US20220194477A1 - Canopy windshield retention - Google Patents

Canopy windshield retention Download PDF

Info

Publication number
US20220194477A1
US20220194477A1 US17/127,748 US202017127748A US2022194477A1 US 20220194477 A1 US20220194477 A1 US 20220194477A1 US 202017127748 A US202017127748 A US 202017127748A US 2022194477 A1 US2022194477 A1 US 2022194477A1
Authority
US
United States
Prior art keywords
pillar
windshield
wall
vehicle
stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/127,748
Other versions
US11345409B1 (en
Inventor
Jamil M. Alwan
Chunhui Kevin Lee
Thiag Subbian
Djamal Eddine Midoun
Suraj Jadhav
Petros Frantzeskakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to US17/127,748 priority Critical patent/US11345409B1/en
Assigned to FORD GLOBAL TECHNOLOGIES, LLC reassignment FORD GLOBAL TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALWAN, JAMIL M., FRANTZESKAKIS, PETROS, JADHAV, SURAJ, LEE, CHUNHUI KEVIN, MIDOUN, DJAMAL EDDINE, SUBBIAN, THIAG
Priority to CN202111535071.8A priority patent/CN114644052A/en
Priority to DE102021133552.3A priority patent/DE102021133552A1/en
Priority to US17/731,751 priority patent/US11505259B2/en
Application granted granted Critical
Publication of US11345409B1 publication Critical patent/US11345409B1/en
Publication of US20220194477A1 publication Critical patent/US20220194477A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D23/00Combined superstructure and frame, i.e. monocoque constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/152Front or rear frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/02Side panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/06Fixed roofs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D31/00Superstructures for passenger vehicles
    • B62D31/02Superstructures for passenger vehicles for carrying large numbers of passengers, e.g. omnibus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • B60R13/0237Side or rear panels
    • B60R13/025Pillars; Roof rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle
    • B60R2011/0019Side or rear panels
    • B60R2011/0022Pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars

Abstract

The present disclosure relates to a vehicle that includes a windshield and a frame. In addition, the vehicle includes a first pillar that extends from one side of the windshield. The first pillar includes a first wall and a second wall coupled to the first wall. The first pillar also includes a first portion and a second portion. The first portion includes a first interior support coupled to the first wall and a second interior support coupled to the second wall. Further, the first interior support includes a first end which is spaced from a second end in the second portion.

