off from the natural carbon equilibrium for millions of years and all the natural 14C has already degraded, and hence the concentration of 14C is zero in fossil carbon sources. Contemporary carbon, produced by living organisms is part of the atmospheric carbon isotope equilibrium. 14C or radiocarbon is constantly being created in the atmosphere by the interaction of cosmic rays with atmospheric nitrogen. The resulting radiocarbon combines with atmospheric oxygen to form radioactive carbon dioxide, which is incorporated into plants by photosynthesis; animals then acquire 14C by eating the plants. When the animal or plant dies, it stops exchanging carbon with its environment, and from that point onwards the amount of 14C it contains begins to decrease as the 14C undergoes radioactive decay. Therefore, in contemporary carbon the concentration of 14C is in the order of 10−10%. Masao Kunioka recently described “Measurement Methods of Biobased Carbon Content for Biomass-based Chemicals and Plastics” in Radioisotopes, 62, 901-925 (2013).
  • Interestingly enough, also the chemical composition of bio-based and petrochemical-based isobutene is different in several aspects. Table 1 shows differences in the composition for the isobutene samples used in the present invention. Petrochemical-based isobutene contains small amounts of petrochemical by-products such as propane, propene, butane and isobutane, but it does not contain any traces of metabolic products (Type Petro, IB1). In contrast to the petrochemical isobutene, the bio-based samples contain carbon dioxide and small quantities of ethanol as metabolic products from the microorganisms (Type Bio, samples IB2 to IB5). The bio-based isobutene samples do not contain any propane, propene, butane or isobutane.
  • TABLE 1
    Isobutene sample qualities used
    Iso-
    butene- iso- Iso- n-
    sample butene N2 CO2 H2O ethanol propane Propene butane butane
    units type m/v % m/v % m/v % m/v % m/v % m/v % m/v % m/v % m/v %
    IB1 Petro 99.873 ND ND 0.06 ND 0.0003 0.0018 0.0639 0.001
    IB2 Bio 99.72 0.1 0.3 0.03 0.002 ND ND ND ND
    IB3 Bio 92.07 3.2 4.7 0.03 0.005 ND ND ND ND
    IB4 Bio 21.94 60 18 0.05 0.008 ND ND ND ND
    IB5 Bio 97.7 2 0.26 0.03 0.002 ND ND ND ND
    KEY:
    ND = not detected.
  • Compared with the quality of petrochemically acquired isobutene, the amount of impurities in the bio-based isobutene are significantly higher and the composition is different. Especially IB4 contains only 21.94% isobutene and 18% carbon dioxide. Surprisingly it was found that it was possible to synthesize ACDMT with high purity based on the isobutene with high levels of impurities.
  • TABLE 2
    Acrylonitrile sample qualities used
    Acrylonitrile 4-methoxy-
    sample Acrylo- H2O after phenol
    Units Type nitrile H2O as is drying Ppm
    AN1 Petro 99.2 0.41 19 43
    AN2 Bio 99.1 0.53 21 56
  • Acrylonitrile≥99%, from Sigma-Aldrich contains 35-45 ppm monomethyl ether hydroquinone as inhibitor, contained 0.41% water before drying. It was dried by adding 50 g molecular sieve 0.4 nm from Merck Millipore, Merck KGaA. The residual water content of the acrylonitrile was 19 ppm, measured by Karl-Fischer titration (DIN 51777). The biologically acquired acrylonitrile was relatively similar in chemical composition as compared to the petrochemical one. The used acrylonitrile was obtained in two steps via oxidative decarboxylation of glutamic acid and subsequent decarbonylation elimination of 3-cyanopropionic acid to form acrylonitrile using the method described in Green Chemistry, 2011, 13, 807.
  • Monomer Comparative Example 1 (MCompEx1), Using Conventional Petrochemical Raw Materials in a Batch Process:
  • The reactor was a 5 neck 250 ml round bottom flask, equipped with an overhead agitator, thermocouple, sub surface gas injection pipe, intensive condenser and dropping funnel with pressure compensation. The head of the condenser was equipped with a dry tube containing 50 g of 4 Angstrom molecular sieve. A PTFE plate stirrer with precision glass joint seal was connected to the overhead stirrer. 150 ml dry acrylonitrile was dosed to the reactor. Under stirring at 150 rpm the acrylonitrile was cooled with a bath consisting of a mixture of 300 g ice and 100 g NaCl. As soon as the reactor temperature reaches −10° C., 39.30 g of 100% sulfuric acid was slowly dosed. The temperature was kept in a range of −10° C. to −7.5° C. The time for dosing the sulfuric acid was 40 minutes. The liquid stayed clear.
  • Then the ice bath was removed and replaced by a water bath at 21° C. Subsequently 9.9 L of isobutene was dosed at a rate of 10 L/h. The temperature was allowed to climb quickly, but controlled to be stable at 40° C. for the course of the dosage. After approximately 35 min., fine white crystals started to precipitate. After dosage was completed the reaction mixture was stirred for one hour at 40° C. Then the reaction mixture was cooled under agitation for 30 min to 20° C. The reaction mixture was a fine white suspension. The solid was separated by vacuum filtration over glass fiber filter, stirred with 50 g fresh acrylonitrile in a 250 ml Erlenmeyer-flask for 10 minutes using a magnetic stirrer, PTFE coated stirrer bar and covered with a glass lid. The solids of the suspension was removed again by vacuum filtration over a glass fiber filter (Whatman Grade GF/D). The solid was dried for 4 hours in a laboratory rotation evaporator at a bath temperature of 60° C., starting at a pressure of 300 mbar. After 30 minutes the pressure was ramped down to 10 mbar in 3 h.
  • With a yield of 85 wt.-% ACDMT was isolated with a purity of 95.9 wt.-%. And 0.3 wt.-% acrylonitrile, 0.6 wt.-% acrylamide, 2.9 wt.-% tert. butylacrylamide and 0.3 wt.-% 2-methylprop-2-en-1-sulfonic acid were detected.
  • The Monomer Comparative Examples MCompEx2 to MCompEx3 were carried out in the same way, but the sulfur trioxide excess was increased. Please see Table 3.
  • Monomer Comparative Example 4 (MCompEx4) (See US2010/0274048, which is Incorporated Herein by Reference) for a Continuous Process with Conventional Petrochemical Raw Materials:
  • Two glass reactors each provided with a stirrer, an inlet pipe and an outlet pipe were connected to each other. Acrylonitrile and sulfuric acid were fed by peristaltic pumps into the first reactor. With a flow rate of 47.1 g/h sulfuric acid and 22.36 g/h 20% commercial fuming sulfuric acid and 161.1 g/h dry acrylonitrile was pumped. The sulfuric acid was 97% concentrated. The concentration of sulfur trioxide in fuming sulfuric acid was chosen to compensate for the water carried by the raw materials acrylonitrile and isobutene. The temperature of the reaction mixture in the first reactor was kept at −10±2.5° C. The average residence time was 90 minutes. Sulfonic acid and acrylonitrile were mixed and the mixed fluid thereof was fed into the second reactor. The second reactor was a three neck 250 ml round bottom reactor, modified with a side neck to allow overflow of the reactor to a beaker. It was connected with an overhead stirrer, glass stirrer with PTFE stirrer blades and an intensive condenser. In the second reactor, isobutylene gas (IB1) was blown sub surface with a flow rate of 30.8 g/h into the mixed fluid to synthesize ACDMT. The reaction (synthesis) was conducted continuously with an average residence time of 90 minutes at a temperature of 40±2.5° C. After 11 h continuously conducted reaction a sample of the reaction mixture was taken and analyzed.
  • The ACDMT slurry obtained in the above production was suction-filtered using a glass filter to obtain a cake on the glass filter. Acrylonitrile of an amount (mass) shown in Table 5, relative to the mass of the cake was poured onto the cake. Suction filtering was conducted again to wash the cake with acrylonitrile.
  • The washed cake was dried for 360 minutes at a temperature of 80° C. with a rotational evaporator at reduced pressure. A vacuum of 400 mbar was applied for 30 minutes. Then the pressure was ramped down to 10 mbar in 2 hours and maintained at 10 mbar until drying was completed.
  • The yield determined was related to the sample size drawn. The ACDMT powder obtained was analyzed by HPLC to measure the concentrations of acrylonitrile (abbreviated as AN), acrylamide (abbreviated as AM), tert.-butylacrylamide (abbreviated as tBAM), 2-methyl-2-propenyl-1-sulfonic acid (abbreviated as IBSA). The results of the comparative experiment is shown in Table 6.
  • Monomer Example 1
  • The reactor was a 5 neck 250 ml round bottom flask, equipped with an overhead agitator, thermocouple, sub-surface gas injection pipe, intensive condenser and dropping funnel with pressure compensation. The head of the condenser was equipped with a dry tube containing 50 g of 4 Angstrom molecular sieve. A PTFE plate stirrer with precision glass joint seal was connected to the overhead stirrer. 150 ml dry acrylonitrile was dosed to the reactor. Under stirring at 150 rpm the acrylonitrile was cooled with a bath consisting of a mixture of 300 g ice and 100 g NaCl. Alternatively the mixture could be cooled down with a combination of acetone and dry ice. As soon as the reactor temperature reaches −10° C., 49.30 g 100% sulfuric acid was slowly dosed. The access of sulfur trioxide was controlled to compensate for the water content of the raw materials isobutene and acrylonitrile. The variation of the process conditions are documented in Table 3. The temperature was kept in a range of −10° C. to −7.5° C. The time for dosing the sulfuric acid was 40 minutes. The liquid stays clear.
  • Then the ice bath was removed and replaced by a water bath at 21° C. 9.9 L of bio-based isobutene was dosed at a rate of 10 L/h. The temperature was kept allowed to climb quickly, but controlled to stay at 40° C. for the course of the dosage. After approximately 25 min., fine white crystals started to precipitate. After dosage was completed the reaction mixture was stirred for one hour at 40° C. Then the reaction mixture was cooled under agitation for 30 min. to 20° C. The reaction mixture was a fine white suspension. The solid was separated by vacuum filtration over glass fiber filter, stirred with 50 g fresh acrylonitrile in a 250 ml Erlenmeyer-flask for 10 minutes using a magnetic stirrer, PTFE coated stirrer bar and covered with a glass lid. The solids of the suspension was removed again by vacuum filtration over a glass fiber filter (Whatman Grade GF/D). The solid was dried for 4 hours in a laboratory rotation evaporator at a bath temperature of 80° C., starting at a pressure of 300 mbar, after 30 minutes the pressure was ramped down to 10 mbar in 3 h.
  • TABLE 3
    Reaction conditions for batch reactions
    Oleum
    H2SO4, 20% Iso- Flow
    Experiment AN 100% SO3 butene rate T1 T2
    Unit [g] Material [g] [g] [g] Material [L/h] [° C.] [° C.]
    MCompEx1 150 AN1 49.3 0.0  28.1 IB1 10 −10 40
    MCompEx2 150 AN1 49.1 0.10 28.1 IB1 10 −10 40
    MCompEx3 150 AN1 48.9 0.2  28.1 IB1 10 −10 40
    M1 150 AN1 49.2 0.08 28.1 IB2 10 −10 40
    M2 150 AN1 49.2 0.09 30.5 IB3 11 −10 40
    M3 150 AN1 48.6 0.56 128 IB4 23 −10 40
    M4 150 AN1 49.2 0.08 28.8 IB5 10 −10 40
    M5  50 AN2 16.4 0.03 9.6 IB5 10 −10 40
  • The results of the comparative experiments and the experiments describing the invention are summarized in Table 4.
  • The experiments demonstrate that the precipitation of ACDMT starts earlier with the bio-based isobutene as compared to the petro-chemical produced isobutene. Also it was found that the use of bio-based isobutene was suitable make bio-based ACDMT. Surprisingly, the purity of the bio-based ACDMT is higher as compared to the monomer comparative experiments 1 to 3. In particular the impurities t-BAM and IBSA were reduced. The potential side products IBSA and IBDSA act to moderate (control) the molecular weight in the radical polymerization. Hence a person skilled in the art would expect the molecular weight of a polymer in the presence of a larger amount of a moderator to be lower as compared to one polymerized under the same conditions with a lesser amount of moderator. As an IBDSA standard was not available the amount of IBDSA was not quantified.
  • A surprising advantage of the invention is that bio-based isobutene can be used in the ACDMT production process with a lower quality as compared to petrochemically-manufactured isobutene to produce an as good or better quality of ACDMT.
  • To test the bio-based content, three samples were investigated according to ASTM D6866-12, Method B. MCompEx1 was made with conventional, petrochemical raw materials. Therefore it is to be expected that all carbon is fossil carbon. Consequently no 14C should be found and the bio-based carbon content should be zero. In this experiment, the investigation indeed returned a bio-based carbon content of 0 wt.-%. In Experiment 1, a sample of bio-based isobutene (IB2) was used. As four of the seven ACDMT carbon atoms were replaced by bio-based carbon, in theory 57 wt.-% bio-based carbon should be found. The experiment delivers a bio-based carbon content of 55 wt.-%. The deviation of the theoretical value can be explained by the impurity of the material and the analytical error of 2% of the method.
  • TABLE 4
    Results of the examples using the batch process
    Bio-
    based
    Yield ACDMT AM AN t-BAM IBSA content
    Experiment [g] [%] [wt.-%] [wt.-%] [wt.-%] [wt.-%] [wt.-%] [wt.-%]
    MCompEx1 91.1 88 95.9 0.6 0.3 2.9 0.3  0
    MCompEx2 93.5 90 97.1 0.3 0.3 2.1 0.2 ND
    MCompEx3 91.6 88.5 96.2 0.3 0.3 1.9 0.4 ND
    M1 98.4 95 99.4 0.07 0.06 0.45 0.05 55
    M2 98.2 95 98.9 0.08 0.09 0.51 0.03 ND
    M3 97.3 94 98.2 0.1 0.09 0.49 0.06 56
    M4 98.3 95 99.5 0.05 0.04 0.39 0.02 ND
    M5 33.0 95.5 99.2 0.04 0.04 0.41 0.03 99
    KEY:
    ND = not detected;
    ACDMT = acryloyldimethyltaurate;
    AM = acrylamide;
    AN = acrylonitrile;
    tBAM = tert.-butyl acrylamide;
    IBSA = isobutene sulfonic acid.
  • The use of bio-based isobutene achieve high yields of ACDMT as well as high purities of ACDMT. Indeed, the use of bio-isobutene leads to a purer ACDMT as compared to petrochemical ACDMT.
  • Polymer
  • Polymerization experiments show especially that ACDMT samples with lower content of IBSA lead to higher molecular weight polymers as compared to ACDMT samples with higher IBSA content.
  • Polymerization Process A1: General Precipitation Polymerization Procedure in Tert.-Butanol
  • Dose in a 1-Liter Quickfit round bottom flask equipped with a refux condenser, sub surface gas inlet tubing, inner temperature sensor and overhead agitator 400 g tert.-butanol with a water content of 2.5 wt.-%. Charge 100 g bio-based ACDMT. Neutralize the ACDMT to a pH of 7 to 8 by injection of gaseous ammonia above the surface. Keep the temperature below 40° C. Dose a 1.45 g TMPTA as a crosslinker according to Polymer Table A1. Inject nitrogen subsurface for 1 h at agitation of 200 rpm. During this time the temperature of the reaction mixture is raised and stabilized to 60° C. with help of a water bath. Readjust the pH at 60° C. to a pH of 7 to 8. The reaction is initiated by the dosage of radical building compound, 1.3 g DLP.
  • After a few minutes the start of polymerization becomes obvious due to the rising temperature and the precipitation of a polymer. When the temperature maximum is reached, heat the reaction to a gentle reflux for two hours. Cool the reaction mixture to room temperature and dry the polymer suspension at 60° C. under a vacuum of 150 mbar.
  • Polymerization Process B1: General Precipitation Polymerization Procedure in Tert.-Butanol/Dimethylketone Mixture
  • Dose in a 1-Liter Quickfit round bottom flask equipped with a refux condenser, sub surface gas inlet tubing, inner temperature sensor and overhead agitator 200 g tert.-butanol and 200 g dimethylketon with a water content of 3 wt.-%. Charge 100 g bio-based ACDMT. Neutralize the ACDMT by charging 40.5 g sodium hydrogen carbonate. Keep the temperature below 40° C. Dose 1.45 g TMPTA, as a crosslinker and according to Polymer Table B1. Inject nitrogen subsurface for 1 h at agitation of 200 rpm. During this time the temperature of the reaction mixture is raised and stabilized to 60° C. with help of a water bath. Readjust the pH at 60° C. to a pH of 7 to 8. The reaction is initiated by the dosage of radical building compound, 1.3 g DLP.
  • After a few minutes the start of polymerization becomes obvious due to the rising temperature and the precipitation of a polymer. When the temperature maximum is reached, heat the reaction to a gentle reflux for two hours. Cool the reaction mixture to room temperature and dry the polymer suspension at 60° C. under a vacuum of 150 mbar.
  • POLYMER TABLE A1
    Polymers according to polymerization process A1:
    Polymer ACDMT ACDMT
    example in in Crosslinker Initiator
    name g mol-% Name g mol-% Name g
    A1/1 100.0 99.0 TMPTA 1.45 1.00 DLP 1.30
    A1/2 100.0 98.7 TMPTA 1.81 1.25 DLP 2.00
    A1/3 100.0 99.0 TMPTA 2.17 1.50 DLP 1.30
    A1/4 100.0 97.1 TMPMTA 4.50 2.94 V-601 1.10
    A1/5 100.0 98.5 TMPMTA 2.30 1.52 V-601 1.10
    A1/6 100.0 98.0 TMPMTA 3.05 2.01 V-601 1.10
    PEG 600
    A1/7 100.0 99.0 DMA 2.80 1.01 V-601 1.10
    PEG 600
    A1/8 100.0 98.5 DMA 4.25 1.52 DLP 2.00
    PEG 600
    A1/9 100.0 98.8 DMA 3.48 1.25 DLP 2.00
    A1/10 100.0 97.0 GPTA 6.30 2.96 V-601 1.10
    A1/11 100.0 98.0 GPTA 4.20 1.99 V-601 1.10
    A1/12 100.0 98.8 GPTA 2.60 1.24 V-601 1.10
    A1/13 100.0 99.0 PEAS 2.50 1.00 V-601 1.10
    A1/14 100.0 98.5 PEAS 3.80 1.52 V-601 1.10
    A1/15 100.0 98.8 PEAS 3.10 1.24 V-601 1.10
    ACDMT = acryloyldimethyltaurate,
    NVP = N-vinylpyrollidone,
    DMAAm = dimethylacrylamide,
    TMPTA = trimethylolpropantriacrylate,
    TMPTA = trimethylolpropantriacrylate,
    TMPTMA = trimethylolpropantrimethacrylate,
    GPTA = glycerinpropoxylate triacrylate,
    PEAS = pentaerythritoldiacrylate monostearate,
    DLP = dilauryl peroxide,
    V-601 = dimethyl-2,2′-azobis(2-methylpropionate),
    PEG 600 DMA = polyethylene glycol dimethacrylate (600 g/mol).
  • POLYMER TABLE B1
    Polymers according to polymerization process B1:
    Polymer Neutralization
    example ACDMT reagent Crosslinker Initiator
    name g mol-% Name /g Name g mol-% Name g
    B1/1 100.0 99.0 NaHCO3 40.5 TMPTA 1.45 1.00 DLP 1.30
    B1/2 100.0 98.7 NaHCO3 40.5 TMPTA 1.81 1.25 DLP 2.00
    B1/3 100.0 98.5 NaHCO3 40.5 TMPTA 2.17 1.50 DLP 2.00
    B1/4 100.0 97.0 KHCO3 48 TMPTA 4.35 2.95 V-601 1.10
    B1/5 100.0 97.0 LiHCO3 32.6 TMPTA 2.17 1.50 V-601 1.10
    B1/6 100.0 99.0 NaHCO3 40.5 TMPMTA 1.50 1.00 V-601 1.10
    B1/7 100.0 98.7 NaHCO3 40.5 TMPMTA 1.89 1.25 V-601 1.10
    B1/8 100.0 98.5 NaHCO3 40.5 TMPMTA 2.30 1.52 DLP 2.00
    B1/9 100.0 98.5 KHCO3 48 TMPMTA 2.30 1.52 DLP 2.00
    B1/10 100.0 98.5 LiHCO3 32.6 TMPMTA 2.30 1.52 DLP 2.00
    B1/11 100.0 97.0 LiHCO3 32.6 PEG 600 DMA 8.50 3.00 DLP 2.00
    B1/12 100.0 98.0 NaHCO3 40.5 PEG 600 DMA 5.60 2.00 DLP 2.00
    B1/13 100.0 98.8 NaHCO3 40.5 PEG 600 DMA 3.48 1.25 DLP 2.00
    B1/14 100.0 98.8 NaHCO3 40.5 PEG 600 DMA 3.48 1.25 DLP 2.00
    B1/15 100.0 98.8 NaHCO3 40.5 GPTA 2.60 1.24 V-601 1.10
    B1/16 100.0 99.0 Na2CO3 25.5 GPTA 2.06 0.99 DLP 2.00
    B1/17 100.0 98.5 NaHCO3 40.5 GPTA 3.15 1.50 V-601 1.10
    B1/18 100.0 98.8 Na2CO3 25.5 GPTA 2.60 1.24 V-601 1.10
    B1/19 100.0 97.0 NaHCO3 40.5 PEAS 7.60 2.99 V-601 1.10
    B1/20 100.0 98.5 NaHCO3 40.5 PEAS 3.75 1.50 V-601 1.10
    ACDMT = acryloyldimethyltaurate,
    NVP = N-vinylpyrollidone,
    DMAAm = dimethylacrylamide,
    TMPTA = trimethylolpropane triacrylate,
    TMPTA = trimethylolpropane triacrylate,
    TMPTMA = trimethylolpropane trimethacrylate,
    GPTA = glycerinpropoxylate triacrylate,
    PEAS = pentaerythritol diacrylate monostearate,
    DLP = dilaurylperoxide,
    V-601 = dimethyl 2,2′-azobis(2-methylpropionate),
    PEG 600 DMA = polyethylene glycol dimethacrylate (600 g/mol).
  • Polymerization Process A2: General Precipitation Polymerization Procedure in Tert.-Butanol
  • Dose in a 1-Liter Quickfit round bottom flask equipped with a refux condenser, sub surface gas inlet tubing, inner temperature sensor and overhead agitator 400 g tert.-butanol with a water content of 2.5 wt.-%. Charge 80 g bio-based ACDMT. Neutralize the ACDMT to a pH of 7 to 8 by injection of gaseous ammonia above the surface. Keep the temperature below 40° C. Dose a 0.63 g TMPTA as a crosslinker and 4.3 g NVP as a neutral monomer according to Polymer Table A2. Inject nitrogen subsurface for 1 h at agitation of 200 rpm. During this time the temperature of the reaction mixture is raised and stabilized to 60° C. with help of a water bath. Readjust the pH at 60° C. to a pH of 7 to 8. The reaction is initiated by the dosage of radical building compound, 1 g DLP.
  • After a few minutes the start of polymerization becomes obvious due to the rising temperature and the precipitation of a polymer. When the temperature maximum is reached, heat the reaction to a gentle reflux for two hours. Cool the reaction mixture to room temperature and dry the polymer suspension at 60° C. under a vacuum of 150 mbar.
  • Polymerization Process B2: General Precipitation Polymerization Procedure in Tert.-Butanol/Dimethylketone Mixture
  • Dose in a 1-Liter Quickfit round bottom flask equipped with a refux condenser, sub surface gas inlet tubing, inner temperature sensor and overhead agitator 200 g tert.-butanol and 200 g dimethylketone with a water content of 3 wt.-%. Charge 80 g bio-based ACDMT. Neutralize the ACDMT by charging 32.8 g sodium hydrogen carbonate. Keep the temperature below 40° C. Dose 1.27 g TMPTA, as a crosslinker and a 0.44 g methyl acrylate as a neutral monomer according to Polymer Table B2. Inject nitrogen subsurface for 1 h at agitation of 200 rpm. During this time the temperature of the reaction mixture is raised and stabilized to 60° C. with help of a water bath. Readjust the pH at 60° C. to a pH of 7 to 8. The reaction is initiated by the dosage of radical building compound, 1 g DLP.
  • After a few minutes the start of polymerization becomes obvious due to the rising temperature and the precipitation of a polymer. When the temperature maximum is reached, heat the reaction to a gentle reflux for two hours. Cool the reaction mixture to room temperature and dry the polymer suspension at 60° C. under a vacuum of 150 mbar.
  • POLYMER TABLE A2
    Polymers according to polymerization process A2:
    Polymer
    example ACDMT Neutral Monomer Crosslinker Initiator
    name /g /mol-% Name /g /mol-% Name g mol-% Name g
    A2/1 80.0 90.4 NVP 4.3 9.1 TMPTA 0.63 0.50 DLP 1.0
    A2/2 80.0 89.8 NVP 4.3 9.0 TMPTA 1.59 1.25 V-601 1.1
    A2/3 80.0 89.1 NVP 4.3 8.9 TMPTA 2.57 2.00 DLP 1.0
    A2/4 80.0 89.7 NVP 4.3 9.0 TMPMTA 1.66 1.25 V-601 1.1
    A2/5 80.0 89.7 NVP 4.3 9.0 PEAS 2.75 1.25 V-601 1.1
    A2/6 80.0 93.7 NVP 2.3 5.0 GPTA 2.21 1.25 V-601 1.1
    A2/7 80.0 96.0 NVP 1.1 2.5 PEAS 3.07 1.50 V-601 1.1
    A2/8 80.0 91.0 NVP 3.55 7.5 PEAS 3.26 1.50 V-601 1.1
    A2/9 70.0 82.3 NVP 6.85 15.0 PEG 600 DMA 6.20 2.65 DLP 1.0
    A2/10 80.0 89.8 NVP 4.3 9.0 GPTA 2.30 1.25 V-601 1.1
    A2/11 80.0 97.0 DMAAm 1.0 2.5 GPTA 0.85 0.50 V-601 1.0
    A2/12 80.0 94.0 DMAAm 2.1 5.0 GPTA 1.75 1.00 V-601 1.0
    A2/13 80.0 74.0 DMAAm 12.9 25.0 TMPTA 1.55 1.00 V-601 1.20
    A2/14 80.0 74.0 DMAAm 12.9 25.0 PEG 600 DMA 2.98 1.00 V-601 1.20
    A2/15 81.5 89.0 N-isopropylacrylamide 5.0 10.0 TMPMTA 1.36 1.00 V-601 1.00
    A2/16 80.0 95.8 Behenylpolyethoxy-(25)- 21.0 3.5 TMPTA 0.90 0.75 DLP 1.75
    methacrylate
    A2/17 80.0 95.3 Behenylpolyethoxy-(25)- 21.0 3.5 TMPTA 1.50 1.25 DLP 1.75
    methacrylate
    A2/18 80.0 96.3 Behenylpolyethoxy-(25)- 18.0 3.0 PEG 600 DMA 1.60 0.70 DLP 1.75
    methacrylate
    A2/19 80.0 91.5 Laurylpoly-ethoxy-(7)- 20.1 8.5 TMPTA 0.01 0.01 DLP 3.60
    methacrylate
    A2/20 80.0 91.5 Laurylpoly-ethoxy-(7)- 20.1 8.5 TMPTA 0.01 0.01 DLP 3.60
    methacrylate
    A2/21 80.0 91.5 Laurylpoly-ethoxy-(7)- 20.1 8.5 TMPTA 0.01 0.01 DLP 3.60
    methacrylate
    A2/22 80.0 93.0 Stearylpoly-ethoxy-(8)- 19.5 7.0 TMPTA 0.01 0.01 DLP 3.90
    methacrylate
    A2/23 80.0 93.0 Stearylpoly-ethoxy-(8)- 19.5 7.0 TMPTA 0.01 0.01 DLP 3.90
    methacrylate
    A2/24 80.0 93.0 Stearylpoly-ethoxy-(8)- 19.5 7.0 TMPTA 0.01 0.01 DLP 3.90
    methacrylate
    ACDMT = acryloyldimethyltaurate,
    NVP = N-vinylpyrollidone,
    DMAAm = dimethylacrylamide,
    TMPTA = trimethylolpropane triacrylate,
    TMPTA = trimethylolpropane triacrylate,
    TMPTMA = trimethylolpropane trimethacrylate,
    GPTA = glycerinpropoxylate triacrylate,
    PEAS = pentaerythritoldiacrylate monostearate,
    DLP = dilaurytperoxide,
    V-601 = dimethyl 2,2′-azobis(2-methylpropionate),
    PEG 600 DMA = polyethylene glycol dimethacrylate (600 g/mol).
  • POLYMER TABLE B2
    Polymers according to polymerization process B2:
    Polymer Neutralization
    example ACDMT reagent Neutral Monomer Crosslinker Initiator
    name /g /mol-% Name /g Name /g / mol-% Name g mol-% Name g
    B2/1 80.0 90.0 NaHCO3 32.8 NVP 4.3 9.0 TMPTA 1.27 1.00 DLP 1.0
    B2/2 80.0 89.5 NaHCO3 32.8 NVP 4.3 9.0 TMPTA 1.92 1.50 V-601 1.1
    B2/3 80.0 89.8 NaHCO3 32.8 NVP 4.3 9.0 GPTA 2.30 1.25 DLP 1.0
    B2/4 80.0 89.7 NaHCO3 32.8 NVP 4.3 9.0 PEG 600 DMA 3.07 1.25 V-601 1.1
    B2/5 80.0 96.3 NaHCO3 32.8 NVP 1.1 2.5 GPTA 2.15 1.25 V-601 1.1
    B2/5 80.0 91.2 NaHCO3 32.8 NVP 3.55 7.5 GPTA 2.27 1.25 V-601 1.1
    B217 80.0 93.5 NaHCO3 32.8 NVP 2.3 5.0 PEAS 3.16 1.50 V-601 1.1
    B2/3 80.0 87.5 NaHCO3 32.8 NVP 4.9 10.0 PEG 600 DMA 6.28 2.50 DLP 1.0
    B2/9 70.0 77.5 NaHCO3 28.6 NVP 9.7 20.0 PEG 600 DMA 6.20 2.50 DLP 1.0
    B2/10 80.0 89.8 NaHCO3 32.8 NVP 4.3 9.0 TMPTA 1.59 1.25 DLP 1.0
    B2/11 80.0 54.4 NaHCO3 32.8 DMAAm 31.5 44.8 GPTA 2.27 0.75 V-601 1.0
    B2/12 80.0 68.9 NaHCO3 32.8 DMAAm 16.6 29.9 GPTA 3.00 1.25 V-601 1.0
    B2/13 80.0 74.0 NaHCO3 32.8 DMAAm 12.9 25.0 TMPMTA 1.60 1.00 V-601 1.20
    B2/14 81.5 89.0 NaHCO3 32.8 N-Isopropylacrylamide 5.0 10.0 TMPTA 1.31 1.00 V-601 1.00
    B2/15 81.5 89.0 NaHCO3 32.8 N-Isopropylacrylamide 5.0 10.0 PEG600 DMA 2.51 1.00 V-601 1.00
    B2/16 80.0 95.5 NaHCO3 32.8 Behenylpolyethoxy- 21.0 3.5 TMPTA 1.20 1.00 DLP 1.75
    (25)-methacrylate
    B2/17 80.0 96.3 NaHCO3 32.8 Behenylpolyethoxy- 18.0 3.0 PEG 600 DMA 1.60 0.70 DLP 1.75
    (25)-methacrylate
    B2/18 80.0 96.3 NaHCO3 32.8 Behenylpolyethoxy- 18.0 3.0 PEG 600 DMA 1.60 0.70 DLP 1.75
    (25)-methacrylate
    B2/19 80.0 91.5 NaHCO3 32.8 Laurylpoly-ethoxy-(7)- 20.1 8.5 TMPTA 0.01 0.01 DLP 3.60
    methacrylate
    B2/20 80.0 91.5 NaHCO3 32.8 Laurylpoly-ethoxy-(7)- 20.1 8.5 TMPTA 0.01 0.01 DLP 3.60
    methacrylate
    B2/21 80.0 91.5 NaHCO3 32.8 Laurylpoly-ethoxy-(7)- 20.1 8.5 TMPTA 0.01 0.01 DLP 3.60
    methacrylate
    B2/22 800 91.5 NaHCO3 32.8 Laurylpoly-ethoxy-(7)- 20.1 8.5 TMPTA 0.01 0.01 DLP 3.60
    methacrylate
    B2/23 80.0 93.0 NaHCO3 328 Stearylpoly-ethoxy-(8)- 19.5 7.0 TMPTA 0.01 0.01 DLP 3.90
    methacrylate
    B2/24 80.0 93.0 NaHCO3 328 Stearylpoly-ethoxy-(8)- 19.5 7.0 TMPTA 0 01 001 DLP 3.90
    methacrylate
    B2/25 80.0 93.0 NaHCO3 32.8 Stearylpoly-ethoxy-(8)- 19.5 7.0 TMPTA 0.01 0.01 DLP 3.90
    methacrylate
    ACDMT = acryloyldimethyltaurate,
    NVP = N-vinylpyrollidone,
    DMAAm = dimethylacrylamide,
    TMPTA = trimethylolpropane triacrylate,
    TMPTA = trimethylolpropane triacrylate,
    TMPTMA = trimethylolpropane trimethacrylate,
    GPTA = glycerinpropoxylate triacrylate,
    PEAS = pentaerythritol diacrylate monostearate,
    DLP = dilaurylperoxide,
    V-601 = dimethyl 2,2′-azobis(2- methylpropionate),
    PEG 600 DMA = polyethylene glycol dimethacrylate (600 g/mol).
  • Polymerization Process A3: General Precipitation Polymerization Procedure in Tert.-Butanol
  • Dose in a 1-Liter Quickfit round bottom flask equipped with a refux condenser, sub surface gas inlet tubing, inner temperature sensor and overhead agitator 400 g tert.-butanol with a water content of 3 wt.-%. Charge 69 g bio-based ACDMT and 9.2 g carboxyethyl acrylate. Neutralize the ACDMT to a pH of 7 to 8 by injection of gaseous ammonia above the surface. Keep the temperature below 40° C. Dose 0.93 g GPTA as a crosslinker and 3.71 g methyl acrylate as a neutral monomer according to Polymer Table A3. Inject nitrogen subsurface for 1 h at agitation of 200 rpm. During this time the temperature of the reaction mixture is raised and stabilized to 60° C. with help of a water bath. Readjust the pH at 60° C. to a pH of 7 to 8. The reaction is initiated by the dosage of radical building compound, 1.1 g V-601.
  • After a few minutes the start of polymerization becomes obvious due to the rising temperature and the precipitation of a polymer. When the temperature maximum is reached, heat the reaction to a gentle reflux for two hours. Cool the reaction mixture to room temperature and dry the polymer suspension at 60° C. under a vacuum of 150 mbar.
  • Polymerization Process B3: General Precipitation Polymerization Procedure in Tert.-Butanol/Dimethylketone Mixture
  • Dose in a 1-Liter Quickfit round bottom flask equipped with a refux condenser, sub surface gas inlet tubing, inner temperature sensor and overhead agitator 200 g tert.-butanol and 200 g dimethylketone with a water content of 2.5 wt.-%. Charge 90 g bio-based ACDMT and 8.25 g carboxyethyl acrylate. Neutralize the ACDMT and the carboxyethyl acrylate by charging 41.3 g sodium hydrogen carbonate. Keep the temperature below 40° C. Dose 0.88 g GPTA, as a crosslinker and a 0.44 g methyl acrylate as a neutral monomer according to Polymer Table B3. Inject nitrogen subsurface for 1 h at agitation of 200 rpm. During this time the temperature of the reaction mixture is raised and stabilized to 60° C. with help of a water bath. Readjust the pH at 60° C. to a pH of 7 to 8. The reaction is initiated by the dosage of radical building compound, 1.1 g V-601. After a few minutes the start of polymerization becomes obvious due to the rising temperature and the precipitation of a polymer. When the temperature maximum is reached, heat the reaction to a gentle reflux for two hours. Cool the reaction mixture to room temperature and dry the polymer suspension at 60° C. under a vacuum of 150 mbar.
  • POLYMER TABLE A3
    Polymers according to polymerization process A3:
    Polymer
    example ACDMT Anionic monomer Neutral Monomer Optional Unit Crosslinker Initiator
    name /Mol-% Name /Mol-% Name /Mol-% Name /Mol-% Name /Mol-% Name /g
    A3/1 75.3 Carboxyethy acrylate 14.5 Methyl acrylate 9.7 GPTA 0.49 V-601 1.10
    A3/2 66.8 Carboxyethy acrylate 18.0 DMAAm 14.7 PEAS 0.50 DLP 1.60
    A3/3 88.0 Carboxyethy acrylate 11.59 Methyl acrylate 0.01 GPTA 0.40 V-601 1.10
    A3/4 83.3 Carboxyethy acrylate oligo 10.5 Stearylpoly-ethoxy- 6.2 TMPTA 0.01 DLP 1.80
    (8)-methacrylate
    A3/5 80.4 Carboxyethy acrylate oligo 10.0 Methyl acrylate 0.1 TMPMTA 0.50 V-601 1.10
    A3/6 88.9 Carboxyethy acrylate oligo 9.9 Methyl acrylate 0.1 PEG 600 DMA 1.01 V-601 1.10
    A3/7 76.2 Methacrylic acid 2.6 DMAAm 20.7 GPTA 0.52 V-601 1.40
    A3/8 74.0 Methacrylic acid 5.0 DMAAm 20.1 GPTA 0.85 V-601 1.50
    A3/9 73.8 Methacrylic acid 5.0 DMAAm 20.1 PEAS 1.18 V-601 1.50
    A3/10 90.5 Methacrylic acid 5.4 Behenylpoly-ethoxy- 3.3 TMPTA 0.75 DLP 1.75
    (25)-methacrylate
    A3/11 84.6 Methacrylic acid 9.0 Stearylpoly-ethoxy- 6.3 TMPTA 0.01 DLP 1.80
    (8)- methacrylate
    A3/12 74.0 Methacrylic acid 5.0 DMAAm 20.1 GPTA 0.85 V-601 1.50
    ACDMT = acryloyldimethyltaurate,
    NVP = N-vinylpyrollidone,
    DMAAm = dimethylacrylamide,
    TMPTA = trimethylolpropane triacrylate,
    TMPTA = trimethylolpropane triacrylate,
    TMPTMA = trimethylolpropane trimethacrylate,
    GPTA = glycerinpropoxylate triacrylate,
    PEAS = pentaerythritol diacrylate monostearate,
    DLP = dilaurylperoxide,
    V-601 = dimethyl 2,2′-azobis(2-methylpropionate),
    PEG 600 DMA = polyethylene glycol dimethacrylate (600 g/mol).
  • POLYMER TABLE B3
    Polymers according to polymerization process B3:
    Polymer
    example ACDMT Anionic Monomer NaHCO3 Neutral Monomer Optional Crosslinker Initiator
    name /Mol-% Name /Mol-% Name /Mol-% Name /Mol-% Name Name /Mol-% Name /g
    B3/1 87.1 Carboxyethy acrylate 11.5 41.3 Methyl acrylate 1.0 GPTA 0.41 V-601 1.10
    B3/2 83.3 Carboxyethy acrylate 10.5 36.5 Stearylpoly-ethoxy-(8) 6.2 TMPTA 0.01 DLP 1.80
    methacrylate
    B3/3 83.0 Carboxyethy acrylate 9.0 35.9 Laurylpoly-ethoxy-(7)- 8.0 PEAS 0.01 DLP 1.80
    methacrylate
    B3/4 88.0 Carboxyethy acrylate 11.59 41.3 Methyl acrylate 0.01 GPTA 0.40 V-601 1.10
    B3/5 88.5 Carboxyethy acrylate 9.9 40.5 Methyl acrylate 0.1 GPTA 1.50 V-601 1.10
    oligo
    B3/6 67.9 Carboxyethy acrylate 8.5 36.5 DM A Am 23.1 GPTA 0.50 DLP 1.30
    oligo
    B3/7 79.0 Methacrylic acid 10.2 50.3 DMAAm 10.1 PEAS 0.70 V-601 1.50
    B3/8 74.0 Methacrylic acid 5.0 43.3 DMAAm 20.1 GPTA 0.85 V-601 1.50
    B3/9 90.9 Methacrylic acid 8.5 39.9 Methyl acrylate 0.1 GPTA 0.44 V-601 1.10
    B3/10 89.0 Methacrylic acid 3.0 33.5 Laurylpoly-ethoxy-(7)- 8.0 TMPTA 0.01 DLP 1.80
    methacrylate
    B3/11 74.0 Meth acrylic acid 5.0 43.3 DMAAm 20.1 GPTA 0.9 V-601 1.50
    B3/12 90.6 Meth acrylic acid 8.5 39.9 Methyl acrylate 0.5 GPTA 0.44 V-601 1.10