Description

    BACKGROUND Technical Field
  • The present disclosure is directed to a canopy windshield retention structure.
  • Description of the Related Art
  • Mass transport vehicles, such as vans and buses, are designed to ferry a large number of people. Recently, new kinds of mass transport vehicles, such as electric pod taxis, provide a larger volume in a cabin compartment. The larger volume for the cabin compartment is achieved by pushing the upper body architecture boundary in both forward and rearward directions. Such configurations vehicles have smaller front end crumple zones or crash zones. For instance, the distance between a front fascia of the vehicle and the cabin compartment may be reduced.
  • BRIEF SUMMARY
  • The present disclosure relates to a canopy style vehicle having a windshield bounded by vehicle pillars that are configured to crumple or crush in a controlled manner in the event of a crash. The vehicle includes a relatively small distance between a front bumper or fascia and an occupant chamber or cabin.
  • The vehicle includes a frame with a first pillar and a second pillar that extends along the sides of the windshield. The first and second pillars include a portion that is configured to crumple or crush that rotates the windshield downward in a controlled manner. The pillars include a first interior wall opposite and coupled to a second exterior wall. The pillars also include a first interior support structure that is within the first and second walls. The interior support structure includes a third interior wall adjacent to the first interior wall and a fourth exterior wall that is adjacent to the second exterior wall. At the portions configured to crumple, the interior support only includes one of the third interior wall or the fourth exterior wall.
  • The third interior wall is coupled to the first wall and the fourth exterior wall is coupled to the second wall. The first interior support includes a first end which is spaced from a second end in the second portion, i.e. there is a gap in the first interior support in the portion of the pillar that is configured to react in the event of a collision.
  • In some embodiments, the vehicle includes a canopy windshield and a roof coupled to the canopy windshield. The pillar along the windshield includes a first stiffness zone and a second stiffness zone, such that the second stiffness zone is closer to the roof than the first stiffness zone.
  • In some embodiments, the vehicle includes a windshield retention beam that is coupled to a body or the frame by a first side beam and a second side beam. The first side beam includes a first portion coupled to the windshield retention beam. The first side beam also includes a second portion and a third portion, such that the third portion is attached to the body and the second portion is between the first portion and the third portion. The third portion, which is positioned between a side window and the ground, includes openings to provide a controlled crush to allow the bottom of the windshield to rotate downward and toward a steering column.
  • The first portion and the second portion provide different a stiffness as compared to the third portion. The differences in stiffness mitigate an impact received during a crash.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1A is a front perspective view of a vehicle according to an embodiment of the present disclosure.
  • FIG. 1B is a front perspective view of the vehicle of FIG. 1A with crumpled zones illustrated.
  • FIG. 1C is a side view of the vehicle of FIG. 1A.
  • FIG. 2A is a side view of a pillar according to an embodiment of the present disclosure.
  • FIG. 2B is a side view of a pillar according to an embodiment of the present disclosure.
  • FIG. 3A is a cross-sectional view taken along line 3A-3A in FIG. 1A.
  • FIG. 3B is a cross-sectional view taken along line 3B-3B in FIG. 1A.
  • FIG. 3C is a cross-sectional view taken along line 3C-3C in FIG. 1A.
  • FIG. 4 is a cross-sectional view taken along line 4-4 in FIG. 1A.
  • FIG. 5 is a perspective view of a portion of a pillar according to an embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of an alternative embodiment of a portion of a pillar.
  • FIG. 7 is a cross-sectional view taken along lines 7-7 in FIG. 1A.
  • FIG. 8 is a side view of a vehicle, according to an embodiment of the present disclosure.
  • FIG. 9 is an enhanced view of a third portion of the first side beam of FIG. 8 having a plurality of holes.
  • DETAILED DESCRIPTION
  • In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures or methods associated with vehicles have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
  • FIGS. 1A and 1B are a front portion 102 of a vehicle 100. FIG. 1C is a side view of the front portion 102 of the vehicle 100. The vehicle 100 can be a mass transporter, such as a van or a bus, which includes a large passenger or cabin compartment 106 with a drivetrain and other components underneath a floor 104. As a result, the cabin compartment 106 abuts a driver's area and a distance between the cabin compartment 106 and a front bumper 124 is relatively small. The vehicle 100 includes a frame 108 that forms a body of the vehicle 100, such that the frame 108 and the floor 104 define the boundaries of the cabin compartment 106.