    B3/13 89.7 Acrylic acid 6.0 34.6 Behenylpoly-ethoxy-(25)- 3.3 TMPTA 1.02 DLP 1.75
    methacrylate
    ACDMT = acryloyldimethyltaurate,
    NVP = N-vinylpyrollidone,
    DMAAm = dimethylacrylamide,
    TMPTA = trimethylolpropane triacrylate,
    TMPTA = trimethylolpropane triacrylate,
    TMPTMA = trimethylolpropane trimethacrylate,
    GPTA = glycerinpropoxylate triacrylate,
    PEAS = pentaerythritol diacrylate monostearate,
    DLP = dilaurylperoxide,
    V-601 = dimethyl 2,2′-azobis(2-methylpropionate),
    PEG 600 DMA = polyethylene glycol dimethacrylate (600 g/mol).
  • Polymerization Process X: Solution Homopolymer of ACDMT in Water.
  • In a 1-L 5-neck round bottom flask, equipped with an overhead stirrer and an anchor type stirrer, a pH probe, sub-surface nitrogen inlet, dropping funnel, intensive condenser and a gas out let valve 450 g distilled water was filled. 50 g bio-based ACDMT (the ACDMT generated in Monomer Example 1) was dissolved. The agitator was set to rotate with 200 rpm. Cooling with a water bath at 20° C. the solution was neutralized with approximately 19 g 50% sodium hydroxide solution to a pH value of 7±0.5. After the neutralization the reaction mixture was heated to 50° C.±0.5° C. temperature. During the heating phase nitrogen was purged through the solution with a flow rate of 60 I/h. The temperature was stabilized and the nitrogen purge continued for 60 minutes. After this 60 minutes the nitrogen was dosed above the liquid surface and the polymerization was initiated by addition of 0.10 g 2,2′-azobis(2-methylpropionamidine)dihydrochloride (V-50 by Wako Specialty Chemicals).
  • 10 minutes after the reaction was started the purge was reduced to 6 I/h. After the temperature maximum was reached the bath temperature was maintained at 50° C. for one hour. Then the bath temperature was increased to 80° C. for 2 h, then cooled to room temperature. The Brookfield viscosity of the solution as was measured at 25° C., 20 rpm, using a spindle delivering a value of 20 to 80% of the maximum scale.
  • Also the Fickenscher k-Value was determined.
  • Polymerization Process Y: Homopolymer of ACDMT by Precipitation Polymerization in Tert.-Butanol
  • In a 1-Liter Quickfit round bottom flask equipped with a refux condenser, sub surface gas inlet tubing, inner temperature sensor and overhead agitator 400 g tert.-butanol was dosed. 100 g bio-based ACDMT was charged and was neutralized to a pH of 7 to 8 by injection of gaseous ammonia above the surface. The temperature was kept below 40° C. At agitation of 200 rpm nitrogen was inject subsurface for 1 h. During this time the temperature of the reaction mixture was raised and stabilized to 60° C. with help of a water bath. At 60° C. the pH was readjusted to a pH of 7 to 8. Then the reaction was initiated by the dosage of 1.0 g of 2,2′-azobis(isobutyronitrile).
  • After a few minutes the polymerization start became obvious by a raising temperature and the precipitation of a polymer. After the temperature maximum was reached the reaction mixture was heated to a gentle reflux for two hours. Then the polymer was cooled to room temperature and dried at 60° C. under a vacuum of 150 mbar.
  • The resulting polymer powder was dissolved 0.5% in water and the Fickenscher k-value was measured.
  • Polymerization Process Z: Synthesis of a Co-Polymer of ACDMT and Acrylamide by Precipitation Polymerisation in Tert.-Butanol.
  • In a 1-Liter Quickfit round bottom flask equipped with a refux condenser, sub surface gas inlet tubing, inner temperature sensor and overhead agitator 400 g tert.-butanol was dosed. 70 g bio-based ACDMT was charged. The ACDMT was neutralized to a pH of 7 to 8 by injection of gaseous ammonia above the surface. The temperature was kept below 40° C., then 30 g of acrylamide was dissolved in the reaction mixture. At agitation of 200 rpm nitrogen was inject subsurface for 1 h. during this time the temperature of the reaction mixture was raised and stabilized to 60° C. with help of a water bath. At 60° C. the pH was readjusted to a pH of 7 to 8. Then the reaction was initiated by the dosage of 1.0 g of 2,2′-azobis(isobutyronitrile).
  • After a few minutes the polymerization start becomes obvious by a raising temperature and the precipitation of a polymer. After the temperature maximum was reached the reaction mixture was heated to a gentle reflux for two hours. Then the polymer was cooled to room temperature and dried at 60° C. under a vacuum of 150 mbar.
  • The resulting polymer powder was dissolved 0.5% in water and the Fickenscher k-value was measured.
  • Drying Acrylonitrile
  • 500 ml acrylonitrile≥99%, contained 35-45 ppm monomethyl ether hydroquinone as inhibitor from Sigma-Aldrich, contained 0.41% water before drying. It was dried by adding 50 g molecular sieve 0.4 nm from Merck Millipore, Merck KGaA. The residual water content of the acrylonitrile was 19 ppm, measured by Karl-Fischer titration (DIN 51777).
  • Analytical Methods
  • Determination of the Fickenscher k-value:
  • This method was used to determine the k-value of certain polymers according to DIN EN ISO 1628-1.
  • A k-value measurement was a way to indirectly analyze the molecular weight/size of a polymer. A comparatively higher K-value corresponds to a larger molecular weight/size as compared to a polymer with the same composition and made by the same process.
  • By measuring the measuring the pass-through time of a solvent (t0) and the pass-through time of a polymer solution (tc) through the capillary of an Ubbelhode viscometer the relative viscosity was determined.
  • Z = t c t 0 = η c η 0
  • From the relative viscosity z the k-value can be calculated according to
  • 1 gz = [ 7 5 k 2 1 + 1 5 0 k × c + k ] × 1
  • In this case
  • k = 1 , 5 1 gz - 1 ± 1 + ( 2 c + 2 + 1 , 51 gz ) 1 , 5 1 gz 1 5 0 + 300 c k - value = 1000 k
  • Here in it was defined:
  • Z = t c t 0 = η c η 0
  • relative Viscosity,
    ηc dynamic viscosity of the solution,
    η0 dynamic viscosity of the solvent and
    c mass concentration of polymer in solution in in g/cm3
  • Alternatively the k-value can be evaluated from lists provided by the manufacturer of the equipment.
  • After determination of the mass concentration of the polymer solution by microwave drying with a CEM Smart 5 at 120° C., 20 ml of a 0.5% polymer solution was prepared. 16 to 18 ml of the solution was measured in an Ubbelhode capillary viscometer at 25° C. The Ubbelhode viscometer was chose to have a pass-through time of 100 to 120 s. It was measured in a Schott AVS viscometer, combined with a CT 1150 Thermostate and flow cooler CK 100.
  • The IT unit calculated the k-value.
  • Brookfield viscosity in 1% solution:
  • Brookfield viscosity was determined with a Brookfield viscometer model LV, RVT DV-II or LVT DV-II.
  • In a 600 ml beaker, 4 g dry polymer was dissolved in 394 g distilled water. The solution was stirred for 2 h at 20° C. with a finger stirrer driven by an overhead agitator at 200 rpm. Then the polymer solution, free of entrapped air, was tempered for 16 h at 20° C. The spindle was chosen to measure between 20 to 80% of the scale at 20 rpm.
  • Brookfield viscosity in solution as is.
  • Brookfield viscosity was determined with a Brookfield viscometer model LV, RVT DV-II or LVT DV-II.
  • In a 600 ml beaker, the polymer solution, free of entrapped air, was tempered for 2 h at 20° C. The spindle was chosen to measure between 20 to 80% of the scale at 20 rpm.
  • Analytical procedure for determination of bio-based content according to ASTM 6866-12, Method B:
  • The provided sample material did not undergo any pre-treatment procedure and was converted to graphite as was using the following procedure.
  • Depending on the estimated amount of carbon content, typically a few milligram of sample material was being combusted in an Elemental Analyzer (EA). The resulting gas mixture was being cleaned and CO2 was automatically separated by the EA using the purge and trap technology.
  • The remaining CO2 was transferred into a custom-made graphitization system, converted into carbon (graphite) catalytically using H2 and an iron-powder catalyst.
  • The carbon-14 determination of the graphite was performed at the Klaus-Tschira-Archaeomtrie-Center using an accelerator mass-spectrometer (AMS) of the type MICADAS (developed at the ETH Zurich, Switzerland).
  • Composition Examples
  • The following composition examples comprise the polymer according to the present invention e.g. as Polymer X. Polymer X can relate to any of Polymers A1/1 to A1/15, B1/1 to B1/20, A2/1 to A2/24, B2/1 to B2/25, A3/1 to A3/25 and to B3/1 to B3/20 (see above Polymer Tables for their respective compositions).
  • Example Composition 1: After-Sun Cream Gel
  • Mineral Oil 3.00%
    Isopropyl Palmitate 3.00%
    Cetearyl Isononanoate 3.00%
    Jojoba Oil 3.00%
    Walnut Oil 3.00%
    Tocopheryl Acetate 1.00%
    Polymer X 1.20%
    Water ad 100%
    Glycerin 3.00%
    Allantoin (Clariant) 0.20%
    Nipaguard ® POM (Clariant) 1.00%
    Phenoxyethanol, Methylparaben, Piroctone
    Olamine
    Panthenol 1.00%
    Collagen nativ 1% 3.00%
    Ethanol 1.50%
  • Example Composition 2: Sun Milk SPF 15
  • Ethylhexyl Stearate 7.00%
    Decyl Oleate 5.00%
    Plantasens ® Natural Emulsifier HE 20 3.00%
    (Clariant)
    Cetearyl Glucoside (and) Sorbitan Olivate
    Dimethicone 2.00%
    Octocrylene 7.00%
    Butyl Methoxydibenzoylmethane 2.50%
    Ethylhexyl Salicylate 4.50%
    Water Ad 100%
    Glycerin 3.00%
    Polymer X 1.00%
    Nipaguard ® POM (Clariant) 1.00%
    Phenoxyethanol (and) Piroctone Olamine
    (and) Methylparaben
    Citric Acid q.s.
  • Example Composition 3: Liquid Soap
  • Water Ad 100%
    Glycerin  3.00%
    1,2-Propanediol  2.00%
    Polymer X  2.00%
    Genapol ® LRO liquid (Clariant) 20.00%
    Sodium Laureth Sulfate
    Genagen ® CAB 818 (Clariant)  4.00%
    Cocamidopropyl Betaine
    GlucoTain ® Clear (Clariant)  2.00%
    Capryloyl/Caproyl Methyl Glucamide
    Nipaguard ™ DMDMH (Clariant)  0.40%
    DMDM Hydantoin
    Fragrance  0.20%
    Sodium Cloride  0.50%
  • Example Composition 4: Effect Shower Gel
  • Genapol ® LRO liquid (Clariant) 30.00%
    Sodium Laureth Sulfate
    Genagen ® CAB 818 (Clariant)  6.00%
    Cocamidopropyl Betaine
    Hostapon ® KCG (Clariant)  5.00%
    Sodium Cocoyl Glutamate
    Water Ad 100%
    Polymer X  1.40%
    Nipaguard ® DMDMH (Clariant)  0.50%
    DMDM Hydantoin
    Cirebelle 104 Blue  1.00%
    Sythetic Wax
  • Example Composition 5: Facial Cleanser
  • Water Ad 100%
    Polymer X 1.80%
    Genapol ® LRO paste (Clariant) 4.50%
    Sodium Laureth Sulfate
    Medialan ® LD (Clariant) 13.50% 
    Sodium Lauroyl Sarcosinate
    Genagen ® CAB 818 (Clariant) 3.00%
    Cocamidopropyl Betaine
    Citric Acid q.s.
    Benzoic Acid 0.50%
  • Example Composition 6: Mascara
  • Hydroxyethylcellulose 0.50%
    Polymer X 0.50%
    1, 2-Propyleneglycol 1.00%
    Magnesium Aluminium Silicate 1.00%
    Triethanolamine 99% 1.50%
    Water Ad 100%
    Stearic Acid 3.00%
    SilCare ® Silicone 41M15 (Clariant) 1.00%
    Capryly1 Methicone
    SilCare ® Silicone 31M50 (Clariant) 2.00%
    Caprylyl Trimethicone
    Tego ® Care 450 4.00%
    Polyglycery1-3 Methylglucose Distearate
    Polybutene. 2.00%
    Beeswax 2.50%
    Plantasens ® Olive Wax S51 (Clariant) 2.50%
    Hydrogenated Olive Oil
    Microcrystalline Wax 3.50%
    Iron Oxides 10.0%
    Phenonip ™ ME (Clariant) 1.00%
    Phenoxyethanol, Methylparaben,
    Ethylparaben
    Baycusan ® C 1004 2.00%
    Polyurethane-35
  • Example Composition 7: BB Cream SPF 15
  • Water Ad 100%
    Glycerin 2.00%
    Polymer X 1.00%
    Hostaphat ® KW 340 D (Clariant) 3.00%
    Triceteareth-4 Phosphate
    Cetearyl Alcohol 2.00%
    Octocrylene 7.00%
    Butyl Methoxydibenzoylmethane 2.50%
    Ethylhexyl Salicylate 4.50%
    Plantasens ® Olive LD (Clariant) 2.00%
    Hydrogenated Ethylhexyl Olivate (and)
    Hydrogenated Olive Oil Unsaponifiables
    12-15 Alkyl Benzoate 8.00%
    Plantasens ® Olive Squalane (Clariant) 2.00%
    Squalane
    Plantasens ® Shea Butter (Clariant) 1.00%
    Butyrospermum Parkii (Shea) Butter
    XIAMETER ® PMX-200 Silicone Fluid 200 CS 2.00%
    Dimethicone
    Chroma-Lite ® Black 0.05%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Chroma-Lite ® Red 0.20%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Chroma-Lite ® Yellow 0.60%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Titanium Dioxide 5.00%
    Butylene Glycol 4.00%
    Plantasens ® Natural Vitamin E (Clariant) 1.00%
    Tocopherol
    Panthenol 0.50%
    Sodium Hyaluronate 0.40%
    Fragrance 0.20%
    Nipaguard ® POB (Clariant) 0.80%
    Phenoxyethanol (and) Piroctone Olamine
    (and) Benzoic Acid
    Citric Acid q.s.
  • Example Composition 8: O/W Foundation
  • Water Ad 100%
    Polymer X 1.00%
    Magnesium Aluminium Silicate 1.00%
    Plantasens ® Natural Emulsifier HP10 4.50%
    (Clariant)
    Sucrose Polystearate, Cetearyl Alcohol,
    Olea Europaea (Olive) Oil Unsaponifiables
    SilCare ® Silicone 31M50 (Clariant) 2.00%
    Caprylyl Trimethicone
    XIAMETER ® PMX-200 Silicone Fluid 100 CS 2.00%
    Dimethicone
    Caprylic/Capric Triglyceride 5.00%
    Plantasens ® Olive Wax S51 (Clariant) 1.50%
    Hydrogenated Vegetable Oil
    Chroma-Lite ® Black 0.10%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Chroma-Lite ® Red 0.40%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Chroma-Lite ® Yellow 1.20%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Titanium Dioxide 7.00%
    Dicaprylyl Carbonate 4.00%
    Butylene Glycol 3.00%
    Plantasens ® Natural Vitamin E (Clariant) 1.00%
    Tocopherol
    Orgasol ® 4000 EXD NAT COS Caresse 1.00%
    Nylon-6/12
    Fragrance 0.20%
    Nipaguard ® POB (Clariant) 0.80%
    Phenoxyethanol (and) Piroctone Olamine
    (and) Benzoic Acid
  • Example Composition 9: Liquid Highlighter
  • Water Ad 100%
    Bentonite 1.00%
    Polymer X 1.00%
    Liquiwax ™ PolyIPL 2.00%
    Stearyl/PPG-3 Myristyl Ether Dimer
    Dilinoleate
    Plantasens ® Olive Wax S51 (Clariant) 2.00%
    Hydrogenated Olive Oil
    Stearic Acid 1.20%
    Isostearic Acid 0.90%
    Water 5.00%
    Sodium Hydroxide 0.12%
    Orgasol ® 4000 EXD NAT COS Caresse 1.50%
    Nylon-6/12
    Timiron ® Super Gold 2.50%
    Mica, Titanium Dioxide
    Xirona ® Indian Summer 2.50%
    Silica (and) Iron Oxides
    Panthenol 0.50%
    Cyclopentasiloxane 7.50%
    Phenonip ™ ME (Clariant) 1.00%
    Phenoxyethanol, Methylparaben,
    Ethylparaben
    Tocopheryl Acetate 1.00%
  • Example Composition 10: Lipstain
  • Water Ad 100%
    Glycerin 30.00% 
    Polymer X 3.00%
    FD&C Red No.40 0.15%
    Cl16035
    Emulsogen ® HCO 040 (Clariant) 0.50%
    PEG-40 Hydrogenated Castor Oil
    Phenonip ™ ME (Clariant) 1.00%
    Phenoxyethanol, Methylparaben,
    Ethylparaben
    Flavour 0.20%
  • Example Composition 11: Eyeliner Gel
  • Water Ad 100%
    Glycerin  1.00%
    Polymer X  2.00%
    Phenonip ™ ME (Clariant)  1.00%
    Phenoxyethanol, Methylparaben,
    Ethylparaben
    PVP  1.50%
    Water 10.00%
    Timiron ® Super Gold 12.00%
    Mica, Cl77891, Titanium Dioxide
  • Example Composition 12: After-Shave Balm
  • Hostaphat ® KL 340 D (Clariant) 2.00%
    Trilaureth-4 Phosphate
    Octopirox ® (Clariant) 0.05%
    Piroctone Olamine
    Plantasens ® Abyssinian Oil (Clariant) 2.00%
    Crambe Abyssinica Seed Oil
    Isopropyl Isostearate 3.00%
    Plantasens ® Inca Inchi Serum (Clariant) 1.00%
    Plukenetia Volubilis Seed Oil (and)
    Phytosterols (and) Olea Europaea (Olive) Oil
    Unsaponifiables (and) Beeswax
    Water Ad 100%
    Polyglykol 400 (Clariant) 3.00%
    PEG-8
    Allantoin 0.30%
    Polymer X 1.50%
    Dimethicone 1.00%
    Citric Acid q.s.
    Phenonip ™ ME (Clariant) 1.00%
    Phenoxyethanol, Methylparaben,
    Ethylparaben
  • Example Composition 13: Sprayable Body Milk
  • Hostaphat ® KL 340 D (Clariant) 1.00%
    Trilaureth-4 Phosphate
    Mineral Oil 8.00%
    Isopropyl Palmitate 3.00%
    Cetearyl Alcohol 0.50%
    Caprylic/Capric Triglyceride 2.00%
    Glyceryl Stearate 0.50%
    SilCare ® Silicone 41M15 (Clariant) 1.00 %
    Caprylyl Methicone
    Polymer X 1.00%
    Water ad 100%
    Glycerin 5.00%
    Ethanol 5.00%
    Tocopheryl Acetate 1.00%
    Nipaguard ® POM (Clariant) 1.00%
    Phenoxyethanol, Methylparaben, Piroctone
    Olamine
  • Example Composition 14: Body Lotion for Men
  • Caprylic/Capric Triglyceride 3.50%
    Plantasens ® Olive LD (Clariant) 3.00%
    Hydrogenated Ethylhexyl Olivate (and)
    Hydrogenated Olive Oil Unsaponifiables
    Myristyl Myristate 2.50%
    Cetearyl Alcohol 2.00%
    Octyldodecanol 1.00%
    Glyceryl Stearate Citrate 1.50%
    Polymer X 1.20%
    Water ad 100%
    Glycerin 5.00%
    Ethanol 3.00%
    Tocopheryl Acetate 1.00%
    Aloe Barbadensis Leaf Juice 1.00%
    Nipaguard ® POM (Clariant) 1.00%
    Phenoxyethanol, Methylparaben, Piroctone
    Olamine
    Fragrance 0.20%
    Sodium Hydroxide q.s.
  • Example Composition 15: Anti-Ageing Cream Gel
  • Caprylic/Capric Triglyceride 5.00%
    Dicaprylyl Ether 5.00%
    Cetearyl Alcohol 2.00%
    Nipaguard ® POB (Clariant) 0.80%
    Phenoxyethanol (and) Piroctone Olamine
    (and) Benzoic Acid
    Ubiquinone 0.10%
    Aristoflex ® HMB (Clariant) 0.40%
    Ammonium Acryoyldimethyltaurate/
    Beheneth-25 Methacrylate Crosspolymer
    Polymer X 0.40%
    Sodium Hyaluronate 0.30%
    Water Ad 100%
    Tocopheryl Acetate 0.30%
    Fragrance 0.30%
  • Example Composition 16: Light Day Cream
  • Water Ad 100%
    Polymer X 0.75%
    Glycerin 3.00%
    Plantasens ® Natural Emulsifier HE20 1.20%
    (Clariant)
    Cetearyl Glucoside, Sorbitan Olivate
    Aristoflex ® AVC (Clariant) 0.10%
    Ammonium Acryloyldimethyltaurate/VP
    Copolymer
    Plantasens ® Abyssinian Oil (Clariant) 3.00%
    Crambe Abyssinica Seed Oil
    Octyldodecanol 5.00%
    Isodecyl Neopentanoate 3.00%
    Plantasens ® Natural Vitamin E (Clariant) 0.50%
    Tocopherol
    Nipaguard ® SCP (Clariant) 1.00%
    Phenoxyethanol (and) Sorbitan Caprylate
    Fragrance 0.30%
    Citric Acid q.s.
  • Example Composition 17: Caring Night Cream
  • Water Ad 100%
    Glycerin 2.00%
    Polymer X 1.00%
    Hostaphat ® KW 340 D (Clariant) 2.00%
    Triceteareth-4 Phosphate
    Plantasens ® Oat Serum (Clariant) 3.00%
    Avena Sativa (Oat) Kernel Oil (and)
    Phytosterols (and) Olea Europaea (Olive) Oil
    Unsaponifiables (and) Beeswax
    Plantasens ® Shea Butter (Clariant) 7.00%
    Butyrospermum Parkii (Shea) Butter
    Isopropyl Palmitate 5.00%
    Macadamia Integrifolia Seed Oil 4.00%
    Cera Alba (Beeswax) 3.00%
    Nipaguard ® SCP (Clariant) 1.00%
    Phenoxyethanol (and) Sorbitan Caprylate
    Fragrance 0.30%
    Sodium Hydroxide 0.10%
  • Example Composition 18: Sprayable Hair Styling Gel
  • Polymer X 0.90%
    Water Ad 100%
    Genapol ® LA-230 (Clariant) 4.00%
    Laureth-23
    Diaformer ® Z-632N (Clariant) 4.50%
    Acrylates/Stearyl Acrylate/Ethylamine Oxide
    Methacrylate Copolymer
    Dipropylene Glycol 1.00%
    Polyglykol 400 0.50%
    PEG-8
    Nipaguard ™ DMDMH (Clariant) 0.50%
    DMDM Hydantoin
    Panthenol 0.50%
    Emulsogen ® HCO 040 (Clariant) 0.50%
    PEG-40 Hydrogenated Castor Oil
    Fragrance 0.30%
  • Example Composition 19: Conditioning Shampoo
  • Water Ad 100%
    Polymer X  1.10%
    Genapol ® LRO liquid (Clariant) 30.00%
    Sodium Laureth Sulfate
    Genagen ® CAB 818 (Clariant)  6.00%
    Cocamidopropyl Betaine
    XIAMETER ® PMX-200 Silicone Fluid 50 CS  0.25%
    Dimethicone
    Water 10.00%
    Jaguar ® C-162  0.20%
    Hydroxypropyl Guar (and) Hydroxypropyl
    Guar Hydroxypropyltrimonium Chloride
    Citric Acid q.s.
    Water  4.00%
    Sodium Benzoate  0.45%
    Sodium Chloride  0.50%
  • Example Composition 20: Nail Varnish Remover Gel
  • Water Ad 100%
    Ethanol 27.00%
    Polyglykol ® 400 (Clariant)  3.00%
    PEG-8
    Glycerin  3.00%
    Aristoflex ® TAC (Clariant)  0.20%
    Ammonium Acryloyldimethyltaurate/
    Carboxyethyl Acrylate Crosspolymer
    Polymer X  1.00%
    Ethyl Acetate 30.00%
  • Example Composition 21: Skin-Whitening Gel
  • Genapol ® T 250 (Clariant) 2.00%
    Ceteareth-25
    Genapol ® DAT 100 (Clariant) 1.10%
    PEG-150 Polyglyceryl-2 Tristearate
    Water Ad 100%
    Ascorbic Acid 2- Glucoside 3.00%
    Polymer X 1.50%
    Nipaguard ™ DMDMH Plus (Clariant) 2.00%
    DMDM Hydantoin
  • Example Composition 22: Self-Tanning Cream
  • Hostaphat ® CC 100 (Clariant) 1.00%
    Cetyl Phosphate
    Glyceryl Stearate 0.50%
    Cetearyl Alcohol 0.50%
    Mineral Oil 8.00%
    Isopropyl Palmitate 7.00%
    Tocopheryl Acetate 1.00%
    SilCare ® Silicone 41M15 (Clariant) 1.00%
    Caprylyl Methicone
    Polymer X 2.00%
    Water ad 100%
    Hostapon ® KCG (Clariant) 0.50%
    Sodium Cocoyl Glutamate
    Glycerin 5.00%
    Fragrance 0.20%
    Phenonip ™ ME (Clariant) 1.00%
    Phenoxyethanol, Methylparaben,
    Ethylparaben
    Dihydroxyacetone 5.00%
    Water 8.00%
    Sodium Hydroxide q.s.
  • Example Composition 23: Make-Up Remover
  • Water ad 100%
    Glycerin 3.00%
    Polymer X 0.80%
    Hostaphat ® KL 340 D (Clariant) 3.00%
    Trilaureth-4 Phosphate
    Cetearyl Alcohol 1.50%
    Plantasens ® Olive LD (Clariant) 2.00%
    Hydrogenated Ethylhexyl Olivate (and)
    Hydrogenated Olive Oil Unsaponifiables
    Isostearyl Isostearate 4.00%
    Isohexadecane 4.00%
    Sodium Hydroxide q.s.
    Nipaguard ® SCP (Clariant) 1.00%
    Phenoxyethanol (and) Sorbitan Caprylate
    Fragrance 0.20%
  • Example Composition 24: Insect Repellent Lotion
  • Diethyl Toluamide 10.00%
    DEET
    Hostaphat ® KL 340 D (Clariant)  1.00%
    Trilaureth-4 Phosphate
    Isohexadecan  5.00%
    C12-15 Alkyl Benzoate  5.00%
    Cyclopentasiloxane  2.00%
    Polymer X  1.00%
    Water Ad 100%
    Ethanol 10.00%
    Fragrance  0.30%
    Nipaguard ® POB (Clariant)  0.80%
    Phenoxyethanol (and) Piroctone Olamine
    (and) Benzoic Acid
  • Example Composition 25: Facial Toner
  • Water ad 100%
    Glycerin 5.00%
    Butylene Glycol 3.00%
    Alcohol 5.00%
    Polymer X 0.20%
    Emulsogen ® HCO 040 (Clariant) 0.40%
    PEG-40 Hydrogenated Castor Oil
    Fragrance 0.30%
    Tocopheryl Acetate 0.50%
    Panthenol 0.30%
    Nipaguard ® SCP (Clariant) 1.00%
    Phenoxyethanol (and) Sorbitan Caprylate
    Citric acid q.s. pH 5.5
  • Example Composition 26: Depilating Cream
  • Cetyl Alcohol 4.00%
    Ceteareth-20 3.00%
    Cetearyl Alcohol 2.00%
    Caprylic/Capric Triglyceride 5.00%
    Mineral Oil 2.00%
    Water ad 100%
    Tetrasodium EDTA 0.10%
    Polymer X 3.00%
    Potassium Hydroxide (50% sol) 2.00%
    Calcium Hydroxide 5.00%
    Potassium Thioglycolate 10.0%
    Fragrance 0.30%
    Tocopheryl Acetate 0.50%
    Panthenol 0.30%
  • Example Composition 27: Face Mask
  • Water ad 100%
    Polymer X 2.00%
    Glycerin (85%) 5.00%
    Glucotain ® Care (Clariant) 2.00%
    Cocoyl Methyl Glucamide
    Plantasens ® Grape Seed Serum (Clariant) 1.00%
    Vegetable Oil (and) Phytosterols (and) Olea
    Europaea (Olive) Oil Unsaponifiables
    Plantasens ® Abyssinian Oil (Clariant) 3.00%
    Crambe Abyssinica Seed Oil
    Hostacerin ® SFO (Clariant) 2.00%
    Sunflower Seed Oil Sorbitol Esters
    Kaolin 4.00   
    Green Clay 4.00   
    Titanium Dioxide 2.00   
    Nipaguard ® POM (Clariant) 1.00   
    Phenoxyethanol (and) Piroctone Olamine
    (and) Methylparaben
    Sodium Acetate 0.10   
    Citric Acid q.s.
  • Example Composition 28: Micellar Gel
  • Water ad 100%
    Polymer X 1.00%
    Glycerin (85%) 3.00%
    GlucoTain ® Clear (Clariant) 4.00%
    Capryloyl/Caproyl Methyl Glucamide
    Propylene Glycol 2.00%
    Sodium Citrate 0.10%
    Emulsogen ® HCO 40 (Clariant) 1.00%
    PEG-40 Hydrogenated Castor Oil
    Nipaguard ® POM (Clariant) 1.00%
    Phenoxyethanol, Methylparaben, Piroctone
    Olamine
    Citric Acid q.s.
  • Example Composition 29: Lubricating Gel
  • Water ad 100%
    Polymer X 0.50%
    Glycerin (85%) 5.00%
    Polyglycol 300 3.00%
    PEG-6
    Aloe Barbadensis Leaf Juice 0.30%
  • Example Composition 30: Emulsion for Wet Wipes
  • Emulsogen ® CCT Green (Clariant) 2.50%
    Caprylic/Capric Triglyceride, Water, Lauryl
    Glucoside, Glycerin, Sodium Lauroyl
    Lactylate, Glyceryl Stearate, Cetearyl
    Alcohol, Sodium Stearoyl Lactylate
    Isopropyl Stearate 5.00%
    Plantasens ® Abyssinian Oil (Clariant) 0.50%
    Crambe Abyssinica Seed Oil
    Tocopheryl Acetate 0.10%
    Fragrance 0.20%
    Water ad 100%
    Polymer X 0.10%
    Panthenol 0.10%
    Nipaguard ® SCE (Clariant) 1.50%
    Sorbitan Caprylate (and) Propanediol (and)
    Benzoic Acid
  • Example Composition 31: Antiperspirant for Roll-Ons
  • Hydroxyethyl cellulose 0.30%
    Alcohol 25.0%
    Water ad 100%
    Polymer X 0.50%
    Locron ® LIC (Clariant) 25.0%
    Aluminium Chlorodydrate
    Propylene Glycol 2.00%
    Panthenol 0.10%
    Ennulsogen ® HCO 40 (Clariant) 1.00%
    PEG-40 Hydrogenated Castor Oil
    Fragrance 0.30%
  • Example Composition 32: Shaving Gel
  • Water ad 100%
    Glycerin 5.00%
    Polymer X 1.50%
    Genapol ® LT (Clariant) 1.00%
    PEG-150 Polyglycery1-2 Tristearate (and)
    Laureth-3 (and) Dipropylene Glycol
    Genagen ® SC 15 (Clariant) 6.00%
    Sodium Laureth Sulfate (and) Cocamide
    MEA (and) Aqua
    Genagen ® CAB 818 (Clariant) 3.00%
    Cocamidopropyl Betaine
    Sodium Hydroxide (50% sol) 0.50%
    Panthenol 0.10%
    Allantoin 0.20%
    Polyglycol 300 (Clariant) 0.50%
    PEG-6
    Phenonip ® ME (Clariant) 0.90%
    Phenoxyethanol, Methylparaben,
    Ethylparaben
    Fragrance 0.30%
  • Example Composition 33: Hand Sanitizer
  • Water ad 100%
    Glycerin 2.00%
    Polymer X 0.50%
    Ethanol 70.0%
    XIAMETER ® OFX-5324 Fluid 6.00%
    PEG-12 Dimethicone
    Aloe Barbadensis Leaf Extract 0.30%
  • Example Composition 34: Hair Serum
  • Water ad 100%
    Glycerin 5.00%
    Propylene Glycol 3.00%
    Polymer X 2.00%
    XIAMETER ® PMX-200 (50cs) 2.00%
    Dimethicone
    XIAMETER ® PMX-0245 3.00%
    Cyclopentasiloxane
    Polysorbate-20
    Sodium Hyaluronate 1.00%
    Nipaguard ® POM (Clariant) 1.00%
    Phenoxyethanol (and) Piroctone Olamine
    (and) Methylparaben
    Fragrance 0.50%
  • Example Composition 35: Hair Detangling Cream
  • Water ad 100%
    Glycerin 3.00%
    Polymer X 1.50%
    Hostacerin ® SFO (Clariant) 2.00%
    Sunflower Seed Oil Sorbitol Esters
    Plantasens ® Sweet Almond Oil (Clariant) 3.00%
    Prunus Amygdalus Dulcis (Sweet Almond)
    Oil
    Plantasens ® Avocado Oil (Clariant) 2.00%
    Persea Gratissima (Avocao) Oil
    Isopropyl Palmitate 5.00%
    SilCare ® Silicone SEA (Clariant) 0.80%
    Trideceth-9 PG-Amodimethicone and
    Trideceth-12
    Panthenol 0.50%
    Fragrance 0.30%
    Tocopheryl Acetate 0.30%
    Nipaguard ® SCE (Clariant) 1.20%
    Sorbitan Caprylate, Propanediol, Benzoic
    Acid
  • Example Composition 36: Effect Shower Gel
  • pH=5.0, 510 mPa·s (Brookfield RVDV-1, 20° C., 20 rpm, SO4)
  • Genapol ® LRO liquid (Clariant) 30.00%
    Sodium Laureth Sulfate
    Genagen ® CAB 818 (Clariant)  6.00%
    Cocamidopropyl Betaine
    Hostapon ® KCG (Clariant)  5.00%
    Sodium Cocoyl Glutamate
    Water Ad 100%
    Polymer-A1/2  1.40%
    (according to polymerization process A1)
    Nipaguard ® DMDMH (Clariant)  0.50%
    DMDM Hydantoin
    Cirebelle 104 Blue  1.00%
    Sythetic Wax
  • Example Composition 37: O/W Foundation
  • pH=6.0, 18650 mPa·s (Brookfield RVDV-1, 20° C., 20 rpm, S06)
  • Water Ad 100%
    Polymer-A1/2 1.00%
    (according to polymerization process A1)
    Magnesium Aluminium Silicate 1.00%
    Plantasens ® Natural Emulsifier HP10 4.50%
    (Clariant)
    Sucrose Polystearate, Cetearyl Alcohol,
    Olea Europaea (Olive) Oil Unsaponifiables
    SilCare ® Silicone 31M50 (Clariant) 2.00%
    Caprylyl Trimethicone
    XIAMETER ® PMX-200 Silicone Fluid 100 CS 2.00%
    Dimethicone
    Caprylic/Capric Triglyceride 5.00%
    Plantasens ® Olive Wax S51 (Clariant) 1.50%
    Hydrogenated Vegetable Oil
    Chroma-Lite ® Black 0.10%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Chroma-Lite ® Red 0.40%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Chroma-Lite ® Yellow 1.20%
    Mica (and) Bismuth Oxychloride (and) Iron
    Oxides
    Titanium Dioxide 7.00%
    Dicaprylyl Carbonate 4.00%
    Butylene Glycol 3.00%
    Plantasens ® Natural Vitamin E (Clariant) 1.00%
    Tocopherol
    Orgasol ® 4000 EXD NAT COS Caresse 1.00%
    Nylon-6/12
    Fragrance 0.20%
    Nipaguard ® POB (Clariant) 0.80%
    Phenoxyethanol (and) Piroctone Olamine
    (and) Benzoic Acid
  • Example Composition 38: Anti-Ageing Cream Gel
  • pH=5.1, 1580 mPa·s (Brookfield RVDV-1, 20° C., 20 rpm, S04)
  • Caprylic/Capric Triglyceride 5.00%
    Dicaprylyl Ether 5.00%
    Cetearyl Alcohol 2.00%
    Nipaguard ® POB (Clariant) 0.80%
    Phenoxyethanol (and) Piroctone Olamine
    (and) Benzoic Acid
    Ubiquinone 0.10%
    Aristoflex ® HMB (Clariant) 0.40%
    Ammonium Acryoyldimethyltaurate/
    Beheneth-25 Methacrylate Crosspolymer
    Polymer-A1/2 0.40%
    (according to polymerization process A1)
    Sodium Hyaluronate 0.30%
    Water Ad 100%
    Tocopheryl Acetate 0.30%
    Fragrance 0.30%
  • Example Composition 39: Caring Night Cream
  • pH=5.8, 22450 mPa*s (Brookfield RVDV-1, 20° C., 20 rpm, S06)
  • Water Ad 100%
    Glycerin 2.00%
    Polymer-A1/2 1.00%
    (according to polymerization process A1)
    Hostaphat ® KW 340 D (Clariant) 2.00%
    Triceteareth-4 Phosphate
    Plantasens ® Oat Serum (Clariant) 3.00%
    Avena Sativa (Oat) Kernel Oil (and)
    Phytosterols (and) Olea Europaea (Olive) Oil
    Unsaponifiables (and) Beeswax
    Plantasens ® Shea Butter (Clariant) 7.00%
    Butyrospermum Parkii (Shea) Butter
    Isopropyl Palmitate 5.00%
    Macadamia Integrifolia Seed Oil 4.00%
    Cera Alba (Beeswax) 3.00%
    Nipaguard ® SCP (Clariant) 1.00%
    Phenoxyethanol (and) Sorbitan Caprylate
    Fragrance 0.30%
    Sodium Hydroxide 0.10%
  • Example Composition 40: Hand Sanitizer
  • pH=5.4, 30600 mPa*s (Brookfield RVDV-1, 20° C., 20 rpm, S06)
  • Water ad 100%
    Glycerin 2.00%
    Polymer-A1/2 0.50%
    (according to polymerization process A1)
    Ethanol 70.0%
    XIAMETER ® OFX-5324 Fluid 6.00%
    PEG-12 Dimethicone
    Aloe Barbadensis Leaf Extract 0.30%
  • Method of Use
  • Example Methods of Use:
  • Example Composition 19 is applied to wet hair in an amount of about 2 ml per 2 gram of hair (dry weight). Tap water is employed to create a lather and spread the composition throughout the hair and scalp. The composition is immediately rinsed from the hair. The hair may further be conditioned.
  • Example Compositions 1, 2, 12, 13, 14, 15, 16, 17, 22, 24, and 37 to 39 are applied to human skin and left on the skin to sink in, and the skin allowed to dry.
  • EXPERIMENTAL Experimental Example 1: Polymers According to Polymerization Process B1: Viscosity Dependence on Polymer Concentration
  • The following example comprises a polymer according to the present invention as Polymer B1/16 compared with Polymer B1/16 #. Polymer B1/16 # being a comparative example in that is the same as Polymer B1/16 but with common building blocks derived from petrochemicals.
  • See FIG. 1: The viscosity measurements in dependence of polymer concentration with Polymer B1/16 (solid line) and Polymer B1/16 # (broken line) showed very similar results, therefore Polymer B1/16 and Polymer B1/16 # are interchangeable with one another.
  • Experimental Example 2: Polymers According to Polymerization Process B1: Viscosity Dependence on pH
  • The following example comprises a polymer according to the present invention as Polymer B1/16 compared with Polymer B1/16 #. Polymer B1/16 # being a comparative example in that is the same as Polymer B1/16 but with common building blocks derived from petrochemicals.
  • See FIG. 2: The viscosity measurements and their dependence on pH with Polymer B1/16 and Polymer B1/16 # showed very similar results, therefore Polymer B1/16 and Polymer B1/16 # are interchangeable with one another.
  • Experimental Example 3: Polymers According to Polymerization Process A3
  • The following example comprises a polymer according to the present invention as Polymer-A3/8 compared with Polymer-A3/8 #. Polymer A3/8 # being a comparative example in that is the same as Polymer-A3/8 but with common building blocks derived from petrochemicals.
  • Typical measurements of Polymer-A3/8 and Polymer-A3/8 # showed very similar results (Exp. Table 1), therefore Polymer-A3/8 and Polymer-A3/8 # are interchangeable with one another.
  • EXP. TABLE 1
    Polymers according to polymerization process A3.
    Viscosity measurement: Brookfield RVDV-1, 20° C., 20 rpm.
    Polymer Viscosity/mPa · s pH
    A3/8 18000 5.0
    A3/8# 19300 5.3
  • Experimental Example 4: Polymers According to Polymerization Process A1: Viscosity Dependence on pH
  • The following example comprises a polymer according to the present invention as Polymer A1/2 compared with Polymer A1/2 #. Polymer A1/2 # being a comparative example in that is the same as Polymer A1/2 but with common building blocks derived from petrochemicals.
  • See FIG. 3: The viscosity measurements and their dependence on pH with Polymer A1/2 and Polymer A1/2 # showed very similar results, therefore Polymer A1/2 and Polymer A1/2 # are interchangeable with one another.