  • The vehicle 100 includes a first pillar 110 that extends from one end 108 a of the frame 108 toward a windshield 114. A second pillar 112 extends from another end 108 b of the frame 108 toward the windshield 114. The first pillar 110 and the second pillar 112 are the A-pillars of the vehicle 100. The first pillar 110 and the second pillar 112 are configured to deform, bend, or otherwise crumple in the event of a frontal crash. Details of how the first pillar 110 and the second pillar 112 deform are explained later with respect to FIGS. 2A and 2B.
  • The first pillar 110 and the second pillar 112 are spaced along a width of the frame 108 on each side of the windshield 114. The windshield 114 maybe a canopy style, where the windshield 114 is supported by the first and second pillars 110, 112 along a first side 116 a and a second side 116 b of the windshield 114. The windshield 114 includes a top portion 116 c that is attached to a roof 134 which is supported by the frame 108. In addition, the windshield 114 includes a bottom portion 116 d opposite to the top portion 116 c. The vehicle 100 also includes a windshield retention beam 118 that supports the bottom portion 116 d of the windshield 114. A manner by which the windshield retention beam 118 supports the bottom portion 116 d is explained later with respect to FIG. 7.
  • The vehicle 100 includes a first side beam 120 a, which is coupled to and positioned below the first pillar 110. The first side beam 120 a extends from a windshield end 110 a of the first pillar 110 at a joint 103 on a structural or B-pillar 105 of the frame 108. The first side beam 120 a has a first or front portion 122 a that is coupled to the first pillar 110 by the windshield. A second or rear portion 122 b is coupled to the B-pillar 105. The first portion 122 a has a first stiffness while the second portion 122 b has a second stiffness, such that the second stiffness is less than the first stiffness. Additional details of the first side beam 120 a and the difference in the first stiffness and the second stiffness are explained with respect to FIG. 1C. The vehicle 100 also includes a second side beam 120 b (shown in FIG. 1A) that is coupled to the second pillar 112 and may have a similar structure to the first side beam 120 a.
  • Referring now to FIG. 1C, the first side beam 120 a is formed of the first portion 122 a that has a front end 123 and a second end 125, such that the front end 123 is coupled to the windshield end 110 a. The front end 123 and the windshield end 110 a are attached, for instance, by welding or other fastener. In addition, the first side beam 120 a includes the second portion 122 b that has a first end 129 and a rear end 131. As shown in FIG. 1C, the second end 125 is integrally formed with the first end 129 while the rear end 131 is coupled to the B-pillar 105 at the joint or attachment location 103. The first side beam 120 a is a single beam having these different portions of different dimensions, stiffness, and other properties to achieve a controlled crush.
  • The first end 123 of the first side beam is closer to the roof 134 than the second end 125 (the intersection of the second end 125 of the first portion 122 a and the first end 129 of the second portion 122 b). An upper edge 155 of the second portion 122 b is closer to the roof 134 than the first end 129 of the second portion, such that the second portion has a curvature.
  • The rear end 131 is wider than the first end 129 of the second portion. In particular, the rear end 131 has a first dimension 133, which is in contact with the B-pillar 105. The rear end 131 may be welded to the B-pillar 105 to form the joint 103. The first end 129 has a second dimension 135, which is less than the first dimension 133.
  • Referring back to FIG. 1A, the first side beam 120 a, the second side beam 120 b, the first pillar 110, the second pillar 112, and the B-pillar 105 together define a driver's compartment 107 adjacent to the cabin compartment 106. The vehicle 100 also includes a steering wheel 109 inside the driver's compartment 107 proximate to the windshield 114 and the first side beam 120 a. The first pillar 110, the B-pillar 105, and the first side beam 120 a form an opening to support a window (not shown in FIG. 1A). Similarly, the second pillar 112, the second side beam 120 b, and another B-pillar (not shown in FIG. 1A) form another opening to support a passenger side window (not shown in FIG. 1A).