Claims (15)

1. A cosmetic, dermatological or pharmaceutical composition comprising at least one polymer, wherein the polymer is crosslinked or non-crosslinked, and comprises at least 9.49 mol % of repeating units (a) according to Formula (1) wherein at least 10 wt. %, of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
Figure US20220202687A1-20220630-C00024
wherein:
R1 and R2 are independently selected from the group consisting H, methyl and ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, 1/2 Ca++, 1/2 Mg++, 1/2 Zn++, 1/3 Al+++, or combinations thereof.
2. The cosmetic, dermatological or pharmaceutical composition according to claim 1, wherein the composition is for treating keratinous material.
3. A method for thickening or modifying a rheology in a cosmetic, dermatological or pharmaceutical composition comprising the step of adding at least one polymer to the cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, and comprises at least 9.49 mol % of repeating units (a) according to Formula (1) wherein at least 10 wt.-% of the repeating units according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
Figure US20220202687A1-20220630-C00025
wherein:
R1 and R2 are independently selected from the group consisting H, methyl and ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, 1/2 Ca++, 1/2 Mg++, 1/2Zn++, 1/3 Al+++, or combinations thereof.
4. The cosmetic, dermatological or pharmaceutical composition according to claim 1, wherein the composition is selected from the group consisting of shampoo, body wash, facial cleanser, face mask, bubble bath, intimate wash, bath oil, cleansing milk, micellar water, make-up remover, cleansing wipes, hair mask, perfume, liquid soap, shaving soap, shaving foam, cleansing foam, day cream, anti-ageing cream, body milk, body lotion, body mousse, face serum, eye cream, sunscreen lotion, sun cream, face cream, after-shave lotion, pre-shaving cream, depilatory cream, skin-whitening gel, self-tanning cream, anti-acne gel, mascara, foundation, primer, concealer, blush, bronzer, blemish balm (bb) cream, eyeliner, night cream, eye brow gel, highlighter, lip stain, hand sanitizer, hair oil, nail varnish remover, conditioner, hair styling gel, hair styling cream, anti-frizz serum, scalp treatment, hair colorant, split end fluid, deodorant, antiperspirant, baby cream, insect repellent, hand cream, sunscreen gel, foot cream, exfoliator, body scrub, cellulite treatment, bar soap, cuticle cream, lip balm, hair treatment, eye shadow, bath additive, body mist, eau de toilette, mouthwash, toothpaste, lubricating gel, moisturizer, serum, toner, aqua sorbet, cream gel, styling mousse, dry shampoo, lip stick, lip gloss, hydro-alcoholic gel, body oil, shower milk, illuminator, lip crayon, hair spray, combing cream, and sunblock.
5. The cosmetic, dermatological or pharmaceutical composition according to claim 1, further comprising:
(II) at least one cosmetically acceptable component.
6. The composition according to claim 5, wherein the at least one cosmetically acceptable component is an auxiliary or mixture of auxiliaries, selected from the group consisting of oily substances, waxes, emulsifiers, coemulsifiers, solubilizers, cationic polymers, film formers, superfatting agents, refatting agents, foam stabilizers, stabilizers, active biogenic substances, preservatives, preservation boosting ingredients, anti-fungal substance, anti-dandruff agents, dyes or pigments, particulate substances, opacifiers, abrasives, absorbents, anticaking agents, bulking agents, pearlizing agents, direct dyes, perfumes or fragrances, carriers, solvents or diluents, propellants, functional acids, active ingredients, skin-brightening agents, self-tanning agents, exfoliants, enzymes, anti-acne agents, deodorants and anti-perspirants, viscosity modifiers, thickening and gelling agents, pH adjusting agents, buffering agents, anti-oxidants, chelants, astringents, sunscreens, sun protection agents, UV filters, skin conditioning agents, emollients, humectants, occlusive agents, pediculocides, anti-foaming agents, flavouring agents, electrolytes, oxidizing agents and reducing agents.
7. The cosmetic, dermatological or pharmaceutical composition according to claim 1, wherein the polymer has a weight average molecular weight of at least 700 g/mol.
8. The cosmetic, dermatological or pharmaceutical composition according to claim 1, wherein, in Formula (1), Q+ is Na+ or NH4 +.
9. The composition according to claim 5, wherein the composition is an emulsion or gel.
10. The composition according to claim 5, wherein the composition has a viscosity from 100 000 to 200 000 mPa·s, (measured at 25° C., Brookfield RVT, T-C spindle at 20 revolutions per minute).
11. The composition according to claim 5, wherein the composition is a body or face care composition, and wherein the body or face care composition comprises from 0.1 wt % to 15 wt % of at least one emulsifier, coemulsifier and/or solubilizer, by total weight of the composition.
12. A process of formulating a cosmetic, dermatological or pharmaceutical composition comprising the step of incorporating a polymer into the cosmetic, dermatological or pharmaceutical composition, wherein the polymer is crosslinked or non-crosslinked, characterized in that the polymer comprises at least 9.49 mol % of repeating units (a) according to Formula (1) wherein at least 10 wt.-% of the repeating units (a) according to Formula (1) comprise from 28 wt.-% to 100 wt.-% bio-based carbon content, relative to the total mass of carbon in the repeating unit according to Formula (1), measured according to standard ASTM D6866-12, Method B;
Figure US20220202687A1-20220630-C00026
wherein:
R1 and R2 are independently selected from H, methyl or ethyl; A is a linear or branched C1-C12-alkyl group; and Q+ is H+, NH4 +, organic ammonium ions [NHR5R6R7]+ wherein R5, R6, and R7 independently of one another may be hydrogen, a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched, singularly or multiply unsaturated alkenyl group having 2 to 22 carbon atoms, a C6-C22 alkylamidopropyl group, a linear mono-hydroxyalkyl group having 2 to carbon atoms or a linear or branched dihydroxyalkyl group having 3 to carbon atoms, and where at least one of the radicals R5, R6, and R7 is not hydrogen, or Q+ is Li+, Na+, K+, 1/2 Ca++, 1/2 Mg++, 1/2 Zn++, 1/3Al+++, or combinations thereof.
13. (canceled)
14. A method for treating keratinous material, comprising the step of applying the composition according to claim 5, to the keratinous material.
15. The method of claim 14, wherein the keratinous material is human hair or human skin.
US17/698,467 2016-12-12 2022-03-18 Use Of A Bio-Based Polymer In A Cosmetic, Dermatological Or Pharmaceutical Composition Pending US20220202687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/698,467 US20220202687A1 (en) 2016-12-12 2022-03-18 Use Of A Bio-Based Polymer In A Cosmetic, Dermatological Or Pharmaceutical Composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP16203549.7 2016-12-12
EP16203549 2016-12-12
PCT/EP2017/081417 WO2018108611A1 (en) 2016-12-12 2017-12-04 Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
US201916468659A 2019-06-11 2019-06-11
US17/698,467 US20220202687A1 (en) 2016-12-12 2022-03-18 Use Of A Bio-Based Polymer In A Cosmetic, Dermatological Or Pharmaceutical Composition

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16/468,659 Continuation US11311473B2 (en) 2016-12-12 2017-12-04 Use of a bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
PCT/EP2017/081417 Continuation WO2018108611A1 (en) 2016-12-12 2017-12-04 Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition

Publications (1)

Publication Number Publication Date
US20220202687A1 true US20220202687A1 (en) 2022-06-30

Family

ID=57542908

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/468,659 Active US11311473B2 (en) 2016-12-12 2017-12-04 Use of a bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
US17/698,467 Pending US20220202687A1 (en) 2016-12-12 2022-03-18 Use Of A Bio-Based Polymer In A Cosmetic, Dermatological Or Pharmaceutical Composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/468,659 Active US11311473B2 (en) 2016-12-12 2017-12-04 Use of a bio-based polymer in a cosmetic, dermatological or pharmaceutical composition

Country Status (7)

Country Link
US (2) US11311473B2 (en)
EP (1) EP3551163B1 (en)
JP (1) JP7050784B2 (en)
CN (1) CN110300573B (en)
AU (1) AU2017101716A4 (en)
ES (1) ES2867526T3 (en)
WO (1) WO2018108611A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2718061T3 (en) 2015-06-17 2019-06-27 Clariant Int Ltd Water-soluble or water-swellable polymers as water loss reduction agents in crude cement pastes
US11142494B2 (en) 2016-06-20 2021-10-12 Clariant International Ltd. Compound comprising certain level of bio-based carbon
EP3551163B1 (en) * 2016-12-12 2021-02-17 Clariant International Ltd Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
WO2018108609A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Polymer comprising certain level of bio-based carbon
US11401362B2 (en) 2016-12-15 2022-08-02 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
EP3554643A1 (en) 2016-12-15 2019-10-23 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
WO2018108667A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
WO2018108665A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US10543164B2 (en) 2017-06-30 2020-01-28 The Procter & Gamble Company Deodorant compositions
JP7176912B2 (en) * 2018-09-27 2022-11-22 クラリアント・インターナシヨナル・リミテツド Cosmetic composition and cosmetics using the same
FR3104166B1 (en) * 2019-12-09 2021-12-10 Soc Dexploitation De Produits Pour Les Industries Chimiques Seppic Detergent composition comprising an inverse latex combining a particular sequestering agent and a polyelectrolyte comprising a weak acid function
CN110954692A (en) * 2019-12-20 2020-04-03 蓝怡科技集团股份有限公司 Reducing agent buffer solution and preparation method and application thereof
US20210196594A1 (en) * 2019-12-26 2021-07-01 L'oreal Compositions and methods for eyelashes
FR3113907B1 (en) * 2020-09-07 2023-05-05 Snf Sa USE IN HYDROALCOHOLIC COMPOSITIONS OF A COPOLYMER OBTAINED BY PRECIPITATION POLYMERIZATION
EP4008406A1 (en) * 2020-12-07 2022-06-08 Clariant International Ltd Cosmetic composition based on acroyl taurate type polymers
US20220332902A1 (en) * 2021-04-09 2022-10-20 Colorado School Of Mines Radical crosslinked zwitterionic gels and uses thereof
FR3122092B1 (en) * 2021-04-22 2024-02-23 Snf Sa USE IN A HYDROALCOHOLIC COMPOSITION OF POLYMERS OBTAINED BY LOW CONCENTRATION REVERSE EMULSION POLYMERIZATION WITH A LOW RATE OF NEUTRALIZED MONOMERS
CN113383815B (en) * 2021-05-10 2022-08-30 山东振荣食品有限公司 Device for removing cutin on processed surface of duck in shape of strip
CN113331460A (en) * 2021-07-12 2021-09-03 云南中烟工业有限责任公司 Maillard intermediate and application thereof in tobacco flavoring
US20230414537A1 (en) * 2022-06-21 2023-12-28 Taro Pharmaceutical Industries Ltd. Topical naftifine compositions
WO2024074409A1 (en) * 2022-10-06 2024-04-11 Clariant International Ltd Combination comprising a glucamide and a co-emulsifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152095A1 (en) * 1984-02-13 1985-08-21 HENKEL CORPORATION (a Delaware corp.) Synergistic thickener mixtures
US20110152150A1 (en) * 2009-12-22 2011-06-23 L'oreal Cleansing composition
US11311473B2 (en) * 2016-12-12 2022-04-26 Clariant International Ltd Use of a bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
US11384186B2 (en) * 2016-12-12 2022-07-12 Clariant International Ltd Polymer comprising certain level of bio-based carbon