  • The vehicle 100 also includes a cross member or front bumper 124 that is positioned below the windshield and the first and second pillars 110, 112. The cross member 124 is a component of the vehicle 100 on which a front fascia of the vehicle 100 can be mounted. Additionally, the vehicle 100 includes a pair of front rails 126 a, 126 b that attaches the cross member 124 to the frame 108. Each of the front rails 126 a, 126 b includes a coupling arm 128 a, 128 b, respectively, that couples the front rails 126 a, 126 b to the first pillar 110 and the second pillar 112. During a frontal crash, the received impact at the cross member 124 is transferred to the first pillar 110, the second pillar 112, the first side beam 120 a, and the second side beam 120 b via the front rails 126 a, 126 b. In the illustrated example, the vehicle 100 includes different provisions to mount a wheel. For instance, the front rails 126 a, 126 b, and the side beams 120 a, 120 b have attachment locations to allow mounting of a suspension assembly (not shown) on which a wheel hub assembly (not shown) and a wheel (not shown) can be mounted.
  • The first pillar 110 and the second pillar 112 are designed to crumple, as shown in FIG. 1B, such that the first pillar 110 and the second pillar 112 undergo a deformation or a controlled crush at locations 157 a, 157 b to absorb the impact of the frontal crash. These locations are associated with one embodiment of a controlled crush location. Each of the first and second pillars may include one or more of the controlled crush locations as beneficial to the vehicle design.
  • The first pillar 110 and the second pillar 112 may yield at these locations to absorb the impact to move the front end 123 of the second beam towards the B-pillar 105. The first side beam 122 a may also have a controlled deform to collaboratively move the front end 123 and the bottom portion 116 b of the windshield toward the B-pillar. For example, the second portion 122 b may be configured to crumple in a controlled manner to further dissipate the energy from a crash. Alternatively, the first pillar 110 and the second pillar 112 can yield both at the bent portion and at the portion proximate to the frame 108. The controlled deformation is related to the first pillar 110 and the second pillar 112 having different stiffness zones.
  • Structural details of the first pillar 110 are now explained with respect to FIGS. 2A through 3C in conjunction with FIG. 1C. FIG. 2A illustrates the first pillar 110 with deformation at a bent or crushed section 161, which is a different location than illustrated in FIG. 1C. FIG. 2B illustrates the first pillar 110 with deformation at a section 157 a.
  • As shown in FIG. 1C, the first pillar 110 has a first wall 130 and a second wall 132 that extends along a complete length of the first pillar 110. The first wall 130 is adjacent to the roof 134 of the vehicle 100 while the second wall 132 is spaced from the roof 134 by the first wall 130. The first pillar 110 also includes a first portion 136 that is coupled to and extends from the first portion 122 a of the first side beam 120 a and runs along the windshield. In one example, the first portion 136 forms a first stiffness zone of the first pillar 110.
  • The first pillar 110 also includes a second portion 138 that extends from the first portion 136 and defines a bent portion of the first pillar 110. Further, the second portion 138 defines a second stiffness zone of the first pillar 110. In the illustrated example, the first stiffness zone has a first internal reinforcement and a second internal reinforcement, whereas the second stiffness zone has only the first reinforcement. Accordingly, the first stiffness zone has a greater stiffness than the stiffness of the second stiffness zone. The structural details that could be implemented to form the first reinforcement and the second reinforcement are explained with respect to FIG. 3A through 4. The difference in the stiffnesses allows the second portion 138 to deform in a controlled manner during the frontal crash.
  • The first pillar 110 also includes a third portion 140 that extends from the second portion 138 to the frame 108. The third portion 140 is a substantially horizontal section of the first pillar 110 and has a third stiffness zone having a stiffness that can be different from the stiffness of the first stiffness zone and the second stiffness zone. The stiffness of the third stiffness zone may be less than the stiffness of the second stiffness zone. As a result, the third portion 140 may deform before the second portion 138 in the event of a frontal crash, as shown in FIG. 2B. Alternatively, the third portion may have the same stiffness as the first portion, including both of the internal reinforcements like the first portion of the beam.
  • As mentioned before, a difference in the stiffness of different portions of the first pillar 110 allows a controlled deformation of the first pillar 110 to absorb the impact. Since the first pillar 110 undergoes the controlled deformation, the impact of the frontal crash from reaching the cabin compartment 106 is mitigated.
  • Referring again to FIG. 1C, a distance 51 between the cross member 124 and the windshield retention beam 118 is relatively small in this style of vehicle. The different portions and different stiffness zones of the first pillar provide an increase in this dimension in the event of a crash. As the first pillar 110 deforms, a size of the front crumple zone increases from the distance 51 to a larger distance S2 that extends from the cross member 124 to a point where the first pillar 110 deforms. Providing the larger distance allowing absorption of impact to mitigate an impact to the frame 108.
  • FIG. 3A is a cross-sectional view of the first portion 136 of the first pillar 110 taken along lines 3A-3A in FIG. 1A while FIG. 3B is a cross-sectional view of the second portion 138 taken along lines 3B-3B in FIG. 1A. FIG. 3C is a cross-sectional view of the third portion 140 taken along lines 3C-3C in FIG. 1A according to an embodiment. As shown in FIGS. 3A, 3B, and 3C, the first wall 130 and the second wall 132 are coupled together at an upper and lower location. The first wall 130 and the second wall 132 include a first surface 137 and a second surface 139 that are coupled to each other by welding or other fastening technique. Referring to FIG. 3A, the first portion 136 has a rectangular cross-section and includes a first interior support or first reinforcement 142 that is attached or otherwise coupled to a first inner surface 144 of the first wall 130. In addition, the first portion 136 includes a second interior support or second reinforcement 146 that is attached to a second inner surface 148 of the second wall 132. The first interior support 142 includes a first end surface 141 and the second interior support 146 includes a second end surface 143 that are coupled to each other. The first interior support 142 and the second interior support 146 are attached to the first inner wall 144 and the second inner wall 148, respectively, by different techniques, such as welding or stamping. The first interior support 142 and the second interior support 146, provide a first stiffness for the first portion 136.
  • FIG. 3B includes the second portion 138 having only the first interior support 142 attached to the first inner surface 144. The second interior support 146 is not included in this second portion 138, which creates a second stiffness in the first pillar 110. Further, the first end surface 141 in the second portion 138 is exposed. As a result, second stiffness of the second portion 138 is less than the first stiffness of the first portion 136.
  • FIG. 3C is the third portion 140 of the first pillar 110 which does not include either of the first and second internal supports. This creates a third stiffness in the first pillar 100. The third stiffness is less stiff than the second stiffness. The first pillar may have one or more of the different stiffness zones as the design of the end vehicle may benefit. In other embodiments, the first pillar may include only the first stiffness and the third stiffness.
  • FIG. 4 is a cross-sectional view of the second pillar 112 of FIG. 1A along line 4-4. This view shows an exterior wall 163 of the second pillar that does not include the second internal reinforcement. This embodiment could include the first internal reinforcement or may not include either reinforcement. The first interior support 142 inside the second portion 138 has a portion removed that exposes has a first end 154 that is spaced from a second end 156. The surface 141 is coupled to the other interior support as the surface 137 is coupled to the other wall of the pillar 112. The stiffness of the second portion 138 is lesser than the stiffness of the first portion 136. The third portion 140 does not include any interior support inside the third portion 140. Absence of the interior support in the third portion 140 results in lesser stiffness of the third portion 140 than the second portion 138. Therefore, during the impact, the third portion 140 deforms prior to the second portion 138, which results in the controlled deformation.
  • The second portion 138 can have a different profile or structural shape, in addition to the interior supports 144, 148, to achieve controlled deformation. FIG. 5 illustrates another portion 500 of a first or second pillar of the vehicle 100 with an accordion-shaped profile. A first wall 502 a and a second wall 502 b of the portion 500 has the accordion shape which is made up of a plurality of peaks 504 and valleys 506. As the pillar is a substantially rectangular cross-section, the other walls (not shown) will also include the plurality of peaks and valleys. Further, the peaks 504 and the valleys 506 are also present along the edges of the walls 502 a, 502 b. The walls 502 a, 502 b are configured to compress, such that gaps in-between peaks 504 are reduced. The impact may cause the portion 500 to bend, for instance, downwards towards the ground such that gaps in-between the peaks 504 present on the top side of the walls 502 a, 502 b increase while gaps in-between peaks 506 present on the bottom side of the walls 502 a, 502 b decrease.
  • In addition to the accordion-shaped profile along the length of the second portion, the second portion can have an accordion-shaped internal features. FIG. 6 illustrates a cross-sectional view of another portion 600 of a first or second pillar the vehicle 100. The portion 600 has a first outer wall 602 a and a second outer wall 602 b that each include an exterior surface with a plurality of peaks 606 and valleys 608. Interior surfaces also include a plurality of peaks 604 and valleys 605. Gaps in-between peaks change to absorb an impact. Alternately, in case the impact causes the portion 600 to bend sideways, then gaps in-between the peaks 606 on a top and bottom part of the portion 600 would change. In either case, the change in the gap absorbs and mitigates the impact.
  • During a frontal crash, the windshield 114 is susceptible to damage and may dislodge from the first pillar 110 and the second pillar 112. In order to retain the windshield 114, the windshield retention beam 118 holds or otherwise restrains the windshield 114. FIG. 7 is a cross-sectional view of the windshield retention beam 118 taken along line 7-7 in FIG. 1A. The windshield retention beam 118 includes a first retention extension 158 and a second retention extension 160 that defines a surface 162 of the windshield retention beam 118. The bottom portion 116 d of the windshield 114 is coupled or otherwise attached to this surface 162. The first retention extension 158 extends over a portion of the windshield 114 and overlaps an exterior side 164 a of the windshield 114. Moreover, the first retention extension 158 extends transverse from the windshield retention beam 118. On the other hand, the second retention extension 160 extends over the windshield 114 and overlaps an interior side 164 b of the windshield 114. The first retention extension extends further from the surface 162 than the second retention extension. Since the first retention extension 158 and the second retention extension 160 overlap the windshield 114, the windshield 114 is secured and can rotate with the deformation of the first and second pillars while retaining the end 166 d with the windshield retention beam 118.
  • According to the present disclosure, other components of the vehicle can also undergo controlled deformation to absorb the impact. FIG. 8 is a perspective view of another vehicle 800 that includes a frame 801. The frame 801 includes a first side beam 802 having a first portion 804, a second portion 806, and a third portion 808. FIG. 9 is an enhanced view of the third portion 808. Many of the frame components of the vehicle 800 are the same as that of the vehicle 100 shown in FIG. 1A. For instance, the vehicle 800 includes a body 810 that is structurally similar to the frame 108 of the vehicle 100. The vehicle 800 also includes a first pillar 812 and a second pillar (not shown), a canopy windshield 814, and a windshield retention beam 816. The vehicle 800 also includes a front bumper 803 that extend from the frame 801.
  • The first portion 804 of the first side beam 802 is coupled to the first pillar 812 while the third portion 808 is coupled to the body 810. The first portion 804 has a curvature along an X-axis (shown in FIG. 8) that extends between the windshield retention beam 816 and the second portion 806. The second portion 806 extends between the first portion 804 and the third portion 808, such that the second portion 806 can transfer the impact from the first portion 804 to the third portion 808. As with the first side beam in FIG. 1A, a location where the first side beam 802 couples to the windshield retention beam 816 is closer to a roof than an entirety of the third portion 808.
  • Referring now to FIG. 9, the third portion 808 has a first end 818 that is coupled to the body 810 and a second end 820 that is coupled to the second portion 806. Further, the first end 818 is attached the body 810, for instance, by welding. As shown in FIG. 9, the first end 818 has a width 830 from a top edge to a bottom edge and the second end 820 has a width 832 from a top edge to a bottom edge, such that the width 832 is smaller than the width 830.
  • The third portion 808 has a rectangular cross-section towards the second end 820. In addition, the third portion 808 has a taper shaped profile towards the first end 818. The third portion 808 includes a plurality of edges 822 a, 822 b, 822 c, collectively referred to as edges 822. The edges 822 include a plurality of openings 824 that are present along a length of the edges 822 and at corners of bends of the third portion. The plurality of openings 824 allows the third portion 808 to deform in an impact mitigating the impact to the frame 801. These openings allow the third portion 808 to undergo the controlled deformation.
  • The various embodiments described above can be combined to provide further embodiments. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications, and publications to provide yet further embodiments.
  • These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims (15)

1. A vehicle, comprising:
a windshield;
a frame;
a first pillar that extends from the frame along a first side of the windshield, the first pillar includes:
a first wall coupled to a second wall;
a first portion of the first pillar includes:
a first interior support coupled to the first wall; and
a second interior support coupled to the second wall; and
a second portion of the first pillar, the first interior support includes a first end spaced from a second end in the second portion.
2. The vehicle of claim 1 wherein the first wall of the first pillar is adjacent to the roof and the second wall of the first pillar being spaced from the roof by the first wall.
3. The vehicle of claim 1, further comprising a second pillar that extends from the frame along a second side of the windshield, the windshield being between the first and second pillar, the second pillar including:
a first wall coupled to a second wall;
a first portion of the second pillar includes:
a first interior support coupled to the first wall; and
a second interior support coupled to the second wall; and
a second portion of the second pillar, the first interior support includes a first end spaced from a second end in the second portion.
4. The vehicle of claim 3, further comprising a windshield retention beam that extends between the first pillar and the second pillar, the windshield retention beam includes a first retention extension that extends transverse from the windshield retention beam.
5. The vehicle of claim 4 wherein the windshield retention beam includes a surface, an end of the windshield is coupled to the surface, and an end of the first retention extension overlaps with an exterior side of the windshield.
6. The vehicle of claim 5 wherein the windshield retention beam includes a second retention extension that overlaps an interior side of the windshield.
7. The vehicle of claim 1 wherein the first and second walls include a plurality of peaks and valleys in the second portion.
8. The vehicle of claim 1, further comprising:
a second pillar that extends from the frame along a second side of the windshield, the windshield being between the first and second pillar; and
a beam that extends from the first pillar to the frame, the beam including:
a first stiffness in a first portion; and
a second stiffness in a second portion, the second portion being closer to the frame than the first portion.
9. A vehicle, comprising:
a canopy windshield;
a roof coupled to the canopy windshield;
a pillar coupled to a side of the canopy windshield and to the roof, the pillar including:
a first stiffness zone;
a second stiffness zone that is closer to the roof than the first stiffness zone,
a first wall coupled to a second wall; and
a first reinforcement and a second reinforcement that are between the first wall and the second wall, wherein the second stiffness zone includes a first end of the second reinforcement space from a second end of the second reinforcement.
10. The vehicle of claim 9 wherein the first stiffness zone includes a first internal reinforcement and a second internal reinforcement and the second stiffness zone includes only the first internal reinforcement.
11. The vehicle of claim 10 wherein the pillar includes a third stiffness zone that is closer to the roof than the second stiffness zone.
12. (canceled)
13. (canceled)
14. The vehicle of claim 9 wherein walls of the second stiffness zone include a plurality of peaks and valleys.
15.-18. (canceled)
US17/127,748 2020-12-18 2020-12-18 Canopy windshield retention Active US11345409B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/127,748 US11345409B1 (en) 2020-12-18 2020-12-18 Canopy windshield retention
CN202111535071.8A CN114644052A (en) 2020-12-18 2021-12-15 Roof windshield retaining device
DE102021133552.3A DE102021133552A1 (en) 2020-12-18 2021-12-16 WINDSHIELD MOUNT FOR AN CANOPY
US17/731,751 US11505259B2 (en) 2020-12-18 2022-04-28 Canopy windshield retention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/127,748 US11345409B1 (en) 2020-12-18 2020-12-18 Canopy windshield retention

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/731,751 Division US11505259B2 (en) 2020-12-18 2022-04-28 Canopy windshield retention

Publications (2)

Publication Number Publication Date
US11345409B1 US11345409B1 (en) 2022-05-31
US20220194477A1 true US20220194477A1 (en) 2022-06-23

Family

ID=81756381

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/127,748 Active US11345409B1 (en) 2020-12-18 2020-12-18 Canopy windshield retention
US17/731,751 Active US11505259B2 (en) 2020-12-18 2022-04-28 Canopy windshield retention

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/731,751 Active US11505259B2 (en) 2020-12-18 2022-04-28 Canopy windshield retention

Country Status (3)

Country Link
US (2) US11345409B1 (en)
CN (1) CN114644052A (en)
DE (1) DE102021133552A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050218698A1 (en) * 2002-12-13 2005-10-06 Volvo Lastvagnar Ab Vehicle cab
JP3789191B2 (en) * 1997-03-06 2006-06-21 トヨタ自動車株式会社 Front pillar lower structure
US20200086924A1 (en) * 2018-09-18 2020-03-19 Paul R. Stibich Vehicle having reinforcement assemblies

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274190A (en) * 1979-05-11 1981-06-23 Charles J. Monahan Transit bus modernization method
US6779835B2 (en) 2001-12-06 2004-08-24 Lear Corporation Energy absorbing structure for automobile interior
JP2004009965A (en) 2002-06-10 2004-01-15 Honda Motor Co Ltd Windshield mounting structure of vehicle
DE102007025632A1 (en) * 2007-06-01 2008-12-04 Audi Ag Fiber composite profile and vehicle window frame
DE102008022427A1 (en) * 2008-05-07 2009-11-12 GM Global Technology Operations, Inc., Detroit Motor vehicle with A-pillar and in this stored airbag
US7887122B2 (en) 2008-06-12 2011-02-15 Ford Global Technologies, Llc One-piece shotgun with impact energy absorber
EP2138382A1 (en) * 2008-06-25 2009-12-30 Ford Global Technologies, LLC Column as part of the car body of a motor vehicle
CN105189259B (en) 2013-04-09 2017-07-04 丰田自动车株式会社 Body structure
CN204726347U (en) 2015-05-28 2015-10-28 上海通用汽车有限公司 For shield glass guiding gutter device and comprise its automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3789191B2 (en) * 1997-03-06 2006-06-21 トヨタ自動車株式会社 Front pillar lower structure
US20050218698A1 (en) * 2002-12-13 2005-10-06 Volvo Lastvagnar Ab Vehicle cab
US20200086924A1 (en) * 2018-09-18 2020-03-19 Paul R. Stibich Vehicle having reinforcement assemblies

Also Published As

Publication number Publication date
CN114644052A (en) 2022-06-21
US11345409B1 (en) 2022-05-31
US20220250688A1 (en) 2022-08-11
DE102021133552A1 (en) 2022-06-23
US11505259B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
US6705667B1 (en) Supporting structure for a motor vehicle
JP4286884B2 (en) Auto body structure
US8960780B2 (en) Vehicle side body structure
JP6372494B2 (en) Front body structure of the vehicle
EP2815953B1 (en) Vehicle body bottom structure
US9616935B2 (en) Vehicle structures and methods of assembling the same
JP7408927B2 (en) Vehicle rear body structure
US8939496B2 (en) Vehicle structure
US20090140546A1 (en) Vehicle body front structure
JP6432535B2 (en) Front body structure of the vehicle
JP6252617B2 (en) Vehicle side body structure
JP2010184706A (en) Front vehicle body structure of automobile
US9834254B2 (en) Motor vehicle instrument panel with sliding cover over crush space
JP3112978B2 (en) Car rear body structure
CN109562794B (en) Vehicle body structure
CN214138710U (en) Vehicle body side structure
JP4834353B2 (en) Energy absorbing beam for vehicle and door structure for vehicle
JP2002321576A (en) Damper for vehicle
US11345409B1 (en) Canopy windshield retention
JP2011148496A (en) Energy absorbing beam for vehicle and door structure for vehicle
JP3140511B2 (en) Car rear body structure
JP7213224B2 (en) car body structure
JP7443980B2 (en) Vehicle side body structure
JPH0138711B2 (en)
JPH09221067A (en) Cowl structure for vehicle

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALWAN, JAMIL M.;LEE, CHUNHUI KEVIN;SUBBIAN, THIAG;AND OTHERS;REEL/FRAME:054734/0161

Effective date: 20201218

STCF Information on status: patent grant

Free format text: PATENTED CASE