Family Cites Families (280)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614989A (en) 1949-10-18 1952-10-21 Dow Corning High viscosity low freezing organosiloxane fluids
US2905565A (en) 1952-11-21 1959-09-22 Hoechst Ag Aqueous slurry of comminuted argillaceous limestone material and process of producing same
US2865876A (en) 1953-11-30 1958-12-23 Pan American Petroleum Corp Low-water-loss cement composition and method of forming a slurry of the same
US2809971A (en) 1955-11-22 1957-10-15 Olin Mathieson Heavy-metal derivatives of 1-hydroxy-2-pyridinethiones and method of preparing same
IT605134A (en) 1959-02-24
US3052628A (en) 1959-09-11 1962-09-04 Continental Oil Co Low fluid loss composition
US3236733A (en) 1963-09-05 1966-02-22 Vanderbilt Co R T Method of combatting dandruff with pyridinethiones metal salts detergent compositions
US3509113A (en) 1967-08-14 1970-04-28 Hercules Inc Preparation of acrylamide-type water-soluble polymers
US3761418A (en) 1967-09-27 1973-09-25 Procter & Gamble Detergent compositions containing particle deposition enhancing agents
US3544597A (en) 1969-06-12 1970-12-01 Rohm & Haas Process for manufacturing sulfonated amides
US3753196A (en) 1971-10-05 1973-08-14 Kulite Semiconductor Products Transducers employing integral protective coatings and supports
US3937721A (en) 1973-05-07 1976-02-10 The Lubrizol Corporation Method for the preparation of sulfonic acid esters from free sulfonic acids
US3960918A (en) 1973-06-26 1976-06-01 The Lubrizol Corporation Preparation of esters of amidoalkanesulfonic acids
US4015991A (en) 1975-08-08 1977-04-05 Calgon Corporation Low fluid loss cementing compositions containing hydrolyzed acrylamide/2-acrylamido-2-methylpropane sulfonic acid derivative copolymers and their use
CA1076144A (en) 1975-12-09 1980-04-22 Alvin B. Stiles Process for oxidation of 1-propanol
US4342653A (en) 1979-02-15 1982-08-03 American Cyanamid Company Process for the flocculation of suspended solids
US4345080A (en) 1980-02-07 1982-08-17 The Procter & Gamble Company Pyridinethione salts and hair care compositions
US4323683A (en) 1980-02-07 1982-04-06 The Procter & Gamble Company Process for making pyridinethione salts
US4379753A (en) 1980-02-07 1983-04-12 The Procter & Gamble Company Hair care compositions
US4470982A (en) 1980-12-22 1984-09-11 The Procter & Gamble Company Shampoo compositions
DE3302168A1 (en) 1983-01-24 1984-07-26 Hoechst Ag, 6230 Frankfurt CEMENT SLUDGE FOR DEEP HOLES WITH A CONTENT OF COPOLYMERISAT TO REDUCE WATER LOSS
US4487864A (en) 1983-04-28 1984-12-11 The Dow Chemical Company Modified carbohydrate polymers
US4555269A (en) 1984-03-23 1985-11-26 Halliburton Company Hydrolytically stable polymers for use in oil field cementing methods and compositions
US4515635A (en) 1984-03-23 1985-05-07 Halliburton Company Hydrolytically stable polymers for use in oil field cementing methods and compositions
DE3427220A1 (en) 1984-07-24 1986-01-30 Cassella Ag, 6000 Frankfurt METHOD FOR PRODUCING COPOLYMERS
US4655943A (en) 1984-12-14 1987-04-07 Henkel Corporation Thickeners having two ionic components and use thereof in aqueous compositions
US4640942A (en) 1985-09-25 1987-02-03 Halliburton Company Method of reducing fluid loss in cement compositions containing substantial salt concentrations
GB8610762D0 (en) 1986-05-02 1986-06-11 Allied Colloids Ltd Soil sealing compositions
US4703801A (en) 1986-05-13 1987-11-03 Halliburton Company Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations
US4800071A (en) 1988-05-03 1989-01-24 Nalco Chemical Company Filtration aids for removal of calcium solids from aqueous phosphoric acid
US4931489A (en) 1988-05-19 1990-06-05 Basf Corporation Fluid loss control additives for oil well cementing compositions
US5104646A (en) 1989-08-07 1992-04-14 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5025040A (en) 1990-06-11 1991-06-18 Basf Fluid loss control additives for oil well cementing compositions
WO1992006154A1 (en) 1990-09-28 1992-04-16 The Procter & Gamble Company Polyhydroxy fatty acid amide surfactants to enhance enzyme performance
US5194639A (en) 1990-09-28 1993-03-16 The Procter & Gamble Company Preparation of polyhydroxy fatty acid amides in the presence of solvents
US5214117A (en) 1990-12-20 1993-05-25 Phillips Petroleum Company Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5510049A (en) 1993-09-09 1996-04-23 The Procter & Gamble Company Bar composition with N-alkoxy or N-aryloxy polyhydroxy fatty acid amide surfactant
US5472051A (en) 1994-11-18 1995-12-05 Halliburton Company Low temperature set retarded well cement compositions and methods
EP0750899A3 (en) 1995-06-30 1998-05-20 Shiseido Company Limited An emulsifier or solubilizer which consists of a water soluble amphiphilic polyelectrolyte, and an emulsified composition or a solubilized composition and an emulsified cosmetic or a solubilized cosmetic containing it
FR2750325B1 (en) 1996-06-28 1998-07-31 Oreal COSMETIC USE OF A POLY (2-ACRYLAMIDO 2- METHYLPROPANE SULFONIC) CROSSLINKED AND NEUTRALIZED AT LEAST 90% AND TOPICAL COMPOSITIONS CONTAINING THEM
DE19625810A1 (en) 1996-06-28 1998-01-02 Hoechst Ag Water-soluble or water-swellable polymers
US5792828A (en) 1996-11-08 1998-08-11 The Lubrizol Corporation Dry blending of acrylamidoalkanesulfonic acid monomer with basic compounds
BR9814021A (en) 1997-11-10 2000-09-26 Procter & Gamble Multilayer detergent tablet that has both compressed and uncompressed portions
DE19752093C2 (en) 1997-11-25 2000-10-26 Clariant Gmbh Water-soluble copolymers based on acrylamide and their use as cementation aids
DE19826293A1 (en) 1998-06-12 2000-03-23 Buck Chemie Gmbh Sanitary ware
US6297337B1 (en) 1999-05-19 2001-10-02 Pmd Holdings Corp. Bioadhesive polymer compositions
FR2798587B1 (en) 1999-09-16 2001-11-30 Oreal COSMETIC COMPOSITION COMPRISING AT LEAST ONE SILICONE / ACRYLATE COPOLYMER AND AT LEAST ONE PHOTOPROTECTIVE AGENT
DE10000648A1 (en) 2000-01-11 2001-07-12 Clariant Gmbh New crosslinked copolymers containing vinyl lactam and N-(sulfoalkyl)-acrylamide salt repeating units, especially useful as thickeners in cosmetic or pharmaceutical compositions
DE10048887A1 (en) 2000-09-29 2002-04-18 Buck Chemie Gmbh Adhesive sanitary cleaner and fragrance
FR2819262B1 (en) 2001-01-11 2005-05-13 Oreal COMPOSITION CONTAINING AT LEAST ONE SILICONE AND AT LEAST ONE AMPHIPHILIC POLYMER
US6767867B2 (en) 2001-04-16 2004-07-27 Halliburton Energy Services, Inc. Methods of treating subterranean zones penetrated by well bores
DE10221449A1 (en) 2002-05-15 2003-11-27 Wella Ag Aerosol foam or pump foam product for hair treatment
DE10322269A1 (en) 2003-05-16 2004-12-02 Clariant Gmbh Liquid detergents and cleaners with texturing polymers
DE102004035515A1 (en) 2004-07-22 2006-02-16 Clariant Gmbh Thermostable, water-soluble, high-temperature crosslinkable polymer
US7666963B2 (en) 2005-07-21 2010-02-23 Akzo Nobel N.V. Hybrid copolymers
DE102005051906A1 (en) 2005-10-29 2007-05-03 Basf Construction Polymers Gmbh Mixed polymer based on olefinic sulfonic acids
JP4953991B2 (en) 2006-08-31 2012-06-13 株式会社リコー ELECTROLYTE MEMBRANE AND METHOD FOR MANUFACTURING THE SAME
FR2910284B1 (en) 2006-12-20 2009-04-17 Oreal COSMETIC PRODUCT COMPRISING SILICONE COMPOUNDS AND AN AMPHIPHILIC POLYMER
FR2912742B1 (en) 2007-02-16 2010-03-05 Arkema France PROCESS FOR THE SYNTHESIS OF ACRYLONITRILE FROM GLYCEROL
CN101066940B (en) 2007-06-06 2010-09-22 厦门长天企业有限公司 Prepn process of 2-acryl amido-2-methyl propane sulfonic acid
ES2319949B1 (en) 2007-11-13 2010-03-17 Consejo Superior De Investigaciones Cientificas CATALYTIC PROCESS OF NITRILE PRODUCTION FROM ALCOHOLS.
WO2009079213A2 (en) 2007-12-03 2009-06-25 Gevo, Inc. Renewable compositions
CN101874017B (en) 2007-12-06 2013-06-19 东亚合成株式会社 2-acrylamide-2-methylpropanesulfonic acid and process for producing the same
JP5163094B2 (en) 2007-12-19 2013-03-13 東亞合成株式会社 Continuous production method of 2-acrylamido-2-methylpropanesulfonic acid
DE102007061969A1 (en) 2007-12-21 2008-07-17 Clariant International Limited Polymers useful in cosmetic, pharmaceutical or dermatological compositions comprise ammonium or metal N-sulfoalkylacrylamide units and organoammonium N-sulfoalkylacrylamide units
EP2105127A1 (en) 2008-03-26 2009-09-30 Bayer MaterialScience AG Hair fixing composition
FR2931822B1 (en) 2008-05-30 2012-11-02 Arkema France BIOMASS - DERIVED METHYL METHACRYLATE, PROCESS FOR PRODUCING THE SAME, USES AND CORRESPONDING POLYMERS.
CN102057006B (en) 2008-06-09 2013-06-19 3M创新有限公司 Acrylic pressure-sensitive adhesives with aziridine crosslinking agents
DE102008034102A1 (en) 2008-07-21 2010-01-28 Henkel Ag & Co. Kgaa Supple styling agent with a high degree of hold
EP2166060B8 (en) 2008-09-22 2016-09-21 TouGas Oilfield Solutions GmbH Stabilized aqueous polymer compositions
JP5570127B2 (en) 2009-02-13 2014-08-13 日本パーカライジング株式会社 Hydrophilic treatment agent, aluminum-containing metal material and aluminum alloy heat exchanger
DE102009014877A1 (en) 2009-03-25 2009-09-24 Clariant International Ltd. New polymer comprising nitrogen containing-, carbonyl containing-, and crosslinking structural units useful e.g. as thickener and emulsifier, and cosmetic, dermatological or pharmaceutical composition
WO2010144575A1 (en) 2009-06-09 2010-12-16 William Chambers Biodegradable absorbent material and method of manufacture
CA2766866A1 (en) 2009-06-29 2011-01-20 Cameron Health, Inc. Adaptive confirmation of treatable arrhythmia in implantable cardiac stimulus devices
JP2011046612A (en) 2009-08-25 2011-03-10 Toagosei Co Ltd Method for producing 2-acrylamide-2-methylpropanesulfonic acid
WO2011089709A1 (en) 2010-01-22 2011-07-28 第一工業製薬株式会社 Viscous composition
US20130043384A1 (en) 2010-04-26 2013-02-21 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same
US20130129652A1 (en) 2010-06-08 2013-05-23 L'oreal Colored aqueous cosmetic compositions
JP5606996B2 (en) 2010-08-10 2014-10-15 ローム アンド ハース カンパニー Hair styling composition with improved transparency and moisture resistance
RU2580541C2 (en) 2010-10-01 2016-04-10 ЛЕНКСЕСС Дойчланд ГмбХ Isobutene polymer from renewable sources
JP5701570B2 (en) 2010-10-22 2015-04-15 第一工業製薬株式会社 Viscous aqueous composition and process for producing the same
US8668010B2 (en) 2010-12-06 2014-03-11 Halliburton Energy Services, Inc. Wellbore servicing compositions comprising a fluid loss agent and methods of making and using same
EP2655443A1 (en) 2010-12-20 2013-10-30 DSM IP Assets B.V. Bio-renewable vinyl beads
DE102011004771A1 (en) 2011-02-25 2012-08-30 Henkel Ag & Co. Kgaa Toilet Gel
DE102011013342A1 (en) 2011-03-08 2011-09-15 Clariant International Ltd. New water-soluble or -swellable polymer having repeating structural units comprising amino-sulfur trioxide group containing repeating structural units and repeating crosslinking structural units, useful e.g. as thickener and solubilizer
DE102011013341A1 (en) 2011-03-08 2011-12-08 Clariant International Ltd. New water-soluble or water swellable polymer comprising amidoalkyl sulfonic-, alkylamide- and crosslinked alkyleneoxy-repeating units, useful e.g. as a thickener, emulsifier, sensory additives, solubilizer, dispersant and lubricant
WO2013017262A1 (en) 2011-08-04 2013-02-07 Clariant International Ltd Compositions comprising isosorbide monoesters and halogenated antimicrobial active substances
CN102351744A (en) 2011-08-25 2012-02-15 潍坊泉鑫化工有限公司 Synthesis process for 2-acrylamido-2-methyl propane sulfonic acid through continuous method
CN102952044B (en) 2011-08-30 2014-04-02 中国石油化工股份有限公司 Synthesis method of 2-acrylamide-2-methylpropanesulfonic acid (AMPS)
WO2013064647A1 (en) 2011-11-04 2013-05-10 Akzo Nobel Chemicals International B.V. Hybrid dendrite copolymers, compositions thereof and methods for producing the same
US20150010863A1 (en) 2012-02-03 2015-01-08 Dsm Ip Assets B.V. Use of a polymer composition
CN104136571A (en) 2012-02-13 2014-11-05 巴斯夫欧洲公司 Use of terpolymers as fluid loss additives in well cementing
BR112014029754B1 (en) 2012-05-30 2020-04-28 Clariant Finance Bvi Ltd surfactant solutions containing n-methyl-noleylglucamines and n-methyl-n-c12-c14 acylglucamines and their use, process for producing cosmetic compositions and composition
WO2013178700A2 (en) 2012-05-30 2013-12-05 Clariant International Ltd. N-methyl-n-acylglucamine-containing composition
WO2014004616A2 (en) 2012-06-26 2014-01-03 Gevo, Inc. Engineered yeast with improved growth under low aeration
JP6000771B2 (en) 2012-09-12 2016-10-05 住友精化株式会社 Metal paste composition
US9975818B2 (en) 2012-10-31 2018-05-22 Archer Daniels Midland Company Process for making biobased isoprene
US9174871B2 (en) 2012-11-02 2015-11-03 Empire Technology Development Llc Cement slurries having pyranose polymers
US10010490B2 (en) 2012-12-04 2018-07-03 Nissan Chemical Industries, Ltd. Cosmetic composition comprising cellulose fibers with small fiber diameter and comparatively small aspect ratio
BR112015013188A2 (en) 2012-12-07 2017-07-11 Global Bioenergies optimized fermentation method
US10023733B2 (en) 2013-06-25 2018-07-17 Unimatec Co., Ltd. Aqueous dispersion of fluorine-containing copolymer
EP3027233A4 (en) 2013-08-01 2017-04-05 Intellisiv Ltd Hydrogel fibers and preparation thereof
WO2015019613A1 (en) 2013-08-07 2015-02-12 株式会社クラレ Dispersion stabilizer for suspension polymerization, and manufacturing method for vinyl resin
TWI638022B (en) 2013-08-26 2018-10-11 獨立行政法人科學技術振興機構 Adhesive
US10035749B2 (en) 2013-09-03 2018-07-31 Myriant Corporation Process for manufacturing acrylic acid, acrylonitrile and 1,4-butanediol from 1,3-propanediol
JP5759088B1 (en) 2013-09-24 2015-08-05 株式会社日本触媒 (Meth) acrylic acid copolymer and process for producing the same
FR3011555A1 (en) 2013-10-04 2015-04-10 Rhodia Operations POLYMER SEQUENCES FOR FILTRAT CONTROL
WO2015052809A1 (en) 2013-10-10 2015-04-16 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries using same, lithium ion secondary battery and battery system
JP6254816B2 (en) 2013-10-18 2017-12-27 日本酢ビ・ポバール株式会社 Production method of polyvinyl alcohol resin and polyvinyl alcohol resin obtained thereby
MX2016004435A (en) 2013-10-22 2016-07-06 Dow Global Technologies Llc Aqueous coating composition and process of making the same.
JP6418166B2 (en) 2013-11-26 2018-11-07 Agc株式会社 Water / oil repellent composition, article, and method for producing article
TWI773060B (en) 2013-11-29 2022-08-01 日商三菱化學股份有限公司 Adhesive composition and adhesive sheet
US10385335B2 (en) 2013-12-05 2019-08-20 Centrillion Technology Holdings Corporation Modified surfaces
KR20150066974A (en) 2013-12-09 2015-06-17 삼성전자주식회사 Compound for fouling resistance, membrane for fouling resistance, method of preparing membrane for fouling resistance
SG10201804200WA (en) 2013-12-12 2018-07-30 Emd Millipore Corp Protein separations using an acrylamide containing filter
EP3088428B1 (en) 2013-12-25 2020-02-05 Kuraray Co., Ltd. Modified polyvinyl alcohol and water-soluble film containing same
JP5846336B2 (en) 2014-01-08 2016-01-20 Dic株式会社 Active energy ray curable composition for flooring
JP6509880B2 (en) 2014-01-17 2019-05-08 オールネックス・ネザーランズ・ビー.ブイ.Allnex Netherlands B.V. Water-based coating composition with improved open time
EP2896637A1 (en) 2014-01-21 2015-07-22 Rhodia Operations Copolymer comprising units of type A deriving from carboxylic acid monomers and units of type B deriving from sulfonic acid monomers
KR102092943B1 (en) 2014-01-29 2020-04-14 삼성전자주식회사 Composition for electrode of capacitive deionization apparatus, and electrode including same
US10077376B2 (en) 2014-01-31 2018-09-18 Siemens Healthcare Diagnostics Inc. Paramagnetic supports for use as assay reagents
CN106164113B (en) 2014-02-06 2019-05-07 路博润先进材料公司 Waterborne polymeric for heat seal adhesive
KR102214075B1 (en) 2014-02-13 2021-02-09 다이니폰 인사츠 가부시키가이샤 Thermosetting composition having photo-alignment properties, alignment layer, substrate with alignment layer, phase difference plate, and device
WO2015122335A1 (en) 2014-02-13 2015-08-20 大日本印刷株式会社 Thermosetting composition having photoalignment properties, alignment layer, substrate with alignment layer, phase difference plate, and device
CN103819614B (en) 2014-02-20 2016-08-17 桂林理工大学 The preparation method of conserving material in alkali capacitive high moisture retention concrete
JP6022619B2 (en) 2014-02-21 2016-11-09 富士フイルム株式会社 Curable composition and polymer cured product
BR112016019765B1 (en) 2014-02-26 2021-09-14 Basf Se METHOD FOR MAKING A POLYMERIZATION COPOLYMER OF MONOMERS IN SOLUTION, COPOLYMER USEFUL IN HAIR COSMETICS OBTAINED BY SUCH METHOD AND USES OF SUCH COPOLYMER FOR STYLING OR FIXING HUMAN HAIR
US10256446B2 (en) 2014-02-27 2019-04-09 Zeon Corporation Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
WO2015129889A1 (en) 2014-02-28 2015-09-03 日産化学工業株式会社 Phase difference material-forming resin composition, orientation material, and phase difference material
WO2015134000A1 (en) 2014-03-04 2015-09-11 Empire Technology Development Llc Acrylamide-based conductive compounds, and methods of preparation and uses thereof
JP6468280B2 (en) 2014-03-13 2019-02-13 住友化学株式会社 Composition and organic thin film transistor using the same
EP3116924B1 (en) 2014-03-14 2020-08-19 Lubrizol Advanced Materials, Inc. Itaconic acid polymers and copolymers
JP6081401B2 (en) 2014-03-25 2017-02-15 アイ−スクウェアード・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Photo-curable resin composition for forming support part
US10094068B2 (en) 2014-03-27 2018-10-09 Wacker Chemical Corporation Binder for paper coating compositions
US10647793B2 (en) 2014-03-28 2020-05-12 Synthomer (Uk) Limited Use of a sulphur or phosphorous-containing polymer as a processing aid in a polyvinyl chloride polymer composition
JP6256960B2 (en) 2014-03-31 2018-01-10 国立研究開発法人物質・材料研究機構 Nano-coating material and manufacturing method thereof, coating agent, functional material and manufacturing method thereof
EP3131937B1 (en) 2014-04-17 2020-05-27 Dow Global Technologies LLC Aqueous dispersion and coating composition comprising the same
EP2933280B1 (en) 2014-04-18 2016-10-12 Rhodia Opérations Rheology modifier polymer
CA2945961C (en) 2014-04-18 2022-08-16 Benz Research And Development Corp. (meth)acrylamide polymers for contact lens and intraocular lens
CN106232760A (en) 2014-04-28 2016-12-14 3M创新有限公司 The most crosslinkable binder copolymer
GB201407397D0 (en) 2014-04-28 2014-06-11 Fujifilm Mfg Europe Bv Curable compositions and membranes
RU2016149808A (en) 2014-05-20 2018-06-20 БАСФ Коатингс ГмбХ ADHESION AMPLIFIERS FOR WATER COATING COMPOSITIONS
WO2015178236A1 (en) 2014-05-22 2015-11-26 日産化学工業株式会社 Resist underlayer film forming composition for lithography containing polymer that contains acrylamide structure and acrylic acid ester structure
CN107075127A (en) 2014-06-04 2017-08-18 克洛克斯科技公司 bio-photon hydrogel
EP2955165A1 (en) 2014-06-12 2015-12-16 Basf Se Inorganic binding agent composition comprising a copolymer
JP6326492B2 (en) 2014-06-19 2018-05-16 富士フイルム株式会社 Radiation-sensitive or actinic-ray-sensitive resin composition, and resist film, mask blank, resist pattern forming method, and electronic device manufacturing method using the same
US10064804B2 (en) 2014-06-30 2018-09-04 Dow Global Technologies Llc Polymeric nitrones and their use in personal care
CN106459614B (en) 2014-07-16 2021-10-01 骊住株式会社 Hydrophilic coating composition and method of hydrophilization
WO2016011729A1 (en) 2014-07-24 2016-01-28 深圳大学 Betaine-based shape memory polymer and preparation method therefor
US9976050B2 (en) 2014-07-31 2018-05-22 Mitsui Chemicals, Inc. Hydrophilic materials including sulfonate copolymer and amino resin
WO2016022960A2 (en) 2014-08-08 2016-02-11 Ndsu Research Foundation Bio-based acrylic monomers and polymers thereof
JP6560343B2 (en) 2014-09-11 2019-08-14 ズーゾズ アクチェンゲゼルシャフト Functional polymer
US20170283537A1 (en) 2014-09-12 2017-10-05 Massachusetts Institute Of Technology Stable Polymeric Nanoparticle Compositions and Methods Related Thereto
WO2016042011A1 (en) 2014-09-17 2016-03-24 Global Bioenergies METHOD FOR PRODUCING ISOBUTENE FROM 3-METHYLCROTONYL-CoA
JP6157653B2 (en) 2014-09-25 2017-07-05 株式会社日本触媒 Sulfonic acid group-containing polymer and process for producing the same
EP3202796B1 (en) 2014-09-29 2020-01-08 Three Bond Co., Ltd. Curable resin composition
SG11201706552PA (en) 2014-09-30 2017-09-28 Nitto Denko Corp One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
US10358508B2 (en) 2014-10-09 2019-07-23 Kuraray Co., Ltd. Modified polyvinyl alhohol, resin composition, and film
US10126478B2 (en) 2014-10-15 2018-11-13 Tosoh Corporation Resin composition and optical compensation film using same
US10035933B2 (en) 2014-10-24 2018-07-31 Synthomer Usa Llc Pressure sensitive adhesive compositions
HUE043593T2 (en) 2014-10-31 2019-08-28 Zeon Corp Paste composition for negative electrode for lithium-ion rechargeable battery, composite particles for negative electrode for lithium-ion rechargeable battery, slurry composition for negative electrode for lithium-ion rechargeable battery, negative el...
CN107108773B (en) 2014-11-04 2019-05-17 三键有限公司 The manufacturing method of Photocurable resin composition and its solidfied material and solidfied material
JP6478577B2 (en) 2014-11-18 2019-03-06 スリーエム イノベイティブ プロパティズ カンパニー Aqueous emulsion, adhesive composition, and method for producing aqueous emulsion
WO2016088131A1 (en) 2014-12-01 2016-06-09 Asian Paints Ltd. Surfactant stabilized vam-veova10 terpolymer based emulsion with good freeze thaw stability and a process thereof
US10675604B2 (en) 2014-12-12 2020-06-09 Public University Corporation Nagoya City University Eutectic colloidal crystal, eutectic colloidal crystal solidified body, and methods for producing them
CN107001917B (en) 2014-12-17 2019-03-29 Agc株式会社 Water-and-oil repellant composition, its manufacturing method and article
MX2017007627A (en) 2014-12-19 2017-09-18 Dow Global Technologies Llc Aqueous polymer dispersion and preparation method thereof.
EP3234046B1 (en) 2014-12-19 2019-08-07 Dow Global Technologies LLC Aqueous coating composition and process of making the same
EP3235839B8 (en) 2014-12-19 2020-07-15 Shiseido Company, Ltd. Copolymer and oily gelling agent
WO2016105974A1 (en) 2014-12-22 2016-06-30 3M Innovative Properties Company Sterically hindered amine and oxyalkyl amine light stabilizers
CN107108797B (en) 2014-12-24 2020-01-10 玛耐科股份有限公司 Bromine-containing polymer and process for producing the same
JP6577709B2 (en) 2014-12-26 2019-09-18 三星電子株式会社Samsung Electronics Co.,Ltd. Gel production method and acoustic coupler gel
KR102303831B1 (en) 2014-12-26 2021-09-17 삼성전자주식회사 Polymer, electrolyte comprising the polymer, and lithium secondary battery comprising the electrolyte
AU2015373588A1 (en) 2014-12-31 2017-07-13 Basf Se Acid-containing polymers as coalescing agents for latexes
ES2956801T3 (en) 2015-01-12 2023-12-28 Biosphere Medical Inc Radiopaque monomers, polymers, microspheres and methods related thereto
CZ308807B6 (en) 2015-01-14 2021-06-02 Ústav Organické Chemie A Biochemie Av Čr, V.V.I. Macromolecular conjugates for visualizing and separating proteins and cells
GB201500692D0 (en) 2015-01-16 2015-03-04 Fujifilm Mfg Europe Bv Curable compositions and membranes
CN107107461B (en) 2015-01-26 2022-03-29 科巨希化学股份公司 Active energy ray-curable resin composition for three-dimensional molded support
CN104610485B (en) 2015-02-06 2016-02-03 中国石油大学(北京) Amphipathic container horizon protective agent and its preparation method and application and drilling fluid and application thereof
KR20170116113A (en) 2015-02-13 2017-10-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Process for treating fibrous substrates using a fluorine-free composition comprising an isocyanate-derived (meth) acrylate-containing polymeric compound
EP3056476B1 (en) 2015-02-16 2017-05-10 Sabanci Üniversitesi An additive for suspensions
EP3059268B1 (en) 2015-02-20 2018-04-11 Basf Se Process for producing stabilized polyacrylamide compositions
EP3272776B1 (en) 2015-03-19 2018-09-12 Ricoh Company, Ltd. Copolymer, ink containing same, and ink container
US20160288045A1 (en) 2015-03-30 2016-10-06 Bwa Water Additives Uk Limited Scrubbers
EP3078720A1 (en) 2015-04-10 2016-10-12 Snf Sas Method for diverting a subterranean formation
US9611419B1 (en) 2015-04-10 2017-04-04 Fritz Industries, Inc. A Corporation Of Texas Well cementing
JP6529052B2 (en) 2015-04-10 2019-06-12 国立大学法人大阪大学 Self-healing material and method of manufacturing the same
JP6150021B2 (en) 2015-04-21 2017-06-21 東レ株式会社 Method for manufacturing conductive pattern forming member
EP3088432A1 (en) 2015-04-27 2016-11-02 ALLNEX AUSTRIA GmbH Aqueous dispersions
WO2016173871A1 (en) 2015-04-28 2016-11-03 Basf Se Use of a composition for bleaching teeth
WO2016174906A1 (en) 2015-04-28 2016-11-03 富士フイルム株式会社 Polymer functional film, method for producing same, composition for forming polymer functional film, separation membrane module and ion exchange device
EP3289604B1 (en) 2015-04-29 2022-07-13 3M Innovative Properties Company Swellable film forming compositions and methods of nanoimprint lithography employing same
CZ306039B6 (en) 2015-05-07 2016-07-07 Ústav makromolekulární chemie AV ČR, v. v. i. Polymeric brushes resistant to deposition of biological media components, process for their preparation and their use
EP3294709A1 (en) 2015-05-08 2018-03-21 The Lubrizol Corporation Water soluble chain transfer agents
US9963614B2 (en) 2015-05-18 2018-05-08 Eastman Kodak Company Copper-containing articles and methods for providing same
JP5985100B1 (en) 2015-05-21 2016-09-06 デクセリアルズ株式会社 Transparent laminate
EP3305866B1 (en) 2015-05-26 2020-07-29 Japan Science And Technology Agency Catechol-containing adhesive hydrogel, composition for preparing adhesive hydrogel, and compositions each including said adhesive hydrogel
US11396571B2 (en) 2015-05-28 2022-07-26 Regents Of The University Of Minnesota Polymers including galactose based blocks and uses thereof
US20160346188A1 (en) 2015-05-28 2016-12-01 Clariant International, Ltd. Personal Care Cleansing Composition Comprising At Least One Copolymer
FR3037074B1 (en) 2015-06-03 2017-07-14 Rhodia Operations SUSPENSION AGENTS OBTAINED BY MICELLAR POLYMERIZATION
US20180356561A1 (en) 2015-06-08 2018-12-13 Jsr Corporation Gel, gel manufacturing method, lens, contact lens surface modifier, polymerizable composition, and polymer
ES2718061T3 (en) 2015-06-17 2019-06-27 Clariant Int Ltd Water-soluble or water-swellable polymers as water loss reduction agents in crude cement pastes
ES2719702T3 (en) 2015-06-17 2019-07-12 Clariant Int Ltd Process for the manufacture of polymers based on acryloyl dimethyl restaurant and neutral monomers
BR112017014831B1 (en) 2015-06-17 2022-02-15 Clariant International Ltd PROCESS FOR PRODUCTION OF ACRYLOYL DIMETHYLTAURATE-BASED POLYMERS, NEUTRAL MONOMERS AND MONOMERS WITH CARBOXYLATE GROUPS, WATER-SOLUBLE OR STALKIBLE POLYMER IN WATER, DRILLING FLUID AND CEMENT PASTES FOR THE CEMENTATION OF DEEP DRILLINGS
KR20180022631A (en) 2015-06-25 2018-03-06 아사히 가라스 가부시키가이샤 Water repellent composition, method for producing water repellent composition, and article
US10844212B2 (en) 2015-06-30 2020-11-24 Kuraray Co., Ltd. Aqueous emulsion composition
EP3702383B1 (en) 2015-07-02 2023-12-27 Life Technologies Corporation Polymer substrates formed from carboxy functional acrylamide
MX2018000740A (en) 2015-07-20 2018-05-15 Dow Global Technologies Llc A coating additive.
BR112017028335B1 (en) 2015-07-22 2021-08-17 Basf Se AGROCHEMICAL COMPOSITION, METHOD FOR PRODUCING A SPRAY MIXTURE AND METHOD FOR CONTROLLING PHYTOPATHOGENIC FUNGI
US9434793B1 (en) 2015-07-24 2016-09-06 Technology Investment & Development, LLC Continuous adiabatic inverse emulsion polymerization process
MY185995A (en) 2015-07-27 2021-06-14 Jsr Corp Method for producing medical device and medical device
JP6520524B2 (en) 2015-07-28 2019-05-29 信越化学工業株式会社 Resist material and pattern formation method
AR105521A1 (en) 2015-07-29 2017-10-11 Ecolab Usa Inc INHIBITING POLYMERIC COMPOSITIONS OF INCRUSTATIONS, MIXTURES AND METHODS FOR USE
US10494762B2 (en) 2015-07-29 2019-12-03 Aron Universal Ltd. Polymer composition and process for making the same
JPWO2017043500A1 (en) 2015-09-07 2018-06-28 Jsr株式会社 Composition, contact lens coating agent, contact lens manufacturing method and contact lens
EP3141567B1 (en) 2015-09-09 2019-08-28 DENTSPLY DETREY GmbH Polymerizable polyacidic polymer
JPWO2017047585A1 (en) 2015-09-15 2018-08-09 株式会社リコー Polymer, resin composition, light control material, optical waveguide material, athermal optical element, color display element and optical material
US20180258297A1 (en) 2015-09-15 2018-09-13 Maxell Holdings, Ltd. Resin composition for modeling material, light curing molding ink set, and method for manufacturing optically shaped article
FR3041344B1 (en) 2015-09-18 2019-12-13 S.P.C.M. Sa PROCESS FOR OBTAINING 2-ACRYLAMIDO-2-METHYLPROPANESULPHONIC ACID MONOMER AND POLYMER COMPRISING SAID MONOMER
WO2017059169A1 (en) 2015-10-02 2017-04-06 The Chemours Company Fc, Llc Hydrophobic extenders in fluorinated surface effect coatings
JP6526225B2 (en) 2015-10-29 2019-06-05 富士フイルム株式会社 Antifouling film, composition for antifouling film formation, antifouling film laminate, and method for producing antifouling film laminate
CN110003386B (en) 2015-10-30 2021-10-15 哈利玛化成株式会社 Polyacrylamide resin, papermaking additive and paper
US10487258B2 (en) 2015-10-30 2019-11-26 M-I L.L.C. Synthetic polymer based fluid loss pill
JP6365506B2 (en) 2015-10-31 2018-08-01 三菱ケミカル株式会社 Laminated polyester film
TW201716449A (en) 2015-11-03 2017-05-16 鴻海精密工業股份有限公司 Eye lens material, eye lens, and method for making the same
TW201716515A (en) 2015-11-04 2017-05-16 鴻海精密工業股份有限公司 Coloring material, coloring film, method for making the coloring film, and eye lens
US10125276B2 (en) 2015-11-06 2018-11-13 Ppg Industries Ohio, Inc. Container coating compositions with resistance to sulfur staining
JP6912726B2 (en) 2015-11-09 2021-08-04 株式会社スリーボンド Photocurable composition for nails or artificial nails and coating method using this
MX2018006097A (en) 2015-11-16 2018-08-24 Basf Se Multivalent cation-containing copolymer, process for production thereof and use thereof to treating aqueous dispersions.
US20180344615A1 (en) 2015-11-20 2018-12-06 Isp Investments Llc Shampoo compositions having reduced squeakiness effect, process for preparing the same and method of use
US11001751B2 (en) 2015-11-20 2021-05-11 Hercules Llc Crosslinked polymers derived from monomers having acryloyl and lactam moieties and sulfonic acid/sulfonate comonomers, compositions thereof, and applications thereof
JP5920519B1 (en) 2015-11-25 2016-05-18 東洋インキScホールディングス株式会社 Adhesive and adhesive tape
WO2017091150A1 (en) 2015-11-26 2017-06-01 Agency For Science, Technology And Research A polymeric composition
JP7167440B2 (en) 2015-11-30 2022-11-09 日本ゼオン株式会社 Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, laminate, and non-aqueous secondary battery
WO2017096055A1 (en) 2015-12-02 2017-06-08 Saudi Arabian Oil Company High temperature crosslinked fracturing fluids
WO2017096263A1 (en) 2015-12-04 2017-06-08 University Of Florida Research Foundation, Incorporated Crosslinkable or functionalizable polymers for 3d printing of soft materials
CA3007793A1 (en) 2015-12-08 2017-06-15 Kemira Oyj Inverse emulsion compositions
CA2947260C (en) 2015-12-09 2023-12-12 Jonathan P. Derocher Aqueous pigment dispersion
CN108368208A (en) 2015-12-11 2018-08-03 巴斯夫欧洲公司 The preparation method of aqueous polymer dispersion
BR102016028498B1 (en) 2015-12-18 2022-04-12 Rohm And Haas Company Multi-phase aqueous emulsion copolymer composition, use of a multi-phase aqueous emulsion copolymer composition, and method for preparing multi-phase aqueous emulsion copolymer compositions
WO2017120496A1 (en) 2016-01-07 2017-07-13 M-I L.L.C. Crosslinked synthetic polymer-based reservoir drilling fluid
CN105646929B (en) 2016-01-26 2018-07-31 浙江大学 A kind of method that frost-illumination pore prepares porous aquagel
JP6848180B2 (en) 2016-02-10 2021-03-24 株式会社リコー 3D modeling material, 3D modeling material set, 3D modeling manufacturing method, and 3D modeling manufacturing equipment
KR102129745B1 (en) 2016-02-12 2020-07-03 후지필름 가부시키가이샤 Pattern formation method and manufacturing method of electronic device
WO2017147277A1 (en) 2016-02-23 2017-08-31 Ecolab Usa Inc. Hydrazide crosslinked polymer emulsions for use in crude oil recovery
BR112018015763A2 (en) 2016-02-26 2019-01-02 Buckman Laboratories Int Inc terpolymer, terpolymer obtained from a reaction between glyoxal and a base copolymer, base copolymer, polymer composition, paper product, product, papermaking process, process for improving paper pulp drainage and process for making a terpolymer
JP6872525B2 (en) 2016-03-04 2021-05-19 昭和電工株式会社 Copolymers for binders for non-aqueous battery electrodes, slurry for non-aqueous battery electrodes, non-aqueous battery electrodes, and non-aqueous batteries
WO2017165302A1 (en) 2016-03-24 2017-09-28 Celanese International Corporation Aqueous cross-linkable polymer dispersions
CN105694403A (en) 2016-04-16 2016-06-22 宁波高新区优合塑料制品有限公司 All-biological-based resin composition
WO2017192298A1 (en) 2016-05-06 2017-11-09 Saudi Arabian Oil Company Acrylamide-based copolymers, terpolymers, and use as hydrate inhibitors
US20170320985A1 (en) 2016-05-06 2017-11-09 Saudi Arabian Oil Company Methods for synthesizing acryloyl-based copolymers, terpolymers
US10442732B2 (en) 2016-05-20 2019-10-15 United States Gypsum Company Gypsum slurries with linear polycarboxylate dispersants
US11142494B2 (en) 2016-06-20 2021-10-12 Clariant International Ltd. Compound comprising certain level of bio-based carbon
JP6782569B2 (en) 2016-06-28 2020-11-11 東京応化工業株式会社 Resist composition and resist pattern forming method
JP6902832B2 (en) 2016-06-28 2021-07-14 東京応化工業株式会社 Resist composition and resist pattern forming method, as well as compounds and acid generators
AU2017204813B2 (en) 2016-08-08 2021-09-09 Rohm And Haas Company Paint composition
US20180179412A1 (en) 2016-08-26 2018-06-28 Landec Corporation Coated Substrates and Compositions for Coating Substrates
EP3290451B1 (en) 2016-09-01 2021-08-18 The Swatch Group Research and Development Ltd. Substrate comprising a surface covered with an epilame agent and method for coating such a substrate with epilame
US10449739B2 (en) 2016-09-20 2019-10-22 Novartis Ag Hydrogel contact lenses with lubricious coating thereon
US11186520B2 (en) 2016-10-13 2021-11-30 Sika Technology Ag Plasticizer for geopolymers
US10042259B2 (en) 2016-10-31 2018-08-07 Rohm And Haas Electronic Materials Llc Topcoat compositions and pattern-forming methods
US11485901B2 (en) 2016-11-29 2022-11-01 Rhodia Operations Polymeric systems for particle dispersion
CN110267997B (en) * 2016-12-12 2022-07-22 科莱恩国际有限公司 Polymers containing certain levels of biobased carbon
US20190338060A1 (en) * 2016-12-12 2019-11-07 Clariant International Ltd. Polymer Comprising Certain Level Of Bio-Based Carbon
US20180163078A1 (en) 2016-12-13 2018-06-14 The Texas A&M University System Synthetic polymeric antioxidants for corrosion protection
WO2018108667A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
WO2018108665A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US11401362B2 (en) 2016-12-15 2022-08-02 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
EP3554643A1 (en) 2016-12-15 2019-10-23 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US10894111B2 (en) 2016-12-16 2021-01-19 Benz Research And Development Corp. High refractive index hydrophilic materials
US10662273B2 (en) 2016-12-19 2020-05-26 Celanese International Corporation Waterborne acrylic dispersions with high biorenewable content
KR102531022B1 (en) 2017-01-11 2023-05-11 동우 화인켐 주식회사 Adhesive Composition and Optical Laminate Using the Same
JP6892376B2 (en) 2017-02-14 2021-06-23 信越化学工業株式会社 Bioelectrode composition, bioelectrode, method for producing bioelectrode, and polymer compound
JP6836520B2 (en) 2017-02-14 2021-03-03 信越化学工業株式会社 Bioelectrode composition, bioelectrode, and method for producing bioelectrode
JP6661212B2 (en) 2017-02-22 2020-03-11 信越化学工業株式会社 Conductive polymer composite and substrate
JP6765988B2 (en) 2017-02-22 2020-10-07 信越化学工業株式会社 Polymer compounds for conductive polymers and their manufacturing methods
US20180273761A1 (en) 2017-03-24 2018-09-27 Fuji Xerox Co., Ltd. Pigment dispersant, aqueous pigment dispersion composition, and aqueous ink
US10239255B2 (en) 2017-04-11 2019-03-26 Molecule Corp Fabrication of solid materials or films from a polymerizable liquid
TW201903017A (en) 2017-05-31 2019-01-16 鴻海精密工業股份有限公司 Ophthalmic lens and preparation method thereof
WO2018232027A1 (en) 2017-06-13 2018-12-20 Massachusetts Institute Of Technology Biocompatible microfabricated devices for transplanting cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0152095A1 (en) * 1984-02-13 1985-08-21 HENKEL CORPORATION (a Delaware corp.) Synergistic thickener mixtures
US20110152150A1 (en) * 2009-12-22 2011-06-23 L'oreal Cleansing composition
US11311473B2 (en) * 2016-12-12 2022-04-26 Clariant International Ltd Use of a bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
US11384186B2 (en) * 2016-12-12 2022-07-12 Clariant International Ltd Polymer comprising certain level of bio-based carbon

Also Published As

Publication number Publication date
CN110300573B (en) 2023-07-25
JP7050784B2 (en) 2022-04-08
CN110300573A (en) 2019-10-01
JP2020500910A (en) 2020-01-16
US20200078287A1 (en) 2020-03-12
EP3551163B1 (en) 2021-02-17
EP3551163A1 (en) 2019-10-16
WO2018108611A1 (en) 2018-06-21
ES2867526T3 (en) 2021-10-20
AU2017101716A4 (en) 2018-01-18
US11311473B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
US20220202687A1 (en) Use Of A Bio-Based Polymer In A Cosmetic, Dermatological Or Pharmaceutical Composition
US10874599B2 (en) Composition for inhibiting micro-organisms
EP2282715B1 (en) Polyurethanes as rheological modifying means for cosmetic preparations
JP7404281B2 (en) Antimicrobial combination composition comprising a glycerol derivative and a dicyclic compound
US11753379B2 (en) Process for forming 2-hydroxypyridine-1-oxide or derivatives thereof
WO2019115478A1 (en) Composition for inhibiting micro-organisms
US20220387276A1 (en) Composition Comprising Oils, Free Fatty Acids And Squalene
US10406086B2 (en) Moisturizer and cosmetic including the same
JPWO2020007571A5 (en)
EP1915124B1 (en) Polyester acrylate-based fixative polymers
EP4008406A1 (en) Cosmetic composition based on acroyl taurate type polymers
WO2024074409A1 (en) Combination comprising a glucamide and a co-emulsifier
WO2023247803A2 (en) Antimicrobial combinations
EP4349806A1 (en) Bio-based antimicrobial compounds
EP4159038A1 (en) Composition for inhibiting microorganisms

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: CLARIANT INTERNATIONAL LTD, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FISCHER, DIRK;KAYSER, CHRISTOPH;STARKULLA, GUNDULA;SIGNING DATES FROM 20201130 TO 20201209;REEL/FRAME:061868/0373

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER